1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop unrolling may create many similar GEPs for array accesses. 10 // e.g., a 2-level loop 11 // 12 // float a[32][32]; // global variable 13 // 14 // for (int i = 0; i < 2; ++i) { 15 // for (int j = 0; j < 2; ++j) { 16 // ... 17 // ... = a[x + i][y + j]; 18 // ... 19 // } 20 // } 21 // 22 // will probably be unrolled to: 23 // 24 // gep %a, 0, %x, %y; load 25 // gep %a, 0, %x, %y + 1; load 26 // gep %a, 0, %x + 1, %y; load 27 // gep %a, 0, %x + 1, %y + 1; load 28 // 29 // LLVM's GVN does not use partial redundancy elimination yet, and is thus 30 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs 31 // significant slowdown in targets with limited addressing modes. For instance, 32 // because the PTX target does not support the reg+reg addressing mode, the 33 // NVPTX backend emits PTX code that literally computes the pointer address of 34 // each GEP, wasting tons of registers. It emits the following PTX for the 35 // first load and similar PTX for other loads. 36 // 37 // mov.u32 %r1, %x; 38 // mov.u32 %r2, %y; 39 // mul.wide.u32 %rl2, %r1, 128; 40 // mov.u64 %rl3, a; 41 // add.s64 %rl4, %rl3, %rl2; 42 // mul.wide.u32 %rl5, %r2, 4; 43 // add.s64 %rl6, %rl4, %rl5; 44 // ld.global.f32 %f1, [%rl6]; 45 // 46 // To reduce the register pressure, the optimization implemented in this file 47 // merges the common part of a group of GEPs, so we can compute each pointer 48 // address by adding a simple offset to the common part, saving many registers. 49 // 50 // It works by splitting each GEP into a variadic base and a constant offset. 51 // The variadic base can be computed once and reused by multiple GEPs, and the 52 // constant offsets can be nicely folded into the reg+immediate addressing mode 53 // (supported by most targets) without using any extra register. 54 // 55 // For instance, we transform the four GEPs and four loads in the above example 56 // into: 57 // 58 // base = gep a, 0, x, y 59 // load base 60 // laod base + 1 * sizeof(float) 61 // load base + 32 * sizeof(float) 62 // load base + 33 * sizeof(float) 63 // 64 // Given the transformed IR, a backend that supports the reg+immediate 65 // addressing mode can easily fold the pointer arithmetics into the loads. For 66 // example, the NVPTX backend can easily fold the pointer arithmetics into the 67 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers. 68 // 69 // mov.u32 %r1, %tid.x; 70 // mov.u32 %r2, %tid.y; 71 // mul.wide.u32 %rl2, %r1, 128; 72 // mov.u64 %rl3, a; 73 // add.s64 %rl4, %rl3, %rl2; 74 // mul.wide.u32 %rl5, %r2, 4; 75 // add.s64 %rl6, %rl4, %rl5; 76 // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX 77 // ld.global.f32 %f2, [%rl6+4]; // much better 78 // ld.global.f32 %f3, [%rl6+128]; // much better 79 // ld.global.f32 %f4, [%rl6+132]; // much better 80 // 81 // Another improvement enabled by the LowerGEP flag is to lower a GEP with 82 // multiple indices to either multiple GEPs with a single index or arithmetic 83 // operations (depending on whether the target uses alias analysis in codegen). 84 // Such transformation can have following benefits: 85 // (1) It can always extract constants in the indices of structure type. 86 // (2) After such Lowering, there are more optimization opportunities such as 87 // CSE, LICM and CGP. 88 // 89 // E.g. The following GEPs have multiple indices: 90 // BB1: 91 // %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3 92 // load %p 93 // ... 94 // BB2: 95 // %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2 96 // load %p2 97 // ... 98 // 99 // We can not do CSE to the common part related to index "i64 %i". Lowering 100 // GEPs can achieve such goals. 101 // If the target does not use alias analysis in codegen, this pass will 102 // lower a GEP with multiple indices into arithmetic operations: 103 // BB1: 104 // %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity 105 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity 106 // %3 = add i64 %1, %2 ; CSE opportunity 107 // %4 = mul i64 %j1, length_of_struct 108 // %5 = add i64 %3, %4 109 // %6 = add i64 %3, struct_field_3 ; Constant offset 110 // %p = inttoptr i64 %6 to i32* 111 // load %p 112 // ... 113 // BB2: 114 // %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity 115 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity 116 // %9 = add i64 %7, %8 ; CSE opportunity 117 // %10 = mul i64 %j2, length_of_struct 118 // %11 = add i64 %9, %10 119 // %12 = add i64 %11, struct_field_2 ; Constant offset 120 // %p = inttoptr i64 %12 to i32* 121 // load %p2 122 // ... 123 // 124 // If the target uses alias analysis in codegen, this pass will lower a GEP 125 // with multiple indices into multiple GEPs with a single index: 126 // BB1: 127 // %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity 128 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity 129 // %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity 130 // %4 = mul i64 %j1, length_of_struct 131 // %5 = getelementptr i8* %3, i64 %4 132 // %6 = getelementptr i8* %5, struct_field_3 ; Constant offset 133 // %p = bitcast i8* %6 to i32* 134 // load %p 135 // ... 136 // BB2: 137 // %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity 138 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity 139 // %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity 140 // %10 = mul i64 %j2, length_of_struct 141 // %11 = getelementptr i8* %9, i64 %10 142 // %12 = getelementptr i8* %11, struct_field_2 ; Constant offset 143 // %p2 = bitcast i8* %12 to i32* 144 // load %p2 145 // ... 146 // 147 // Lowering GEPs can also benefit other passes such as LICM and CGP. 148 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple 149 // indices if one of the index is variant. If we lower such GEP into invariant 150 // parts and variant parts, LICM can hoist/sink those invariant parts. 151 // CGP (CodeGen Prepare) tries to sink address calculations that match the 152 // target's addressing modes. A GEP with multiple indices may not match and will 153 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of 154 // them. So we end up with a better addressing mode. 155 // 156 //===----------------------------------------------------------------------===// 157 158 #include "llvm/Transforms/Scalar/SeparateConstOffsetFromGEP.h" 159 #include "llvm/ADT/APInt.h" 160 #include "llvm/ADT/DenseMap.h" 161 #include "llvm/ADT/DepthFirstIterator.h" 162 #include "llvm/ADT/SmallVector.h" 163 #include "llvm/Analysis/LoopInfo.h" 164 #include "llvm/Analysis/MemoryBuiltins.h" 165 #include "llvm/Analysis/ScalarEvolution.h" 166 #include "llvm/Analysis/TargetLibraryInfo.h" 167 #include "llvm/Analysis/TargetTransformInfo.h" 168 #include "llvm/Analysis/ValueTracking.h" 169 #include "llvm/IR/BasicBlock.h" 170 #include "llvm/IR/Constant.h" 171 #include "llvm/IR/Constants.h" 172 #include "llvm/IR/DataLayout.h" 173 #include "llvm/IR/DerivedTypes.h" 174 #include "llvm/IR/Dominators.h" 175 #include "llvm/IR/Function.h" 176 #include "llvm/IR/GetElementPtrTypeIterator.h" 177 #include "llvm/IR/IRBuilder.h" 178 #include "llvm/IR/Instruction.h" 179 #include "llvm/IR/Instructions.h" 180 #include "llvm/IR/Module.h" 181 #include "llvm/IR/PassManager.h" 182 #include "llvm/IR/PatternMatch.h" 183 #include "llvm/IR/Type.h" 184 #include "llvm/IR/User.h" 185 #include "llvm/IR/Value.h" 186 #include "llvm/InitializePasses.h" 187 #include "llvm/Pass.h" 188 #include "llvm/Support/Casting.h" 189 #include "llvm/Support/CommandLine.h" 190 #include "llvm/Support/ErrorHandling.h" 191 #include "llvm/Support/raw_ostream.h" 192 #include "llvm/Transforms/Scalar.h" 193 #include "llvm/Transforms/Utils/Local.h" 194 #include <cassert> 195 #include <cstdint> 196 #include <string> 197 198 using namespace llvm; 199 using namespace llvm::PatternMatch; 200 201 static cl::opt<bool> DisableSeparateConstOffsetFromGEP( 202 "disable-separate-const-offset-from-gep", cl::init(false), 203 cl::desc("Do not separate the constant offset from a GEP instruction"), 204 cl::Hidden); 205 206 // Setting this flag may emit false positives when the input module already 207 // contains dead instructions. Therefore, we set it only in unit tests that are 208 // free of dead code. 209 static cl::opt<bool> 210 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false), 211 cl::desc("Verify this pass produces no dead code"), 212 cl::Hidden); 213 214 namespace { 215 216 /// A helper class for separating a constant offset from a GEP index. 217 /// 218 /// In real programs, a GEP index may be more complicated than a simple addition 219 /// of something and a constant integer which can be trivially splitted. For 220 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the 221 /// constant offset, so that we can separate the index to (a << 3) + b and 5. 222 /// 223 /// Therefore, this class looks into the expression that computes a given GEP 224 /// index, and tries to find a constant integer that can be hoisted to the 225 /// outermost level of the expression as an addition. Not every constant in an 226 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a + 227 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case, 228 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15). 229 class ConstantOffsetExtractor { 230 public: 231 /// Extracts a constant offset from the given GEP index. It returns the 232 /// new index representing the remainder (equal to the original index minus 233 /// the constant offset), or nullptr if we cannot extract a constant offset. 234 /// \p Idx The given GEP index 235 /// \p GEP The given GEP 236 /// \p UserChainTail Outputs the tail of UserChain so that we can 237 /// garbage-collect unused instructions in UserChain. 238 static Value *Extract(Value *Idx, GetElementPtrInst *GEP, 239 User *&UserChainTail, const DominatorTree *DT); 240 241 /// Looks for a constant offset from the given GEP index without extracting 242 /// it. It returns the numeric value of the extracted constant offset (0 if 243 /// failed). The meaning of the arguments are the same as Extract. 244 static int64_t Find(Value *Idx, GetElementPtrInst *GEP, 245 const DominatorTree *DT); 246 247 private: 248 ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT) 249 : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) { 250 } 251 252 /// Searches the expression that computes V for a non-zero constant C s.t. 253 /// V can be reassociated into the form V' + C. If the searching is 254 /// successful, returns C and update UserChain as a def-use chain from C to V; 255 /// otherwise, UserChain is empty. 256 /// 257 /// \p V The given expression 258 /// \p SignExtended Whether V will be sign-extended in the computation of the 259 /// GEP index 260 /// \p ZeroExtended Whether V will be zero-extended in the computation of the 261 /// GEP index 262 /// \p NonNegative Whether V is guaranteed to be non-negative. For example, 263 /// an index of an inbounds GEP is guaranteed to be 264 /// non-negative. Levaraging this, we can better split 265 /// inbounds GEPs. 266 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative); 267 268 /// A helper function to look into both operands of a binary operator. 269 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended, 270 bool ZeroExtended); 271 272 /// After finding the constant offset C from the GEP index I, we build a new 273 /// index I' s.t. I' + C = I. This function builds and returns the new 274 /// index I' according to UserChain produced by function "find". 275 /// 276 /// The building conceptually takes two steps: 277 /// 1) iteratively distribute s/zext towards the leaves of the expression tree 278 /// that computes I 279 /// 2) reassociate the expression tree to the form I' + C. 280 /// 281 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute 282 /// sext to a, b and 5 so that we have 283 /// sext(a) + (sext(b) + 5). 284 /// Then, we reassociate it to 285 /// (sext(a) + sext(b)) + 5. 286 /// Given this form, we know I' is sext(a) + sext(b). 287 Value *rebuildWithoutConstOffset(); 288 289 /// After the first step of rebuilding the GEP index without the constant 290 /// offset, distribute s/zext to the operands of all operators in UserChain. 291 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) => 292 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))). 293 /// 294 /// The function also updates UserChain to point to new subexpressions after 295 /// distributing s/zext. e.g., the old UserChain of the above example is 296 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)), 297 /// and the new UserChain is 298 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) -> 299 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5)) 300 /// 301 /// \p ChainIndex The index to UserChain. ChainIndex is initially 302 /// UserChain.size() - 1, and is decremented during 303 /// the recursion. 304 Value *distributeExtsAndCloneChain(unsigned ChainIndex); 305 306 /// Reassociates the GEP index to the form I' + C and returns I'. 307 Value *removeConstOffset(unsigned ChainIndex); 308 309 /// A helper function to apply ExtInsts, a list of s/zext, to value V. 310 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function 311 /// returns "sext i32 (zext i16 V to i32) to i64". 312 Value *applyExts(Value *V); 313 314 /// A helper function that returns whether we can trace into the operands 315 /// of binary operator BO for a constant offset. 316 /// 317 /// \p SignExtended Whether BO is surrounded by sext 318 /// \p ZeroExtended Whether BO is surrounded by zext 319 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound 320 /// array index. 321 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO, 322 bool NonNegative); 323 324 /// The path from the constant offset to the old GEP index. e.g., if the GEP 325 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will 326 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and 327 /// UserChain[2] will be the entire expression "a * b + (c + 5)". 328 /// 329 /// This path helps to rebuild the new GEP index. 330 SmallVector<User *, 8> UserChain; 331 332 /// A data structure used in rebuildWithoutConstOffset. Contains all 333 /// sext/zext instructions along UserChain. 334 SmallVector<CastInst *, 16> ExtInsts; 335 336 /// Insertion position of cloned instructions. 337 Instruction *IP; 338 339 const DataLayout &DL; 340 const DominatorTree *DT; 341 }; 342 343 /// A pass that tries to split every GEP in the function into a variadic 344 /// base and a constant offset. It is a FunctionPass because searching for the 345 /// constant offset may inspect other basic blocks. 346 class SeparateConstOffsetFromGEPLegacyPass : public FunctionPass { 347 public: 348 static char ID; 349 350 SeparateConstOffsetFromGEPLegacyPass(bool LowerGEP = false) 351 : FunctionPass(ID), LowerGEP(LowerGEP) { 352 initializeSeparateConstOffsetFromGEPLegacyPassPass( 353 *PassRegistry::getPassRegistry()); 354 } 355 356 void getAnalysisUsage(AnalysisUsage &AU) const override { 357 AU.addRequired<DominatorTreeWrapperPass>(); 358 AU.addRequired<ScalarEvolutionWrapperPass>(); 359 AU.addRequired<TargetTransformInfoWrapperPass>(); 360 AU.addRequired<LoopInfoWrapperPass>(); 361 AU.setPreservesCFG(); 362 AU.addRequired<TargetLibraryInfoWrapperPass>(); 363 } 364 365 bool runOnFunction(Function &F) override; 366 367 private: 368 bool LowerGEP; 369 }; 370 371 /// A pass that tries to split every GEP in the function into a variadic 372 /// base and a constant offset. It is a FunctionPass because searching for the 373 /// constant offset may inspect other basic blocks. 374 class SeparateConstOffsetFromGEP { 375 public: 376 SeparateConstOffsetFromGEP( 377 DominatorTree *DT, ScalarEvolution *SE, LoopInfo *LI, 378 TargetLibraryInfo *TLI, 379 function_ref<TargetTransformInfo &(Function &)> GetTTI, bool LowerGEP) 380 : DT(DT), SE(SE), LI(LI), TLI(TLI), GetTTI(GetTTI), LowerGEP(LowerGEP) {} 381 382 bool run(Function &F); 383 384 private: 385 /// Tries to split the given GEP into a variadic base and a constant offset, 386 /// and returns true if the splitting succeeds. 387 bool splitGEP(GetElementPtrInst *GEP); 388 389 /// Lower a GEP with multiple indices into multiple GEPs with a single index. 390 /// Function splitGEP already split the original GEP into a variadic part and 391 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the 392 /// variadic part into a set of GEPs with a single index and applies 393 /// AccumulativeByteOffset to it. 394 /// \p Variadic The variadic part of the original GEP. 395 /// \p AccumulativeByteOffset The constant offset. 396 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic, 397 int64_t AccumulativeByteOffset); 398 399 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form. 400 /// Function splitGEP already split the original GEP into a variadic part and 401 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the 402 /// variadic part into a set of arithmetic operations and applies 403 /// AccumulativeByteOffset to it. 404 /// \p Variadic The variadic part of the original GEP. 405 /// \p AccumulativeByteOffset The constant offset. 406 void lowerToArithmetics(GetElementPtrInst *Variadic, 407 int64_t AccumulativeByteOffset); 408 409 /// Finds the constant offset within each index and accumulates them. If 410 /// LowerGEP is true, it finds in indices of both sequential and structure 411 /// types, otherwise it only finds in sequential indices. The output 412 /// NeedsExtraction indicates whether we successfully find a non-zero constant 413 /// offset. 414 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction); 415 416 /// Canonicalize array indices to pointer-size integers. This helps to 417 /// simplify the logic of splitting a GEP. For example, if a + b is a 418 /// pointer-size integer, we have 419 /// gep base, a + b = gep (gep base, a), b 420 /// However, this equality may not hold if the size of a + b is smaller than 421 /// the pointer size, because LLVM conceptually sign-extends GEP indices to 422 /// pointer size before computing the address 423 /// (http://llvm.org/docs/LangRef.html#id181). 424 /// 425 /// This canonicalization is very likely already done in clang and 426 /// instcombine. Therefore, the program will probably remain the same. 427 /// 428 /// Returns true if the module changes. 429 /// 430 /// Verified in @i32_add in split-gep.ll 431 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP); 432 433 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow. 434 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting 435 /// the constant offset. After extraction, it becomes desirable to reunion the 436 /// distributed sexts. For example, 437 /// 438 /// &a[sext(i +nsw (j +nsw 5)] 439 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)] 440 /// => constant extraction &a[sext(i) + sext(j)] + 5 441 /// => reunion &a[sext(i +nsw j)] + 5 442 bool reuniteExts(Function &F); 443 444 /// A helper that reunites sexts in an instruction. 445 bool reuniteExts(Instruction *I); 446 447 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>. 448 Instruction *findClosestMatchingDominator( 449 const SCEV *Key, Instruction *Dominatee, 450 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs); 451 452 /// Verify F is free of dead code. 453 void verifyNoDeadCode(Function &F); 454 455 bool hasMoreThanOneUseInLoop(Value *v, Loop *L); 456 457 // Swap the index operand of two GEP. 458 void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second); 459 460 // Check if it is safe to swap operand of two GEP. 461 bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second, 462 Loop *CurLoop); 463 464 const DataLayout *DL = nullptr; 465 DominatorTree *DT = nullptr; 466 ScalarEvolution *SE; 467 LoopInfo *LI; 468 TargetLibraryInfo *TLI; 469 // Retrieved lazily since not always used. 470 function_ref<TargetTransformInfo &(Function &)> GetTTI; 471 472 /// Whether to lower a GEP with multiple indices into arithmetic operations or 473 /// multiple GEPs with a single index. 474 bool LowerGEP; 475 476 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingAdds; 477 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingSubs; 478 }; 479 480 } // end anonymous namespace 481 482 char SeparateConstOffsetFromGEPLegacyPass::ID = 0; 483 484 INITIALIZE_PASS_BEGIN( 485 SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep", 486 "Split GEPs to a variadic base and a constant offset for better CSE", false, 487 false) 488 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 489 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 490 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 491 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 492 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 493 INITIALIZE_PASS_END( 494 SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep", 495 "Split GEPs to a variadic base and a constant offset for better CSE", false, 496 false) 497 498 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) { 499 return new SeparateConstOffsetFromGEPLegacyPass(LowerGEP); 500 } 501 502 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended, 503 bool ZeroExtended, 504 BinaryOperator *BO, 505 bool NonNegative) { 506 // We only consider ADD, SUB and OR, because a non-zero constant found in 507 // expressions composed of these operations can be easily hoisted as a 508 // constant offset by reassociation. 509 if (BO->getOpcode() != Instruction::Add && 510 BO->getOpcode() != Instruction::Sub && 511 BO->getOpcode() != Instruction::Or) { 512 return false; 513 } 514 515 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1); 516 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS 517 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS). 518 // FIXME: this does not appear to be covered by any tests 519 // (with x86/aarch64 backends at least) 520 if (BO->getOpcode() == Instruction::Or && 521 !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT)) 522 return false; 523 524 // In addition, tracing into BO requires that its surrounding s/zext (if 525 // any) is distributable to both operands. 526 // 527 // Suppose BO = A op B. 528 // SignExtended | ZeroExtended | Distributable? 529 // --------------+--------------+---------------------------------- 530 // 0 | 0 | true because no s/zext exists 531 // 0 | 1 | zext(BO) == zext(A) op zext(B) 532 // 1 | 0 | sext(BO) == sext(A) op sext(B) 533 // 1 | 1 | zext(sext(BO)) == 534 // | | zext(sext(A)) op zext(sext(B)) 535 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) { 536 // If a + b >= 0 and (a >= 0 or b >= 0), then 537 // sext(a + b) = sext(a) + sext(b) 538 // even if the addition is not marked nsw. 539 // 540 // Leveraging this invariant, we can trace into an sext'ed inbound GEP 541 // index if the constant offset is non-negative. 542 // 543 // Verified in @sext_add in split-gep.ll. 544 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) { 545 if (!ConstLHS->isNegative()) 546 return true; 547 } 548 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) { 549 if (!ConstRHS->isNegative()) 550 return true; 551 } 552 } 553 554 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B) 555 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B) 556 if (BO->getOpcode() == Instruction::Add || 557 BO->getOpcode() == Instruction::Sub) { 558 if (SignExtended && !BO->hasNoSignedWrap()) 559 return false; 560 if (ZeroExtended && !BO->hasNoUnsignedWrap()) 561 return false; 562 } 563 564 return true; 565 } 566 567 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO, 568 bool SignExtended, 569 bool ZeroExtended) { 570 // Save off the current height of the chain, in case we need to restore it. 571 size_t ChainLength = UserChain.size(); 572 573 // BO being non-negative does not shed light on whether its operands are 574 // non-negative. Clear the NonNegative flag here. 575 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended, 576 /* NonNegative */ false); 577 // If we found a constant offset in the left operand, stop and return that. 578 // This shortcut might cause us to miss opportunities of combining the 579 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9. 580 // However, such cases are probably already handled by -instcombine, 581 // given this pass runs after the standard optimizations. 582 if (ConstantOffset != 0) return ConstantOffset; 583 584 // Reset the chain back to where it was when we started exploring this node, 585 // since visiting the LHS didn't pan out. 586 UserChain.resize(ChainLength); 587 588 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended, 589 /* NonNegative */ false); 590 // If U is a sub operator, negate the constant offset found in the right 591 // operand. 592 if (BO->getOpcode() == Instruction::Sub) 593 ConstantOffset = -ConstantOffset; 594 595 // If RHS wasn't a suitable candidate either, reset the chain again. 596 if (ConstantOffset == 0) 597 UserChain.resize(ChainLength); 598 599 return ConstantOffset; 600 } 601 602 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended, 603 bool ZeroExtended, bool NonNegative) { 604 // TODO(jingyue): We could trace into integer/pointer casts, such as 605 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only 606 // integers because it gives good enough results for our benchmarks. 607 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 608 609 // We cannot do much with Values that are not a User, such as an Argument. 610 User *U = dyn_cast<User>(V); 611 if (U == nullptr) return APInt(BitWidth, 0); 612 613 APInt ConstantOffset(BitWidth, 0); 614 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 615 // Hooray, we found it! 616 ConstantOffset = CI->getValue(); 617 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) { 618 // Trace into subexpressions for more hoisting opportunities. 619 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) 620 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended); 621 } else if (isa<TruncInst>(V)) { 622 ConstantOffset = 623 find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative) 624 .trunc(BitWidth); 625 } else if (isa<SExtInst>(V)) { 626 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true, 627 ZeroExtended, NonNegative).sext(BitWidth); 628 } else if (isa<ZExtInst>(V)) { 629 // As an optimization, we can clear the SignExtended flag because 630 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll. 631 // 632 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0. 633 ConstantOffset = 634 find(U->getOperand(0), /* SignExtended */ false, 635 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth); 636 } 637 638 // If we found a non-zero constant offset, add it to the path for 639 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't 640 // help this optimization. 641 if (ConstantOffset != 0) 642 UserChain.push_back(U); 643 return ConstantOffset; 644 } 645 646 Value *ConstantOffsetExtractor::applyExts(Value *V) { 647 Value *Current = V; 648 // ExtInsts is built in the use-def order. Therefore, we apply them to V 649 // in the reversed order. 650 for (CastInst *I : llvm::reverse(ExtInsts)) { 651 if (Constant *C = dyn_cast<Constant>(Current)) { 652 // If Current is a constant, apply s/zext using ConstantExpr::getCast. 653 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt. 654 Current = ConstantExpr::getCast(I->getOpcode(), C, I->getType()); 655 } else { 656 Instruction *Ext = I->clone(); 657 Ext->setOperand(0, Current); 658 Ext->insertBefore(IP); 659 Current = Ext; 660 } 661 } 662 return Current; 663 } 664 665 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() { 666 distributeExtsAndCloneChain(UserChain.size() - 1); 667 // Remove all nullptrs (used to be s/zext) from UserChain. 668 unsigned NewSize = 0; 669 for (User *I : UserChain) { 670 if (I != nullptr) { 671 UserChain[NewSize] = I; 672 NewSize++; 673 } 674 } 675 UserChain.resize(NewSize); 676 return removeConstOffset(UserChain.size() - 1); 677 } 678 679 Value * 680 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) { 681 User *U = UserChain[ChainIndex]; 682 if (ChainIndex == 0) { 683 assert(isa<ConstantInt>(U)); 684 // If U is a ConstantInt, applyExts will return a ConstantInt as well. 685 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U)); 686 } 687 688 if (CastInst *Cast = dyn_cast<CastInst>(U)) { 689 assert( 690 (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) && 691 "Only following instructions can be traced: sext, zext & trunc"); 692 ExtInsts.push_back(Cast); 693 UserChain[ChainIndex] = nullptr; 694 return distributeExtsAndCloneChain(ChainIndex - 1); 695 } 696 697 // Function find only trace into BinaryOperator and CastInst. 698 BinaryOperator *BO = cast<BinaryOperator>(U); 699 // OpNo = which operand of BO is UserChain[ChainIndex - 1] 700 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); 701 Value *TheOther = applyExts(BO->getOperand(1 - OpNo)); 702 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1); 703 704 BinaryOperator *NewBO = nullptr; 705 if (OpNo == 0) { 706 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther, 707 BO->getName(), IP); 708 } else { 709 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain, 710 BO->getName(), IP); 711 } 712 return UserChain[ChainIndex] = NewBO; 713 } 714 715 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) { 716 if (ChainIndex == 0) { 717 assert(isa<ConstantInt>(UserChain[ChainIndex])); 718 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType()); 719 } 720 721 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]); 722 assert((BO->use_empty() || BO->hasOneUse()) && 723 "distributeExtsAndCloneChain clones each BinaryOperator in " 724 "UserChain, so no one should be used more than " 725 "once"); 726 727 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); 728 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]); 729 Value *NextInChain = removeConstOffset(ChainIndex - 1); 730 Value *TheOther = BO->getOperand(1 - OpNo); 731 732 // If NextInChain is 0 and not the LHS of a sub, we can simplify the 733 // sub-expression to be just TheOther. 734 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) { 735 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0)) 736 return TheOther; 737 } 738 739 BinaryOperator::BinaryOps NewOp = BO->getOpcode(); 740 if (BO->getOpcode() == Instruction::Or) { 741 // Rebuild "or" as "add", because "or" may be invalid for the new 742 // expression. 743 // 744 // For instance, given 745 // a | (b + 5) where a and b + 5 have no common bits, 746 // we can extract 5 as the constant offset. 747 // 748 // However, reusing the "or" in the new index would give us 749 // (a | b) + 5 750 // which does not equal a | (b + 5). 751 // 752 // Replacing the "or" with "add" is fine, because 753 // a | (b + 5) = a + (b + 5) = (a + b) + 5 754 NewOp = Instruction::Add; 755 } 756 757 BinaryOperator *NewBO; 758 if (OpNo == 0) { 759 NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP); 760 } else { 761 NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP); 762 } 763 NewBO->takeName(BO); 764 return NewBO; 765 } 766 767 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP, 768 User *&UserChainTail, 769 const DominatorTree *DT) { 770 ConstantOffsetExtractor Extractor(GEP, DT); 771 // Find a non-zero constant offset first. 772 APInt ConstantOffset = 773 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, 774 GEP->isInBounds()); 775 if (ConstantOffset == 0) { 776 UserChainTail = nullptr; 777 return nullptr; 778 } 779 // Separates the constant offset from the GEP index. 780 Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset(); 781 UserChainTail = Extractor.UserChain.back(); 782 return IdxWithoutConstOffset; 783 } 784 785 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP, 786 const DominatorTree *DT) { 787 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative. 788 return ConstantOffsetExtractor(GEP, DT) 789 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, 790 GEP->isInBounds()) 791 .getSExtValue(); 792 } 793 794 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize( 795 GetElementPtrInst *GEP) { 796 bool Changed = false; 797 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 798 gep_type_iterator GTI = gep_type_begin(*GEP); 799 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); 800 I != E; ++I, ++GTI) { 801 // Skip struct member indices which must be i32. 802 if (GTI.isSequential()) { 803 if ((*I)->getType() != IntPtrTy) { 804 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP); 805 Changed = true; 806 } 807 } 808 } 809 return Changed; 810 } 811 812 int64_t 813 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP, 814 bool &NeedsExtraction) { 815 NeedsExtraction = false; 816 int64_t AccumulativeByteOffset = 0; 817 gep_type_iterator GTI = gep_type_begin(*GEP); 818 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 819 if (GTI.isSequential()) { 820 // Tries to extract a constant offset from this GEP index. 821 int64_t ConstantOffset = 822 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT); 823 if (ConstantOffset != 0) { 824 NeedsExtraction = true; 825 // A GEP may have multiple indices. We accumulate the extracted 826 // constant offset to a byte offset, and later offset the remainder of 827 // the original GEP with this byte offset. 828 AccumulativeByteOffset += 829 ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType()); 830 } 831 } else if (LowerGEP) { 832 StructType *StTy = GTI.getStructType(); 833 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue(); 834 // Skip field 0 as the offset is always 0. 835 if (Field != 0) { 836 NeedsExtraction = true; 837 AccumulativeByteOffset += 838 DL->getStructLayout(StTy)->getElementOffset(Field); 839 } 840 } 841 } 842 return AccumulativeByteOffset; 843 } 844 845 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs( 846 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) { 847 IRBuilder<> Builder(Variadic); 848 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType()); 849 850 Type *I8PtrTy = 851 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace()); 852 Value *ResultPtr = Variadic->getOperand(0); 853 Loop *L = LI->getLoopFor(Variadic->getParent()); 854 // Check if the base is not loop invariant or used more than once. 855 bool isSwapCandidate = 856 L && L->isLoopInvariant(ResultPtr) && 857 !hasMoreThanOneUseInLoop(ResultPtr, L); 858 Value *FirstResult = nullptr; 859 860 if (ResultPtr->getType() != I8PtrTy) 861 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 862 863 gep_type_iterator GTI = gep_type_begin(*Variadic); 864 // Create an ugly GEP for each sequential index. We don't create GEPs for 865 // structure indices, as they are accumulated in the constant offset index. 866 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { 867 if (GTI.isSequential()) { 868 Value *Idx = Variadic->getOperand(I); 869 // Skip zero indices. 870 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) 871 if (CI->isZero()) 872 continue; 873 874 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(), 875 DL->getTypeAllocSize(GTI.getIndexedType())); 876 // Scale the index by element size. 877 if (ElementSize != 1) { 878 if (ElementSize.isPowerOf2()) { 879 Idx = Builder.CreateShl( 880 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2())); 881 } else { 882 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize)); 883 } 884 } 885 // Create an ugly GEP with a single index for each index. 886 ResultPtr = 887 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep"); 888 if (FirstResult == nullptr) 889 FirstResult = ResultPtr; 890 } 891 } 892 893 // Create a GEP with the constant offset index. 894 if (AccumulativeByteOffset != 0) { 895 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset); 896 ResultPtr = 897 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep"); 898 } else 899 isSwapCandidate = false; 900 901 // If we created a GEP with constant index, and the base is loop invariant, 902 // then we swap the first one with it, so LICM can move constant GEP out 903 // later. 904 auto *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult); 905 auto *SecondGEP = dyn_cast<GetElementPtrInst>(ResultPtr); 906 if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L)) 907 swapGEPOperand(FirstGEP, SecondGEP); 908 909 if (ResultPtr->getType() != Variadic->getType()) 910 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType()); 911 912 Variadic->replaceAllUsesWith(ResultPtr); 913 Variadic->eraseFromParent(); 914 } 915 916 void 917 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic, 918 int64_t AccumulativeByteOffset) { 919 IRBuilder<> Builder(Variadic); 920 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType()); 921 922 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy); 923 gep_type_iterator GTI = gep_type_begin(*Variadic); 924 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We 925 // don't create arithmetics for structure indices, as they are accumulated 926 // in the constant offset index. 927 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { 928 if (GTI.isSequential()) { 929 Value *Idx = Variadic->getOperand(I); 930 // Skip zero indices. 931 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) 932 if (CI->isZero()) 933 continue; 934 935 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(), 936 DL->getTypeAllocSize(GTI.getIndexedType())); 937 // Scale the index by element size. 938 if (ElementSize != 1) { 939 if (ElementSize.isPowerOf2()) { 940 Idx = Builder.CreateShl( 941 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2())); 942 } else { 943 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize)); 944 } 945 } 946 // Create an ADD for each index. 947 ResultPtr = Builder.CreateAdd(ResultPtr, Idx); 948 } 949 } 950 951 // Create an ADD for the constant offset index. 952 if (AccumulativeByteOffset != 0) { 953 ResultPtr = Builder.CreateAdd( 954 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset)); 955 } 956 957 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType()); 958 Variadic->replaceAllUsesWith(ResultPtr); 959 Variadic->eraseFromParent(); 960 } 961 962 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) { 963 // Skip vector GEPs. 964 if (GEP->getType()->isVectorTy()) 965 return false; 966 967 // The backend can already nicely handle the case where all indices are 968 // constant. 969 if (GEP->hasAllConstantIndices()) 970 return false; 971 972 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP); 973 974 bool NeedsExtraction; 975 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction); 976 977 if (!NeedsExtraction) 978 return Changed; 979 980 TargetTransformInfo &TTI = GetTTI(*GEP->getFunction()); 981 982 // If LowerGEP is disabled, before really splitting the GEP, check whether the 983 // backend supports the addressing mode we are about to produce. If no, this 984 // splitting probably won't be beneficial. 985 // If LowerGEP is enabled, even the extracted constant offset can not match 986 // the addressing mode, we can still do optimizations to other lowered parts 987 // of variable indices. Therefore, we don't check for addressing modes in that 988 // case. 989 if (!LowerGEP) { 990 unsigned AddrSpace = GEP->getPointerAddressSpace(); 991 if (!TTI.isLegalAddressingMode(GEP->getResultElementType(), 992 /*BaseGV=*/nullptr, AccumulativeByteOffset, 993 /*HasBaseReg=*/true, /*Scale=*/0, 994 AddrSpace)) { 995 return Changed; 996 } 997 } 998 999 // Remove the constant offset in each sequential index. The resultant GEP 1000 // computes the variadic base. 1001 // Notice that we don't remove struct field indices here. If LowerGEP is 1002 // disabled, a structure index is not accumulated and we still use the old 1003 // one. If LowerGEP is enabled, a structure index is accumulated in the 1004 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later 1005 // handle the constant offset and won't need a new structure index. 1006 gep_type_iterator GTI = gep_type_begin(*GEP); 1007 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 1008 if (GTI.isSequential()) { 1009 // Splits this GEP index into a variadic part and a constant offset, and 1010 // uses the variadic part as the new index. 1011 Value *OldIdx = GEP->getOperand(I); 1012 User *UserChainTail; 1013 Value *NewIdx = 1014 ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT); 1015 if (NewIdx != nullptr) { 1016 // Switches to the index with the constant offset removed. 1017 GEP->setOperand(I, NewIdx); 1018 // After switching to the new index, we can garbage-collect UserChain 1019 // and the old index if they are not used. 1020 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail); 1021 RecursivelyDeleteTriviallyDeadInstructions(OldIdx); 1022 } 1023 } 1024 } 1025 1026 // Clear the inbounds attribute because the new index may be off-bound. 1027 // e.g., 1028 // 1029 // b = add i64 a, 5 1030 // addr = gep inbounds float, float* p, i64 b 1031 // 1032 // is transformed to: 1033 // 1034 // addr2 = gep float, float* p, i64 a ; inbounds removed 1035 // addr = gep inbounds float, float* addr2, i64 5 1036 // 1037 // If a is -4, although the old index b is in bounds, the new index a is 1038 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the 1039 // inbounds keyword is not present, the offsets are added to the base 1040 // address with silently-wrapping two's complement arithmetic". 1041 // Therefore, the final code will be a semantically equivalent. 1042 // 1043 // TODO(jingyue): do some range analysis to keep as many inbounds as 1044 // possible. GEPs with inbounds are more friendly to alias analysis. 1045 bool GEPWasInBounds = GEP->isInBounds(); 1046 GEP->setIsInBounds(false); 1047 1048 // Lowers a GEP to either GEPs with a single index or arithmetic operations. 1049 if (LowerGEP) { 1050 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to 1051 // arithmetic operations if the target uses alias analysis in codegen. 1052 if (TTI.useAA()) 1053 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset); 1054 else 1055 lowerToArithmetics(GEP, AccumulativeByteOffset); 1056 return true; 1057 } 1058 1059 // No need to create another GEP if the accumulative byte offset is 0. 1060 if (AccumulativeByteOffset == 0) 1061 return true; 1062 1063 // Offsets the base with the accumulative byte offset. 1064 // 1065 // %gep ; the base 1066 // ... %gep ... 1067 // 1068 // => add the offset 1069 // 1070 // %gep2 ; clone of %gep 1071 // %new.gep = gep %gep2, <offset / sizeof(*%gep)> 1072 // %gep ; will be removed 1073 // ... %gep ... 1074 // 1075 // => replace all uses of %gep with %new.gep and remove %gep 1076 // 1077 // %gep2 ; clone of %gep 1078 // %new.gep = gep %gep2, <offset / sizeof(*%gep)> 1079 // ... %new.gep ... 1080 // 1081 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an 1082 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep): 1083 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the 1084 // type of %gep. 1085 // 1086 // %gep2 ; clone of %gep 1087 // %0 = bitcast %gep2 to i8* 1088 // %uglygep = gep %0, <offset> 1089 // %new.gep = bitcast %uglygep to <type of %gep> 1090 // ... %new.gep ... 1091 Instruction *NewGEP = GEP->clone(); 1092 NewGEP->insertBefore(GEP); 1093 1094 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned = 1095 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is 1096 // used with unsigned integers later. 1097 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>( 1098 DL->getTypeAllocSize(GEP->getResultElementType())); 1099 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 1100 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) { 1101 // Very likely. As long as %gep is naturally aligned, the byte offset we 1102 // extracted should be a multiple of sizeof(*%gep). 1103 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP; 1104 NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP, 1105 ConstantInt::get(IntPtrTy, Index, true), 1106 GEP->getName(), GEP); 1107 NewGEP->copyMetadata(*GEP); 1108 // Inherit the inbounds attribute of the original GEP. 1109 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds); 1110 } else { 1111 // Unlikely but possible. For example, 1112 // #pragma pack(1) 1113 // struct S { 1114 // int a[3]; 1115 // int64 b[8]; 1116 // }; 1117 // #pragma pack() 1118 // 1119 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After 1120 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is 1121 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of 1122 // sizeof(int64). 1123 // 1124 // Emit an uglygep in this case. 1125 Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(), 1126 GEP->getPointerAddressSpace()); 1127 NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP); 1128 NewGEP = GetElementPtrInst::Create( 1129 Type::getInt8Ty(GEP->getContext()), NewGEP, 1130 ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep", 1131 GEP); 1132 NewGEP->copyMetadata(*GEP); 1133 // Inherit the inbounds attribute of the original GEP. 1134 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds); 1135 if (GEP->getType() != I8PtrTy) 1136 NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP); 1137 } 1138 1139 GEP->replaceAllUsesWith(NewGEP); 1140 GEP->eraseFromParent(); 1141 1142 return true; 1143 } 1144 1145 bool SeparateConstOffsetFromGEPLegacyPass::runOnFunction(Function &F) { 1146 if (skipFunction(F)) 1147 return false; 1148 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1149 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1150 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1151 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1152 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 1153 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1154 }; 1155 SeparateConstOffsetFromGEP Impl(DT, SE, LI, TLI, GetTTI, LowerGEP); 1156 return Impl.run(F); 1157 } 1158 1159 bool SeparateConstOffsetFromGEP::run(Function &F) { 1160 if (DisableSeparateConstOffsetFromGEP) 1161 return false; 1162 1163 DL = &F.getParent()->getDataLayout(); 1164 bool Changed = false; 1165 for (BasicBlock &B : F) { 1166 if (!DT->isReachableFromEntry(&B)) 1167 continue; 1168 1169 for (Instruction &I : llvm::make_early_inc_range(B)) 1170 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) 1171 Changed |= splitGEP(GEP); 1172 // No need to split GEP ConstantExprs because all its indices are constant 1173 // already. 1174 } 1175 1176 Changed |= reuniteExts(F); 1177 1178 if (VerifyNoDeadCode) 1179 verifyNoDeadCode(F); 1180 1181 return Changed; 1182 } 1183 1184 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator( 1185 const SCEV *Key, Instruction *Dominatee, 1186 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs) { 1187 auto Pos = DominatingExprs.find(Key); 1188 if (Pos == DominatingExprs.end()) 1189 return nullptr; 1190 1191 auto &Candidates = Pos->second; 1192 // Because we process the basic blocks in pre-order of the dominator tree, a 1193 // candidate that doesn't dominate the current instruction won't dominate any 1194 // future instruction either. Therefore, we pop it out of the stack. This 1195 // optimization makes the algorithm O(n). 1196 while (!Candidates.empty()) { 1197 Instruction *Candidate = Candidates.back(); 1198 if (DT->dominates(Candidate, Dominatee)) 1199 return Candidate; 1200 Candidates.pop_back(); 1201 } 1202 return nullptr; 1203 } 1204 1205 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) { 1206 if (!SE->isSCEVable(I->getType())) 1207 return false; 1208 1209 // Dom: LHS+RHS 1210 // I: sext(LHS)+sext(RHS) 1211 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom). 1212 // TODO: handle zext 1213 Value *LHS = nullptr, *RHS = nullptr; 1214 if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) { 1215 if (LHS->getType() == RHS->getType()) { 1216 const SCEV *Key = 1217 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1218 if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingAdds)) { 1219 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I); 1220 NewSExt->takeName(I); 1221 I->replaceAllUsesWith(NewSExt); 1222 RecursivelyDeleteTriviallyDeadInstructions(I); 1223 return true; 1224 } 1225 } 1226 } else if (match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) { 1227 if (LHS->getType() == RHS->getType()) { 1228 const SCEV *Key = 1229 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1230 if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingSubs)) { 1231 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I); 1232 NewSExt->takeName(I); 1233 I->replaceAllUsesWith(NewSExt); 1234 RecursivelyDeleteTriviallyDeadInstructions(I); 1235 return true; 1236 } 1237 } 1238 } 1239 1240 // Add I to DominatingExprs if it's an add/sub that can't sign overflow. 1241 if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS)))) { 1242 if (programUndefinedIfPoison(I)) { 1243 const SCEV *Key = 1244 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1245 DominatingAdds[Key].push_back(I); 1246 } 1247 } else if (match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) { 1248 if (programUndefinedIfPoison(I)) { 1249 const SCEV *Key = 1250 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1251 DominatingSubs[Key].push_back(I); 1252 } 1253 } 1254 return false; 1255 } 1256 1257 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) { 1258 bool Changed = false; 1259 DominatingAdds.clear(); 1260 DominatingSubs.clear(); 1261 for (const auto Node : depth_first(DT)) { 1262 BasicBlock *BB = Node->getBlock(); 1263 for (Instruction &I : llvm::make_early_inc_range(*BB)) 1264 Changed |= reuniteExts(&I); 1265 } 1266 return Changed; 1267 } 1268 1269 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) { 1270 for (BasicBlock &B : F) { 1271 for (Instruction &I : B) { 1272 if (isInstructionTriviallyDead(&I)) { 1273 std::string ErrMessage; 1274 raw_string_ostream RSO(ErrMessage); 1275 RSO << "Dead instruction detected!\n" << I << "\n"; 1276 llvm_unreachable(RSO.str().c_str()); 1277 } 1278 } 1279 } 1280 } 1281 1282 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand( 1283 GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) { 1284 if (!FirstGEP || !FirstGEP->hasOneUse()) 1285 return false; 1286 1287 if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent()) 1288 return false; 1289 1290 if (FirstGEP == SecondGEP) 1291 return false; 1292 1293 unsigned FirstNum = FirstGEP->getNumOperands(); 1294 unsigned SecondNum = SecondGEP->getNumOperands(); 1295 // Give up if the number of operands are not 2. 1296 if (FirstNum != SecondNum || FirstNum != 2) 1297 return false; 1298 1299 Value *FirstBase = FirstGEP->getOperand(0); 1300 Value *SecondBase = SecondGEP->getOperand(0); 1301 Value *FirstOffset = FirstGEP->getOperand(1); 1302 // Give up if the index of the first GEP is loop invariant. 1303 if (CurLoop->isLoopInvariant(FirstOffset)) 1304 return false; 1305 1306 // Give up if base doesn't have same type. 1307 if (FirstBase->getType() != SecondBase->getType()) 1308 return false; 1309 1310 Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset); 1311 1312 // Check if the second operand of first GEP has constant coefficient. 1313 // For an example, for the following code, we won't gain anything by 1314 // hoisting the second GEP out because the second GEP can be folded away. 1315 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256 1316 // %67 = shl i64 %scevgep.sum.ur159, 2 1317 // %uglygep160 = getelementptr i8* %65, i64 %67 1318 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024 1319 1320 // Skip constant shift instruction which may be generated by Splitting GEPs. 1321 if (FirstOffsetDef && FirstOffsetDef->isShift() && 1322 isa<ConstantInt>(FirstOffsetDef->getOperand(1))) 1323 FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0)); 1324 1325 // Give up if FirstOffsetDef is an Add or Sub with constant. 1326 // Because it may not profitable at all due to constant folding. 1327 if (FirstOffsetDef) 1328 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) { 1329 unsigned opc = BO->getOpcode(); 1330 if ((opc == Instruction::Add || opc == Instruction::Sub) && 1331 (isa<ConstantInt>(BO->getOperand(0)) || 1332 isa<ConstantInt>(BO->getOperand(1)))) 1333 return false; 1334 } 1335 return true; 1336 } 1337 1338 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) { 1339 int UsesInLoop = 0; 1340 for (User *U : V->users()) { 1341 if (Instruction *User = dyn_cast<Instruction>(U)) 1342 if (L->contains(User)) 1343 if (++UsesInLoop > 1) 1344 return true; 1345 } 1346 return false; 1347 } 1348 1349 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First, 1350 GetElementPtrInst *Second) { 1351 Value *Offset1 = First->getOperand(1); 1352 Value *Offset2 = Second->getOperand(1); 1353 First->setOperand(1, Offset2); 1354 Second->setOperand(1, Offset1); 1355 1356 // We changed p+o+c to p+c+o, p+c may not be inbound anymore. 1357 const DataLayout &DAL = First->getModule()->getDataLayout(); 1358 APInt Offset(DAL.getIndexSizeInBits( 1359 cast<PointerType>(First->getType())->getAddressSpace()), 1360 0); 1361 Value *NewBase = 1362 First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset); 1363 uint64_t ObjectSize; 1364 if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) || 1365 Offset.ugt(ObjectSize)) { 1366 First->setIsInBounds(false); 1367 Second->setIsInBounds(false); 1368 } else 1369 First->setIsInBounds(true); 1370 } 1371 1372 PreservedAnalyses 1373 SeparateConstOffsetFromGEPPass::run(Function &F, FunctionAnalysisManager &AM) { 1374 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1375 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 1376 auto *LI = &AM.getResult<LoopAnalysis>(F); 1377 auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1378 auto GetTTI = [&AM](Function &F) -> TargetTransformInfo & { 1379 return AM.getResult<TargetIRAnalysis>(F); 1380 }; 1381 SeparateConstOffsetFromGEP Impl(DT, SE, LI, TLI, GetTTI, LowerGEP); 1382 if (!Impl.run(F)) 1383 return PreservedAnalyses::all(); 1384 PreservedAnalyses PA; 1385 PA.preserveSet<CFGAnalyses>(); 1386 return PA; 1387 } 1388