xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop unrolling may create many similar GEPs for array accesses.
10 // e.g., a 2-level loop
11 //
12 // float a[32][32]; // global variable
13 //
14 // for (int i = 0; i < 2; ++i) {
15 //   for (int j = 0; j < 2; ++j) {
16 //     ...
17 //     ... = a[x + i][y + j];
18 //     ...
19 //   }
20 // }
21 //
22 // will probably be unrolled to:
23 //
24 // gep %a, 0, %x, %y; load
25 // gep %a, 0, %x, %y + 1; load
26 // gep %a, 0, %x + 1, %y; load
27 // gep %a, 0, %x + 1, %y + 1; load
28 //
29 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
30 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
31 // significant slowdown in targets with limited addressing modes. For instance,
32 // because the PTX target does not support the reg+reg addressing mode, the
33 // NVPTX backend emits PTX code that literally computes the pointer address of
34 // each GEP, wasting tons of registers. It emits the following PTX for the
35 // first load and similar PTX for other loads.
36 //
37 // mov.u32         %r1, %x;
38 // mov.u32         %r2, %y;
39 // mul.wide.u32    %rl2, %r1, 128;
40 // mov.u64         %rl3, a;
41 // add.s64         %rl4, %rl3, %rl2;
42 // mul.wide.u32    %rl5, %r2, 4;
43 // add.s64         %rl6, %rl4, %rl5;
44 // ld.global.f32   %f1, [%rl6];
45 //
46 // To reduce the register pressure, the optimization implemented in this file
47 // merges the common part of a group of GEPs, so we can compute each pointer
48 // address by adding a simple offset to the common part, saving many registers.
49 //
50 // It works by splitting each GEP into a variadic base and a constant offset.
51 // The variadic base can be computed once and reused by multiple GEPs, and the
52 // constant offsets can be nicely folded into the reg+immediate addressing mode
53 // (supported by most targets) without using any extra register.
54 //
55 // For instance, we transform the four GEPs and four loads in the above example
56 // into:
57 //
58 // base = gep a, 0, x, y
59 // load base
60 // laod base + 1  * sizeof(float)
61 // load base + 32 * sizeof(float)
62 // load base + 33 * sizeof(float)
63 //
64 // Given the transformed IR, a backend that supports the reg+immediate
65 // addressing mode can easily fold the pointer arithmetics into the loads. For
66 // example, the NVPTX backend can easily fold the pointer arithmetics into the
67 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
68 //
69 // mov.u32         %r1, %tid.x;
70 // mov.u32         %r2, %tid.y;
71 // mul.wide.u32    %rl2, %r1, 128;
72 // mov.u64         %rl3, a;
73 // add.s64         %rl4, %rl3, %rl2;
74 // mul.wide.u32    %rl5, %r2, 4;
75 // add.s64         %rl6, %rl4, %rl5;
76 // ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
77 // ld.global.f32   %f2, [%rl6+4]; // much better
78 // ld.global.f32   %f3, [%rl6+128]; // much better
79 // ld.global.f32   %f4, [%rl6+132]; // much better
80 //
81 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
82 // multiple indices to either multiple GEPs with a single index or arithmetic
83 // operations (depending on whether the target uses alias analysis in codegen).
84 // Such transformation can have following benefits:
85 // (1) It can always extract constants in the indices of structure type.
86 // (2) After such Lowering, there are more optimization opportunities such as
87 //     CSE, LICM and CGP.
88 //
89 // E.g. The following GEPs have multiple indices:
90 //  BB1:
91 //    %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
92 //    load %p
93 //    ...
94 //  BB2:
95 //    %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
96 //    load %p2
97 //    ...
98 //
99 // We can not do CSE to the common part related to index "i64 %i". Lowering
100 // GEPs can achieve such goals.
101 // If the target does not use alias analysis in codegen, this pass will
102 // lower a GEP with multiple indices into arithmetic operations:
103 //  BB1:
104 //    %1 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
105 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
106 //    %3 = add i64 %1, %2                          ; CSE opportunity
107 //    %4 = mul i64 %j1, length_of_struct
108 //    %5 = add i64 %3, %4
109 //    %6 = add i64 %3, struct_field_3              ; Constant offset
110 //    %p = inttoptr i64 %6 to i32*
111 //    load %p
112 //    ...
113 //  BB2:
114 //    %7 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
115 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
116 //    %9 = add i64 %7, %8                          ; CSE opportunity
117 //    %10 = mul i64 %j2, length_of_struct
118 //    %11 = add i64 %9, %10
119 //    %12 = add i64 %11, struct_field_2            ; Constant offset
120 //    %p = inttoptr i64 %12 to i32*
121 //    load %p2
122 //    ...
123 //
124 // If the target uses alias analysis in codegen, this pass will lower a GEP
125 // with multiple indices into multiple GEPs with a single index:
126 //  BB1:
127 //    %1 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
128 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
129 //    %3 = getelementptr i8* %1, i64 %2            ; CSE opportunity
130 //    %4 = mul i64 %j1, length_of_struct
131 //    %5 = getelementptr i8* %3, i64 %4
132 //    %6 = getelementptr i8* %5, struct_field_3    ; Constant offset
133 //    %p = bitcast i8* %6 to i32*
134 //    load %p
135 //    ...
136 //  BB2:
137 //    %7 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
138 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
139 //    %9 = getelementptr i8* %7, i64 %8            ; CSE opportunity
140 //    %10 = mul i64 %j2, length_of_struct
141 //    %11 = getelementptr i8* %9, i64 %10
142 //    %12 = getelementptr i8* %11, struct_field_2  ; Constant offset
143 //    %p2 = bitcast i8* %12 to i32*
144 //    load %p2
145 //    ...
146 //
147 // Lowering GEPs can also benefit other passes such as LICM and CGP.
148 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
149 // indices if one of the index is variant. If we lower such GEP into invariant
150 // parts and variant parts, LICM can hoist/sink those invariant parts.
151 // CGP (CodeGen Prepare) tries to sink address calculations that match the
152 // target's addressing modes. A GEP with multiple indices may not match and will
153 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
154 // them. So we end up with a better addressing mode.
155 //
156 //===----------------------------------------------------------------------===//
157 
158 #include "llvm/ADT/APInt.h"
159 #include "llvm/ADT/DenseMap.h"
160 #include "llvm/ADT/DepthFirstIterator.h"
161 #include "llvm/ADT/SmallVector.h"
162 #include "llvm/Analysis/LoopInfo.h"
163 #include "llvm/Analysis/MemoryBuiltins.h"
164 #include "llvm/Analysis/ScalarEvolution.h"
165 #include "llvm/Analysis/TargetLibraryInfo.h"
166 #include "llvm/Analysis/TargetTransformInfo.h"
167 #include "llvm/Analysis/ValueTracking.h"
168 #include "llvm/IR/BasicBlock.h"
169 #include "llvm/IR/Constant.h"
170 #include "llvm/IR/Constants.h"
171 #include "llvm/IR/DataLayout.h"
172 #include "llvm/IR/DerivedTypes.h"
173 #include "llvm/IR/Dominators.h"
174 #include "llvm/IR/Function.h"
175 #include "llvm/IR/GetElementPtrTypeIterator.h"
176 #include "llvm/IR/IRBuilder.h"
177 #include "llvm/IR/Instruction.h"
178 #include "llvm/IR/Instructions.h"
179 #include "llvm/IR/Module.h"
180 #include "llvm/IR/PatternMatch.h"
181 #include "llvm/IR/Type.h"
182 #include "llvm/IR/User.h"
183 #include "llvm/IR/Value.h"
184 #include "llvm/InitializePasses.h"
185 #include "llvm/Pass.h"
186 #include "llvm/Support/Casting.h"
187 #include "llvm/Support/CommandLine.h"
188 #include "llvm/Support/ErrorHandling.h"
189 #include "llvm/Support/raw_ostream.h"
190 #include "llvm/Target/TargetMachine.h"
191 #include "llvm/Transforms/Scalar.h"
192 #include "llvm/Transforms/Utils/Local.h"
193 #include <cassert>
194 #include <cstdint>
195 #include <string>
196 
197 using namespace llvm;
198 using namespace llvm::PatternMatch;
199 
200 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
201     "disable-separate-const-offset-from-gep", cl::init(false),
202     cl::desc("Do not separate the constant offset from a GEP instruction"),
203     cl::Hidden);
204 
205 // Setting this flag may emit false positives when the input module already
206 // contains dead instructions. Therefore, we set it only in unit tests that are
207 // free of dead code.
208 static cl::opt<bool>
209     VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
210                      cl::desc("Verify this pass produces no dead code"),
211                      cl::Hidden);
212 
213 namespace {
214 
215 /// A helper class for separating a constant offset from a GEP index.
216 ///
217 /// In real programs, a GEP index may be more complicated than a simple addition
218 /// of something and a constant integer which can be trivially splitted. For
219 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
220 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
221 ///
222 /// Therefore, this class looks into the expression that computes a given GEP
223 /// index, and tries to find a constant integer that can be hoisted to the
224 /// outermost level of the expression as an addition. Not every constant in an
225 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
226 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
227 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
228 class ConstantOffsetExtractor {
229 public:
230   /// Extracts a constant offset from the given GEP index. It returns the
231   /// new index representing the remainder (equal to the original index minus
232   /// the constant offset), or nullptr if we cannot extract a constant offset.
233   /// \p Idx The given GEP index
234   /// \p GEP The given GEP
235   /// \p UserChainTail Outputs the tail of UserChain so that we can
236   ///                  garbage-collect unused instructions in UserChain.
237   static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
238                         User *&UserChainTail, const DominatorTree *DT);
239 
240   /// Looks for a constant offset from the given GEP index without extracting
241   /// it. It returns the numeric value of the extracted constant offset (0 if
242   /// failed). The meaning of the arguments are the same as Extract.
243   static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
244                       const DominatorTree *DT);
245 
246 private:
247   ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
248       : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
249   }
250 
251   /// Searches the expression that computes V for a non-zero constant C s.t.
252   /// V can be reassociated into the form V' + C. If the searching is
253   /// successful, returns C and update UserChain as a def-use chain from C to V;
254   /// otherwise, UserChain is empty.
255   ///
256   /// \p V            The given expression
257   /// \p SignExtended Whether V will be sign-extended in the computation of the
258   ///                 GEP index
259   /// \p ZeroExtended Whether V will be zero-extended in the computation of the
260   ///                 GEP index
261   /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
262   ///                 an index of an inbounds GEP is guaranteed to be
263   ///                 non-negative. Levaraging this, we can better split
264   ///                 inbounds GEPs.
265   APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
266 
267   /// A helper function to look into both operands of a binary operator.
268   APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
269                             bool ZeroExtended);
270 
271   /// After finding the constant offset C from the GEP index I, we build a new
272   /// index I' s.t. I' + C = I. This function builds and returns the new
273   /// index I' according to UserChain produced by function "find".
274   ///
275   /// The building conceptually takes two steps:
276   /// 1) iteratively distribute s/zext towards the leaves of the expression tree
277   /// that computes I
278   /// 2) reassociate the expression tree to the form I' + C.
279   ///
280   /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
281   /// sext to a, b and 5 so that we have
282   ///   sext(a) + (sext(b) + 5).
283   /// Then, we reassociate it to
284   ///   (sext(a) + sext(b)) + 5.
285   /// Given this form, we know I' is sext(a) + sext(b).
286   Value *rebuildWithoutConstOffset();
287 
288   /// After the first step of rebuilding the GEP index without the constant
289   /// offset, distribute s/zext to the operands of all operators in UserChain.
290   /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
291   /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
292   ///
293   /// The function also updates UserChain to point to new subexpressions after
294   /// distributing s/zext. e.g., the old UserChain of the above example is
295   /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
296   /// and the new UserChain is
297   /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
298   ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
299   ///
300   /// \p ChainIndex The index to UserChain. ChainIndex is initially
301   ///               UserChain.size() - 1, and is decremented during
302   ///               the recursion.
303   Value *distributeExtsAndCloneChain(unsigned ChainIndex);
304 
305   /// Reassociates the GEP index to the form I' + C and returns I'.
306   Value *removeConstOffset(unsigned ChainIndex);
307 
308   /// A helper function to apply ExtInsts, a list of s/zext, to value V.
309   /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
310   /// returns "sext i32 (zext i16 V to i32) to i64".
311   Value *applyExts(Value *V);
312 
313   /// A helper function that returns whether we can trace into the operands
314   /// of binary operator BO for a constant offset.
315   ///
316   /// \p SignExtended Whether BO is surrounded by sext
317   /// \p ZeroExtended Whether BO is surrounded by zext
318   /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
319   ///                array index.
320   bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
321                     bool NonNegative);
322 
323   /// The path from the constant offset to the old GEP index. e.g., if the GEP
324   /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
325   /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
326   /// UserChain[2] will be the entire expression "a * b + (c + 5)".
327   ///
328   /// This path helps to rebuild the new GEP index.
329   SmallVector<User *, 8> UserChain;
330 
331   /// A data structure used in rebuildWithoutConstOffset. Contains all
332   /// sext/zext instructions along UserChain.
333   SmallVector<CastInst *, 16> ExtInsts;
334 
335   /// Insertion position of cloned instructions.
336   Instruction *IP;
337 
338   const DataLayout &DL;
339   const DominatorTree *DT;
340 };
341 
342 /// A pass that tries to split every GEP in the function into a variadic
343 /// base and a constant offset. It is a FunctionPass because searching for the
344 /// constant offset may inspect other basic blocks.
345 class SeparateConstOffsetFromGEP : public FunctionPass {
346 public:
347   static char ID;
348 
349   SeparateConstOffsetFromGEP(bool LowerGEP = false)
350       : FunctionPass(ID), LowerGEP(LowerGEP) {
351     initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
352   }
353 
354   void getAnalysisUsage(AnalysisUsage &AU) const override {
355     AU.addRequired<DominatorTreeWrapperPass>();
356     AU.addRequired<ScalarEvolutionWrapperPass>();
357     AU.addRequired<TargetTransformInfoWrapperPass>();
358     AU.addRequired<LoopInfoWrapperPass>();
359     AU.setPreservesCFG();
360     AU.addRequired<TargetLibraryInfoWrapperPass>();
361   }
362 
363   bool doInitialization(Module &M) override {
364     DL = &M.getDataLayout();
365     return false;
366   }
367 
368   bool runOnFunction(Function &F) override;
369 
370 private:
371   /// Tries to split the given GEP into a variadic base and a constant offset,
372   /// and returns true if the splitting succeeds.
373   bool splitGEP(GetElementPtrInst *GEP);
374 
375   /// Lower a GEP with multiple indices into multiple GEPs with a single index.
376   /// Function splitGEP already split the original GEP into a variadic part and
377   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
378   /// variadic part into a set of GEPs with a single index and applies
379   /// AccumulativeByteOffset to it.
380   /// \p Variadic                  The variadic part of the original GEP.
381   /// \p AccumulativeByteOffset    The constant offset.
382   void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
383                               int64_t AccumulativeByteOffset);
384 
385   /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
386   /// Function splitGEP already split the original GEP into a variadic part and
387   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
388   /// variadic part into a set of arithmetic operations and applies
389   /// AccumulativeByteOffset to it.
390   /// \p Variadic                  The variadic part of the original GEP.
391   /// \p AccumulativeByteOffset    The constant offset.
392   void lowerToArithmetics(GetElementPtrInst *Variadic,
393                           int64_t AccumulativeByteOffset);
394 
395   /// Finds the constant offset within each index and accumulates them. If
396   /// LowerGEP is true, it finds in indices of both sequential and structure
397   /// types, otherwise it only finds in sequential indices. The output
398   /// NeedsExtraction indicates whether we successfully find a non-zero constant
399   /// offset.
400   int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
401 
402   /// Canonicalize array indices to pointer-size integers. This helps to
403   /// simplify the logic of splitting a GEP. For example, if a + b is a
404   /// pointer-size integer, we have
405   ///   gep base, a + b = gep (gep base, a), b
406   /// However, this equality may not hold if the size of a + b is smaller than
407   /// the pointer size, because LLVM conceptually sign-extends GEP indices to
408   /// pointer size before computing the address
409   /// (http://llvm.org/docs/LangRef.html#id181).
410   ///
411   /// This canonicalization is very likely already done in clang and
412   /// instcombine. Therefore, the program will probably remain the same.
413   ///
414   /// Returns true if the module changes.
415   ///
416   /// Verified in @i32_add in split-gep.ll
417   bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
418 
419   /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
420   /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
421   /// the constant offset. After extraction, it becomes desirable to reunion the
422   /// distributed sexts. For example,
423   ///
424   ///                              &a[sext(i +nsw (j +nsw 5)]
425   ///   => distribute              &a[sext(i) +nsw (sext(j) +nsw 5)]
426   ///   => constant extraction     &a[sext(i) + sext(j)] + 5
427   ///   => reunion                 &a[sext(i +nsw j)] + 5
428   bool reuniteExts(Function &F);
429 
430   /// A helper that reunites sexts in an instruction.
431   bool reuniteExts(Instruction *I);
432 
433   /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
434   Instruction *findClosestMatchingDominator(
435       const SCEV *Key, Instruction *Dominatee,
436       DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs);
437 
438   /// Verify F is free of dead code.
439   void verifyNoDeadCode(Function &F);
440 
441   bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
442 
443   // Swap the index operand of two GEP.
444   void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
445 
446   // Check if it is safe to swap operand of two GEP.
447   bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
448                             Loop *CurLoop);
449 
450   const DataLayout *DL = nullptr;
451   DominatorTree *DT = nullptr;
452   ScalarEvolution *SE;
453 
454   LoopInfo *LI;
455   TargetLibraryInfo *TLI;
456 
457   /// Whether to lower a GEP with multiple indices into arithmetic operations or
458   /// multiple GEPs with a single index.
459   bool LowerGEP;
460 
461   DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingAdds;
462   DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingSubs;
463 };
464 
465 } // end anonymous namespace
466 
467 char SeparateConstOffsetFromGEP::ID = 0;
468 
469 INITIALIZE_PASS_BEGIN(
470     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
471     "Split GEPs to a variadic base and a constant offset for better CSE", false,
472     false)
473 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
474 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
475 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
476 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
477 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
478 INITIALIZE_PASS_END(
479     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
480     "Split GEPs to a variadic base and a constant offset for better CSE", false,
481     false)
482 
483 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) {
484   return new SeparateConstOffsetFromGEP(LowerGEP);
485 }
486 
487 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
488                                             bool ZeroExtended,
489                                             BinaryOperator *BO,
490                                             bool NonNegative) {
491   // We only consider ADD, SUB and OR, because a non-zero constant found in
492   // expressions composed of these operations can be easily hoisted as a
493   // constant offset by reassociation.
494   if (BO->getOpcode() != Instruction::Add &&
495       BO->getOpcode() != Instruction::Sub &&
496       BO->getOpcode() != Instruction::Or) {
497     return false;
498   }
499 
500   Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
501   // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
502   // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
503   // FIXME: this does not appear to be covered by any tests
504   //        (with x86/aarch64 backends at least)
505   if (BO->getOpcode() == Instruction::Or &&
506       !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
507     return false;
508 
509   // In addition, tracing into BO requires that its surrounding s/zext (if
510   // any) is distributable to both operands.
511   //
512   // Suppose BO = A op B.
513   //  SignExtended | ZeroExtended | Distributable?
514   // --------------+--------------+----------------------------------
515   //       0       |      0       | true because no s/zext exists
516   //       0       |      1       | zext(BO) == zext(A) op zext(B)
517   //       1       |      0       | sext(BO) == sext(A) op sext(B)
518   //       1       |      1       | zext(sext(BO)) ==
519   //               |              |     zext(sext(A)) op zext(sext(B))
520   if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
521     // If a + b >= 0 and (a >= 0 or b >= 0), then
522     //   sext(a + b) = sext(a) + sext(b)
523     // even if the addition is not marked nsw.
524     //
525     // Leveraging this invariant, we can trace into an sext'ed inbound GEP
526     // index if the constant offset is non-negative.
527     //
528     // Verified in @sext_add in split-gep.ll.
529     if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
530       if (!ConstLHS->isNegative())
531         return true;
532     }
533     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
534       if (!ConstRHS->isNegative())
535         return true;
536     }
537   }
538 
539   // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
540   // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
541   if (BO->getOpcode() == Instruction::Add ||
542       BO->getOpcode() == Instruction::Sub) {
543     if (SignExtended && !BO->hasNoSignedWrap())
544       return false;
545     if (ZeroExtended && !BO->hasNoUnsignedWrap())
546       return false;
547   }
548 
549   return true;
550 }
551 
552 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
553                                                    bool SignExtended,
554                                                    bool ZeroExtended) {
555   // Save off the current height of the chain, in case we need to restore it.
556   size_t ChainLength = UserChain.size();
557 
558   // BO being non-negative does not shed light on whether its operands are
559   // non-negative. Clear the NonNegative flag here.
560   APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
561                               /* NonNegative */ false);
562   // If we found a constant offset in the left operand, stop and return that.
563   // This shortcut might cause us to miss opportunities of combining the
564   // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
565   // However, such cases are probably already handled by -instcombine,
566   // given this pass runs after the standard optimizations.
567   if (ConstantOffset != 0) return ConstantOffset;
568 
569   // Reset the chain back to where it was when we started exploring this node,
570   // since visiting the LHS didn't pan out.
571   UserChain.resize(ChainLength);
572 
573   ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
574                         /* NonNegative */ false);
575   // If U is a sub operator, negate the constant offset found in the right
576   // operand.
577   if (BO->getOpcode() == Instruction::Sub)
578     ConstantOffset = -ConstantOffset;
579 
580   // If RHS wasn't a suitable candidate either, reset the chain again.
581   if (ConstantOffset == 0)
582     UserChain.resize(ChainLength);
583 
584   return ConstantOffset;
585 }
586 
587 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
588                                     bool ZeroExtended, bool NonNegative) {
589   // TODO(jingyue): We could trace into integer/pointer casts, such as
590   // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
591   // integers because it gives good enough results for our benchmarks.
592   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
593 
594   // We cannot do much with Values that are not a User, such as an Argument.
595   User *U = dyn_cast<User>(V);
596   if (U == nullptr) return APInt(BitWidth, 0);
597 
598   APInt ConstantOffset(BitWidth, 0);
599   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
600     // Hooray, we found it!
601     ConstantOffset = CI->getValue();
602   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
603     // Trace into subexpressions for more hoisting opportunities.
604     if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
605       ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
606   } else if (isa<TruncInst>(V)) {
607     ConstantOffset =
608         find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative)
609             .trunc(BitWidth);
610   } else if (isa<SExtInst>(V)) {
611     ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
612                           ZeroExtended, NonNegative).sext(BitWidth);
613   } else if (isa<ZExtInst>(V)) {
614     // As an optimization, we can clear the SignExtended flag because
615     // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
616     //
617     // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
618     ConstantOffset =
619         find(U->getOperand(0), /* SignExtended */ false,
620              /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
621   }
622 
623   // If we found a non-zero constant offset, add it to the path for
624   // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
625   // help this optimization.
626   if (ConstantOffset != 0)
627     UserChain.push_back(U);
628   return ConstantOffset;
629 }
630 
631 Value *ConstantOffsetExtractor::applyExts(Value *V) {
632   Value *Current = V;
633   // ExtInsts is built in the use-def order. Therefore, we apply them to V
634   // in the reversed order.
635   for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
636     if (Constant *C = dyn_cast<Constant>(Current)) {
637       // If Current is a constant, apply s/zext using ConstantExpr::getCast.
638       // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
639       Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
640     } else {
641       Instruction *Ext = (*I)->clone();
642       Ext->setOperand(0, Current);
643       Ext->insertBefore(IP);
644       Current = Ext;
645     }
646   }
647   return Current;
648 }
649 
650 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
651   distributeExtsAndCloneChain(UserChain.size() - 1);
652   // Remove all nullptrs (used to be s/zext) from UserChain.
653   unsigned NewSize = 0;
654   for (User *I : UserChain) {
655     if (I != nullptr) {
656       UserChain[NewSize] = I;
657       NewSize++;
658     }
659   }
660   UserChain.resize(NewSize);
661   return removeConstOffset(UserChain.size() - 1);
662 }
663 
664 Value *
665 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
666   User *U = UserChain[ChainIndex];
667   if (ChainIndex == 0) {
668     assert(isa<ConstantInt>(U));
669     // If U is a ConstantInt, applyExts will return a ConstantInt as well.
670     return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
671   }
672 
673   if (CastInst *Cast = dyn_cast<CastInst>(U)) {
674     assert(
675         (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) &&
676         "Only following instructions can be traced: sext, zext & trunc");
677     ExtInsts.push_back(Cast);
678     UserChain[ChainIndex] = nullptr;
679     return distributeExtsAndCloneChain(ChainIndex - 1);
680   }
681 
682   // Function find only trace into BinaryOperator and CastInst.
683   BinaryOperator *BO = cast<BinaryOperator>(U);
684   // OpNo = which operand of BO is UserChain[ChainIndex - 1]
685   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
686   Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
687   Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
688 
689   BinaryOperator *NewBO = nullptr;
690   if (OpNo == 0) {
691     NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
692                                    BO->getName(), IP);
693   } else {
694     NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
695                                    BO->getName(), IP);
696   }
697   return UserChain[ChainIndex] = NewBO;
698 }
699 
700 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
701   if (ChainIndex == 0) {
702     assert(isa<ConstantInt>(UserChain[ChainIndex]));
703     return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
704   }
705 
706   BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
707   assert((BO->use_empty() || BO->hasOneUse()) &&
708          "distributeExtsAndCloneChain clones each BinaryOperator in "
709          "UserChain, so no one should be used more than "
710          "once");
711 
712   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
713   assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
714   Value *NextInChain = removeConstOffset(ChainIndex - 1);
715   Value *TheOther = BO->getOperand(1 - OpNo);
716 
717   // If NextInChain is 0 and not the LHS of a sub, we can simplify the
718   // sub-expression to be just TheOther.
719   if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
720     if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
721       return TheOther;
722   }
723 
724   BinaryOperator::BinaryOps NewOp = BO->getOpcode();
725   if (BO->getOpcode() == Instruction::Or) {
726     // Rebuild "or" as "add", because "or" may be invalid for the new
727     // expression.
728     //
729     // For instance, given
730     //   a | (b + 5) where a and b + 5 have no common bits,
731     // we can extract 5 as the constant offset.
732     //
733     // However, reusing the "or" in the new index would give us
734     //   (a | b) + 5
735     // which does not equal a | (b + 5).
736     //
737     // Replacing the "or" with "add" is fine, because
738     //   a | (b + 5) = a + (b + 5) = (a + b) + 5
739     NewOp = Instruction::Add;
740   }
741 
742   BinaryOperator *NewBO;
743   if (OpNo == 0) {
744     NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
745   } else {
746     NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
747   }
748   NewBO->takeName(BO);
749   return NewBO;
750 }
751 
752 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
753                                         User *&UserChainTail,
754                                         const DominatorTree *DT) {
755   ConstantOffsetExtractor Extractor(GEP, DT);
756   // Find a non-zero constant offset first.
757   APInt ConstantOffset =
758       Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
759                      GEP->isInBounds());
760   if (ConstantOffset == 0) {
761     UserChainTail = nullptr;
762     return nullptr;
763   }
764   // Separates the constant offset from the GEP index.
765   Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
766   UserChainTail = Extractor.UserChain.back();
767   return IdxWithoutConstOffset;
768 }
769 
770 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
771                                       const DominatorTree *DT) {
772   // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
773   return ConstantOffsetExtractor(GEP, DT)
774       .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
775             GEP->isInBounds())
776       .getSExtValue();
777 }
778 
779 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
780     GetElementPtrInst *GEP) {
781   bool Changed = false;
782   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
783   gep_type_iterator GTI = gep_type_begin(*GEP);
784   for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
785        I != E; ++I, ++GTI) {
786     // Skip struct member indices which must be i32.
787     if (GTI.isSequential()) {
788       if ((*I)->getType() != IntPtrTy) {
789         *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
790         Changed = true;
791       }
792     }
793   }
794   return Changed;
795 }
796 
797 int64_t
798 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
799                                                  bool &NeedsExtraction) {
800   NeedsExtraction = false;
801   int64_t AccumulativeByteOffset = 0;
802   gep_type_iterator GTI = gep_type_begin(*GEP);
803   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
804     if (GTI.isSequential()) {
805       // Tries to extract a constant offset from this GEP index.
806       int64_t ConstantOffset =
807           ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
808       if (ConstantOffset != 0) {
809         NeedsExtraction = true;
810         // A GEP may have multiple indices.  We accumulate the extracted
811         // constant offset to a byte offset, and later offset the remainder of
812         // the original GEP with this byte offset.
813         AccumulativeByteOffset +=
814             ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
815       }
816     } else if (LowerGEP) {
817       StructType *StTy = GTI.getStructType();
818       uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
819       // Skip field 0 as the offset is always 0.
820       if (Field != 0) {
821         NeedsExtraction = true;
822         AccumulativeByteOffset +=
823             DL->getStructLayout(StTy)->getElementOffset(Field);
824       }
825     }
826   }
827   return AccumulativeByteOffset;
828 }
829 
830 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
831     GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
832   IRBuilder<> Builder(Variadic);
833   Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
834 
835   Type *I8PtrTy =
836       Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
837   Value *ResultPtr = Variadic->getOperand(0);
838   Loop *L = LI->getLoopFor(Variadic->getParent());
839   // Check if the base is not loop invariant or used more than once.
840   bool isSwapCandidate =
841       L && L->isLoopInvariant(ResultPtr) &&
842       !hasMoreThanOneUseInLoop(ResultPtr, L);
843   Value *FirstResult = nullptr;
844 
845   if (ResultPtr->getType() != I8PtrTy)
846     ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
847 
848   gep_type_iterator GTI = gep_type_begin(*Variadic);
849   // Create an ugly GEP for each sequential index. We don't create GEPs for
850   // structure indices, as they are accumulated in the constant offset index.
851   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
852     if (GTI.isSequential()) {
853       Value *Idx = Variadic->getOperand(I);
854       // Skip zero indices.
855       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
856         if (CI->isZero())
857           continue;
858 
859       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
860                                 DL->getTypeAllocSize(GTI.getIndexedType()));
861       // Scale the index by element size.
862       if (ElementSize != 1) {
863         if (ElementSize.isPowerOf2()) {
864           Idx = Builder.CreateShl(
865               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
866         } else {
867           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
868         }
869       }
870       // Create an ugly GEP with a single index for each index.
871       ResultPtr =
872           Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
873       if (FirstResult == nullptr)
874         FirstResult = ResultPtr;
875     }
876   }
877 
878   // Create a GEP with the constant offset index.
879   if (AccumulativeByteOffset != 0) {
880     Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
881     ResultPtr =
882         Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
883   } else
884     isSwapCandidate = false;
885 
886   // If we created a GEP with constant index, and the base is loop invariant,
887   // then we swap the first one with it, so LICM can move constant GEP out
888   // later.
889   GetElementPtrInst *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
890   GetElementPtrInst *SecondGEP = dyn_cast_or_null<GetElementPtrInst>(ResultPtr);
891   if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
892     swapGEPOperand(FirstGEP, SecondGEP);
893 
894   if (ResultPtr->getType() != Variadic->getType())
895     ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
896 
897   Variadic->replaceAllUsesWith(ResultPtr);
898   Variadic->eraseFromParent();
899 }
900 
901 void
902 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
903                                                int64_t AccumulativeByteOffset) {
904   IRBuilder<> Builder(Variadic);
905   Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
906 
907   Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
908   gep_type_iterator GTI = gep_type_begin(*Variadic);
909   // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
910   // don't create arithmetics for structure indices, as they are accumulated
911   // in the constant offset index.
912   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
913     if (GTI.isSequential()) {
914       Value *Idx = Variadic->getOperand(I);
915       // Skip zero indices.
916       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
917         if (CI->isZero())
918           continue;
919 
920       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
921                                 DL->getTypeAllocSize(GTI.getIndexedType()));
922       // Scale the index by element size.
923       if (ElementSize != 1) {
924         if (ElementSize.isPowerOf2()) {
925           Idx = Builder.CreateShl(
926               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
927         } else {
928           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
929         }
930       }
931       // Create an ADD for each index.
932       ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
933     }
934   }
935 
936   // Create an ADD for the constant offset index.
937   if (AccumulativeByteOffset != 0) {
938     ResultPtr = Builder.CreateAdd(
939         ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
940   }
941 
942   ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
943   Variadic->replaceAllUsesWith(ResultPtr);
944   Variadic->eraseFromParent();
945 }
946 
947 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
948   // Skip vector GEPs.
949   if (GEP->getType()->isVectorTy())
950     return false;
951 
952   // The backend can already nicely handle the case where all indices are
953   // constant.
954   if (GEP->hasAllConstantIndices())
955     return false;
956 
957   bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
958 
959   bool NeedsExtraction;
960   int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
961 
962   if (!NeedsExtraction)
963     return Changed;
964 
965   TargetTransformInfo &TTI =
966       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*GEP->getFunction());
967 
968   // If LowerGEP is disabled, before really splitting the GEP, check whether the
969   // backend supports the addressing mode we are about to produce. If no, this
970   // splitting probably won't be beneficial.
971   // If LowerGEP is enabled, even the extracted constant offset can not match
972   // the addressing mode, we can still do optimizations to other lowered parts
973   // of variable indices. Therefore, we don't check for addressing modes in that
974   // case.
975   if (!LowerGEP) {
976     unsigned AddrSpace = GEP->getPointerAddressSpace();
977     if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
978                                    /*BaseGV=*/nullptr, AccumulativeByteOffset,
979                                    /*HasBaseReg=*/true, /*Scale=*/0,
980                                    AddrSpace)) {
981       return Changed;
982     }
983   }
984 
985   // Remove the constant offset in each sequential index. The resultant GEP
986   // computes the variadic base.
987   // Notice that we don't remove struct field indices here. If LowerGEP is
988   // disabled, a structure index is not accumulated and we still use the old
989   // one. If LowerGEP is enabled, a structure index is accumulated in the
990   // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
991   // handle the constant offset and won't need a new structure index.
992   gep_type_iterator GTI = gep_type_begin(*GEP);
993   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
994     if (GTI.isSequential()) {
995       // Splits this GEP index into a variadic part and a constant offset, and
996       // uses the variadic part as the new index.
997       Value *OldIdx = GEP->getOperand(I);
998       User *UserChainTail;
999       Value *NewIdx =
1000           ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
1001       if (NewIdx != nullptr) {
1002         // Switches to the index with the constant offset removed.
1003         GEP->setOperand(I, NewIdx);
1004         // After switching to the new index, we can garbage-collect UserChain
1005         // and the old index if they are not used.
1006         RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
1007         RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
1008       }
1009     }
1010   }
1011 
1012   // Clear the inbounds attribute because the new index may be off-bound.
1013   // e.g.,
1014   //
1015   //   b     = add i64 a, 5
1016   //   addr  = gep inbounds float, float* p, i64 b
1017   //
1018   // is transformed to:
1019   //
1020   //   addr2 = gep float, float* p, i64 a ; inbounds removed
1021   //   addr  = gep inbounds float, float* addr2, i64 5
1022   //
1023   // If a is -4, although the old index b is in bounds, the new index a is
1024   // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
1025   // inbounds keyword is not present, the offsets are added to the base
1026   // address with silently-wrapping two's complement arithmetic".
1027   // Therefore, the final code will be a semantically equivalent.
1028   //
1029   // TODO(jingyue): do some range analysis to keep as many inbounds as
1030   // possible. GEPs with inbounds are more friendly to alias analysis.
1031   bool GEPWasInBounds = GEP->isInBounds();
1032   GEP->setIsInBounds(false);
1033 
1034   // Lowers a GEP to either GEPs with a single index or arithmetic operations.
1035   if (LowerGEP) {
1036     // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
1037     // arithmetic operations if the target uses alias analysis in codegen.
1038     if (TTI.useAA())
1039       lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
1040     else
1041       lowerToArithmetics(GEP, AccumulativeByteOffset);
1042     return true;
1043   }
1044 
1045   // No need to create another GEP if the accumulative byte offset is 0.
1046   if (AccumulativeByteOffset == 0)
1047     return true;
1048 
1049   // Offsets the base with the accumulative byte offset.
1050   //
1051   //   %gep                        ; the base
1052   //   ... %gep ...
1053   //
1054   // => add the offset
1055   //
1056   //   %gep2                       ; clone of %gep
1057   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1058   //   %gep                        ; will be removed
1059   //   ... %gep ...
1060   //
1061   // => replace all uses of %gep with %new.gep and remove %gep
1062   //
1063   //   %gep2                       ; clone of %gep
1064   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1065   //   ... %new.gep ...
1066   //
1067   // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
1068   // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
1069   // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
1070   // type of %gep.
1071   //
1072   //   %gep2                       ; clone of %gep
1073   //   %0       = bitcast %gep2 to i8*
1074   //   %uglygep = gep %0, <offset>
1075   //   %new.gep = bitcast %uglygep to <type of %gep>
1076   //   ... %new.gep ...
1077   Instruction *NewGEP = GEP->clone();
1078   NewGEP->insertBefore(GEP);
1079 
1080   // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
1081   // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
1082   // used with unsigned integers later.
1083   int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
1084       DL->getTypeAllocSize(GEP->getResultElementType()));
1085   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
1086   if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
1087     // Very likely. As long as %gep is naturally aligned, the byte offset we
1088     // extracted should be a multiple of sizeof(*%gep).
1089     int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
1090     NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
1091                                        ConstantInt::get(IntPtrTy, Index, true),
1092                                        GEP->getName(), GEP);
1093     NewGEP->copyMetadata(*GEP);
1094     // Inherit the inbounds attribute of the original GEP.
1095     cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1096   } else {
1097     // Unlikely but possible. For example,
1098     // #pragma pack(1)
1099     // struct S {
1100     //   int a[3];
1101     //   int64 b[8];
1102     // };
1103     // #pragma pack()
1104     //
1105     // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
1106     // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
1107     // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
1108     // sizeof(int64).
1109     //
1110     // Emit an uglygep in this case.
1111     Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
1112                                        GEP->getPointerAddressSpace());
1113     NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
1114     NewGEP = GetElementPtrInst::Create(
1115         Type::getInt8Ty(GEP->getContext()), NewGEP,
1116         ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
1117         GEP);
1118     NewGEP->copyMetadata(*GEP);
1119     // Inherit the inbounds attribute of the original GEP.
1120     cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1121     if (GEP->getType() != I8PtrTy)
1122       NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
1123   }
1124 
1125   GEP->replaceAllUsesWith(NewGEP);
1126   GEP->eraseFromParent();
1127 
1128   return true;
1129 }
1130 
1131 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
1132   if (skipFunction(F))
1133     return false;
1134 
1135   if (DisableSeparateConstOffsetFromGEP)
1136     return false;
1137 
1138   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1139   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1140   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1141   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1142   bool Changed = false;
1143   for (BasicBlock &B : F) {
1144     for (BasicBlock::iterator I = B.begin(), IE = B.end(); I != IE;)
1145       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++))
1146         Changed |= splitGEP(GEP);
1147     // No need to split GEP ConstantExprs because all its indices are constant
1148     // already.
1149   }
1150 
1151   Changed |= reuniteExts(F);
1152 
1153   if (VerifyNoDeadCode)
1154     verifyNoDeadCode(F);
1155 
1156   return Changed;
1157 }
1158 
1159 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1160     const SCEV *Key, Instruction *Dominatee,
1161     DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs) {
1162   auto Pos = DominatingExprs.find(Key);
1163   if (Pos == DominatingExprs.end())
1164     return nullptr;
1165 
1166   auto &Candidates = Pos->second;
1167   // Because we process the basic blocks in pre-order of the dominator tree, a
1168   // candidate that doesn't dominate the current instruction won't dominate any
1169   // future instruction either. Therefore, we pop it out of the stack. This
1170   // optimization makes the algorithm O(n).
1171   while (!Candidates.empty()) {
1172     Instruction *Candidate = Candidates.back();
1173     if (DT->dominates(Candidate, Dominatee))
1174       return Candidate;
1175     Candidates.pop_back();
1176   }
1177   return nullptr;
1178 }
1179 
1180 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
1181   if (!SE->isSCEVable(I->getType()))
1182     return false;
1183 
1184   //   Dom: LHS+RHS
1185   //   I: sext(LHS)+sext(RHS)
1186   // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1187   // TODO: handle zext
1188   Value *LHS = nullptr, *RHS = nullptr;
1189   if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1190     if (LHS->getType() == RHS->getType()) {
1191       const SCEV *Key =
1192           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1193       if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingAdds)) {
1194         Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1195         NewSExt->takeName(I);
1196         I->replaceAllUsesWith(NewSExt);
1197         RecursivelyDeleteTriviallyDeadInstructions(I);
1198         return true;
1199       }
1200     }
1201   } else if (match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1202     if (LHS->getType() == RHS->getType()) {
1203       const SCEV *Key =
1204           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1205       if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingSubs)) {
1206         Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1207         NewSExt->takeName(I);
1208         I->replaceAllUsesWith(NewSExt);
1209         RecursivelyDeleteTriviallyDeadInstructions(I);
1210         return true;
1211       }
1212     }
1213   }
1214 
1215   // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1216   if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS)))) {
1217     if (programUndefinedIfPoison(I)) {
1218       const SCEV *Key =
1219           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1220       DominatingAdds[Key].push_back(I);
1221     }
1222   } else if (match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
1223     if (programUndefinedIfPoison(I)) {
1224       const SCEV *Key =
1225           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1226       DominatingSubs[Key].push_back(I);
1227     }
1228   }
1229   return false;
1230 }
1231 
1232 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
1233   bool Changed = false;
1234   DominatingAdds.clear();
1235   DominatingSubs.clear();
1236   for (const auto Node : depth_first(DT)) {
1237     BasicBlock *BB = Node->getBlock();
1238     for (auto I = BB->begin(); I != BB->end(); ) {
1239       Instruction *Cur = &*I++;
1240       Changed |= reuniteExts(Cur);
1241     }
1242   }
1243   return Changed;
1244 }
1245 
1246 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
1247   for (BasicBlock &B : F) {
1248     for (Instruction &I : B) {
1249       if (isInstructionTriviallyDead(&I)) {
1250         std::string ErrMessage;
1251         raw_string_ostream RSO(ErrMessage);
1252         RSO << "Dead instruction detected!\n" << I << "\n";
1253         llvm_unreachable(RSO.str().c_str());
1254       }
1255     }
1256   }
1257 }
1258 
1259 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1260     GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
1261   if (!FirstGEP || !FirstGEP->hasOneUse())
1262     return false;
1263 
1264   if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
1265     return false;
1266 
1267   if (FirstGEP == SecondGEP)
1268     return false;
1269 
1270   unsigned FirstNum = FirstGEP->getNumOperands();
1271   unsigned SecondNum = SecondGEP->getNumOperands();
1272   // Give up if the number of operands are not 2.
1273   if (FirstNum != SecondNum || FirstNum != 2)
1274     return false;
1275 
1276   Value *FirstBase = FirstGEP->getOperand(0);
1277   Value *SecondBase = SecondGEP->getOperand(0);
1278   Value *FirstOffset = FirstGEP->getOperand(1);
1279   // Give up if the index of the first GEP is loop invariant.
1280   if (CurLoop->isLoopInvariant(FirstOffset))
1281     return false;
1282 
1283   // Give up if base doesn't have same type.
1284   if (FirstBase->getType() != SecondBase->getType())
1285     return false;
1286 
1287   Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
1288 
1289   // Check if the second operand of first GEP has constant coefficient.
1290   // For an example, for the following code,  we won't gain anything by
1291   // hoisting the second GEP out because the second GEP can be folded away.
1292   //   %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1293   //   %67 = shl i64 %scevgep.sum.ur159, 2
1294   //   %uglygep160 = getelementptr i8* %65, i64 %67
1295   //   %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1296 
1297   // Skip constant shift instruction which may be generated by Splitting GEPs.
1298   if (FirstOffsetDef && FirstOffsetDef->isShift() &&
1299       isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
1300     FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
1301 
1302   // Give up if FirstOffsetDef is an Add or Sub with constant.
1303   // Because it may not profitable at all due to constant folding.
1304   if (FirstOffsetDef)
1305     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
1306       unsigned opc = BO->getOpcode();
1307       if ((opc == Instruction::Add || opc == Instruction::Sub) &&
1308           (isa<ConstantInt>(BO->getOperand(0)) ||
1309            isa<ConstantInt>(BO->getOperand(1))))
1310         return false;
1311     }
1312   return true;
1313 }
1314 
1315 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
1316   int UsesInLoop = 0;
1317   for (User *U : V->users()) {
1318     if (Instruction *User = dyn_cast<Instruction>(U))
1319       if (L->contains(User))
1320         if (++UsesInLoop > 1)
1321           return true;
1322   }
1323   return false;
1324 }
1325 
1326 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
1327                                                 GetElementPtrInst *Second) {
1328   Value *Offset1 = First->getOperand(1);
1329   Value *Offset2 = Second->getOperand(1);
1330   First->setOperand(1, Offset2);
1331   Second->setOperand(1, Offset1);
1332 
1333   // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1334   const DataLayout &DAL = First->getModule()->getDataLayout();
1335   APInt Offset(DAL.getIndexSizeInBits(
1336                    cast<PointerType>(First->getType())->getAddressSpace()),
1337                0);
1338   Value *NewBase =
1339       First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
1340   uint64_t ObjectSize;
1341   if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
1342      Offset.ugt(ObjectSize)) {
1343     First->setIsInBounds(false);
1344     Second->setIsInBounds(false);
1345   } else
1346     First->setIsInBounds(true);
1347 }
1348