1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 10 #include "llvm/ADT/DenseMap.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/Sequence.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/ADT/Twine.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/CodeMetrics.h" 21 #include "llvm/Analysis/GuardUtils.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopAnalysisManager.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/LoopIterator.h" 26 #include "llvm/Analysis/LoopPass.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/Utils/Local.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/InstrTypes.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Use.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/GenericDomTree.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Cloning.h" 52 #include "llvm/Transforms/Utils/LoopUtils.h" 53 #include "llvm/Transforms/Utils/ValueMapper.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <iterator> 57 #include <numeric> 58 #include <utility> 59 60 #define DEBUG_TYPE "simple-loop-unswitch" 61 62 using namespace llvm; 63 64 STATISTIC(NumBranches, "Number of branches unswitched"); 65 STATISTIC(NumSwitches, "Number of switches unswitched"); 66 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching"); 67 STATISTIC(NumTrivial, "Number of unswitches that are trivial"); 68 STATISTIC( 69 NumCostMultiplierSkipped, 70 "Number of unswitch candidates that had their cost multiplier skipped"); 71 72 static cl::opt<bool> EnableNonTrivialUnswitch( 73 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden, 74 cl::desc("Forcibly enables non-trivial loop unswitching rather than " 75 "following the configuration passed into the pass.")); 76 77 static cl::opt<int> 78 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden, 79 cl::desc("The cost threshold for unswitching a loop.")); 80 81 static cl::opt<bool> EnableUnswitchCostMultiplier( 82 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden, 83 cl::desc("Enable unswitch cost multiplier that prohibits exponential " 84 "explosion in nontrivial unswitch.")); 85 static cl::opt<int> UnswitchSiblingsToplevelDiv( 86 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden, 87 cl::desc("Toplevel siblings divisor for cost multiplier.")); 88 static cl::opt<int> UnswitchNumInitialUnscaledCandidates( 89 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden, 90 cl::desc("Number of unswitch candidates that are ignored when calculating " 91 "cost multiplier.")); 92 static cl::opt<bool> UnswitchGuards( 93 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden, 94 cl::desc("If enabled, simple loop unswitching will also consider " 95 "llvm.experimental.guard intrinsics as unswitch candidates.")); 96 97 /// Collect all of the loop invariant input values transitively used by the 98 /// homogeneous instruction graph from a given root. 99 /// 100 /// This essentially walks from a root recursively through loop variant operands 101 /// which have the exact same opcode and finds all inputs which are loop 102 /// invariant. For some operations these can be re-associated and unswitched out 103 /// of the loop entirely. 104 static TinyPtrVector<Value *> 105 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root, 106 LoopInfo &LI) { 107 assert(!L.isLoopInvariant(&Root) && 108 "Only need to walk the graph if root itself is not invariant."); 109 TinyPtrVector<Value *> Invariants; 110 111 // Build a worklist and recurse through operators collecting invariants. 112 SmallVector<Instruction *, 4> Worklist; 113 SmallPtrSet<Instruction *, 8> Visited; 114 Worklist.push_back(&Root); 115 Visited.insert(&Root); 116 do { 117 Instruction &I = *Worklist.pop_back_val(); 118 for (Value *OpV : I.operand_values()) { 119 // Skip constants as unswitching isn't interesting for them. 120 if (isa<Constant>(OpV)) 121 continue; 122 123 // Add it to our result if loop invariant. 124 if (L.isLoopInvariant(OpV)) { 125 Invariants.push_back(OpV); 126 continue; 127 } 128 129 // If not an instruction with the same opcode, nothing we can do. 130 Instruction *OpI = dyn_cast<Instruction>(OpV); 131 if (!OpI || OpI->getOpcode() != Root.getOpcode()) 132 continue; 133 134 // Visit this operand. 135 if (Visited.insert(OpI).second) 136 Worklist.push_back(OpI); 137 } 138 } while (!Worklist.empty()); 139 140 return Invariants; 141 } 142 143 static void replaceLoopInvariantUses(Loop &L, Value *Invariant, 144 Constant &Replacement) { 145 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?"); 146 147 // Replace uses of LIC in the loop with the given constant. 148 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) { 149 // Grab the use and walk past it so we can clobber it in the use list. 150 Use *U = &*UI++; 151 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 152 153 // Replace this use within the loop body. 154 if (UserI && L.contains(UserI)) 155 U->set(&Replacement); 156 } 157 } 158 159 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial 160 /// incoming values along this edge. 161 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB, 162 BasicBlock &ExitBB) { 163 for (Instruction &I : ExitBB) { 164 auto *PN = dyn_cast<PHINode>(&I); 165 if (!PN) 166 // No more PHIs to check. 167 return true; 168 169 // If the incoming value for this edge isn't loop invariant the unswitch 170 // won't be trivial. 171 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB))) 172 return false; 173 } 174 llvm_unreachable("Basic blocks should never be empty!"); 175 } 176 177 /// Insert code to test a set of loop invariant values, and conditionally branch 178 /// on them. 179 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB, 180 ArrayRef<Value *> Invariants, 181 bool Direction, 182 BasicBlock &UnswitchedSucc, 183 BasicBlock &NormalSucc) { 184 IRBuilder<> IRB(&BB); 185 186 Value *Cond = Direction ? IRB.CreateOr(Invariants) : 187 IRB.CreateAnd(Invariants); 188 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc, 189 Direction ? &NormalSucc : &UnswitchedSucc); 190 } 191 192 /// Rewrite the PHI nodes in an unswitched loop exit basic block. 193 /// 194 /// Requires that the loop exit and unswitched basic block are the same, and 195 /// that the exiting block was a unique predecessor of that block. Rewrites the 196 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial 197 /// PHI nodes from the old preheader that now contains the unswitched 198 /// terminator. 199 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB, 200 BasicBlock &OldExitingBB, 201 BasicBlock &OldPH) { 202 for (PHINode &PN : UnswitchedBB.phis()) { 203 // When the loop exit is directly unswitched we just need to update the 204 // incoming basic block. We loop to handle weird cases with repeated 205 // incoming blocks, but expect to typically only have one operand here. 206 for (auto i : seq<int>(0, PN.getNumOperands())) { 207 assert(PN.getIncomingBlock(i) == &OldExitingBB && 208 "Found incoming block different from unique predecessor!"); 209 PN.setIncomingBlock(i, &OldPH); 210 } 211 } 212 } 213 214 /// Rewrite the PHI nodes in the loop exit basic block and the split off 215 /// unswitched block. 216 /// 217 /// Because the exit block remains an exit from the loop, this rewrites the 218 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI 219 /// nodes into the unswitched basic block to select between the value in the 220 /// old preheader and the loop exit. 221 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB, 222 BasicBlock &UnswitchedBB, 223 BasicBlock &OldExitingBB, 224 BasicBlock &OldPH, 225 bool FullUnswitch) { 226 assert(&ExitBB != &UnswitchedBB && 227 "Must have different loop exit and unswitched blocks!"); 228 Instruction *InsertPt = &*UnswitchedBB.begin(); 229 for (PHINode &PN : ExitBB.phis()) { 230 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2, 231 PN.getName() + ".split", InsertPt); 232 233 // Walk backwards over the old PHI node's inputs to minimize the cost of 234 // removing each one. We have to do this weird loop manually so that we 235 // create the same number of new incoming edges in the new PHI as we expect 236 // each case-based edge to be included in the unswitched switch in some 237 // cases. 238 // FIXME: This is really, really gross. It would be much cleaner if LLVM 239 // allowed us to create a single entry for a predecessor block without 240 // having separate entries for each "edge" even though these edges are 241 // required to produce identical results. 242 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) { 243 if (PN.getIncomingBlock(i) != &OldExitingBB) 244 continue; 245 246 Value *Incoming = PN.getIncomingValue(i); 247 if (FullUnswitch) 248 // No more edge from the old exiting block to the exit block. 249 PN.removeIncomingValue(i); 250 251 NewPN->addIncoming(Incoming, &OldPH); 252 } 253 254 // Now replace the old PHI with the new one and wire the old one in as an 255 // input to the new one. 256 PN.replaceAllUsesWith(NewPN); 257 NewPN->addIncoming(&PN, &ExitBB); 258 } 259 } 260 261 /// Hoist the current loop up to the innermost loop containing a remaining exit. 262 /// 263 /// Because we've removed an exit from the loop, we may have changed the set of 264 /// loops reachable and need to move the current loop up the loop nest or even 265 /// to an entirely separate nest. 266 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader, 267 DominatorTree &DT, LoopInfo &LI, 268 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) { 269 // If the loop is already at the top level, we can't hoist it anywhere. 270 Loop *OldParentL = L.getParentLoop(); 271 if (!OldParentL) 272 return; 273 274 SmallVector<BasicBlock *, 4> Exits; 275 L.getExitBlocks(Exits); 276 Loop *NewParentL = nullptr; 277 for (auto *ExitBB : Exits) 278 if (Loop *ExitL = LI.getLoopFor(ExitBB)) 279 if (!NewParentL || NewParentL->contains(ExitL)) 280 NewParentL = ExitL; 281 282 if (NewParentL == OldParentL) 283 return; 284 285 // The new parent loop (if different) should always contain the old one. 286 if (NewParentL) 287 assert(NewParentL->contains(OldParentL) && 288 "Can only hoist this loop up the nest!"); 289 290 // The preheader will need to move with the body of this loop. However, 291 // because it isn't in this loop we also need to update the primary loop map. 292 assert(OldParentL == LI.getLoopFor(&Preheader) && 293 "Parent loop of this loop should contain this loop's preheader!"); 294 LI.changeLoopFor(&Preheader, NewParentL); 295 296 // Remove this loop from its old parent. 297 OldParentL->removeChildLoop(&L); 298 299 // Add the loop either to the new parent or as a top-level loop. 300 if (NewParentL) 301 NewParentL->addChildLoop(&L); 302 else 303 LI.addTopLevelLoop(&L); 304 305 // Remove this loops blocks from the old parent and every other loop up the 306 // nest until reaching the new parent. Also update all of these 307 // no-longer-containing loops to reflect the nesting change. 308 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL; 309 OldContainingL = OldContainingL->getParentLoop()) { 310 llvm::erase_if(OldContainingL->getBlocksVector(), 311 [&](const BasicBlock *BB) { 312 return BB == &Preheader || L.contains(BB); 313 }); 314 315 OldContainingL->getBlocksSet().erase(&Preheader); 316 for (BasicBlock *BB : L.blocks()) 317 OldContainingL->getBlocksSet().erase(BB); 318 319 // Because we just hoisted a loop out of this one, we have essentially 320 // created new exit paths from it. That means we need to form LCSSA PHI 321 // nodes for values used in the no-longer-nested loop. 322 formLCSSA(*OldContainingL, DT, &LI, SE); 323 324 // We shouldn't need to form dedicated exits because the exit introduced 325 // here is the (just split by unswitching) preheader. However, after trivial 326 // unswitching it is possible to get new non-dedicated exits out of parent 327 // loop so let's conservatively form dedicated exit blocks and figure out 328 // if we can optimize later. 329 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU, 330 /*PreserveLCSSA*/ true); 331 } 332 } 333 334 // Return the top-most loop containing ExitBB and having ExitBB as exiting block 335 // or the loop containing ExitBB, if there is no parent loop containing ExitBB 336 // as exiting block. 337 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) { 338 Loop *TopMost = LI.getLoopFor(ExitBB); 339 Loop *Current = TopMost; 340 while (Current) { 341 if (Current->isLoopExiting(ExitBB)) 342 TopMost = Current; 343 Current = Current->getParentLoop(); 344 } 345 return TopMost; 346 } 347 348 /// Unswitch a trivial branch if the condition is loop invariant. 349 /// 350 /// This routine should only be called when loop code leading to the branch has 351 /// been validated as trivial (no side effects). This routine checks if the 352 /// condition is invariant and one of the successors is a loop exit. This 353 /// allows us to unswitch without duplicating the loop, making it trivial. 354 /// 355 /// If this routine fails to unswitch the branch it returns false. 356 /// 357 /// If the branch can be unswitched, this routine splits the preheader and 358 /// hoists the branch above that split. Preserves loop simplified form 359 /// (splitting the exit block as necessary). It simplifies the branch within 360 /// the loop to an unconditional branch but doesn't remove it entirely. Further 361 /// cleanup can be done with some simplify-cfg like pass. 362 /// 363 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 364 /// invalidated by this. 365 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT, 366 LoopInfo &LI, ScalarEvolution *SE, 367 MemorySSAUpdater *MSSAU) { 368 assert(BI.isConditional() && "Can only unswitch a conditional branch!"); 369 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n"); 370 371 // The loop invariant values that we want to unswitch. 372 TinyPtrVector<Value *> Invariants; 373 374 // When true, we're fully unswitching the branch rather than just unswitching 375 // some input conditions to the branch. 376 bool FullUnswitch = false; 377 378 if (L.isLoopInvariant(BI.getCondition())) { 379 Invariants.push_back(BI.getCondition()); 380 FullUnswitch = true; 381 } else { 382 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition())) 383 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI); 384 if (Invariants.empty()) 385 // Couldn't find invariant inputs! 386 return false; 387 } 388 389 // Check that one of the branch's successors exits, and which one. 390 bool ExitDirection = true; 391 int LoopExitSuccIdx = 0; 392 auto *LoopExitBB = BI.getSuccessor(0); 393 if (L.contains(LoopExitBB)) { 394 ExitDirection = false; 395 LoopExitSuccIdx = 1; 396 LoopExitBB = BI.getSuccessor(1); 397 if (L.contains(LoopExitBB)) 398 return false; 399 } 400 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx); 401 auto *ParentBB = BI.getParent(); 402 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) 403 return false; 404 405 // When unswitching only part of the branch's condition, we need the exit 406 // block to be reached directly from the partially unswitched input. This can 407 // be done when the exit block is along the true edge and the branch condition 408 // is a graph of `or` operations, or the exit block is along the false edge 409 // and the condition is a graph of `and` operations. 410 if (!FullUnswitch) { 411 if (ExitDirection) { 412 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or) 413 return false; 414 } else { 415 if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And) 416 return false; 417 } 418 } 419 420 LLVM_DEBUG({ 421 dbgs() << " unswitching trivial invariant conditions for: " << BI 422 << "\n"; 423 for (Value *Invariant : Invariants) { 424 dbgs() << " " << *Invariant << " == true"; 425 if (Invariant != Invariants.back()) 426 dbgs() << " ||"; 427 dbgs() << "\n"; 428 } 429 }); 430 431 // If we have scalar evolutions, we need to invalidate them including this 432 // loop, the loop containing the exit block and the topmost parent loop 433 // exiting via LoopExitBB. 434 if (SE) { 435 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI)) 436 SE->forgetLoop(ExitL); 437 else 438 // Forget the entire nest as this exits the entire nest. 439 SE->forgetTopmostLoop(&L); 440 } 441 442 if (MSSAU && VerifyMemorySSA) 443 MSSAU->getMemorySSA()->verifyMemorySSA(); 444 445 // Split the preheader, so that we know that there is a safe place to insert 446 // the conditional branch. We will change the preheader to have a conditional 447 // branch on LoopCond. 448 BasicBlock *OldPH = L.getLoopPreheader(); 449 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 450 451 // Now that we have a place to insert the conditional branch, create a place 452 // to branch to: this is the exit block out of the loop that we are 453 // unswitching. We need to split this if there are other loop predecessors. 454 // Because the loop is in simplified form, *any* other predecessor is enough. 455 BasicBlock *UnswitchedBB; 456 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) { 457 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() && 458 "A branch's parent isn't a predecessor!"); 459 UnswitchedBB = LoopExitBB; 460 } else { 461 UnswitchedBB = 462 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU); 463 } 464 465 if (MSSAU && VerifyMemorySSA) 466 MSSAU->getMemorySSA()->verifyMemorySSA(); 467 468 // Actually move the invariant uses into the unswitched position. If possible, 469 // we do this by moving the instructions, but when doing partial unswitching 470 // we do it by building a new merge of the values in the unswitched position. 471 OldPH->getTerminator()->eraseFromParent(); 472 if (FullUnswitch) { 473 // If fully unswitching, we can use the existing branch instruction. 474 // Splice it into the old PH to gate reaching the new preheader and re-point 475 // its successors. 476 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(), 477 BI); 478 if (MSSAU) { 479 // Temporarily clone the terminator, to make MSSA update cheaper by 480 // separating "insert edge" updates from "remove edge" ones. 481 ParentBB->getInstList().push_back(BI.clone()); 482 } else { 483 // Create a new unconditional branch that will continue the loop as a new 484 // terminator. 485 BranchInst::Create(ContinueBB, ParentBB); 486 } 487 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB); 488 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH); 489 } else { 490 // Only unswitching a subset of inputs to the condition, so we will need to 491 // build a new branch that merges the invariant inputs. 492 if (ExitDirection) 493 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 494 Instruction::Or && 495 "Must have an `or` of `i1`s for the condition!"); 496 else 497 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 498 Instruction::And && 499 "Must have an `and` of `i1`s for the condition!"); 500 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection, 501 *UnswitchedBB, *NewPH); 502 } 503 504 // Update the dominator tree with the added edge. 505 DT.insertEdge(OldPH, UnswitchedBB); 506 507 // After the dominator tree was updated with the added edge, update MemorySSA 508 // if available. 509 if (MSSAU) { 510 SmallVector<CFGUpdate, 1> Updates; 511 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB}); 512 MSSAU->applyInsertUpdates(Updates, DT); 513 } 514 515 // Finish updating dominator tree and memory ssa for full unswitch. 516 if (FullUnswitch) { 517 if (MSSAU) { 518 // Remove the cloned branch instruction. 519 ParentBB->getTerminator()->eraseFromParent(); 520 // Create unconditional branch now. 521 BranchInst::Create(ContinueBB, ParentBB); 522 MSSAU->removeEdge(ParentBB, LoopExitBB); 523 } 524 DT.deleteEdge(ParentBB, LoopExitBB); 525 } 526 527 if (MSSAU && VerifyMemorySSA) 528 MSSAU->getMemorySSA()->verifyMemorySSA(); 529 530 // Rewrite the relevant PHI nodes. 531 if (UnswitchedBB == LoopExitBB) 532 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH); 533 else 534 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB, 535 *ParentBB, *OldPH, FullUnswitch); 536 537 // The constant we can replace all of our invariants with inside the loop 538 // body. If any of the invariants have a value other than this the loop won't 539 // be entered. 540 ConstantInt *Replacement = ExitDirection 541 ? ConstantInt::getFalse(BI.getContext()) 542 : ConstantInt::getTrue(BI.getContext()); 543 544 // Since this is an i1 condition we can also trivially replace uses of it 545 // within the loop with a constant. 546 for (Value *Invariant : Invariants) 547 replaceLoopInvariantUses(L, Invariant, *Replacement); 548 549 // If this was full unswitching, we may have changed the nesting relationship 550 // for this loop so hoist it to its correct parent if needed. 551 if (FullUnswitch) 552 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 553 554 if (MSSAU && VerifyMemorySSA) 555 MSSAU->getMemorySSA()->verifyMemorySSA(); 556 557 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n"); 558 ++NumTrivial; 559 ++NumBranches; 560 return true; 561 } 562 563 /// Unswitch a trivial switch if the condition is loop invariant. 564 /// 565 /// This routine should only be called when loop code leading to the switch has 566 /// been validated as trivial (no side effects). This routine checks if the 567 /// condition is invariant and that at least one of the successors is a loop 568 /// exit. This allows us to unswitch without duplicating the loop, making it 569 /// trivial. 570 /// 571 /// If this routine fails to unswitch the switch it returns false. 572 /// 573 /// If the switch can be unswitched, this routine splits the preheader and 574 /// copies the switch above that split. If the default case is one of the 575 /// exiting cases, it copies the non-exiting cases and points them at the new 576 /// preheader. If the default case is not exiting, it copies the exiting cases 577 /// and points the default at the preheader. It preserves loop simplified form 578 /// (splitting the exit blocks as necessary). It simplifies the switch within 579 /// the loop by removing now-dead cases. If the default case is one of those 580 /// unswitched, it replaces its destination with a new basic block containing 581 /// only unreachable. Such basic blocks, while technically loop exits, are not 582 /// considered for unswitching so this is a stable transform and the same 583 /// switch will not be revisited. If after unswitching there is only a single 584 /// in-loop successor, the switch is further simplified to an unconditional 585 /// branch. Still more cleanup can be done with some simplify-cfg like pass. 586 /// 587 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 588 /// invalidated by this. 589 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT, 590 LoopInfo &LI, ScalarEvolution *SE, 591 MemorySSAUpdater *MSSAU) { 592 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n"); 593 Value *LoopCond = SI.getCondition(); 594 595 // If this isn't switching on an invariant condition, we can't unswitch it. 596 if (!L.isLoopInvariant(LoopCond)) 597 return false; 598 599 auto *ParentBB = SI.getParent(); 600 601 SmallVector<int, 4> ExitCaseIndices; 602 for (auto Case : SI.cases()) { 603 auto *SuccBB = Case.getCaseSuccessor(); 604 if (!L.contains(SuccBB) && 605 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB)) 606 ExitCaseIndices.push_back(Case.getCaseIndex()); 607 } 608 BasicBlock *DefaultExitBB = nullptr; 609 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight = 610 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0); 611 if (!L.contains(SI.getDefaultDest()) && 612 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) && 613 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) { 614 DefaultExitBB = SI.getDefaultDest(); 615 } else if (ExitCaseIndices.empty()) 616 return false; 617 618 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n"); 619 620 if (MSSAU && VerifyMemorySSA) 621 MSSAU->getMemorySSA()->verifyMemorySSA(); 622 623 // We may need to invalidate SCEVs for the outermost loop reached by any of 624 // the exits. 625 Loop *OuterL = &L; 626 627 if (DefaultExitBB) { 628 // Clear out the default destination temporarily to allow accurate 629 // predecessor lists to be examined below. 630 SI.setDefaultDest(nullptr); 631 // Check the loop containing this exit. 632 Loop *ExitL = LI.getLoopFor(DefaultExitBB); 633 if (!ExitL || ExitL->contains(OuterL)) 634 OuterL = ExitL; 635 } 636 637 // Store the exit cases into a separate data structure and remove them from 638 // the switch. 639 SmallVector<std::tuple<ConstantInt *, BasicBlock *, 640 SwitchInstProfUpdateWrapper::CaseWeightOpt>, 641 4> ExitCases; 642 ExitCases.reserve(ExitCaseIndices.size()); 643 SwitchInstProfUpdateWrapper SIW(SI); 644 // We walk the case indices backwards so that we remove the last case first 645 // and don't disrupt the earlier indices. 646 for (unsigned Index : reverse(ExitCaseIndices)) { 647 auto CaseI = SI.case_begin() + Index; 648 // Compute the outer loop from this exit. 649 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor()); 650 if (!ExitL || ExitL->contains(OuterL)) 651 OuterL = ExitL; 652 // Save the value of this case. 653 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex()); 654 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W); 655 // Delete the unswitched cases. 656 SIW.removeCase(CaseI); 657 } 658 659 if (SE) { 660 if (OuterL) 661 SE->forgetLoop(OuterL); 662 else 663 SE->forgetTopmostLoop(&L); 664 } 665 666 // Check if after this all of the remaining cases point at the same 667 // successor. 668 BasicBlock *CommonSuccBB = nullptr; 669 if (SI.getNumCases() > 0 && 670 std::all_of(std::next(SI.case_begin()), SI.case_end(), 671 [&SI](const SwitchInst::CaseHandle &Case) { 672 return Case.getCaseSuccessor() == 673 SI.case_begin()->getCaseSuccessor(); 674 })) 675 CommonSuccBB = SI.case_begin()->getCaseSuccessor(); 676 if (!DefaultExitBB) { 677 // If we're not unswitching the default, we need it to match any cases to 678 // have a common successor or if we have no cases it is the common 679 // successor. 680 if (SI.getNumCases() == 0) 681 CommonSuccBB = SI.getDefaultDest(); 682 else if (SI.getDefaultDest() != CommonSuccBB) 683 CommonSuccBB = nullptr; 684 } 685 686 // Split the preheader, so that we know that there is a safe place to insert 687 // the switch. 688 BasicBlock *OldPH = L.getLoopPreheader(); 689 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU); 690 OldPH->getTerminator()->eraseFromParent(); 691 692 // Now add the unswitched switch. 693 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH); 694 SwitchInstProfUpdateWrapper NewSIW(*NewSI); 695 696 // Rewrite the IR for the unswitched basic blocks. This requires two steps. 697 // First, we split any exit blocks with remaining in-loop predecessors. Then 698 // we update the PHIs in one of two ways depending on if there was a split. 699 // We walk in reverse so that we split in the same order as the cases 700 // appeared. This is purely for convenience of reading the resulting IR, but 701 // it doesn't cost anything really. 702 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs; 703 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap; 704 // Handle the default exit if necessary. 705 // FIXME: It'd be great if we could merge this with the loop below but LLVM's 706 // ranges aren't quite powerful enough yet. 707 if (DefaultExitBB) { 708 if (pred_empty(DefaultExitBB)) { 709 UnswitchedExitBBs.insert(DefaultExitBB); 710 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH); 711 } else { 712 auto *SplitBB = 713 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU); 714 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB, 715 *ParentBB, *OldPH, 716 /*FullUnswitch*/ true); 717 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB; 718 } 719 } 720 // Note that we must use a reference in the for loop so that we update the 721 // container. 722 for (auto &ExitCase : reverse(ExitCases)) { 723 // Grab a reference to the exit block in the pair so that we can update it. 724 BasicBlock *ExitBB = std::get<1>(ExitCase); 725 726 // If this case is the last edge into the exit block, we can simply reuse it 727 // as it will no longer be a loop exit. No mapping necessary. 728 if (pred_empty(ExitBB)) { 729 // Only rewrite once. 730 if (UnswitchedExitBBs.insert(ExitBB).second) 731 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH); 732 continue; 733 } 734 735 // Otherwise we need to split the exit block so that we retain an exit 736 // block from the loop and a target for the unswitched condition. 737 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB]; 738 if (!SplitExitBB) { 739 // If this is the first time we see this, do the split and remember it. 740 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 741 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB, 742 *ParentBB, *OldPH, 743 /*FullUnswitch*/ true); 744 } 745 // Update the case pair to point to the split block. 746 std::get<1>(ExitCase) = SplitExitBB; 747 } 748 749 // Now add the unswitched cases. We do this in reverse order as we built them 750 // in reverse order. 751 for (auto &ExitCase : reverse(ExitCases)) { 752 ConstantInt *CaseVal = std::get<0>(ExitCase); 753 BasicBlock *UnswitchedBB = std::get<1>(ExitCase); 754 755 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase)); 756 } 757 758 // If the default was unswitched, re-point it and add explicit cases for 759 // entering the loop. 760 if (DefaultExitBB) { 761 NewSIW->setDefaultDest(DefaultExitBB); 762 NewSIW.setSuccessorWeight(0, DefaultCaseWeight); 763 764 // We removed all the exit cases, so we just copy the cases to the 765 // unswitched switch. 766 for (const auto &Case : SI.cases()) 767 NewSIW.addCase(Case.getCaseValue(), NewPH, 768 SIW.getSuccessorWeight(Case.getSuccessorIndex())); 769 } else if (DefaultCaseWeight) { 770 // We have to set branch weight of the default case. 771 uint64_t SW = *DefaultCaseWeight; 772 for (const auto &Case : SI.cases()) { 773 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex()); 774 assert(W && 775 "case weight must be defined as default case weight is defined"); 776 SW += *W; 777 } 778 NewSIW.setSuccessorWeight(0, SW); 779 } 780 781 // If we ended up with a common successor for every path through the switch 782 // after unswitching, rewrite it to an unconditional branch to make it easy 783 // to recognize. Otherwise we potentially have to recognize the default case 784 // pointing at unreachable and other complexity. 785 if (CommonSuccBB) { 786 BasicBlock *BB = SI.getParent(); 787 // We may have had multiple edges to this common successor block, so remove 788 // them as predecessors. We skip the first one, either the default or the 789 // actual first case. 790 bool SkippedFirst = DefaultExitBB == nullptr; 791 for (auto Case : SI.cases()) { 792 assert(Case.getCaseSuccessor() == CommonSuccBB && 793 "Non-common successor!"); 794 (void)Case; 795 if (!SkippedFirst) { 796 SkippedFirst = true; 797 continue; 798 } 799 CommonSuccBB->removePredecessor(BB, 800 /*KeepOneInputPHIs*/ true); 801 } 802 // Now nuke the switch and replace it with a direct branch. 803 SIW.eraseFromParent(); 804 BranchInst::Create(CommonSuccBB, BB); 805 } else if (DefaultExitBB) { 806 assert(SI.getNumCases() > 0 && 807 "If we had no cases we'd have a common successor!"); 808 // Move the last case to the default successor. This is valid as if the 809 // default got unswitched it cannot be reached. This has the advantage of 810 // being simple and keeping the number of edges from this switch to 811 // successors the same, and avoiding any PHI update complexity. 812 auto LastCaseI = std::prev(SI.case_end()); 813 814 SI.setDefaultDest(LastCaseI->getCaseSuccessor()); 815 SIW.setSuccessorWeight( 816 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex())); 817 SIW.removeCase(LastCaseI); 818 } 819 820 // Walk the unswitched exit blocks and the unswitched split blocks and update 821 // the dominator tree based on the CFG edits. While we are walking unordered 822 // containers here, the API for applyUpdates takes an unordered list of 823 // updates and requires them to not contain duplicates. 824 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 825 for (auto *UnswitchedExitBB : UnswitchedExitBBs) { 826 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB}); 827 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB}); 828 } 829 for (auto SplitUnswitchedPair : SplitExitBBMap) { 830 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first}); 831 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second}); 832 } 833 DT.applyUpdates(DTUpdates); 834 835 if (MSSAU) { 836 MSSAU->applyUpdates(DTUpdates, DT); 837 if (VerifyMemorySSA) 838 MSSAU->getMemorySSA()->verifyMemorySSA(); 839 } 840 841 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 842 843 // We may have changed the nesting relationship for this loop so hoist it to 844 // its correct parent if needed. 845 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE); 846 847 if (MSSAU && VerifyMemorySSA) 848 MSSAU->getMemorySSA()->verifyMemorySSA(); 849 850 ++NumTrivial; 851 ++NumSwitches; 852 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n"); 853 return true; 854 } 855 856 /// This routine scans the loop to find a branch or switch which occurs before 857 /// any side effects occur. These can potentially be unswitched without 858 /// duplicating the loop. If a branch or switch is successfully unswitched the 859 /// scanning continues to see if subsequent branches or switches have become 860 /// trivial. Once all trivial candidates have been unswitched, this routine 861 /// returns. 862 /// 863 /// The return value indicates whether anything was unswitched (and therefore 864 /// changed). 865 /// 866 /// If `SE` is not null, it will be updated based on the potential loop SCEVs 867 /// invalidated by this. 868 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT, 869 LoopInfo &LI, ScalarEvolution *SE, 870 MemorySSAUpdater *MSSAU) { 871 bool Changed = false; 872 873 // If loop header has only one reachable successor we should keep looking for 874 // trivial condition candidates in the successor as well. An alternative is 875 // to constant fold conditions and merge successors into loop header (then we 876 // only need to check header's terminator). The reason for not doing this in 877 // LoopUnswitch pass is that it could potentially break LoopPassManager's 878 // invariants. Folding dead branches could either eliminate the current loop 879 // or make other loops unreachable. LCSSA form might also not be preserved 880 // after deleting branches. The following code keeps traversing loop header's 881 // successors until it finds the trivial condition candidate (condition that 882 // is not a constant). Since unswitching generates branches with constant 883 // conditions, this scenario could be very common in practice. 884 BasicBlock *CurrentBB = L.getHeader(); 885 SmallPtrSet<BasicBlock *, 8> Visited; 886 Visited.insert(CurrentBB); 887 do { 888 // Check if there are any side-effecting instructions (e.g. stores, calls, 889 // volatile loads) in the part of the loop that the code *would* execute 890 // without unswitching. 891 if (MSSAU) // Possible early exit with MSSA 892 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB)) 893 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end())) 894 return Changed; 895 if (llvm::any_of(*CurrentBB, 896 [](Instruction &I) { return I.mayHaveSideEffects(); })) 897 return Changed; 898 899 Instruction *CurrentTerm = CurrentBB->getTerminator(); 900 901 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) { 902 // Don't bother trying to unswitch past a switch with a constant 903 // condition. This should be removed prior to running this pass by 904 // simplify-cfg. 905 if (isa<Constant>(SI->getCondition())) 906 return Changed; 907 908 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU)) 909 // Couldn't unswitch this one so we're done. 910 return Changed; 911 912 // Mark that we managed to unswitch something. 913 Changed = true; 914 915 // If unswitching turned the terminator into an unconditional branch then 916 // we can continue. The unswitching logic specifically works to fold any 917 // cases it can into an unconditional branch to make it easier to 918 // recognize here. 919 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator()); 920 if (!BI || BI->isConditional()) 921 return Changed; 922 923 CurrentBB = BI->getSuccessor(0); 924 continue; 925 } 926 927 auto *BI = dyn_cast<BranchInst>(CurrentTerm); 928 if (!BI) 929 // We do not understand other terminator instructions. 930 return Changed; 931 932 // Don't bother trying to unswitch past an unconditional branch or a branch 933 // with a constant value. These should be removed by simplify-cfg prior to 934 // running this pass. 935 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 936 return Changed; 937 938 // Found a trivial condition candidate: non-foldable conditional branch. If 939 // we fail to unswitch this, we can't do anything else that is trivial. 940 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU)) 941 return Changed; 942 943 // Mark that we managed to unswitch something. 944 Changed = true; 945 946 // If we only unswitched some of the conditions feeding the branch, we won't 947 // have collapsed it to a single successor. 948 BI = cast<BranchInst>(CurrentBB->getTerminator()); 949 if (BI->isConditional()) 950 return Changed; 951 952 // Follow the newly unconditional branch into its successor. 953 CurrentBB = BI->getSuccessor(0); 954 955 // When continuing, if we exit the loop or reach a previous visited block, 956 // then we can not reach any trivial condition candidates (unfoldable 957 // branch instructions or switch instructions) and no unswitch can happen. 958 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second); 959 960 return Changed; 961 } 962 963 /// Build the cloned blocks for an unswitched copy of the given loop. 964 /// 965 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and 966 /// after the split block (`SplitBB`) that will be used to select between the 967 /// cloned and original loop. 968 /// 969 /// This routine handles cloning all of the necessary loop blocks and exit 970 /// blocks including rewriting their instructions and the relevant PHI nodes. 971 /// Any loop blocks or exit blocks which are dominated by a different successor 972 /// than the one for this clone of the loop blocks can be trivially skipped. We 973 /// use the `DominatingSucc` map to determine whether a block satisfies that 974 /// property with a simple map lookup. 975 /// 976 /// It also correctly creates the unconditional branch in the cloned 977 /// unswitched parent block to only point at the unswitched successor. 978 /// 979 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit 980 /// block splitting is correctly reflected in `LoopInfo`, essentially all of 981 /// the cloned blocks (and their loops) are left without full `LoopInfo` 982 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned 983 /// blocks to them but doesn't create the cloned `DominatorTree` structure and 984 /// instead the caller must recompute an accurate DT. It *does* correctly 985 /// update the `AssumptionCache` provided in `AC`. 986 static BasicBlock *buildClonedLoopBlocks( 987 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB, 988 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB, 989 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB, 990 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc, 991 ValueToValueMapTy &VMap, 992 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC, 993 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 994 SmallVector<BasicBlock *, 4> NewBlocks; 995 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size()); 996 997 // We will need to clone a bunch of blocks, wrap up the clone operation in 998 // a helper. 999 auto CloneBlock = [&](BasicBlock *OldBB) { 1000 // Clone the basic block and insert it before the new preheader. 1001 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent()); 1002 NewBB->moveBefore(LoopPH); 1003 1004 // Record this block and the mapping. 1005 NewBlocks.push_back(NewBB); 1006 VMap[OldBB] = NewBB; 1007 1008 return NewBB; 1009 }; 1010 1011 // We skip cloning blocks when they have a dominating succ that is not the 1012 // succ we are cloning for. 1013 auto SkipBlock = [&](BasicBlock *BB) { 1014 auto It = DominatingSucc.find(BB); 1015 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB; 1016 }; 1017 1018 // First, clone the preheader. 1019 auto *ClonedPH = CloneBlock(LoopPH); 1020 1021 // Then clone all the loop blocks, skipping the ones that aren't necessary. 1022 for (auto *LoopBB : L.blocks()) 1023 if (!SkipBlock(LoopBB)) 1024 CloneBlock(LoopBB); 1025 1026 // Split all the loop exit edges so that when we clone the exit blocks, if 1027 // any of the exit blocks are *also* a preheader for some other loop, we 1028 // don't create multiple predecessors entering the loop header. 1029 for (auto *ExitBB : ExitBlocks) { 1030 if (SkipBlock(ExitBB)) 1031 continue; 1032 1033 // When we are going to clone an exit, we don't need to clone all the 1034 // instructions in the exit block and we want to ensure we have an easy 1035 // place to merge the CFG, so split the exit first. This is always safe to 1036 // do because there cannot be any non-loop predecessors of a loop exit in 1037 // loop simplified form. 1038 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU); 1039 1040 // Rearrange the names to make it easier to write test cases by having the 1041 // exit block carry the suffix rather than the merge block carrying the 1042 // suffix. 1043 MergeBB->takeName(ExitBB); 1044 ExitBB->setName(Twine(MergeBB->getName()) + ".split"); 1045 1046 // Now clone the original exit block. 1047 auto *ClonedExitBB = CloneBlock(ExitBB); 1048 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 && 1049 "Exit block should have been split to have one successor!"); 1050 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB && 1051 "Cloned exit block has the wrong successor!"); 1052 1053 // Remap any cloned instructions and create a merge phi node for them. 1054 for (auto ZippedInsts : llvm::zip_first( 1055 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())), 1056 llvm::make_range(ClonedExitBB->begin(), 1057 std::prev(ClonedExitBB->end())))) { 1058 Instruction &I = std::get<0>(ZippedInsts); 1059 Instruction &ClonedI = std::get<1>(ZippedInsts); 1060 1061 // The only instructions in the exit block should be PHI nodes and 1062 // potentially a landing pad. 1063 assert( 1064 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) && 1065 "Bad instruction in exit block!"); 1066 // We should have a value map between the instruction and its clone. 1067 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!"); 1068 1069 auto *MergePN = 1070 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi", 1071 &*MergeBB->getFirstInsertionPt()); 1072 I.replaceAllUsesWith(MergePN); 1073 MergePN->addIncoming(&I, ExitBB); 1074 MergePN->addIncoming(&ClonedI, ClonedExitBB); 1075 } 1076 } 1077 1078 // Rewrite the instructions in the cloned blocks to refer to the instructions 1079 // in the cloned blocks. We have to do this as a second pass so that we have 1080 // everything available. Also, we have inserted new instructions which may 1081 // include assume intrinsics, so we update the assumption cache while 1082 // processing this. 1083 for (auto *ClonedBB : NewBlocks) 1084 for (Instruction &I : *ClonedBB) { 1085 RemapInstruction(&I, VMap, 1086 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1087 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 1088 if (II->getIntrinsicID() == Intrinsic::assume) 1089 AC.registerAssumption(II); 1090 } 1091 1092 // Update any PHI nodes in the cloned successors of the skipped blocks to not 1093 // have spurious incoming values. 1094 for (auto *LoopBB : L.blocks()) 1095 if (SkipBlock(LoopBB)) 1096 for (auto *SuccBB : successors(LoopBB)) 1097 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB))) 1098 for (PHINode &PN : ClonedSuccBB->phis()) 1099 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false); 1100 1101 // Remove the cloned parent as a predecessor of any successor we ended up 1102 // cloning other than the unswitched one. 1103 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB)); 1104 for (auto *SuccBB : successors(ParentBB)) { 1105 if (SuccBB == UnswitchedSuccBB) 1106 continue; 1107 1108 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)); 1109 if (!ClonedSuccBB) 1110 continue; 1111 1112 ClonedSuccBB->removePredecessor(ClonedParentBB, 1113 /*KeepOneInputPHIs*/ true); 1114 } 1115 1116 // Replace the cloned branch with an unconditional branch to the cloned 1117 // unswitched successor. 1118 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB)); 1119 ClonedParentBB->getTerminator()->eraseFromParent(); 1120 BranchInst::Create(ClonedSuccBB, ClonedParentBB); 1121 1122 // If there are duplicate entries in the PHI nodes because of multiple edges 1123 // to the unswitched successor, we need to nuke all but one as we replaced it 1124 // with a direct branch. 1125 for (PHINode &PN : ClonedSuccBB->phis()) { 1126 bool Found = false; 1127 // Loop over the incoming operands backwards so we can easily delete as we 1128 // go without invalidating the index. 1129 for (int i = PN.getNumOperands() - 1; i >= 0; --i) { 1130 if (PN.getIncomingBlock(i) != ClonedParentBB) 1131 continue; 1132 if (!Found) { 1133 Found = true; 1134 continue; 1135 } 1136 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false); 1137 } 1138 } 1139 1140 // Record the domtree updates for the new blocks. 1141 SmallPtrSet<BasicBlock *, 4> SuccSet; 1142 for (auto *ClonedBB : NewBlocks) { 1143 for (auto *SuccBB : successors(ClonedBB)) 1144 if (SuccSet.insert(SuccBB).second) 1145 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB}); 1146 SuccSet.clear(); 1147 } 1148 1149 return ClonedPH; 1150 } 1151 1152 /// Recursively clone the specified loop and all of its children. 1153 /// 1154 /// The target parent loop for the clone should be provided, or can be null if 1155 /// the clone is a top-level loop. While cloning, all the blocks are mapped 1156 /// with the provided value map. The entire original loop must be present in 1157 /// the value map. The cloned loop is returned. 1158 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL, 1159 const ValueToValueMapTy &VMap, LoopInfo &LI) { 1160 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) { 1161 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!"); 1162 ClonedL.reserveBlocks(OrigL.getNumBlocks()); 1163 for (auto *BB : OrigL.blocks()) { 1164 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB)); 1165 ClonedL.addBlockEntry(ClonedBB); 1166 if (LI.getLoopFor(BB) == &OrigL) 1167 LI.changeLoopFor(ClonedBB, &ClonedL); 1168 } 1169 }; 1170 1171 // We specially handle the first loop because it may get cloned into 1172 // a different parent and because we most commonly are cloning leaf loops. 1173 Loop *ClonedRootL = LI.AllocateLoop(); 1174 if (RootParentL) 1175 RootParentL->addChildLoop(ClonedRootL); 1176 else 1177 LI.addTopLevelLoop(ClonedRootL); 1178 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL); 1179 1180 if (OrigRootL.empty()) 1181 return ClonedRootL; 1182 1183 // If we have a nest, we can quickly clone the entire loop nest using an 1184 // iterative approach because it is a tree. We keep the cloned parent in the 1185 // data structure to avoid repeatedly querying through a map to find it. 1186 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone; 1187 // Build up the loops to clone in reverse order as we'll clone them from the 1188 // back. 1189 for (Loop *ChildL : llvm::reverse(OrigRootL)) 1190 LoopsToClone.push_back({ClonedRootL, ChildL}); 1191 do { 1192 Loop *ClonedParentL, *L; 1193 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val(); 1194 Loop *ClonedL = LI.AllocateLoop(); 1195 ClonedParentL->addChildLoop(ClonedL); 1196 AddClonedBlocksToLoop(*L, *ClonedL); 1197 for (Loop *ChildL : llvm::reverse(*L)) 1198 LoopsToClone.push_back({ClonedL, ChildL}); 1199 } while (!LoopsToClone.empty()); 1200 1201 return ClonedRootL; 1202 } 1203 1204 /// Build the cloned loops of an original loop from unswitching. 1205 /// 1206 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial 1207 /// operation. We need to re-verify that there even is a loop (as the backedge 1208 /// may not have been cloned), and even if there are remaining backedges the 1209 /// backedge set may be different. However, we know that each child loop is 1210 /// undisturbed, we only need to find where to place each child loop within 1211 /// either any parent loop or within a cloned version of the original loop. 1212 /// 1213 /// Because child loops may end up cloned outside of any cloned version of the 1214 /// original loop, multiple cloned sibling loops may be created. All of them 1215 /// are returned so that the newly introduced loop nest roots can be 1216 /// identified. 1217 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks, 1218 const ValueToValueMapTy &VMap, LoopInfo &LI, 1219 SmallVectorImpl<Loop *> &NonChildClonedLoops) { 1220 Loop *ClonedL = nullptr; 1221 1222 auto *OrigPH = OrigL.getLoopPreheader(); 1223 auto *OrigHeader = OrigL.getHeader(); 1224 1225 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH)); 1226 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader)); 1227 1228 // We need to know the loops of the cloned exit blocks to even compute the 1229 // accurate parent loop. If we only clone exits to some parent of the 1230 // original parent, we want to clone into that outer loop. We also keep track 1231 // of the loops that our cloned exit blocks participate in. 1232 Loop *ParentL = nullptr; 1233 SmallVector<BasicBlock *, 4> ClonedExitsInLoops; 1234 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap; 1235 ClonedExitsInLoops.reserve(ExitBlocks.size()); 1236 for (auto *ExitBB : ExitBlocks) 1237 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB))) 1238 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1239 ExitLoopMap[ClonedExitBB] = ExitL; 1240 ClonedExitsInLoops.push_back(ClonedExitBB); 1241 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1242 ParentL = ExitL; 1243 } 1244 assert((!ParentL || ParentL == OrigL.getParentLoop() || 1245 ParentL->contains(OrigL.getParentLoop())) && 1246 "The computed parent loop should always contain (or be) the parent of " 1247 "the original loop."); 1248 1249 // We build the set of blocks dominated by the cloned header from the set of 1250 // cloned blocks out of the original loop. While not all of these will 1251 // necessarily be in the cloned loop, it is enough to establish that they 1252 // aren't in unreachable cycles, etc. 1253 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks; 1254 for (auto *BB : OrigL.blocks()) 1255 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB))) 1256 ClonedLoopBlocks.insert(ClonedBB); 1257 1258 // Rebuild the set of blocks that will end up in the cloned loop. We may have 1259 // skipped cloning some region of this loop which can in turn skip some of 1260 // the backedges so we have to rebuild the blocks in the loop based on the 1261 // backedges that remain after cloning. 1262 SmallVector<BasicBlock *, 16> Worklist; 1263 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop; 1264 for (auto *Pred : predecessors(ClonedHeader)) { 1265 // The only possible non-loop header predecessor is the preheader because 1266 // we know we cloned the loop in simplified form. 1267 if (Pred == ClonedPH) 1268 continue; 1269 1270 // Because the loop was in simplified form, the only non-loop predecessor 1271 // should be the preheader. 1272 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop " 1273 "header other than the preheader " 1274 "that is not part of the loop!"); 1275 1276 // Insert this block into the loop set and on the first visit (and if it 1277 // isn't the header we're currently walking) put it into the worklist to 1278 // recurse through. 1279 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader) 1280 Worklist.push_back(Pred); 1281 } 1282 1283 // If we had any backedges then there *is* a cloned loop. Put the header into 1284 // the loop set and then walk the worklist backwards to find all the blocks 1285 // that remain within the loop after cloning. 1286 if (!BlocksInClonedLoop.empty()) { 1287 BlocksInClonedLoop.insert(ClonedHeader); 1288 1289 while (!Worklist.empty()) { 1290 BasicBlock *BB = Worklist.pop_back_val(); 1291 assert(BlocksInClonedLoop.count(BB) && 1292 "Didn't put block into the loop set!"); 1293 1294 // Insert any predecessors that are in the possible set into the cloned 1295 // set, and if the insert is successful, add them to the worklist. Note 1296 // that we filter on the blocks that are definitely reachable via the 1297 // backedge to the loop header so we may prune out dead code within the 1298 // cloned loop. 1299 for (auto *Pred : predecessors(BB)) 1300 if (ClonedLoopBlocks.count(Pred) && 1301 BlocksInClonedLoop.insert(Pred).second) 1302 Worklist.push_back(Pred); 1303 } 1304 1305 ClonedL = LI.AllocateLoop(); 1306 if (ParentL) { 1307 ParentL->addBasicBlockToLoop(ClonedPH, LI); 1308 ParentL->addChildLoop(ClonedL); 1309 } else { 1310 LI.addTopLevelLoop(ClonedL); 1311 } 1312 NonChildClonedLoops.push_back(ClonedL); 1313 1314 ClonedL->reserveBlocks(BlocksInClonedLoop.size()); 1315 // We don't want to just add the cloned loop blocks based on how we 1316 // discovered them. The original order of blocks was carefully built in 1317 // a way that doesn't rely on predecessor ordering. Rather than re-invent 1318 // that logic, we just re-walk the original blocks (and those of the child 1319 // loops) and filter them as we add them into the cloned loop. 1320 for (auto *BB : OrigL.blocks()) { 1321 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)); 1322 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB)) 1323 continue; 1324 1325 // Directly add the blocks that are only in this loop. 1326 if (LI.getLoopFor(BB) == &OrigL) { 1327 ClonedL->addBasicBlockToLoop(ClonedBB, LI); 1328 continue; 1329 } 1330 1331 // We want to manually add it to this loop and parents. 1332 // Registering it with LoopInfo will happen when we clone the top 1333 // loop for this block. 1334 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop()) 1335 PL->addBlockEntry(ClonedBB); 1336 } 1337 1338 // Now add each child loop whose header remains within the cloned loop. All 1339 // of the blocks within the loop must satisfy the same constraints as the 1340 // header so once we pass the header checks we can just clone the entire 1341 // child loop nest. 1342 for (Loop *ChildL : OrigL) { 1343 auto *ClonedChildHeader = 1344 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1345 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader)) 1346 continue; 1347 1348 #ifndef NDEBUG 1349 // We should never have a cloned child loop header but fail to have 1350 // all of the blocks for that child loop. 1351 for (auto *ChildLoopBB : ChildL->blocks()) 1352 assert(BlocksInClonedLoop.count( 1353 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) && 1354 "Child cloned loop has a header within the cloned outer " 1355 "loop but not all of its blocks!"); 1356 #endif 1357 1358 cloneLoopNest(*ChildL, ClonedL, VMap, LI); 1359 } 1360 } 1361 1362 // Now that we've handled all the components of the original loop that were 1363 // cloned into a new loop, we still need to handle anything from the original 1364 // loop that wasn't in a cloned loop. 1365 1366 // Figure out what blocks are left to place within any loop nest containing 1367 // the unswitched loop. If we never formed a loop, the cloned PH is one of 1368 // them. 1369 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet; 1370 if (BlocksInClonedLoop.empty()) 1371 UnloopedBlockSet.insert(ClonedPH); 1372 for (auto *ClonedBB : ClonedLoopBlocks) 1373 if (!BlocksInClonedLoop.count(ClonedBB)) 1374 UnloopedBlockSet.insert(ClonedBB); 1375 1376 // Copy the cloned exits and sort them in ascending loop depth, we'll work 1377 // backwards across these to process them inside out. The order shouldn't 1378 // matter as we're just trying to build up the map from inside-out; we use 1379 // the map in a more stably ordered way below. 1380 auto OrderedClonedExitsInLoops = ClonedExitsInLoops; 1381 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1382 return ExitLoopMap.lookup(LHS)->getLoopDepth() < 1383 ExitLoopMap.lookup(RHS)->getLoopDepth(); 1384 }); 1385 1386 // Populate the existing ExitLoopMap with everything reachable from each 1387 // exit, starting from the inner most exit. 1388 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) { 1389 assert(Worklist.empty() && "Didn't clear worklist!"); 1390 1391 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val(); 1392 Loop *ExitL = ExitLoopMap.lookup(ExitBB); 1393 1394 // Walk the CFG back until we hit the cloned PH adding everything reachable 1395 // and in the unlooped set to this exit block's loop. 1396 Worklist.push_back(ExitBB); 1397 do { 1398 BasicBlock *BB = Worklist.pop_back_val(); 1399 // We can stop recursing at the cloned preheader (if we get there). 1400 if (BB == ClonedPH) 1401 continue; 1402 1403 for (BasicBlock *PredBB : predecessors(BB)) { 1404 // If this pred has already been moved to our set or is part of some 1405 // (inner) loop, no update needed. 1406 if (!UnloopedBlockSet.erase(PredBB)) { 1407 assert( 1408 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) && 1409 "Predecessor not mapped to a loop!"); 1410 continue; 1411 } 1412 1413 // We just insert into the loop set here. We'll add these blocks to the 1414 // exit loop after we build up the set in an order that doesn't rely on 1415 // predecessor order (which in turn relies on use list order). 1416 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second; 1417 (void)Inserted; 1418 assert(Inserted && "Should only visit an unlooped block once!"); 1419 1420 // And recurse through to its predecessors. 1421 Worklist.push_back(PredBB); 1422 } 1423 } while (!Worklist.empty()); 1424 } 1425 1426 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned 1427 // blocks to their outer loops, walk the cloned blocks and the cloned exits 1428 // in their original order adding them to the correct loop. 1429 1430 // We need a stable insertion order. We use the order of the original loop 1431 // order and map into the correct parent loop. 1432 for (auto *BB : llvm::concat<BasicBlock *const>( 1433 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops)) 1434 if (Loop *OuterL = ExitLoopMap.lookup(BB)) 1435 OuterL->addBasicBlockToLoop(BB, LI); 1436 1437 #ifndef NDEBUG 1438 for (auto &BBAndL : ExitLoopMap) { 1439 auto *BB = BBAndL.first; 1440 auto *OuterL = BBAndL.second; 1441 assert(LI.getLoopFor(BB) == OuterL && 1442 "Failed to put all blocks into outer loops!"); 1443 } 1444 #endif 1445 1446 // Now that all the blocks are placed into the correct containing loop in the 1447 // absence of child loops, find all the potentially cloned child loops and 1448 // clone them into whatever outer loop we placed their header into. 1449 for (Loop *ChildL : OrigL) { 1450 auto *ClonedChildHeader = 1451 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader())); 1452 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader)) 1453 continue; 1454 1455 #ifndef NDEBUG 1456 for (auto *ChildLoopBB : ChildL->blocks()) 1457 assert(VMap.count(ChildLoopBB) && 1458 "Cloned a child loop header but not all of that loops blocks!"); 1459 #endif 1460 1461 NonChildClonedLoops.push_back(cloneLoopNest( 1462 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI)); 1463 } 1464 } 1465 1466 static void 1467 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1468 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, 1469 DominatorTree &DT, MemorySSAUpdater *MSSAU) { 1470 // Find all the dead clones, and remove them from their successors. 1471 SmallVector<BasicBlock *, 16> DeadBlocks; 1472 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks)) 1473 for (auto &VMap : VMaps) 1474 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB))) 1475 if (!DT.isReachableFromEntry(ClonedBB)) { 1476 for (BasicBlock *SuccBB : successors(ClonedBB)) 1477 SuccBB->removePredecessor(ClonedBB); 1478 DeadBlocks.push_back(ClonedBB); 1479 } 1480 1481 // Remove all MemorySSA in the dead blocks 1482 if (MSSAU) { 1483 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(), 1484 DeadBlocks.end()); 1485 MSSAU->removeBlocks(DeadBlockSet); 1486 } 1487 1488 // Drop any remaining references to break cycles. 1489 for (BasicBlock *BB : DeadBlocks) 1490 BB->dropAllReferences(); 1491 // Erase them from the IR. 1492 for (BasicBlock *BB : DeadBlocks) 1493 BB->eraseFromParent(); 1494 } 1495 1496 static void deleteDeadBlocksFromLoop(Loop &L, 1497 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1498 DominatorTree &DT, LoopInfo &LI, 1499 MemorySSAUpdater *MSSAU) { 1500 // Find all the dead blocks tied to this loop, and remove them from their 1501 // successors. 1502 SmallSetVector<BasicBlock *, 8> DeadBlockSet; 1503 1504 // Start with loop/exit blocks and get a transitive closure of reachable dead 1505 // blocks. 1506 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(), 1507 ExitBlocks.end()); 1508 DeathCandidates.append(L.blocks().begin(), L.blocks().end()); 1509 while (!DeathCandidates.empty()) { 1510 auto *BB = DeathCandidates.pop_back_val(); 1511 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) { 1512 for (BasicBlock *SuccBB : successors(BB)) { 1513 SuccBB->removePredecessor(BB); 1514 DeathCandidates.push_back(SuccBB); 1515 } 1516 DeadBlockSet.insert(BB); 1517 } 1518 } 1519 1520 // Remove all MemorySSA in the dead blocks 1521 if (MSSAU) 1522 MSSAU->removeBlocks(DeadBlockSet); 1523 1524 // Filter out the dead blocks from the exit blocks list so that it can be 1525 // used in the caller. 1526 llvm::erase_if(ExitBlocks, 1527 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1528 1529 // Walk from this loop up through its parents removing all of the dead blocks. 1530 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) { 1531 for (auto *BB : DeadBlockSet) 1532 ParentL->getBlocksSet().erase(BB); 1533 llvm::erase_if(ParentL->getBlocksVector(), 1534 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); }); 1535 } 1536 1537 // Now delete the dead child loops. This raw delete will clear them 1538 // recursively. 1539 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) { 1540 if (!DeadBlockSet.count(ChildL->getHeader())) 1541 return false; 1542 1543 assert(llvm::all_of(ChildL->blocks(), 1544 [&](BasicBlock *ChildBB) { 1545 return DeadBlockSet.count(ChildBB); 1546 }) && 1547 "If the child loop header is dead all blocks in the child loop must " 1548 "be dead as well!"); 1549 LI.destroy(ChildL); 1550 return true; 1551 }); 1552 1553 // Remove the loop mappings for the dead blocks and drop all the references 1554 // from these blocks to others to handle cyclic references as we start 1555 // deleting the blocks themselves. 1556 for (auto *BB : DeadBlockSet) { 1557 // Check that the dominator tree has already been updated. 1558 assert(!DT.getNode(BB) && "Should already have cleared domtree!"); 1559 LI.changeLoopFor(BB, nullptr); 1560 BB->dropAllReferences(); 1561 } 1562 1563 // Actually delete the blocks now that they've been fully unhooked from the 1564 // IR. 1565 for (auto *BB : DeadBlockSet) 1566 BB->eraseFromParent(); 1567 } 1568 1569 /// Recompute the set of blocks in a loop after unswitching. 1570 /// 1571 /// This walks from the original headers predecessors to rebuild the loop. We 1572 /// take advantage of the fact that new blocks can't have been added, and so we 1573 /// filter by the original loop's blocks. This also handles potentially 1574 /// unreachable code that we don't want to explore but might be found examining 1575 /// the predecessors of the header. 1576 /// 1577 /// If the original loop is no longer a loop, this will return an empty set. If 1578 /// it remains a loop, all the blocks within it will be added to the set 1579 /// (including those blocks in inner loops). 1580 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L, 1581 LoopInfo &LI) { 1582 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet; 1583 1584 auto *PH = L.getLoopPreheader(); 1585 auto *Header = L.getHeader(); 1586 1587 // A worklist to use while walking backwards from the header. 1588 SmallVector<BasicBlock *, 16> Worklist; 1589 1590 // First walk the predecessors of the header to find the backedges. This will 1591 // form the basis of our walk. 1592 for (auto *Pred : predecessors(Header)) { 1593 // Skip the preheader. 1594 if (Pred == PH) 1595 continue; 1596 1597 // Because the loop was in simplified form, the only non-loop predecessor 1598 // is the preheader. 1599 assert(L.contains(Pred) && "Found a predecessor of the loop header other " 1600 "than the preheader that is not part of the " 1601 "loop!"); 1602 1603 // Insert this block into the loop set and on the first visit and, if it 1604 // isn't the header we're currently walking, put it into the worklist to 1605 // recurse through. 1606 if (LoopBlockSet.insert(Pred).second && Pred != Header) 1607 Worklist.push_back(Pred); 1608 } 1609 1610 // If no backedges were found, we're done. 1611 if (LoopBlockSet.empty()) 1612 return LoopBlockSet; 1613 1614 // We found backedges, recurse through them to identify the loop blocks. 1615 while (!Worklist.empty()) { 1616 BasicBlock *BB = Worklist.pop_back_val(); 1617 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!"); 1618 1619 // No need to walk past the header. 1620 if (BB == Header) 1621 continue; 1622 1623 // Because we know the inner loop structure remains valid we can use the 1624 // loop structure to jump immediately across the entire nested loop. 1625 // Further, because it is in loop simplified form, we can directly jump 1626 // to its preheader afterward. 1627 if (Loop *InnerL = LI.getLoopFor(BB)) 1628 if (InnerL != &L) { 1629 assert(L.contains(InnerL) && 1630 "Should not reach a loop *outside* this loop!"); 1631 // The preheader is the only possible predecessor of the loop so 1632 // insert it into the set and check whether it was already handled. 1633 auto *InnerPH = InnerL->getLoopPreheader(); 1634 assert(L.contains(InnerPH) && "Cannot contain an inner loop block " 1635 "but not contain the inner loop " 1636 "preheader!"); 1637 if (!LoopBlockSet.insert(InnerPH).second) 1638 // The only way to reach the preheader is through the loop body 1639 // itself so if it has been visited the loop is already handled. 1640 continue; 1641 1642 // Insert all of the blocks (other than those already present) into 1643 // the loop set. We expect at least the block that led us to find the 1644 // inner loop to be in the block set, but we may also have other loop 1645 // blocks if they were already enqueued as predecessors of some other 1646 // outer loop block. 1647 for (auto *InnerBB : InnerL->blocks()) { 1648 if (InnerBB == BB) { 1649 assert(LoopBlockSet.count(InnerBB) && 1650 "Block should already be in the set!"); 1651 continue; 1652 } 1653 1654 LoopBlockSet.insert(InnerBB); 1655 } 1656 1657 // Add the preheader to the worklist so we will continue past the 1658 // loop body. 1659 Worklist.push_back(InnerPH); 1660 continue; 1661 } 1662 1663 // Insert any predecessors that were in the original loop into the new 1664 // set, and if the insert is successful, add them to the worklist. 1665 for (auto *Pred : predecessors(BB)) 1666 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second) 1667 Worklist.push_back(Pred); 1668 } 1669 1670 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!"); 1671 1672 // We've found all the blocks participating in the loop, return our completed 1673 // set. 1674 return LoopBlockSet; 1675 } 1676 1677 /// Rebuild a loop after unswitching removes some subset of blocks and edges. 1678 /// 1679 /// The removal may have removed some child loops entirely but cannot have 1680 /// disturbed any remaining child loops. However, they may need to be hoisted 1681 /// to the parent loop (or to be top-level loops). The original loop may be 1682 /// completely removed. 1683 /// 1684 /// The sibling loops resulting from this update are returned. If the original 1685 /// loop remains a valid loop, it will be the first entry in this list with all 1686 /// of the newly sibling loops following it. 1687 /// 1688 /// Returns true if the loop remains a loop after unswitching, and false if it 1689 /// is no longer a loop after unswitching (and should not continue to be 1690 /// referenced). 1691 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks, 1692 LoopInfo &LI, 1693 SmallVectorImpl<Loop *> &HoistedLoops) { 1694 auto *PH = L.getLoopPreheader(); 1695 1696 // Compute the actual parent loop from the exit blocks. Because we may have 1697 // pruned some exits the loop may be different from the original parent. 1698 Loop *ParentL = nullptr; 1699 SmallVector<Loop *, 4> ExitLoops; 1700 SmallVector<BasicBlock *, 4> ExitsInLoops; 1701 ExitsInLoops.reserve(ExitBlocks.size()); 1702 for (auto *ExitBB : ExitBlocks) 1703 if (Loop *ExitL = LI.getLoopFor(ExitBB)) { 1704 ExitLoops.push_back(ExitL); 1705 ExitsInLoops.push_back(ExitBB); 1706 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL))) 1707 ParentL = ExitL; 1708 } 1709 1710 // Recompute the blocks participating in this loop. This may be empty if it 1711 // is no longer a loop. 1712 auto LoopBlockSet = recomputeLoopBlockSet(L, LI); 1713 1714 // If we still have a loop, we need to re-set the loop's parent as the exit 1715 // block set changing may have moved it within the loop nest. Note that this 1716 // can only happen when this loop has a parent as it can only hoist the loop 1717 // *up* the nest. 1718 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) { 1719 // Remove this loop's (original) blocks from all of the intervening loops. 1720 for (Loop *IL = L.getParentLoop(); IL != ParentL; 1721 IL = IL->getParentLoop()) { 1722 IL->getBlocksSet().erase(PH); 1723 for (auto *BB : L.blocks()) 1724 IL->getBlocksSet().erase(BB); 1725 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) { 1726 return BB == PH || L.contains(BB); 1727 }); 1728 } 1729 1730 LI.changeLoopFor(PH, ParentL); 1731 L.getParentLoop()->removeChildLoop(&L); 1732 if (ParentL) 1733 ParentL->addChildLoop(&L); 1734 else 1735 LI.addTopLevelLoop(&L); 1736 } 1737 1738 // Now we update all the blocks which are no longer within the loop. 1739 auto &Blocks = L.getBlocksVector(); 1740 auto BlocksSplitI = 1741 LoopBlockSet.empty() 1742 ? Blocks.begin() 1743 : std::stable_partition( 1744 Blocks.begin(), Blocks.end(), 1745 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); }); 1746 1747 // Before we erase the list of unlooped blocks, build a set of them. 1748 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end()); 1749 if (LoopBlockSet.empty()) 1750 UnloopedBlocks.insert(PH); 1751 1752 // Now erase these blocks from the loop. 1753 for (auto *BB : make_range(BlocksSplitI, Blocks.end())) 1754 L.getBlocksSet().erase(BB); 1755 Blocks.erase(BlocksSplitI, Blocks.end()); 1756 1757 // Sort the exits in ascending loop depth, we'll work backwards across these 1758 // to process them inside out. 1759 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) { 1760 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS); 1761 }); 1762 1763 // We'll build up a set for each exit loop. 1764 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks; 1765 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop. 1766 1767 auto RemoveUnloopedBlocksFromLoop = 1768 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) { 1769 for (auto *BB : UnloopedBlocks) 1770 L.getBlocksSet().erase(BB); 1771 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) { 1772 return UnloopedBlocks.count(BB); 1773 }); 1774 }; 1775 1776 SmallVector<BasicBlock *, 16> Worklist; 1777 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) { 1778 assert(Worklist.empty() && "Didn't clear worklist!"); 1779 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!"); 1780 1781 // Grab the next exit block, in decreasing loop depth order. 1782 BasicBlock *ExitBB = ExitsInLoops.pop_back_val(); 1783 Loop &ExitL = *LI.getLoopFor(ExitBB); 1784 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!"); 1785 1786 // Erase all of the unlooped blocks from the loops between the previous 1787 // exit loop and this exit loop. This works because the ExitInLoops list is 1788 // sorted in increasing order of loop depth and thus we visit loops in 1789 // decreasing order of loop depth. 1790 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop()) 1791 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1792 1793 // Walk the CFG back until we hit the cloned PH adding everything reachable 1794 // and in the unlooped set to this exit block's loop. 1795 Worklist.push_back(ExitBB); 1796 do { 1797 BasicBlock *BB = Worklist.pop_back_val(); 1798 // We can stop recursing at the cloned preheader (if we get there). 1799 if (BB == PH) 1800 continue; 1801 1802 for (BasicBlock *PredBB : predecessors(BB)) { 1803 // If this pred has already been moved to our set or is part of some 1804 // (inner) loop, no update needed. 1805 if (!UnloopedBlocks.erase(PredBB)) { 1806 assert((NewExitLoopBlocks.count(PredBB) || 1807 ExitL.contains(LI.getLoopFor(PredBB))) && 1808 "Predecessor not in a nested loop (or already visited)!"); 1809 continue; 1810 } 1811 1812 // We just insert into the loop set here. We'll add these blocks to the 1813 // exit loop after we build up the set in a deterministic order rather 1814 // than the predecessor-influenced visit order. 1815 bool Inserted = NewExitLoopBlocks.insert(PredBB).second; 1816 (void)Inserted; 1817 assert(Inserted && "Should only visit an unlooped block once!"); 1818 1819 // And recurse through to its predecessors. 1820 Worklist.push_back(PredBB); 1821 } 1822 } while (!Worklist.empty()); 1823 1824 // If blocks in this exit loop were directly part of the original loop (as 1825 // opposed to a child loop) update the map to point to this exit loop. This 1826 // just updates a map and so the fact that the order is unstable is fine. 1827 for (auto *BB : NewExitLoopBlocks) 1828 if (Loop *BBL = LI.getLoopFor(BB)) 1829 if (BBL == &L || !L.contains(BBL)) 1830 LI.changeLoopFor(BB, &ExitL); 1831 1832 // We will remove the remaining unlooped blocks from this loop in the next 1833 // iteration or below. 1834 NewExitLoopBlocks.clear(); 1835 } 1836 1837 // Any remaining unlooped blocks are no longer part of any loop unless they 1838 // are part of some child loop. 1839 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop()) 1840 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks); 1841 for (auto *BB : UnloopedBlocks) 1842 if (Loop *BBL = LI.getLoopFor(BB)) 1843 if (BBL == &L || !L.contains(BBL)) 1844 LI.changeLoopFor(BB, nullptr); 1845 1846 // Sink all the child loops whose headers are no longer in the loop set to 1847 // the parent (or to be top level loops). We reach into the loop and directly 1848 // update its subloop vector to make this batch update efficient. 1849 auto &SubLoops = L.getSubLoopsVector(); 1850 auto SubLoopsSplitI = 1851 LoopBlockSet.empty() 1852 ? SubLoops.begin() 1853 : std::stable_partition( 1854 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) { 1855 return LoopBlockSet.count(SubL->getHeader()); 1856 }); 1857 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) { 1858 HoistedLoops.push_back(HoistedL); 1859 HoistedL->setParentLoop(nullptr); 1860 1861 // To compute the new parent of this hoisted loop we look at where we 1862 // placed the preheader above. We can't lookup the header itself because we 1863 // retained the mapping from the header to the hoisted loop. But the 1864 // preheader and header should have the exact same new parent computed 1865 // based on the set of exit blocks from the original loop as the preheader 1866 // is a predecessor of the header and so reached in the reverse walk. And 1867 // because the loops were all in simplified form the preheader of the 1868 // hoisted loop can't be part of some *other* loop. 1869 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader())) 1870 NewParentL->addChildLoop(HoistedL); 1871 else 1872 LI.addTopLevelLoop(HoistedL); 1873 } 1874 SubLoops.erase(SubLoopsSplitI, SubLoops.end()); 1875 1876 // Actually delete the loop if nothing remained within it. 1877 if (Blocks.empty()) { 1878 assert(SubLoops.empty() && 1879 "Failed to remove all subloops from the original loop!"); 1880 if (Loop *ParentL = L.getParentLoop()) 1881 ParentL->removeChildLoop(llvm::find(*ParentL, &L)); 1882 else 1883 LI.removeLoop(llvm::find(LI, &L)); 1884 LI.destroy(&L); 1885 return false; 1886 } 1887 1888 return true; 1889 } 1890 1891 /// Helper to visit a dominator subtree, invoking a callable on each node. 1892 /// 1893 /// Returning false at any point will stop walking past that node of the tree. 1894 template <typename CallableT> 1895 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) { 1896 SmallVector<DomTreeNode *, 4> DomWorklist; 1897 DomWorklist.push_back(DT[BB]); 1898 #ifndef NDEBUG 1899 SmallPtrSet<DomTreeNode *, 4> Visited; 1900 Visited.insert(DT[BB]); 1901 #endif 1902 do { 1903 DomTreeNode *N = DomWorklist.pop_back_val(); 1904 1905 // Visit this node. 1906 if (!Callable(N->getBlock())) 1907 continue; 1908 1909 // Accumulate the child nodes. 1910 for (DomTreeNode *ChildN : *N) { 1911 assert(Visited.insert(ChildN).second && 1912 "Cannot visit a node twice when walking a tree!"); 1913 DomWorklist.push_back(ChildN); 1914 } 1915 } while (!DomWorklist.empty()); 1916 } 1917 1918 static void unswitchNontrivialInvariants( 1919 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants, 1920 SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI, 1921 AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 1922 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 1923 auto *ParentBB = TI.getParent(); 1924 BranchInst *BI = dyn_cast<BranchInst>(&TI); 1925 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI); 1926 1927 // We can only unswitch switches, conditional branches with an invariant 1928 // condition, or combining invariant conditions with an instruction. 1929 assert((SI || (BI && BI->isConditional())) && 1930 "Can only unswitch switches and conditional branch!"); 1931 bool FullUnswitch = SI || BI->getCondition() == Invariants[0]; 1932 if (FullUnswitch) 1933 assert(Invariants.size() == 1 && 1934 "Cannot have other invariants with full unswitching!"); 1935 else 1936 assert(isa<Instruction>(BI->getCondition()) && 1937 "Partial unswitching requires an instruction as the condition!"); 1938 1939 if (MSSAU && VerifyMemorySSA) 1940 MSSAU->getMemorySSA()->verifyMemorySSA(); 1941 1942 // Constant and BBs tracking the cloned and continuing successor. When we are 1943 // unswitching the entire condition, this can just be trivially chosen to 1944 // unswitch towards `true`. However, when we are unswitching a set of 1945 // invariants combined with `and` or `or`, the combining operation determines 1946 // the best direction to unswitch: we want to unswitch the direction that will 1947 // collapse the branch. 1948 bool Direction = true; 1949 int ClonedSucc = 0; 1950 if (!FullUnswitch) { 1951 if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) { 1952 assert(cast<Instruction>(BI->getCondition())->getOpcode() == 1953 Instruction::And && 1954 "Only `or` and `and` instructions can combine invariants being " 1955 "unswitched."); 1956 Direction = false; 1957 ClonedSucc = 1; 1958 } 1959 } 1960 1961 BasicBlock *RetainedSuccBB = 1962 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest(); 1963 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs; 1964 if (BI) 1965 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc)); 1966 else 1967 for (auto Case : SI->cases()) 1968 if (Case.getCaseSuccessor() != RetainedSuccBB) 1969 UnswitchedSuccBBs.insert(Case.getCaseSuccessor()); 1970 1971 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) && 1972 "Should not unswitch the same successor we are retaining!"); 1973 1974 // The branch should be in this exact loop. Any inner loop's invariant branch 1975 // should be handled by unswitching that inner loop. The caller of this 1976 // routine should filter out any candidates that remain (but were skipped for 1977 // whatever reason). 1978 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!"); 1979 1980 // Compute the parent loop now before we start hacking on things. 1981 Loop *ParentL = L.getParentLoop(); 1982 // Get blocks in RPO order for MSSA update, before changing the CFG. 1983 LoopBlocksRPO LBRPO(&L); 1984 if (MSSAU) 1985 LBRPO.perform(&LI); 1986 1987 // Compute the outer-most loop containing one of our exit blocks. This is the 1988 // furthest up our loopnest which can be mutated, which we will use below to 1989 // update things. 1990 Loop *OuterExitL = &L; 1991 for (auto *ExitBB : ExitBlocks) { 1992 Loop *NewOuterExitL = LI.getLoopFor(ExitBB); 1993 if (!NewOuterExitL) { 1994 // We exited the entire nest with this block, so we're done. 1995 OuterExitL = nullptr; 1996 break; 1997 } 1998 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL)) 1999 OuterExitL = NewOuterExitL; 2000 } 2001 2002 // At this point, we're definitely going to unswitch something so invalidate 2003 // any cached information in ScalarEvolution for the outer most loop 2004 // containing an exit block and all nested loops. 2005 if (SE) { 2006 if (OuterExitL) 2007 SE->forgetLoop(OuterExitL); 2008 else 2009 SE->forgetTopmostLoop(&L); 2010 } 2011 2012 // If the edge from this terminator to a successor dominates that successor, 2013 // store a map from each block in its dominator subtree to it. This lets us 2014 // tell when cloning for a particular successor if a block is dominated by 2015 // some *other* successor with a single data structure. We use this to 2016 // significantly reduce cloning. 2017 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc; 2018 for (auto *SuccBB : llvm::concat<BasicBlock *const>( 2019 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs)) 2020 if (SuccBB->getUniquePredecessor() || 2021 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2022 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB); 2023 })) 2024 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) { 2025 DominatingSucc[BB] = SuccBB; 2026 return true; 2027 }); 2028 2029 // Split the preheader, so that we know that there is a safe place to insert 2030 // the conditional branch. We will change the preheader to have a conditional 2031 // branch on LoopCond. The original preheader will become the split point 2032 // between the unswitched versions, and we will have a new preheader for the 2033 // original loop. 2034 BasicBlock *SplitBB = L.getLoopPreheader(); 2035 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU); 2036 2037 // Keep track of the dominator tree updates needed. 2038 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2039 2040 // Clone the loop for each unswitched successor. 2041 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps; 2042 VMaps.reserve(UnswitchedSuccBBs.size()); 2043 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs; 2044 for (auto *SuccBB : UnswitchedSuccBBs) { 2045 VMaps.emplace_back(new ValueToValueMapTy()); 2046 ClonedPHs[SuccBB] = buildClonedLoopBlocks( 2047 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB, 2048 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU); 2049 } 2050 2051 // The stitching of the branched code back together depends on whether we're 2052 // doing full unswitching or not with the exception that we always want to 2053 // nuke the initial terminator placed in the split block. 2054 SplitBB->getTerminator()->eraseFromParent(); 2055 if (FullUnswitch) { 2056 // Splice the terminator from the original loop and rewrite its 2057 // successors. 2058 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI); 2059 2060 // Keep a clone of the terminator for MSSA updates. 2061 Instruction *NewTI = TI.clone(); 2062 ParentBB->getInstList().push_back(NewTI); 2063 2064 // First wire up the moved terminator to the preheaders. 2065 if (BI) { 2066 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2067 BI->setSuccessor(ClonedSucc, ClonedPH); 2068 BI->setSuccessor(1 - ClonedSucc, LoopPH); 2069 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2070 } else { 2071 assert(SI && "Must either be a branch or switch!"); 2072 2073 // Walk the cases and directly update their successors. 2074 assert(SI->getDefaultDest() == RetainedSuccBB && 2075 "Not retaining default successor!"); 2076 SI->setDefaultDest(LoopPH); 2077 for (auto &Case : SI->cases()) 2078 if (Case.getCaseSuccessor() == RetainedSuccBB) 2079 Case.setSuccessor(LoopPH); 2080 else 2081 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second); 2082 2083 // We need to use the set to populate domtree updates as even when there 2084 // are multiple cases pointing at the same successor we only want to 2085 // remove and insert one edge in the domtree. 2086 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2087 DTUpdates.push_back( 2088 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second}); 2089 } 2090 2091 if (MSSAU) { 2092 DT.applyUpdates(DTUpdates); 2093 DTUpdates.clear(); 2094 2095 // Remove all but one edge to the retained block and all unswitched 2096 // blocks. This is to avoid having duplicate entries in the cloned Phis, 2097 // when we know we only keep a single edge for each case. 2098 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB); 2099 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2100 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB); 2101 2102 for (auto &VMap : VMaps) 2103 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2104 /*IgnoreIncomingWithNoClones=*/true); 2105 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2106 2107 // Remove all edges to unswitched blocks. 2108 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2109 MSSAU->removeEdge(ParentBB, SuccBB); 2110 } 2111 2112 // Now unhook the successor relationship as we'll be replacing 2113 // the terminator with a direct branch. This is much simpler for branches 2114 // than switches so we handle those first. 2115 if (BI) { 2116 // Remove the parent as a predecessor of the unswitched successor. 2117 assert(UnswitchedSuccBBs.size() == 1 && 2118 "Only one possible unswitched block for a branch!"); 2119 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin(); 2120 UnswitchedSuccBB->removePredecessor(ParentBB, 2121 /*KeepOneInputPHIs*/ true); 2122 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB}); 2123 } else { 2124 // Note that we actually want to remove the parent block as a predecessor 2125 // of *every* case successor. The case successor is either unswitched, 2126 // completely eliminating an edge from the parent to that successor, or it 2127 // is a duplicate edge to the retained successor as the retained successor 2128 // is always the default successor and as we'll replace this with a direct 2129 // branch we no longer need the duplicate entries in the PHI nodes. 2130 SwitchInst *NewSI = cast<SwitchInst>(NewTI); 2131 assert(NewSI->getDefaultDest() == RetainedSuccBB && 2132 "Not retaining default successor!"); 2133 for (auto &Case : NewSI->cases()) 2134 Case.getCaseSuccessor()->removePredecessor( 2135 ParentBB, 2136 /*KeepOneInputPHIs*/ true); 2137 2138 // We need to use the set to populate domtree updates as even when there 2139 // are multiple cases pointing at the same successor we only want to 2140 // remove and insert one edge in the domtree. 2141 for (BasicBlock *SuccBB : UnswitchedSuccBBs) 2142 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB}); 2143 } 2144 2145 // After MSSAU update, remove the cloned terminator instruction NewTI. 2146 ParentBB->getTerminator()->eraseFromParent(); 2147 2148 // Create a new unconditional branch to the continuing block (as opposed to 2149 // the one cloned). 2150 BranchInst::Create(RetainedSuccBB, ParentBB); 2151 } else { 2152 assert(BI && "Only branches have partial unswitching."); 2153 assert(UnswitchedSuccBBs.size() == 1 && 2154 "Only one possible unswitched block for a branch!"); 2155 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2156 // When doing a partial unswitch, we have to do a bit more work to build up 2157 // the branch in the split block. 2158 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction, 2159 *ClonedPH, *LoopPH); 2160 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH}); 2161 2162 if (MSSAU) { 2163 DT.applyUpdates(DTUpdates); 2164 DTUpdates.clear(); 2165 2166 // Perform MSSA cloning updates. 2167 for (auto &VMap : VMaps) 2168 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap, 2169 /*IgnoreIncomingWithNoClones=*/true); 2170 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT); 2171 } 2172 } 2173 2174 // Apply the updates accumulated above to get an up-to-date dominator tree. 2175 DT.applyUpdates(DTUpdates); 2176 2177 // Now that we have an accurate dominator tree, first delete the dead cloned 2178 // blocks so that we can accurately build any cloned loops. It is important to 2179 // not delete the blocks from the original loop yet because we still want to 2180 // reference the original loop to understand the cloned loop's structure. 2181 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU); 2182 2183 // Build the cloned loop structure itself. This may be substantially 2184 // different from the original structure due to the simplified CFG. This also 2185 // handles inserting all the cloned blocks into the correct loops. 2186 SmallVector<Loop *, 4> NonChildClonedLoops; 2187 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps) 2188 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops); 2189 2190 // Now that our cloned loops have been built, we can update the original loop. 2191 // First we delete the dead blocks from it and then we rebuild the loop 2192 // structure taking these deletions into account. 2193 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU); 2194 2195 if (MSSAU && VerifyMemorySSA) 2196 MSSAU->getMemorySSA()->verifyMemorySSA(); 2197 2198 SmallVector<Loop *, 4> HoistedLoops; 2199 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops); 2200 2201 if (MSSAU && VerifyMemorySSA) 2202 MSSAU->getMemorySSA()->verifyMemorySSA(); 2203 2204 // This transformation has a high risk of corrupting the dominator tree, and 2205 // the below steps to rebuild loop structures will result in hard to debug 2206 // errors in that case so verify that the dominator tree is sane first. 2207 // FIXME: Remove this when the bugs stop showing up and rely on existing 2208 // verification steps. 2209 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2210 2211 if (BI) { 2212 // If we unswitched a branch which collapses the condition to a known 2213 // constant we want to replace all the uses of the invariants within both 2214 // the original and cloned blocks. We do this here so that we can use the 2215 // now updated dominator tree to identify which side the users are on. 2216 assert(UnswitchedSuccBBs.size() == 1 && 2217 "Only one possible unswitched block for a branch!"); 2218 BasicBlock *ClonedPH = ClonedPHs.begin()->second; 2219 2220 // When considering multiple partially-unswitched invariants 2221 // we cant just go replace them with constants in both branches. 2222 // 2223 // For 'AND' we infer that true branch ("continue") means true 2224 // for each invariant operand. 2225 // For 'OR' we can infer that false branch ("continue") means false 2226 // for each invariant operand. 2227 // So it happens that for multiple-partial case we dont replace 2228 // in the unswitched branch. 2229 bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1); 2230 2231 ConstantInt *UnswitchedReplacement = 2232 Direction ? ConstantInt::getTrue(BI->getContext()) 2233 : ConstantInt::getFalse(BI->getContext()); 2234 ConstantInt *ContinueReplacement = 2235 Direction ? ConstantInt::getFalse(BI->getContext()) 2236 : ConstantInt::getTrue(BI->getContext()); 2237 for (Value *Invariant : Invariants) 2238 for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); 2239 UI != UE;) { 2240 // Grab the use and walk past it so we can clobber it in the use list. 2241 Use *U = &*UI++; 2242 Instruction *UserI = dyn_cast<Instruction>(U->getUser()); 2243 if (!UserI) 2244 continue; 2245 2246 // Replace it with the 'continue' side if in the main loop body, and the 2247 // unswitched if in the cloned blocks. 2248 if (DT.dominates(LoopPH, UserI->getParent())) 2249 U->set(ContinueReplacement); 2250 else if (ReplaceUnswitched && 2251 DT.dominates(ClonedPH, UserI->getParent())) 2252 U->set(UnswitchedReplacement); 2253 } 2254 } 2255 2256 // We can change which blocks are exit blocks of all the cloned sibling 2257 // loops, the current loop, and any parent loops which shared exit blocks 2258 // with the current loop. As a consequence, we need to re-form LCSSA for 2259 // them. But we shouldn't need to re-form LCSSA for any child loops. 2260 // FIXME: This could be made more efficient by tracking which exit blocks are 2261 // new, and focusing on them, but that isn't likely to be necessary. 2262 // 2263 // In order to reasonably rebuild LCSSA we need to walk inside-out across the 2264 // loop nest and update every loop that could have had its exits changed. We 2265 // also need to cover any intervening loops. We add all of these loops to 2266 // a list and sort them by loop depth to achieve this without updating 2267 // unnecessary loops. 2268 auto UpdateLoop = [&](Loop &UpdateL) { 2269 #ifndef NDEBUG 2270 UpdateL.verifyLoop(); 2271 for (Loop *ChildL : UpdateL) { 2272 ChildL->verifyLoop(); 2273 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) && 2274 "Perturbed a child loop's LCSSA form!"); 2275 } 2276 #endif 2277 // First build LCSSA for this loop so that we can preserve it when 2278 // forming dedicated exits. We don't want to perturb some other loop's 2279 // LCSSA while doing that CFG edit. 2280 formLCSSA(UpdateL, DT, &LI, SE); 2281 2282 // For loops reached by this loop's original exit blocks we may 2283 // introduced new, non-dedicated exits. At least try to re-form dedicated 2284 // exits for these loops. This may fail if they couldn't have dedicated 2285 // exits to start with. 2286 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true); 2287 }; 2288 2289 // For non-child cloned loops and hoisted loops, we just need to update LCSSA 2290 // and we can do it in any order as they don't nest relative to each other. 2291 // 2292 // Also check if any of the loops we have updated have become top-level loops 2293 // as that will necessitate widening the outer loop scope. 2294 for (Loop *UpdatedL : 2295 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) { 2296 UpdateLoop(*UpdatedL); 2297 if (!UpdatedL->getParentLoop()) 2298 OuterExitL = nullptr; 2299 } 2300 if (IsStillLoop) { 2301 UpdateLoop(L); 2302 if (!L.getParentLoop()) 2303 OuterExitL = nullptr; 2304 } 2305 2306 // If the original loop had exit blocks, walk up through the outer most loop 2307 // of those exit blocks to update LCSSA and form updated dedicated exits. 2308 if (OuterExitL != &L) 2309 for (Loop *OuterL = ParentL; OuterL != OuterExitL; 2310 OuterL = OuterL->getParentLoop()) 2311 UpdateLoop(*OuterL); 2312 2313 #ifndef NDEBUG 2314 // Verify the entire loop structure to catch any incorrect updates before we 2315 // progress in the pass pipeline. 2316 LI.verify(DT); 2317 #endif 2318 2319 // Now that we've unswitched something, make callbacks to report the changes. 2320 // For that we need to merge together the updated loops and the cloned loops 2321 // and check whether the original loop survived. 2322 SmallVector<Loop *, 4> SibLoops; 2323 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) 2324 if (UpdatedL->getParentLoop() == ParentL) 2325 SibLoops.push_back(UpdatedL); 2326 UnswitchCB(IsStillLoop, SibLoops); 2327 2328 if (MSSAU && VerifyMemorySSA) 2329 MSSAU->getMemorySSA()->verifyMemorySSA(); 2330 2331 if (BI) 2332 ++NumBranches; 2333 else 2334 ++NumSwitches; 2335 } 2336 2337 /// Recursively compute the cost of a dominator subtree based on the per-block 2338 /// cost map provided. 2339 /// 2340 /// The recursive computation is memozied into the provided DT-indexed cost map 2341 /// to allow querying it for most nodes in the domtree without it becoming 2342 /// quadratic. 2343 static int 2344 computeDomSubtreeCost(DomTreeNode &N, 2345 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap, 2346 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) { 2347 // Don't accumulate cost (or recurse through) blocks not in our block cost 2348 // map and thus not part of the duplication cost being considered. 2349 auto BBCostIt = BBCostMap.find(N.getBlock()); 2350 if (BBCostIt == BBCostMap.end()) 2351 return 0; 2352 2353 // Lookup this node to see if we already computed its cost. 2354 auto DTCostIt = DTCostMap.find(&N); 2355 if (DTCostIt != DTCostMap.end()) 2356 return DTCostIt->second; 2357 2358 // If not, we have to compute it. We can't use insert above and update 2359 // because computing the cost may insert more things into the map. 2360 int Cost = std::accumulate( 2361 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) { 2362 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap); 2363 }); 2364 bool Inserted = DTCostMap.insert({&N, Cost}).second; 2365 (void)Inserted; 2366 assert(Inserted && "Should not insert a node while visiting children!"); 2367 return Cost; 2368 } 2369 2370 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch, 2371 /// making the following replacement: 2372 /// 2373 /// --code before guard-- 2374 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ] 2375 /// --code after guard-- 2376 /// 2377 /// into 2378 /// 2379 /// --code before guard-- 2380 /// br i1 %cond, label %guarded, label %deopt 2381 /// 2382 /// guarded: 2383 /// --code after guard-- 2384 /// 2385 /// deopt: 2386 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ] 2387 /// unreachable 2388 /// 2389 /// It also makes all relevant DT and LI updates, so that all structures are in 2390 /// valid state after this transform. 2391 static BranchInst * 2392 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L, 2393 SmallVectorImpl<BasicBlock *> &ExitBlocks, 2394 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) { 2395 SmallVector<DominatorTree::UpdateType, 4> DTUpdates; 2396 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n"); 2397 BasicBlock *CheckBB = GI->getParent(); 2398 2399 if (MSSAU && VerifyMemorySSA) 2400 MSSAU->getMemorySSA()->verifyMemorySSA(); 2401 2402 // Remove all CheckBB's successors from DomTree. A block can be seen among 2403 // successors more than once, but for DomTree it should be added only once. 2404 SmallPtrSet<BasicBlock *, 4> Successors; 2405 for (auto *Succ : successors(CheckBB)) 2406 if (Successors.insert(Succ).second) 2407 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ}); 2408 2409 Instruction *DeoptBlockTerm = 2410 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true); 2411 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator()); 2412 // SplitBlockAndInsertIfThen inserts control flow that branches to 2413 // DeoptBlockTerm if the condition is true. We want the opposite. 2414 CheckBI->swapSuccessors(); 2415 2416 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0); 2417 GuardedBlock->setName("guarded"); 2418 CheckBI->getSuccessor(1)->setName("deopt"); 2419 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1); 2420 2421 // We now have a new exit block. 2422 ExitBlocks.push_back(CheckBI->getSuccessor(1)); 2423 2424 if (MSSAU) 2425 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI); 2426 2427 GI->moveBefore(DeoptBlockTerm); 2428 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext())); 2429 2430 // Add new successors of CheckBB into DomTree. 2431 for (auto *Succ : successors(CheckBB)) 2432 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ}); 2433 2434 // Now the blocks that used to be CheckBB's successors are GuardedBlock's 2435 // successors. 2436 for (auto *Succ : Successors) 2437 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ}); 2438 2439 // Make proper changes to DT. 2440 DT.applyUpdates(DTUpdates); 2441 // Inform LI of a new loop block. 2442 L.addBasicBlockToLoop(GuardedBlock, LI); 2443 2444 if (MSSAU) { 2445 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI)); 2446 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator); 2447 if (VerifyMemorySSA) 2448 MSSAU->getMemorySSA()->verifyMemorySSA(); 2449 } 2450 2451 ++NumGuards; 2452 return CheckBI; 2453 } 2454 2455 /// Cost multiplier is a way to limit potentially exponential behavior 2456 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch 2457 /// candidates available. Also accounting for the number of "sibling" loops with 2458 /// the idea to account for previous unswitches that already happened on this 2459 /// cluster of loops. There was an attempt to keep this formula simple, 2460 /// just enough to limit the worst case behavior. Even if it is not that simple 2461 /// now it is still not an attempt to provide a detailed heuristic size 2462 /// prediction. 2463 /// 2464 /// TODO: Make a proper accounting of "explosion" effect for all kinds of 2465 /// unswitch candidates, making adequate predictions instead of wild guesses. 2466 /// That requires knowing not just the number of "remaining" candidates but 2467 /// also costs of unswitching for each of these candidates. 2468 static int calculateUnswitchCostMultiplier( 2469 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT, 2470 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>> 2471 UnswitchCandidates) { 2472 2473 // Guards and other exiting conditions do not contribute to exponential 2474 // explosion as soon as they dominate the latch (otherwise there might be 2475 // another path to the latch remaining that does not allow to eliminate the 2476 // loop copy on unswitch). 2477 BasicBlock *Latch = L.getLoopLatch(); 2478 BasicBlock *CondBlock = TI.getParent(); 2479 if (DT.dominates(CondBlock, Latch) && 2480 (isGuard(&TI) || 2481 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) { 2482 return L.contains(SuccBB); 2483 }) <= 1)) { 2484 NumCostMultiplierSkipped++; 2485 return 1; 2486 } 2487 2488 auto *ParentL = L.getParentLoop(); 2489 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size() 2490 : std::distance(LI.begin(), LI.end())); 2491 // Count amount of clones that all the candidates might cause during 2492 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases. 2493 int UnswitchedClones = 0; 2494 for (auto Candidate : UnswitchCandidates) { 2495 Instruction *CI = Candidate.first; 2496 BasicBlock *CondBlock = CI->getParent(); 2497 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch); 2498 if (isGuard(CI)) { 2499 if (!SkipExitingSuccessors) 2500 UnswitchedClones++; 2501 continue; 2502 } 2503 int NonExitingSuccessors = llvm::count_if( 2504 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) { 2505 return !SkipExitingSuccessors || L.contains(SuccBB); 2506 }); 2507 UnswitchedClones += Log2_32(NonExitingSuccessors); 2508 } 2509 2510 // Ignore up to the "unscaled candidates" number of unswitch candidates 2511 // when calculating the power-of-two scaling of the cost. The main idea 2512 // with this control is to allow a small number of unswitches to happen 2513 // and rely more on siblings multiplier (see below) when the number 2514 // of candidates is small. 2515 unsigned ClonesPower = 2516 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0); 2517 2518 // Allowing top-level loops to spread a bit more than nested ones. 2519 int SiblingsMultiplier = 2520 std::max((ParentL ? SiblingsCount 2521 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv), 2522 1); 2523 // Compute the cost multiplier in a way that won't overflow by saturating 2524 // at an upper bound. 2525 int CostMultiplier; 2526 if (ClonesPower > Log2_32(UnswitchThreshold) || 2527 SiblingsMultiplier > UnswitchThreshold) 2528 CostMultiplier = UnswitchThreshold; 2529 else 2530 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower), 2531 (int)UnswitchThreshold); 2532 2533 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier 2534 << " (siblings " << SiblingsMultiplier << " * clones " 2535 << (1 << ClonesPower) << ")" 2536 << " for unswitch candidate: " << TI << "\n"); 2537 return CostMultiplier; 2538 } 2539 2540 static bool 2541 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI, 2542 AssumptionCache &AC, TargetTransformInfo &TTI, 2543 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2544 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2545 // Collect all invariant conditions within this loop (as opposed to an inner 2546 // loop which would be handled when visiting that inner loop). 2547 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4> 2548 UnswitchCandidates; 2549 2550 // Whether or not we should also collect guards in the loop. 2551 bool CollectGuards = false; 2552 if (UnswitchGuards) { 2553 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction( 2554 Intrinsic::getName(Intrinsic::experimental_guard)); 2555 if (GuardDecl && !GuardDecl->use_empty()) 2556 CollectGuards = true; 2557 } 2558 2559 for (auto *BB : L.blocks()) { 2560 if (LI.getLoopFor(BB) != &L) 2561 continue; 2562 2563 if (CollectGuards) 2564 for (auto &I : *BB) 2565 if (isGuard(&I)) { 2566 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0); 2567 // TODO: Support AND, OR conditions and partial unswitching. 2568 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond)) 2569 UnswitchCandidates.push_back({&I, {Cond}}); 2570 } 2571 2572 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 2573 // We can only consider fully loop-invariant switch conditions as we need 2574 // to completely eliminate the switch after unswitching. 2575 if (!isa<Constant>(SI->getCondition()) && 2576 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor()) 2577 UnswitchCandidates.push_back({SI, {SI->getCondition()}}); 2578 continue; 2579 } 2580 2581 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 2582 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) || 2583 BI->getSuccessor(0) == BI->getSuccessor(1)) 2584 continue; 2585 2586 if (L.isLoopInvariant(BI->getCondition())) { 2587 UnswitchCandidates.push_back({BI, {BI->getCondition()}}); 2588 continue; 2589 } 2590 2591 Instruction &CondI = *cast<Instruction>(BI->getCondition()); 2592 if (CondI.getOpcode() != Instruction::And && 2593 CondI.getOpcode() != Instruction::Or) 2594 continue; 2595 2596 TinyPtrVector<Value *> Invariants = 2597 collectHomogenousInstGraphLoopInvariants(L, CondI, LI); 2598 if (Invariants.empty()) 2599 continue; 2600 2601 UnswitchCandidates.push_back({BI, std::move(Invariants)}); 2602 } 2603 2604 // If we didn't find any candidates, we're done. 2605 if (UnswitchCandidates.empty()) 2606 return false; 2607 2608 // Check if there are irreducible CFG cycles in this loop. If so, we cannot 2609 // easily unswitch non-trivial edges out of the loop. Doing so might turn the 2610 // irreducible control flow into reducible control flow and introduce new 2611 // loops "out of thin air". If we ever discover important use cases for doing 2612 // this, we can add support to loop unswitch, but it is a lot of complexity 2613 // for what seems little or no real world benefit. 2614 LoopBlocksRPO RPOT(&L); 2615 RPOT.perform(&LI); 2616 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI)) 2617 return false; 2618 2619 SmallVector<BasicBlock *, 4> ExitBlocks; 2620 L.getUniqueExitBlocks(ExitBlocks); 2621 2622 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we 2623 // don't know how to split those exit blocks. 2624 // FIXME: We should teach SplitBlock to handle this and remove this 2625 // restriction. 2626 for (auto *ExitBB : ExitBlocks) 2627 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) { 2628 dbgs() << "Cannot unswitch because of cleanuppad in exit block\n"; 2629 return false; 2630 } 2631 2632 LLVM_DEBUG( 2633 dbgs() << "Considering " << UnswitchCandidates.size() 2634 << " non-trivial loop invariant conditions for unswitching.\n"); 2635 2636 // Given that unswitching these terminators will require duplicating parts of 2637 // the loop, so we need to be able to model that cost. Compute the ephemeral 2638 // values and set up a data structure to hold per-BB costs. We cache each 2639 // block's cost so that we don't recompute this when considering different 2640 // subsets of the loop for duplication during unswitching. 2641 SmallPtrSet<const Value *, 4> EphValues; 2642 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues); 2643 SmallDenseMap<BasicBlock *, int, 4> BBCostMap; 2644 2645 // Compute the cost of each block, as well as the total loop cost. Also, bail 2646 // out if we see instructions which are incompatible with loop unswitching 2647 // (convergent, noduplicate, or cross-basic-block tokens). 2648 // FIXME: We might be able to safely handle some of these in non-duplicated 2649 // regions. 2650 int LoopCost = 0; 2651 for (auto *BB : L.blocks()) { 2652 int Cost = 0; 2653 for (auto &I : *BB) { 2654 if (EphValues.count(&I)) 2655 continue; 2656 2657 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB)) 2658 return false; 2659 if (auto CS = CallSite(&I)) 2660 if (CS.isConvergent() || CS.cannotDuplicate()) 2661 return false; 2662 2663 Cost += TTI.getUserCost(&I); 2664 } 2665 assert(Cost >= 0 && "Must not have negative costs!"); 2666 LoopCost += Cost; 2667 assert(LoopCost >= 0 && "Must not have negative loop costs!"); 2668 BBCostMap[BB] = Cost; 2669 } 2670 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n"); 2671 2672 // Now we find the best candidate by searching for the one with the following 2673 // properties in order: 2674 // 2675 // 1) An unswitching cost below the threshold 2676 // 2) The smallest number of duplicated unswitch candidates (to avoid 2677 // creating redundant subsequent unswitching) 2678 // 3) The smallest cost after unswitching. 2679 // 2680 // We prioritize reducing fanout of unswitch candidates provided the cost 2681 // remains below the threshold because this has a multiplicative effect. 2682 // 2683 // This requires memoizing each dominator subtree to avoid redundant work. 2684 // 2685 // FIXME: Need to actually do the number of candidates part above. 2686 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap; 2687 // Given a terminator which might be unswitched, computes the non-duplicated 2688 // cost for that terminator. 2689 auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) { 2690 BasicBlock &BB = *TI.getParent(); 2691 SmallPtrSet<BasicBlock *, 4> Visited; 2692 2693 int Cost = LoopCost; 2694 for (BasicBlock *SuccBB : successors(&BB)) { 2695 // Don't count successors more than once. 2696 if (!Visited.insert(SuccBB).second) 2697 continue; 2698 2699 // If this is a partial unswitch candidate, then it must be a conditional 2700 // branch with a condition of either `or` or `and`. In that case, one of 2701 // the successors is necessarily duplicated, so don't even try to remove 2702 // its cost. 2703 if (!FullUnswitch) { 2704 auto &BI = cast<BranchInst>(TI); 2705 if (cast<Instruction>(BI.getCondition())->getOpcode() == 2706 Instruction::And) { 2707 if (SuccBB == BI.getSuccessor(1)) 2708 continue; 2709 } else { 2710 assert(cast<Instruction>(BI.getCondition())->getOpcode() == 2711 Instruction::Or && 2712 "Only `and` and `or` conditions can result in a partial " 2713 "unswitch!"); 2714 if (SuccBB == BI.getSuccessor(0)) 2715 continue; 2716 } 2717 } 2718 2719 // This successor's domtree will not need to be duplicated after 2720 // unswitching if the edge to the successor dominates it (and thus the 2721 // entire tree). This essentially means there is no other path into this 2722 // subtree and so it will end up live in only one clone of the loop. 2723 if (SuccBB->getUniquePredecessor() || 2724 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) { 2725 return PredBB == &BB || DT.dominates(SuccBB, PredBB); 2726 })) { 2727 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap); 2728 assert(Cost >= 0 && 2729 "Non-duplicated cost should never exceed total loop cost!"); 2730 } 2731 } 2732 2733 // Now scale the cost by the number of unique successors minus one. We 2734 // subtract one because there is already at least one copy of the entire 2735 // loop. This is computing the new cost of unswitching a condition. 2736 // Note that guards always have 2 unique successors that are implicit and 2737 // will be materialized if we decide to unswitch it. 2738 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size(); 2739 assert(SuccessorsCount > 1 && 2740 "Cannot unswitch a condition without multiple distinct successors!"); 2741 return Cost * (SuccessorsCount - 1); 2742 }; 2743 Instruction *BestUnswitchTI = nullptr; 2744 int BestUnswitchCost = 0; 2745 ArrayRef<Value *> BestUnswitchInvariants; 2746 for (auto &TerminatorAndInvariants : UnswitchCandidates) { 2747 Instruction &TI = *TerminatorAndInvariants.first; 2748 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second; 2749 BranchInst *BI = dyn_cast<BranchInst>(&TI); 2750 int CandidateCost = ComputeUnswitchedCost( 2751 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 && 2752 Invariants[0] == BI->getCondition())); 2753 // Calculate cost multiplier which is a tool to limit potentially 2754 // exponential behavior of loop-unswitch. 2755 if (EnableUnswitchCostMultiplier) { 2756 int CostMultiplier = 2757 calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates); 2758 assert( 2759 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) && 2760 "cost multiplier needs to be in the range of 1..UnswitchThreshold"); 2761 CandidateCost *= CostMultiplier; 2762 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2763 << " (multiplier: " << CostMultiplier << ")" 2764 << " for unswitch candidate: " << TI << "\n"); 2765 } else { 2766 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost 2767 << " for unswitch candidate: " << TI << "\n"); 2768 } 2769 2770 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) { 2771 BestUnswitchTI = &TI; 2772 BestUnswitchCost = CandidateCost; 2773 BestUnswitchInvariants = Invariants; 2774 } 2775 } 2776 assert(BestUnswitchTI && "Failed to find loop unswitch candidate"); 2777 2778 if (BestUnswitchCost >= UnswitchThreshold) { 2779 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " 2780 << BestUnswitchCost << "\n"); 2781 return false; 2782 } 2783 2784 // If the best candidate is a guard, turn it into a branch. 2785 if (isGuard(BestUnswitchTI)) 2786 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L, 2787 ExitBlocks, DT, LI, MSSAU); 2788 2789 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " 2790 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI 2791 << "\n"); 2792 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants, 2793 ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU); 2794 return true; 2795 } 2796 2797 /// Unswitch control flow predicated on loop invariant conditions. 2798 /// 2799 /// This first hoists all branches or switches which are trivial (IE, do not 2800 /// require duplicating any part of the loop) out of the loop body. It then 2801 /// looks at other loop invariant control flows and tries to unswitch those as 2802 /// well by cloning the loop if the result is small enough. 2803 /// 2804 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also 2805 /// updated based on the unswitch. 2806 /// The `MSSA` analysis is also updated if valid (i.e. its use is enabled). 2807 /// 2808 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is 2809 /// true, we will attempt to do non-trivial unswitching as well as trivial 2810 /// unswitching. 2811 /// 2812 /// The `UnswitchCB` callback provided will be run after unswitching is 2813 /// complete, with the first parameter set to `true` if the provided loop 2814 /// remains a loop, and a list of new sibling loops created. 2815 /// 2816 /// If `SE` is non-null, we will update that analysis based on the unswitching 2817 /// done. 2818 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, 2819 AssumptionCache &AC, TargetTransformInfo &TTI, 2820 bool NonTrivial, 2821 function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB, 2822 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) { 2823 assert(L.isRecursivelyLCSSAForm(DT, LI) && 2824 "Loops must be in LCSSA form before unswitching."); 2825 bool Changed = false; 2826 2827 // Must be in loop simplified form: we need a preheader and dedicated exits. 2828 if (!L.isLoopSimplifyForm()) 2829 return false; 2830 2831 // Try trivial unswitch first before loop over other basic blocks in the loop. 2832 if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) { 2833 // If we unswitched successfully we will want to clean up the loop before 2834 // processing it further so just mark it as unswitched and return. 2835 UnswitchCB(/*CurrentLoopValid*/ true, {}); 2836 return true; 2837 } 2838 2839 // If we're not doing non-trivial unswitching, we're done. We both accept 2840 // a parameter but also check a local flag that can be used for testing 2841 // a debugging. 2842 if (!NonTrivial && !EnableNonTrivialUnswitch) 2843 return false; 2844 2845 // For non-trivial unswitching, because it often creates new loops, we rely on 2846 // the pass manager to iterate on the loops rather than trying to immediately 2847 // reach a fixed point. There is no substantial advantage to iterating 2848 // internally, and if any of the new loops are simplified enough to contain 2849 // trivial unswitching we want to prefer those. 2850 2851 // Try to unswitch the best invariant condition. We prefer this full unswitch to 2852 // a partial unswitch when possible below the threshold. 2853 if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU)) 2854 return true; 2855 2856 // No other opportunities to unswitch. 2857 return Changed; 2858 } 2859 2860 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM, 2861 LoopStandardAnalysisResults &AR, 2862 LPMUpdater &U) { 2863 Function &F = *L.getHeader()->getParent(); 2864 (void)F; 2865 2866 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L 2867 << "\n"); 2868 2869 // Save the current loop name in a variable so that we can report it even 2870 // after it has been deleted. 2871 std::string LoopName = L.getName(); 2872 2873 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid, 2874 ArrayRef<Loop *> NewLoops) { 2875 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2876 if (!NewLoops.empty()) 2877 U.addSiblingLoops(NewLoops); 2878 2879 // If the current loop remains valid, we should revisit it to catch any 2880 // other unswitch opportunities. Otherwise, we need to mark it as deleted. 2881 if (CurrentLoopValid) 2882 U.revisitCurrentLoop(); 2883 else 2884 U.markLoopAsDeleted(L, LoopName); 2885 }; 2886 2887 Optional<MemorySSAUpdater> MSSAU; 2888 if (AR.MSSA) { 2889 MSSAU = MemorySSAUpdater(AR.MSSA); 2890 if (VerifyMemorySSA) 2891 AR.MSSA->verifyMemorySSA(); 2892 } 2893 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB, 2894 &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr)) 2895 return PreservedAnalyses::all(); 2896 2897 if (AR.MSSA && VerifyMemorySSA) 2898 AR.MSSA->verifyMemorySSA(); 2899 2900 // Historically this pass has had issues with the dominator tree so verify it 2901 // in asserts builds. 2902 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast)); 2903 2904 auto PA = getLoopPassPreservedAnalyses(); 2905 if (AR.MSSA) 2906 PA.preserve<MemorySSAAnalysis>(); 2907 return PA; 2908 } 2909 2910 namespace { 2911 2912 class SimpleLoopUnswitchLegacyPass : public LoopPass { 2913 bool NonTrivial; 2914 2915 public: 2916 static char ID; // Pass ID, replacement for typeid 2917 2918 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false) 2919 : LoopPass(ID), NonTrivial(NonTrivial) { 2920 initializeSimpleLoopUnswitchLegacyPassPass( 2921 *PassRegistry::getPassRegistry()); 2922 } 2923 2924 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 2925 2926 void getAnalysisUsage(AnalysisUsage &AU) const override { 2927 AU.addRequired<AssumptionCacheTracker>(); 2928 AU.addRequired<TargetTransformInfoWrapperPass>(); 2929 if (EnableMSSALoopDependency) { 2930 AU.addRequired<MemorySSAWrapperPass>(); 2931 AU.addPreserved<MemorySSAWrapperPass>(); 2932 } 2933 getLoopAnalysisUsage(AU); 2934 } 2935 }; 2936 2937 } // end anonymous namespace 2938 2939 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) { 2940 if (skipLoop(L)) 2941 return false; 2942 2943 Function &F = *L->getHeader()->getParent(); 2944 2945 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L 2946 << "\n"); 2947 2948 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2949 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2950 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2951 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2952 MemorySSA *MSSA = nullptr; 2953 Optional<MemorySSAUpdater> MSSAU; 2954 if (EnableMSSALoopDependency) { 2955 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 2956 MSSAU = MemorySSAUpdater(MSSA); 2957 } 2958 2959 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 2960 auto *SE = SEWP ? &SEWP->getSE() : nullptr; 2961 2962 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, 2963 ArrayRef<Loop *> NewLoops) { 2964 // If we did a non-trivial unswitch, we have added new (cloned) loops. 2965 for (auto *NewL : NewLoops) 2966 LPM.addLoop(*NewL); 2967 2968 // If the current loop remains valid, re-add it to the queue. This is 2969 // a little wasteful as we'll finish processing the current loop as well, 2970 // but it is the best we can do in the old PM. 2971 if (CurrentLoopValid) 2972 LPM.addLoop(*L); 2973 else 2974 LPM.markLoopAsDeleted(*L); 2975 }; 2976 2977 if (MSSA && VerifyMemorySSA) 2978 MSSA->verifyMemorySSA(); 2979 2980 bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE, 2981 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr); 2982 2983 if (MSSA && VerifyMemorySSA) 2984 MSSA->verifyMemorySSA(); 2985 2986 // If anything was unswitched, also clear any cached information about this 2987 // loop. 2988 LPM.deleteSimpleAnalysisLoop(L); 2989 2990 // Historically this pass has had issues with the dominator tree so verify it 2991 // in asserts builds. 2992 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 2993 2994 return Changed; 2995 } 2996 2997 char SimpleLoopUnswitchLegacyPass::ID = 0; 2998 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 2999 "Simple unswitch loops", false, false) 3000 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3001 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3002 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 3003 INITIALIZE_PASS_DEPENDENCY(LoopPass) 3004 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 3005 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 3006 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch", 3007 "Simple unswitch loops", false, false) 3008 3009 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) { 3010 return new SimpleLoopUnswitchLegacyPass(NonTrivial); 3011 } 3012