1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/GuardUtils.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/GenericDomTree.h" 54 #include "llvm/Support/InstructionCost.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar/LoopPassManager.h" 57 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 58 #include "llvm/Transforms/Utils/Cloning.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include "llvm/Transforms/Utils/LoopUtils.h" 61 #include "llvm/Transforms/Utils/ValueMapper.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <iterator> 65 #include <numeric> 66 #include <optional> 67 #include <utility> 68 69 #define DEBUG_TYPE "simple-loop-unswitch" 70 71 using namespace llvm; 72 using namespace llvm::PatternMatch; 73 74 STATISTIC(NumBranches, "Number of branches unswitched"); 75 STATISTIC(NumSwitches, "Number of switches unswitched"); 76 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 77 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 78 STATISTIC( 79 NumCostMultiplierSkipped, 80 "Number of unswitch candidates that had their cost multiplier skipped"); 81 82 static cl::opt<bool> EnableNonTrivialUnswitch( 83 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 84 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 85 "following the configuration passed into the pass.")); 86 87 static cl::opt<int> 88 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 89 cl::desc("The cost threshold for unswitching a loop.")); 90 91 static cl::opt<bool> EnableUnswitchCostMultiplier( 92 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 93 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 94 "explosion in nontrivial unswitch.")); 95 static cl::opt<int> UnswitchSiblingsToplevelDiv( 96 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 97 cl::desc("Toplevel siblings divisor for cost multiplier.")); 98 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 99 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 100 cl::desc("Number of unswitch candidates that are ignored when calculating " 101 "cost multiplier.")); 102 static cl::opt<bool> UnswitchGuards( 103 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 104 cl::desc("If enabled, simple loop unswitching will also consider " 105 "llvm.experimental.guard intrinsics as unswitch candidates.")); 106 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 107 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 108 cl::init(false), cl::Hidden, 109 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 110 "null checks to save time analyzing if we can keep it.")); 111 static cl::opt<unsigned> 112 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", 113 cl::desc("Max number of memory uses to explore during " 114 "partial unswitching analysis"), 115 cl::init(100), cl::Hidden); 116 static cl::opt<bool> FreezeLoopUnswitchCond( 117 "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden, 118 cl::desc("If enabled, the freeze instruction will be added to condition " 119 "of loop unswitch to prevent miscompilation.")); 120 121 namespace { 122 struct NonTrivialUnswitchCandidate { 123 Instruction *TI = nullptr; 124 TinyPtrVector<Value *> Invariants; 125 std::optional<InstructionCost> Cost; 126 NonTrivialUnswitchCandidate( 127 Instruction *TI, ArrayRef<Value *> Invariants, 128 std::optional<InstructionCost> Cost = std::nullopt) 129 : TI(TI), Invariants(Invariants), Cost(Cost){}; 130 }; 131 } // end anonymous namespace. 132 133 // Helper to skip (select x, true, false), which matches both a logical AND and 134 // OR and can confuse code that tries to determine if \p Cond is either a 135 // logical AND or OR but not both. 136 static Value *skipTrivialSelect(Value *Cond) { 137 Value *CondNext; 138 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero()))) 139 Cond = CondNext; 140 return Cond; 141 } 142 143 /// Collect all of the loop invariant input values transitively used by the 144 /// homogeneous instruction graph from a given root. 145 /// 146 /// This essentially walks from a root recursively through loop variant operands 147 /// which have perform the same logical operation (AND or OR) and finds all 148 /// inputs which are loop invariant. For some operations these can be 149 /// re-associated and unswitched out of the loop entirely. 150 static TinyPtrVector<Value *> 151 collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root, 152 const LoopInfo &LI) { 153 assert(!L.isLoopInvariant(&Root) && 154 "Only need to walk the graph if root itself is not invariant."); 155 TinyPtrVector<Value *> Invariants; 156 157 bool IsRootAnd = match(&Root, m_LogicalAnd()); 158 bool IsRootOr = match(&Root, m_LogicalOr()); 159 160 // Build a worklist and recurse through operators collecting invariants. 161 SmallVector<Instruction *, 4> Worklist; 162 SmallPtrSet<Instruction *, 8> Visited; 163 Worklist.push_back(&Root); 164 Visited.insert(&Root); 165 do { 166 Instruction &I = *Worklist.pop_back_val(); 167 for (Value *OpV : I.operand_values()) { 168 // Skip constants as unswitching isn't interesting for them. 169 if (isa<Constant>(OpV)) 170 continue; 171 172 // Add it to our result if loop invariant. 173 if (L.isLoopInvariant(OpV)) { 174 Invariants.push_back(OpV); 175 continue; 176 } 177 178 // If not an instruction with the same opcode, nothing we can do. 179 Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV)); 180 181 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) || 182 (IsRootOr && match(OpI, m_LogicalOr())))) { 183 // Visit this operand. 184 if (Visited.insert(OpI).second) 185 Worklist.push_back(OpI); 186 } 187 } 188 } while (!Worklist.empty()); 189 190 return Invariants; 191 } 192 193 static void replaceLoopInvariantUses(const Loop &L, Value *Invariant, 194 Constant &Replacement) { 195 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 196 197 // Replace uses of LIC in the loop with the given constant. 198 // We use make_early_inc_range as set invalidates the iterator. 199 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 200 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 201 202 // Replace this use within the loop body. 203 if (UserI && L.contains(UserI)) 204 U.set(&Replacement); 205 } 206 } 207 208 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 209 /// incoming values along this edge. 210 static bool areLoopExitPHIsLoopInvariant(const Loop &L, 211 const BasicBlock &ExitingBB, 212 const BasicBlock &ExitBB) { 213 for (const Instruction &I : ExitBB) { 214 auto *PN = dyn_cast<PHINode>(&I); 215 if (!PN) 216 // No more PHIs to check. 217 return true; 218 219 // If the incoming value for this edge isn't loop invariant the unswitch 220 // won't be trivial. 221 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 222 return false; 223 } 224 llvm_unreachable("Basic blocks should never be empty!"); 225 } 226 227 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the 228 /// end of \p BB and conditionally branch on the copied condition. We only 229 /// branch on a single value. 230 static void buildPartialUnswitchConditionalBranch( 231 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction, 232 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze, 233 const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) { 234 IRBuilder<> IRB(&BB); 235 236 SmallVector<Value *> FrozenInvariants; 237 for (Value *Inv : Invariants) { 238 if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT)) 239 Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr"); 240 FrozenInvariants.push_back(Inv); 241 } 242 243 Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants) 244 : IRB.CreateAnd(FrozenInvariants); 245 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 246 Direction ? &NormalSucc : &UnswitchedSucc); 247 } 248 249 /// Copy a set of loop invariant values, and conditionally branch on them. 250 static void buildPartialInvariantUnswitchConditionalBranch( 251 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction, 252 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L, 253 MemorySSAUpdater *MSSAU) { 254 ValueToValueMapTy VMap; 255 for (auto *Val : reverse(ToDuplicate)) { 256 Instruction *Inst = cast<Instruction>(Val); 257 Instruction *NewInst = Inst->clone(); 258 NewInst->insertInto(&BB, BB.end()); 259 RemapInstruction(NewInst, VMap, 260 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 261 VMap[Val] = NewInst; 262 263 if (!MSSAU) 264 continue; 265 266 MemorySSA *MSSA = MSSAU->getMemorySSA(); 267 if (auto *MemUse = 268 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) { 269 auto *DefiningAccess = MemUse->getDefiningAccess(); 270 // Get the first defining access before the loop. 271 while (L.contains(DefiningAccess->getBlock())) { 272 // If the defining access is a MemoryPhi, get the incoming 273 // value for the pre-header as defining access. 274 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess)) 275 DefiningAccess = 276 MemPhi->getIncomingValueForBlock(L.getLoopPreheader()); 277 else 278 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess(); 279 } 280 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess, 281 NewInst->getParent(), 282 MemorySSA::BeforeTerminator); 283 } 284 } 285 286 IRBuilder<> IRB(&BB); 287 Value *Cond = VMap[ToDuplicate[0]]; 288 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 289 Direction ? &NormalSucc : &UnswitchedSucc); 290 } 291 292 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 293 /// 294 /// Requires that the loop exit and unswitched basic block are the same, and 295 /// that the exiting block was a unique predecessor of that block. Rewrites the 296 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 297 /// PHI nodes from the old preheader that now contains the unswitched 298 /// terminator. 299 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 300 BasicBlock &OldExitingBB, 301 BasicBlock &OldPH) { 302 for (PHINode &PN : UnswitchedBB.phis()) { 303 // When the loop exit is directly unswitched we just need to update the 304 // incoming basic block. We loop to handle weird cases with repeated 305 // incoming blocks, but expect to typically only have one operand here. 306 for (auto i : seq<int>(0, PN.getNumOperands())) { 307 assert(PN.getIncomingBlock(i) == &OldExitingBB && 308 "Found incoming block different from unique predecessor!"); 309 PN.setIncomingBlock(i, &OldPH); 310 } 311 } 312 } 313 314 /// Rewrite the PHI nodes in the loop exit basic block and the split off 315 /// unswitched block. 316 /// 317 /// Because the exit block remains an exit from the loop, this rewrites the 318 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 319 /// nodes into the unswitched basic block to select between the value in the 320 /// old preheader and the loop exit. 321 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 322 BasicBlock &UnswitchedBB, 323 BasicBlock &OldExitingBB, 324 BasicBlock &OldPH, 325 bool FullUnswitch) { 326 assert(&ExitBB != &UnswitchedBB && 327 "Must have different loop exit and unswitched blocks!"); 328 Instruction *InsertPt = &*UnswitchedBB.begin(); 329 for (PHINode &PN : ExitBB.phis()) { 330 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 331 PN.getName() + ".split", InsertPt); 332 333 // Walk backwards over the old PHI node's inputs to minimize the cost of 334 // removing each one. We have to do this weird loop manually so that we 335 // create the same number of new incoming edges in the new PHI as we expect 336 // each case-based edge to be included in the unswitched switch in some 337 // cases. 338 // FIXME: This is really, really gross. It would be much cleaner if LLVM 339 // allowed us to create a single entry for a predecessor block without 340 // having separate entries for each "edge" even though these edges are 341 // required to produce identical results. 342 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 343 if (PN.getIncomingBlock(i) != &OldExitingBB) 344 continue; 345 346 Value *Incoming = PN.getIncomingValue(i); 347 if (FullUnswitch) 348 // No more edge from the old exiting block to the exit block. 349 PN.removeIncomingValue(i); 350 351 NewPN->addIncoming(Incoming, &OldPH); 352 } 353 354 // Now replace the old PHI with the new one and wire the old one in as an 355 // input to the new one. 356 PN.replaceAllUsesWith(NewPN); 357 NewPN->addIncoming(&PN, &ExitBB); 358 } 359 } 360 361 /// Hoist the current loop up to the innermost loop containing a remaining exit. 362 /// 363 /// Because we've removed an exit from the loop, we may have changed the set of 364 /// loops reachable and need to move the current loop up the loop nest or even 365 /// to an entirely separate nest. 366 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 367 DominatorTree &DT, LoopInfo &LI, 368 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 369 // If the loop is already at the top level, we can't hoist it anywhere. 370 Loop *OldParentL = L.getParentLoop(); 371 if (!OldParentL) 372 return; 373 374 SmallVector<BasicBlock *, 4> Exits; 375 L.getExitBlocks(Exits); 376 Loop *NewParentL = nullptr; 377 for (auto *ExitBB : Exits) 378 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 379 if (!NewParentL || NewParentL->contains(ExitL)) 380 NewParentL = ExitL; 381 382 if (NewParentL == OldParentL) 383 return; 384 385 // The new parent loop (if different) should always contain the old one. 386 if (NewParentL) 387 assert(NewParentL->contains(OldParentL) && 388 "Can only hoist this loop up the nest!"); 389 390 // The preheader will need to move with the body of this loop. However, 391 // because it isn't in this loop we also need to update the primary loop map. 392 assert(OldParentL == LI.getLoopFor(&Preheader) && 393 "Parent loop of this loop should contain this loop's preheader!"); 394 LI.changeLoopFor(&Preheader, NewParentL); 395 396 // Remove this loop from its old parent. 397 OldParentL->removeChildLoop(&L); 398 399 // Add the loop either to the new parent or as a top-level loop. 400 if (NewParentL) 401 NewParentL->addChildLoop(&L); 402 else 403 LI.addTopLevelLoop(&L); 404 405 // Remove this loops blocks from the old parent and every other loop up the 406 // nest until reaching the new parent. Also update all of these 407 // no-longer-containing loops to reflect the nesting change. 408 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 409 OldContainingL = OldContainingL->getParentLoop()) { 410 llvm::erase_if(OldContainingL->getBlocksVector(), 411 [&](const BasicBlock *BB) { 412 return BB == &Preheader || L.contains(BB); 413 }); 414 415 OldContainingL->getBlocksSet().erase(&Preheader); 416 for (BasicBlock *BB : L.blocks()) 417 OldContainingL->getBlocksSet().erase(BB); 418 419 // Because we just hoisted a loop out of this one, we have essentially 420 // created new exit paths from it. That means we need to form LCSSA PHI 421 // nodes for values used in the no-longer-nested loop. 422 formLCSSA(*OldContainingL, DT, &LI, SE); 423 424 // We shouldn't need to form dedicated exits because the exit introduced 425 // here is the (just split by unswitching) preheader. However, after trivial 426 // unswitching it is possible to get new non-dedicated exits out of parent 427 // loop so let's conservatively form dedicated exit blocks and figure out 428 // if we can optimize later. 429 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 430 /*PreserveLCSSA*/ true); 431 } 432 } 433 434 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 435 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 436 // as exiting block. 437 static const Loop *getTopMostExitingLoop(const BasicBlock *ExitBB, 438 const LoopInfo &LI) { 439 const Loop *TopMost = LI.getLoopFor(ExitBB); 440 const Loop *Current = TopMost; 441 while (Current) { 442 if (Current->isLoopExiting(ExitBB)) 443 TopMost = Current; 444 Current = Current->getParentLoop(); 445 } 446 return TopMost; 447 } 448 449 /// Unswitch a trivial branch if the condition is loop invariant. 450 /// 451 /// This routine should only be called when loop code leading to the branch has 452 /// been validated as trivial (no side effects). This routine checks if the 453 /// condition is invariant and one of the successors is a loop exit. This 454 /// allows us to unswitch without duplicating the loop, making it trivial. 455 /// 456 /// If this routine fails to unswitch the branch it returns false. 457 /// 458 /// If the branch can be unswitched, this routine splits the preheader and 459 /// hoists the branch above that split. Preserves loop simplified form 460 /// (splitting the exit block as necessary). It simplifies the branch within 461 /// the loop to an unconditional branch but doesn't remove it entirely. Further 462 /// cleanup can be done with some simplifycfg like pass. 463 /// 464 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 465 /// invalidated by this. 466 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 467 LoopInfo &LI, ScalarEvolution *SE, 468 MemorySSAUpdater *MSSAU) { 469 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 470 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 471 472 // The loop invariant values that we want to unswitch. 473 TinyPtrVector<Value *> Invariants; 474 475 // When true, we're fully unswitching the branch rather than just unswitching 476 // some input conditions to the branch. 477 bool FullUnswitch = false; 478 479 Value *Cond = skipTrivialSelect(BI.getCondition()); 480 if (L.isLoopInvariant(Cond)) { 481 Invariants.push_back(Cond); 482 FullUnswitch = true; 483 } else { 484 if (auto *CondInst = dyn_cast<Instruction>(Cond)) 485 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 486 if (Invariants.empty()) { 487 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n"); 488 return false; 489 } 490 } 491 492 // Check that one of the branch's successors exits, and which one. 493 bool ExitDirection = true; 494 int LoopExitSuccIdx = 0; 495 auto *LoopExitBB = BI.getSuccessor(0); 496 if (L.contains(LoopExitBB)) { 497 ExitDirection = false; 498 LoopExitSuccIdx = 1; 499 LoopExitBB = BI.getSuccessor(1); 500 if (L.contains(LoopExitBB)) { 501 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n"); 502 return false; 503 } 504 } 505 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 506 auto *ParentBB = BI.getParent(); 507 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) { 508 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n"); 509 return false; 510 } 511 512 // When unswitching only part of the branch's condition, we need the exit 513 // block to be reached directly from the partially unswitched input. This can 514 // be done when the exit block is along the true edge and the branch condition 515 // is a graph of `or` operations, or the exit block is along the false edge 516 // and the condition is a graph of `and` operations. 517 if (!FullUnswitch) { 518 if (ExitDirection ? !match(Cond, m_LogicalOr()) 519 : !match(Cond, m_LogicalAnd())) { 520 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for " 521 "non-full unswitch!\n"); 522 return false; 523 } 524 } 525 526 LLVM_DEBUG({ 527 dbgs() << " unswitching trivial invariant conditions for: " << BI 528 << "\n"; 529 for (Value *Invariant : Invariants) { 530 dbgs() << " " << *Invariant << " == true"; 531 if (Invariant != Invariants.back()) 532 dbgs() << " ||"; 533 dbgs() << "\n"; 534 } 535 }); 536 537 // If we have scalar evolutions, we need to invalidate them including this 538 // loop, the loop containing the exit block and the topmost parent loop 539 // exiting via LoopExitBB. 540 if (SE) { 541 if (const Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 542 SE->forgetLoop(ExitL); 543 else 544 // Forget the entire nest as this exits the entire nest. 545 SE->forgetTopmostLoop(&L); 546 SE->forgetBlockAndLoopDispositions(); 547 } 548 549 if (MSSAU && VerifyMemorySSA) 550 MSSAU->getMemorySSA()->verifyMemorySSA(); 551 552 // Split the preheader, so that we know that there is a safe place to insert 553 // the conditional branch. We will change the preheader to have a conditional 554 // branch on LoopCond. 555 BasicBlock *OldPH = L.getLoopPreheader(); 556 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 557 558 // Now that we have a place to insert the conditional branch, create a place 559 // to branch to: this is the exit block out of the loop that we are 560 // unswitching. We need to split this if there are other loop predecessors. 561 // Because the loop is in simplified form, *any* other predecessor is enough. 562 BasicBlock *UnswitchedBB; 563 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 564 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 565 "A branch's parent isn't a predecessor!"); 566 UnswitchedBB = LoopExitBB; 567 } else { 568 UnswitchedBB = 569 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 570 } 571 572 if (MSSAU && VerifyMemorySSA) 573 MSSAU->getMemorySSA()->verifyMemorySSA(); 574 575 // Actually move the invariant uses into the unswitched position. If possible, 576 // we do this by moving the instructions, but when doing partial unswitching 577 // we do it by building a new merge of the values in the unswitched position. 578 OldPH->getTerminator()->eraseFromParent(); 579 if (FullUnswitch) { 580 // If fully unswitching, we can use the existing branch instruction. 581 // Splice it into the old PH to gate reaching the new preheader and re-point 582 // its successors. 583 OldPH->splice(OldPH->end(), BI.getParent(), BI.getIterator()); 584 BI.setCondition(Cond); 585 if (MSSAU) { 586 // Temporarily clone the terminator, to make MSSA update cheaper by 587 // separating "insert edge" updates from "remove edge" ones. 588 BI.clone()->insertInto(ParentBB, ParentBB->end()); 589 } else { 590 // Create a new unconditional branch that will continue the loop as a new 591 // terminator. 592 BranchInst::Create(ContinueBB, ParentBB); 593 } 594 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 595 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 596 } else { 597 // Only unswitching a subset of inputs to the condition, so we will need to 598 // build a new branch that merges the invariant inputs. 599 if (ExitDirection) 600 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) && 601 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the " 602 "condition!"); 603 else 604 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) && 605 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the" 606 " condition!"); 607 buildPartialUnswitchConditionalBranch( 608 *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH, 609 FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT); 610 } 611 612 // Update the dominator tree with the added edge. 613 DT.insertEdge(OldPH, UnswitchedBB); 614 615 // After the dominator tree was updated with the added edge, update MemorySSA 616 // if available. 617 if (MSSAU) { 618 SmallVector<CFGUpdate, 1> Updates; 619 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 620 MSSAU->applyInsertUpdates(Updates, DT); 621 } 622 623 // Finish updating dominator tree and memory ssa for full unswitch. 624 if (FullUnswitch) { 625 if (MSSAU) { 626 // Remove the cloned branch instruction. 627 ParentBB->getTerminator()->eraseFromParent(); 628 // Create unconditional branch now. 629 BranchInst::Create(ContinueBB, ParentBB); 630 MSSAU->removeEdge(ParentBB, LoopExitBB); 631 } 632 DT.deleteEdge(ParentBB, LoopExitBB); 633 } 634 635 if (MSSAU && VerifyMemorySSA) 636 MSSAU->getMemorySSA()->verifyMemorySSA(); 637 638 // Rewrite the relevant PHI nodes. 639 if (UnswitchedBB == LoopExitBB) 640 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 641 else 642 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 643 *ParentBB, *OldPH, FullUnswitch); 644 645 // The constant we can replace all of our invariants with inside the loop 646 // body. If any of the invariants have a value other than this the loop won't 647 // be entered. 648 ConstantInt *Replacement = ExitDirection 649 ? ConstantInt::getFalse(BI.getContext()) 650 : ConstantInt::getTrue(BI.getContext()); 651 652 // Since this is an i1 condition we can also trivially replace uses of it 653 // within the loop with a constant. 654 for (Value *Invariant : Invariants) 655 replaceLoopInvariantUses(L, Invariant, *Replacement); 656 657 // If this was full unswitching, we may have changed the nesting relationship 658 // for this loop so hoist it to its correct parent if needed. 659 if (FullUnswitch) 660 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 661 662 if (MSSAU && VerifyMemorySSA) 663 MSSAU->getMemorySSA()->verifyMemorySSA(); 664 665 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 666 ++NumTrivial; 667 ++NumBranches; 668 return true; 669 } 670 671 /// Unswitch a trivial switch if the condition is loop invariant. 672 /// 673 /// This routine should only be called when loop code leading to the switch has 674 /// been validated as trivial (no side effects). This routine checks if the 675 /// condition is invariant and that at least one of the successors is a loop 676 /// exit. This allows us to unswitch without duplicating the loop, making it 677 /// trivial. 678 /// 679 /// If this routine fails to unswitch the switch it returns false. 680 /// 681 /// If the switch can be unswitched, this routine splits the preheader and 682 /// copies the switch above that split. If the default case is one of the 683 /// exiting cases, it copies the non-exiting cases and points them at the new 684 /// preheader. If the default case is not exiting, it copies the exiting cases 685 /// and points the default at the preheader. It preserves loop simplified form 686 /// (splitting the exit blocks as necessary). It simplifies the switch within 687 /// the loop by removing now-dead cases. If the default case is one of those 688 /// unswitched, it replaces its destination with a new basic block containing 689 /// only unreachable. Such basic blocks, while technically loop exits, are not 690 /// considered for unswitching so this is a stable transform and the same 691 /// switch will not be revisited. If after unswitching there is only a single 692 /// in-loop successor, the switch is further simplified to an unconditional 693 /// branch. Still more cleanup can be done with some simplifycfg like pass. 694 /// 695 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 696 /// invalidated by this. 697 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 698 LoopInfo &LI, ScalarEvolution *SE, 699 MemorySSAUpdater *MSSAU) { 700 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 701 Value *LoopCond = SI.getCondition(); 702 703 // If this isn't switching on an invariant condition, we can't unswitch it. 704 if (!L.isLoopInvariant(LoopCond)) 705 return false; 706 707 auto *ParentBB = SI.getParent(); 708 709 // The same check must be used both for the default and the exit cases. We 710 // should never leave edges from the switch instruction to a basic block that 711 // we are unswitching, hence the condition used to determine the default case 712 // needs to also be used to populate ExitCaseIndices, which is then used to 713 // remove cases from the switch. 714 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 715 // BBToCheck is not an exit block if it is inside loop L. 716 if (L.contains(&BBToCheck)) 717 return false; 718 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 719 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 720 return false; 721 // We do not unswitch a block that only has an unreachable statement, as 722 // it's possible this is a previously unswitched block. Only unswitch if 723 // either the terminator is not unreachable, or, if it is, it's not the only 724 // instruction in the block. 725 auto *TI = BBToCheck.getTerminator(); 726 bool isUnreachable = isa<UnreachableInst>(TI); 727 return !isUnreachable || 728 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 729 }; 730 731 SmallVector<int, 4> ExitCaseIndices; 732 for (auto Case : SI.cases()) 733 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 734 ExitCaseIndices.push_back(Case.getCaseIndex()); 735 BasicBlock *DefaultExitBB = nullptr; 736 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 737 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 738 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 739 DefaultExitBB = SI.getDefaultDest(); 740 } else if (ExitCaseIndices.empty()) 741 return false; 742 743 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 744 745 if (MSSAU && VerifyMemorySSA) 746 MSSAU->getMemorySSA()->verifyMemorySSA(); 747 748 // We may need to invalidate SCEVs for the outermost loop reached by any of 749 // the exits. 750 Loop *OuterL = &L; 751 752 if (DefaultExitBB) { 753 // Clear out the default destination temporarily to allow accurate 754 // predecessor lists to be examined below. 755 SI.setDefaultDest(nullptr); 756 // Check the loop containing this exit. 757 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 758 if (!ExitL || ExitL->contains(OuterL)) 759 OuterL = ExitL; 760 } 761 762 // Store the exit cases into a separate data structure and remove them from 763 // the switch. 764 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 765 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 766 4> ExitCases; 767 ExitCases.reserve(ExitCaseIndices.size()); 768 SwitchInstProfUpdateWrapper SIW(SI); 769 // We walk the case indices backwards so that we remove the last case first 770 // and don't disrupt the earlier indices. 771 for (unsigned Index : reverse(ExitCaseIndices)) { 772 auto CaseI = SI.case_begin() + Index; 773 // Compute the outer loop from this exit. 774 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 775 if (!ExitL || ExitL->contains(OuterL)) 776 OuterL = ExitL; 777 // Save the value of this case. 778 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 779 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 780 // Delete the unswitched cases. 781 SIW.removeCase(CaseI); 782 } 783 784 if (SE) { 785 if (OuterL) 786 SE->forgetLoop(OuterL); 787 else 788 SE->forgetTopmostLoop(&L); 789 } 790 791 // Check if after this all of the remaining cases point at the same 792 // successor. 793 BasicBlock *CommonSuccBB = nullptr; 794 if (SI.getNumCases() > 0 && 795 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 796 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 797 })) 798 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 799 if (!DefaultExitBB) { 800 // If we're not unswitching the default, we need it to match any cases to 801 // have a common successor or if we have no cases it is the common 802 // successor. 803 if (SI.getNumCases() == 0) 804 CommonSuccBB = SI.getDefaultDest(); 805 else if (SI.getDefaultDest() != CommonSuccBB) 806 CommonSuccBB = nullptr; 807 } 808 809 // Split the preheader, so that we know that there is a safe place to insert 810 // the switch. 811 BasicBlock *OldPH = L.getLoopPreheader(); 812 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 813 OldPH->getTerminator()->eraseFromParent(); 814 815 // Now add the unswitched switch. 816 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 817 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 818 819 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 820 // First, we split any exit blocks with remaining in-loop predecessors. Then 821 // we update the PHIs in one of two ways depending on if there was a split. 822 // We walk in reverse so that we split in the same order as the cases 823 // appeared. This is purely for convenience of reading the resulting IR, but 824 // it doesn't cost anything really. 825 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 826 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 827 // Handle the default exit if necessary. 828 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 829 // ranges aren't quite powerful enough yet. 830 if (DefaultExitBB) { 831 if (pred_empty(DefaultExitBB)) { 832 UnswitchedExitBBs.insert(DefaultExitBB); 833 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 834 } else { 835 auto *SplitBB = 836 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 837 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 838 *ParentBB, *OldPH, 839 /*FullUnswitch*/ true); 840 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 841 } 842 } 843 // Note that we must use a reference in the for loop so that we update the 844 // container. 845 for (auto &ExitCase : reverse(ExitCases)) { 846 // Grab a reference to the exit block in the pair so that we can update it. 847 BasicBlock *ExitBB = std::get<1>(ExitCase); 848 849 // If this case is the last edge into the exit block, we can simply reuse it 850 // as it will no longer be a loop exit. No mapping necessary. 851 if (pred_empty(ExitBB)) { 852 // Only rewrite once. 853 if (UnswitchedExitBBs.insert(ExitBB).second) 854 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 855 continue; 856 } 857 858 // Otherwise we need to split the exit block so that we retain an exit 859 // block from the loop and a target for the unswitched condition. 860 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 861 if (!SplitExitBB) { 862 // If this is the first time we see this, do the split and remember it. 863 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 864 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 865 *ParentBB, *OldPH, 866 /*FullUnswitch*/ true); 867 } 868 // Update the case pair to point to the split block. 869 std::get<1>(ExitCase) = SplitExitBB; 870 } 871 872 // Now add the unswitched cases. We do this in reverse order as we built them 873 // in reverse order. 874 for (auto &ExitCase : reverse(ExitCases)) { 875 ConstantInt *CaseVal = std::get<0>(ExitCase); 876 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 877 878 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 879 } 880 881 // If the default was unswitched, re-point it and add explicit cases for 882 // entering the loop. 883 if (DefaultExitBB) { 884 NewSIW->setDefaultDest(DefaultExitBB); 885 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 886 887 // We removed all the exit cases, so we just copy the cases to the 888 // unswitched switch. 889 for (const auto &Case : SI.cases()) 890 NewSIW.addCase(Case.getCaseValue(), NewPH, 891 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 892 } else if (DefaultCaseWeight) { 893 // We have to set branch weight of the default case. 894 uint64_t SW = *DefaultCaseWeight; 895 for (const auto &Case : SI.cases()) { 896 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 897 assert(W && 898 "case weight must be defined as default case weight is defined"); 899 SW += *W; 900 } 901 NewSIW.setSuccessorWeight(0, SW); 902 } 903 904 // If we ended up with a common successor for every path through the switch 905 // after unswitching, rewrite it to an unconditional branch to make it easy 906 // to recognize. Otherwise we potentially have to recognize the default case 907 // pointing at unreachable and other complexity. 908 if (CommonSuccBB) { 909 BasicBlock *BB = SI.getParent(); 910 // We may have had multiple edges to this common successor block, so remove 911 // them as predecessors. We skip the first one, either the default or the 912 // actual first case. 913 bool SkippedFirst = DefaultExitBB == nullptr; 914 for (auto Case : SI.cases()) { 915 assert(Case.getCaseSuccessor() == CommonSuccBB && 916 "Non-common successor!"); 917 (void)Case; 918 if (!SkippedFirst) { 919 SkippedFirst = true; 920 continue; 921 } 922 CommonSuccBB->removePredecessor(BB, 923 /*KeepOneInputPHIs*/ true); 924 } 925 // Now nuke the switch and replace it with a direct branch. 926 SIW.eraseFromParent(); 927 BranchInst::Create(CommonSuccBB, BB); 928 } else if (DefaultExitBB) { 929 assert(SI.getNumCases() > 0 && 930 "If we had no cases we'd have a common successor!"); 931 // Move the last case to the default successor. This is valid as if the 932 // default got unswitched it cannot be reached. This has the advantage of 933 // being simple and keeping the number of edges from this switch to 934 // successors the same, and avoiding any PHI update complexity. 935 auto LastCaseI = std::prev(SI.case_end()); 936 937 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 938 SIW.setSuccessorWeight( 939 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 940 SIW.removeCase(LastCaseI); 941 } 942 943 // Walk the unswitched exit blocks and the unswitched split blocks and update 944 // the dominator tree based on the CFG edits. While we are walking unordered 945 // containers here, the API for applyUpdates takes an unordered list of 946 // updates and requires them to not contain duplicates. 947 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 948 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 949 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 950 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 951 } 952 for (auto SplitUnswitchedPair : SplitExitBBMap) { 953 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 954 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 955 } 956 957 if (MSSAU) { 958 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 959 if (VerifyMemorySSA) 960 MSSAU->getMemorySSA()->verifyMemorySSA(); 961 } else { 962 DT.applyUpdates(DTUpdates); 963 } 964 965 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 966 967 // We may have changed the nesting relationship for this loop so hoist it to 968 // its correct parent if needed. 969 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 970 971 if (MSSAU && VerifyMemorySSA) 972 MSSAU->getMemorySSA()->verifyMemorySSA(); 973 974 ++NumTrivial; 975 ++NumSwitches; 976 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 977 return true; 978 } 979 980 /// This routine scans the loop to find a branch or switch which occurs before 981 /// any side effects occur. These can potentially be unswitched without 982 /// duplicating the loop. If a branch or switch is successfully unswitched the 983 /// scanning continues to see if subsequent branches or switches have become 984 /// trivial. Once all trivial candidates have been unswitched, this routine 985 /// returns. 986 /// 987 /// The return value indicates whether anything was unswitched (and therefore 988 /// changed). 989 /// 990 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 991 /// invalidated by this. 992 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 993 LoopInfo &LI, ScalarEvolution *SE, 994 MemorySSAUpdater *MSSAU) { 995 bool Changed = false; 996 997 // If loop header has only one reachable successor we should keep looking for 998 // trivial condition candidates in the successor as well. An alternative is 999 // to constant fold conditions and merge successors into loop header (then we 1000 // only need to check header's terminator). The reason for not doing this in 1001 // LoopUnswitch pass is that it could potentially break LoopPassManager's 1002 // invariants. Folding dead branches could either eliminate the current loop 1003 // or make other loops unreachable. LCSSA form might also not be preserved 1004 // after deleting branches. The following code keeps traversing loop header's 1005 // successors until it finds the trivial condition candidate (condition that 1006 // is not a constant). Since unswitching generates branches with constant 1007 // conditions, this scenario could be very common in practice. 1008 BasicBlock *CurrentBB = L.getHeader(); 1009 SmallPtrSet<BasicBlock *, 8> Visited; 1010 Visited.insert(CurrentBB); 1011 do { 1012 // Check if there are any side-effecting instructions (e.g. stores, calls, 1013 // volatile loads) in the part of the loop that the code *would* execute 1014 // without unswitching. 1015 if (MSSAU) // Possible early exit with MSSA 1016 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 1017 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 1018 return Changed; 1019 if (llvm::any_of(*CurrentBB, 1020 [](Instruction &I) { return I.mayHaveSideEffects(); })) 1021 return Changed; 1022 1023 Instruction *CurrentTerm = CurrentBB->getTerminator(); 1024 1025 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 1026 // Don't bother trying to unswitch past a switch with a constant 1027 // condition. This should be removed prior to running this pass by 1028 // simplifycfg. 1029 if (isa<Constant>(SI->getCondition())) 1030 return Changed; 1031 1032 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 1033 // Couldn't unswitch this one so we're done. 1034 return Changed; 1035 1036 // Mark that we managed to unswitch something. 1037 Changed = true; 1038 1039 // If unswitching turned the terminator into an unconditional branch then 1040 // we can continue. The unswitching logic specifically works to fold any 1041 // cases it can into an unconditional branch to make it easier to 1042 // recognize here. 1043 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 1044 if (!BI || BI->isConditional()) 1045 return Changed; 1046 1047 CurrentBB = BI->getSuccessor(0); 1048 continue; 1049 } 1050 1051 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 1052 if (!BI) 1053 // We do not understand other terminator instructions. 1054 return Changed; 1055 1056 // Don't bother trying to unswitch past an unconditional branch or a branch 1057 // with a constant value. These should be removed by simplifycfg prior to 1058 // running this pass. 1059 if (!BI->isConditional() || 1060 isa<Constant>(skipTrivialSelect(BI->getCondition()))) 1061 return Changed; 1062 1063 // Found a trivial condition candidate: non-foldable conditional branch. If 1064 // we fail to unswitch this, we can't do anything else that is trivial. 1065 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 1066 return Changed; 1067 1068 // Mark that we managed to unswitch something. 1069 Changed = true; 1070 1071 // If we only unswitched some of the conditions feeding the branch, we won't 1072 // have collapsed it to a single successor. 1073 BI = cast<BranchInst>(CurrentBB->getTerminator()); 1074 if (BI->isConditional()) 1075 return Changed; 1076 1077 // Follow the newly unconditional branch into its successor. 1078 CurrentBB = BI->getSuccessor(0); 1079 1080 // When continuing, if we exit the loop or reach a previous visited block, 1081 // then we can not reach any trivial condition candidates (unfoldable 1082 // branch instructions or switch instructions) and no unswitch can happen. 1083 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 1084 1085 return Changed; 1086 } 1087 1088 /// Build the cloned blocks for an unswitched copy of the given loop. 1089 /// 1090 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 1091 /// after the split block (`SplitBB`) that will be used to select between the 1092 /// cloned and original loop. 1093 /// 1094 /// This routine handles cloning all of the necessary loop blocks and exit 1095 /// blocks including rewriting their instructions and the relevant PHI nodes. 1096 /// Any loop blocks or exit blocks which are dominated by a different successor 1097 /// than the one for this clone of the loop blocks can be trivially skipped. We 1098 /// use the `DominatingSucc` map to determine whether a block satisfies that 1099 /// property with a simple map lookup. 1100 /// 1101 /// It also correctly creates the unconditional branch in the cloned 1102 /// unswitched parent block to only point at the unswitched successor. 1103 /// 1104 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1105 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1106 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1107 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1108 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1109 /// instead the caller must recompute an accurate DT. It *does* correctly 1110 /// update the `AssumptionCache` provided in `AC`. 1111 static BasicBlock *buildClonedLoopBlocks( 1112 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1113 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1114 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1115 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1116 ValueToValueMapTy &VMap, 1117 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1118 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU, 1119 ScalarEvolution *SE) { 1120 SmallVector<BasicBlock *, 4> NewBlocks; 1121 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1122 1123 // We will need to clone a bunch of blocks, wrap up the clone operation in 1124 // a helper. 1125 auto CloneBlock = [&](BasicBlock *OldBB) { 1126 // Clone the basic block and insert it before the new preheader. 1127 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1128 NewBB->moveBefore(LoopPH); 1129 1130 // Record this block and the mapping. 1131 NewBlocks.push_back(NewBB); 1132 VMap[OldBB] = NewBB; 1133 1134 return NewBB; 1135 }; 1136 1137 // We skip cloning blocks when they have a dominating succ that is not the 1138 // succ we are cloning for. 1139 auto SkipBlock = [&](BasicBlock *BB) { 1140 auto It = DominatingSucc.find(BB); 1141 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1142 }; 1143 1144 // First, clone the preheader. 1145 auto *ClonedPH = CloneBlock(LoopPH); 1146 1147 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1148 for (auto *LoopBB : L.blocks()) 1149 if (!SkipBlock(LoopBB)) 1150 CloneBlock(LoopBB); 1151 1152 // Split all the loop exit edges so that when we clone the exit blocks, if 1153 // any of the exit blocks are *also* a preheader for some other loop, we 1154 // don't create multiple predecessors entering the loop header. 1155 for (auto *ExitBB : ExitBlocks) { 1156 if (SkipBlock(ExitBB)) 1157 continue; 1158 1159 // When we are going to clone an exit, we don't need to clone all the 1160 // instructions in the exit block and we want to ensure we have an easy 1161 // place to merge the CFG, so split the exit first. This is always safe to 1162 // do because there cannot be any non-loop predecessors of a loop exit in 1163 // loop simplified form. 1164 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1165 1166 // Rearrange the names to make it easier to write test cases by having the 1167 // exit block carry the suffix rather than the merge block carrying the 1168 // suffix. 1169 MergeBB->takeName(ExitBB); 1170 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1171 1172 // Now clone the original exit block. 1173 auto *ClonedExitBB = CloneBlock(ExitBB); 1174 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1175 "Exit block should have been split to have one successor!"); 1176 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1177 "Cloned exit block has the wrong successor!"); 1178 1179 // Remap any cloned instructions and create a merge phi node for them. 1180 for (auto ZippedInsts : llvm::zip_first( 1181 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1182 llvm::make_range(ClonedExitBB->begin(), 1183 std::prev(ClonedExitBB->end())))) { 1184 Instruction &I = std::get<0>(ZippedInsts); 1185 Instruction &ClonedI = std::get<1>(ZippedInsts); 1186 1187 // The only instructions in the exit block should be PHI nodes and 1188 // potentially a landing pad. 1189 assert( 1190 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1191 "Bad instruction in exit block!"); 1192 // We should have a value map between the instruction and its clone. 1193 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1194 1195 // Forget SCEVs based on exit phis in case SCEV looked through the phi. 1196 if (SE && isa<PHINode>(I)) 1197 SE->forgetValue(&I); 1198 1199 auto *MergePN = 1200 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1201 &*MergeBB->getFirstInsertionPt()); 1202 I.replaceAllUsesWith(MergePN); 1203 MergePN->addIncoming(&I, ExitBB); 1204 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1205 } 1206 } 1207 1208 // Rewrite the instructions in the cloned blocks to refer to the instructions 1209 // in the cloned blocks. We have to do this as a second pass so that we have 1210 // everything available. Also, we have inserted new instructions which may 1211 // include assume intrinsics, so we update the assumption cache while 1212 // processing this. 1213 for (auto *ClonedBB : NewBlocks) 1214 for (Instruction &I : *ClonedBB) { 1215 RemapInstruction(&I, VMap, 1216 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1217 if (auto *II = dyn_cast<AssumeInst>(&I)) 1218 AC.registerAssumption(II); 1219 } 1220 1221 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1222 // have spurious incoming values. 1223 for (auto *LoopBB : L.blocks()) 1224 if (SkipBlock(LoopBB)) 1225 for (auto *SuccBB : successors(LoopBB)) 1226 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1227 for (PHINode &PN : ClonedSuccBB->phis()) 1228 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1229 1230 // Remove the cloned parent as a predecessor of any successor we ended up 1231 // cloning other than the unswitched one. 1232 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1233 for (auto *SuccBB : successors(ParentBB)) { 1234 if (SuccBB == UnswitchedSuccBB) 1235 continue; 1236 1237 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1238 if (!ClonedSuccBB) 1239 continue; 1240 1241 ClonedSuccBB->removePredecessor(ClonedParentBB, 1242 /*KeepOneInputPHIs*/ true); 1243 } 1244 1245 // Replace the cloned branch with an unconditional branch to the cloned 1246 // unswitched successor. 1247 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1248 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1249 // Trivial Simplification. If Terminator is a conditional branch and 1250 // condition becomes dead - erase it. 1251 Value *ClonedConditionToErase = nullptr; 1252 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1253 ClonedConditionToErase = BI->getCondition(); 1254 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1255 ClonedConditionToErase = SI->getCondition(); 1256 1257 ClonedTerminator->eraseFromParent(); 1258 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1259 1260 if (ClonedConditionToErase) 1261 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1262 MSSAU); 1263 1264 // If there are duplicate entries in the PHI nodes because of multiple edges 1265 // to the unswitched successor, we need to nuke all but one as we replaced it 1266 // with a direct branch. 1267 for (PHINode &PN : ClonedSuccBB->phis()) { 1268 bool Found = false; 1269 // Loop over the incoming operands backwards so we can easily delete as we 1270 // go without invalidating the index. 1271 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1272 if (PN.getIncomingBlock(i) != ClonedParentBB) 1273 continue; 1274 if (!Found) { 1275 Found = true; 1276 continue; 1277 } 1278 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1279 } 1280 } 1281 1282 // Record the domtree updates for the new blocks. 1283 SmallPtrSet<BasicBlock *, 4> SuccSet; 1284 for (auto *ClonedBB : NewBlocks) { 1285 for (auto *SuccBB : successors(ClonedBB)) 1286 if (SuccSet.insert(SuccBB).second) 1287 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1288 SuccSet.clear(); 1289 } 1290 1291 return ClonedPH; 1292 } 1293 1294 /// Recursively clone the specified loop and all of its children. 1295 /// 1296 /// The target parent loop for the clone should be provided, or can be null if 1297 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1298 /// with the provided value map. The entire original loop must be present in 1299 /// the value map. The cloned loop is returned. 1300 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1301 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1302 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1303 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1304 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1305 for (auto *BB : OrigL.blocks()) { 1306 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1307 ClonedL.addBlockEntry(ClonedBB); 1308 if (LI.getLoopFor(BB) == &OrigL) 1309 LI.changeLoopFor(ClonedBB, &ClonedL); 1310 } 1311 }; 1312 1313 // We specially handle the first loop because it may get cloned into 1314 // a different parent and because we most commonly are cloning leaf loops. 1315 Loop *ClonedRootL = LI.AllocateLoop(); 1316 if (RootParentL) 1317 RootParentL->addChildLoop(ClonedRootL); 1318 else 1319 LI.addTopLevelLoop(ClonedRootL); 1320 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1321 1322 if (OrigRootL.isInnermost()) 1323 return ClonedRootL; 1324 1325 // If we have a nest, we can quickly clone the entire loop nest using an 1326 // iterative approach because it is a tree. We keep the cloned parent in the 1327 // data structure to avoid repeatedly querying through a map to find it. 1328 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1329 // Build up the loops to clone in reverse order as we'll clone them from the 1330 // back. 1331 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1332 LoopsToClone.push_back({ClonedRootL, ChildL}); 1333 do { 1334 Loop *ClonedParentL, *L; 1335 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1336 Loop *ClonedL = LI.AllocateLoop(); 1337 ClonedParentL->addChildLoop(ClonedL); 1338 AddClonedBlocksToLoop(*L, *ClonedL); 1339 for (Loop *ChildL : llvm::reverse(*L)) 1340 LoopsToClone.push_back({ClonedL, ChildL}); 1341 } while (!LoopsToClone.empty()); 1342 1343 return ClonedRootL; 1344 } 1345 1346 /// Build the cloned loops of an original loop from unswitching. 1347 /// 1348 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1349 /// operation. We need to re-verify that there even is a loop (as the backedge 1350 /// may not have been cloned), and even if there are remaining backedges the 1351 /// backedge set may be different. However, we know that each child loop is 1352 /// undisturbed, we only need to find where to place each child loop within 1353 /// either any parent loop or within a cloned version of the original loop. 1354 /// 1355 /// Because child loops may end up cloned outside of any cloned version of the 1356 /// original loop, multiple cloned sibling loops may be created. All of them 1357 /// are returned so that the newly introduced loop nest roots can be 1358 /// identified. 1359 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1360 const ValueToValueMapTy &VMap, LoopInfo &LI, 1361 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1362 Loop *ClonedL = nullptr; 1363 1364 auto *OrigPH = OrigL.getLoopPreheader(); 1365 auto *OrigHeader = OrigL.getHeader(); 1366 1367 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1368 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1369 1370 // We need to know the loops of the cloned exit blocks to even compute the 1371 // accurate parent loop. If we only clone exits to some parent of the 1372 // original parent, we want to clone into that outer loop. We also keep track 1373 // of the loops that our cloned exit blocks participate in. 1374 Loop *ParentL = nullptr; 1375 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1376 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1377 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1378 for (auto *ExitBB : ExitBlocks) 1379 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1380 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1381 ExitLoopMap[ClonedExitBB] = ExitL; 1382 ClonedExitsInLoops.push_back(ClonedExitBB); 1383 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1384 ParentL = ExitL; 1385 } 1386 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1387 ParentL->contains(OrigL.getParentLoop())) && 1388 "The computed parent loop should always contain (or be) the parent of " 1389 "the original loop."); 1390 1391 // We build the set of blocks dominated by the cloned header from the set of 1392 // cloned blocks out of the original loop. While not all of these will 1393 // necessarily be in the cloned loop, it is enough to establish that they 1394 // aren't in unreachable cycles, etc. 1395 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1396 for (auto *BB : OrigL.blocks()) 1397 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1398 ClonedLoopBlocks.insert(ClonedBB); 1399 1400 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1401 // skipped cloning some region of this loop which can in turn skip some of 1402 // the backedges so we have to rebuild the blocks in the loop based on the 1403 // backedges that remain after cloning. 1404 SmallVector<BasicBlock *, 16> Worklist; 1405 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1406 for (auto *Pred : predecessors(ClonedHeader)) { 1407 // The only possible non-loop header predecessor is the preheader because 1408 // we know we cloned the loop in simplified form. 1409 if (Pred == ClonedPH) 1410 continue; 1411 1412 // Because the loop was in simplified form, the only non-loop predecessor 1413 // should be the preheader. 1414 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1415 "header other than the preheader " 1416 "that is not part of the loop!"); 1417 1418 // Insert this block into the loop set and on the first visit (and if it 1419 // isn't the header we're currently walking) put it into the worklist to 1420 // recurse through. 1421 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1422 Worklist.push_back(Pred); 1423 } 1424 1425 // If we had any backedges then there *is* a cloned loop. Put the header into 1426 // the loop set and then walk the worklist backwards to find all the blocks 1427 // that remain within the loop after cloning. 1428 if (!BlocksInClonedLoop.empty()) { 1429 BlocksInClonedLoop.insert(ClonedHeader); 1430 1431 while (!Worklist.empty()) { 1432 BasicBlock *BB = Worklist.pop_back_val(); 1433 assert(BlocksInClonedLoop.count(BB) && 1434 "Didn't put block into the loop set!"); 1435 1436 // Insert any predecessors that are in the possible set into the cloned 1437 // set, and if the insert is successful, add them to the worklist. Note 1438 // that we filter on the blocks that are definitely reachable via the 1439 // backedge to the loop header so we may prune out dead code within the 1440 // cloned loop. 1441 for (auto *Pred : predecessors(BB)) 1442 if (ClonedLoopBlocks.count(Pred) && 1443 BlocksInClonedLoop.insert(Pred).second) 1444 Worklist.push_back(Pred); 1445 } 1446 1447 ClonedL = LI.AllocateLoop(); 1448 if (ParentL) { 1449 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1450 ParentL->addChildLoop(ClonedL); 1451 } else { 1452 LI.addTopLevelLoop(ClonedL); 1453 } 1454 NonChildClonedLoops.push_back(ClonedL); 1455 1456 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1457 // We don't want to just add the cloned loop blocks based on how we 1458 // discovered them. The original order of blocks was carefully built in 1459 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1460 // that logic, we just re-walk the original blocks (and those of the child 1461 // loops) and filter them as we add them into the cloned loop. 1462 for (auto *BB : OrigL.blocks()) { 1463 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1464 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1465 continue; 1466 1467 // Directly add the blocks that are only in this loop. 1468 if (LI.getLoopFor(BB) == &OrigL) { 1469 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1470 continue; 1471 } 1472 1473 // We want to manually add it to this loop and parents. 1474 // Registering it with LoopInfo will happen when we clone the top 1475 // loop for this block. 1476 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1477 PL->addBlockEntry(ClonedBB); 1478 } 1479 1480 // Now add each child loop whose header remains within the cloned loop. All 1481 // of the blocks within the loop must satisfy the same constraints as the 1482 // header so once we pass the header checks we can just clone the entire 1483 // child loop nest. 1484 for (Loop *ChildL : OrigL) { 1485 auto *ClonedChildHeader = 1486 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1487 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1488 continue; 1489 1490 #ifndef NDEBUG 1491 // We should never have a cloned child loop header but fail to have 1492 // all of the blocks for that child loop. 1493 for (auto *ChildLoopBB : ChildL->blocks()) 1494 assert(BlocksInClonedLoop.count( 1495 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1496 "Child cloned loop has a header within the cloned outer " 1497 "loop but not all of its blocks!"); 1498 #endif 1499 1500 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1501 } 1502 } 1503 1504 // Now that we've handled all the components of the original loop that were 1505 // cloned into a new loop, we still need to handle anything from the original 1506 // loop that wasn't in a cloned loop. 1507 1508 // Figure out what blocks are left to place within any loop nest containing 1509 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1510 // them. 1511 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1512 if (BlocksInClonedLoop.empty()) 1513 UnloopedBlockSet.insert(ClonedPH); 1514 for (auto *ClonedBB : ClonedLoopBlocks) 1515 if (!BlocksInClonedLoop.count(ClonedBB)) 1516 UnloopedBlockSet.insert(ClonedBB); 1517 1518 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1519 // backwards across these to process them inside out. The order shouldn't 1520 // matter as we're just trying to build up the map from inside-out; we use 1521 // the map in a more stably ordered way below. 1522 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1523 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1524 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1525 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1526 }); 1527 1528 // Populate the existing ExitLoopMap with everything reachable from each 1529 // exit, starting from the inner most exit. 1530 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1531 assert(Worklist.empty() && "Didn't clear worklist!"); 1532 1533 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1534 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1535 1536 // Walk the CFG back until we hit the cloned PH adding everything reachable 1537 // and in the unlooped set to this exit block's loop. 1538 Worklist.push_back(ExitBB); 1539 do { 1540 BasicBlock *BB = Worklist.pop_back_val(); 1541 // We can stop recursing at the cloned preheader (if we get there). 1542 if (BB == ClonedPH) 1543 continue; 1544 1545 for (BasicBlock *PredBB : predecessors(BB)) { 1546 // If this pred has already been moved to our set or is part of some 1547 // (inner) loop, no update needed. 1548 if (!UnloopedBlockSet.erase(PredBB)) { 1549 assert( 1550 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1551 "Predecessor not mapped to a loop!"); 1552 continue; 1553 } 1554 1555 // We just insert into the loop set here. We'll add these blocks to the 1556 // exit loop after we build up the set in an order that doesn't rely on 1557 // predecessor order (which in turn relies on use list order). 1558 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1559 (void)Inserted; 1560 assert(Inserted && "Should only visit an unlooped block once!"); 1561 1562 // And recurse through to its predecessors. 1563 Worklist.push_back(PredBB); 1564 } 1565 } while (!Worklist.empty()); 1566 } 1567 1568 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1569 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1570 // in their original order adding them to the correct loop. 1571 1572 // We need a stable insertion order. We use the order of the original loop 1573 // order and map into the correct parent loop. 1574 for (auto *BB : llvm::concat<BasicBlock *const>( 1575 ArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1576 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1577 OuterL->addBasicBlockToLoop(BB, LI); 1578 1579 #ifndef NDEBUG 1580 for (auto &BBAndL : ExitLoopMap) { 1581 auto *BB = BBAndL.first; 1582 auto *OuterL = BBAndL.second; 1583 assert(LI.getLoopFor(BB) == OuterL && 1584 "Failed to put all blocks into outer loops!"); 1585 } 1586 #endif 1587 1588 // Now that all the blocks are placed into the correct containing loop in the 1589 // absence of child loops, find all the potentially cloned child loops and 1590 // clone them into whatever outer loop we placed their header into. 1591 for (Loop *ChildL : OrigL) { 1592 auto *ClonedChildHeader = 1593 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1594 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1595 continue; 1596 1597 #ifndef NDEBUG 1598 for (auto *ChildLoopBB : ChildL->blocks()) 1599 assert(VMap.count(ChildLoopBB) && 1600 "Cloned a child loop header but not all of that loops blocks!"); 1601 #endif 1602 1603 NonChildClonedLoops.push_back(cloneLoopNest( 1604 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1605 } 1606 } 1607 1608 static void 1609 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1610 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1611 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1612 // Find all the dead clones, and remove them from their successors. 1613 SmallVector<BasicBlock *, 16> DeadBlocks; 1614 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1615 for (const auto &VMap : VMaps) 1616 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1617 if (!DT.isReachableFromEntry(ClonedBB)) { 1618 for (BasicBlock *SuccBB : successors(ClonedBB)) 1619 SuccBB->removePredecessor(ClonedBB); 1620 DeadBlocks.push_back(ClonedBB); 1621 } 1622 1623 // Remove all MemorySSA in the dead blocks 1624 if (MSSAU) { 1625 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1626 DeadBlocks.end()); 1627 MSSAU->removeBlocks(DeadBlockSet); 1628 } 1629 1630 // Drop any remaining references to break cycles. 1631 for (BasicBlock *BB : DeadBlocks) 1632 BB->dropAllReferences(); 1633 // Erase them from the IR. 1634 for (BasicBlock *BB : DeadBlocks) 1635 BB->eraseFromParent(); 1636 } 1637 1638 static void 1639 deleteDeadBlocksFromLoop(Loop &L, 1640 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1641 DominatorTree &DT, LoopInfo &LI, 1642 MemorySSAUpdater *MSSAU, 1643 ScalarEvolution *SE, 1644 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 1645 // Find all the dead blocks tied to this loop, and remove them from their 1646 // successors. 1647 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1648 1649 // Start with loop/exit blocks and get a transitive closure of reachable dead 1650 // blocks. 1651 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1652 ExitBlocks.end()); 1653 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1654 while (!DeathCandidates.empty()) { 1655 auto *BB = DeathCandidates.pop_back_val(); 1656 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1657 for (BasicBlock *SuccBB : successors(BB)) { 1658 SuccBB->removePredecessor(BB); 1659 DeathCandidates.push_back(SuccBB); 1660 } 1661 DeadBlockSet.insert(BB); 1662 } 1663 } 1664 1665 // Remove all MemorySSA in the dead blocks 1666 if (MSSAU) 1667 MSSAU->removeBlocks(DeadBlockSet); 1668 1669 // Filter out the dead blocks from the exit blocks list so that it can be 1670 // used in the caller. 1671 llvm::erase_if(ExitBlocks, 1672 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1673 1674 // Walk from this loop up through its parents removing all of the dead blocks. 1675 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1676 for (auto *BB : DeadBlockSet) 1677 ParentL->getBlocksSet().erase(BB); 1678 llvm::erase_if(ParentL->getBlocksVector(), 1679 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1680 } 1681 1682 // Now delete the dead child loops. This raw delete will clear them 1683 // recursively. 1684 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1685 if (!DeadBlockSet.count(ChildL->getHeader())) 1686 return false; 1687 1688 assert(llvm::all_of(ChildL->blocks(), 1689 [&](BasicBlock *ChildBB) { 1690 return DeadBlockSet.count(ChildBB); 1691 }) && 1692 "If the child loop header is dead all blocks in the child loop must " 1693 "be dead as well!"); 1694 DestroyLoopCB(*ChildL, ChildL->getName()); 1695 if (SE) 1696 SE->forgetBlockAndLoopDispositions(); 1697 LI.destroy(ChildL); 1698 return true; 1699 }); 1700 1701 // Remove the loop mappings for the dead blocks and drop all the references 1702 // from these blocks to others to handle cyclic references as we start 1703 // deleting the blocks themselves. 1704 for (auto *BB : DeadBlockSet) { 1705 // Check that the dominator tree has already been updated. 1706 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1707 LI.changeLoopFor(BB, nullptr); 1708 // Drop all uses of the instructions to make sure we won't have dangling 1709 // uses in other blocks. 1710 for (auto &I : *BB) 1711 if (!I.use_empty()) 1712 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 1713 BB->dropAllReferences(); 1714 } 1715 1716 // Actually delete the blocks now that they've been fully unhooked from the 1717 // IR. 1718 for (auto *BB : DeadBlockSet) 1719 BB->eraseFromParent(); 1720 } 1721 1722 /// Recompute the set of blocks in a loop after unswitching. 1723 /// 1724 /// This walks from the original headers predecessors to rebuild the loop. We 1725 /// take advantage of the fact that new blocks can't have been added, and so we 1726 /// filter by the original loop's blocks. This also handles potentially 1727 /// unreachable code that we don't want to explore but might be found examining 1728 /// the predecessors of the header. 1729 /// 1730 /// If the original loop is no longer a loop, this will return an empty set. If 1731 /// it remains a loop, all the blocks within it will be added to the set 1732 /// (including those blocks in inner loops). 1733 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1734 LoopInfo &LI) { 1735 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1736 1737 auto *PH = L.getLoopPreheader(); 1738 auto *Header = L.getHeader(); 1739 1740 // A worklist to use while walking backwards from the header. 1741 SmallVector<BasicBlock *, 16> Worklist; 1742 1743 // First walk the predecessors of the header to find the backedges. This will 1744 // form the basis of our walk. 1745 for (auto *Pred : predecessors(Header)) { 1746 // Skip the preheader. 1747 if (Pred == PH) 1748 continue; 1749 1750 // Because the loop was in simplified form, the only non-loop predecessor 1751 // is the preheader. 1752 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1753 "than the preheader that is not part of the " 1754 "loop!"); 1755 1756 // Insert this block into the loop set and on the first visit and, if it 1757 // isn't the header we're currently walking, put it into the worklist to 1758 // recurse through. 1759 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1760 Worklist.push_back(Pred); 1761 } 1762 1763 // If no backedges were found, we're done. 1764 if (LoopBlockSet.empty()) 1765 return LoopBlockSet; 1766 1767 // We found backedges, recurse through them to identify the loop blocks. 1768 while (!Worklist.empty()) { 1769 BasicBlock *BB = Worklist.pop_back_val(); 1770 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1771 1772 // No need to walk past the header. 1773 if (BB == Header) 1774 continue; 1775 1776 // Because we know the inner loop structure remains valid we can use the 1777 // loop structure to jump immediately across the entire nested loop. 1778 // Further, because it is in loop simplified form, we can directly jump 1779 // to its preheader afterward. 1780 if (Loop *InnerL = LI.getLoopFor(BB)) 1781 if (InnerL != &L) { 1782 assert(L.contains(InnerL) && 1783 "Should not reach a loop *outside* this loop!"); 1784 // The preheader is the only possible predecessor of the loop so 1785 // insert it into the set and check whether it was already handled. 1786 auto *InnerPH = InnerL->getLoopPreheader(); 1787 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1788 "but not contain the inner loop " 1789 "preheader!"); 1790 if (!LoopBlockSet.insert(InnerPH).second) 1791 // The only way to reach the preheader is through the loop body 1792 // itself so if it has been visited the loop is already handled. 1793 continue; 1794 1795 // Insert all of the blocks (other than those already present) into 1796 // the loop set. We expect at least the block that led us to find the 1797 // inner loop to be in the block set, but we may also have other loop 1798 // blocks if they were already enqueued as predecessors of some other 1799 // outer loop block. 1800 for (auto *InnerBB : InnerL->blocks()) { 1801 if (InnerBB == BB) { 1802 assert(LoopBlockSet.count(InnerBB) && 1803 "Block should already be in the set!"); 1804 continue; 1805 } 1806 1807 LoopBlockSet.insert(InnerBB); 1808 } 1809 1810 // Add the preheader to the worklist so we will continue past the 1811 // loop body. 1812 Worklist.push_back(InnerPH); 1813 continue; 1814 } 1815 1816 // Insert any predecessors that were in the original loop into the new 1817 // set, and if the insert is successful, add them to the worklist. 1818 for (auto *Pred : predecessors(BB)) 1819 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1820 Worklist.push_back(Pred); 1821 } 1822 1823 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1824 1825 // We've found all the blocks participating in the loop, return our completed 1826 // set. 1827 return LoopBlockSet; 1828 } 1829 1830 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1831 /// 1832 /// The removal may have removed some child loops entirely but cannot have 1833 /// disturbed any remaining child loops. However, they may need to be hoisted 1834 /// to the parent loop (or to be top-level loops). The original loop may be 1835 /// completely removed. 1836 /// 1837 /// The sibling loops resulting from this update are returned. If the original 1838 /// loop remains a valid loop, it will be the first entry in this list with all 1839 /// of the newly sibling loops following it. 1840 /// 1841 /// Returns true if the loop remains a loop after unswitching, and false if it 1842 /// is no longer a loop after unswitching (and should not continue to be 1843 /// referenced). 1844 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1845 LoopInfo &LI, 1846 SmallVectorImpl<Loop *> &HoistedLoops, 1847 ScalarEvolution *SE) { 1848 auto *PH = L.getLoopPreheader(); 1849 1850 // Compute the actual parent loop from the exit blocks. Because we may have 1851 // pruned some exits the loop may be different from the original parent. 1852 Loop *ParentL = nullptr; 1853 SmallVector<Loop *, 4> ExitLoops; 1854 SmallVector<BasicBlock *, 4> ExitsInLoops; 1855 ExitsInLoops.reserve(ExitBlocks.size()); 1856 for (auto *ExitBB : ExitBlocks) 1857 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1858 ExitLoops.push_back(ExitL); 1859 ExitsInLoops.push_back(ExitBB); 1860 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1861 ParentL = ExitL; 1862 } 1863 1864 // Recompute the blocks participating in this loop. This may be empty if it 1865 // is no longer a loop. 1866 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1867 1868 // If we still have a loop, we need to re-set the loop's parent as the exit 1869 // block set changing may have moved it within the loop nest. Note that this 1870 // can only happen when this loop has a parent as it can only hoist the loop 1871 // *up* the nest. 1872 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1873 // Remove this loop's (original) blocks from all of the intervening loops. 1874 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1875 IL = IL->getParentLoop()) { 1876 IL->getBlocksSet().erase(PH); 1877 for (auto *BB : L.blocks()) 1878 IL->getBlocksSet().erase(BB); 1879 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1880 return BB == PH || L.contains(BB); 1881 }); 1882 } 1883 1884 LI.changeLoopFor(PH, ParentL); 1885 L.getParentLoop()->removeChildLoop(&L); 1886 if (ParentL) 1887 ParentL->addChildLoop(&L); 1888 else 1889 LI.addTopLevelLoop(&L); 1890 } 1891 1892 // Now we update all the blocks which are no longer within the loop. 1893 auto &Blocks = L.getBlocksVector(); 1894 auto BlocksSplitI = 1895 LoopBlockSet.empty() 1896 ? Blocks.begin() 1897 : std::stable_partition( 1898 Blocks.begin(), Blocks.end(), 1899 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1900 1901 // Before we erase the list of unlooped blocks, build a set of them. 1902 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1903 if (LoopBlockSet.empty()) 1904 UnloopedBlocks.insert(PH); 1905 1906 // Now erase these blocks from the loop. 1907 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1908 L.getBlocksSet().erase(BB); 1909 Blocks.erase(BlocksSplitI, Blocks.end()); 1910 1911 // Sort the exits in ascending loop depth, we'll work backwards across these 1912 // to process them inside out. 1913 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1914 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1915 }); 1916 1917 // We'll build up a set for each exit loop. 1918 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1919 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1920 1921 auto RemoveUnloopedBlocksFromLoop = 1922 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1923 for (auto *BB : UnloopedBlocks) 1924 L.getBlocksSet().erase(BB); 1925 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1926 return UnloopedBlocks.count(BB); 1927 }); 1928 }; 1929 1930 SmallVector<BasicBlock *, 16> Worklist; 1931 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1932 assert(Worklist.empty() && "Didn't clear worklist!"); 1933 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1934 1935 // Grab the next exit block, in decreasing loop depth order. 1936 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1937 Loop &ExitL = *LI.getLoopFor(ExitBB); 1938 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1939 1940 // Erase all of the unlooped blocks from the loops between the previous 1941 // exit loop and this exit loop. This works because the ExitInLoops list is 1942 // sorted in increasing order of loop depth and thus we visit loops in 1943 // decreasing order of loop depth. 1944 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1945 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1946 1947 // Walk the CFG back until we hit the cloned PH adding everything reachable 1948 // and in the unlooped set to this exit block's loop. 1949 Worklist.push_back(ExitBB); 1950 do { 1951 BasicBlock *BB = Worklist.pop_back_val(); 1952 // We can stop recursing at the cloned preheader (if we get there). 1953 if (BB == PH) 1954 continue; 1955 1956 for (BasicBlock *PredBB : predecessors(BB)) { 1957 // If this pred has already been moved to our set or is part of some 1958 // (inner) loop, no update needed. 1959 if (!UnloopedBlocks.erase(PredBB)) { 1960 assert((NewExitLoopBlocks.count(PredBB) || 1961 ExitL.contains(LI.getLoopFor(PredBB))) && 1962 "Predecessor not in a nested loop (or already visited)!"); 1963 continue; 1964 } 1965 1966 // We just insert into the loop set here. We'll add these blocks to the 1967 // exit loop after we build up the set in a deterministic order rather 1968 // than the predecessor-influenced visit order. 1969 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1970 (void)Inserted; 1971 assert(Inserted && "Should only visit an unlooped block once!"); 1972 1973 // And recurse through to its predecessors. 1974 Worklist.push_back(PredBB); 1975 } 1976 } while (!Worklist.empty()); 1977 1978 // If blocks in this exit loop were directly part of the original loop (as 1979 // opposed to a child loop) update the map to point to this exit loop. This 1980 // just updates a map and so the fact that the order is unstable is fine. 1981 for (auto *BB : NewExitLoopBlocks) 1982 if (Loop *BBL = LI.getLoopFor(BB)) 1983 if (BBL == &L || !L.contains(BBL)) 1984 LI.changeLoopFor(BB, &ExitL); 1985 1986 // We will remove the remaining unlooped blocks from this loop in the next 1987 // iteration or below. 1988 NewExitLoopBlocks.clear(); 1989 } 1990 1991 // Any remaining unlooped blocks are no longer part of any loop unless they 1992 // are part of some child loop. 1993 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1994 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1995 for (auto *BB : UnloopedBlocks) 1996 if (Loop *BBL = LI.getLoopFor(BB)) 1997 if (BBL == &L || !L.contains(BBL)) 1998 LI.changeLoopFor(BB, nullptr); 1999 2000 // Sink all the child loops whose headers are no longer in the loop set to 2001 // the parent (or to be top level loops). We reach into the loop and directly 2002 // update its subloop vector to make this batch update efficient. 2003 auto &SubLoops = L.getSubLoopsVector(); 2004 auto SubLoopsSplitI = 2005 LoopBlockSet.empty() 2006 ? SubLoops.begin() 2007 : std::stable_partition( 2008 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 2009 return LoopBlockSet.count(SubL->getHeader()); 2010 }); 2011 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 2012 HoistedLoops.push_back(HoistedL); 2013 HoistedL->setParentLoop(nullptr); 2014 2015 // To compute the new parent of this hoisted loop we look at where we 2016 // placed the preheader above. We can't lookup the header itself because we 2017 // retained the mapping from the header to the hoisted loop. But the 2018 // preheader and header should have the exact same new parent computed 2019 // based on the set of exit blocks from the original loop as the preheader 2020 // is a predecessor of the header and so reached in the reverse walk. And 2021 // because the loops were all in simplified form the preheader of the 2022 // hoisted loop can't be part of some *other* loop. 2023 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 2024 NewParentL->addChildLoop(HoistedL); 2025 else 2026 LI.addTopLevelLoop(HoistedL); 2027 } 2028 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 2029 2030 // Actually delete the loop if nothing remained within it. 2031 if (Blocks.empty()) { 2032 assert(SubLoops.empty() && 2033 "Failed to remove all subloops from the original loop!"); 2034 if (Loop *ParentL = L.getParentLoop()) 2035 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 2036 else 2037 LI.removeLoop(llvm::find(LI, &L)); 2038 // markLoopAsDeleted for L should be triggered by the caller (it is typically 2039 // done by using the UnswitchCB callback). 2040 if (SE) 2041 SE->forgetBlockAndLoopDispositions(); 2042 LI.destroy(&L); 2043 return false; 2044 } 2045 2046 return true; 2047 } 2048 2049 /// Helper to visit a dominator subtree, invoking a callable on each node. 2050 /// 2051 /// Returning false at any point will stop walking past that node of the tree. 2052 template <typename CallableT> 2053 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 2054 SmallVector<DomTreeNode *, 4> DomWorklist; 2055 DomWorklist.push_back(DT[BB]); 2056 #ifndef NDEBUG 2057 SmallPtrSet<DomTreeNode *, 4> Visited; 2058 Visited.insert(DT[BB]); 2059 #endif 2060 do { 2061 DomTreeNode *N = DomWorklist.pop_back_val(); 2062 2063 // Visit this node. 2064 if (!Callable(N->getBlock())) 2065 continue; 2066 2067 // Accumulate the child nodes. 2068 for (DomTreeNode *ChildN : *N) { 2069 assert(Visited.insert(ChildN).second && 2070 "Cannot visit a node twice when walking a tree!"); 2071 DomWorklist.push_back(ChildN); 2072 } 2073 } while (!DomWorklist.empty()); 2074 } 2075 2076 static void unswitchNontrivialInvariants( 2077 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 2078 IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI, 2079 AssumptionCache &AC, 2080 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 2081 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 2082 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 2083 auto *ParentBB = TI.getParent(); 2084 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2085 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 2086 2087 // We can only unswitch switches, conditional branches with an invariant 2088 // condition, or combining invariant conditions with an instruction or 2089 // partially invariant instructions. 2090 assert((SI || (BI && BI->isConditional())) && 2091 "Can only unswitch switches and conditional branch!"); 2092 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty(); 2093 bool FullUnswitch = 2094 SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] && 2095 !PartiallyInvariant); 2096 if (FullUnswitch) 2097 assert(Invariants.size() == 1 && 2098 "Cannot have other invariants with full unswitching!"); 2099 else 2100 assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) && 2101 "Partial unswitching requires an instruction as the condition!"); 2102 2103 if (MSSAU && VerifyMemorySSA) 2104 MSSAU->getMemorySSA()->verifyMemorySSA(); 2105 2106 // Constant and BBs tracking the cloned and continuing successor. When we are 2107 // unswitching the entire condition, this can just be trivially chosen to 2108 // unswitch towards `true`. However, when we are unswitching a set of 2109 // invariants combined with `and` or `or` or partially invariant instructions, 2110 // the combining operation determines the best direction to unswitch: we want 2111 // to unswitch the direction that will collapse the branch. 2112 bool Direction = true; 2113 int ClonedSucc = 0; 2114 if (!FullUnswitch) { 2115 Value *Cond = skipTrivialSelect(BI->getCondition()); 2116 (void)Cond; 2117 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) || 2118 PartiallyInvariant) && 2119 "Only `or`, `and`, an `select`, partially invariant instructions " 2120 "can combine invariants being unswitched."); 2121 if (!match(Cond, m_LogicalOr())) { 2122 if (match(Cond, m_LogicalAnd()) || 2123 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) { 2124 Direction = false; 2125 ClonedSucc = 1; 2126 } 2127 } 2128 } 2129 2130 BasicBlock *RetainedSuccBB = 2131 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2132 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2133 if (BI) 2134 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2135 else 2136 for (auto Case : SI->cases()) 2137 if (Case.getCaseSuccessor() != RetainedSuccBB) 2138 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2139 2140 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2141 "Should not unswitch the same successor we are retaining!"); 2142 2143 // The branch should be in this exact loop. Any inner loop's invariant branch 2144 // should be handled by unswitching that inner loop. The caller of this 2145 // routine should filter out any candidates that remain (but were skipped for 2146 // whatever reason). 2147 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2148 2149 // Compute the parent loop now before we start hacking on things. 2150 Loop *ParentL = L.getParentLoop(); 2151 // Get blocks in RPO order for MSSA update, before changing the CFG. 2152 LoopBlocksRPO LBRPO(&L); 2153 if (MSSAU) 2154 LBRPO.perform(&LI); 2155 2156 // Compute the outer-most loop containing one of our exit blocks. This is the 2157 // furthest up our loopnest which can be mutated, which we will use below to 2158 // update things. 2159 Loop *OuterExitL = &L; 2160 SmallVector<BasicBlock *, 4> ExitBlocks; 2161 L.getUniqueExitBlocks(ExitBlocks); 2162 for (auto *ExitBB : ExitBlocks) { 2163 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2164 if (!NewOuterExitL) { 2165 // We exited the entire nest with this block, so we're done. 2166 OuterExitL = nullptr; 2167 break; 2168 } 2169 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2170 OuterExitL = NewOuterExitL; 2171 } 2172 2173 // At this point, we're definitely going to unswitch something so invalidate 2174 // any cached information in ScalarEvolution for the outer most loop 2175 // containing an exit block and all nested loops. 2176 if (SE) { 2177 if (OuterExitL) 2178 SE->forgetLoop(OuterExitL); 2179 else 2180 SE->forgetTopmostLoop(&L); 2181 SE->forgetBlockAndLoopDispositions(); 2182 } 2183 2184 bool InsertFreeze = false; 2185 if (FreezeLoopUnswitchCond) { 2186 ICFLoopSafetyInfo SafetyInfo; 2187 SafetyInfo.computeLoopSafetyInfo(&L); 2188 InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L); 2189 } 2190 2191 // Perform the isGuaranteedNotToBeUndefOrPoison() query before the transform, 2192 // otherwise the branch instruction will have been moved outside the loop 2193 // already, and may imply that a poison condition is always UB. 2194 Value *FullUnswitchCond = nullptr; 2195 if (FullUnswitch) { 2196 FullUnswitchCond = 2197 BI ? skipTrivialSelect(BI->getCondition()) : SI->getCondition(); 2198 if (InsertFreeze) 2199 InsertFreeze = !isGuaranteedNotToBeUndefOrPoison( 2200 FullUnswitchCond, &AC, L.getLoopPreheader()->getTerminator(), &DT); 2201 } 2202 2203 // If the edge from this terminator to a successor dominates that successor, 2204 // store a map from each block in its dominator subtree to it. This lets us 2205 // tell when cloning for a particular successor if a block is dominated by 2206 // some *other* successor with a single data structure. We use this to 2207 // significantly reduce cloning. 2208 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2209 for (auto *SuccBB : llvm::concat<BasicBlock *const>(ArrayRef(RetainedSuccBB), 2210 UnswitchedSuccBBs)) 2211 if (SuccBB->getUniquePredecessor() || 2212 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2213 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2214 })) 2215 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2216 DominatingSucc[BB] = SuccBB; 2217 return true; 2218 }); 2219 2220 // Split the preheader, so that we know that there is a safe place to insert 2221 // the conditional branch. We will change the preheader to have a conditional 2222 // branch on LoopCond. The original preheader will become the split point 2223 // between the unswitched versions, and we will have a new preheader for the 2224 // original loop. 2225 BasicBlock *SplitBB = L.getLoopPreheader(); 2226 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2227 2228 // Keep track of the dominator tree updates needed. 2229 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2230 2231 // Clone the loop for each unswitched successor. 2232 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2233 VMaps.reserve(UnswitchedSuccBBs.size()); 2234 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2235 for (auto *SuccBB : UnswitchedSuccBBs) { 2236 VMaps.emplace_back(new ValueToValueMapTy()); 2237 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2238 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2239 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE); 2240 } 2241 2242 // Drop metadata if we may break its semantics by moving this instr into the 2243 // split block. 2244 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2245 if (DropNonTrivialImplicitNullChecks) 2246 // Do not spend time trying to understand if we can keep it, just drop it 2247 // to save compile time. 2248 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2249 else { 2250 // It is only legal to preserve make.implicit metadata if we are 2251 // guaranteed no reach implicit null check after following this branch. 2252 ICFLoopSafetyInfo SafetyInfo; 2253 SafetyInfo.computeLoopSafetyInfo(&L); 2254 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2255 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2256 } 2257 } 2258 2259 // The stitching of the branched code back together depends on whether we're 2260 // doing full unswitching or not with the exception that we always want to 2261 // nuke the initial terminator placed in the split block. 2262 SplitBB->getTerminator()->eraseFromParent(); 2263 if (FullUnswitch) { 2264 // Splice the terminator from the original loop and rewrite its 2265 // successors. 2266 SplitBB->splice(SplitBB->end(), ParentBB, TI.getIterator()); 2267 2268 // Keep a clone of the terminator for MSSA updates. 2269 Instruction *NewTI = TI.clone(); 2270 NewTI->insertInto(ParentBB, ParentBB->end()); 2271 2272 // First wire up the moved terminator to the preheaders. 2273 if (BI) { 2274 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2275 BI->setSuccessor(ClonedSucc, ClonedPH); 2276 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2277 if (InsertFreeze) 2278 FullUnswitchCond = new FreezeInst( 2279 FullUnswitchCond, FullUnswitchCond->getName() + ".fr", BI); 2280 BI->setCondition(FullUnswitchCond); 2281 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2282 } else { 2283 assert(SI && "Must either be a branch or switch!"); 2284 2285 // Walk the cases and directly update their successors. 2286 assert(SI->getDefaultDest() == RetainedSuccBB && 2287 "Not retaining default successor!"); 2288 SI->setDefaultDest(LoopPH); 2289 for (const auto &Case : SI->cases()) 2290 if (Case.getCaseSuccessor() == RetainedSuccBB) 2291 Case.setSuccessor(LoopPH); 2292 else 2293 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2294 2295 if (InsertFreeze) 2296 SI->setCondition(new FreezeInst( 2297 FullUnswitchCond, FullUnswitchCond->getName() + ".fr", SI)); 2298 2299 // We need to use the set to populate domtree updates as even when there 2300 // are multiple cases pointing at the same successor we only want to 2301 // remove and insert one edge in the domtree. 2302 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2303 DTUpdates.push_back( 2304 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2305 } 2306 2307 if (MSSAU) { 2308 DT.applyUpdates(DTUpdates); 2309 DTUpdates.clear(); 2310 2311 // Remove all but one edge to the retained block and all unswitched 2312 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2313 // when we know we only keep a single edge for each case. 2314 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2315 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2316 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2317 2318 for (auto &VMap : VMaps) 2319 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2320 /*IgnoreIncomingWithNoClones=*/true); 2321 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2322 2323 // Remove all edges to unswitched blocks. 2324 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2325 MSSAU->removeEdge(ParentBB, SuccBB); 2326 } 2327 2328 // Now unhook the successor relationship as we'll be replacing 2329 // the terminator with a direct branch. This is much simpler for branches 2330 // than switches so we handle those first. 2331 if (BI) { 2332 // Remove the parent as a predecessor of the unswitched successor. 2333 assert(UnswitchedSuccBBs.size() == 1 && 2334 "Only one possible unswitched block for a branch!"); 2335 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2336 UnswitchedSuccBB->removePredecessor(ParentBB, 2337 /*KeepOneInputPHIs*/ true); 2338 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2339 } else { 2340 // Note that we actually want to remove the parent block as a predecessor 2341 // of *every* case successor. The case successor is either unswitched, 2342 // completely eliminating an edge from the parent to that successor, or it 2343 // is a duplicate edge to the retained successor as the retained successor 2344 // is always the default successor and as we'll replace this with a direct 2345 // branch we no longer need the duplicate entries in the PHI nodes. 2346 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2347 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2348 "Not retaining default successor!"); 2349 for (const auto &Case : NewSI->cases()) 2350 Case.getCaseSuccessor()->removePredecessor( 2351 ParentBB, 2352 /*KeepOneInputPHIs*/ true); 2353 2354 // We need to use the set to populate domtree updates as even when there 2355 // are multiple cases pointing at the same successor we only want to 2356 // remove and insert one edge in the domtree. 2357 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2358 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2359 } 2360 2361 // After MSSAU update, remove the cloned terminator instruction NewTI. 2362 ParentBB->getTerminator()->eraseFromParent(); 2363 2364 // Create a new unconditional branch to the continuing block (as opposed to 2365 // the one cloned). 2366 BranchInst::Create(RetainedSuccBB, ParentBB); 2367 } else { 2368 assert(BI && "Only branches have partial unswitching."); 2369 assert(UnswitchedSuccBBs.size() == 1 && 2370 "Only one possible unswitched block for a branch!"); 2371 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2372 // When doing a partial unswitch, we have to do a bit more work to build up 2373 // the branch in the split block. 2374 if (PartiallyInvariant) 2375 buildPartialInvariantUnswitchConditionalBranch( 2376 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU); 2377 else { 2378 buildPartialUnswitchConditionalBranch( 2379 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, 2380 FreezeLoopUnswitchCond, BI, &AC, DT); 2381 } 2382 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2383 2384 if (MSSAU) { 2385 DT.applyUpdates(DTUpdates); 2386 DTUpdates.clear(); 2387 2388 // Perform MSSA cloning updates. 2389 for (auto &VMap : VMaps) 2390 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2391 /*IgnoreIncomingWithNoClones=*/true); 2392 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2393 } 2394 } 2395 2396 // Apply the updates accumulated above to get an up-to-date dominator tree. 2397 DT.applyUpdates(DTUpdates); 2398 2399 // Now that we have an accurate dominator tree, first delete the dead cloned 2400 // blocks so that we can accurately build any cloned loops. It is important to 2401 // not delete the blocks from the original loop yet because we still want to 2402 // reference the original loop to understand the cloned loop's structure. 2403 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2404 2405 // Build the cloned loop structure itself. This may be substantially 2406 // different from the original structure due to the simplified CFG. This also 2407 // handles inserting all the cloned blocks into the correct loops. 2408 SmallVector<Loop *, 4> NonChildClonedLoops; 2409 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2410 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2411 2412 // Now that our cloned loops have been built, we can update the original loop. 2413 // First we delete the dead blocks from it and then we rebuild the loop 2414 // structure taking these deletions into account. 2415 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE,DestroyLoopCB); 2416 2417 if (MSSAU && VerifyMemorySSA) 2418 MSSAU->getMemorySSA()->verifyMemorySSA(); 2419 2420 SmallVector<Loop *, 4> HoistedLoops; 2421 bool IsStillLoop = 2422 rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE); 2423 2424 if (MSSAU && VerifyMemorySSA) 2425 MSSAU->getMemorySSA()->verifyMemorySSA(); 2426 2427 // This transformation has a high risk of corrupting the dominator tree, and 2428 // the below steps to rebuild loop structures will result in hard to debug 2429 // errors in that case so verify that the dominator tree is sane first. 2430 // FIXME: Remove this when the bugs stop showing up and rely on existing 2431 // verification steps. 2432 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2433 2434 if (BI && !PartiallyInvariant) { 2435 // If we unswitched a branch which collapses the condition to a known 2436 // constant we want to replace all the uses of the invariants within both 2437 // the original and cloned blocks. We do this here so that we can use the 2438 // now updated dominator tree to identify which side the users are on. 2439 assert(UnswitchedSuccBBs.size() == 1 && 2440 "Only one possible unswitched block for a branch!"); 2441 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2442 2443 // When considering multiple partially-unswitched invariants 2444 // we cant just go replace them with constants in both branches. 2445 // 2446 // For 'AND' we infer that true branch ("continue") means true 2447 // for each invariant operand. 2448 // For 'OR' we can infer that false branch ("continue") means false 2449 // for each invariant operand. 2450 // So it happens that for multiple-partial case we dont replace 2451 // in the unswitched branch. 2452 bool ReplaceUnswitched = 2453 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant; 2454 2455 ConstantInt *UnswitchedReplacement = 2456 Direction ? ConstantInt::getTrue(BI->getContext()) 2457 : ConstantInt::getFalse(BI->getContext()); 2458 ConstantInt *ContinueReplacement = 2459 Direction ? ConstantInt::getFalse(BI->getContext()) 2460 : ConstantInt::getTrue(BI->getContext()); 2461 for (Value *Invariant : Invariants) { 2462 assert(!isa<Constant>(Invariant) && 2463 "Should not be replacing constant values!"); 2464 // Use make_early_inc_range here as set invalidates the iterator. 2465 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) { 2466 Instruction *UserI = dyn_cast<Instruction>(U.getUser()); 2467 if (!UserI) 2468 continue; 2469 2470 // Replace it with the 'continue' side if in the main loop body, and the 2471 // unswitched if in the cloned blocks. 2472 if (DT.dominates(LoopPH, UserI->getParent())) 2473 U.set(ContinueReplacement); 2474 else if (ReplaceUnswitched && 2475 DT.dominates(ClonedPH, UserI->getParent())) 2476 U.set(UnswitchedReplacement); 2477 } 2478 } 2479 } 2480 2481 // We can change which blocks are exit blocks of all the cloned sibling 2482 // loops, the current loop, and any parent loops which shared exit blocks 2483 // with the current loop. As a consequence, we need to re-form LCSSA for 2484 // them. But we shouldn't need to re-form LCSSA for any child loops. 2485 // FIXME: This could be made more efficient by tracking which exit blocks are 2486 // new, and focusing on them, but that isn't likely to be necessary. 2487 // 2488 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2489 // loop nest and update every loop that could have had its exits changed. We 2490 // also need to cover any intervening loops. We add all of these loops to 2491 // a list and sort them by loop depth to achieve this without updating 2492 // unnecessary loops. 2493 auto UpdateLoop = [&](Loop &UpdateL) { 2494 #ifndef NDEBUG 2495 UpdateL.verifyLoop(); 2496 for (Loop *ChildL : UpdateL) { 2497 ChildL->verifyLoop(); 2498 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2499 "Perturbed a child loop's LCSSA form!"); 2500 } 2501 #endif 2502 // First build LCSSA for this loop so that we can preserve it when 2503 // forming dedicated exits. We don't want to perturb some other loop's 2504 // LCSSA while doing that CFG edit. 2505 formLCSSA(UpdateL, DT, &LI, SE); 2506 2507 // For loops reached by this loop's original exit blocks we may 2508 // introduced new, non-dedicated exits. At least try to re-form dedicated 2509 // exits for these loops. This may fail if they couldn't have dedicated 2510 // exits to start with. 2511 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2512 }; 2513 2514 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2515 // and we can do it in any order as they don't nest relative to each other. 2516 // 2517 // Also check if any of the loops we have updated have become top-level loops 2518 // as that will necessitate widening the outer loop scope. 2519 for (Loop *UpdatedL : 2520 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2521 UpdateLoop(*UpdatedL); 2522 if (UpdatedL->isOutermost()) 2523 OuterExitL = nullptr; 2524 } 2525 if (IsStillLoop) { 2526 UpdateLoop(L); 2527 if (L.isOutermost()) 2528 OuterExitL = nullptr; 2529 } 2530 2531 // If the original loop had exit blocks, walk up through the outer most loop 2532 // of those exit blocks to update LCSSA and form updated dedicated exits. 2533 if (OuterExitL != &L) 2534 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2535 OuterL = OuterL->getParentLoop()) 2536 UpdateLoop(*OuterL); 2537 2538 #ifndef NDEBUG 2539 // Verify the entire loop structure to catch any incorrect updates before we 2540 // progress in the pass pipeline. 2541 LI.verify(DT); 2542 #endif 2543 2544 // Now that we've unswitched something, make callbacks to report the changes. 2545 // For that we need to merge together the updated loops and the cloned loops 2546 // and check whether the original loop survived. 2547 SmallVector<Loop *, 4> SibLoops; 2548 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2549 if (UpdatedL->getParentLoop() == ParentL) 2550 SibLoops.push_back(UpdatedL); 2551 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops); 2552 2553 if (MSSAU && VerifyMemorySSA) 2554 MSSAU->getMemorySSA()->verifyMemorySSA(); 2555 2556 if (BI) 2557 ++NumBranches; 2558 else 2559 ++NumSwitches; 2560 } 2561 2562 /// Recursively compute the cost of a dominator subtree based on the per-block 2563 /// cost map provided. 2564 /// 2565 /// The recursive computation is memozied into the provided DT-indexed cost map 2566 /// to allow querying it for most nodes in the domtree without it becoming 2567 /// quadratic. 2568 static InstructionCost computeDomSubtreeCost( 2569 DomTreeNode &N, 2570 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap, 2571 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) { 2572 // Don't accumulate cost (or recurse through) blocks not in our block cost 2573 // map and thus not part of the duplication cost being considered. 2574 auto BBCostIt = BBCostMap.find(N.getBlock()); 2575 if (BBCostIt == BBCostMap.end()) 2576 return 0; 2577 2578 // Lookup this node to see if we already computed its cost. 2579 auto DTCostIt = DTCostMap.find(&N); 2580 if (DTCostIt != DTCostMap.end()) 2581 return DTCostIt->second; 2582 2583 // If not, we have to compute it. We can't use insert above and update 2584 // because computing the cost may insert more things into the map. 2585 InstructionCost Cost = std::accumulate( 2586 N.begin(), N.end(), BBCostIt->second, 2587 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost { 2588 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2589 }); 2590 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2591 (void)Inserted; 2592 assert(Inserted && "Should not insert a node while visiting children!"); 2593 return Cost; 2594 } 2595 2596 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2597 /// making the following replacement: 2598 /// 2599 /// --code before guard-- 2600 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2601 /// --code after guard-- 2602 /// 2603 /// into 2604 /// 2605 /// --code before guard-- 2606 /// br i1 %cond, label %guarded, label %deopt 2607 /// 2608 /// guarded: 2609 /// --code after guard-- 2610 /// 2611 /// deopt: 2612 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2613 /// unreachable 2614 /// 2615 /// It also makes all relevant DT and LI updates, so that all structures are in 2616 /// valid state after this transform. 2617 static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2618 DominatorTree &DT, LoopInfo &LI, 2619 MemorySSAUpdater *MSSAU) { 2620 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2621 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2622 BasicBlock *CheckBB = GI->getParent(); 2623 2624 if (MSSAU && VerifyMemorySSA) 2625 MSSAU->getMemorySSA()->verifyMemorySSA(); 2626 2627 // Remove all CheckBB's successors from DomTree. A block can be seen among 2628 // successors more than once, but for DomTree it should be added only once. 2629 SmallPtrSet<BasicBlock *, 4> Successors; 2630 for (auto *Succ : successors(CheckBB)) 2631 if (Successors.insert(Succ).second) 2632 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2633 2634 Instruction *DeoptBlockTerm = 2635 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2636 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2637 // SplitBlockAndInsertIfThen inserts control flow that branches to 2638 // DeoptBlockTerm if the condition is true. We want the opposite. 2639 CheckBI->swapSuccessors(); 2640 2641 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2642 GuardedBlock->setName("guarded"); 2643 CheckBI->getSuccessor(1)->setName("deopt"); 2644 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2645 2646 if (MSSAU) 2647 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2648 2649 GI->moveBefore(DeoptBlockTerm); 2650 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2651 2652 // Add new successors of CheckBB into DomTree. 2653 for (auto *Succ : successors(CheckBB)) 2654 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2655 2656 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2657 // successors. 2658 for (auto *Succ : Successors) 2659 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2660 2661 // Make proper changes to DT. 2662 DT.applyUpdates(DTUpdates); 2663 // Inform LI of a new loop block. 2664 L.addBasicBlockToLoop(GuardedBlock, LI); 2665 2666 if (MSSAU) { 2667 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2668 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2669 if (VerifyMemorySSA) 2670 MSSAU->getMemorySSA()->verifyMemorySSA(); 2671 } 2672 2673 ++NumGuards; 2674 return CheckBI; 2675 } 2676 2677 /// Cost multiplier is a way to limit potentially exponential behavior 2678 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2679 /// candidates available. Also accounting for the number of "sibling" loops with 2680 /// the idea to account for previous unswitches that already happened on this 2681 /// cluster of loops. There was an attempt to keep this formula simple, 2682 /// just enough to limit the worst case behavior. Even if it is not that simple 2683 /// now it is still not an attempt to provide a detailed heuristic size 2684 /// prediction. 2685 /// 2686 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2687 /// unswitch candidates, making adequate predictions instead of wild guesses. 2688 /// That requires knowing not just the number of "remaining" candidates but 2689 /// also costs of unswitching for each of these candidates. 2690 static int CalculateUnswitchCostMultiplier( 2691 const Instruction &TI, const Loop &L, const LoopInfo &LI, 2692 const DominatorTree &DT, 2693 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) { 2694 2695 // Guards and other exiting conditions do not contribute to exponential 2696 // explosion as soon as they dominate the latch (otherwise there might be 2697 // another path to the latch remaining that does not allow to eliminate the 2698 // loop copy on unswitch). 2699 const BasicBlock *Latch = L.getLoopLatch(); 2700 const BasicBlock *CondBlock = TI.getParent(); 2701 if (DT.dominates(CondBlock, Latch) && 2702 (isGuard(&TI) || 2703 llvm::count_if(successors(&TI), [&L](const BasicBlock *SuccBB) { 2704 return L.contains(SuccBB); 2705 }) <= 1)) { 2706 NumCostMultiplierSkipped++; 2707 return 1; 2708 } 2709 2710 auto *ParentL = L.getParentLoop(); 2711 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2712 : std::distance(LI.begin(), LI.end())); 2713 // Count amount of clones that all the candidates might cause during 2714 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2715 int UnswitchedClones = 0; 2716 for (auto Candidate : UnswitchCandidates) { 2717 const Instruction *CI = Candidate.TI; 2718 const BasicBlock *CondBlock = CI->getParent(); 2719 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2720 if (isGuard(CI)) { 2721 if (!SkipExitingSuccessors) 2722 UnswitchedClones++; 2723 continue; 2724 } 2725 int NonExitingSuccessors = 2726 llvm::count_if(successors(CondBlock), 2727 [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) { 2728 return !SkipExitingSuccessors || L.contains(SuccBB); 2729 }); 2730 UnswitchedClones += Log2_32(NonExitingSuccessors); 2731 } 2732 2733 // Ignore up to the "unscaled candidates" number of unswitch candidates 2734 // when calculating the power-of-two scaling of the cost. The main idea 2735 // with this control is to allow a small number of unswitches to happen 2736 // and rely more on siblings multiplier (see below) when the number 2737 // of candidates is small. 2738 unsigned ClonesPower = 2739 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2740 2741 // Allowing top-level loops to spread a bit more than nested ones. 2742 int SiblingsMultiplier = 2743 std::max((ParentL ? SiblingsCount 2744 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2745 1); 2746 // Compute the cost multiplier in a way that won't overflow by saturating 2747 // at an upper bound. 2748 int CostMultiplier; 2749 if (ClonesPower > Log2_32(UnswitchThreshold) || 2750 SiblingsMultiplier > UnswitchThreshold) 2751 CostMultiplier = UnswitchThreshold; 2752 else 2753 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2754 (int)UnswitchThreshold); 2755 2756 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2757 << " (siblings " << SiblingsMultiplier << " * clones " 2758 << (1 << ClonesPower) << ")" 2759 << " for unswitch candidate: " << TI << "\n"); 2760 return CostMultiplier; 2761 } 2762 2763 static bool collectUnswitchCandidates( 2764 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, 2765 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, 2766 const Loop &L, const LoopInfo &LI, AAResults &AA, 2767 const MemorySSAUpdater *MSSAU) { 2768 assert(UnswitchCandidates.empty() && "Should be!"); 2769 // Whether or not we should also collect guards in the loop. 2770 bool CollectGuards = false; 2771 if (UnswitchGuards) { 2772 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2773 Intrinsic::getName(Intrinsic::experimental_guard)); 2774 if (GuardDecl && !GuardDecl->use_empty()) 2775 CollectGuards = true; 2776 } 2777 2778 for (auto *BB : L.blocks()) { 2779 if (LI.getLoopFor(BB) != &L) 2780 continue; 2781 2782 if (CollectGuards) 2783 for (auto &I : *BB) 2784 if (isGuard(&I)) { 2785 auto *Cond = 2786 skipTrivialSelect(cast<IntrinsicInst>(&I)->getArgOperand(0)); 2787 // TODO: Support AND, OR conditions and partial unswitching. 2788 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2789 UnswitchCandidates.push_back({&I, {Cond}}); 2790 } 2791 2792 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2793 // We can only consider fully loop-invariant switch conditions as we need 2794 // to completely eliminate the switch after unswitching. 2795 if (!isa<Constant>(SI->getCondition()) && 2796 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2797 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2798 continue; 2799 } 2800 2801 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2802 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2803 BI->getSuccessor(0) == BI->getSuccessor(1)) 2804 continue; 2805 2806 Value *Cond = skipTrivialSelect(BI->getCondition()); 2807 if (isa<Constant>(Cond)) 2808 continue; 2809 2810 if (L.isLoopInvariant(Cond)) { 2811 UnswitchCandidates.push_back({BI, {Cond}}); 2812 continue; 2813 } 2814 2815 Instruction &CondI = *cast<Instruction>(Cond); 2816 if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) { 2817 TinyPtrVector<Value *> Invariants = 2818 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2819 if (Invariants.empty()) 2820 continue; 2821 2822 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2823 continue; 2824 } 2825 } 2826 2827 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") && 2828 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) { 2829 return TerminatorAndInvariants.TI == L.getHeader()->getTerminator(); 2830 })) { 2831 MemorySSA *MSSA = MSSAU->getMemorySSA(); 2832 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) { 2833 LLVM_DEBUG( 2834 dbgs() << "simple-loop-unswitch: Found partially invariant condition " 2835 << *Info->InstToDuplicate[0] << "\n"); 2836 PartialIVInfo = *Info; 2837 PartialIVCondBranch = L.getHeader()->getTerminator(); 2838 TinyPtrVector<Value *> ValsToDuplicate; 2839 llvm::append_range(ValsToDuplicate, Info->InstToDuplicate); 2840 UnswitchCandidates.push_back( 2841 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)}); 2842 } 2843 } 2844 return !UnswitchCandidates.empty(); 2845 } 2846 2847 static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) { 2848 if (!L.isSafeToClone()) 2849 return false; 2850 for (auto *BB : L.blocks()) 2851 for (auto &I : *BB) { 2852 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2853 return false; 2854 if (auto *CB = dyn_cast<CallBase>(&I)) { 2855 assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone()."); 2856 if (CB->isConvergent()) 2857 return false; 2858 } 2859 } 2860 2861 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2862 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2863 // irreducible control flow into reducible control flow and introduce new 2864 // loops "out of thin air". If we ever discover important use cases for doing 2865 // this, we can add support to loop unswitch, but it is a lot of complexity 2866 // for what seems little or no real world benefit. 2867 LoopBlocksRPO RPOT(&L); 2868 RPOT.perform(&LI); 2869 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2870 return false; 2871 2872 SmallVector<BasicBlock *, 4> ExitBlocks; 2873 L.getUniqueExitBlocks(ExitBlocks); 2874 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch 2875 // instruction as we don't know how to split those exit blocks. 2876 // FIXME: We should teach SplitBlock to handle this and remove this 2877 // restriction. 2878 for (auto *ExitBB : ExitBlocks) { 2879 auto *I = ExitBB->getFirstNonPHI(); 2880 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) { 2881 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch " 2882 "in exit block\n"); 2883 return false; 2884 } 2885 } 2886 2887 return true; 2888 } 2889 2890 static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate( 2891 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L, 2892 const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC, 2893 const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) { 2894 // Given that unswitching these terminators will require duplicating parts of 2895 // the loop, so we need to be able to model that cost. Compute the ephemeral 2896 // values and set up a data structure to hold per-BB costs. We cache each 2897 // block's cost so that we don't recompute this when considering different 2898 // subsets of the loop for duplication during unswitching. 2899 SmallPtrSet<const Value *, 4> EphValues; 2900 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2901 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap; 2902 2903 // Compute the cost of each block, as well as the total loop cost. Also, bail 2904 // out if we see instructions which are incompatible with loop unswitching 2905 // (convergent, noduplicate, or cross-basic-block tokens). 2906 // FIXME: We might be able to safely handle some of these in non-duplicated 2907 // regions. 2908 TargetTransformInfo::TargetCostKind CostKind = 2909 L.getHeader()->getParent()->hasMinSize() 2910 ? TargetTransformInfo::TCK_CodeSize 2911 : TargetTransformInfo::TCK_SizeAndLatency; 2912 InstructionCost LoopCost = 0; 2913 for (auto *BB : L.blocks()) { 2914 InstructionCost Cost = 0; 2915 for (auto &I : *BB) { 2916 if (EphValues.count(&I)) 2917 continue; 2918 Cost += TTI.getInstructionCost(&I, CostKind); 2919 } 2920 assert(Cost >= 0 && "Must not have negative costs!"); 2921 LoopCost += Cost; 2922 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2923 BBCostMap[BB] = Cost; 2924 } 2925 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2926 2927 // Now we find the best candidate by searching for the one with the following 2928 // properties in order: 2929 // 2930 // 1) An unswitching cost below the threshold 2931 // 2) The smallest number of duplicated unswitch candidates (to avoid 2932 // creating redundant subsequent unswitching) 2933 // 3) The smallest cost after unswitching. 2934 // 2935 // We prioritize reducing fanout of unswitch candidates provided the cost 2936 // remains below the threshold because this has a multiplicative effect. 2937 // 2938 // This requires memoizing each dominator subtree to avoid redundant work. 2939 // 2940 // FIXME: Need to actually do the number of candidates part above. 2941 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap; 2942 // Given a terminator which might be unswitched, computes the non-duplicated 2943 // cost for that terminator. 2944 auto ComputeUnswitchedCost = [&](Instruction &TI, 2945 bool FullUnswitch) -> InstructionCost { 2946 BasicBlock &BB = *TI.getParent(); 2947 SmallPtrSet<BasicBlock *, 4> Visited; 2948 2949 InstructionCost Cost = 0; 2950 for (BasicBlock *SuccBB : successors(&BB)) { 2951 // Don't count successors more than once. 2952 if (!Visited.insert(SuccBB).second) 2953 continue; 2954 2955 // If this is a partial unswitch candidate, then it must be a conditional 2956 // branch with a condition of either `or`, `and`, their corresponding 2957 // select forms or partially invariant instructions. In that case, one of 2958 // the successors is necessarily duplicated, so don't even try to remove 2959 // its cost. 2960 if (!FullUnswitch) { 2961 auto &BI = cast<BranchInst>(TI); 2962 Value *Cond = skipTrivialSelect(BI.getCondition()); 2963 if (match(Cond, m_LogicalAnd())) { 2964 if (SuccBB == BI.getSuccessor(1)) 2965 continue; 2966 } else if (match(Cond, m_LogicalOr())) { 2967 if (SuccBB == BI.getSuccessor(0)) 2968 continue; 2969 } else if ((PartialIVInfo.KnownValue->isOneValue() && 2970 SuccBB == BI.getSuccessor(0)) || 2971 (!PartialIVInfo.KnownValue->isOneValue() && 2972 SuccBB == BI.getSuccessor(1))) 2973 continue; 2974 } 2975 2976 // This successor's domtree will not need to be duplicated after 2977 // unswitching if the edge to the successor dominates it (and thus the 2978 // entire tree). This essentially means there is no other path into this 2979 // subtree and so it will end up live in only one clone of the loop. 2980 if (SuccBB->getUniquePredecessor() || 2981 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2982 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2983 })) { 2984 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2985 assert(Cost <= LoopCost && 2986 "Non-duplicated cost should never exceed total loop cost!"); 2987 } 2988 } 2989 2990 // Now scale the cost by the number of unique successors minus one. We 2991 // subtract one because there is already at least one copy of the entire 2992 // loop. This is computing the new cost of unswitching a condition. 2993 // Note that guards always have 2 unique successors that are implicit and 2994 // will be materialized if we decide to unswitch it. 2995 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2996 assert(SuccessorsCount > 1 && 2997 "Cannot unswitch a condition without multiple distinct successors!"); 2998 return (LoopCost - Cost) * (SuccessorsCount - 1); 2999 }; 3000 3001 std::optional<NonTrivialUnswitchCandidate> Best; 3002 for (auto &Candidate : UnswitchCandidates) { 3003 Instruction &TI = *Candidate.TI; 3004 ArrayRef<Value *> Invariants = Candidate.Invariants; 3005 BranchInst *BI = dyn_cast<BranchInst>(&TI); 3006 InstructionCost CandidateCost = ComputeUnswitchedCost( 3007 TI, /*FullUnswitch*/ !BI || 3008 (Invariants.size() == 1 && 3009 Invariants[0] == skipTrivialSelect(BI->getCondition()))); 3010 // Calculate cost multiplier which is a tool to limit potentially 3011 // exponential behavior of loop-unswitch. 3012 if (EnableUnswitchCostMultiplier) { 3013 int CostMultiplier = 3014 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 3015 assert( 3016 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 3017 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 3018 CandidateCost *= CostMultiplier; 3019 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 3020 << " (multiplier: " << CostMultiplier << ")" 3021 << " for unswitch candidate: " << TI << "\n"); 3022 } else { 3023 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 3024 << " for unswitch candidate: " << TI << "\n"); 3025 } 3026 3027 if (!Best || CandidateCost < Best->Cost) { 3028 Best = Candidate; 3029 Best->Cost = CandidateCost; 3030 } 3031 } 3032 assert(Best && "Must be!"); 3033 return *Best; 3034 } 3035 3036 static bool unswitchBestCondition( 3037 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 3038 AAResults &AA, TargetTransformInfo &TTI, 3039 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 3040 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 3041 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3042 // Collect all invariant conditions within this loop (as opposed to an inner 3043 // loop which would be handled when visiting that inner loop). 3044 SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates; 3045 IVConditionInfo PartialIVInfo; 3046 Instruction *PartialIVCondBranch = nullptr; 3047 // If we didn't find any candidates, we're done. 3048 if (!collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo, 3049 PartialIVCondBranch, L, LI, AA, MSSAU)) 3050 return false; 3051 3052 LLVM_DEBUG( 3053 dbgs() << "Considering " << UnswitchCandidates.size() 3054 << " non-trivial loop invariant conditions for unswitching.\n"); 3055 3056 NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate( 3057 UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo); 3058 3059 assert(Best.TI && "Failed to find loop unswitch candidate"); 3060 assert(Best.Cost && "Failed to compute cost"); 3061 3062 if (*Best.Cost >= UnswitchThreshold) { 3063 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost 3064 << "\n"); 3065 return false; 3066 } 3067 3068 if (Best.TI != PartialIVCondBranch) 3069 PartialIVInfo.InstToDuplicate.clear(); 3070 3071 // If the best candidate is a guard, turn it into a branch. 3072 if (isGuard(Best.TI)) 3073 Best.TI = 3074 turnGuardIntoBranch(cast<IntrinsicInst>(Best.TI), L, DT, LI, MSSAU); 3075 3076 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best.Cost 3077 << ") terminator: " << *Best.TI << "\n"); 3078 unswitchNontrivialInvariants(L, *Best.TI, Best.Invariants, PartialIVInfo, DT, 3079 LI, AC, UnswitchCB, SE, MSSAU, DestroyLoopCB); 3080 return true; 3081 } 3082 3083 /// Unswitch control flow predicated on loop invariant conditions. 3084 /// 3085 /// This first hoists all branches or switches which are trivial (IE, do not 3086 /// require duplicating any part of the loop) out of the loop body. It then 3087 /// looks at other loop invariant control flows and tries to unswitch those as 3088 /// well by cloning the loop if the result is small enough. 3089 /// 3090 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are 3091 /// also updated based on the unswitch. The `MSSA` analysis is also updated if 3092 /// valid (i.e. its use is enabled). 3093 /// 3094 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 3095 /// true, we will attempt to do non-trivial unswitching as well as trivial 3096 /// unswitching. 3097 /// 3098 /// The `UnswitchCB` callback provided will be run after unswitching is 3099 /// complete, with the first parameter set to `true` if the provided loop 3100 /// remains a loop, and a list of new sibling loops created. 3101 /// 3102 /// If `SE` is non-null, we will update that analysis based on the unswitching 3103 /// done. 3104 static bool 3105 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC, 3106 AAResults &AA, TargetTransformInfo &TTI, bool Trivial, 3107 bool NonTrivial, 3108 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB, 3109 ScalarEvolution *SE, MemorySSAUpdater *MSSAU, 3110 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI, 3111 function_ref<void(Loop &, StringRef)> DestroyLoopCB) { 3112 assert(L.isRecursivelyLCSSAForm(DT, LI) && 3113 "Loops must be in LCSSA form before unswitching."); 3114 3115 // Must be in loop simplified form: we need a preheader and dedicated exits. 3116 if (!L.isLoopSimplifyForm()) 3117 return false; 3118 3119 // Try trivial unswitch first before loop over other basic blocks in the loop. 3120 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 3121 // If we unswitched successfully we will want to clean up the loop before 3122 // processing it further so just mark it as unswitched and return. 3123 UnswitchCB(/*CurrentLoopValid*/ true, false, {}); 3124 return true; 3125 } 3126 3127 // Check whether we should continue with non-trivial conditions. 3128 // EnableNonTrivialUnswitch: Global variable that forces non-trivial 3129 // unswitching for testing and debugging. 3130 // NonTrivial: Parameter that enables non-trivial unswitching for this 3131 // invocation of the transform. But this should be allowed only 3132 // for targets without branch divergence. 3133 // 3134 // FIXME: If divergence analysis becomes available to a loop 3135 // transform, we should allow unswitching for non-trivial uniform 3136 // branches even on targets that have divergence. 3137 // https://bugs.llvm.org/show_bug.cgi?id=48819 3138 bool ContinueWithNonTrivial = 3139 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence()); 3140 if (!ContinueWithNonTrivial) 3141 return false; 3142 3143 // Skip non-trivial unswitching for optsize functions. 3144 if (L.getHeader()->getParent()->hasOptSize()) 3145 return false; 3146 3147 // Skip cold loops, as unswitching them brings little benefit 3148 // but increases the code size 3149 if (PSI && PSI->hasProfileSummary() && BFI && 3150 PSI->isFunctionColdInCallGraph(L.getHeader()->getParent(), *BFI)) { 3151 LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n"); 3152 return false; 3153 } 3154 3155 // Perform legality checks. 3156 if (!isSafeForNoNTrivialUnswitching(L, LI)) 3157 return false; 3158 3159 // For non-trivial unswitching, because it often creates new loops, we rely on 3160 // the pass manager to iterate on the loops rather than trying to immediately 3161 // reach a fixed point. There is no substantial advantage to iterating 3162 // internally, and if any of the new loops are simplified enough to contain 3163 // trivial unswitching we want to prefer those. 3164 3165 // Try to unswitch the best invariant condition. We prefer this full unswitch to 3166 // a partial unswitch when possible below the threshold. 3167 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU, 3168 DestroyLoopCB)) 3169 return true; 3170 3171 // No other opportunities to unswitch. 3172 return false; 3173 } 3174 3175 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 3176 LoopStandardAnalysisResults &AR, 3177 LPMUpdater &U) { 3178 Function &F = *L.getHeader()->getParent(); 3179 (void)F; 3180 ProfileSummaryInfo *PSI = nullptr; 3181 if (auto OuterProxy = 3182 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR) 3183 .getCachedResult<ModuleAnalysisManagerFunctionProxy>(F)) 3184 PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3185 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 3186 << "\n"); 3187 3188 // Save the current loop name in a variable so that we can report it even 3189 // after it has been deleted. 3190 std::string LoopName = std::string(L.getName()); 3191 3192 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 3193 bool PartiallyInvariant, 3194 ArrayRef<Loop *> NewLoops) { 3195 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3196 if (!NewLoops.empty()) 3197 U.addSiblingLoops(NewLoops); 3198 3199 // If the current loop remains valid, we should revisit it to catch any 3200 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 3201 if (CurrentLoopValid) { 3202 if (PartiallyInvariant) { 3203 // Mark the new loop as partially unswitched, to avoid unswitching on 3204 // the same condition again. 3205 auto &Context = L.getHeader()->getContext(); 3206 MDNode *DisableUnswitchMD = MDNode::get( 3207 Context, 3208 MDString::get(Context, "llvm.loop.unswitch.partial.disable")); 3209 MDNode *NewLoopID = makePostTransformationMetadata( 3210 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"}, 3211 {DisableUnswitchMD}); 3212 L.setLoopID(NewLoopID); 3213 } else 3214 U.revisitCurrentLoop(); 3215 } else 3216 U.markLoopAsDeleted(L, LoopName); 3217 }; 3218 3219 auto DestroyLoopCB = [&U](Loop &L, StringRef Name) { 3220 U.markLoopAsDeleted(L, Name); 3221 }; 3222 3223 std::optional<MemorySSAUpdater> MSSAU; 3224 if (AR.MSSA) { 3225 MSSAU = MemorySSAUpdater(AR.MSSA); 3226 if (VerifyMemorySSA) 3227 AR.MSSA->verifyMemorySSA(); 3228 } 3229 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial, 3230 UnswitchCB, &AR.SE, MSSAU ? &*MSSAU : nullptr, PSI, AR.BFI, 3231 DestroyLoopCB)) 3232 return PreservedAnalyses::all(); 3233 3234 if (AR.MSSA && VerifyMemorySSA) 3235 AR.MSSA->verifyMemorySSA(); 3236 3237 // Historically this pass has had issues with the dominator tree so verify it 3238 // in asserts builds. 3239 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 3240 3241 auto PA = getLoopPassPreservedAnalyses(); 3242 if (AR.MSSA) 3243 PA.preserve<MemorySSAAnalysis>(); 3244 return PA; 3245 } 3246 3247 void SimpleLoopUnswitchPass::printPipeline( 3248 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 3249 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline( 3250 OS, MapClassName2PassName); 3251 3252 OS << "<"; 3253 OS << (NonTrivial ? "" : "no-") << "nontrivial;"; 3254 OS << (Trivial ? "" : "no-") << "trivial"; 3255 OS << ">"; 3256 } 3257 3258 namespace { 3259 3260 class SimpleLoopUnswitchLegacyPass : public LoopPass { 3261 bool NonTrivial; 3262 3263 public: 3264 static char ID; // Pass ID, replacement for typeid 3265 3266 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 3267 : LoopPass(ID), NonTrivial(NonTrivial) { 3268 initializeSimpleLoopUnswitchLegacyPassPass( 3269 *PassRegistry::getPassRegistry()); 3270 } 3271 3272 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 3273 3274 void getAnalysisUsage(AnalysisUsage &AU) const override { 3275 AU.addRequired<AssumptionCacheTracker>(); 3276 AU.addRequired<TargetTransformInfoWrapperPass>(); 3277 AU.addRequired<MemorySSAWrapperPass>(); 3278 AU.addPreserved<MemorySSAWrapperPass>(); 3279 getLoopAnalysisUsage(AU); 3280 } 3281 }; 3282 3283 } // end anonymous namespace 3284 3285 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3286 if (skipLoop(L)) 3287 return false; 3288 3289 Function &F = *L->getHeader()->getParent(); 3290 3291 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3292 << "\n"); 3293 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3294 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3295 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3296 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 3297 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3298 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3299 MemorySSAUpdater MSSAU(MSSA); 3300 3301 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3302 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3303 3304 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant, 3305 ArrayRef<Loop *> NewLoops) { 3306 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3307 for (auto *NewL : NewLoops) 3308 LPM.addLoop(*NewL); 3309 3310 // If the current loop remains valid, re-add it to the queue. This is 3311 // a little wasteful as we'll finish processing the current loop as well, 3312 // but it is the best we can do in the old PM. 3313 if (CurrentLoopValid) { 3314 // If the current loop has been unswitched using a partially invariant 3315 // condition, we should not re-add the current loop to avoid unswitching 3316 // on the same condition again. 3317 if (!PartiallyInvariant) 3318 LPM.addLoop(*L); 3319 } else 3320 LPM.markLoopAsDeleted(*L); 3321 }; 3322 3323 auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) { 3324 LPM.markLoopAsDeleted(L); 3325 }; 3326 3327 if (VerifyMemorySSA) 3328 MSSA->verifyMemorySSA(); 3329 bool Changed = 3330 unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE, 3331 &MSSAU, nullptr, nullptr, DestroyLoopCB); 3332 3333 if (VerifyMemorySSA) 3334 MSSA->verifyMemorySSA(); 3335 3336 // Historically this pass has had issues with the dominator tree so verify it 3337 // in asserts builds. 3338 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3339 3340 return Changed; 3341 } 3342 3343 char SimpleLoopUnswitchLegacyPass::ID = 0; 3344 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3345 "Simple unswitch loops", false, false) 3346 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3347 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3348 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3349 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3350 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3351 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3352 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3353 "Simple unswitch loops", false, false) 3354 3355 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3356 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3357 } 3358