1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/MustExecute.h" 30 #include "llvm/Analysis/ScalarEvolution.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/GenericDomTree.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 52 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 53 #include "llvm/Transforms/Utils/Cloning.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include "llvm/Transforms/Utils/LoopUtils.h" 56 #include "llvm/Transforms/Utils/ValueMapper.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <iterator> 60 #include <numeric> 61 #include <utility> 62 63 #define DEBUG_TYPE "simple-loop-unswitch" 64 65 using namespace llvm; 66 67 STATISTIC(NumBranches, "Number of branches unswitched"); 68 STATISTIC(NumSwitches, "Number of switches unswitched"); 69 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 70 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 71 STATISTIC( 72 NumCostMultiplierSkipped, 73 "Number of unswitch candidates that had their cost multiplier skipped"); 74 75 static cl::opt<bool> EnableNonTrivialUnswitch( 76 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 77 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 78 "following the configuration passed into the pass.")); 79 80 static cl::opt<int> 81 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 82 cl::desc("The cost threshold for unswitching a loop.")); 83 84 static cl::opt<bool> EnableUnswitchCostMultiplier( 85 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 86 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 87 "explosion in nontrivial unswitch.")); 88 static cl::opt<int> UnswitchSiblingsToplevelDiv( 89 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 90 cl::desc("Toplevel siblings divisor for cost multiplier.")); 91 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 92 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 93 cl::desc("Number of unswitch candidates that are ignored when calculating " 94 "cost multiplier.")); 95 static cl::opt<bool> UnswitchGuards( 96 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 97 cl::desc("If enabled, simple loop unswitching will also consider " 98 "llvm.experimental.guard intrinsics as unswitch candidates.")); 99 static cl::opt<bool> DropNonTrivialImplicitNullChecks( 100 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks", 101 cl::init(false), cl::Hidden, 102 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit " 103 "null checks to save time analyzing if we can keep it.")); 104 105 /// Collect all of the loop invariant input values transitively used by the 106 /// homogeneous instruction graph from a given root. 107 /// 108 /// This essentially walks from a root recursively through loop variant operands 109 /// which have the exact same opcode and finds all inputs which are loop 110 /// invariant. For some operations these can be re-associated and unswitched out 111 /// of the loop entirely. 112 static TinyPtrVector<Value *> 113 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 114 LoopInfo &LI) { 115 assert(!L.isLoopInvariant(&Root) && 116 "Only need to walk the graph if root itself is not invariant."); 117 TinyPtrVector<Value *> Invariants; 118 119 // Build a worklist and recurse through operators collecting invariants. 120 SmallVector<Instruction *, 4> Worklist; 121 SmallPtrSet<Instruction *, 8> Visited; 122 Worklist.push_back(&Root); 123 Visited.insert(&Root); 124 do { 125 Instruction &I = *Worklist.pop_back_val(); 126 for (Value *OpV : I.operand_values()) { 127 // Skip constants as unswitching isn't interesting for them. 128 if (isa<Constant>(OpV)) 129 continue; 130 131 // Add it to our result if loop invariant. 132 if (L.isLoopInvariant(OpV)) { 133 Invariants.push_back(OpV); 134 continue; 135 } 136 137 // If not an instruction with the same opcode, nothing we can do. 138 Instruction *OpI = dyn_cast<Instruction>(OpV); 139 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 140 continue; 141 142 // Visit this operand. 143 if (Visited.insert(OpI).second) 144 Worklist.push_back(OpI); 145 } 146 } while (!Worklist.empty()); 147 148 return Invariants; 149 } 150 151 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 152 Constant &Replacement) { 153 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 154 155 // Replace uses of LIC in the loop with the given constant. 156 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 157 // Grab the use and walk past it so we can clobber it in the use list. 158 Use *U = &*UI++; 159 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 160 161 // Replace this use within the loop body. 162 if (UserI && L.contains(UserI)) 163 U->set(&Replacement); 164 } 165 } 166 167 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 168 /// incoming values along this edge. 169 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 170 BasicBlock &ExitBB) { 171 for (Instruction &I : ExitBB) { 172 auto *PN = dyn_cast<PHINode>(&I); 173 if (!PN) 174 // No more PHIs to check. 175 return true; 176 177 // If the incoming value for this edge isn't loop invariant the unswitch 178 // won't be trivial. 179 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 180 return false; 181 } 182 llvm_unreachable("Basic blocks should never be empty!"); 183 } 184 185 /// Insert code to test a set of loop invariant values, and conditionally branch 186 /// on them. 187 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 188 ArrayRef<Value *> Invariants, 189 bool Direction, 190 BasicBlock &UnswitchedSucc, 191 BasicBlock &NormalSucc) { 192 IRBuilder<> IRB(&BB); 193 194 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 195 IRB.CreateAnd(Invariants); 196 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 197 Direction ? &NormalSucc : &UnswitchedSucc); 198 } 199 200 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 201 /// 202 /// Requires that the loop exit and unswitched basic block are the same, and 203 /// that the exiting block was a unique predecessor of that block. Rewrites the 204 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 205 /// PHI nodes from the old preheader that now contains the unswitched 206 /// terminator. 207 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 208 BasicBlock &OldExitingBB, 209 BasicBlock &OldPH) { 210 for (PHINode &PN : UnswitchedBB.phis()) { 211 // When the loop exit is directly unswitched we just need to update the 212 // incoming basic block. We loop to handle weird cases with repeated 213 // incoming blocks, but expect to typically only have one operand here. 214 for (auto i : seq<int>(0, PN.getNumOperands())) { 215 assert(PN.getIncomingBlock(i) == &OldExitingBB && 216 "Found incoming block different from unique predecessor!"); 217 PN.setIncomingBlock(i, &OldPH); 218 } 219 } 220 } 221 222 /// Rewrite the PHI nodes in the loop exit basic block and the split off 223 /// unswitched block. 224 /// 225 /// Because the exit block remains an exit from the loop, this rewrites the 226 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 227 /// nodes into the unswitched basic block to select between the value in the 228 /// old preheader and the loop exit. 229 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 230 BasicBlock &UnswitchedBB, 231 BasicBlock &OldExitingBB, 232 BasicBlock &OldPH, 233 bool FullUnswitch) { 234 assert(&ExitBB != &UnswitchedBB && 235 "Must have different loop exit and unswitched blocks!"); 236 Instruction *InsertPt = &*UnswitchedBB.begin(); 237 for (PHINode &PN : ExitBB.phis()) { 238 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 239 PN.getName() + ".split", InsertPt); 240 241 // Walk backwards over the old PHI node's inputs to minimize the cost of 242 // removing each one. We have to do this weird loop manually so that we 243 // create the same number of new incoming edges in the new PHI as we expect 244 // each case-based edge to be included in the unswitched switch in some 245 // cases. 246 // FIXME: This is really, really gross. It would be much cleaner if LLVM 247 // allowed us to create a single entry for a predecessor block without 248 // having separate entries for each "edge" even though these edges are 249 // required to produce identical results. 250 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 251 if (PN.getIncomingBlock(i) != &OldExitingBB) 252 continue; 253 254 Value *Incoming = PN.getIncomingValue(i); 255 if (FullUnswitch) 256 // No more edge from the old exiting block to the exit block. 257 PN.removeIncomingValue(i); 258 259 NewPN->addIncoming(Incoming, &OldPH); 260 } 261 262 // Now replace the old PHI with the new one and wire the old one in as an 263 // input to the new one. 264 PN.replaceAllUsesWith(NewPN); 265 NewPN->addIncoming(&PN, &ExitBB); 266 } 267 } 268 269 /// Hoist the current loop up to the innermost loop containing a remaining exit. 270 /// 271 /// Because we've removed an exit from the loop, we may have changed the set of 272 /// loops reachable and need to move the current loop up the loop nest or even 273 /// to an entirely separate nest. 274 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 275 DominatorTree &DT, LoopInfo &LI, 276 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 277 // If the loop is already at the top level, we can't hoist it anywhere. 278 Loop *OldParentL = L.getParentLoop(); 279 if (!OldParentL) 280 return; 281 282 SmallVector<BasicBlock *, 4> Exits; 283 L.getExitBlocks(Exits); 284 Loop *NewParentL = nullptr; 285 for (auto *ExitBB : Exits) 286 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 287 if (!NewParentL || NewParentL->contains(ExitL)) 288 NewParentL = ExitL; 289 290 if (NewParentL == OldParentL) 291 return; 292 293 // The new parent loop (if different) should always contain the old one. 294 if (NewParentL) 295 assert(NewParentL->contains(OldParentL) && 296 "Can only hoist this loop up the nest!"); 297 298 // The preheader will need to move with the body of this loop. However, 299 // because it isn't in this loop we also need to update the primary loop map. 300 assert(OldParentL == LI.getLoopFor(&Preheader) && 301 "Parent loop of this loop should contain this loop's preheader!"); 302 LI.changeLoopFor(&Preheader, NewParentL); 303 304 // Remove this loop from its old parent. 305 OldParentL->removeChildLoop(&L); 306 307 // Add the loop either to the new parent or as a top-level loop. 308 if (NewParentL) 309 NewParentL->addChildLoop(&L); 310 else 311 LI.addTopLevelLoop(&L); 312 313 // Remove this loops blocks from the old parent and every other loop up the 314 // nest until reaching the new parent. Also update all of these 315 // no-longer-containing loops to reflect the nesting change. 316 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 317 OldContainingL = OldContainingL->getParentLoop()) { 318 llvm::erase_if(OldContainingL->getBlocksVector(), 319 [&](const BasicBlock *BB) { 320 return BB == &Preheader || L.contains(BB); 321 }); 322 323 OldContainingL->getBlocksSet().erase(&Preheader); 324 for (BasicBlock *BB : L.blocks()) 325 OldContainingL->getBlocksSet().erase(BB); 326 327 // Because we just hoisted a loop out of this one, we have essentially 328 // created new exit paths from it. That means we need to form LCSSA PHI 329 // nodes for values used in the no-longer-nested loop. 330 formLCSSA(*OldContainingL, DT, &LI, SE); 331 332 // We shouldn't need to form dedicated exits because the exit introduced 333 // here is the (just split by unswitching) preheader. However, after trivial 334 // unswitching it is possible to get new non-dedicated exits out of parent 335 // loop so let's conservatively form dedicated exit blocks and figure out 336 // if we can optimize later. 337 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 338 /*PreserveLCSSA*/ true); 339 } 340 } 341 342 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 343 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 344 // as exiting block. 345 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 346 Loop *TopMost = LI.getLoopFor(ExitBB); 347 Loop *Current = TopMost; 348 while (Current) { 349 if (Current->isLoopExiting(ExitBB)) 350 TopMost = Current; 351 Current = Current->getParentLoop(); 352 } 353 return TopMost; 354 } 355 356 /// Unswitch a trivial branch if the condition is loop invariant. 357 /// 358 /// This routine should only be called when loop code leading to the branch has 359 /// been validated as trivial (no side effects). This routine checks if the 360 /// condition is invariant and one of the successors is a loop exit. This 361 /// allows us to unswitch without duplicating the loop, making it trivial. 362 /// 363 /// If this routine fails to unswitch the branch it returns false. 364 /// 365 /// If the branch can be unswitched, this routine splits the preheader and 366 /// hoists the branch above that split. Preserves loop simplified form 367 /// (splitting the exit block as necessary). It simplifies the branch within 368 /// the loop to an unconditional branch but doesn't remove it entirely. Further 369 /// cleanup can be done with some simplify-cfg like pass. 370 /// 371 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 372 /// invalidated by this. 373 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 374 LoopInfo &LI, ScalarEvolution *SE, 375 MemorySSAUpdater *MSSAU) { 376 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 377 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 378 379 // The loop invariant values that we want to unswitch. 380 TinyPtrVector<Value *> Invariants; 381 382 // When true, we're fully unswitching the branch rather than just unswitching 383 // some input conditions to the branch. 384 bool FullUnswitch = false; 385 386 if (L.isLoopInvariant(BI.getCondition())) { 387 Invariants.push_back(BI.getCondition()); 388 FullUnswitch = true; 389 } else { 390 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 391 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 392 if (Invariants.empty()) 393 // Couldn't find invariant inputs! 394 return false; 395 } 396 397 // Check that one of the branch's successors exits, and which one. 398 bool ExitDirection = true; 399 int LoopExitSuccIdx = 0; 400 auto *LoopExitBB = BI.getSuccessor(0); 401 if (L.contains(LoopExitBB)) { 402 ExitDirection = false; 403 LoopExitSuccIdx = 1; 404 LoopExitBB = BI.getSuccessor(1); 405 if (L.contains(LoopExitBB)) 406 return false; 407 } 408 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 409 auto *ParentBB = BI.getParent(); 410 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 411 return false; 412 413 // When unswitching only part of the branch's condition, we need the exit 414 // block to be reached directly from the partially unswitched input. This can 415 // be done when the exit block is along the true edge and the branch condition 416 // is a graph of `or` operations, or the exit block is along the false edge 417 // and the condition is a graph of `and` operations. 418 if (!FullUnswitch) { 419 if (ExitDirection) { 420 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 421 return false; 422 } else { 423 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 424 return false; 425 } 426 } 427 428 LLVM_DEBUG({ 429 dbgs() << " unswitching trivial invariant conditions for: " << BI 430 << "\n"; 431 for (Value *Invariant : Invariants) { 432 dbgs() << " " << *Invariant << " == true"; 433 if (Invariant != Invariants.back()) 434 dbgs() << " ||"; 435 dbgs() << "\n"; 436 } 437 }); 438 439 // If we have scalar evolutions, we need to invalidate them including this 440 // loop, the loop containing the exit block and the topmost parent loop 441 // exiting via LoopExitBB. 442 if (SE) { 443 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 444 SE->forgetLoop(ExitL); 445 else 446 // Forget the entire nest as this exits the entire nest. 447 SE->forgetTopmostLoop(&L); 448 } 449 450 if (MSSAU && VerifyMemorySSA) 451 MSSAU->getMemorySSA()->verifyMemorySSA(); 452 453 // Split the preheader, so that we know that there is a safe place to insert 454 // the conditional branch. We will change the preheader to have a conditional 455 // branch on LoopCond. 456 BasicBlock *OldPH = L.getLoopPreheader(); 457 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 458 459 // Now that we have a place to insert the conditional branch, create a place 460 // to branch to: this is the exit block out of the loop that we are 461 // unswitching. We need to split this if there are other loop predecessors. 462 // Because the loop is in simplified form, *any* other predecessor is enough. 463 BasicBlock *UnswitchedBB; 464 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 465 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 466 "A branch's parent isn't a predecessor!"); 467 UnswitchedBB = LoopExitBB; 468 } else { 469 UnswitchedBB = 470 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 471 } 472 473 if (MSSAU && VerifyMemorySSA) 474 MSSAU->getMemorySSA()->verifyMemorySSA(); 475 476 // Actually move the invariant uses into the unswitched position. If possible, 477 // we do this by moving the instructions, but when doing partial unswitching 478 // we do it by building a new merge of the values in the unswitched position. 479 OldPH->getTerminator()->eraseFromParent(); 480 if (FullUnswitch) { 481 // If fully unswitching, we can use the existing branch instruction. 482 // Splice it into the old PH to gate reaching the new preheader and re-point 483 // its successors. 484 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 485 BI); 486 if (MSSAU) { 487 // Temporarily clone the terminator, to make MSSA update cheaper by 488 // separating "insert edge" updates from "remove edge" ones. 489 ParentBB->getInstList().push_back(BI.clone()); 490 } else { 491 // Create a new unconditional branch that will continue the loop as a new 492 // terminator. 493 BranchInst::Create(ContinueBB, ParentBB); 494 } 495 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 496 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 497 } else { 498 // Only unswitching a subset of inputs to the condition, so we will need to 499 // build a new branch that merges the invariant inputs. 500 if (ExitDirection) 501 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 502 Instruction::Or && 503 "Must have an `or` of `i1`s for the condition!"); 504 else 505 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 506 Instruction::And && 507 "Must have an `and` of `i1`s for the condition!"); 508 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 509 *UnswitchedBB, *NewPH); 510 } 511 512 // Update the dominator tree with the added edge. 513 DT.insertEdge(OldPH, UnswitchedBB); 514 515 // After the dominator tree was updated with the added edge, update MemorySSA 516 // if available. 517 if (MSSAU) { 518 SmallVector<CFGUpdate, 1> Updates; 519 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 520 MSSAU->applyInsertUpdates(Updates, DT); 521 } 522 523 // Finish updating dominator tree and memory ssa for full unswitch. 524 if (FullUnswitch) { 525 if (MSSAU) { 526 // Remove the cloned branch instruction. 527 ParentBB->getTerminator()->eraseFromParent(); 528 // Create unconditional branch now. 529 BranchInst::Create(ContinueBB, ParentBB); 530 MSSAU->removeEdge(ParentBB, LoopExitBB); 531 } 532 DT.deleteEdge(ParentBB, LoopExitBB); 533 } 534 535 if (MSSAU && VerifyMemorySSA) 536 MSSAU->getMemorySSA()->verifyMemorySSA(); 537 538 // Rewrite the relevant PHI nodes. 539 if (UnswitchedBB == LoopExitBB) 540 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 541 else 542 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 543 *ParentBB, *OldPH, FullUnswitch); 544 545 // The constant we can replace all of our invariants with inside the loop 546 // body. If any of the invariants have a value other than this the loop won't 547 // be entered. 548 ConstantInt *Replacement = ExitDirection 549 ? ConstantInt::getFalse(BI.getContext()) 550 : ConstantInt::getTrue(BI.getContext()); 551 552 // Since this is an i1 condition we can also trivially replace uses of it 553 // within the loop with a constant. 554 for (Value *Invariant : Invariants) 555 replaceLoopInvariantUses(L, Invariant, *Replacement); 556 557 // If this was full unswitching, we may have changed the nesting relationship 558 // for this loop so hoist it to its correct parent if needed. 559 if (FullUnswitch) 560 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 561 562 if (MSSAU && VerifyMemorySSA) 563 MSSAU->getMemorySSA()->verifyMemorySSA(); 564 565 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 566 ++NumTrivial; 567 ++NumBranches; 568 return true; 569 } 570 571 /// Unswitch a trivial switch if the condition is loop invariant. 572 /// 573 /// This routine should only be called when loop code leading to the switch has 574 /// been validated as trivial (no side effects). This routine checks if the 575 /// condition is invariant and that at least one of the successors is a loop 576 /// exit. This allows us to unswitch without duplicating the loop, making it 577 /// trivial. 578 /// 579 /// If this routine fails to unswitch the switch it returns false. 580 /// 581 /// If the switch can be unswitched, this routine splits the preheader and 582 /// copies the switch above that split. If the default case is one of the 583 /// exiting cases, it copies the non-exiting cases and points them at the new 584 /// preheader. If the default case is not exiting, it copies the exiting cases 585 /// and points the default at the preheader. It preserves loop simplified form 586 /// (splitting the exit blocks as necessary). It simplifies the switch within 587 /// the loop by removing now-dead cases. If the default case is one of those 588 /// unswitched, it replaces its destination with a new basic block containing 589 /// only unreachable. Such basic blocks, while technically loop exits, are not 590 /// considered for unswitching so this is a stable transform and the same 591 /// switch will not be revisited. If after unswitching there is only a single 592 /// in-loop successor, the switch is further simplified to an unconditional 593 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 594 /// 595 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 596 /// invalidated by this. 597 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 598 LoopInfo &LI, ScalarEvolution *SE, 599 MemorySSAUpdater *MSSAU) { 600 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 601 Value *LoopCond = SI.getCondition(); 602 603 // If this isn't switching on an invariant condition, we can't unswitch it. 604 if (!L.isLoopInvariant(LoopCond)) 605 return false; 606 607 auto *ParentBB = SI.getParent(); 608 609 // The same check must be used both for the default and the exit cases. We 610 // should never leave edges from the switch instruction to a basic block that 611 // we are unswitching, hence the condition used to determine the default case 612 // needs to also be used to populate ExitCaseIndices, which is then used to 613 // remove cases from the switch. 614 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) { 615 // BBToCheck is not an exit block if it is inside loop L. 616 if (L.contains(&BBToCheck)) 617 return false; 618 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant. 619 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck)) 620 return false; 621 // We do not unswitch a block that only has an unreachable statement, as 622 // it's possible this is a previously unswitched block. Only unswitch if 623 // either the terminator is not unreachable, or, if it is, it's not the only 624 // instruction in the block. 625 auto *TI = BBToCheck.getTerminator(); 626 bool isUnreachable = isa<UnreachableInst>(TI); 627 return !isUnreachable || 628 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI)); 629 }; 630 631 SmallVector<int, 4> ExitCaseIndices; 632 for (auto Case : SI.cases()) 633 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor())) 634 ExitCaseIndices.push_back(Case.getCaseIndex()); 635 BasicBlock *DefaultExitBB = nullptr; 636 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 637 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 638 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) { 639 DefaultExitBB = SI.getDefaultDest(); 640 } else if (ExitCaseIndices.empty()) 641 return false; 642 643 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 644 645 if (MSSAU && VerifyMemorySSA) 646 MSSAU->getMemorySSA()->verifyMemorySSA(); 647 648 // We may need to invalidate SCEVs for the outermost loop reached by any of 649 // the exits. 650 Loop *OuterL = &L; 651 652 if (DefaultExitBB) { 653 // Clear out the default destination temporarily to allow accurate 654 // predecessor lists to be examined below. 655 SI.setDefaultDest(nullptr); 656 // Check the loop containing this exit. 657 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 658 if (!ExitL || ExitL->contains(OuterL)) 659 OuterL = ExitL; 660 } 661 662 // Store the exit cases into a separate data structure and remove them from 663 // the switch. 664 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 665 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 666 4> ExitCases; 667 ExitCases.reserve(ExitCaseIndices.size()); 668 SwitchInstProfUpdateWrapper SIW(SI); 669 // We walk the case indices backwards so that we remove the last case first 670 // and don't disrupt the earlier indices. 671 for (unsigned Index : reverse(ExitCaseIndices)) { 672 auto CaseI = SI.case_begin() + Index; 673 // Compute the outer loop from this exit. 674 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 675 if (!ExitL || ExitL->contains(OuterL)) 676 OuterL = ExitL; 677 // Save the value of this case. 678 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 679 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 680 // Delete the unswitched cases. 681 SIW.removeCase(CaseI); 682 } 683 684 if (SE) { 685 if (OuterL) 686 SE->forgetLoop(OuterL); 687 else 688 SE->forgetTopmostLoop(&L); 689 } 690 691 // Check if after this all of the remaining cases point at the same 692 // successor. 693 BasicBlock *CommonSuccBB = nullptr; 694 if (SI.getNumCases() > 0 && 695 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) { 696 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor(); 697 })) 698 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 699 if (!DefaultExitBB) { 700 // If we're not unswitching the default, we need it to match any cases to 701 // have a common successor or if we have no cases it is the common 702 // successor. 703 if (SI.getNumCases() == 0) 704 CommonSuccBB = SI.getDefaultDest(); 705 else if (SI.getDefaultDest() != CommonSuccBB) 706 CommonSuccBB = nullptr; 707 } 708 709 // Split the preheader, so that we know that there is a safe place to insert 710 // the switch. 711 BasicBlock *OldPH = L.getLoopPreheader(); 712 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 713 OldPH->getTerminator()->eraseFromParent(); 714 715 // Now add the unswitched switch. 716 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 717 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 718 719 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 720 // First, we split any exit blocks with remaining in-loop predecessors. Then 721 // we update the PHIs in one of two ways depending on if there was a split. 722 // We walk in reverse so that we split in the same order as the cases 723 // appeared. This is purely for convenience of reading the resulting IR, but 724 // it doesn't cost anything really. 725 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 726 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 727 // Handle the default exit if necessary. 728 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 729 // ranges aren't quite powerful enough yet. 730 if (DefaultExitBB) { 731 if (pred_empty(DefaultExitBB)) { 732 UnswitchedExitBBs.insert(DefaultExitBB); 733 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 734 } else { 735 auto *SplitBB = 736 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 737 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 738 *ParentBB, *OldPH, 739 /*FullUnswitch*/ true); 740 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 741 } 742 } 743 // Note that we must use a reference in the for loop so that we update the 744 // container. 745 for (auto &ExitCase : reverse(ExitCases)) { 746 // Grab a reference to the exit block in the pair so that we can update it. 747 BasicBlock *ExitBB = std::get<1>(ExitCase); 748 749 // If this case is the last edge into the exit block, we can simply reuse it 750 // as it will no longer be a loop exit. No mapping necessary. 751 if (pred_empty(ExitBB)) { 752 // Only rewrite once. 753 if (UnswitchedExitBBs.insert(ExitBB).second) 754 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 755 continue; 756 } 757 758 // Otherwise we need to split the exit block so that we retain an exit 759 // block from the loop and a target for the unswitched condition. 760 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 761 if (!SplitExitBB) { 762 // If this is the first time we see this, do the split and remember it. 763 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 764 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 765 *ParentBB, *OldPH, 766 /*FullUnswitch*/ true); 767 } 768 // Update the case pair to point to the split block. 769 std::get<1>(ExitCase) = SplitExitBB; 770 } 771 772 // Now add the unswitched cases. We do this in reverse order as we built them 773 // in reverse order. 774 for (auto &ExitCase : reverse(ExitCases)) { 775 ConstantInt *CaseVal = std::get<0>(ExitCase); 776 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 777 778 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 779 } 780 781 // If the default was unswitched, re-point it and add explicit cases for 782 // entering the loop. 783 if (DefaultExitBB) { 784 NewSIW->setDefaultDest(DefaultExitBB); 785 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 786 787 // We removed all the exit cases, so we just copy the cases to the 788 // unswitched switch. 789 for (const auto &Case : SI.cases()) 790 NewSIW.addCase(Case.getCaseValue(), NewPH, 791 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 792 } else if (DefaultCaseWeight) { 793 // We have to set branch weight of the default case. 794 uint64_t SW = *DefaultCaseWeight; 795 for (const auto &Case : SI.cases()) { 796 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 797 assert(W && 798 "case weight must be defined as default case weight is defined"); 799 SW += *W; 800 } 801 NewSIW.setSuccessorWeight(0, SW); 802 } 803 804 // If we ended up with a common successor for every path through the switch 805 // after unswitching, rewrite it to an unconditional branch to make it easy 806 // to recognize. Otherwise we potentially have to recognize the default case 807 // pointing at unreachable and other complexity. 808 if (CommonSuccBB) { 809 BasicBlock *BB = SI.getParent(); 810 // We may have had multiple edges to this common successor block, so remove 811 // them as predecessors. We skip the first one, either the default or the 812 // actual first case. 813 bool SkippedFirst = DefaultExitBB == nullptr; 814 for (auto Case : SI.cases()) { 815 assert(Case.getCaseSuccessor() == CommonSuccBB && 816 "Non-common successor!"); 817 (void)Case; 818 if (!SkippedFirst) { 819 SkippedFirst = true; 820 continue; 821 } 822 CommonSuccBB->removePredecessor(BB, 823 /*KeepOneInputPHIs*/ true); 824 } 825 // Now nuke the switch and replace it with a direct branch. 826 SIW.eraseFromParent(); 827 BranchInst::Create(CommonSuccBB, BB); 828 } else if (DefaultExitBB) { 829 assert(SI.getNumCases() > 0 && 830 "If we had no cases we'd have a common successor!"); 831 // Move the last case to the default successor. This is valid as if the 832 // default got unswitched it cannot be reached. This has the advantage of 833 // being simple and keeping the number of edges from this switch to 834 // successors the same, and avoiding any PHI update complexity. 835 auto LastCaseI = std::prev(SI.case_end()); 836 837 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 838 SIW.setSuccessorWeight( 839 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 840 SIW.removeCase(LastCaseI); 841 } 842 843 // Walk the unswitched exit blocks and the unswitched split blocks and update 844 // the dominator tree based on the CFG edits. While we are walking unordered 845 // containers here, the API for applyUpdates takes an unordered list of 846 // updates and requires them to not contain duplicates. 847 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 848 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 849 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 850 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 851 } 852 for (auto SplitUnswitchedPair : SplitExitBBMap) { 853 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 854 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 855 } 856 857 if (MSSAU) { 858 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true); 859 if (VerifyMemorySSA) 860 MSSAU->getMemorySSA()->verifyMemorySSA(); 861 } else { 862 DT.applyUpdates(DTUpdates); 863 } 864 865 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 866 867 // We may have changed the nesting relationship for this loop so hoist it to 868 // its correct parent if needed. 869 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 870 871 if (MSSAU && VerifyMemorySSA) 872 MSSAU->getMemorySSA()->verifyMemorySSA(); 873 874 ++NumTrivial; 875 ++NumSwitches; 876 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 877 return true; 878 } 879 880 /// This routine scans the loop to find a branch or switch which occurs before 881 /// any side effects occur. These can potentially be unswitched without 882 /// duplicating the loop. If a branch or switch is successfully unswitched the 883 /// scanning continues to see if subsequent branches or switches have become 884 /// trivial. Once all trivial candidates have been unswitched, this routine 885 /// returns. 886 /// 887 /// The return value indicates whether anything was unswitched (and therefore 888 /// changed). 889 /// 890 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 891 /// invalidated by this. 892 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 893 LoopInfo &LI, ScalarEvolution *SE, 894 MemorySSAUpdater *MSSAU) { 895 bool Changed = false; 896 897 // If loop header has only one reachable successor we should keep looking for 898 // trivial condition candidates in the successor as well. An alternative is 899 // to constant fold conditions and merge successors into loop header (then we 900 // only need to check header's terminator). The reason for not doing this in 901 // LoopUnswitch pass is that it could potentially break LoopPassManager's 902 // invariants. Folding dead branches could either eliminate the current loop 903 // or make other loops unreachable. LCSSA form might also not be preserved 904 // after deleting branches. The following code keeps traversing loop header's 905 // successors until it finds the trivial condition candidate (condition that 906 // is not a constant). Since unswitching generates branches with constant 907 // conditions, this scenario could be very common in practice. 908 BasicBlock *CurrentBB = L.getHeader(); 909 SmallPtrSet<BasicBlock *, 8> Visited; 910 Visited.insert(CurrentBB); 911 do { 912 // Check if there are any side-effecting instructions (e.g. stores, calls, 913 // volatile loads) in the part of the loop that the code *would* execute 914 // without unswitching. 915 if (MSSAU) // Possible early exit with MSSA 916 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 917 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 918 return Changed; 919 if (llvm::any_of(*CurrentBB, 920 [](Instruction &I) { return I.mayHaveSideEffects(); })) 921 return Changed; 922 923 Instruction *CurrentTerm = CurrentBB->getTerminator(); 924 925 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 926 // Don't bother trying to unswitch past a switch with a constant 927 // condition. This should be removed prior to running this pass by 928 // simplify-cfg. 929 if (isa<Constant>(SI->getCondition())) 930 return Changed; 931 932 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 933 // Couldn't unswitch this one so we're done. 934 return Changed; 935 936 // Mark that we managed to unswitch something. 937 Changed = true; 938 939 // If unswitching turned the terminator into an unconditional branch then 940 // we can continue. The unswitching logic specifically works to fold any 941 // cases it can into an unconditional branch to make it easier to 942 // recognize here. 943 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 944 if (!BI || BI->isConditional()) 945 return Changed; 946 947 CurrentBB = BI->getSuccessor(0); 948 continue; 949 } 950 951 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 952 if (!BI) 953 // We do not understand other terminator instructions. 954 return Changed; 955 956 // Don't bother trying to unswitch past an unconditional branch or a branch 957 // with a constant value. These should be removed by simplify-cfg prior to 958 // running this pass. 959 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 960 return Changed; 961 962 // Found a trivial condition candidate: non-foldable conditional branch. If 963 // we fail to unswitch this, we can't do anything else that is trivial. 964 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 965 return Changed; 966 967 // Mark that we managed to unswitch something. 968 Changed = true; 969 970 // If we only unswitched some of the conditions feeding the branch, we won't 971 // have collapsed it to a single successor. 972 BI = cast<BranchInst>(CurrentBB->getTerminator()); 973 if (BI->isConditional()) 974 return Changed; 975 976 // Follow the newly unconditional branch into its successor. 977 CurrentBB = BI->getSuccessor(0); 978 979 // When continuing, if we exit the loop or reach a previous visited block, 980 // then we can not reach any trivial condition candidates (unfoldable 981 // branch instructions or switch instructions) and no unswitch can happen. 982 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 983 984 return Changed; 985 } 986 987 /// Build the cloned blocks for an unswitched copy of the given loop. 988 /// 989 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 990 /// after the split block (`SplitBB`) that will be used to select between the 991 /// cloned and original loop. 992 /// 993 /// This routine handles cloning all of the necessary loop blocks and exit 994 /// blocks including rewriting their instructions and the relevant PHI nodes. 995 /// Any loop blocks or exit blocks which are dominated by a different successor 996 /// than the one for this clone of the loop blocks can be trivially skipped. We 997 /// use the `DominatingSucc` map to determine whether a block satisfies that 998 /// property with a simple map lookup. 999 /// 1000 /// It also correctly creates the unconditional branch in the cloned 1001 /// unswitched parent block to only point at the unswitched successor. 1002 /// 1003 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 1004 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 1005 /// the cloned blocks (and their loops) are left without full `LoopInfo` 1006 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 1007 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 1008 /// instead the caller must recompute an accurate DT. It *does* correctly 1009 /// update the `AssumptionCache` provided in `AC`. 1010 static BasicBlock *buildClonedLoopBlocks( 1011 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 1012 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 1013 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 1014 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 1015 ValueToValueMapTy &VMap, 1016 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 1017 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 1018 SmallVector<BasicBlock *, 4> NewBlocks; 1019 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 1020 1021 // We will need to clone a bunch of blocks, wrap up the clone operation in 1022 // a helper. 1023 auto CloneBlock = [&](BasicBlock *OldBB) { 1024 // Clone the basic block and insert it before the new preheader. 1025 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1026 NewBB->moveBefore(LoopPH); 1027 1028 // Record this block and the mapping. 1029 NewBlocks.push_back(NewBB); 1030 VMap[OldBB] = NewBB; 1031 1032 return NewBB; 1033 }; 1034 1035 // We skip cloning blocks when they have a dominating succ that is not the 1036 // succ we are cloning for. 1037 auto SkipBlock = [&](BasicBlock *BB) { 1038 auto It = DominatingSucc.find(BB); 1039 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1040 }; 1041 1042 // First, clone the preheader. 1043 auto *ClonedPH = CloneBlock(LoopPH); 1044 1045 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1046 for (auto *LoopBB : L.blocks()) 1047 if (!SkipBlock(LoopBB)) 1048 CloneBlock(LoopBB); 1049 1050 // Split all the loop exit edges so that when we clone the exit blocks, if 1051 // any of the exit blocks are *also* a preheader for some other loop, we 1052 // don't create multiple predecessors entering the loop header. 1053 for (auto *ExitBB : ExitBlocks) { 1054 if (SkipBlock(ExitBB)) 1055 continue; 1056 1057 // When we are going to clone an exit, we don't need to clone all the 1058 // instructions in the exit block and we want to ensure we have an easy 1059 // place to merge the CFG, so split the exit first. This is always safe to 1060 // do because there cannot be any non-loop predecessors of a loop exit in 1061 // loop simplified form. 1062 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1063 1064 // Rearrange the names to make it easier to write test cases by having the 1065 // exit block carry the suffix rather than the merge block carrying the 1066 // suffix. 1067 MergeBB->takeName(ExitBB); 1068 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1069 1070 // Now clone the original exit block. 1071 auto *ClonedExitBB = CloneBlock(ExitBB); 1072 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1073 "Exit block should have been split to have one successor!"); 1074 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1075 "Cloned exit block has the wrong successor!"); 1076 1077 // Remap any cloned instructions and create a merge phi node for them. 1078 for (auto ZippedInsts : llvm::zip_first( 1079 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1080 llvm::make_range(ClonedExitBB->begin(), 1081 std::prev(ClonedExitBB->end())))) { 1082 Instruction &I = std::get<0>(ZippedInsts); 1083 Instruction &ClonedI = std::get<1>(ZippedInsts); 1084 1085 // The only instructions in the exit block should be PHI nodes and 1086 // potentially a landing pad. 1087 assert( 1088 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1089 "Bad instruction in exit block!"); 1090 // We should have a value map between the instruction and its clone. 1091 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1092 1093 auto *MergePN = 1094 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1095 &*MergeBB->getFirstInsertionPt()); 1096 I.replaceAllUsesWith(MergePN); 1097 MergePN->addIncoming(&I, ExitBB); 1098 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1099 } 1100 } 1101 1102 // Rewrite the instructions in the cloned blocks to refer to the instructions 1103 // in the cloned blocks. We have to do this as a second pass so that we have 1104 // everything available. Also, we have inserted new instructions which may 1105 // include assume intrinsics, so we update the assumption cache while 1106 // processing this. 1107 for (auto *ClonedBB : NewBlocks) 1108 for (Instruction &I : *ClonedBB) { 1109 RemapInstruction(&I, VMap, 1110 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1111 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1112 if (II->getIntrinsicID() == Intrinsic::assume) 1113 AC.registerAssumption(II); 1114 } 1115 1116 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1117 // have spurious incoming values. 1118 for (auto *LoopBB : L.blocks()) 1119 if (SkipBlock(LoopBB)) 1120 for (auto *SuccBB : successors(LoopBB)) 1121 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1122 for (PHINode &PN : ClonedSuccBB->phis()) 1123 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1124 1125 // Remove the cloned parent as a predecessor of any successor we ended up 1126 // cloning other than the unswitched one. 1127 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1128 for (auto *SuccBB : successors(ParentBB)) { 1129 if (SuccBB == UnswitchedSuccBB) 1130 continue; 1131 1132 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1133 if (!ClonedSuccBB) 1134 continue; 1135 1136 ClonedSuccBB->removePredecessor(ClonedParentBB, 1137 /*KeepOneInputPHIs*/ true); 1138 } 1139 1140 // Replace the cloned branch with an unconditional branch to the cloned 1141 // unswitched successor. 1142 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1143 Instruction *ClonedTerminator = ClonedParentBB->getTerminator(); 1144 // Trivial Simplification. If Terminator is a conditional branch and 1145 // condition becomes dead - erase it. 1146 Value *ClonedConditionToErase = nullptr; 1147 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator)) 1148 ClonedConditionToErase = BI->getCondition(); 1149 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator)) 1150 ClonedConditionToErase = SI->getCondition(); 1151 1152 ClonedTerminator->eraseFromParent(); 1153 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1154 1155 if (ClonedConditionToErase) 1156 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr, 1157 MSSAU); 1158 1159 // If there are duplicate entries in the PHI nodes because of multiple edges 1160 // to the unswitched successor, we need to nuke all but one as we replaced it 1161 // with a direct branch. 1162 for (PHINode &PN : ClonedSuccBB->phis()) { 1163 bool Found = false; 1164 // Loop over the incoming operands backwards so we can easily delete as we 1165 // go without invalidating the index. 1166 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1167 if (PN.getIncomingBlock(i) != ClonedParentBB) 1168 continue; 1169 if (!Found) { 1170 Found = true; 1171 continue; 1172 } 1173 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1174 } 1175 } 1176 1177 // Record the domtree updates for the new blocks. 1178 SmallPtrSet<BasicBlock *, 4> SuccSet; 1179 for (auto *ClonedBB : NewBlocks) { 1180 for (auto *SuccBB : successors(ClonedBB)) 1181 if (SuccSet.insert(SuccBB).second) 1182 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1183 SuccSet.clear(); 1184 } 1185 1186 return ClonedPH; 1187 } 1188 1189 /// Recursively clone the specified loop and all of its children. 1190 /// 1191 /// The target parent loop for the clone should be provided, or can be null if 1192 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1193 /// with the provided value map. The entire original loop must be present in 1194 /// the value map. The cloned loop is returned. 1195 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1196 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1197 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1198 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1199 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1200 for (auto *BB : OrigL.blocks()) { 1201 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1202 ClonedL.addBlockEntry(ClonedBB); 1203 if (LI.getLoopFor(BB) == &OrigL) 1204 LI.changeLoopFor(ClonedBB, &ClonedL); 1205 } 1206 }; 1207 1208 // We specially handle the first loop because it may get cloned into 1209 // a different parent and because we most commonly are cloning leaf loops. 1210 Loop *ClonedRootL = LI.AllocateLoop(); 1211 if (RootParentL) 1212 RootParentL->addChildLoop(ClonedRootL); 1213 else 1214 LI.addTopLevelLoop(ClonedRootL); 1215 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1216 1217 if (OrigRootL.isInnermost()) 1218 return ClonedRootL; 1219 1220 // If we have a nest, we can quickly clone the entire loop nest using an 1221 // iterative approach because it is a tree. We keep the cloned parent in the 1222 // data structure to avoid repeatedly querying through a map to find it. 1223 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1224 // Build up the loops to clone in reverse order as we'll clone them from the 1225 // back. 1226 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1227 LoopsToClone.push_back({ClonedRootL, ChildL}); 1228 do { 1229 Loop *ClonedParentL, *L; 1230 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1231 Loop *ClonedL = LI.AllocateLoop(); 1232 ClonedParentL->addChildLoop(ClonedL); 1233 AddClonedBlocksToLoop(*L, *ClonedL); 1234 for (Loop *ChildL : llvm::reverse(*L)) 1235 LoopsToClone.push_back({ClonedL, ChildL}); 1236 } while (!LoopsToClone.empty()); 1237 1238 return ClonedRootL; 1239 } 1240 1241 /// Build the cloned loops of an original loop from unswitching. 1242 /// 1243 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1244 /// operation. We need to re-verify that there even is a loop (as the backedge 1245 /// may not have been cloned), and even if there are remaining backedges the 1246 /// backedge set may be different. However, we know that each child loop is 1247 /// undisturbed, we only need to find where to place each child loop within 1248 /// either any parent loop or within a cloned version of the original loop. 1249 /// 1250 /// Because child loops may end up cloned outside of any cloned version of the 1251 /// original loop, multiple cloned sibling loops may be created. All of them 1252 /// are returned so that the newly introduced loop nest roots can be 1253 /// identified. 1254 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1255 const ValueToValueMapTy &VMap, LoopInfo &LI, 1256 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1257 Loop *ClonedL = nullptr; 1258 1259 auto *OrigPH = OrigL.getLoopPreheader(); 1260 auto *OrigHeader = OrigL.getHeader(); 1261 1262 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1263 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1264 1265 // We need to know the loops of the cloned exit blocks to even compute the 1266 // accurate parent loop. If we only clone exits to some parent of the 1267 // original parent, we want to clone into that outer loop. We also keep track 1268 // of the loops that our cloned exit blocks participate in. 1269 Loop *ParentL = nullptr; 1270 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1271 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1272 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1273 for (auto *ExitBB : ExitBlocks) 1274 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1275 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1276 ExitLoopMap[ClonedExitBB] = ExitL; 1277 ClonedExitsInLoops.push_back(ClonedExitBB); 1278 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1279 ParentL = ExitL; 1280 } 1281 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1282 ParentL->contains(OrigL.getParentLoop())) && 1283 "The computed parent loop should always contain (or be) the parent of " 1284 "the original loop."); 1285 1286 // We build the set of blocks dominated by the cloned header from the set of 1287 // cloned blocks out of the original loop. While not all of these will 1288 // necessarily be in the cloned loop, it is enough to establish that they 1289 // aren't in unreachable cycles, etc. 1290 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1291 for (auto *BB : OrigL.blocks()) 1292 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1293 ClonedLoopBlocks.insert(ClonedBB); 1294 1295 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1296 // skipped cloning some region of this loop which can in turn skip some of 1297 // the backedges so we have to rebuild the blocks in the loop based on the 1298 // backedges that remain after cloning. 1299 SmallVector<BasicBlock *, 16> Worklist; 1300 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1301 for (auto *Pred : predecessors(ClonedHeader)) { 1302 // The only possible non-loop header predecessor is the preheader because 1303 // we know we cloned the loop in simplified form. 1304 if (Pred == ClonedPH) 1305 continue; 1306 1307 // Because the loop was in simplified form, the only non-loop predecessor 1308 // should be the preheader. 1309 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1310 "header other than the preheader " 1311 "that is not part of the loop!"); 1312 1313 // Insert this block into the loop set and on the first visit (and if it 1314 // isn't the header we're currently walking) put it into the worklist to 1315 // recurse through. 1316 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1317 Worklist.push_back(Pred); 1318 } 1319 1320 // If we had any backedges then there *is* a cloned loop. Put the header into 1321 // the loop set and then walk the worklist backwards to find all the blocks 1322 // that remain within the loop after cloning. 1323 if (!BlocksInClonedLoop.empty()) { 1324 BlocksInClonedLoop.insert(ClonedHeader); 1325 1326 while (!Worklist.empty()) { 1327 BasicBlock *BB = Worklist.pop_back_val(); 1328 assert(BlocksInClonedLoop.count(BB) && 1329 "Didn't put block into the loop set!"); 1330 1331 // Insert any predecessors that are in the possible set into the cloned 1332 // set, and if the insert is successful, add them to the worklist. Note 1333 // that we filter on the blocks that are definitely reachable via the 1334 // backedge to the loop header so we may prune out dead code within the 1335 // cloned loop. 1336 for (auto *Pred : predecessors(BB)) 1337 if (ClonedLoopBlocks.count(Pred) && 1338 BlocksInClonedLoop.insert(Pred).second) 1339 Worklist.push_back(Pred); 1340 } 1341 1342 ClonedL = LI.AllocateLoop(); 1343 if (ParentL) { 1344 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1345 ParentL->addChildLoop(ClonedL); 1346 } else { 1347 LI.addTopLevelLoop(ClonedL); 1348 } 1349 NonChildClonedLoops.push_back(ClonedL); 1350 1351 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1352 // We don't want to just add the cloned loop blocks based on how we 1353 // discovered them. The original order of blocks was carefully built in 1354 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1355 // that logic, we just re-walk the original blocks (and those of the child 1356 // loops) and filter them as we add them into the cloned loop. 1357 for (auto *BB : OrigL.blocks()) { 1358 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1359 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1360 continue; 1361 1362 // Directly add the blocks that are only in this loop. 1363 if (LI.getLoopFor(BB) == &OrigL) { 1364 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1365 continue; 1366 } 1367 1368 // We want to manually add it to this loop and parents. 1369 // Registering it with LoopInfo will happen when we clone the top 1370 // loop for this block. 1371 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1372 PL->addBlockEntry(ClonedBB); 1373 } 1374 1375 // Now add each child loop whose header remains within the cloned loop. All 1376 // of the blocks within the loop must satisfy the same constraints as the 1377 // header so once we pass the header checks we can just clone the entire 1378 // child loop nest. 1379 for (Loop *ChildL : OrigL) { 1380 auto *ClonedChildHeader = 1381 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1382 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1383 continue; 1384 1385 #ifndef NDEBUG 1386 // We should never have a cloned child loop header but fail to have 1387 // all of the blocks for that child loop. 1388 for (auto *ChildLoopBB : ChildL->blocks()) 1389 assert(BlocksInClonedLoop.count( 1390 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1391 "Child cloned loop has a header within the cloned outer " 1392 "loop but not all of its blocks!"); 1393 #endif 1394 1395 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1396 } 1397 } 1398 1399 // Now that we've handled all the components of the original loop that were 1400 // cloned into a new loop, we still need to handle anything from the original 1401 // loop that wasn't in a cloned loop. 1402 1403 // Figure out what blocks are left to place within any loop nest containing 1404 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1405 // them. 1406 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1407 if (BlocksInClonedLoop.empty()) 1408 UnloopedBlockSet.insert(ClonedPH); 1409 for (auto *ClonedBB : ClonedLoopBlocks) 1410 if (!BlocksInClonedLoop.count(ClonedBB)) 1411 UnloopedBlockSet.insert(ClonedBB); 1412 1413 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1414 // backwards across these to process them inside out. The order shouldn't 1415 // matter as we're just trying to build up the map from inside-out; we use 1416 // the map in a more stably ordered way below. 1417 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1418 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1419 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1420 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1421 }); 1422 1423 // Populate the existing ExitLoopMap with everything reachable from each 1424 // exit, starting from the inner most exit. 1425 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1426 assert(Worklist.empty() && "Didn't clear worklist!"); 1427 1428 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1429 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1430 1431 // Walk the CFG back until we hit the cloned PH adding everything reachable 1432 // and in the unlooped set to this exit block's loop. 1433 Worklist.push_back(ExitBB); 1434 do { 1435 BasicBlock *BB = Worklist.pop_back_val(); 1436 // We can stop recursing at the cloned preheader (if we get there). 1437 if (BB == ClonedPH) 1438 continue; 1439 1440 for (BasicBlock *PredBB : predecessors(BB)) { 1441 // If this pred has already been moved to our set or is part of some 1442 // (inner) loop, no update needed. 1443 if (!UnloopedBlockSet.erase(PredBB)) { 1444 assert( 1445 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1446 "Predecessor not mapped to a loop!"); 1447 continue; 1448 } 1449 1450 // We just insert into the loop set here. We'll add these blocks to the 1451 // exit loop after we build up the set in an order that doesn't rely on 1452 // predecessor order (which in turn relies on use list order). 1453 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1454 (void)Inserted; 1455 assert(Inserted && "Should only visit an unlooped block once!"); 1456 1457 // And recurse through to its predecessors. 1458 Worklist.push_back(PredBB); 1459 } 1460 } while (!Worklist.empty()); 1461 } 1462 1463 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1464 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1465 // in their original order adding them to the correct loop. 1466 1467 // We need a stable insertion order. We use the order of the original loop 1468 // order and map into the correct parent loop. 1469 for (auto *BB : llvm::concat<BasicBlock *const>( 1470 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1471 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1472 OuterL->addBasicBlockToLoop(BB, LI); 1473 1474 #ifndef NDEBUG 1475 for (auto &BBAndL : ExitLoopMap) { 1476 auto *BB = BBAndL.first; 1477 auto *OuterL = BBAndL.second; 1478 assert(LI.getLoopFor(BB) == OuterL && 1479 "Failed to put all blocks into outer loops!"); 1480 } 1481 #endif 1482 1483 // Now that all the blocks are placed into the correct containing loop in the 1484 // absence of child loops, find all the potentially cloned child loops and 1485 // clone them into whatever outer loop we placed their header into. 1486 for (Loop *ChildL : OrigL) { 1487 auto *ClonedChildHeader = 1488 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1489 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1490 continue; 1491 1492 #ifndef NDEBUG 1493 for (auto *ChildLoopBB : ChildL->blocks()) 1494 assert(VMap.count(ChildLoopBB) && 1495 "Cloned a child loop header but not all of that loops blocks!"); 1496 #endif 1497 1498 NonChildClonedLoops.push_back(cloneLoopNest( 1499 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1500 } 1501 } 1502 1503 static void 1504 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1505 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1506 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1507 // Find all the dead clones, and remove them from their successors. 1508 SmallVector<BasicBlock *, 16> DeadBlocks; 1509 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1510 for (auto &VMap : VMaps) 1511 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1512 if (!DT.isReachableFromEntry(ClonedBB)) { 1513 for (BasicBlock *SuccBB : successors(ClonedBB)) 1514 SuccBB->removePredecessor(ClonedBB); 1515 DeadBlocks.push_back(ClonedBB); 1516 } 1517 1518 // Remove all MemorySSA in the dead blocks 1519 if (MSSAU) { 1520 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1521 DeadBlocks.end()); 1522 MSSAU->removeBlocks(DeadBlockSet); 1523 } 1524 1525 // Drop any remaining references to break cycles. 1526 for (BasicBlock *BB : DeadBlocks) 1527 BB->dropAllReferences(); 1528 // Erase them from the IR. 1529 for (BasicBlock *BB : DeadBlocks) 1530 BB->eraseFromParent(); 1531 } 1532 1533 static void deleteDeadBlocksFromLoop(Loop &L, 1534 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1535 DominatorTree &DT, LoopInfo &LI, 1536 MemorySSAUpdater *MSSAU) { 1537 // Find all the dead blocks tied to this loop, and remove them from their 1538 // successors. 1539 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1540 1541 // Start with loop/exit blocks and get a transitive closure of reachable dead 1542 // blocks. 1543 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1544 ExitBlocks.end()); 1545 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1546 while (!DeathCandidates.empty()) { 1547 auto *BB = DeathCandidates.pop_back_val(); 1548 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1549 for (BasicBlock *SuccBB : successors(BB)) { 1550 SuccBB->removePredecessor(BB); 1551 DeathCandidates.push_back(SuccBB); 1552 } 1553 DeadBlockSet.insert(BB); 1554 } 1555 } 1556 1557 // Remove all MemorySSA in the dead blocks 1558 if (MSSAU) 1559 MSSAU->removeBlocks(DeadBlockSet); 1560 1561 // Filter out the dead blocks from the exit blocks list so that it can be 1562 // used in the caller. 1563 llvm::erase_if(ExitBlocks, 1564 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1565 1566 // Walk from this loop up through its parents removing all of the dead blocks. 1567 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1568 for (auto *BB : DeadBlockSet) 1569 ParentL->getBlocksSet().erase(BB); 1570 llvm::erase_if(ParentL->getBlocksVector(), 1571 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1572 } 1573 1574 // Now delete the dead child loops. This raw delete will clear them 1575 // recursively. 1576 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1577 if (!DeadBlockSet.count(ChildL->getHeader())) 1578 return false; 1579 1580 assert(llvm::all_of(ChildL->blocks(), 1581 [&](BasicBlock *ChildBB) { 1582 return DeadBlockSet.count(ChildBB); 1583 }) && 1584 "If the child loop header is dead all blocks in the child loop must " 1585 "be dead as well!"); 1586 LI.destroy(ChildL); 1587 return true; 1588 }); 1589 1590 // Remove the loop mappings for the dead blocks and drop all the references 1591 // from these blocks to others to handle cyclic references as we start 1592 // deleting the blocks themselves. 1593 for (auto *BB : DeadBlockSet) { 1594 // Check that the dominator tree has already been updated. 1595 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1596 LI.changeLoopFor(BB, nullptr); 1597 // Drop all uses of the instructions to make sure we won't have dangling 1598 // uses in other blocks. 1599 for (auto &I : *BB) 1600 if (!I.use_empty()) 1601 I.replaceAllUsesWith(UndefValue::get(I.getType())); 1602 BB->dropAllReferences(); 1603 } 1604 1605 // Actually delete the blocks now that they've been fully unhooked from the 1606 // IR. 1607 for (auto *BB : DeadBlockSet) 1608 BB->eraseFromParent(); 1609 } 1610 1611 /// Recompute the set of blocks in a loop after unswitching. 1612 /// 1613 /// This walks from the original headers predecessors to rebuild the loop. We 1614 /// take advantage of the fact that new blocks can't have been added, and so we 1615 /// filter by the original loop's blocks. This also handles potentially 1616 /// unreachable code that we don't want to explore but might be found examining 1617 /// the predecessors of the header. 1618 /// 1619 /// If the original loop is no longer a loop, this will return an empty set. If 1620 /// it remains a loop, all the blocks within it will be added to the set 1621 /// (including those blocks in inner loops). 1622 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1623 LoopInfo &LI) { 1624 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1625 1626 auto *PH = L.getLoopPreheader(); 1627 auto *Header = L.getHeader(); 1628 1629 // A worklist to use while walking backwards from the header. 1630 SmallVector<BasicBlock *, 16> Worklist; 1631 1632 // First walk the predecessors of the header to find the backedges. This will 1633 // form the basis of our walk. 1634 for (auto *Pred : predecessors(Header)) { 1635 // Skip the preheader. 1636 if (Pred == PH) 1637 continue; 1638 1639 // Because the loop was in simplified form, the only non-loop predecessor 1640 // is the preheader. 1641 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1642 "than the preheader that is not part of the " 1643 "loop!"); 1644 1645 // Insert this block into the loop set and on the first visit and, if it 1646 // isn't the header we're currently walking, put it into the worklist to 1647 // recurse through. 1648 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1649 Worklist.push_back(Pred); 1650 } 1651 1652 // If no backedges were found, we're done. 1653 if (LoopBlockSet.empty()) 1654 return LoopBlockSet; 1655 1656 // We found backedges, recurse through them to identify the loop blocks. 1657 while (!Worklist.empty()) { 1658 BasicBlock *BB = Worklist.pop_back_val(); 1659 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1660 1661 // No need to walk past the header. 1662 if (BB == Header) 1663 continue; 1664 1665 // Because we know the inner loop structure remains valid we can use the 1666 // loop structure to jump immediately across the entire nested loop. 1667 // Further, because it is in loop simplified form, we can directly jump 1668 // to its preheader afterward. 1669 if (Loop *InnerL = LI.getLoopFor(BB)) 1670 if (InnerL != &L) { 1671 assert(L.contains(InnerL) && 1672 "Should not reach a loop *outside* this loop!"); 1673 // The preheader is the only possible predecessor of the loop so 1674 // insert it into the set and check whether it was already handled. 1675 auto *InnerPH = InnerL->getLoopPreheader(); 1676 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1677 "but not contain the inner loop " 1678 "preheader!"); 1679 if (!LoopBlockSet.insert(InnerPH).second) 1680 // The only way to reach the preheader is through the loop body 1681 // itself so if it has been visited the loop is already handled. 1682 continue; 1683 1684 // Insert all of the blocks (other than those already present) into 1685 // the loop set. We expect at least the block that led us to find the 1686 // inner loop to be in the block set, but we may also have other loop 1687 // blocks if they were already enqueued as predecessors of some other 1688 // outer loop block. 1689 for (auto *InnerBB : InnerL->blocks()) { 1690 if (InnerBB == BB) { 1691 assert(LoopBlockSet.count(InnerBB) && 1692 "Block should already be in the set!"); 1693 continue; 1694 } 1695 1696 LoopBlockSet.insert(InnerBB); 1697 } 1698 1699 // Add the preheader to the worklist so we will continue past the 1700 // loop body. 1701 Worklist.push_back(InnerPH); 1702 continue; 1703 } 1704 1705 // Insert any predecessors that were in the original loop into the new 1706 // set, and if the insert is successful, add them to the worklist. 1707 for (auto *Pred : predecessors(BB)) 1708 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1709 Worklist.push_back(Pred); 1710 } 1711 1712 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1713 1714 // We've found all the blocks participating in the loop, return our completed 1715 // set. 1716 return LoopBlockSet; 1717 } 1718 1719 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1720 /// 1721 /// The removal may have removed some child loops entirely but cannot have 1722 /// disturbed any remaining child loops. However, they may need to be hoisted 1723 /// to the parent loop (or to be top-level loops). The original loop may be 1724 /// completely removed. 1725 /// 1726 /// The sibling loops resulting from this update are returned. If the original 1727 /// loop remains a valid loop, it will be the first entry in this list with all 1728 /// of the newly sibling loops following it. 1729 /// 1730 /// Returns true if the loop remains a loop after unswitching, and false if it 1731 /// is no longer a loop after unswitching (and should not continue to be 1732 /// referenced). 1733 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1734 LoopInfo &LI, 1735 SmallVectorImpl<Loop *> &HoistedLoops) { 1736 auto *PH = L.getLoopPreheader(); 1737 1738 // Compute the actual parent loop from the exit blocks. Because we may have 1739 // pruned some exits the loop may be different from the original parent. 1740 Loop *ParentL = nullptr; 1741 SmallVector<Loop *, 4> ExitLoops; 1742 SmallVector<BasicBlock *, 4> ExitsInLoops; 1743 ExitsInLoops.reserve(ExitBlocks.size()); 1744 for (auto *ExitBB : ExitBlocks) 1745 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1746 ExitLoops.push_back(ExitL); 1747 ExitsInLoops.push_back(ExitBB); 1748 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1749 ParentL = ExitL; 1750 } 1751 1752 // Recompute the blocks participating in this loop. This may be empty if it 1753 // is no longer a loop. 1754 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1755 1756 // If we still have a loop, we need to re-set the loop's parent as the exit 1757 // block set changing may have moved it within the loop nest. Note that this 1758 // can only happen when this loop has a parent as it can only hoist the loop 1759 // *up* the nest. 1760 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1761 // Remove this loop's (original) blocks from all of the intervening loops. 1762 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1763 IL = IL->getParentLoop()) { 1764 IL->getBlocksSet().erase(PH); 1765 for (auto *BB : L.blocks()) 1766 IL->getBlocksSet().erase(BB); 1767 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1768 return BB == PH || L.contains(BB); 1769 }); 1770 } 1771 1772 LI.changeLoopFor(PH, ParentL); 1773 L.getParentLoop()->removeChildLoop(&L); 1774 if (ParentL) 1775 ParentL->addChildLoop(&L); 1776 else 1777 LI.addTopLevelLoop(&L); 1778 } 1779 1780 // Now we update all the blocks which are no longer within the loop. 1781 auto &Blocks = L.getBlocksVector(); 1782 auto BlocksSplitI = 1783 LoopBlockSet.empty() 1784 ? Blocks.begin() 1785 : std::stable_partition( 1786 Blocks.begin(), Blocks.end(), 1787 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1788 1789 // Before we erase the list of unlooped blocks, build a set of them. 1790 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1791 if (LoopBlockSet.empty()) 1792 UnloopedBlocks.insert(PH); 1793 1794 // Now erase these blocks from the loop. 1795 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1796 L.getBlocksSet().erase(BB); 1797 Blocks.erase(BlocksSplitI, Blocks.end()); 1798 1799 // Sort the exits in ascending loop depth, we'll work backwards across these 1800 // to process them inside out. 1801 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1802 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1803 }); 1804 1805 // We'll build up a set for each exit loop. 1806 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1807 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1808 1809 auto RemoveUnloopedBlocksFromLoop = 1810 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1811 for (auto *BB : UnloopedBlocks) 1812 L.getBlocksSet().erase(BB); 1813 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1814 return UnloopedBlocks.count(BB); 1815 }); 1816 }; 1817 1818 SmallVector<BasicBlock *, 16> Worklist; 1819 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1820 assert(Worklist.empty() && "Didn't clear worklist!"); 1821 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1822 1823 // Grab the next exit block, in decreasing loop depth order. 1824 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1825 Loop &ExitL = *LI.getLoopFor(ExitBB); 1826 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1827 1828 // Erase all of the unlooped blocks from the loops between the previous 1829 // exit loop and this exit loop. This works because the ExitInLoops list is 1830 // sorted in increasing order of loop depth and thus we visit loops in 1831 // decreasing order of loop depth. 1832 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1833 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1834 1835 // Walk the CFG back until we hit the cloned PH adding everything reachable 1836 // and in the unlooped set to this exit block's loop. 1837 Worklist.push_back(ExitBB); 1838 do { 1839 BasicBlock *BB = Worklist.pop_back_val(); 1840 // We can stop recursing at the cloned preheader (if we get there). 1841 if (BB == PH) 1842 continue; 1843 1844 for (BasicBlock *PredBB : predecessors(BB)) { 1845 // If this pred has already been moved to our set or is part of some 1846 // (inner) loop, no update needed. 1847 if (!UnloopedBlocks.erase(PredBB)) { 1848 assert((NewExitLoopBlocks.count(PredBB) || 1849 ExitL.contains(LI.getLoopFor(PredBB))) && 1850 "Predecessor not in a nested loop (or already visited)!"); 1851 continue; 1852 } 1853 1854 // We just insert into the loop set here. We'll add these blocks to the 1855 // exit loop after we build up the set in a deterministic order rather 1856 // than the predecessor-influenced visit order. 1857 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1858 (void)Inserted; 1859 assert(Inserted && "Should only visit an unlooped block once!"); 1860 1861 // And recurse through to its predecessors. 1862 Worklist.push_back(PredBB); 1863 } 1864 } while (!Worklist.empty()); 1865 1866 // If blocks in this exit loop were directly part of the original loop (as 1867 // opposed to a child loop) update the map to point to this exit loop. This 1868 // just updates a map and so the fact that the order is unstable is fine. 1869 for (auto *BB : NewExitLoopBlocks) 1870 if (Loop *BBL = LI.getLoopFor(BB)) 1871 if (BBL == &L || !L.contains(BBL)) 1872 LI.changeLoopFor(BB, &ExitL); 1873 1874 // We will remove the remaining unlooped blocks from this loop in the next 1875 // iteration or below. 1876 NewExitLoopBlocks.clear(); 1877 } 1878 1879 // Any remaining unlooped blocks are no longer part of any loop unless they 1880 // are part of some child loop. 1881 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1882 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1883 for (auto *BB : UnloopedBlocks) 1884 if (Loop *BBL = LI.getLoopFor(BB)) 1885 if (BBL == &L || !L.contains(BBL)) 1886 LI.changeLoopFor(BB, nullptr); 1887 1888 // Sink all the child loops whose headers are no longer in the loop set to 1889 // the parent (or to be top level loops). We reach into the loop and directly 1890 // update its subloop vector to make this batch update efficient. 1891 auto &SubLoops = L.getSubLoopsVector(); 1892 auto SubLoopsSplitI = 1893 LoopBlockSet.empty() 1894 ? SubLoops.begin() 1895 : std::stable_partition( 1896 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1897 return LoopBlockSet.count(SubL->getHeader()); 1898 }); 1899 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1900 HoistedLoops.push_back(HoistedL); 1901 HoistedL->setParentLoop(nullptr); 1902 1903 // To compute the new parent of this hoisted loop we look at where we 1904 // placed the preheader above. We can't lookup the header itself because we 1905 // retained the mapping from the header to the hoisted loop. But the 1906 // preheader and header should have the exact same new parent computed 1907 // based on the set of exit blocks from the original loop as the preheader 1908 // is a predecessor of the header and so reached in the reverse walk. And 1909 // because the loops were all in simplified form the preheader of the 1910 // hoisted loop can't be part of some *other* loop. 1911 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1912 NewParentL->addChildLoop(HoistedL); 1913 else 1914 LI.addTopLevelLoop(HoistedL); 1915 } 1916 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1917 1918 // Actually delete the loop if nothing remained within it. 1919 if (Blocks.empty()) { 1920 assert(SubLoops.empty() && 1921 "Failed to remove all subloops from the original loop!"); 1922 if (Loop *ParentL = L.getParentLoop()) 1923 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1924 else 1925 LI.removeLoop(llvm::find(LI, &L)); 1926 LI.destroy(&L); 1927 return false; 1928 } 1929 1930 return true; 1931 } 1932 1933 /// Helper to visit a dominator subtree, invoking a callable on each node. 1934 /// 1935 /// Returning false at any point will stop walking past that node of the tree. 1936 template <typename CallableT> 1937 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1938 SmallVector<DomTreeNode *, 4> DomWorklist; 1939 DomWorklist.push_back(DT[BB]); 1940 #ifndef NDEBUG 1941 SmallPtrSet<DomTreeNode *, 4> Visited; 1942 Visited.insert(DT[BB]); 1943 #endif 1944 do { 1945 DomTreeNode *N = DomWorklist.pop_back_val(); 1946 1947 // Visit this node. 1948 if (!Callable(N->getBlock())) 1949 continue; 1950 1951 // Accumulate the child nodes. 1952 for (DomTreeNode *ChildN : *N) { 1953 assert(Visited.insert(ChildN).second && 1954 "Cannot visit a node twice when walking a tree!"); 1955 DomWorklist.push_back(ChildN); 1956 } 1957 } while (!DomWorklist.empty()); 1958 } 1959 1960 static void unswitchNontrivialInvariants( 1961 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1962 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1963 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1964 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1965 auto *ParentBB = TI.getParent(); 1966 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1967 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1968 1969 // We can only unswitch switches, conditional branches with an invariant 1970 // condition, or combining invariant conditions with an instruction. 1971 assert((SI || (BI && BI->isConditional())) && 1972 "Can only unswitch switches and conditional branch!"); 1973 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1974 if (FullUnswitch) 1975 assert(Invariants.size() == 1 && 1976 "Cannot have other invariants with full unswitching!"); 1977 else 1978 assert(isa<Instruction>(BI->getCondition()) && 1979 "Partial unswitching requires an instruction as the condition!"); 1980 1981 if (MSSAU && VerifyMemorySSA) 1982 MSSAU->getMemorySSA()->verifyMemorySSA(); 1983 1984 // Constant and BBs tracking the cloned and continuing successor. When we are 1985 // unswitching the entire condition, this can just be trivially chosen to 1986 // unswitch towards `true`. However, when we are unswitching a set of 1987 // invariants combined with `and` or `or`, the combining operation determines 1988 // the best direction to unswitch: we want to unswitch the direction that will 1989 // collapse the branch. 1990 bool Direction = true; 1991 int ClonedSucc = 0; 1992 if (!FullUnswitch) { 1993 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1994 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1995 Instruction::And && 1996 "Only `or` and `and` instructions can combine invariants being " 1997 "unswitched."); 1998 Direction = false; 1999 ClonedSucc = 1; 2000 } 2001 } 2002 2003 BasicBlock *RetainedSuccBB = 2004 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 2005 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 2006 if (BI) 2007 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 2008 else 2009 for (auto Case : SI->cases()) 2010 if (Case.getCaseSuccessor() != RetainedSuccBB) 2011 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 2012 2013 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 2014 "Should not unswitch the same successor we are retaining!"); 2015 2016 // The branch should be in this exact loop. Any inner loop's invariant branch 2017 // should be handled by unswitching that inner loop. The caller of this 2018 // routine should filter out any candidates that remain (but were skipped for 2019 // whatever reason). 2020 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 2021 2022 // Compute the parent loop now before we start hacking on things. 2023 Loop *ParentL = L.getParentLoop(); 2024 // Get blocks in RPO order for MSSA update, before changing the CFG. 2025 LoopBlocksRPO LBRPO(&L); 2026 if (MSSAU) 2027 LBRPO.perform(&LI); 2028 2029 // Compute the outer-most loop containing one of our exit blocks. This is the 2030 // furthest up our loopnest which can be mutated, which we will use below to 2031 // update things. 2032 Loop *OuterExitL = &L; 2033 for (auto *ExitBB : ExitBlocks) { 2034 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 2035 if (!NewOuterExitL) { 2036 // We exited the entire nest with this block, so we're done. 2037 OuterExitL = nullptr; 2038 break; 2039 } 2040 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 2041 OuterExitL = NewOuterExitL; 2042 } 2043 2044 // At this point, we're definitely going to unswitch something so invalidate 2045 // any cached information in ScalarEvolution for the outer most loop 2046 // containing an exit block and all nested loops. 2047 if (SE) { 2048 if (OuterExitL) 2049 SE->forgetLoop(OuterExitL); 2050 else 2051 SE->forgetTopmostLoop(&L); 2052 } 2053 2054 // If the edge from this terminator to a successor dominates that successor, 2055 // store a map from each block in its dominator subtree to it. This lets us 2056 // tell when cloning for a particular successor if a block is dominated by 2057 // some *other* successor with a single data structure. We use this to 2058 // significantly reduce cloning. 2059 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2060 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2061 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2062 if (SuccBB->getUniquePredecessor() || 2063 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2064 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2065 })) 2066 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2067 DominatingSucc[BB] = SuccBB; 2068 return true; 2069 }); 2070 2071 // Split the preheader, so that we know that there is a safe place to insert 2072 // the conditional branch. We will change the preheader to have a conditional 2073 // branch on LoopCond. The original preheader will become the split point 2074 // between the unswitched versions, and we will have a new preheader for the 2075 // original loop. 2076 BasicBlock *SplitBB = L.getLoopPreheader(); 2077 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2078 2079 // Keep track of the dominator tree updates needed. 2080 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2081 2082 // Clone the loop for each unswitched successor. 2083 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2084 VMaps.reserve(UnswitchedSuccBBs.size()); 2085 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2086 for (auto *SuccBB : UnswitchedSuccBBs) { 2087 VMaps.emplace_back(new ValueToValueMapTy()); 2088 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2089 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2090 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2091 } 2092 2093 // Drop metadata if we may break its semantics by moving this instr into the 2094 // split block. 2095 if (TI.getMetadata(LLVMContext::MD_make_implicit)) { 2096 if (DropNonTrivialImplicitNullChecks) 2097 // Do not spend time trying to understand if we can keep it, just drop it 2098 // to save compile time. 2099 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2100 else { 2101 // It is only legal to preserve make.implicit metadata if we are 2102 // guaranteed no reach implicit null check after following this branch. 2103 ICFLoopSafetyInfo SafetyInfo; 2104 SafetyInfo.computeLoopSafetyInfo(&L); 2105 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L)) 2106 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr); 2107 } 2108 } 2109 2110 // The stitching of the branched code back together depends on whether we're 2111 // doing full unswitching or not with the exception that we always want to 2112 // nuke the initial terminator placed in the split block. 2113 SplitBB->getTerminator()->eraseFromParent(); 2114 if (FullUnswitch) { 2115 // Splice the terminator from the original loop and rewrite its 2116 // successors. 2117 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2118 2119 // Keep a clone of the terminator for MSSA updates. 2120 Instruction *NewTI = TI.clone(); 2121 ParentBB->getInstList().push_back(NewTI); 2122 2123 // First wire up the moved terminator to the preheaders. 2124 if (BI) { 2125 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2126 BI->setSuccessor(ClonedSucc, ClonedPH); 2127 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2128 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2129 } else { 2130 assert(SI && "Must either be a branch or switch!"); 2131 2132 // Walk the cases and directly update their successors. 2133 assert(SI->getDefaultDest() == RetainedSuccBB && 2134 "Not retaining default successor!"); 2135 SI->setDefaultDest(LoopPH); 2136 for (auto &Case : SI->cases()) 2137 if (Case.getCaseSuccessor() == RetainedSuccBB) 2138 Case.setSuccessor(LoopPH); 2139 else 2140 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2141 2142 // We need to use the set to populate domtree updates as even when there 2143 // are multiple cases pointing at the same successor we only want to 2144 // remove and insert one edge in the domtree. 2145 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2146 DTUpdates.push_back( 2147 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2148 } 2149 2150 if (MSSAU) { 2151 DT.applyUpdates(DTUpdates); 2152 DTUpdates.clear(); 2153 2154 // Remove all but one edge to the retained block and all unswitched 2155 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2156 // when we know we only keep a single edge for each case. 2157 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2158 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2159 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2160 2161 for (auto &VMap : VMaps) 2162 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2163 /*IgnoreIncomingWithNoClones=*/true); 2164 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2165 2166 // Remove all edges to unswitched blocks. 2167 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2168 MSSAU->removeEdge(ParentBB, SuccBB); 2169 } 2170 2171 // Now unhook the successor relationship as we'll be replacing 2172 // the terminator with a direct branch. This is much simpler for branches 2173 // than switches so we handle those first. 2174 if (BI) { 2175 // Remove the parent as a predecessor of the unswitched successor. 2176 assert(UnswitchedSuccBBs.size() == 1 && 2177 "Only one possible unswitched block for a branch!"); 2178 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2179 UnswitchedSuccBB->removePredecessor(ParentBB, 2180 /*KeepOneInputPHIs*/ true); 2181 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2182 } else { 2183 // Note that we actually want to remove the parent block as a predecessor 2184 // of *every* case successor. The case successor is either unswitched, 2185 // completely eliminating an edge from the parent to that successor, or it 2186 // is a duplicate edge to the retained successor as the retained successor 2187 // is always the default successor and as we'll replace this with a direct 2188 // branch we no longer need the duplicate entries in the PHI nodes. 2189 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2190 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2191 "Not retaining default successor!"); 2192 for (auto &Case : NewSI->cases()) 2193 Case.getCaseSuccessor()->removePredecessor( 2194 ParentBB, 2195 /*KeepOneInputPHIs*/ true); 2196 2197 // We need to use the set to populate domtree updates as even when there 2198 // are multiple cases pointing at the same successor we only want to 2199 // remove and insert one edge in the domtree. 2200 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2201 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2202 } 2203 2204 // After MSSAU update, remove the cloned terminator instruction NewTI. 2205 ParentBB->getTerminator()->eraseFromParent(); 2206 2207 // Create a new unconditional branch to the continuing block (as opposed to 2208 // the one cloned). 2209 BranchInst::Create(RetainedSuccBB, ParentBB); 2210 } else { 2211 assert(BI && "Only branches have partial unswitching."); 2212 assert(UnswitchedSuccBBs.size() == 1 && 2213 "Only one possible unswitched block for a branch!"); 2214 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2215 // When doing a partial unswitch, we have to do a bit more work to build up 2216 // the branch in the split block. 2217 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2218 *ClonedPH, *LoopPH); 2219 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2220 2221 if (MSSAU) { 2222 DT.applyUpdates(DTUpdates); 2223 DTUpdates.clear(); 2224 2225 // Perform MSSA cloning updates. 2226 for (auto &VMap : VMaps) 2227 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2228 /*IgnoreIncomingWithNoClones=*/true); 2229 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2230 } 2231 } 2232 2233 // Apply the updates accumulated above to get an up-to-date dominator tree. 2234 DT.applyUpdates(DTUpdates); 2235 2236 // Now that we have an accurate dominator tree, first delete the dead cloned 2237 // blocks so that we can accurately build any cloned loops. It is important to 2238 // not delete the blocks from the original loop yet because we still want to 2239 // reference the original loop to understand the cloned loop's structure. 2240 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2241 2242 // Build the cloned loop structure itself. This may be substantially 2243 // different from the original structure due to the simplified CFG. This also 2244 // handles inserting all the cloned blocks into the correct loops. 2245 SmallVector<Loop *, 4> NonChildClonedLoops; 2246 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2247 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2248 2249 // Now that our cloned loops have been built, we can update the original loop. 2250 // First we delete the dead blocks from it and then we rebuild the loop 2251 // structure taking these deletions into account. 2252 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2253 2254 if (MSSAU && VerifyMemorySSA) 2255 MSSAU->getMemorySSA()->verifyMemorySSA(); 2256 2257 SmallVector<Loop *, 4> HoistedLoops; 2258 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2259 2260 if (MSSAU && VerifyMemorySSA) 2261 MSSAU->getMemorySSA()->verifyMemorySSA(); 2262 2263 // This transformation has a high risk of corrupting the dominator tree, and 2264 // the below steps to rebuild loop structures will result in hard to debug 2265 // errors in that case so verify that the dominator tree is sane first. 2266 // FIXME: Remove this when the bugs stop showing up and rely on existing 2267 // verification steps. 2268 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2269 2270 if (BI) { 2271 // If we unswitched a branch which collapses the condition to a known 2272 // constant we want to replace all the uses of the invariants within both 2273 // the original and cloned blocks. We do this here so that we can use the 2274 // now updated dominator tree to identify which side the users are on. 2275 assert(UnswitchedSuccBBs.size() == 1 && 2276 "Only one possible unswitched block for a branch!"); 2277 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2278 2279 // When considering multiple partially-unswitched invariants 2280 // we cant just go replace them with constants in both branches. 2281 // 2282 // For 'AND' we infer that true branch ("continue") means true 2283 // for each invariant operand. 2284 // For 'OR' we can infer that false branch ("continue") means false 2285 // for each invariant operand. 2286 // So it happens that for multiple-partial case we dont replace 2287 // in the unswitched branch. 2288 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2289 2290 ConstantInt *UnswitchedReplacement = 2291 Direction ? ConstantInt::getTrue(BI->getContext()) 2292 : ConstantInt::getFalse(BI->getContext()); 2293 ConstantInt *ContinueReplacement = 2294 Direction ? ConstantInt::getFalse(BI->getContext()) 2295 : ConstantInt::getTrue(BI->getContext()); 2296 for (Value *Invariant : Invariants) 2297 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2298 UI != UE;) { 2299 // Grab the use and walk past it so we can clobber it in the use list. 2300 Use *U = &*UI++; 2301 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2302 if (!UserI) 2303 continue; 2304 2305 // Replace it with the 'continue' side if in the main loop body, and the 2306 // unswitched if in the cloned blocks. 2307 if (DT.dominates(LoopPH, UserI->getParent())) 2308 U->set(ContinueReplacement); 2309 else if (ReplaceUnswitched && 2310 DT.dominates(ClonedPH, UserI->getParent())) 2311 U->set(UnswitchedReplacement); 2312 } 2313 } 2314 2315 // We can change which blocks are exit blocks of all the cloned sibling 2316 // loops, the current loop, and any parent loops which shared exit blocks 2317 // with the current loop. As a consequence, we need to re-form LCSSA for 2318 // them. But we shouldn't need to re-form LCSSA for any child loops. 2319 // FIXME: This could be made more efficient by tracking which exit blocks are 2320 // new, and focusing on them, but that isn't likely to be necessary. 2321 // 2322 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2323 // loop nest and update every loop that could have had its exits changed. We 2324 // also need to cover any intervening loops. We add all of these loops to 2325 // a list and sort them by loop depth to achieve this without updating 2326 // unnecessary loops. 2327 auto UpdateLoop = [&](Loop &UpdateL) { 2328 #ifndef NDEBUG 2329 UpdateL.verifyLoop(); 2330 for (Loop *ChildL : UpdateL) { 2331 ChildL->verifyLoop(); 2332 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2333 "Perturbed a child loop's LCSSA form!"); 2334 } 2335 #endif 2336 // First build LCSSA for this loop so that we can preserve it when 2337 // forming dedicated exits. We don't want to perturb some other loop's 2338 // LCSSA while doing that CFG edit. 2339 formLCSSA(UpdateL, DT, &LI, SE); 2340 2341 // For loops reached by this loop's original exit blocks we may 2342 // introduced new, non-dedicated exits. At least try to re-form dedicated 2343 // exits for these loops. This may fail if they couldn't have dedicated 2344 // exits to start with. 2345 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2346 }; 2347 2348 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2349 // and we can do it in any order as they don't nest relative to each other. 2350 // 2351 // Also check if any of the loops we have updated have become top-level loops 2352 // as that will necessitate widening the outer loop scope. 2353 for (Loop *UpdatedL : 2354 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2355 UpdateLoop(*UpdatedL); 2356 if (UpdatedL->isOutermost()) 2357 OuterExitL = nullptr; 2358 } 2359 if (IsStillLoop) { 2360 UpdateLoop(L); 2361 if (L.isOutermost()) 2362 OuterExitL = nullptr; 2363 } 2364 2365 // If the original loop had exit blocks, walk up through the outer most loop 2366 // of those exit blocks to update LCSSA and form updated dedicated exits. 2367 if (OuterExitL != &L) 2368 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2369 OuterL = OuterL->getParentLoop()) 2370 UpdateLoop(*OuterL); 2371 2372 #ifndef NDEBUG 2373 // Verify the entire loop structure to catch any incorrect updates before we 2374 // progress in the pass pipeline. 2375 LI.verify(DT); 2376 #endif 2377 2378 // Now that we've unswitched something, make callbacks to report the changes. 2379 // For that we need to merge together the updated loops and the cloned loops 2380 // and check whether the original loop survived. 2381 SmallVector<Loop *, 4> SibLoops; 2382 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2383 if (UpdatedL->getParentLoop() == ParentL) 2384 SibLoops.push_back(UpdatedL); 2385 UnswitchCB(IsStillLoop, SibLoops); 2386 2387 if (MSSAU && VerifyMemorySSA) 2388 MSSAU->getMemorySSA()->verifyMemorySSA(); 2389 2390 if (BI) 2391 ++NumBranches; 2392 else 2393 ++NumSwitches; 2394 } 2395 2396 /// Recursively compute the cost of a dominator subtree based on the per-block 2397 /// cost map provided. 2398 /// 2399 /// The recursive computation is memozied into the provided DT-indexed cost map 2400 /// to allow querying it for most nodes in the domtree without it becoming 2401 /// quadratic. 2402 static int 2403 computeDomSubtreeCost(DomTreeNode &N, 2404 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2405 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2406 // Don't accumulate cost (or recurse through) blocks not in our block cost 2407 // map and thus not part of the duplication cost being considered. 2408 auto BBCostIt = BBCostMap.find(N.getBlock()); 2409 if (BBCostIt == BBCostMap.end()) 2410 return 0; 2411 2412 // Lookup this node to see if we already computed its cost. 2413 auto DTCostIt = DTCostMap.find(&N); 2414 if (DTCostIt != DTCostMap.end()) 2415 return DTCostIt->second; 2416 2417 // If not, we have to compute it. We can't use insert above and update 2418 // because computing the cost may insert more things into the map. 2419 int Cost = std::accumulate( 2420 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2421 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2422 }); 2423 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2424 (void)Inserted; 2425 assert(Inserted && "Should not insert a node while visiting children!"); 2426 return Cost; 2427 } 2428 2429 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2430 /// making the following replacement: 2431 /// 2432 /// --code before guard-- 2433 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2434 /// --code after guard-- 2435 /// 2436 /// into 2437 /// 2438 /// --code before guard-- 2439 /// br i1 %cond, label %guarded, label %deopt 2440 /// 2441 /// guarded: 2442 /// --code after guard-- 2443 /// 2444 /// deopt: 2445 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2446 /// unreachable 2447 /// 2448 /// It also makes all relevant DT and LI updates, so that all structures are in 2449 /// valid state after this transform. 2450 static BranchInst * 2451 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2452 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2453 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2454 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2455 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2456 BasicBlock *CheckBB = GI->getParent(); 2457 2458 if (MSSAU && VerifyMemorySSA) 2459 MSSAU->getMemorySSA()->verifyMemorySSA(); 2460 2461 // Remove all CheckBB's successors from DomTree. A block can be seen among 2462 // successors more than once, but for DomTree it should be added only once. 2463 SmallPtrSet<BasicBlock *, 4> Successors; 2464 for (auto *Succ : successors(CheckBB)) 2465 if (Successors.insert(Succ).second) 2466 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2467 2468 Instruction *DeoptBlockTerm = 2469 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2470 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2471 // SplitBlockAndInsertIfThen inserts control flow that branches to 2472 // DeoptBlockTerm if the condition is true. We want the opposite. 2473 CheckBI->swapSuccessors(); 2474 2475 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2476 GuardedBlock->setName("guarded"); 2477 CheckBI->getSuccessor(1)->setName("deopt"); 2478 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2479 2480 // We now have a new exit block. 2481 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2482 2483 if (MSSAU) 2484 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2485 2486 GI->moveBefore(DeoptBlockTerm); 2487 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2488 2489 // Add new successors of CheckBB into DomTree. 2490 for (auto *Succ : successors(CheckBB)) 2491 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2492 2493 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2494 // successors. 2495 for (auto *Succ : Successors) 2496 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2497 2498 // Make proper changes to DT. 2499 DT.applyUpdates(DTUpdates); 2500 // Inform LI of a new loop block. 2501 L.addBasicBlockToLoop(GuardedBlock, LI); 2502 2503 if (MSSAU) { 2504 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2505 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2506 if (VerifyMemorySSA) 2507 MSSAU->getMemorySSA()->verifyMemorySSA(); 2508 } 2509 2510 ++NumGuards; 2511 return CheckBI; 2512 } 2513 2514 /// Cost multiplier is a way to limit potentially exponential behavior 2515 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2516 /// candidates available. Also accounting for the number of "sibling" loops with 2517 /// the idea to account for previous unswitches that already happened on this 2518 /// cluster of loops. There was an attempt to keep this formula simple, 2519 /// just enough to limit the worst case behavior. Even if it is not that simple 2520 /// now it is still not an attempt to provide a detailed heuristic size 2521 /// prediction. 2522 /// 2523 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2524 /// unswitch candidates, making adequate predictions instead of wild guesses. 2525 /// That requires knowing not just the number of "remaining" candidates but 2526 /// also costs of unswitching for each of these candidates. 2527 static int CalculateUnswitchCostMultiplier( 2528 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2529 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2530 UnswitchCandidates) { 2531 2532 // Guards and other exiting conditions do not contribute to exponential 2533 // explosion as soon as they dominate the latch (otherwise there might be 2534 // another path to the latch remaining that does not allow to eliminate the 2535 // loop copy on unswitch). 2536 BasicBlock *Latch = L.getLoopLatch(); 2537 BasicBlock *CondBlock = TI.getParent(); 2538 if (DT.dominates(CondBlock, Latch) && 2539 (isGuard(&TI) || 2540 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2541 return L.contains(SuccBB); 2542 }) <= 1)) { 2543 NumCostMultiplierSkipped++; 2544 return 1; 2545 } 2546 2547 auto *ParentL = L.getParentLoop(); 2548 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2549 : std::distance(LI.begin(), LI.end())); 2550 // Count amount of clones that all the candidates might cause during 2551 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2552 int UnswitchedClones = 0; 2553 for (auto Candidate : UnswitchCandidates) { 2554 Instruction *CI = Candidate.first; 2555 BasicBlock *CondBlock = CI->getParent(); 2556 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2557 if (isGuard(CI)) { 2558 if (!SkipExitingSuccessors) 2559 UnswitchedClones++; 2560 continue; 2561 } 2562 int NonExitingSuccessors = llvm::count_if( 2563 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2564 return !SkipExitingSuccessors || L.contains(SuccBB); 2565 }); 2566 UnswitchedClones += Log2_32(NonExitingSuccessors); 2567 } 2568 2569 // Ignore up to the "unscaled candidates" number of unswitch candidates 2570 // when calculating the power-of-two scaling of the cost. The main idea 2571 // with this control is to allow a small number of unswitches to happen 2572 // and rely more on siblings multiplier (see below) when the number 2573 // of candidates is small. 2574 unsigned ClonesPower = 2575 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2576 2577 // Allowing top-level loops to spread a bit more than nested ones. 2578 int SiblingsMultiplier = 2579 std::max((ParentL ? SiblingsCount 2580 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2581 1); 2582 // Compute the cost multiplier in a way that won't overflow by saturating 2583 // at an upper bound. 2584 int CostMultiplier; 2585 if (ClonesPower > Log2_32(UnswitchThreshold) || 2586 SiblingsMultiplier > UnswitchThreshold) 2587 CostMultiplier = UnswitchThreshold; 2588 else 2589 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2590 (int)UnswitchThreshold); 2591 2592 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2593 << " (siblings " << SiblingsMultiplier << " * clones " 2594 << (1 << ClonesPower) << ")" 2595 << " for unswitch candidate: " << TI << "\n"); 2596 return CostMultiplier; 2597 } 2598 2599 static bool 2600 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2601 AssumptionCache &AC, TargetTransformInfo &TTI, 2602 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2603 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2604 // Collect all invariant conditions within this loop (as opposed to an inner 2605 // loop which would be handled when visiting that inner loop). 2606 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2607 UnswitchCandidates; 2608 2609 // Whether or not we should also collect guards in the loop. 2610 bool CollectGuards = false; 2611 if (UnswitchGuards) { 2612 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2613 Intrinsic::getName(Intrinsic::experimental_guard)); 2614 if (GuardDecl && !GuardDecl->use_empty()) 2615 CollectGuards = true; 2616 } 2617 2618 for (auto *BB : L.blocks()) { 2619 if (LI.getLoopFor(BB) != &L) 2620 continue; 2621 2622 if (CollectGuards) 2623 for (auto &I : *BB) 2624 if (isGuard(&I)) { 2625 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2626 // TODO: Support AND, OR conditions and partial unswitching. 2627 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2628 UnswitchCandidates.push_back({&I, {Cond}}); 2629 } 2630 2631 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2632 // We can only consider fully loop-invariant switch conditions as we need 2633 // to completely eliminate the switch after unswitching. 2634 if (!isa<Constant>(SI->getCondition()) && 2635 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2636 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2637 continue; 2638 } 2639 2640 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2641 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2642 BI->getSuccessor(0) == BI->getSuccessor(1)) 2643 continue; 2644 2645 if (L.isLoopInvariant(BI->getCondition())) { 2646 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2647 continue; 2648 } 2649 2650 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2651 if (CondI.getOpcode() != Instruction::And && 2652 CondI.getOpcode() != Instruction::Or) 2653 continue; 2654 2655 TinyPtrVector<Value *> Invariants = 2656 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2657 if (Invariants.empty()) 2658 continue; 2659 2660 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2661 } 2662 2663 // If we didn't find any candidates, we're done. 2664 if (UnswitchCandidates.empty()) 2665 return false; 2666 2667 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2668 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2669 // irreducible control flow into reducible control flow and introduce new 2670 // loops "out of thin air". If we ever discover important use cases for doing 2671 // this, we can add support to loop unswitch, but it is a lot of complexity 2672 // for what seems little or no real world benefit. 2673 LoopBlocksRPO RPOT(&L); 2674 RPOT.perform(&LI); 2675 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2676 return false; 2677 2678 SmallVector<BasicBlock *, 4> ExitBlocks; 2679 L.getUniqueExitBlocks(ExitBlocks); 2680 2681 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2682 // don't know how to split those exit blocks. 2683 // FIXME: We should teach SplitBlock to handle this and remove this 2684 // restriction. 2685 for (auto *ExitBB : ExitBlocks) 2686 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2687 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2688 return false; 2689 } 2690 2691 LLVM_DEBUG( 2692 dbgs() << "Considering " << UnswitchCandidates.size() 2693 << " non-trivial loop invariant conditions for unswitching.\n"); 2694 2695 // Given that unswitching these terminators will require duplicating parts of 2696 // the loop, so we need to be able to model that cost. Compute the ephemeral 2697 // values and set up a data structure to hold per-BB costs. We cache each 2698 // block's cost so that we don't recompute this when considering different 2699 // subsets of the loop for duplication during unswitching. 2700 SmallPtrSet<const Value *, 4> EphValues; 2701 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2702 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2703 2704 // Compute the cost of each block, as well as the total loop cost. Also, bail 2705 // out if we see instructions which are incompatible with loop unswitching 2706 // (convergent, noduplicate, or cross-basic-block tokens). 2707 // FIXME: We might be able to safely handle some of these in non-duplicated 2708 // regions. 2709 TargetTransformInfo::TargetCostKind CostKind = 2710 L.getHeader()->getParent()->hasMinSize() 2711 ? TargetTransformInfo::TCK_CodeSize 2712 : TargetTransformInfo::TCK_SizeAndLatency; 2713 int LoopCost = 0; 2714 for (auto *BB : L.blocks()) { 2715 int Cost = 0; 2716 for (auto &I : *BB) { 2717 if (EphValues.count(&I)) 2718 continue; 2719 2720 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2721 return false; 2722 if (auto *CB = dyn_cast<CallBase>(&I)) 2723 if (CB->isConvergent() || CB->cannotDuplicate()) 2724 return false; 2725 2726 Cost += TTI.getUserCost(&I, CostKind); 2727 } 2728 assert(Cost >= 0 && "Must not have negative costs!"); 2729 LoopCost += Cost; 2730 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2731 BBCostMap[BB] = Cost; 2732 } 2733 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2734 2735 // Now we find the best candidate by searching for the one with the following 2736 // properties in order: 2737 // 2738 // 1) An unswitching cost below the threshold 2739 // 2) The smallest number of duplicated unswitch candidates (to avoid 2740 // creating redundant subsequent unswitching) 2741 // 3) The smallest cost after unswitching. 2742 // 2743 // We prioritize reducing fanout of unswitch candidates provided the cost 2744 // remains below the threshold because this has a multiplicative effect. 2745 // 2746 // This requires memoizing each dominator subtree to avoid redundant work. 2747 // 2748 // FIXME: Need to actually do the number of candidates part above. 2749 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2750 // Given a terminator which might be unswitched, computes the non-duplicated 2751 // cost for that terminator. 2752 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2753 BasicBlock &BB = *TI.getParent(); 2754 SmallPtrSet<BasicBlock *, 4> Visited; 2755 2756 int Cost = LoopCost; 2757 for (BasicBlock *SuccBB : successors(&BB)) { 2758 // Don't count successors more than once. 2759 if (!Visited.insert(SuccBB).second) 2760 continue; 2761 2762 // If this is a partial unswitch candidate, then it must be a conditional 2763 // branch with a condition of either `or` or `and`. In that case, one of 2764 // the successors is necessarily duplicated, so don't even try to remove 2765 // its cost. 2766 if (!FullUnswitch) { 2767 auto &BI = cast<BranchInst>(TI); 2768 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2769 Instruction::And) { 2770 if (SuccBB == BI.getSuccessor(1)) 2771 continue; 2772 } else { 2773 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2774 Instruction::Or && 2775 "Only `and` and `or` conditions can result in a partial " 2776 "unswitch!"); 2777 if (SuccBB == BI.getSuccessor(0)) 2778 continue; 2779 } 2780 } 2781 2782 // This successor's domtree will not need to be duplicated after 2783 // unswitching if the edge to the successor dominates it (and thus the 2784 // entire tree). This essentially means there is no other path into this 2785 // subtree and so it will end up live in only one clone of the loop. 2786 if (SuccBB->getUniquePredecessor() || 2787 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2788 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2789 })) { 2790 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2791 assert(Cost >= 0 && 2792 "Non-duplicated cost should never exceed total loop cost!"); 2793 } 2794 } 2795 2796 // Now scale the cost by the number of unique successors minus one. We 2797 // subtract one because there is already at least one copy of the entire 2798 // loop. This is computing the new cost of unswitching a condition. 2799 // Note that guards always have 2 unique successors that are implicit and 2800 // will be materialized if we decide to unswitch it. 2801 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2802 assert(SuccessorsCount > 1 && 2803 "Cannot unswitch a condition without multiple distinct successors!"); 2804 return Cost * (SuccessorsCount - 1); 2805 }; 2806 Instruction *BestUnswitchTI = nullptr; 2807 int BestUnswitchCost = 0; 2808 ArrayRef<Value *> BestUnswitchInvariants; 2809 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2810 Instruction &TI = *TerminatorAndInvariants.first; 2811 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2812 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2813 int CandidateCost = ComputeUnswitchedCost( 2814 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2815 Invariants[0] == BI->getCondition())); 2816 // Calculate cost multiplier which is a tool to limit potentially 2817 // exponential behavior of loop-unswitch. 2818 if (EnableUnswitchCostMultiplier) { 2819 int CostMultiplier = 2820 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2821 assert( 2822 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2823 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2824 CandidateCost *= CostMultiplier; 2825 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2826 << " (multiplier: " << CostMultiplier << ")" 2827 << " for unswitch candidate: " << TI << "\n"); 2828 } else { 2829 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2830 << " for unswitch candidate: " << TI << "\n"); 2831 } 2832 2833 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2834 BestUnswitchTI = &TI; 2835 BestUnswitchCost = CandidateCost; 2836 BestUnswitchInvariants = Invariants; 2837 } 2838 } 2839 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2840 2841 if (BestUnswitchCost >= UnswitchThreshold) { 2842 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2843 << BestUnswitchCost << "\n"); 2844 return false; 2845 } 2846 2847 // If the best candidate is a guard, turn it into a branch. 2848 if (isGuard(BestUnswitchTI)) 2849 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2850 ExitBlocks, DT, LI, MSSAU); 2851 2852 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2853 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2854 << "\n"); 2855 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2856 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2857 return true; 2858 } 2859 2860 /// Unswitch control flow predicated on loop invariant conditions. 2861 /// 2862 /// This first hoists all branches or switches which are trivial (IE, do not 2863 /// require duplicating any part of the loop) out of the loop body. It then 2864 /// looks at other loop invariant control flows and tries to unswitch those as 2865 /// well by cloning the loop if the result is small enough. 2866 /// 2867 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2868 /// updated based on the unswitch. 2869 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2870 /// 2871 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2872 /// true, we will attempt to do non-trivial unswitching as well as trivial 2873 /// unswitching. 2874 /// 2875 /// The `UnswitchCB` callback provided will be run after unswitching is 2876 /// complete, with the first parameter set to `true` if the provided loop 2877 /// remains a loop, and a list of new sibling loops created. 2878 /// 2879 /// If `SE` is non-null, we will update that analysis based on the unswitching 2880 /// done. 2881 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2882 AssumptionCache &AC, TargetTransformInfo &TTI, 2883 bool NonTrivial, 2884 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2885 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2886 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2887 "Loops must be in LCSSA form before unswitching."); 2888 2889 // Must be in loop simplified form: we need a preheader and dedicated exits. 2890 if (!L.isLoopSimplifyForm()) 2891 return false; 2892 2893 // Try trivial unswitch first before loop over other basic blocks in the loop. 2894 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2895 // If we unswitched successfully we will want to clean up the loop before 2896 // processing it further so just mark it as unswitched and return. 2897 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2898 return true; 2899 } 2900 2901 // If we're not doing non-trivial unswitching, we're done. We both accept 2902 // a parameter but also check a local flag that can be used for testing 2903 // a debugging. 2904 if (!NonTrivial && !EnableNonTrivialUnswitch) 2905 return false; 2906 2907 // Skip non-trivial unswitching for optsize functions. 2908 if (L.getHeader()->getParent()->hasOptSize()) 2909 return false; 2910 2911 // For non-trivial unswitching, because it often creates new loops, we rely on 2912 // the pass manager to iterate on the loops rather than trying to immediately 2913 // reach a fixed point. There is no substantial advantage to iterating 2914 // internally, and if any of the new loops are simplified enough to contain 2915 // trivial unswitching we want to prefer those. 2916 2917 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2918 // a partial unswitch when possible below the threshold. 2919 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2920 return true; 2921 2922 // No other opportunities to unswitch. 2923 return false; 2924 } 2925 2926 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2927 LoopStandardAnalysisResults &AR, 2928 LPMUpdater &U) { 2929 Function &F = *L.getHeader()->getParent(); 2930 (void)F; 2931 2932 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2933 << "\n"); 2934 2935 // Save the current loop name in a variable so that we can report it even 2936 // after it has been deleted. 2937 std::string LoopName = std::string(L.getName()); 2938 2939 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2940 ArrayRef<Loop *> NewLoops) { 2941 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2942 if (!NewLoops.empty()) 2943 U.addSiblingLoops(NewLoops); 2944 2945 // If the current loop remains valid, we should revisit it to catch any 2946 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2947 if (CurrentLoopValid) 2948 U.revisitCurrentLoop(); 2949 else 2950 U.markLoopAsDeleted(L, LoopName); 2951 }; 2952 2953 Optional<MemorySSAUpdater> MSSAU; 2954 if (AR.MSSA) { 2955 MSSAU = MemorySSAUpdater(AR.MSSA); 2956 if (VerifyMemorySSA) 2957 AR.MSSA->verifyMemorySSA(); 2958 } 2959 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2960 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2961 return PreservedAnalyses::all(); 2962 2963 if (AR.MSSA && VerifyMemorySSA) 2964 AR.MSSA->verifyMemorySSA(); 2965 2966 // Historically this pass has had issues with the dominator tree so verify it 2967 // in asserts builds. 2968 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2969 2970 auto PA = getLoopPassPreservedAnalyses(); 2971 if (AR.MSSA) 2972 PA.preserve<MemorySSAAnalysis>(); 2973 return PA; 2974 } 2975 2976 namespace { 2977 2978 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2979 bool NonTrivial; 2980 2981 public: 2982 static char ID; // Pass ID, replacement for typeid 2983 2984 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2985 : LoopPass(ID), NonTrivial(NonTrivial) { 2986 initializeSimpleLoopUnswitchLegacyPassPass( 2987 *PassRegistry::getPassRegistry()); 2988 } 2989 2990 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2991 2992 void getAnalysisUsage(AnalysisUsage &AU) const override { 2993 AU.addRequired<AssumptionCacheTracker>(); 2994 AU.addRequired<TargetTransformInfoWrapperPass>(); 2995 if (EnableMSSALoopDependency) { 2996 AU.addRequired<MemorySSAWrapperPass>(); 2997 AU.addPreserved<MemorySSAWrapperPass>(); 2998 } 2999 getLoopAnalysisUsage(AU); 3000 } 3001 }; 3002 3003 } // end anonymous namespace 3004 3005 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 3006 if (skipLoop(L)) 3007 return false; 3008 3009 Function &F = *L->getHeader()->getParent(); 3010 3011 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 3012 << "\n"); 3013 3014 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3015 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 3016 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3017 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 3018 MemorySSA *MSSA = nullptr; 3019 Optional<MemorySSAUpdater> MSSAU; 3020 if (EnableMSSALoopDependency) { 3021 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 3022 MSSAU = MemorySSAUpdater(MSSA); 3023 } 3024 3025 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 3026 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 3027 3028 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 3029 ArrayRef<Loop *> NewLoops) { 3030 // If we did a non-trivial unswitch, we have added new (cloned) loops. 3031 for (auto *NewL : NewLoops) 3032 LPM.addLoop(*NewL); 3033 3034 // If the current loop remains valid, re-add it to the queue. This is 3035 // a little wasteful as we'll finish processing the current loop as well, 3036 // but it is the best we can do in the old PM. 3037 if (CurrentLoopValid) 3038 LPM.addLoop(*L); 3039 else 3040 LPM.markLoopAsDeleted(*L); 3041 }; 3042 3043 if (MSSA && VerifyMemorySSA) 3044 MSSA->verifyMemorySSA(); 3045 3046 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 3047 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 3048 3049 if (MSSA && VerifyMemorySSA) 3050 MSSA->verifyMemorySSA(); 3051 3052 // Historically this pass has had issues with the dominator tree so verify it 3053 // in asserts builds. 3054 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 3055 3056 return Changed; 3057 } 3058 3059 char SimpleLoopUnswitchLegacyPass::ID = 0; 3060 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3061 "Simple unswitch loops", false, false) 3062 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3063 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3064 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3065 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3066 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3067 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3068 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3069 "Simple unswitch loops", false, false) 3070 3071 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3072 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3073 } 3074