xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp (revision 681ce946f33e75c590e97c53076e86dff1fe8f4a)
1  ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  
9  #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10  #include "llvm/ADT/DenseMap.h"
11  #include "llvm/ADT/STLExtras.h"
12  #include "llvm/ADT/Sequence.h"
13  #include "llvm/ADT/SetVector.h"
14  #include "llvm/ADT/SmallPtrSet.h"
15  #include "llvm/ADT/SmallVector.h"
16  #include "llvm/ADT/Statistic.h"
17  #include "llvm/ADT/Twine.h"
18  #include "llvm/Analysis/AssumptionCache.h"
19  #include "llvm/Analysis/CFG.h"
20  #include "llvm/Analysis/CodeMetrics.h"
21  #include "llvm/Analysis/GuardUtils.h"
22  #include "llvm/Analysis/InstructionSimplify.h"
23  #include "llvm/Analysis/LoopAnalysisManager.h"
24  #include "llvm/Analysis/LoopInfo.h"
25  #include "llvm/Analysis/LoopIterator.h"
26  #include "llvm/Analysis/LoopPass.h"
27  #include "llvm/Analysis/MemorySSA.h"
28  #include "llvm/Analysis/MemorySSAUpdater.h"
29  #include "llvm/Analysis/MustExecute.h"
30  #include "llvm/Analysis/ScalarEvolution.h"
31  #include "llvm/IR/BasicBlock.h"
32  #include "llvm/IR/Constant.h"
33  #include "llvm/IR/Constants.h"
34  #include "llvm/IR/Dominators.h"
35  #include "llvm/IR/Function.h"
36  #include "llvm/IR/IRBuilder.h"
37  #include "llvm/IR/InstrTypes.h"
38  #include "llvm/IR/Instruction.h"
39  #include "llvm/IR/Instructions.h"
40  #include "llvm/IR/IntrinsicInst.h"
41  #include "llvm/IR/PatternMatch.h"
42  #include "llvm/IR/Use.h"
43  #include "llvm/IR/Value.h"
44  #include "llvm/InitializePasses.h"
45  #include "llvm/Pass.h"
46  #include "llvm/Support/Casting.h"
47  #include "llvm/Support/CommandLine.h"
48  #include "llvm/Support/Debug.h"
49  #include "llvm/Support/ErrorHandling.h"
50  #include "llvm/Support/GenericDomTree.h"
51  #include "llvm/Support/raw_ostream.h"
52  #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
53  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54  #include "llvm/Transforms/Utils/Cloning.h"
55  #include "llvm/Transforms/Utils/Local.h"
56  #include "llvm/Transforms/Utils/LoopUtils.h"
57  #include "llvm/Transforms/Utils/ValueMapper.h"
58  #include <algorithm>
59  #include <cassert>
60  #include <iterator>
61  #include <numeric>
62  #include <utility>
63  
64  #define DEBUG_TYPE "simple-loop-unswitch"
65  
66  using namespace llvm;
67  using namespace llvm::PatternMatch;
68  
69  STATISTIC(NumBranches, "Number of branches unswitched");
70  STATISTIC(NumSwitches, "Number of switches unswitched");
71  STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
72  STATISTIC(NumTrivial, "Number of unswitches that are trivial");
73  STATISTIC(
74      NumCostMultiplierSkipped,
75      "Number of unswitch candidates that had their cost multiplier skipped");
76  
77  static cl::opt<bool> EnableNonTrivialUnswitch(
78      "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
79      cl::desc("Forcibly enables non-trivial loop unswitching rather than "
80               "following the configuration passed into the pass."));
81  
82  static cl::opt<int>
83      UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
84                        cl::desc("The cost threshold for unswitching a loop."));
85  
86  static cl::opt<bool> EnableUnswitchCostMultiplier(
87      "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
88      cl::desc("Enable unswitch cost multiplier that prohibits exponential "
89               "explosion in nontrivial unswitch."));
90  static cl::opt<int> UnswitchSiblingsToplevelDiv(
91      "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
92      cl::desc("Toplevel siblings divisor for cost multiplier."));
93  static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
94      "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
95      cl::desc("Number of unswitch candidates that are ignored when calculating "
96               "cost multiplier."));
97  static cl::opt<bool> UnswitchGuards(
98      "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
99      cl::desc("If enabled, simple loop unswitching will also consider "
100               "llvm.experimental.guard intrinsics as unswitch candidates."));
101  static cl::opt<bool> DropNonTrivialImplicitNullChecks(
102      "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
103      cl::init(false), cl::Hidden,
104      cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
105               "null checks to save time analyzing if we can keep it."));
106  static cl::opt<unsigned>
107      MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
108                    cl::desc("Max number of memory uses to explore during "
109                             "partial unswitching analysis"),
110                    cl::init(100), cl::Hidden);
111  
112  /// Collect all of the loop invariant input values transitively used by the
113  /// homogeneous instruction graph from a given root.
114  ///
115  /// This essentially walks from a root recursively through loop variant operands
116  /// which have the exact same opcode and finds all inputs which are loop
117  /// invariant. For some operations these can be re-associated and unswitched out
118  /// of the loop entirely.
119  static TinyPtrVector<Value *>
120  collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
121                                           LoopInfo &LI) {
122    assert(!L.isLoopInvariant(&Root) &&
123           "Only need to walk the graph if root itself is not invariant.");
124    TinyPtrVector<Value *> Invariants;
125  
126    bool IsRootAnd = match(&Root, m_LogicalAnd());
127    bool IsRootOr  = match(&Root, m_LogicalOr());
128  
129    // Build a worklist and recurse through operators collecting invariants.
130    SmallVector<Instruction *, 4> Worklist;
131    SmallPtrSet<Instruction *, 8> Visited;
132    Worklist.push_back(&Root);
133    Visited.insert(&Root);
134    do {
135      Instruction &I = *Worklist.pop_back_val();
136      for (Value *OpV : I.operand_values()) {
137        // Skip constants as unswitching isn't interesting for them.
138        if (isa<Constant>(OpV))
139          continue;
140  
141        // Add it to our result if loop invariant.
142        if (L.isLoopInvariant(OpV)) {
143          Invariants.push_back(OpV);
144          continue;
145        }
146  
147        // If not an instruction with the same opcode, nothing we can do.
148        Instruction *OpI = dyn_cast<Instruction>(OpV);
149  
150        if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
151                    (IsRootOr  && match(OpI, m_LogicalOr())))) {
152          // Visit this operand.
153          if (Visited.insert(OpI).second)
154            Worklist.push_back(OpI);
155        }
156      }
157    } while (!Worklist.empty());
158  
159    return Invariants;
160  }
161  
162  static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
163                                       Constant &Replacement) {
164    assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
165  
166    // Replace uses of LIC in the loop with the given constant.
167    // We use make_early_inc_range as set invalidates the iterator.
168    for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
169      Instruction *UserI = dyn_cast<Instruction>(U.getUser());
170  
171      // Replace this use within the loop body.
172      if (UserI && L.contains(UserI))
173        U.set(&Replacement);
174    }
175  }
176  
177  /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
178  /// incoming values along this edge.
179  static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
180                                           BasicBlock &ExitBB) {
181    for (Instruction &I : ExitBB) {
182      auto *PN = dyn_cast<PHINode>(&I);
183      if (!PN)
184        // No more PHIs to check.
185        return true;
186  
187      // If the incoming value for this edge isn't loop invariant the unswitch
188      // won't be trivial.
189      if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
190        return false;
191    }
192    llvm_unreachable("Basic blocks should never be empty!");
193  }
194  
195  /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
196  /// end of \p BB and conditionally branch on the copied condition. We only
197  /// branch on a single value.
198  static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
199                                                    ArrayRef<Value *> Invariants,
200                                                    bool Direction,
201                                                    BasicBlock &UnswitchedSucc,
202                                                    BasicBlock &NormalSucc) {
203    IRBuilder<> IRB(&BB);
204  
205    Value *Cond = Direction ? IRB.CreateOr(Invariants) :
206      IRB.CreateAnd(Invariants);
207    IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
208                     Direction ? &NormalSucc : &UnswitchedSucc);
209  }
210  
211  /// Copy a set of loop invariant values, and conditionally branch on them.
212  static void buildPartialInvariantUnswitchConditionalBranch(
213      BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
214      BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
215      MemorySSAUpdater *MSSAU) {
216    ValueToValueMapTy VMap;
217    for (auto *Val : reverse(ToDuplicate)) {
218      Instruction *Inst = cast<Instruction>(Val);
219      Instruction *NewInst = Inst->clone();
220      BB.getInstList().insert(BB.end(), NewInst);
221      RemapInstruction(NewInst, VMap,
222                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
223      VMap[Val] = NewInst;
224  
225      if (!MSSAU)
226        continue;
227  
228      MemorySSA *MSSA = MSSAU->getMemorySSA();
229      if (auto *MemUse =
230              dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
231        auto *DefiningAccess = MemUse->getDefiningAccess();
232        // Get the first defining access before the loop.
233        while (L.contains(DefiningAccess->getBlock())) {
234          // If the defining access is a MemoryPhi, get the incoming
235          // value for the pre-header as defining access.
236          if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
237            DefiningAccess =
238                MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
239          else
240            DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
241        }
242        MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
243                                      NewInst->getParent(),
244                                      MemorySSA::BeforeTerminator);
245      }
246    }
247  
248    IRBuilder<> IRB(&BB);
249    Value *Cond = VMap[ToDuplicate[0]];
250    IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
251                     Direction ? &NormalSucc : &UnswitchedSucc);
252  }
253  
254  /// Rewrite the PHI nodes in an unswitched loop exit basic block.
255  ///
256  /// Requires that the loop exit and unswitched basic block are the same, and
257  /// that the exiting block was a unique predecessor of that block. Rewrites the
258  /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
259  /// PHI nodes from the old preheader that now contains the unswitched
260  /// terminator.
261  static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
262                                                    BasicBlock &OldExitingBB,
263                                                    BasicBlock &OldPH) {
264    for (PHINode &PN : UnswitchedBB.phis()) {
265      // When the loop exit is directly unswitched we just need to update the
266      // incoming basic block. We loop to handle weird cases with repeated
267      // incoming blocks, but expect to typically only have one operand here.
268      for (auto i : seq<int>(0, PN.getNumOperands())) {
269        assert(PN.getIncomingBlock(i) == &OldExitingBB &&
270               "Found incoming block different from unique predecessor!");
271        PN.setIncomingBlock(i, &OldPH);
272      }
273    }
274  }
275  
276  /// Rewrite the PHI nodes in the loop exit basic block and the split off
277  /// unswitched block.
278  ///
279  /// Because the exit block remains an exit from the loop, this rewrites the
280  /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
281  /// nodes into the unswitched basic block to select between the value in the
282  /// old preheader and the loop exit.
283  static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
284                                                        BasicBlock &UnswitchedBB,
285                                                        BasicBlock &OldExitingBB,
286                                                        BasicBlock &OldPH,
287                                                        bool FullUnswitch) {
288    assert(&ExitBB != &UnswitchedBB &&
289           "Must have different loop exit and unswitched blocks!");
290    Instruction *InsertPt = &*UnswitchedBB.begin();
291    for (PHINode &PN : ExitBB.phis()) {
292      auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
293                                    PN.getName() + ".split", InsertPt);
294  
295      // Walk backwards over the old PHI node's inputs to minimize the cost of
296      // removing each one. We have to do this weird loop manually so that we
297      // create the same number of new incoming edges in the new PHI as we expect
298      // each case-based edge to be included in the unswitched switch in some
299      // cases.
300      // FIXME: This is really, really gross. It would be much cleaner if LLVM
301      // allowed us to create a single entry for a predecessor block without
302      // having separate entries for each "edge" even though these edges are
303      // required to produce identical results.
304      for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
305        if (PN.getIncomingBlock(i) != &OldExitingBB)
306          continue;
307  
308        Value *Incoming = PN.getIncomingValue(i);
309        if (FullUnswitch)
310          // No more edge from the old exiting block to the exit block.
311          PN.removeIncomingValue(i);
312  
313        NewPN->addIncoming(Incoming, &OldPH);
314      }
315  
316      // Now replace the old PHI with the new one and wire the old one in as an
317      // input to the new one.
318      PN.replaceAllUsesWith(NewPN);
319      NewPN->addIncoming(&PN, &ExitBB);
320    }
321  }
322  
323  /// Hoist the current loop up to the innermost loop containing a remaining exit.
324  ///
325  /// Because we've removed an exit from the loop, we may have changed the set of
326  /// loops reachable and need to move the current loop up the loop nest or even
327  /// to an entirely separate nest.
328  static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
329                                   DominatorTree &DT, LoopInfo &LI,
330                                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
331    // If the loop is already at the top level, we can't hoist it anywhere.
332    Loop *OldParentL = L.getParentLoop();
333    if (!OldParentL)
334      return;
335  
336    SmallVector<BasicBlock *, 4> Exits;
337    L.getExitBlocks(Exits);
338    Loop *NewParentL = nullptr;
339    for (auto *ExitBB : Exits)
340      if (Loop *ExitL = LI.getLoopFor(ExitBB))
341        if (!NewParentL || NewParentL->contains(ExitL))
342          NewParentL = ExitL;
343  
344    if (NewParentL == OldParentL)
345      return;
346  
347    // The new parent loop (if different) should always contain the old one.
348    if (NewParentL)
349      assert(NewParentL->contains(OldParentL) &&
350             "Can only hoist this loop up the nest!");
351  
352    // The preheader will need to move with the body of this loop. However,
353    // because it isn't in this loop we also need to update the primary loop map.
354    assert(OldParentL == LI.getLoopFor(&Preheader) &&
355           "Parent loop of this loop should contain this loop's preheader!");
356    LI.changeLoopFor(&Preheader, NewParentL);
357  
358    // Remove this loop from its old parent.
359    OldParentL->removeChildLoop(&L);
360  
361    // Add the loop either to the new parent or as a top-level loop.
362    if (NewParentL)
363      NewParentL->addChildLoop(&L);
364    else
365      LI.addTopLevelLoop(&L);
366  
367    // Remove this loops blocks from the old parent and every other loop up the
368    // nest until reaching the new parent. Also update all of these
369    // no-longer-containing loops to reflect the nesting change.
370    for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
371         OldContainingL = OldContainingL->getParentLoop()) {
372      llvm::erase_if(OldContainingL->getBlocksVector(),
373                     [&](const BasicBlock *BB) {
374                       return BB == &Preheader || L.contains(BB);
375                     });
376  
377      OldContainingL->getBlocksSet().erase(&Preheader);
378      for (BasicBlock *BB : L.blocks())
379        OldContainingL->getBlocksSet().erase(BB);
380  
381      // Because we just hoisted a loop out of this one, we have essentially
382      // created new exit paths from it. That means we need to form LCSSA PHI
383      // nodes for values used in the no-longer-nested loop.
384      formLCSSA(*OldContainingL, DT, &LI, SE);
385  
386      // We shouldn't need to form dedicated exits because the exit introduced
387      // here is the (just split by unswitching) preheader. However, after trivial
388      // unswitching it is possible to get new non-dedicated exits out of parent
389      // loop so let's conservatively form dedicated exit blocks and figure out
390      // if we can optimize later.
391      formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
392                              /*PreserveLCSSA*/ true);
393    }
394  }
395  
396  // Return the top-most loop containing ExitBB and having ExitBB as exiting block
397  // or the loop containing ExitBB, if there is no parent loop containing ExitBB
398  // as exiting block.
399  static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
400    Loop *TopMost = LI.getLoopFor(ExitBB);
401    Loop *Current = TopMost;
402    while (Current) {
403      if (Current->isLoopExiting(ExitBB))
404        TopMost = Current;
405      Current = Current->getParentLoop();
406    }
407    return TopMost;
408  }
409  
410  /// Unswitch a trivial branch if the condition is loop invariant.
411  ///
412  /// This routine should only be called when loop code leading to the branch has
413  /// been validated as trivial (no side effects). This routine checks if the
414  /// condition is invariant and one of the successors is a loop exit. This
415  /// allows us to unswitch without duplicating the loop, making it trivial.
416  ///
417  /// If this routine fails to unswitch the branch it returns false.
418  ///
419  /// If the branch can be unswitched, this routine splits the preheader and
420  /// hoists the branch above that split. Preserves loop simplified form
421  /// (splitting the exit block as necessary). It simplifies the branch within
422  /// the loop to an unconditional branch but doesn't remove it entirely. Further
423  /// cleanup can be done with some simplifycfg like pass.
424  ///
425  /// If `SE` is not null, it will be updated based on the potential loop SCEVs
426  /// invalidated by this.
427  static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
428                                    LoopInfo &LI, ScalarEvolution *SE,
429                                    MemorySSAUpdater *MSSAU) {
430    assert(BI.isConditional() && "Can only unswitch a conditional branch!");
431    LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
432  
433    // The loop invariant values that we want to unswitch.
434    TinyPtrVector<Value *> Invariants;
435  
436    // When true, we're fully unswitching the branch rather than just unswitching
437    // some input conditions to the branch.
438    bool FullUnswitch = false;
439  
440    if (L.isLoopInvariant(BI.getCondition())) {
441      Invariants.push_back(BI.getCondition());
442      FullUnswitch = true;
443    } else {
444      if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
445        Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
446      if (Invariants.empty()) {
447        LLVM_DEBUG(dbgs() << "   Couldn't find invariant inputs!\n");
448        return false;
449      }
450    }
451  
452    // Check that one of the branch's successors exits, and which one.
453    bool ExitDirection = true;
454    int LoopExitSuccIdx = 0;
455    auto *LoopExitBB = BI.getSuccessor(0);
456    if (L.contains(LoopExitBB)) {
457      ExitDirection = false;
458      LoopExitSuccIdx = 1;
459      LoopExitBB = BI.getSuccessor(1);
460      if (L.contains(LoopExitBB)) {
461        LLVM_DEBUG(dbgs() << "   Branch doesn't exit the loop!\n");
462        return false;
463      }
464    }
465    auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
466    auto *ParentBB = BI.getParent();
467    if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
468      LLVM_DEBUG(dbgs() << "   Loop exit PHI's aren't loop-invariant!\n");
469      return false;
470    }
471  
472    // When unswitching only part of the branch's condition, we need the exit
473    // block to be reached directly from the partially unswitched input. This can
474    // be done when the exit block is along the true edge and the branch condition
475    // is a graph of `or` operations, or the exit block is along the false edge
476    // and the condition is a graph of `and` operations.
477    if (!FullUnswitch) {
478      if (ExitDirection ? !match(BI.getCondition(), m_LogicalOr())
479                        : !match(BI.getCondition(), m_LogicalAnd())) {
480        LLVM_DEBUG(dbgs() << "   Branch condition is in improper form for "
481                             "non-full unswitch!\n");
482        return false;
483      }
484    }
485  
486    LLVM_DEBUG({
487      dbgs() << "    unswitching trivial invariant conditions for: " << BI
488             << "\n";
489      for (Value *Invariant : Invariants) {
490        dbgs() << "      " << *Invariant << " == true";
491        if (Invariant != Invariants.back())
492          dbgs() << " ||";
493        dbgs() << "\n";
494      }
495    });
496  
497    // If we have scalar evolutions, we need to invalidate them including this
498    // loop, the loop containing the exit block and the topmost parent loop
499    // exiting via LoopExitBB.
500    if (SE) {
501      if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
502        SE->forgetLoop(ExitL);
503      else
504        // Forget the entire nest as this exits the entire nest.
505        SE->forgetTopmostLoop(&L);
506    }
507  
508    if (MSSAU && VerifyMemorySSA)
509      MSSAU->getMemorySSA()->verifyMemorySSA();
510  
511    // Split the preheader, so that we know that there is a safe place to insert
512    // the conditional branch. We will change the preheader to have a conditional
513    // branch on LoopCond.
514    BasicBlock *OldPH = L.getLoopPreheader();
515    BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
516  
517    // Now that we have a place to insert the conditional branch, create a place
518    // to branch to: this is the exit block out of the loop that we are
519    // unswitching. We need to split this if there are other loop predecessors.
520    // Because the loop is in simplified form, *any* other predecessor is enough.
521    BasicBlock *UnswitchedBB;
522    if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
523      assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
524             "A branch's parent isn't a predecessor!");
525      UnswitchedBB = LoopExitBB;
526    } else {
527      UnswitchedBB =
528          SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
529    }
530  
531    if (MSSAU && VerifyMemorySSA)
532      MSSAU->getMemorySSA()->verifyMemorySSA();
533  
534    // Actually move the invariant uses into the unswitched position. If possible,
535    // we do this by moving the instructions, but when doing partial unswitching
536    // we do it by building a new merge of the values in the unswitched position.
537    OldPH->getTerminator()->eraseFromParent();
538    if (FullUnswitch) {
539      // If fully unswitching, we can use the existing branch instruction.
540      // Splice it into the old PH to gate reaching the new preheader and re-point
541      // its successors.
542      OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
543                                  BI);
544      if (MSSAU) {
545        // Temporarily clone the terminator, to make MSSA update cheaper by
546        // separating "insert edge" updates from "remove edge" ones.
547        ParentBB->getInstList().push_back(BI.clone());
548      } else {
549        // Create a new unconditional branch that will continue the loop as a new
550        // terminator.
551        BranchInst::Create(ContinueBB, ParentBB);
552      }
553      BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
554      BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
555    } else {
556      // Only unswitching a subset of inputs to the condition, so we will need to
557      // build a new branch that merges the invariant inputs.
558      if (ExitDirection)
559        assert(match(BI.getCondition(), m_LogicalOr()) &&
560               "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
561               "condition!");
562      else
563        assert(match(BI.getCondition(), m_LogicalAnd()) &&
564               "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
565               " condition!");
566      buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
567                                            *UnswitchedBB, *NewPH);
568    }
569  
570    // Update the dominator tree with the added edge.
571    DT.insertEdge(OldPH, UnswitchedBB);
572  
573    // After the dominator tree was updated with the added edge, update MemorySSA
574    // if available.
575    if (MSSAU) {
576      SmallVector<CFGUpdate, 1> Updates;
577      Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
578      MSSAU->applyInsertUpdates(Updates, DT);
579    }
580  
581    // Finish updating dominator tree and memory ssa for full unswitch.
582    if (FullUnswitch) {
583      if (MSSAU) {
584        // Remove the cloned branch instruction.
585        ParentBB->getTerminator()->eraseFromParent();
586        // Create unconditional branch now.
587        BranchInst::Create(ContinueBB, ParentBB);
588        MSSAU->removeEdge(ParentBB, LoopExitBB);
589      }
590      DT.deleteEdge(ParentBB, LoopExitBB);
591    }
592  
593    if (MSSAU && VerifyMemorySSA)
594      MSSAU->getMemorySSA()->verifyMemorySSA();
595  
596    // Rewrite the relevant PHI nodes.
597    if (UnswitchedBB == LoopExitBB)
598      rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
599    else
600      rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
601                                                *ParentBB, *OldPH, FullUnswitch);
602  
603    // The constant we can replace all of our invariants with inside the loop
604    // body. If any of the invariants have a value other than this the loop won't
605    // be entered.
606    ConstantInt *Replacement = ExitDirection
607                                   ? ConstantInt::getFalse(BI.getContext())
608                                   : ConstantInt::getTrue(BI.getContext());
609  
610    // Since this is an i1 condition we can also trivially replace uses of it
611    // within the loop with a constant.
612    for (Value *Invariant : Invariants)
613      replaceLoopInvariantUses(L, Invariant, *Replacement);
614  
615    // If this was full unswitching, we may have changed the nesting relationship
616    // for this loop so hoist it to its correct parent if needed.
617    if (FullUnswitch)
618      hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
619  
620    if (MSSAU && VerifyMemorySSA)
621      MSSAU->getMemorySSA()->verifyMemorySSA();
622  
623    LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
624    ++NumTrivial;
625    ++NumBranches;
626    return true;
627  }
628  
629  /// Unswitch a trivial switch if the condition is loop invariant.
630  ///
631  /// This routine should only be called when loop code leading to the switch has
632  /// been validated as trivial (no side effects). This routine checks if the
633  /// condition is invariant and that at least one of the successors is a loop
634  /// exit. This allows us to unswitch without duplicating the loop, making it
635  /// trivial.
636  ///
637  /// If this routine fails to unswitch the switch it returns false.
638  ///
639  /// If the switch can be unswitched, this routine splits the preheader and
640  /// copies the switch above that split. If the default case is one of the
641  /// exiting cases, it copies the non-exiting cases and points them at the new
642  /// preheader. If the default case is not exiting, it copies the exiting cases
643  /// and points the default at the preheader. It preserves loop simplified form
644  /// (splitting the exit blocks as necessary). It simplifies the switch within
645  /// the loop by removing now-dead cases. If the default case is one of those
646  /// unswitched, it replaces its destination with a new basic block containing
647  /// only unreachable. Such basic blocks, while technically loop exits, are not
648  /// considered for unswitching so this is a stable transform and the same
649  /// switch will not be revisited. If after unswitching there is only a single
650  /// in-loop successor, the switch is further simplified to an unconditional
651  /// branch. Still more cleanup can be done with some simplifycfg like pass.
652  ///
653  /// If `SE` is not null, it will be updated based on the potential loop SCEVs
654  /// invalidated by this.
655  static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
656                                    LoopInfo &LI, ScalarEvolution *SE,
657                                    MemorySSAUpdater *MSSAU) {
658    LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
659    Value *LoopCond = SI.getCondition();
660  
661    // If this isn't switching on an invariant condition, we can't unswitch it.
662    if (!L.isLoopInvariant(LoopCond))
663      return false;
664  
665    auto *ParentBB = SI.getParent();
666  
667    // The same check must be used both for the default and the exit cases. We
668    // should never leave edges from the switch instruction to a basic block that
669    // we are unswitching, hence the condition used to determine the default case
670    // needs to also be used to populate ExitCaseIndices, which is then used to
671    // remove cases from the switch.
672    auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
673      // BBToCheck is not an exit block if it is inside loop L.
674      if (L.contains(&BBToCheck))
675        return false;
676      // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
677      if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
678        return false;
679      // We do not unswitch a block that only has an unreachable statement, as
680      // it's possible this is a previously unswitched block. Only unswitch if
681      // either the terminator is not unreachable, or, if it is, it's not the only
682      // instruction in the block.
683      auto *TI = BBToCheck.getTerminator();
684      bool isUnreachable = isa<UnreachableInst>(TI);
685      return !isUnreachable ||
686             (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
687    };
688  
689    SmallVector<int, 4> ExitCaseIndices;
690    for (auto Case : SI.cases())
691      if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
692        ExitCaseIndices.push_back(Case.getCaseIndex());
693    BasicBlock *DefaultExitBB = nullptr;
694    SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
695        SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
696    if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
697      DefaultExitBB = SI.getDefaultDest();
698    } else if (ExitCaseIndices.empty())
699      return false;
700  
701    LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");
702  
703    if (MSSAU && VerifyMemorySSA)
704      MSSAU->getMemorySSA()->verifyMemorySSA();
705  
706    // We may need to invalidate SCEVs for the outermost loop reached by any of
707    // the exits.
708    Loop *OuterL = &L;
709  
710    if (DefaultExitBB) {
711      // Clear out the default destination temporarily to allow accurate
712      // predecessor lists to be examined below.
713      SI.setDefaultDest(nullptr);
714      // Check the loop containing this exit.
715      Loop *ExitL = LI.getLoopFor(DefaultExitBB);
716      if (!ExitL || ExitL->contains(OuterL))
717        OuterL = ExitL;
718    }
719  
720    // Store the exit cases into a separate data structure and remove them from
721    // the switch.
722    SmallVector<std::tuple<ConstantInt *, BasicBlock *,
723                           SwitchInstProfUpdateWrapper::CaseWeightOpt>,
724                4> ExitCases;
725    ExitCases.reserve(ExitCaseIndices.size());
726    SwitchInstProfUpdateWrapper SIW(SI);
727    // We walk the case indices backwards so that we remove the last case first
728    // and don't disrupt the earlier indices.
729    for (unsigned Index : reverse(ExitCaseIndices)) {
730      auto CaseI = SI.case_begin() + Index;
731      // Compute the outer loop from this exit.
732      Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
733      if (!ExitL || ExitL->contains(OuterL))
734        OuterL = ExitL;
735      // Save the value of this case.
736      auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
737      ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
738      // Delete the unswitched cases.
739      SIW.removeCase(CaseI);
740    }
741  
742    if (SE) {
743      if (OuterL)
744        SE->forgetLoop(OuterL);
745      else
746        SE->forgetTopmostLoop(&L);
747    }
748  
749    // Check if after this all of the remaining cases point at the same
750    // successor.
751    BasicBlock *CommonSuccBB = nullptr;
752    if (SI.getNumCases() > 0 &&
753        all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
754          return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
755        }))
756      CommonSuccBB = SI.case_begin()->getCaseSuccessor();
757    if (!DefaultExitBB) {
758      // If we're not unswitching the default, we need it to match any cases to
759      // have a common successor or if we have no cases it is the common
760      // successor.
761      if (SI.getNumCases() == 0)
762        CommonSuccBB = SI.getDefaultDest();
763      else if (SI.getDefaultDest() != CommonSuccBB)
764        CommonSuccBB = nullptr;
765    }
766  
767    // Split the preheader, so that we know that there is a safe place to insert
768    // the switch.
769    BasicBlock *OldPH = L.getLoopPreheader();
770    BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
771    OldPH->getTerminator()->eraseFromParent();
772  
773    // Now add the unswitched switch.
774    auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
775    SwitchInstProfUpdateWrapper NewSIW(*NewSI);
776  
777    // Rewrite the IR for the unswitched basic blocks. This requires two steps.
778    // First, we split any exit blocks with remaining in-loop predecessors. Then
779    // we update the PHIs in one of two ways depending on if there was a split.
780    // We walk in reverse so that we split in the same order as the cases
781    // appeared. This is purely for convenience of reading the resulting IR, but
782    // it doesn't cost anything really.
783    SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
784    SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
785    // Handle the default exit if necessary.
786    // FIXME: It'd be great if we could merge this with the loop below but LLVM's
787    // ranges aren't quite powerful enough yet.
788    if (DefaultExitBB) {
789      if (pred_empty(DefaultExitBB)) {
790        UnswitchedExitBBs.insert(DefaultExitBB);
791        rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
792      } else {
793        auto *SplitBB =
794            SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
795        rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
796                                                  *ParentBB, *OldPH,
797                                                  /*FullUnswitch*/ true);
798        DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
799      }
800    }
801    // Note that we must use a reference in the for loop so that we update the
802    // container.
803    for (auto &ExitCase : reverse(ExitCases)) {
804      // Grab a reference to the exit block in the pair so that we can update it.
805      BasicBlock *ExitBB = std::get<1>(ExitCase);
806  
807      // If this case is the last edge into the exit block, we can simply reuse it
808      // as it will no longer be a loop exit. No mapping necessary.
809      if (pred_empty(ExitBB)) {
810        // Only rewrite once.
811        if (UnswitchedExitBBs.insert(ExitBB).second)
812          rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
813        continue;
814      }
815  
816      // Otherwise we need to split the exit block so that we retain an exit
817      // block from the loop and a target for the unswitched condition.
818      BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
819      if (!SplitExitBB) {
820        // If this is the first time we see this, do the split and remember it.
821        SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
822        rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
823                                                  *ParentBB, *OldPH,
824                                                  /*FullUnswitch*/ true);
825      }
826      // Update the case pair to point to the split block.
827      std::get<1>(ExitCase) = SplitExitBB;
828    }
829  
830    // Now add the unswitched cases. We do this in reverse order as we built them
831    // in reverse order.
832    for (auto &ExitCase : reverse(ExitCases)) {
833      ConstantInt *CaseVal = std::get<0>(ExitCase);
834      BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
835  
836      NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
837    }
838  
839    // If the default was unswitched, re-point it and add explicit cases for
840    // entering the loop.
841    if (DefaultExitBB) {
842      NewSIW->setDefaultDest(DefaultExitBB);
843      NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
844  
845      // We removed all the exit cases, so we just copy the cases to the
846      // unswitched switch.
847      for (const auto &Case : SI.cases())
848        NewSIW.addCase(Case.getCaseValue(), NewPH,
849                       SIW.getSuccessorWeight(Case.getSuccessorIndex()));
850    } else if (DefaultCaseWeight) {
851      // We have to set branch weight of the default case.
852      uint64_t SW = *DefaultCaseWeight;
853      for (const auto &Case : SI.cases()) {
854        auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
855        assert(W &&
856               "case weight must be defined as default case weight is defined");
857        SW += *W;
858      }
859      NewSIW.setSuccessorWeight(0, SW);
860    }
861  
862    // If we ended up with a common successor for every path through the switch
863    // after unswitching, rewrite it to an unconditional branch to make it easy
864    // to recognize. Otherwise we potentially have to recognize the default case
865    // pointing at unreachable and other complexity.
866    if (CommonSuccBB) {
867      BasicBlock *BB = SI.getParent();
868      // We may have had multiple edges to this common successor block, so remove
869      // them as predecessors. We skip the first one, either the default or the
870      // actual first case.
871      bool SkippedFirst = DefaultExitBB == nullptr;
872      for (auto Case : SI.cases()) {
873        assert(Case.getCaseSuccessor() == CommonSuccBB &&
874               "Non-common successor!");
875        (void)Case;
876        if (!SkippedFirst) {
877          SkippedFirst = true;
878          continue;
879        }
880        CommonSuccBB->removePredecessor(BB,
881                                        /*KeepOneInputPHIs*/ true);
882      }
883      // Now nuke the switch and replace it with a direct branch.
884      SIW.eraseFromParent();
885      BranchInst::Create(CommonSuccBB, BB);
886    } else if (DefaultExitBB) {
887      assert(SI.getNumCases() > 0 &&
888             "If we had no cases we'd have a common successor!");
889      // Move the last case to the default successor. This is valid as if the
890      // default got unswitched it cannot be reached. This has the advantage of
891      // being simple and keeping the number of edges from this switch to
892      // successors the same, and avoiding any PHI update complexity.
893      auto LastCaseI = std::prev(SI.case_end());
894  
895      SI.setDefaultDest(LastCaseI->getCaseSuccessor());
896      SIW.setSuccessorWeight(
897          0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
898      SIW.removeCase(LastCaseI);
899    }
900  
901    // Walk the unswitched exit blocks and the unswitched split blocks and update
902    // the dominator tree based on the CFG edits. While we are walking unordered
903    // containers here, the API for applyUpdates takes an unordered list of
904    // updates and requires them to not contain duplicates.
905    SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
906    for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
907      DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
908      DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
909    }
910    for (auto SplitUnswitchedPair : SplitExitBBMap) {
911      DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
912      DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
913    }
914  
915    if (MSSAU) {
916      MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
917      if (VerifyMemorySSA)
918        MSSAU->getMemorySSA()->verifyMemorySSA();
919    } else {
920      DT.applyUpdates(DTUpdates);
921    }
922  
923    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
924  
925    // We may have changed the nesting relationship for this loop so hoist it to
926    // its correct parent if needed.
927    hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
928  
929    if (MSSAU && VerifyMemorySSA)
930      MSSAU->getMemorySSA()->verifyMemorySSA();
931  
932    ++NumTrivial;
933    ++NumSwitches;
934    LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
935    return true;
936  }
937  
938  /// This routine scans the loop to find a branch or switch which occurs before
939  /// any side effects occur. These can potentially be unswitched without
940  /// duplicating the loop. If a branch or switch is successfully unswitched the
941  /// scanning continues to see if subsequent branches or switches have become
942  /// trivial. Once all trivial candidates have been unswitched, this routine
943  /// returns.
944  ///
945  /// The return value indicates whether anything was unswitched (and therefore
946  /// changed).
947  ///
948  /// If `SE` is not null, it will be updated based on the potential loop SCEVs
949  /// invalidated by this.
950  static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
951                                           LoopInfo &LI, ScalarEvolution *SE,
952                                           MemorySSAUpdater *MSSAU) {
953    bool Changed = false;
954  
955    // If loop header has only one reachable successor we should keep looking for
956    // trivial condition candidates in the successor as well. An alternative is
957    // to constant fold conditions and merge successors into loop header (then we
958    // only need to check header's terminator). The reason for not doing this in
959    // LoopUnswitch pass is that it could potentially break LoopPassManager's
960    // invariants. Folding dead branches could either eliminate the current loop
961    // or make other loops unreachable. LCSSA form might also not be preserved
962    // after deleting branches. The following code keeps traversing loop header's
963    // successors until it finds the trivial condition candidate (condition that
964    // is not a constant). Since unswitching generates branches with constant
965    // conditions, this scenario could be very common in practice.
966    BasicBlock *CurrentBB = L.getHeader();
967    SmallPtrSet<BasicBlock *, 8> Visited;
968    Visited.insert(CurrentBB);
969    do {
970      // Check if there are any side-effecting instructions (e.g. stores, calls,
971      // volatile loads) in the part of the loop that the code *would* execute
972      // without unswitching.
973      if (MSSAU) // Possible early exit with MSSA
974        if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
975          if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
976            return Changed;
977      if (llvm::any_of(*CurrentBB,
978                       [](Instruction &I) { return I.mayHaveSideEffects(); }))
979        return Changed;
980  
981      Instruction *CurrentTerm = CurrentBB->getTerminator();
982  
983      if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
984        // Don't bother trying to unswitch past a switch with a constant
985        // condition. This should be removed prior to running this pass by
986        // simplifycfg.
987        if (isa<Constant>(SI->getCondition()))
988          return Changed;
989  
990        if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
991          // Couldn't unswitch this one so we're done.
992          return Changed;
993  
994        // Mark that we managed to unswitch something.
995        Changed = true;
996  
997        // If unswitching turned the terminator into an unconditional branch then
998        // we can continue. The unswitching logic specifically works to fold any
999        // cases it can into an unconditional branch to make it easier to
1000        // recognize here.
1001        auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1002        if (!BI || BI->isConditional())
1003          return Changed;
1004  
1005        CurrentBB = BI->getSuccessor(0);
1006        continue;
1007      }
1008  
1009      auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1010      if (!BI)
1011        // We do not understand other terminator instructions.
1012        return Changed;
1013  
1014      // Don't bother trying to unswitch past an unconditional branch or a branch
1015      // with a constant value. These should be removed by simplifycfg prior to
1016      // running this pass.
1017      if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1018        return Changed;
1019  
1020      // Found a trivial condition candidate: non-foldable conditional branch. If
1021      // we fail to unswitch this, we can't do anything else that is trivial.
1022      if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1023        return Changed;
1024  
1025      // Mark that we managed to unswitch something.
1026      Changed = true;
1027  
1028      // If we only unswitched some of the conditions feeding the branch, we won't
1029      // have collapsed it to a single successor.
1030      BI = cast<BranchInst>(CurrentBB->getTerminator());
1031      if (BI->isConditional())
1032        return Changed;
1033  
1034      // Follow the newly unconditional branch into its successor.
1035      CurrentBB = BI->getSuccessor(0);
1036  
1037      // When continuing, if we exit the loop or reach a previous visited block,
1038      // then we can not reach any trivial condition candidates (unfoldable
1039      // branch instructions or switch instructions) and no unswitch can happen.
1040    } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1041  
1042    return Changed;
1043  }
1044  
1045  /// Build the cloned blocks for an unswitched copy of the given loop.
1046  ///
1047  /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1048  /// after the split block (`SplitBB`) that will be used to select between the
1049  /// cloned and original loop.
1050  ///
1051  /// This routine handles cloning all of the necessary loop blocks and exit
1052  /// blocks including rewriting their instructions and the relevant PHI nodes.
1053  /// Any loop blocks or exit blocks which are dominated by a different successor
1054  /// than the one for this clone of the loop blocks can be trivially skipped. We
1055  /// use the `DominatingSucc` map to determine whether a block satisfies that
1056  /// property with a simple map lookup.
1057  ///
1058  /// It also correctly creates the unconditional branch in the cloned
1059  /// unswitched parent block to only point at the unswitched successor.
1060  ///
1061  /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1062  /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1063  /// the cloned blocks (and their loops) are left without full `LoopInfo`
1064  /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1065  /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1066  /// instead the caller must recompute an accurate DT. It *does* correctly
1067  /// update the `AssumptionCache` provided in `AC`.
1068  static BasicBlock *buildClonedLoopBlocks(
1069      Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1070      ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1071      BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1072      const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1073      ValueToValueMapTy &VMap,
1074      SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1075      DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1076    SmallVector<BasicBlock *, 4> NewBlocks;
1077    NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1078  
1079    // We will need to clone a bunch of blocks, wrap up the clone operation in
1080    // a helper.
1081    auto CloneBlock = [&](BasicBlock *OldBB) {
1082      // Clone the basic block and insert it before the new preheader.
1083      BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1084      NewBB->moveBefore(LoopPH);
1085  
1086      // Record this block and the mapping.
1087      NewBlocks.push_back(NewBB);
1088      VMap[OldBB] = NewBB;
1089  
1090      return NewBB;
1091    };
1092  
1093    // We skip cloning blocks when they have a dominating succ that is not the
1094    // succ we are cloning for.
1095    auto SkipBlock = [&](BasicBlock *BB) {
1096      auto It = DominatingSucc.find(BB);
1097      return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1098    };
1099  
1100    // First, clone the preheader.
1101    auto *ClonedPH = CloneBlock(LoopPH);
1102  
1103    // Then clone all the loop blocks, skipping the ones that aren't necessary.
1104    for (auto *LoopBB : L.blocks())
1105      if (!SkipBlock(LoopBB))
1106        CloneBlock(LoopBB);
1107  
1108    // Split all the loop exit edges so that when we clone the exit blocks, if
1109    // any of the exit blocks are *also* a preheader for some other loop, we
1110    // don't create multiple predecessors entering the loop header.
1111    for (auto *ExitBB : ExitBlocks) {
1112      if (SkipBlock(ExitBB))
1113        continue;
1114  
1115      // When we are going to clone an exit, we don't need to clone all the
1116      // instructions in the exit block and we want to ensure we have an easy
1117      // place to merge the CFG, so split the exit first. This is always safe to
1118      // do because there cannot be any non-loop predecessors of a loop exit in
1119      // loop simplified form.
1120      auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1121  
1122      // Rearrange the names to make it easier to write test cases by having the
1123      // exit block carry the suffix rather than the merge block carrying the
1124      // suffix.
1125      MergeBB->takeName(ExitBB);
1126      ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1127  
1128      // Now clone the original exit block.
1129      auto *ClonedExitBB = CloneBlock(ExitBB);
1130      assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1131             "Exit block should have been split to have one successor!");
1132      assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1133             "Cloned exit block has the wrong successor!");
1134  
1135      // Remap any cloned instructions and create a merge phi node for them.
1136      for (auto ZippedInsts : llvm::zip_first(
1137               llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1138               llvm::make_range(ClonedExitBB->begin(),
1139                                std::prev(ClonedExitBB->end())))) {
1140        Instruction &I = std::get<0>(ZippedInsts);
1141        Instruction &ClonedI = std::get<1>(ZippedInsts);
1142  
1143        // The only instructions in the exit block should be PHI nodes and
1144        // potentially a landing pad.
1145        assert(
1146            (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1147            "Bad instruction in exit block!");
1148        // We should have a value map between the instruction and its clone.
1149        assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1150  
1151        auto *MergePN =
1152            PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1153                            &*MergeBB->getFirstInsertionPt());
1154        I.replaceAllUsesWith(MergePN);
1155        MergePN->addIncoming(&I, ExitBB);
1156        MergePN->addIncoming(&ClonedI, ClonedExitBB);
1157      }
1158    }
1159  
1160    // Rewrite the instructions in the cloned blocks to refer to the instructions
1161    // in the cloned blocks. We have to do this as a second pass so that we have
1162    // everything available. Also, we have inserted new instructions which may
1163    // include assume intrinsics, so we update the assumption cache while
1164    // processing this.
1165    for (auto *ClonedBB : NewBlocks)
1166      for (Instruction &I : *ClonedBB) {
1167        RemapInstruction(&I, VMap,
1168                         RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1169        if (auto *II = dyn_cast<AssumeInst>(&I))
1170          AC.registerAssumption(II);
1171      }
1172  
1173    // Update any PHI nodes in the cloned successors of the skipped blocks to not
1174    // have spurious incoming values.
1175    for (auto *LoopBB : L.blocks())
1176      if (SkipBlock(LoopBB))
1177        for (auto *SuccBB : successors(LoopBB))
1178          if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1179            for (PHINode &PN : ClonedSuccBB->phis())
1180              PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1181  
1182    // Remove the cloned parent as a predecessor of any successor we ended up
1183    // cloning other than the unswitched one.
1184    auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1185    for (auto *SuccBB : successors(ParentBB)) {
1186      if (SuccBB == UnswitchedSuccBB)
1187        continue;
1188  
1189      auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1190      if (!ClonedSuccBB)
1191        continue;
1192  
1193      ClonedSuccBB->removePredecessor(ClonedParentBB,
1194                                      /*KeepOneInputPHIs*/ true);
1195    }
1196  
1197    // Replace the cloned branch with an unconditional branch to the cloned
1198    // unswitched successor.
1199    auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1200    Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1201    // Trivial Simplification. If Terminator is a conditional branch and
1202    // condition becomes dead - erase it.
1203    Value *ClonedConditionToErase = nullptr;
1204    if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1205      ClonedConditionToErase = BI->getCondition();
1206    else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1207      ClonedConditionToErase = SI->getCondition();
1208  
1209    ClonedTerminator->eraseFromParent();
1210    BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1211  
1212    if (ClonedConditionToErase)
1213      RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1214                                                 MSSAU);
1215  
1216    // If there are duplicate entries in the PHI nodes because of multiple edges
1217    // to the unswitched successor, we need to nuke all but one as we replaced it
1218    // with a direct branch.
1219    for (PHINode &PN : ClonedSuccBB->phis()) {
1220      bool Found = false;
1221      // Loop over the incoming operands backwards so we can easily delete as we
1222      // go without invalidating the index.
1223      for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1224        if (PN.getIncomingBlock(i) != ClonedParentBB)
1225          continue;
1226        if (!Found) {
1227          Found = true;
1228          continue;
1229        }
1230        PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1231      }
1232    }
1233  
1234    // Record the domtree updates for the new blocks.
1235    SmallPtrSet<BasicBlock *, 4> SuccSet;
1236    for (auto *ClonedBB : NewBlocks) {
1237      for (auto *SuccBB : successors(ClonedBB))
1238        if (SuccSet.insert(SuccBB).second)
1239          DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1240      SuccSet.clear();
1241    }
1242  
1243    return ClonedPH;
1244  }
1245  
1246  /// Recursively clone the specified loop and all of its children.
1247  ///
1248  /// The target parent loop for the clone should be provided, or can be null if
1249  /// the clone is a top-level loop. While cloning, all the blocks are mapped
1250  /// with the provided value map. The entire original loop must be present in
1251  /// the value map. The cloned loop is returned.
1252  static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1253                             const ValueToValueMapTy &VMap, LoopInfo &LI) {
1254    auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1255      assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1256      ClonedL.reserveBlocks(OrigL.getNumBlocks());
1257      for (auto *BB : OrigL.blocks()) {
1258        auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1259        ClonedL.addBlockEntry(ClonedBB);
1260        if (LI.getLoopFor(BB) == &OrigL)
1261          LI.changeLoopFor(ClonedBB, &ClonedL);
1262      }
1263    };
1264  
1265    // We specially handle the first loop because it may get cloned into
1266    // a different parent and because we most commonly are cloning leaf loops.
1267    Loop *ClonedRootL = LI.AllocateLoop();
1268    if (RootParentL)
1269      RootParentL->addChildLoop(ClonedRootL);
1270    else
1271      LI.addTopLevelLoop(ClonedRootL);
1272    AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1273  
1274    if (OrigRootL.isInnermost())
1275      return ClonedRootL;
1276  
1277    // If we have a nest, we can quickly clone the entire loop nest using an
1278    // iterative approach because it is a tree. We keep the cloned parent in the
1279    // data structure to avoid repeatedly querying through a map to find it.
1280    SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1281    // Build up the loops to clone in reverse order as we'll clone them from the
1282    // back.
1283    for (Loop *ChildL : llvm::reverse(OrigRootL))
1284      LoopsToClone.push_back({ClonedRootL, ChildL});
1285    do {
1286      Loop *ClonedParentL, *L;
1287      std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1288      Loop *ClonedL = LI.AllocateLoop();
1289      ClonedParentL->addChildLoop(ClonedL);
1290      AddClonedBlocksToLoop(*L, *ClonedL);
1291      for (Loop *ChildL : llvm::reverse(*L))
1292        LoopsToClone.push_back({ClonedL, ChildL});
1293    } while (!LoopsToClone.empty());
1294  
1295    return ClonedRootL;
1296  }
1297  
1298  /// Build the cloned loops of an original loop from unswitching.
1299  ///
1300  /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1301  /// operation. We need to re-verify that there even is a loop (as the backedge
1302  /// may not have been cloned), and even if there are remaining backedges the
1303  /// backedge set may be different. However, we know that each child loop is
1304  /// undisturbed, we only need to find where to place each child loop within
1305  /// either any parent loop or within a cloned version of the original loop.
1306  ///
1307  /// Because child loops may end up cloned outside of any cloned version of the
1308  /// original loop, multiple cloned sibling loops may be created. All of them
1309  /// are returned so that the newly introduced loop nest roots can be
1310  /// identified.
1311  static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1312                               const ValueToValueMapTy &VMap, LoopInfo &LI,
1313                               SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1314    Loop *ClonedL = nullptr;
1315  
1316    auto *OrigPH = OrigL.getLoopPreheader();
1317    auto *OrigHeader = OrigL.getHeader();
1318  
1319    auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1320    auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1321  
1322    // We need to know the loops of the cloned exit blocks to even compute the
1323    // accurate parent loop. If we only clone exits to some parent of the
1324    // original parent, we want to clone into that outer loop. We also keep track
1325    // of the loops that our cloned exit blocks participate in.
1326    Loop *ParentL = nullptr;
1327    SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1328    SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1329    ClonedExitsInLoops.reserve(ExitBlocks.size());
1330    for (auto *ExitBB : ExitBlocks)
1331      if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1332        if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1333          ExitLoopMap[ClonedExitBB] = ExitL;
1334          ClonedExitsInLoops.push_back(ClonedExitBB);
1335          if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1336            ParentL = ExitL;
1337        }
1338    assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1339            ParentL->contains(OrigL.getParentLoop())) &&
1340           "The computed parent loop should always contain (or be) the parent of "
1341           "the original loop.");
1342  
1343    // We build the set of blocks dominated by the cloned header from the set of
1344    // cloned blocks out of the original loop. While not all of these will
1345    // necessarily be in the cloned loop, it is enough to establish that they
1346    // aren't in unreachable cycles, etc.
1347    SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1348    for (auto *BB : OrigL.blocks())
1349      if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1350        ClonedLoopBlocks.insert(ClonedBB);
1351  
1352    // Rebuild the set of blocks that will end up in the cloned loop. We may have
1353    // skipped cloning some region of this loop which can in turn skip some of
1354    // the backedges so we have to rebuild the blocks in the loop based on the
1355    // backedges that remain after cloning.
1356    SmallVector<BasicBlock *, 16> Worklist;
1357    SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1358    for (auto *Pred : predecessors(ClonedHeader)) {
1359      // The only possible non-loop header predecessor is the preheader because
1360      // we know we cloned the loop in simplified form.
1361      if (Pred == ClonedPH)
1362        continue;
1363  
1364      // Because the loop was in simplified form, the only non-loop predecessor
1365      // should be the preheader.
1366      assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1367                                             "header other than the preheader "
1368                                             "that is not part of the loop!");
1369  
1370      // Insert this block into the loop set and on the first visit (and if it
1371      // isn't the header we're currently walking) put it into the worklist to
1372      // recurse through.
1373      if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1374        Worklist.push_back(Pred);
1375    }
1376  
1377    // If we had any backedges then there *is* a cloned loop. Put the header into
1378    // the loop set and then walk the worklist backwards to find all the blocks
1379    // that remain within the loop after cloning.
1380    if (!BlocksInClonedLoop.empty()) {
1381      BlocksInClonedLoop.insert(ClonedHeader);
1382  
1383      while (!Worklist.empty()) {
1384        BasicBlock *BB = Worklist.pop_back_val();
1385        assert(BlocksInClonedLoop.count(BB) &&
1386               "Didn't put block into the loop set!");
1387  
1388        // Insert any predecessors that are in the possible set into the cloned
1389        // set, and if the insert is successful, add them to the worklist. Note
1390        // that we filter on the blocks that are definitely reachable via the
1391        // backedge to the loop header so we may prune out dead code within the
1392        // cloned loop.
1393        for (auto *Pred : predecessors(BB))
1394          if (ClonedLoopBlocks.count(Pred) &&
1395              BlocksInClonedLoop.insert(Pred).second)
1396            Worklist.push_back(Pred);
1397      }
1398  
1399      ClonedL = LI.AllocateLoop();
1400      if (ParentL) {
1401        ParentL->addBasicBlockToLoop(ClonedPH, LI);
1402        ParentL->addChildLoop(ClonedL);
1403      } else {
1404        LI.addTopLevelLoop(ClonedL);
1405      }
1406      NonChildClonedLoops.push_back(ClonedL);
1407  
1408      ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1409      // We don't want to just add the cloned loop blocks based on how we
1410      // discovered them. The original order of blocks was carefully built in
1411      // a way that doesn't rely on predecessor ordering. Rather than re-invent
1412      // that logic, we just re-walk the original blocks (and those of the child
1413      // loops) and filter them as we add them into the cloned loop.
1414      for (auto *BB : OrigL.blocks()) {
1415        auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1416        if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1417          continue;
1418  
1419        // Directly add the blocks that are only in this loop.
1420        if (LI.getLoopFor(BB) == &OrigL) {
1421          ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1422          continue;
1423        }
1424  
1425        // We want to manually add it to this loop and parents.
1426        // Registering it with LoopInfo will happen when we clone the top
1427        // loop for this block.
1428        for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1429          PL->addBlockEntry(ClonedBB);
1430      }
1431  
1432      // Now add each child loop whose header remains within the cloned loop. All
1433      // of the blocks within the loop must satisfy the same constraints as the
1434      // header so once we pass the header checks we can just clone the entire
1435      // child loop nest.
1436      for (Loop *ChildL : OrigL) {
1437        auto *ClonedChildHeader =
1438            cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1439        if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1440          continue;
1441  
1442  #ifndef NDEBUG
1443        // We should never have a cloned child loop header but fail to have
1444        // all of the blocks for that child loop.
1445        for (auto *ChildLoopBB : ChildL->blocks())
1446          assert(BlocksInClonedLoop.count(
1447                     cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1448                 "Child cloned loop has a header within the cloned outer "
1449                 "loop but not all of its blocks!");
1450  #endif
1451  
1452        cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1453      }
1454    }
1455  
1456    // Now that we've handled all the components of the original loop that were
1457    // cloned into a new loop, we still need to handle anything from the original
1458    // loop that wasn't in a cloned loop.
1459  
1460    // Figure out what blocks are left to place within any loop nest containing
1461    // the unswitched loop. If we never formed a loop, the cloned PH is one of
1462    // them.
1463    SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1464    if (BlocksInClonedLoop.empty())
1465      UnloopedBlockSet.insert(ClonedPH);
1466    for (auto *ClonedBB : ClonedLoopBlocks)
1467      if (!BlocksInClonedLoop.count(ClonedBB))
1468        UnloopedBlockSet.insert(ClonedBB);
1469  
1470    // Copy the cloned exits and sort them in ascending loop depth, we'll work
1471    // backwards across these to process them inside out. The order shouldn't
1472    // matter as we're just trying to build up the map from inside-out; we use
1473    // the map in a more stably ordered way below.
1474    auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1475    llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1476      return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1477             ExitLoopMap.lookup(RHS)->getLoopDepth();
1478    });
1479  
1480    // Populate the existing ExitLoopMap with everything reachable from each
1481    // exit, starting from the inner most exit.
1482    while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1483      assert(Worklist.empty() && "Didn't clear worklist!");
1484  
1485      BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1486      Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1487  
1488      // Walk the CFG back until we hit the cloned PH adding everything reachable
1489      // and in the unlooped set to this exit block's loop.
1490      Worklist.push_back(ExitBB);
1491      do {
1492        BasicBlock *BB = Worklist.pop_back_val();
1493        // We can stop recursing at the cloned preheader (if we get there).
1494        if (BB == ClonedPH)
1495          continue;
1496  
1497        for (BasicBlock *PredBB : predecessors(BB)) {
1498          // If this pred has already been moved to our set or is part of some
1499          // (inner) loop, no update needed.
1500          if (!UnloopedBlockSet.erase(PredBB)) {
1501            assert(
1502                (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1503                "Predecessor not mapped to a loop!");
1504            continue;
1505          }
1506  
1507          // We just insert into the loop set here. We'll add these blocks to the
1508          // exit loop after we build up the set in an order that doesn't rely on
1509          // predecessor order (which in turn relies on use list order).
1510          bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1511          (void)Inserted;
1512          assert(Inserted && "Should only visit an unlooped block once!");
1513  
1514          // And recurse through to its predecessors.
1515          Worklist.push_back(PredBB);
1516        }
1517      } while (!Worklist.empty());
1518    }
1519  
1520    // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1521    // blocks to their outer loops, walk the cloned blocks and the cloned exits
1522    // in their original order adding them to the correct loop.
1523  
1524    // We need a stable insertion order. We use the order of the original loop
1525    // order and map into the correct parent loop.
1526    for (auto *BB : llvm::concat<BasicBlock *const>(
1527             makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1528      if (Loop *OuterL = ExitLoopMap.lookup(BB))
1529        OuterL->addBasicBlockToLoop(BB, LI);
1530  
1531  #ifndef NDEBUG
1532    for (auto &BBAndL : ExitLoopMap) {
1533      auto *BB = BBAndL.first;
1534      auto *OuterL = BBAndL.second;
1535      assert(LI.getLoopFor(BB) == OuterL &&
1536             "Failed to put all blocks into outer loops!");
1537    }
1538  #endif
1539  
1540    // Now that all the blocks are placed into the correct containing loop in the
1541    // absence of child loops, find all the potentially cloned child loops and
1542    // clone them into whatever outer loop we placed their header into.
1543    for (Loop *ChildL : OrigL) {
1544      auto *ClonedChildHeader =
1545          cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1546      if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1547        continue;
1548  
1549  #ifndef NDEBUG
1550      for (auto *ChildLoopBB : ChildL->blocks())
1551        assert(VMap.count(ChildLoopBB) &&
1552               "Cloned a child loop header but not all of that loops blocks!");
1553  #endif
1554  
1555      NonChildClonedLoops.push_back(cloneLoopNest(
1556          *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1557    }
1558  }
1559  
1560  static void
1561  deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1562                         ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1563                         DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1564    // Find all the dead clones, and remove them from their successors.
1565    SmallVector<BasicBlock *, 16> DeadBlocks;
1566    for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1567      for (auto &VMap : VMaps)
1568        if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1569          if (!DT.isReachableFromEntry(ClonedBB)) {
1570            for (BasicBlock *SuccBB : successors(ClonedBB))
1571              SuccBB->removePredecessor(ClonedBB);
1572            DeadBlocks.push_back(ClonedBB);
1573          }
1574  
1575    // Remove all MemorySSA in the dead blocks
1576    if (MSSAU) {
1577      SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1578                                                   DeadBlocks.end());
1579      MSSAU->removeBlocks(DeadBlockSet);
1580    }
1581  
1582    // Drop any remaining references to break cycles.
1583    for (BasicBlock *BB : DeadBlocks)
1584      BB->dropAllReferences();
1585    // Erase them from the IR.
1586    for (BasicBlock *BB : DeadBlocks)
1587      BB->eraseFromParent();
1588  }
1589  
1590  static void
1591  deleteDeadBlocksFromLoop(Loop &L,
1592                           SmallVectorImpl<BasicBlock *> &ExitBlocks,
1593                           DominatorTree &DT, LoopInfo &LI,
1594                           MemorySSAUpdater *MSSAU,
1595                           function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
1596    // Find all the dead blocks tied to this loop, and remove them from their
1597    // successors.
1598    SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1599  
1600    // Start with loop/exit blocks and get a transitive closure of reachable dead
1601    // blocks.
1602    SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1603                                                  ExitBlocks.end());
1604    DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1605    while (!DeathCandidates.empty()) {
1606      auto *BB = DeathCandidates.pop_back_val();
1607      if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1608        for (BasicBlock *SuccBB : successors(BB)) {
1609          SuccBB->removePredecessor(BB);
1610          DeathCandidates.push_back(SuccBB);
1611        }
1612        DeadBlockSet.insert(BB);
1613      }
1614    }
1615  
1616    // Remove all MemorySSA in the dead blocks
1617    if (MSSAU)
1618      MSSAU->removeBlocks(DeadBlockSet);
1619  
1620    // Filter out the dead blocks from the exit blocks list so that it can be
1621    // used in the caller.
1622    llvm::erase_if(ExitBlocks,
1623                   [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1624  
1625    // Walk from this loop up through its parents removing all of the dead blocks.
1626    for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1627      for (auto *BB : DeadBlockSet)
1628        ParentL->getBlocksSet().erase(BB);
1629      llvm::erase_if(ParentL->getBlocksVector(),
1630                     [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1631    }
1632  
1633    // Now delete the dead child loops. This raw delete will clear them
1634    // recursively.
1635    llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1636      if (!DeadBlockSet.count(ChildL->getHeader()))
1637        return false;
1638  
1639      assert(llvm::all_of(ChildL->blocks(),
1640                          [&](BasicBlock *ChildBB) {
1641                            return DeadBlockSet.count(ChildBB);
1642                          }) &&
1643             "If the child loop header is dead all blocks in the child loop must "
1644             "be dead as well!");
1645      DestroyLoopCB(*ChildL, ChildL->getName());
1646      LI.destroy(ChildL);
1647      return true;
1648    });
1649  
1650    // Remove the loop mappings for the dead blocks and drop all the references
1651    // from these blocks to others to handle cyclic references as we start
1652    // deleting the blocks themselves.
1653    for (auto *BB : DeadBlockSet) {
1654      // Check that the dominator tree has already been updated.
1655      assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1656      LI.changeLoopFor(BB, nullptr);
1657      // Drop all uses of the instructions to make sure we won't have dangling
1658      // uses in other blocks.
1659      for (auto &I : *BB)
1660        if (!I.use_empty())
1661          I.replaceAllUsesWith(UndefValue::get(I.getType()));
1662      BB->dropAllReferences();
1663    }
1664  
1665    // Actually delete the blocks now that they've been fully unhooked from the
1666    // IR.
1667    for (auto *BB : DeadBlockSet)
1668      BB->eraseFromParent();
1669  }
1670  
1671  /// Recompute the set of blocks in a loop after unswitching.
1672  ///
1673  /// This walks from the original headers predecessors to rebuild the loop. We
1674  /// take advantage of the fact that new blocks can't have been added, and so we
1675  /// filter by the original loop's blocks. This also handles potentially
1676  /// unreachable code that we don't want to explore but might be found examining
1677  /// the predecessors of the header.
1678  ///
1679  /// If the original loop is no longer a loop, this will return an empty set. If
1680  /// it remains a loop, all the blocks within it will be added to the set
1681  /// (including those blocks in inner loops).
1682  static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1683                                                                   LoopInfo &LI) {
1684    SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1685  
1686    auto *PH = L.getLoopPreheader();
1687    auto *Header = L.getHeader();
1688  
1689    // A worklist to use while walking backwards from the header.
1690    SmallVector<BasicBlock *, 16> Worklist;
1691  
1692    // First walk the predecessors of the header to find the backedges. This will
1693    // form the basis of our walk.
1694    for (auto *Pred : predecessors(Header)) {
1695      // Skip the preheader.
1696      if (Pred == PH)
1697        continue;
1698  
1699      // Because the loop was in simplified form, the only non-loop predecessor
1700      // is the preheader.
1701      assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1702                                 "than the preheader that is not part of the "
1703                                 "loop!");
1704  
1705      // Insert this block into the loop set and on the first visit and, if it
1706      // isn't the header we're currently walking, put it into the worklist to
1707      // recurse through.
1708      if (LoopBlockSet.insert(Pred).second && Pred != Header)
1709        Worklist.push_back(Pred);
1710    }
1711  
1712    // If no backedges were found, we're done.
1713    if (LoopBlockSet.empty())
1714      return LoopBlockSet;
1715  
1716    // We found backedges, recurse through them to identify the loop blocks.
1717    while (!Worklist.empty()) {
1718      BasicBlock *BB = Worklist.pop_back_val();
1719      assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1720  
1721      // No need to walk past the header.
1722      if (BB == Header)
1723        continue;
1724  
1725      // Because we know the inner loop structure remains valid we can use the
1726      // loop structure to jump immediately across the entire nested loop.
1727      // Further, because it is in loop simplified form, we can directly jump
1728      // to its preheader afterward.
1729      if (Loop *InnerL = LI.getLoopFor(BB))
1730        if (InnerL != &L) {
1731          assert(L.contains(InnerL) &&
1732                 "Should not reach a loop *outside* this loop!");
1733          // The preheader is the only possible predecessor of the loop so
1734          // insert it into the set and check whether it was already handled.
1735          auto *InnerPH = InnerL->getLoopPreheader();
1736          assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1737                                        "but not contain the inner loop "
1738                                        "preheader!");
1739          if (!LoopBlockSet.insert(InnerPH).second)
1740            // The only way to reach the preheader is through the loop body
1741            // itself so if it has been visited the loop is already handled.
1742            continue;
1743  
1744          // Insert all of the blocks (other than those already present) into
1745          // the loop set. We expect at least the block that led us to find the
1746          // inner loop to be in the block set, but we may also have other loop
1747          // blocks if they were already enqueued as predecessors of some other
1748          // outer loop block.
1749          for (auto *InnerBB : InnerL->blocks()) {
1750            if (InnerBB == BB) {
1751              assert(LoopBlockSet.count(InnerBB) &&
1752                     "Block should already be in the set!");
1753              continue;
1754            }
1755  
1756            LoopBlockSet.insert(InnerBB);
1757          }
1758  
1759          // Add the preheader to the worklist so we will continue past the
1760          // loop body.
1761          Worklist.push_back(InnerPH);
1762          continue;
1763        }
1764  
1765      // Insert any predecessors that were in the original loop into the new
1766      // set, and if the insert is successful, add them to the worklist.
1767      for (auto *Pred : predecessors(BB))
1768        if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1769          Worklist.push_back(Pred);
1770    }
1771  
1772    assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1773  
1774    // We've found all the blocks participating in the loop, return our completed
1775    // set.
1776    return LoopBlockSet;
1777  }
1778  
1779  /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1780  ///
1781  /// The removal may have removed some child loops entirely but cannot have
1782  /// disturbed any remaining child loops. However, they may need to be hoisted
1783  /// to the parent loop (or to be top-level loops). The original loop may be
1784  /// completely removed.
1785  ///
1786  /// The sibling loops resulting from this update are returned. If the original
1787  /// loop remains a valid loop, it will be the first entry in this list with all
1788  /// of the newly sibling loops following it.
1789  ///
1790  /// Returns true if the loop remains a loop after unswitching, and false if it
1791  /// is no longer a loop after unswitching (and should not continue to be
1792  /// referenced).
1793  static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1794                                       LoopInfo &LI,
1795                                       SmallVectorImpl<Loop *> &HoistedLoops) {
1796    auto *PH = L.getLoopPreheader();
1797  
1798    // Compute the actual parent loop from the exit blocks. Because we may have
1799    // pruned some exits the loop may be different from the original parent.
1800    Loop *ParentL = nullptr;
1801    SmallVector<Loop *, 4> ExitLoops;
1802    SmallVector<BasicBlock *, 4> ExitsInLoops;
1803    ExitsInLoops.reserve(ExitBlocks.size());
1804    for (auto *ExitBB : ExitBlocks)
1805      if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1806        ExitLoops.push_back(ExitL);
1807        ExitsInLoops.push_back(ExitBB);
1808        if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1809          ParentL = ExitL;
1810      }
1811  
1812    // Recompute the blocks participating in this loop. This may be empty if it
1813    // is no longer a loop.
1814    auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1815  
1816    // If we still have a loop, we need to re-set the loop's parent as the exit
1817    // block set changing may have moved it within the loop nest. Note that this
1818    // can only happen when this loop has a parent as it can only hoist the loop
1819    // *up* the nest.
1820    if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1821      // Remove this loop's (original) blocks from all of the intervening loops.
1822      for (Loop *IL = L.getParentLoop(); IL != ParentL;
1823           IL = IL->getParentLoop()) {
1824        IL->getBlocksSet().erase(PH);
1825        for (auto *BB : L.blocks())
1826          IL->getBlocksSet().erase(BB);
1827        llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1828          return BB == PH || L.contains(BB);
1829        });
1830      }
1831  
1832      LI.changeLoopFor(PH, ParentL);
1833      L.getParentLoop()->removeChildLoop(&L);
1834      if (ParentL)
1835        ParentL->addChildLoop(&L);
1836      else
1837        LI.addTopLevelLoop(&L);
1838    }
1839  
1840    // Now we update all the blocks which are no longer within the loop.
1841    auto &Blocks = L.getBlocksVector();
1842    auto BlocksSplitI =
1843        LoopBlockSet.empty()
1844            ? Blocks.begin()
1845            : std::stable_partition(
1846                  Blocks.begin(), Blocks.end(),
1847                  [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1848  
1849    // Before we erase the list of unlooped blocks, build a set of them.
1850    SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1851    if (LoopBlockSet.empty())
1852      UnloopedBlocks.insert(PH);
1853  
1854    // Now erase these blocks from the loop.
1855    for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1856      L.getBlocksSet().erase(BB);
1857    Blocks.erase(BlocksSplitI, Blocks.end());
1858  
1859    // Sort the exits in ascending loop depth, we'll work backwards across these
1860    // to process them inside out.
1861    llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1862      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1863    });
1864  
1865    // We'll build up a set for each exit loop.
1866    SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1867    Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1868  
1869    auto RemoveUnloopedBlocksFromLoop =
1870        [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1871          for (auto *BB : UnloopedBlocks)
1872            L.getBlocksSet().erase(BB);
1873          llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1874            return UnloopedBlocks.count(BB);
1875          });
1876        };
1877  
1878    SmallVector<BasicBlock *, 16> Worklist;
1879    while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1880      assert(Worklist.empty() && "Didn't clear worklist!");
1881      assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1882  
1883      // Grab the next exit block, in decreasing loop depth order.
1884      BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1885      Loop &ExitL = *LI.getLoopFor(ExitBB);
1886      assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1887  
1888      // Erase all of the unlooped blocks from the loops between the previous
1889      // exit loop and this exit loop. This works because the ExitInLoops list is
1890      // sorted in increasing order of loop depth and thus we visit loops in
1891      // decreasing order of loop depth.
1892      for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1893        RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1894  
1895      // Walk the CFG back until we hit the cloned PH adding everything reachable
1896      // and in the unlooped set to this exit block's loop.
1897      Worklist.push_back(ExitBB);
1898      do {
1899        BasicBlock *BB = Worklist.pop_back_val();
1900        // We can stop recursing at the cloned preheader (if we get there).
1901        if (BB == PH)
1902          continue;
1903  
1904        for (BasicBlock *PredBB : predecessors(BB)) {
1905          // If this pred has already been moved to our set or is part of some
1906          // (inner) loop, no update needed.
1907          if (!UnloopedBlocks.erase(PredBB)) {
1908            assert((NewExitLoopBlocks.count(PredBB) ||
1909                    ExitL.contains(LI.getLoopFor(PredBB))) &&
1910                   "Predecessor not in a nested loop (or already visited)!");
1911            continue;
1912          }
1913  
1914          // We just insert into the loop set here. We'll add these blocks to the
1915          // exit loop after we build up the set in a deterministic order rather
1916          // than the predecessor-influenced visit order.
1917          bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1918          (void)Inserted;
1919          assert(Inserted && "Should only visit an unlooped block once!");
1920  
1921          // And recurse through to its predecessors.
1922          Worklist.push_back(PredBB);
1923        }
1924      } while (!Worklist.empty());
1925  
1926      // If blocks in this exit loop were directly part of the original loop (as
1927      // opposed to a child loop) update the map to point to this exit loop. This
1928      // just updates a map and so the fact that the order is unstable is fine.
1929      for (auto *BB : NewExitLoopBlocks)
1930        if (Loop *BBL = LI.getLoopFor(BB))
1931          if (BBL == &L || !L.contains(BBL))
1932            LI.changeLoopFor(BB, &ExitL);
1933  
1934      // We will remove the remaining unlooped blocks from this loop in the next
1935      // iteration or below.
1936      NewExitLoopBlocks.clear();
1937    }
1938  
1939    // Any remaining unlooped blocks are no longer part of any loop unless they
1940    // are part of some child loop.
1941    for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1942      RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1943    for (auto *BB : UnloopedBlocks)
1944      if (Loop *BBL = LI.getLoopFor(BB))
1945        if (BBL == &L || !L.contains(BBL))
1946          LI.changeLoopFor(BB, nullptr);
1947  
1948    // Sink all the child loops whose headers are no longer in the loop set to
1949    // the parent (or to be top level loops). We reach into the loop and directly
1950    // update its subloop vector to make this batch update efficient.
1951    auto &SubLoops = L.getSubLoopsVector();
1952    auto SubLoopsSplitI =
1953        LoopBlockSet.empty()
1954            ? SubLoops.begin()
1955            : std::stable_partition(
1956                  SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1957                    return LoopBlockSet.count(SubL->getHeader());
1958                  });
1959    for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1960      HoistedLoops.push_back(HoistedL);
1961      HoistedL->setParentLoop(nullptr);
1962  
1963      // To compute the new parent of this hoisted loop we look at where we
1964      // placed the preheader above. We can't lookup the header itself because we
1965      // retained the mapping from the header to the hoisted loop. But the
1966      // preheader and header should have the exact same new parent computed
1967      // based on the set of exit blocks from the original loop as the preheader
1968      // is a predecessor of the header and so reached in the reverse walk. And
1969      // because the loops were all in simplified form the preheader of the
1970      // hoisted loop can't be part of some *other* loop.
1971      if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1972        NewParentL->addChildLoop(HoistedL);
1973      else
1974        LI.addTopLevelLoop(HoistedL);
1975    }
1976    SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1977  
1978    // Actually delete the loop if nothing remained within it.
1979    if (Blocks.empty()) {
1980      assert(SubLoops.empty() &&
1981             "Failed to remove all subloops from the original loop!");
1982      if (Loop *ParentL = L.getParentLoop())
1983        ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1984      else
1985        LI.removeLoop(llvm::find(LI, &L));
1986      // markLoopAsDeleted for L should be triggered by the caller (it is typically
1987      // done by using the UnswitchCB callback).
1988      LI.destroy(&L);
1989      return false;
1990    }
1991  
1992    return true;
1993  }
1994  
1995  /// Helper to visit a dominator subtree, invoking a callable on each node.
1996  ///
1997  /// Returning false at any point will stop walking past that node of the tree.
1998  template <typename CallableT>
1999  void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2000    SmallVector<DomTreeNode *, 4> DomWorklist;
2001    DomWorklist.push_back(DT[BB]);
2002  #ifndef NDEBUG
2003    SmallPtrSet<DomTreeNode *, 4> Visited;
2004    Visited.insert(DT[BB]);
2005  #endif
2006    do {
2007      DomTreeNode *N = DomWorklist.pop_back_val();
2008  
2009      // Visit this node.
2010      if (!Callable(N->getBlock()))
2011        continue;
2012  
2013      // Accumulate the child nodes.
2014      for (DomTreeNode *ChildN : *N) {
2015        assert(Visited.insert(ChildN).second &&
2016               "Cannot visit a node twice when walking a tree!");
2017        DomWorklist.push_back(ChildN);
2018      }
2019    } while (!DomWorklist.empty());
2020  }
2021  
2022  static void unswitchNontrivialInvariants(
2023      Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2024      SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo,
2025      DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2026      function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2027      ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2028      function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2029    auto *ParentBB = TI.getParent();
2030    BranchInst *BI = dyn_cast<BranchInst>(&TI);
2031    SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2032  
2033    // We can only unswitch switches, conditional branches with an invariant
2034    // condition, or combining invariant conditions with an instruction or
2035    // partially invariant instructions.
2036    assert((SI || (BI && BI->isConditional())) &&
2037           "Can only unswitch switches and conditional branch!");
2038    bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2039    bool FullUnswitch =
2040        SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant);
2041    if (FullUnswitch)
2042      assert(Invariants.size() == 1 &&
2043             "Cannot have other invariants with full unswitching!");
2044    else
2045      assert(isa<Instruction>(BI->getCondition()) &&
2046             "Partial unswitching requires an instruction as the condition!");
2047  
2048    if (MSSAU && VerifyMemorySSA)
2049      MSSAU->getMemorySSA()->verifyMemorySSA();
2050  
2051    // Constant and BBs tracking the cloned and continuing successor. When we are
2052    // unswitching the entire condition, this can just be trivially chosen to
2053    // unswitch towards `true`. However, when we are unswitching a set of
2054    // invariants combined with `and` or `or` or partially invariant instructions,
2055    // the combining operation determines the best direction to unswitch: we want
2056    // to unswitch the direction that will collapse the branch.
2057    bool Direction = true;
2058    int ClonedSucc = 0;
2059    if (!FullUnswitch) {
2060      Value *Cond = BI->getCondition();
2061      (void)Cond;
2062      assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2063              PartiallyInvariant) &&
2064             "Only `or`, `and`, an `select`, partially invariant instructions "
2065             "can combine invariants being unswitched.");
2066      if (!match(BI->getCondition(), m_LogicalOr())) {
2067        if (match(BI->getCondition(), m_LogicalAnd()) ||
2068            (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2069          Direction = false;
2070          ClonedSucc = 1;
2071        }
2072      }
2073    }
2074  
2075    BasicBlock *RetainedSuccBB =
2076        BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2077    SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2078    if (BI)
2079      UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2080    else
2081      for (auto Case : SI->cases())
2082        if (Case.getCaseSuccessor() != RetainedSuccBB)
2083          UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2084  
2085    assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2086           "Should not unswitch the same successor we are retaining!");
2087  
2088    // The branch should be in this exact loop. Any inner loop's invariant branch
2089    // should be handled by unswitching that inner loop. The caller of this
2090    // routine should filter out any candidates that remain (but were skipped for
2091    // whatever reason).
2092    assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2093  
2094    // Compute the parent loop now before we start hacking on things.
2095    Loop *ParentL = L.getParentLoop();
2096    // Get blocks in RPO order for MSSA update, before changing the CFG.
2097    LoopBlocksRPO LBRPO(&L);
2098    if (MSSAU)
2099      LBRPO.perform(&LI);
2100  
2101    // Compute the outer-most loop containing one of our exit blocks. This is the
2102    // furthest up our loopnest which can be mutated, which we will use below to
2103    // update things.
2104    Loop *OuterExitL = &L;
2105    for (auto *ExitBB : ExitBlocks) {
2106      Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2107      if (!NewOuterExitL) {
2108        // We exited the entire nest with this block, so we're done.
2109        OuterExitL = nullptr;
2110        break;
2111      }
2112      if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2113        OuterExitL = NewOuterExitL;
2114    }
2115  
2116    // At this point, we're definitely going to unswitch something so invalidate
2117    // any cached information in ScalarEvolution for the outer most loop
2118    // containing an exit block and all nested loops.
2119    if (SE) {
2120      if (OuterExitL)
2121        SE->forgetLoop(OuterExitL);
2122      else
2123        SE->forgetTopmostLoop(&L);
2124    }
2125  
2126    // If the edge from this terminator to a successor dominates that successor,
2127    // store a map from each block in its dominator subtree to it. This lets us
2128    // tell when cloning for a particular successor if a block is dominated by
2129    // some *other* successor with a single data structure. We use this to
2130    // significantly reduce cloning.
2131    SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2132    for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2133             makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2134      if (SuccBB->getUniquePredecessor() ||
2135          llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2136            return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2137          }))
2138        visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2139          DominatingSucc[BB] = SuccBB;
2140          return true;
2141        });
2142  
2143    // Split the preheader, so that we know that there is a safe place to insert
2144    // the conditional branch. We will change the preheader to have a conditional
2145    // branch on LoopCond. The original preheader will become the split point
2146    // between the unswitched versions, and we will have a new preheader for the
2147    // original loop.
2148    BasicBlock *SplitBB = L.getLoopPreheader();
2149    BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2150  
2151    // Keep track of the dominator tree updates needed.
2152    SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2153  
2154    // Clone the loop for each unswitched successor.
2155    SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2156    VMaps.reserve(UnswitchedSuccBBs.size());
2157    SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2158    for (auto *SuccBB : UnswitchedSuccBBs) {
2159      VMaps.emplace_back(new ValueToValueMapTy());
2160      ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2161          L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2162          DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2163    }
2164  
2165    // Drop metadata if we may break its semantics by moving this instr into the
2166    // split block.
2167    if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2168      if (DropNonTrivialImplicitNullChecks)
2169        // Do not spend time trying to understand if we can keep it, just drop it
2170        // to save compile time.
2171        TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2172      else {
2173        // It is only legal to preserve make.implicit metadata if we are
2174        // guaranteed no reach implicit null check after following this branch.
2175        ICFLoopSafetyInfo SafetyInfo;
2176        SafetyInfo.computeLoopSafetyInfo(&L);
2177        if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2178          TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2179      }
2180    }
2181  
2182    // The stitching of the branched code back together depends on whether we're
2183    // doing full unswitching or not with the exception that we always want to
2184    // nuke the initial terminator placed in the split block.
2185    SplitBB->getTerminator()->eraseFromParent();
2186    if (FullUnswitch) {
2187      // Splice the terminator from the original loop and rewrite its
2188      // successors.
2189      SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2190  
2191      // Keep a clone of the terminator for MSSA updates.
2192      Instruction *NewTI = TI.clone();
2193      ParentBB->getInstList().push_back(NewTI);
2194  
2195      // First wire up the moved terminator to the preheaders.
2196      if (BI) {
2197        BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2198        BI->setSuccessor(ClonedSucc, ClonedPH);
2199        BI->setSuccessor(1 - ClonedSucc, LoopPH);
2200        DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2201      } else {
2202        assert(SI && "Must either be a branch or switch!");
2203  
2204        // Walk the cases and directly update their successors.
2205        assert(SI->getDefaultDest() == RetainedSuccBB &&
2206               "Not retaining default successor!");
2207        SI->setDefaultDest(LoopPH);
2208        for (auto &Case : SI->cases())
2209          if (Case.getCaseSuccessor() == RetainedSuccBB)
2210            Case.setSuccessor(LoopPH);
2211          else
2212            Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2213  
2214        // We need to use the set to populate domtree updates as even when there
2215        // are multiple cases pointing at the same successor we only want to
2216        // remove and insert one edge in the domtree.
2217        for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2218          DTUpdates.push_back(
2219              {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2220      }
2221  
2222      if (MSSAU) {
2223        DT.applyUpdates(DTUpdates);
2224        DTUpdates.clear();
2225  
2226        // Remove all but one edge to the retained block and all unswitched
2227        // blocks. This is to avoid having duplicate entries in the cloned Phis,
2228        // when we know we only keep a single edge for each case.
2229        MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2230        for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2231          MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2232  
2233        for (auto &VMap : VMaps)
2234          MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2235                                     /*IgnoreIncomingWithNoClones=*/true);
2236        MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2237  
2238        // Remove all edges to unswitched blocks.
2239        for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2240          MSSAU->removeEdge(ParentBB, SuccBB);
2241      }
2242  
2243      // Now unhook the successor relationship as we'll be replacing
2244      // the terminator with a direct branch. This is much simpler for branches
2245      // than switches so we handle those first.
2246      if (BI) {
2247        // Remove the parent as a predecessor of the unswitched successor.
2248        assert(UnswitchedSuccBBs.size() == 1 &&
2249               "Only one possible unswitched block for a branch!");
2250        BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2251        UnswitchedSuccBB->removePredecessor(ParentBB,
2252                                            /*KeepOneInputPHIs*/ true);
2253        DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2254      } else {
2255        // Note that we actually want to remove the parent block as a predecessor
2256        // of *every* case successor. The case successor is either unswitched,
2257        // completely eliminating an edge from the parent to that successor, or it
2258        // is a duplicate edge to the retained successor as the retained successor
2259        // is always the default successor and as we'll replace this with a direct
2260        // branch we no longer need the duplicate entries in the PHI nodes.
2261        SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2262        assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2263               "Not retaining default successor!");
2264        for (auto &Case : NewSI->cases())
2265          Case.getCaseSuccessor()->removePredecessor(
2266              ParentBB,
2267              /*KeepOneInputPHIs*/ true);
2268  
2269        // We need to use the set to populate domtree updates as even when there
2270        // are multiple cases pointing at the same successor we only want to
2271        // remove and insert one edge in the domtree.
2272        for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2273          DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2274      }
2275  
2276      // After MSSAU update, remove the cloned terminator instruction NewTI.
2277      ParentBB->getTerminator()->eraseFromParent();
2278  
2279      // Create a new unconditional branch to the continuing block (as opposed to
2280      // the one cloned).
2281      BranchInst::Create(RetainedSuccBB, ParentBB);
2282    } else {
2283      assert(BI && "Only branches have partial unswitching.");
2284      assert(UnswitchedSuccBBs.size() == 1 &&
2285             "Only one possible unswitched block for a branch!");
2286      BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2287      // When doing a partial unswitch, we have to do a bit more work to build up
2288      // the branch in the split block.
2289      if (PartiallyInvariant)
2290        buildPartialInvariantUnswitchConditionalBranch(
2291            *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2292      else
2293        buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2294                                              *ClonedPH, *LoopPH);
2295      DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2296  
2297      if (MSSAU) {
2298        DT.applyUpdates(DTUpdates);
2299        DTUpdates.clear();
2300  
2301        // Perform MSSA cloning updates.
2302        for (auto &VMap : VMaps)
2303          MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2304                                     /*IgnoreIncomingWithNoClones=*/true);
2305        MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2306      }
2307    }
2308  
2309    // Apply the updates accumulated above to get an up-to-date dominator tree.
2310    DT.applyUpdates(DTUpdates);
2311  
2312    // Now that we have an accurate dominator tree, first delete the dead cloned
2313    // blocks so that we can accurately build any cloned loops. It is important to
2314    // not delete the blocks from the original loop yet because we still want to
2315    // reference the original loop to understand the cloned loop's structure.
2316    deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2317  
2318    // Build the cloned loop structure itself. This may be substantially
2319    // different from the original structure due to the simplified CFG. This also
2320    // handles inserting all the cloned blocks into the correct loops.
2321    SmallVector<Loop *, 4> NonChildClonedLoops;
2322    for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2323      buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2324  
2325    // Now that our cloned loops have been built, we can update the original loop.
2326    // First we delete the dead blocks from it and then we rebuild the loop
2327    // structure taking these deletions into account.
2328    deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB);
2329  
2330    if (MSSAU && VerifyMemorySSA)
2331      MSSAU->getMemorySSA()->verifyMemorySSA();
2332  
2333    SmallVector<Loop *, 4> HoistedLoops;
2334    bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2335  
2336    if (MSSAU && VerifyMemorySSA)
2337      MSSAU->getMemorySSA()->verifyMemorySSA();
2338  
2339    // This transformation has a high risk of corrupting the dominator tree, and
2340    // the below steps to rebuild loop structures will result in hard to debug
2341    // errors in that case so verify that the dominator tree is sane first.
2342    // FIXME: Remove this when the bugs stop showing up and rely on existing
2343    // verification steps.
2344    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2345  
2346    if (BI && !PartiallyInvariant) {
2347      // If we unswitched a branch which collapses the condition to a known
2348      // constant we want to replace all the uses of the invariants within both
2349      // the original and cloned blocks. We do this here so that we can use the
2350      // now updated dominator tree to identify which side the users are on.
2351      assert(UnswitchedSuccBBs.size() == 1 &&
2352             "Only one possible unswitched block for a branch!");
2353      BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2354  
2355      // When considering multiple partially-unswitched invariants
2356      // we cant just go replace them with constants in both branches.
2357      //
2358      // For 'AND' we infer that true branch ("continue") means true
2359      // for each invariant operand.
2360      // For 'OR' we can infer that false branch ("continue") means false
2361      // for each invariant operand.
2362      // So it happens that for multiple-partial case we dont replace
2363      // in the unswitched branch.
2364      bool ReplaceUnswitched =
2365          FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2366  
2367      ConstantInt *UnswitchedReplacement =
2368          Direction ? ConstantInt::getTrue(BI->getContext())
2369                    : ConstantInt::getFalse(BI->getContext());
2370      ConstantInt *ContinueReplacement =
2371          Direction ? ConstantInt::getFalse(BI->getContext())
2372                    : ConstantInt::getTrue(BI->getContext());
2373      for (Value *Invariant : Invariants)
2374        // Use make_early_inc_range here as set invalidates the iterator.
2375        for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2376          Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2377          if (!UserI)
2378            continue;
2379  
2380          // Replace it with the 'continue' side if in the main loop body, and the
2381          // unswitched if in the cloned blocks.
2382          if (DT.dominates(LoopPH, UserI->getParent()))
2383            U.set(ContinueReplacement);
2384          else if (ReplaceUnswitched &&
2385                   DT.dominates(ClonedPH, UserI->getParent()))
2386            U.set(UnswitchedReplacement);
2387        }
2388    }
2389  
2390    // We can change which blocks are exit blocks of all the cloned sibling
2391    // loops, the current loop, and any parent loops which shared exit blocks
2392    // with the current loop. As a consequence, we need to re-form LCSSA for
2393    // them. But we shouldn't need to re-form LCSSA for any child loops.
2394    // FIXME: This could be made more efficient by tracking which exit blocks are
2395    // new, and focusing on them, but that isn't likely to be necessary.
2396    //
2397    // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2398    // loop nest and update every loop that could have had its exits changed. We
2399    // also need to cover any intervening loops. We add all of these loops to
2400    // a list and sort them by loop depth to achieve this without updating
2401    // unnecessary loops.
2402    auto UpdateLoop = [&](Loop &UpdateL) {
2403  #ifndef NDEBUG
2404      UpdateL.verifyLoop();
2405      for (Loop *ChildL : UpdateL) {
2406        ChildL->verifyLoop();
2407        assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2408               "Perturbed a child loop's LCSSA form!");
2409      }
2410  #endif
2411      // First build LCSSA for this loop so that we can preserve it when
2412      // forming dedicated exits. We don't want to perturb some other loop's
2413      // LCSSA while doing that CFG edit.
2414      formLCSSA(UpdateL, DT, &LI, SE);
2415  
2416      // For loops reached by this loop's original exit blocks we may
2417      // introduced new, non-dedicated exits. At least try to re-form dedicated
2418      // exits for these loops. This may fail if they couldn't have dedicated
2419      // exits to start with.
2420      formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2421    };
2422  
2423    // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2424    // and we can do it in any order as they don't nest relative to each other.
2425    //
2426    // Also check if any of the loops we have updated have become top-level loops
2427    // as that will necessitate widening the outer loop scope.
2428    for (Loop *UpdatedL :
2429         llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2430      UpdateLoop(*UpdatedL);
2431      if (UpdatedL->isOutermost())
2432        OuterExitL = nullptr;
2433    }
2434    if (IsStillLoop) {
2435      UpdateLoop(L);
2436      if (L.isOutermost())
2437        OuterExitL = nullptr;
2438    }
2439  
2440    // If the original loop had exit blocks, walk up through the outer most loop
2441    // of those exit blocks to update LCSSA and form updated dedicated exits.
2442    if (OuterExitL != &L)
2443      for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2444           OuterL = OuterL->getParentLoop())
2445        UpdateLoop(*OuterL);
2446  
2447  #ifndef NDEBUG
2448    // Verify the entire loop structure to catch any incorrect updates before we
2449    // progress in the pass pipeline.
2450    LI.verify(DT);
2451  #endif
2452  
2453    // Now that we've unswitched something, make callbacks to report the changes.
2454    // For that we need to merge together the updated loops and the cloned loops
2455    // and check whether the original loop survived.
2456    SmallVector<Loop *, 4> SibLoops;
2457    for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2458      if (UpdatedL->getParentLoop() == ParentL)
2459        SibLoops.push_back(UpdatedL);
2460    UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2461  
2462    if (MSSAU && VerifyMemorySSA)
2463      MSSAU->getMemorySSA()->verifyMemorySSA();
2464  
2465    if (BI)
2466      ++NumBranches;
2467    else
2468      ++NumSwitches;
2469  }
2470  
2471  /// Recursively compute the cost of a dominator subtree based on the per-block
2472  /// cost map provided.
2473  ///
2474  /// The recursive computation is memozied into the provided DT-indexed cost map
2475  /// to allow querying it for most nodes in the domtree without it becoming
2476  /// quadratic.
2477  static InstructionCost computeDomSubtreeCost(
2478      DomTreeNode &N,
2479      const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2480      SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2481    // Don't accumulate cost (or recurse through) blocks not in our block cost
2482    // map and thus not part of the duplication cost being considered.
2483    auto BBCostIt = BBCostMap.find(N.getBlock());
2484    if (BBCostIt == BBCostMap.end())
2485      return 0;
2486  
2487    // Lookup this node to see if we already computed its cost.
2488    auto DTCostIt = DTCostMap.find(&N);
2489    if (DTCostIt != DTCostMap.end())
2490      return DTCostIt->second;
2491  
2492    // If not, we have to compute it. We can't use insert above and update
2493    // because computing the cost may insert more things into the map.
2494    InstructionCost Cost = std::accumulate(
2495        N.begin(), N.end(), BBCostIt->second,
2496        [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2497          return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2498        });
2499    bool Inserted = DTCostMap.insert({&N, Cost}).second;
2500    (void)Inserted;
2501    assert(Inserted && "Should not insert a node while visiting children!");
2502    return Cost;
2503  }
2504  
2505  /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2506  /// making the following replacement:
2507  ///
2508  ///   --code before guard--
2509  ///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2510  ///   --code after guard--
2511  ///
2512  /// into
2513  ///
2514  ///   --code before guard--
2515  ///   br i1 %cond, label %guarded, label %deopt
2516  ///
2517  /// guarded:
2518  ///   --code after guard--
2519  ///
2520  /// deopt:
2521  ///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2522  ///   unreachable
2523  ///
2524  /// It also makes all relevant DT and LI updates, so that all structures are in
2525  /// valid state after this transform.
2526  static BranchInst *
2527  turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2528                      SmallVectorImpl<BasicBlock *> &ExitBlocks,
2529                      DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2530    SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2531    LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2532    BasicBlock *CheckBB = GI->getParent();
2533  
2534    if (MSSAU && VerifyMemorySSA)
2535       MSSAU->getMemorySSA()->verifyMemorySSA();
2536  
2537    // Remove all CheckBB's successors from DomTree. A block can be seen among
2538    // successors more than once, but for DomTree it should be added only once.
2539    SmallPtrSet<BasicBlock *, 4> Successors;
2540    for (auto *Succ : successors(CheckBB))
2541      if (Successors.insert(Succ).second)
2542        DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2543  
2544    Instruction *DeoptBlockTerm =
2545        SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2546    BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2547    // SplitBlockAndInsertIfThen inserts control flow that branches to
2548    // DeoptBlockTerm if the condition is true.  We want the opposite.
2549    CheckBI->swapSuccessors();
2550  
2551    BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2552    GuardedBlock->setName("guarded");
2553    CheckBI->getSuccessor(1)->setName("deopt");
2554    BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2555  
2556    // We now have a new exit block.
2557    ExitBlocks.push_back(CheckBI->getSuccessor(1));
2558  
2559    if (MSSAU)
2560      MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2561  
2562    GI->moveBefore(DeoptBlockTerm);
2563    GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2564  
2565    // Add new successors of CheckBB into DomTree.
2566    for (auto *Succ : successors(CheckBB))
2567      DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2568  
2569    // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2570    // successors.
2571    for (auto *Succ : Successors)
2572      DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2573  
2574    // Make proper changes to DT.
2575    DT.applyUpdates(DTUpdates);
2576    // Inform LI of a new loop block.
2577    L.addBasicBlockToLoop(GuardedBlock, LI);
2578  
2579    if (MSSAU) {
2580      MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2581      MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2582      if (VerifyMemorySSA)
2583        MSSAU->getMemorySSA()->verifyMemorySSA();
2584    }
2585  
2586    ++NumGuards;
2587    return CheckBI;
2588  }
2589  
2590  /// Cost multiplier is a way to limit potentially exponential behavior
2591  /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2592  /// candidates available. Also accounting for the number of "sibling" loops with
2593  /// the idea to account for previous unswitches that already happened on this
2594  /// cluster of loops. There was an attempt to keep this formula simple,
2595  /// just enough to limit the worst case behavior. Even if it is not that simple
2596  /// now it is still not an attempt to provide a detailed heuristic size
2597  /// prediction.
2598  ///
2599  /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2600  /// unswitch candidates, making adequate predictions instead of wild guesses.
2601  /// That requires knowing not just the number of "remaining" candidates but
2602  /// also costs of unswitching for each of these candidates.
2603  static int CalculateUnswitchCostMultiplier(
2604      Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2605      ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2606          UnswitchCandidates) {
2607  
2608    // Guards and other exiting conditions do not contribute to exponential
2609    // explosion as soon as they dominate the latch (otherwise there might be
2610    // another path to the latch remaining that does not allow to eliminate the
2611    // loop copy on unswitch).
2612    BasicBlock *Latch = L.getLoopLatch();
2613    BasicBlock *CondBlock = TI.getParent();
2614    if (DT.dominates(CondBlock, Latch) &&
2615        (isGuard(&TI) ||
2616         llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2617           return L.contains(SuccBB);
2618         }) <= 1)) {
2619      NumCostMultiplierSkipped++;
2620      return 1;
2621    }
2622  
2623    auto *ParentL = L.getParentLoop();
2624    int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2625                                 : std::distance(LI.begin(), LI.end()));
2626    // Count amount of clones that all the candidates might cause during
2627    // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2628    int UnswitchedClones = 0;
2629    for (auto Candidate : UnswitchCandidates) {
2630      Instruction *CI = Candidate.first;
2631      BasicBlock *CondBlock = CI->getParent();
2632      bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2633      if (isGuard(CI)) {
2634        if (!SkipExitingSuccessors)
2635          UnswitchedClones++;
2636        continue;
2637      }
2638      int NonExitingSuccessors = llvm::count_if(
2639          successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2640            return !SkipExitingSuccessors || L.contains(SuccBB);
2641          });
2642      UnswitchedClones += Log2_32(NonExitingSuccessors);
2643    }
2644  
2645    // Ignore up to the "unscaled candidates" number of unswitch candidates
2646    // when calculating the power-of-two scaling of the cost. The main idea
2647    // with this control is to allow a small number of unswitches to happen
2648    // and rely more on siblings multiplier (see below) when the number
2649    // of candidates is small.
2650    unsigned ClonesPower =
2651        std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2652  
2653    // Allowing top-level loops to spread a bit more than nested ones.
2654    int SiblingsMultiplier =
2655        std::max((ParentL ? SiblingsCount
2656                          : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2657                 1);
2658    // Compute the cost multiplier in a way that won't overflow by saturating
2659    // at an upper bound.
2660    int CostMultiplier;
2661    if (ClonesPower > Log2_32(UnswitchThreshold) ||
2662        SiblingsMultiplier > UnswitchThreshold)
2663      CostMultiplier = UnswitchThreshold;
2664    else
2665      CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2666                                (int)UnswitchThreshold);
2667  
2668    LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
2669                      << " (siblings " << SiblingsMultiplier << " * clones "
2670                      << (1 << ClonesPower) << ")"
2671                      << " for unswitch candidate: " << TI << "\n");
2672    return CostMultiplier;
2673  }
2674  
2675  static bool unswitchBestCondition(
2676      Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2677      AAResults &AA, TargetTransformInfo &TTI,
2678      function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2679      ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2680      function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2681    // Collect all invariant conditions within this loop (as opposed to an inner
2682    // loop which would be handled when visiting that inner loop).
2683    SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2684        UnswitchCandidates;
2685  
2686    // Whether or not we should also collect guards in the loop.
2687    bool CollectGuards = false;
2688    if (UnswitchGuards) {
2689      auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2690          Intrinsic::getName(Intrinsic::experimental_guard));
2691      if (GuardDecl && !GuardDecl->use_empty())
2692        CollectGuards = true;
2693    }
2694  
2695    IVConditionInfo PartialIVInfo;
2696    for (auto *BB : L.blocks()) {
2697      if (LI.getLoopFor(BB) != &L)
2698        continue;
2699  
2700      if (CollectGuards)
2701        for (auto &I : *BB)
2702          if (isGuard(&I)) {
2703            auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2704            // TODO: Support AND, OR conditions and partial unswitching.
2705            if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2706              UnswitchCandidates.push_back({&I, {Cond}});
2707          }
2708  
2709      if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2710        // We can only consider fully loop-invariant switch conditions as we need
2711        // to completely eliminate the switch after unswitching.
2712        if (!isa<Constant>(SI->getCondition()) &&
2713            L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2714          UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2715        continue;
2716      }
2717  
2718      auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2719      if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2720          BI->getSuccessor(0) == BI->getSuccessor(1))
2721        continue;
2722  
2723      // If BI's condition is 'select _, true, false', simplify it to confuse
2724      // matchers
2725      Value *Cond = BI->getCondition(), *CondNext;
2726      while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
2727        Cond = CondNext;
2728      BI->setCondition(Cond);
2729  
2730      if (L.isLoopInvariant(BI->getCondition())) {
2731        UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2732        continue;
2733      }
2734  
2735      Instruction &CondI = *cast<Instruction>(BI->getCondition());
2736      if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2737        TinyPtrVector<Value *> Invariants =
2738            collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2739        if (Invariants.empty())
2740          continue;
2741  
2742        UnswitchCandidates.push_back({BI, std::move(Invariants)});
2743        continue;
2744      }
2745    }
2746  
2747    Instruction *PartialIVCondBranch = nullptr;
2748    if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2749        !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2750          return TerminatorAndInvariants.first == L.getHeader()->getTerminator();
2751        })) {
2752      MemorySSA *MSSA = MSSAU->getMemorySSA();
2753      if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2754        LLVM_DEBUG(
2755            dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2756                   << *Info->InstToDuplicate[0] << "\n");
2757        PartialIVInfo = *Info;
2758        PartialIVCondBranch = L.getHeader()->getTerminator();
2759        TinyPtrVector<Value *> ValsToDuplicate;
2760        for (auto *Inst : Info->InstToDuplicate)
2761          ValsToDuplicate.push_back(Inst);
2762        UnswitchCandidates.push_back(
2763            {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2764      }
2765    }
2766  
2767    // If we didn't find any candidates, we're done.
2768    if (UnswitchCandidates.empty())
2769      return false;
2770  
2771    // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2772    // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2773    // irreducible control flow into reducible control flow and introduce new
2774    // loops "out of thin air". If we ever discover important use cases for doing
2775    // this, we can add support to loop unswitch, but it is a lot of complexity
2776    // for what seems little or no real world benefit.
2777    LoopBlocksRPO RPOT(&L);
2778    RPOT.perform(&LI);
2779    if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2780      return false;
2781  
2782    SmallVector<BasicBlock *, 4> ExitBlocks;
2783    L.getUniqueExitBlocks(ExitBlocks);
2784  
2785    // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
2786    // instruction as we don't know how to split those exit blocks.
2787    // FIXME: We should teach SplitBlock to handle this and remove this
2788    // restriction.
2789    for (auto *ExitBB : ExitBlocks) {
2790      auto *I = ExitBB->getFirstNonPHI();
2791      if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
2792        LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
2793                             "in exit block\n");
2794        return false;
2795      }
2796    }
2797  
2798    LLVM_DEBUG(
2799        dbgs() << "Considering " << UnswitchCandidates.size()
2800               << " non-trivial loop invariant conditions for unswitching.\n");
2801  
2802    // Given that unswitching these terminators will require duplicating parts of
2803    // the loop, so we need to be able to model that cost. Compute the ephemeral
2804    // values and set up a data structure to hold per-BB costs. We cache each
2805    // block's cost so that we don't recompute this when considering different
2806    // subsets of the loop for duplication during unswitching.
2807    SmallPtrSet<const Value *, 4> EphValues;
2808    CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2809    SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2810  
2811    // Compute the cost of each block, as well as the total loop cost. Also, bail
2812    // out if we see instructions which are incompatible with loop unswitching
2813    // (convergent, noduplicate, or cross-basic-block tokens).
2814    // FIXME: We might be able to safely handle some of these in non-duplicated
2815    // regions.
2816    TargetTransformInfo::TargetCostKind CostKind =
2817        L.getHeader()->getParent()->hasMinSize()
2818        ? TargetTransformInfo::TCK_CodeSize
2819        : TargetTransformInfo::TCK_SizeAndLatency;
2820    InstructionCost LoopCost = 0;
2821    for (auto *BB : L.blocks()) {
2822      InstructionCost Cost = 0;
2823      for (auto &I : *BB) {
2824        if (EphValues.count(&I))
2825          continue;
2826  
2827        if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2828          return false;
2829        if (auto *CB = dyn_cast<CallBase>(&I))
2830          if (CB->isConvergent() || CB->cannotDuplicate())
2831            return false;
2832  
2833        Cost += TTI.getUserCost(&I, CostKind);
2834      }
2835      assert(Cost >= 0 && "Must not have negative costs!");
2836      LoopCost += Cost;
2837      assert(LoopCost >= 0 && "Must not have negative loop costs!");
2838      BBCostMap[BB] = Cost;
2839    }
2840    LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2841  
2842    // Now we find the best candidate by searching for the one with the following
2843    // properties in order:
2844    //
2845    // 1) An unswitching cost below the threshold
2846    // 2) The smallest number of duplicated unswitch candidates (to avoid
2847    //    creating redundant subsequent unswitching)
2848    // 3) The smallest cost after unswitching.
2849    //
2850    // We prioritize reducing fanout of unswitch candidates provided the cost
2851    // remains below the threshold because this has a multiplicative effect.
2852    //
2853    // This requires memoizing each dominator subtree to avoid redundant work.
2854    //
2855    // FIXME: Need to actually do the number of candidates part above.
2856    SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2857    // Given a terminator which might be unswitched, computes the non-duplicated
2858    // cost for that terminator.
2859    auto ComputeUnswitchedCost = [&](Instruction &TI,
2860                                     bool FullUnswitch) -> InstructionCost {
2861      BasicBlock &BB = *TI.getParent();
2862      SmallPtrSet<BasicBlock *, 4> Visited;
2863  
2864      InstructionCost Cost = 0;
2865      for (BasicBlock *SuccBB : successors(&BB)) {
2866        // Don't count successors more than once.
2867        if (!Visited.insert(SuccBB).second)
2868          continue;
2869  
2870        // If this is a partial unswitch candidate, then it must be a conditional
2871        // branch with a condition of either `or`, `and`, their corresponding
2872        // select forms or partially invariant instructions. In that case, one of
2873        // the successors is necessarily duplicated, so don't even try to remove
2874        // its cost.
2875        if (!FullUnswitch) {
2876          auto &BI = cast<BranchInst>(TI);
2877          if (match(BI.getCondition(), m_LogicalAnd())) {
2878            if (SuccBB == BI.getSuccessor(1))
2879              continue;
2880          } else if (match(BI.getCondition(), m_LogicalOr())) {
2881            if (SuccBB == BI.getSuccessor(0))
2882              continue;
2883          } else if ((PartialIVInfo.KnownValue->isOneValue() &&
2884                      SuccBB == BI.getSuccessor(0)) ||
2885                     (!PartialIVInfo.KnownValue->isOneValue() &&
2886                      SuccBB == BI.getSuccessor(1)))
2887            continue;
2888        }
2889  
2890        // This successor's domtree will not need to be duplicated after
2891        // unswitching if the edge to the successor dominates it (and thus the
2892        // entire tree). This essentially means there is no other path into this
2893        // subtree and so it will end up live in only one clone of the loop.
2894        if (SuccBB->getUniquePredecessor() ||
2895            llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2896              return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2897            })) {
2898          Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2899          assert(Cost <= LoopCost &&
2900                 "Non-duplicated cost should never exceed total loop cost!");
2901        }
2902      }
2903  
2904      // Now scale the cost by the number of unique successors minus one. We
2905      // subtract one because there is already at least one copy of the entire
2906      // loop. This is computing the new cost of unswitching a condition.
2907      // Note that guards always have 2 unique successors that are implicit and
2908      // will be materialized if we decide to unswitch it.
2909      int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2910      assert(SuccessorsCount > 1 &&
2911             "Cannot unswitch a condition without multiple distinct successors!");
2912      return (LoopCost - Cost) * (SuccessorsCount - 1);
2913    };
2914    Instruction *BestUnswitchTI = nullptr;
2915    InstructionCost BestUnswitchCost = 0;
2916    ArrayRef<Value *> BestUnswitchInvariants;
2917    for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2918      Instruction &TI = *TerminatorAndInvariants.first;
2919      ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2920      BranchInst *BI = dyn_cast<BranchInst>(&TI);
2921      InstructionCost CandidateCost = ComputeUnswitchedCost(
2922          TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2923                                       Invariants[0] == BI->getCondition()));
2924      // Calculate cost multiplier which is a tool to limit potentially
2925      // exponential behavior of loop-unswitch.
2926      if (EnableUnswitchCostMultiplier) {
2927        int CostMultiplier =
2928            CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2929        assert(
2930            (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2931            "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2932        CandidateCost *= CostMultiplier;
2933        LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2934                          << " (multiplier: " << CostMultiplier << ")"
2935                          << " for unswitch candidate: " << TI << "\n");
2936      } else {
2937        LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2938                          << " for unswitch candidate: " << TI << "\n");
2939      }
2940  
2941      if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2942        BestUnswitchTI = &TI;
2943        BestUnswitchCost = CandidateCost;
2944        BestUnswitchInvariants = Invariants;
2945      }
2946    }
2947    assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2948  
2949    if (BestUnswitchCost >= UnswitchThreshold) {
2950      LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2951                        << BestUnswitchCost << "\n");
2952      return false;
2953    }
2954  
2955    if (BestUnswitchTI != PartialIVCondBranch)
2956      PartialIVInfo.InstToDuplicate.clear();
2957  
2958    // If the best candidate is a guard, turn it into a branch.
2959    if (isGuard(BestUnswitchTI))
2960      BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2961                                           ExitBlocks, DT, LI, MSSAU);
2962  
2963    LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
2964                      << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2965                      << "\n");
2966    unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2967                                 ExitBlocks, PartialIVInfo, DT, LI, AC,
2968                                 UnswitchCB, SE, MSSAU, DestroyLoopCB);
2969    return true;
2970  }
2971  
2972  /// Unswitch control flow predicated on loop invariant conditions.
2973  ///
2974  /// This first hoists all branches or switches which are trivial (IE, do not
2975  /// require duplicating any part of the loop) out of the loop body. It then
2976  /// looks at other loop invariant control flows and tries to unswitch those as
2977  /// well by cloning the loop if the result is small enough.
2978  ///
2979  /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
2980  /// also updated based on the unswitch. The `MSSA` analysis is also updated if
2981  /// valid (i.e. its use is enabled).
2982  ///
2983  /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2984  /// true, we will attempt to do non-trivial unswitching as well as trivial
2985  /// unswitching.
2986  ///
2987  /// The `UnswitchCB` callback provided will be run after unswitching is
2988  /// complete, with the first parameter set to `true` if the provided loop
2989  /// remains a loop, and a list of new sibling loops created.
2990  ///
2991  /// If `SE` is non-null, we will update that analysis based on the unswitching
2992  /// done.
2993  static bool
2994  unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2995               AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
2996               bool NonTrivial,
2997               function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2998               ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2999               function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3000    assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3001           "Loops must be in LCSSA form before unswitching.");
3002  
3003    // Must be in loop simplified form: we need a preheader and dedicated exits.
3004    if (!L.isLoopSimplifyForm())
3005      return false;
3006  
3007    // Try trivial unswitch first before loop over other basic blocks in the loop.
3008    if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3009      // If we unswitched successfully we will want to clean up the loop before
3010      // processing it further so just mark it as unswitched and return.
3011      UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3012      return true;
3013    }
3014  
3015    // Check whether we should continue with non-trivial conditions.
3016    // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3017    //                           unswitching for testing and debugging.
3018    // NonTrivial: Parameter that enables non-trivial unswitching for this
3019    //             invocation of the transform. But this should be allowed only
3020    //             for targets without branch divergence.
3021    //
3022    // FIXME: If divergence analysis becomes available to a loop
3023    // transform, we should allow unswitching for non-trivial uniform
3024    // branches even on targets that have divergence.
3025    // https://bugs.llvm.org/show_bug.cgi?id=48819
3026    bool ContinueWithNonTrivial =
3027        EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3028    if (!ContinueWithNonTrivial)
3029      return false;
3030  
3031    // Skip non-trivial unswitching for optsize functions.
3032    if (L.getHeader()->getParent()->hasOptSize())
3033      return false;
3034  
3035    // Skip non-trivial unswitching for loops that cannot be cloned.
3036    if (!L.isSafeToClone())
3037      return false;
3038  
3039    // For non-trivial unswitching, because it often creates new loops, we rely on
3040    // the pass manager to iterate on the loops rather than trying to immediately
3041    // reach a fixed point. There is no substantial advantage to iterating
3042    // internally, and if any of the new loops are simplified enough to contain
3043    // trivial unswitching we want to prefer those.
3044  
3045    // Try to unswitch the best invariant condition. We prefer this full unswitch to
3046    // a partial unswitch when possible below the threshold.
3047    if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
3048                              DestroyLoopCB))
3049      return true;
3050  
3051    // No other opportunities to unswitch.
3052    return false;
3053  }
3054  
3055  PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3056                                                LoopStandardAnalysisResults &AR,
3057                                                LPMUpdater &U) {
3058    Function &F = *L.getHeader()->getParent();
3059    (void)F;
3060  
3061    LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3062                      << "\n");
3063  
3064    // Save the current loop name in a variable so that we can report it even
3065    // after it has been deleted.
3066    std::string LoopName = std::string(L.getName());
3067  
3068    auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3069                                          bool PartiallyInvariant,
3070                                          ArrayRef<Loop *> NewLoops) {
3071      // If we did a non-trivial unswitch, we have added new (cloned) loops.
3072      if (!NewLoops.empty())
3073        U.addSiblingLoops(NewLoops);
3074  
3075      // If the current loop remains valid, we should revisit it to catch any
3076      // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3077      if (CurrentLoopValid) {
3078        if (PartiallyInvariant) {
3079          // Mark the new loop as partially unswitched, to avoid unswitching on
3080          // the same condition again.
3081          auto &Context = L.getHeader()->getContext();
3082          MDNode *DisableUnswitchMD = MDNode::get(
3083              Context,
3084              MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3085          MDNode *NewLoopID = makePostTransformationMetadata(
3086              Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3087              {DisableUnswitchMD});
3088          L.setLoopID(NewLoopID);
3089        } else
3090          U.revisitCurrentLoop();
3091      } else
3092        U.markLoopAsDeleted(L, LoopName);
3093    };
3094  
3095    auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
3096      U.markLoopAsDeleted(L, Name);
3097    };
3098  
3099    Optional<MemorySSAUpdater> MSSAU;
3100    if (AR.MSSA) {
3101      MSSAU = MemorySSAUpdater(AR.MSSA);
3102      if (VerifyMemorySSA)
3103        AR.MSSA->verifyMemorySSA();
3104    }
3105    if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3106                      UnswitchCB, &AR.SE,
3107                      MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
3108                      DestroyLoopCB))
3109      return PreservedAnalyses::all();
3110  
3111    if (AR.MSSA && VerifyMemorySSA)
3112      AR.MSSA->verifyMemorySSA();
3113  
3114    // Historically this pass has had issues with the dominator tree so verify it
3115    // in asserts builds.
3116    assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3117  
3118    auto PA = getLoopPassPreservedAnalyses();
3119    if (AR.MSSA)
3120      PA.preserve<MemorySSAAnalysis>();
3121    return PA;
3122  }
3123  
3124  namespace {
3125  
3126  class SimpleLoopUnswitchLegacyPass : public LoopPass {
3127    bool NonTrivial;
3128  
3129  public:
3130    static char ID; // Pass ID, replacement for typeid
3131  
3132    explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3133        : LoopPass(ID), NonTrivial(NonTrivial) {
3134      initializeSimpleLoopUnswitchLegacyPassPass(
3135          *PassRegistry::getPassRegistry());
3136    }
3137  
3138    bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3139  
3140    void getAnalysisUsage(AnalysisUsage &AU) const override {
3141      AU.addRequired<AssumptionCacheTracker>();
3142      AU.addRequired<TargetTransformInfoWrapperPass>();
3143      if (EnableMSSALoopDependency) {
3144        AU.addRequired<MemorySSAWrapperPass>();
3145        AU.addPreserved<MemorySSAWrapperPass>();
3146      }
3147      getLoopAnalysisUsage(AU);
3148    }
3149  };
3150  
3151  } // end anonymous namespace
3152  
3153  bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3154    if (skipLoop(L))
3155      return false;
3156  
3157    Function &F = *L->getHeader()->getParent();
3158  
3159    LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3160                      << "\n");
3161  
3162    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3163    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3164    auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3165    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3166    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3167    MemorySSA *MSSA = nullptr;
3168    Optional<MemorySSAUpdater> MSSAU;
3169    if (EnableMSSALoopDependency) {
3170      MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3171      MSSAU = MemorySSAUpdater(MSSA);
3172    }
3173  
3174    auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3175    auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3176  
3177    auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3178                                 ArrayRef<Loop *> NewLoops) {
3179      // If we did a non-trivial unswitch, we have added new (cloned) loops.
3180      for (auto *NewL : NewLoops)
3181        LPM.addLoop(*NewL);
3182  
3183      // If the current loop remains valid, re-add it to the queue. This is
3184      // a little wasteful as we'll finish processing the current loop as well,
3185      // but it is the best we can do in the old PM.
3186      if (CurrentLoopValid) {
3187        // If the current loop has been unswitched using a partially invariant
3188        // condition, we should not re-add the current loop to avoid unswitching
3189        // on the same condition again.
3190        if (!PartiallyInvariant)
3191          LPM.addLoop(*L);
3192      } else
3193        LPM.markLoopAsDeleted(*L);
3194    };
3195  
3196    auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
3197      LPM.markLoopAsDeleted(L);
3198    };
3199  
3200    if (MSSA && VerifyMemorySSA)
3201      MSSA->verifyMemorySSA();
3202  
3203    bool Changed =
3204        unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial, UnswitchCB, SE,
3205                     MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
3206                     DestroyLoopCB);
3207  
3208    if (MSSA && VerifyMemorySSA)
3209      MSSA->verifyMemorySSA();
3210  
3211    // Historically this pass has had issues with the dominator tree so verify it
3212    // in asserts builds.
3213    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3214  
3215    return Changed;
3216  }
3217  
3218  char SimpleLoopUnswitchLegacyPass::ID = 0;
3219  INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3220                        "Simple unswitch loops", false, false)
3221  INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3222  INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3223  INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3224  INITIALIZE_PASS_DEPENDENCY(LoopPass)
3225  INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3226  INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3227  INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3228                      "Simple unswitch loops", false, false)
3229  
3230  Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3231    return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3232  }
3233