xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp (revision a2464ee12761660f50d0b6f59f233949ebcacc87)
1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop unrolling may create many similar GEPs for array accesses.
10 // e.g., a 2-level loop
11 //
12 // float a[32][32]; // global variable
13 //
14 // for (int i = 0; i < 2; ++i) {
15 //   for (int j = 0; j < 2; ++j) {
16 //     ...
17 //     ... = a[x + i][y + j];
18 //     ...
19 //   }
20 // }
21 //
22 // will probably be unrolled to:
23 //
24 // gep %a, 0, %x, %y; load
25 // gep %a, 0, %x, %y + 1; load
26 // gep %a, 0, %x + 1, %y; load
27 // gep %a, 0, %x + 1, %y + 1; load
28 //
29 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
30 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
31 // significant slowdown in targets with limited addressing modes. For instance,
32 // because the PTX target does not support the reg+reg addressing mode, the
33 // NVPTX backend emits PTX code that literally computes the pointer address of
34 // each GEP, wasting tons of registers. It emits the following PTX for the
35 // first load and similar PTX for other loads.
36 //
37 // mov.u32         %r1, %x;
38 // mov.u32         %r2, %y;
39 // mul.wide.u32    %rl2, %r1, 128;
40 // mov.u64         %rl3, a;
41 // add.s64         %rl4, %rl3, %rl2;
42 // mul.wide.u32    %rl5, %r2, 4;
43 // add.s64         %rl6, %rl4, %rl5;
44 // ld.global.f32   %f1, [%rl6];
45 //
46 // To reduce the register pressure, the optimization implemented in this file
47 // merges the common part of a group of GEPs, so we can compute each pointer
48 // address by adding a simple offset to the common part, saving many registers.
49 //
50 // It works by splitting each GEP into a variadic base and a constant offset.
51 // The variadic base can be computed once and reused by multiple GEPs, and the
52 // constant offsets can be nicely folded into the reg+immediate addressing mode
53 // (supported by most targets) without using any extra register.
54 //
55 // For instance, we transform the four GEPs and four loads in the above example
56 // into:
57 //
58 // base = gep a, 0, x, y
59 // load base
60 // laod base + 1  * sizeof(float)
61 // load base + 32 * sizeof(float)
62 // load base + 33 * sizeof(float)
63 //
64 // Given the transformed IR, a backend that supports the reg+immediate
65 // addressing mode can easily fold the pointer arithmetics into the loads. For
66 // example, the NVPTX backend can easily fold the pointer arithmetics into the
67 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
68 //
69 // mov.u32         %r1, %tid.x;
70 // mov.u32         %r2, %tid.y;
71 // mul.wide.u32    %rl2, %r1, 128;
72 // mov.u64         %rl3, a;
73 // add.s64         %rl4, %rl3, %rl2;
74 // mul.wide.u32    %rl5, %r2, 4;
75 // add.s64         %rl6, %rl4, %rl5;
76 // ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
77 // ld.global.f32   %f2, [%rl6+4]; // much better
78 // ld.global.f32   %f3, [%rl6+128]; // much better
79 // ld.global.f32   %f4, [%rl6+132]; // much better
80 //
81 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
82 // multiple indices to either multiple GEPs with a single index or arithmetic
83 // operations (depending on whether the target uses alias analysis in codegen).
84 // Such transformation can have following benefits:
85 // (1) It can always extract constants in the indices of structure type.
86 // (2) After such Lowering, there are more optimization opportunities such as
87 //     CSE, LICM and CGP.
88 //
89 // E.g. The following GEPs have multiple indices:
90 //  BB1:
91 //    %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
92 //    load %p
93 //    ...
94 //  BB2:
95 //    %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
96 //    load %p2
97 //    ...
98 //
99 // We can not do CSE to the common part related to index "i64 %i". Lowering
100 // GEPs can achieve such goals.
101 // If the target does not use alias analysis in codegen, this pass will
102 // lower a GEP with multiple indices into arithmetic operations:
103 //  BB1:
104 //    %1 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
105 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
106 //    %3 = add i64 %1, %2                          ; CSE opportunity
107 //    %4 = mul i64 %j1, length_of_struct
108 //    %5 = add i64 %3, %4
109 //    %6 = add i64 %3, struct_field_3              ; Constant offset
110 //    %p = inttoptr i64 %6 to i32*
111 //    load %p
112 //    ...
113 //  BB2:
114 //    %7 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
115 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
116 //    %9 = add i64 %7, %8                          ; CSE opportunity
117 //    %10 = mul i64 %j2, length_of_struct
118 //    %11 = add i64 %9, %10
119 //    %12 = add i64 %11, struct_field_2            ; Constant offset
120 //    %p = inttoptr i64 %12 to i32*
121 //    load %p2
122 //    ...
123 //
124 // If the target uses alias analysis in codegen, this pass will lower a GEP
125 // with multiple indices into multiple GEPs with a single index:
126 //  BB1:
127 //    %1 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
128 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
129 //    %3 = getelementptr i8* %1, i64 %2            ; CSE opportunity
130 //    %4 = mul i64 %j1, length_of_struct
131 //    %5 = getelementptr i8* %3, i64 %4
132 //    %6 = getelementptr i8* %5, struct_field_3    ; Constant offset
133 //    %p = bitcast i8* %6 to i32*
134 //    load %p
135 //    ...
136 //  BB2:
137 //    %7 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
138 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
139 //    %9 = getelementptr i8* %7, i64 %8            ; CSE opportunity
140 //    %10 = mul i64 %j2, length_of_struct
141 //    %11 = getelementptr i8* %9, i64 %10
142 //    %12 = getelementptr i8* %11, struct_field_2  ; Constant offset
143 //    %p2 = bitcast i8* %12 to i32*
144 //    load %p2
145 //    ...
146 //
147 // Lowering GEPs can also benefit other passes such as LICM and CGP.
148 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
149 // indices if one of the index is variant. If we lower such GEP into invariant
150 // parts and variant parts, LICM can hoist/sink those invariant parts.
151 // CGP (CodeGen Prepare) tries to sink address calculations that match the
152 // target's addressing modes. A GEP with multiple indices may not match and will
153 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
154 // them. So we end up with a better addressing mode.
155 //
156 //===----------------------------------------------------------------------===//
157 
158 #include "llvm/Transforms/Scalar/SeparateConstOffsetFromGEP.h"
159 #include "llvm/ADT/APInt.h"
160 #include "llvm/ADT/DenseMap.h"
161 #include "llvm/ADT/DepthFirstIterator.h"
162 #include "llvm/ADT/SmallVector.h"
163 #include "llvm/Analysis/LoopInfo.h"
164 #include "llvm/Analysis/MemoryBuiltins.h"
165 #include "llvm/Analysis/ScalarEvolution.h"
166 #include "llvm/Analysis/TargetLibraryInfo.h"
167 #include "llvm/Analysis/TargetTransformInfo.h"
168 #include "llvm/Analysis/ValueTracking.h"
169 #include "llvm/IR/BasicBlock.h"
170 #include "llvm/IR/Constant.h"
171 #include "llvm/IR/Constants.h"
172 #include "llvm/IR/DataLayout.h"
173 #include "llvm/IR/DerivedTypes.h"
174 #include "llvm/IR/Dominators.h"
175 #include "llvm/IR/Function.h"
176 #include "llvm/IR/GetElementPtrTypeIterator.h"
177 #include "llvm/IR/IRBuilder.h"
178 #include "llvm/IR/Instruction.h"
179 #include "llvm/IR/Instructions.h"
180 #include "llvm/IR/Module.h"
181 #include "llvm/IR/PassManager.h"
182 #include "llvm/IR/PatternMatch.h"
183 #include "llvm/IR/Type.h"
184 #include "llvm/IR/User.h"
185 #include "llvm/IR/Value.h"
186 #include "llvm/InitializePasses.h"
187 #include "llvm/Pass.h"
188 #include "llvm/Support/Casting.h"
189 #include "llvm/Support/CommandLine.h"
190 #include "llvm/Support/ErrorHandling.h"
191 #include "llvm/Support/raw_ostream.h"
192 #include "llvm/Target/TargetMachine.h"
193 #include "llvm/Transforms/Scalar.h"
194 #include "llvm/Transforms/Utils/Local.h"
195 #include <cassert>
196 #include <cstdint>
197 #include <string>
198 
199 using namespace llvm;
200 using namespace llvm::PatternMatch;
201 
202 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
203     "disable-separate-const-offset-from-gep", cl::init(false),
204     cl::desc("Do not separate the constant offset from a GEP instruction"),
205     cl::Hidden);
206 
207 // Setting this flag may emit false positives when the input module already
208 // contains dead instructions. Therefore, we set it only in unit tests that are
209 // free of dead code.
210 static cl::opt<bool>
211     VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
212                      cl::desc("Verify this pass produces no dead code"),
213                      cl::Hidden);
214 
215 namespace {
216 
217 /// A helper class for separating a constant offset from a GEP index.
218 ///
219 /// In real programs, a GEP index may be more complicated than a simple addition
220 /// of something and a constant integer which can be trivially splitted. For
221 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
222 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
223 ///
224 /// Therefore, this class looks into the expression that computes a given GEP
225 /// index, and tries to find a constant integer that can be hoisted to the
226 /// outermost level of the expression as an addition. Not every constant in an
227 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
228 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
229 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
230 class ConstantOffsetExtractor {
231 public:
232   /// Extracts a constant offset from the given GEP index. It returns the
233   /// new index representing the remainder (equal to the original index minus
234   /// the constant offset), or nullptr if we cannot extract a constant offset.
235   /// \p Idx The given GEP index
236   /// \p GEP The given GEP
237   /// \p UserChainTail Outputs the tail of UserChain so that we can
238   ///                  garbage-collect unused instructions in UserChain.
239   static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
240                         User *&UserChainTail, const DominatorTree *DT);
241 
242   /// Looks for a constant offset from the given GEP index without extracting
243   /// it. It returns the numeric value of the extracted constant offset (0 if
244   /// failed). The meaning of the arguments are the same as Extract.
245   static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
246                       const DominatorTree *DT);
247 
248 private:
249   ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
250       : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
251   }
252 
253   /// Searches the expression that computes V for a non-zero constant C s.t.
254   /// V can be reassociated into the form V' + C. If the searching is
255   /// successful, returns C and update UserChain as a def-use chain from C to V;
256   /// otherwise, UserChain is empty.
257   ///
258   /// \p V            The given expression
259   /// \p SignExtended Whether V will be sign-extended in the computation of the
260   ///                 GEP index
261   /// \p ZeroExtended Whether V will be zero-extended in the computation of the
262   ///                 GEP index
263   /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
264   ///                 an index of an inbounds GEP is guaranteed to be
265   ///                 non-negative. Levaraging this, we can better split
266   ///                 inbounds GEPs.
267   APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
268 
269   /// A helper function to look into both operands of a binary operator.
270   APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
271                             bool ZeroExtended);
272 
273   /// After finding the constant offset C from the GEP index I, we build a new
274   /// index I' s.t. I' + C = I. This function builds and returns the new
275   /// index I' according to UserChain produced by function "find".
276   ///
277   /// The building conceptually takes two steps:
278   /// 1) iteratively distribute s/zext towards the leaves of the expression tree
279   /// that computes I
280   /// 2) reassociate the expression tree to the form I' + C.
281   ///
282   /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
283   /// sext to a, b and 5 so that we have
284   ///   sext(a) + (sext(b) + 5).
285   /// Then, we reassociate it to
286   ///   (sext(a) + sext(b)) + 5.
287   /// Given this form, we know I' is sext(a) + sext(b).
288   Value *rebuildWithoutConstOffset();
289 
290   /// After the first step of rebuilding the GEP index without the constant
291   /// offset, distribute s/zext to the operands of all operators in UserChain.
292   /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
293   /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
294   ///
295   /// The function also updates UserChain to point to new subexpressions after
296   /// distributing s/zext. e.g., the old UserChain of the above example is
297   /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
298   /// and the new UserChain is
299   /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
300   ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
301   ///
302   /// \p ChainIndex The index to UserChain. ChainIndex is initially
303   ///               UserChain.size() - 1, and is decremented during
304   ///               the recursion.
305   Value *distributeExtsAndCloneChain(unsigned ChainIndex);
306 
307   /// Reassociates the GEP index to the form I' + C and returns I'.
308   Value *removeConstOffset(unsigned ChainIndex);
309 
310   /// A helper function to apply ExtInsts, a list of s/zext, to value V.
311   /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
312   /// returns "sext i32 (zext i16 V to i32) to i64".
313   Value *applyExts(Value *V);
314 
315   /// A helper function that returns whether we can trace into the operands
316   /// of binary operator BO for a constant offset.
317   ///
318   /// \p SignExtended Whether BO is surrounded by sext
319   /// \p ZeroExtended Whether BO is surrounded by zext
320   /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
321   ///                array index.
322   bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
323                     bool NonNegative);
324 
325   /// The path from the constant offset to the old GEP index. e.g., if the GEP
326   /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
327   /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
328   /// UserChain[2] will be the entire expression "a * b + (c + 5)".
329   ///
330   /// This path helps to rebuild the new GEP index.
331   SmallVector<User *, 8> UserChain;
332 
333   /// A data structure used in rebuildWithoutConstOffset. Contains all
334   /// sext/zext instructions along UserChain.
335   SmallVector<CastInst *, 16> ExtInsts;
336 
337   /// Insertion position of cloned instructions.
338   Instruction *IP;
339 
340   const DataLayout &DL;
341   const DominatorTree *DT;
342 };
343 
344 /// A pass that tries to split every GEP in the function into a variadic
345 /// base and a constant offset. It is a FunctionPass because searching for the
346 /// constant offset may inspect other basic blocks.
347 class SeparateConstOffsetFromGEPLegacyPass : public FunctionPass {
348 public:
349   static char ID;
350 
351   SeparateConstOffsetFromGEPLegacyPass(bool LowerGEP = false)
352       : FunctionPass(ID), LowerGEP(LowerGEP) {
353     initializeSeparateConstOffsetFromGEPLegacyPassPass(
354         *PassRegistry::getPassRegistry());
355   }
356 
357   void getAnalysisUsage(AnalysisUsage &AU) const override {
358     AU.addRequired<DominatorTreeWrapperPass>();
359     AU.addRequired<ScalarEvolutionWrapperPass>();
360     AU.addRequired<TargetTransformInfoWrapperPass>();
361     AU.addRequired<LoopInfoWrapperPass>();
362     AU.setPreservesCFG();
363     AU.addRequired<TargetLibraryInfoWrapperPass>();
364   }
365 
366   bool runOnFunction(Function &F) override;
367 
368 private:
369   bool LowerGEP;
370 };
371 
372 /// A pass that tries to split every GEP in the function into a variadic
373 /// base and a constant offset. It is a FunctionPass because searching for the
374 /// constant offset may inspect other basic blocks.
375 class SeparateConstOffsetFromGEP {
376 public:
377   SeparateConstOffsetFromGEP(
378       DominatorTree *DT, ScalarEvolution *SE, LoopInfo *LI,
379       TargetLibraryInfo *TLI,
380       function_ref<TargetTransformInfo &(Function &)> GetTTI, bool LowerGEP)
381       : DT(DT), SE(SE), LI(LI), TLI(TLI), GetTTI(GetTTI), LowerGEP(LowerGEP) {}
382 
383   bool run(Function &F);
384 
385 private:
386   /// Tries to split the given GEP into a variadic base and a constant offset,
387   /// and returns true if the splitting succeeds.
388   bool splitGEP(GetElementPtrInst *GEP);
389 
390   /// Lower a GEP with multiple indices into multiple GEPs with a single index.
391   /// Function splitGEP already split the original GEP into a variadic part and
392   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
393   /// variadic part into a set of GEPs with a single index and applies
394   /// AccumulativeByteOffset to it.
395   /// \p Variadic                  The variadic part of the original GEP.
396   /// \p AccumulativeByteOffset    The constant offset.
397   void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
398                               int64_t AccumulativeByteOffset);
399 
400   /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
401   /// Function splitGEP already split the original GEP into a variadic part and
402   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
403   /// variadic part into a set of arithmetic operations and applies
404   /// AccumulativeByteOffset to it.
405   /// \p Variadic                  The variadic part of the original GEP.
406   /// \p AccumulativeByteOffset    The constant offset.
407   void lowerToArithmetics(GetElementPtrInst *Variadic,
408                           int64_t AccumulativeByteOffset);
409 
410   /// Finds the constant offset within each index and accumulates them. If
411   /// LowerGEP is true, it finds in indices of both sequential and structure
412   /// types, otherwise it only finds in sequential indices. The output
413   /// NeedsExtraction indicates whether we successfully find a non-zero constant
414   /// offset.
415   int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
416 
417   /// Canonicalize array indices to pointer-size integers. This helps to
418   /// simplify the logic of splitting a GEP. For example, if a + b is a
419   /// pointer-size integer, we have
420   ///   gep base, a + b = gep (gep base, a), b
421   /// However, this equality may not hold if the size of a + b is smaller than
422   /// the pointer size, because LLVM conceptually sign-extends GEP indices to
423   /// pointer size before computing the address
424   /// (http://llvm.org/docs/LangRef.html#id181).
425   ///
426   /// This canonicalization is very likely already done in clang and
427   /// instcombine. Therefore, the program will probably remain the same.
428   ///
429   /// Returns true if the module changes.
430   ///
431   /// Verified in @i32_add in split-gep.ll
432   bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
433 
434   /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
435   /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
436   /// the constant offset. After extraction, it becomes desirable to reunion the
437   /// distributed sexts. For example,
438   ///
439   ///                              &a[sext(i +nsw (j +nsw 5)]
440   ///   => distribute              &a[sext(i) +nsw (sext(j) +nsw 5)]
441   ///   => constant extraction     &a[sext(i) + sext(j)] + 5
442   ///   => reunion                 &a[sext(i +nsw j)] + 5
443   bool reuniteExts(Function &F);
444 
445   /// A helper that reunites sexts in an instruction.
446   bool reuniteExts(Instruction *I);
447 
448   /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
449   Instruction *findClosestMatchingDominator(
450       const SCEV *Key, Instruction *Dominatee,
451       DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs);
452 
453   /// Verify F is free of dead code.
454   void verifyNoDeadCode(Function &F);
455 
456   bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
457 
458   // Swap the index operand of two GEP.
459   void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
460 
461   // Check if it is safe to swap operand of two GEP.
462   bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
463                             Loop *CurLoop);
464 
465   const DataLayout *DL = nullptr;
466   DominatorTree *DT = nullptr;
467   ScalarEvolution *SE;
468   LoopInfo *LI;
469   TargetLibraryInfo *TLI;
470   // Retrieved lazily since not always used.
471   function_ref<TargetTransformInfo &(Function &)> GetTTI;
472 
473   /// Whether to lower a GEP with multiple indices into arithmetic operations or
474   /// multiple GEPs with a single index.
475   bool LowerGEP;
476 
477   DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingAdds;
478   DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingSubs;
479 };
480 
481 } // end anonymous namespace
482 
483 char SeparateConstOffsetFromGEPLegacyPass::ID = 0;
484 
485 INITIALIZE_PASS_BEGIN(
486     SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep",
487     "Split GEPs to a variadic base and a constant offset for better CSE", false,
488     false)
489 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
490 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
491 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
492 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
493 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
494 INITIALIZE_PASS_END(
495     SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep",
496     "Split GEPs to a variadic base and a constant offset for better CSE", false,
497     false)
498 
499 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) {
500   return new SeparateConstOffsetFromGEPLegacyPass(LowerGEP);
501 }
502 
503 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
504                                             bool ZeroExtended,
505                                             BinaryOperator *BO,
506                                             bool NonNegative) {
507   // We only consider ADD, SUB and OR, because a non-zero constant found in
508   // expressions composed of these operations can be easily hoisted as a
509   // constant offset by reassociation.
510   if (BO->getOpcode() != Instruction::Add &&
511       BO->getOpcode() != Instruction::Sub &&
512       BO->getOpcode() != Instruction::Or) {
513     return false;
514   }
515 
516   Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
517   // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
518   // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
519   // FIXME: this does not appear to be covered by any tests
520   //        (with x86/aarch64 backends at least)
521   if (BO->getOpcode() == Instruction::Or &&
522       !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
523     return false;
524 
525   // In addition, tracing into BO requires that its surrounding s/zext (if
526   // any) is distributable to both operands.
527   //
528   // Suppose BO = A op B.
529   //  SignExtended | ZeroExtended | Distributable?
530   // --------------+--------------+----------------------------------
531   //       0       |      0       | true because no s/zext exists
532   //       0       |      1       | zext(BO) == zext(A) op zext(B)
533   //       1       |      0       | sext(BO) == sext(A) op sext(B)
534   //       1       |      1       | zext(sext(BO)) ==
535   //               |              |     zext(sext(A)) op zext(sext(B))
536   if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
537     // If a + b >= 0 and (a >= 0 or b >= 0), then
538     //   sext(a + b) = sext(a) + sext(b)
539     // even if the addition is not marked nsw.
540     //
541     // Leveraging this invariant, we can trace into an sext'ed inbound GEP
542     // index if the constant offset is non-negative.
543     //
544     // Verified in @sext_add in split-gep.ll.
545     if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
546       if (!ConstLHS->isNegative())
547         return true;
548     }
549     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
550       if (!ConstRHS->isNegative())
551         return true;
552     }
553   }
554 
555   // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
556   // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
557   if (BO->getOpcode() == Instruction::Add ||
558       BO->getOpcode() == Instruction::Sub) {
559     if (SignExtended && !BO->hasNoSignedWrap())
560       return false;
561     if (ZeroExtended && !BO->hasNoUnsignedWrap())
562       return false;
563   }
564 
565   return true;
566 }
567 
568 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
569                                                    bool SignExtended,
570                                                    bool ZeroExtended) {
571   // Save off the current height of the chain, in case we need to restore it.
572   size_t ChainLength = UserChain.size();
573 
574   // BO being non-negative does not shed light on whether its operands are
575   // non-negative. Clear the NonNegative flag here.
576   APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
577                               /* NonNegative */ false);
578   // If we found a constant offset in the left operand, stop and return that.
579   // This shortcut might cause us to miss opportunities of combining the
580   // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
581   // However, such cases are probably already handled by -instcombine,
582   // given this pass runs after the standard optimizations.
583   if (ConstantOffset != 0) return ConstantOffset;
584 
585   // Reset the chain back to where it was when we started exploring this node,
586   // since visiting the LHS didn't pan out.
587   UserChain.resize(ChainLength);
588 
589   ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
590                         /* NonNegative */ false);
591   // If U is a sub operator, negate the constant offset found in the right
592   // operand.
593   if (BO->getOpcode() == Instruction::Sub)
594     ConstantOffset = -ConstantOffset;
595 
596   // If RHS wasn't a suitable candidate either, reset the chain again.
597   if (ConstantOffset == 0)
598     UserChain.resize(ChainLength);
599 
600   return ConstantOffset;
601 }
602 
603 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
604                                     bool ZeroExtended, bool NonNegative) {
605   // TODO(jingyue): We could trace into integer/pointer casts, such as
606   // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
607   // integers because it gives good enough results for our benchmarks.
608   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
609 
610   // We cannot do much with Values that are not a User, such as an Argument.
611   User *U = dyn_cast<User>(V);
612   if (U == nullptr) return APInt(BitWidth, 0);
613 
614   APInt ConstantOffset(BitWidth, 0);
615   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
616     // Hooray, we found it!
617     ConstantOffset = CI->getValue();
618   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
619     // Trace into subexpressions for more hoisting opportunities.
620     if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
621       ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
622   } else if (isa<TruncInst>(V)) {
623     ConstantOffset =
624         find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative)
625             .trunc(BitWidth);
626   } else if (isa<SExtInst>(V)) {
627     ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
628                           ZeroExtended, NonNegative).sext(BitWidth);
629   } else if (isa<ZExtInst>(V)) {
630     // As an optimization, we can clear the SignExtended flag because
631     // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
632     //
633     // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
634     ConstantOffset =
635         find(U->getOperand(0), /* SignExtended */ false,
636              /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
637   }
638 
639   // If we found a non-zero constant offset, add it to the path for
640   // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
641   // help this optimization.
642   if (ConstantOffset != 0)
643     UserChain.push_back(U);
644   return ConstantOffset;
645 }
646 
647 Value *ConstantOffsetExtractor::applyExts(Value *V) {
648   Value *Current = V;
649   // ExtInsts is built in the use-def order. Therefore, we apply them to V
650   // in the reversed order.
651   for (CastInst *I : llvm::reverse(ExtInsts)) {
652     if (Constant *C = dyn_cast<Constant>(Current)) {
653       // If Current is a constant, apply s/zext using ConstantExpr::getCast.
654       // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
655       Current = ConstantExpr::getCast(I->getOpcode(), C, I->getType());
656     } else {
657       Instruction *Ext = I->clone();
658       Ext->setOperand(0, Current);
659       Ext->insertBefore(IP);
660       Current = Ext;
661     }
662   }
663   return Current;
664 }
665 
666 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
667   distributeExtsAndCloneChain(UserChain.size() - 1);
668   // Remove all nullptrs (used to be s/zext) from UserChain.
669   unsigned NewSize = 0;
670   for (User *I : UserChain) {
671     if (I != nullptr) {
672       UserChain[NewSize] = I;
673       NewSize++;
674     }
675   }
676   UserChain.resize(NewSize);
677   return removeConstOffset(UserChain.size() - 1);
678 }
679 
680 Value *
681 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
682   User *U = UserChain[ChainIndex];
683   if (ChainIndex == 0) {
684     assert(isa<ConstantInt>(U));
685     // If U is a ConstantInt, applyExts will return a ConstantInt as well.
686     return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
687   }
688 
689   if (CastInst *Cast = dyn_cast<CastInst>(U)) {
690     assert(
691         (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) &&
692         "Only following instructions can be traced: sext, zext & trunc");
693     ExtInsts.push_back(Cast);
694     UserChain[ChainIndex] = nullptr;
695     return distributeExtsAndCloneChain(ChainIndex - 1);
696   }
697 
698   // Function find only trace into BinaryOperator and CastInst.
699   BinaryOperator *BO = cast<BinaryOperator>(U);
700   // OpNo = which operand of BO is UserChain[ChainIndex - 1]
701   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
702   Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
703   Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
704 
705   BinaryOperator *NewBO = nullptr;
706   if (OpNo == 0) {
707     NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
708                                    BO->getName(), IP);
709   } else {
710     NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
711                                    BO->getName(), IP);
712   }
713   return UserChain[ChainIndex] = NewBO;
714 }
715 
716 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
717   if (ChainIndex == 0) {
718     assert(isa<ConstantInt>(UserChain[ChainIndex]));
719     return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
720   }
721 
722   BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
723   assert((BO->use_empty() || BO->hasOneUse()) &&
724          "distributeExtsAndCloneChain clones each BinaryOperator in "
725          "UserChain, so no one should be used more than "
726          "once");
727 
728   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
729   assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
730   Value *NextInChain = removeConstOffset(ChainIndex - 1);
731   Value *TheOther = BO->getOperand(1 - OpNo);
732 
733   // If NextInChain is 0 and not the LHS of a sub, we can simplify the
734   // sub-expression to be just TheOther.
735   if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
736     if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
737       return TheOther;
738   }
739 
740   BinaryOperator::BinaryOps NewOp = BO->getOpcode();
741   if (BO->getOpcode() == Instruction::Or) {
742     // Rebuild "or" as "add", because "or" may be invalid for the new
743     // expression.
744     //
745     // For instance, given
746     //   a | (b + 5) where a and b + 5 have no common bits,
747     // we can extract 5 as the constant offset.
748     //
749     // However, reusing the "or" in the new index would give us
750     //   (a | b) + 5
751     // which does not equal a | (b + 5).
752     //
753     // Replacing the "or" with "add" is fine, because
754     //   a | (b + 5) = a + (b + 5) = (a + b) + 5
755     NewOp = Instruction::Add;
756   }
757 
758   BinaryOperator *NewBO;
759   if (OpNo == 0) {
760     NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
761   } else {
762     NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
763   }
764   NewBO->takeName(BO);
765   return NewBO;
766 }
767 
768 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
769                                         User *&UserChainTail,
770                                         const DominatorTree *DT) {
771   ConstantOffsetExtractor Extractor(GEP, DT);
772   // Find a non-zero constant offset first.
773   APInt ConstantOffset =
774       Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
775                      GEP->isInBounds());
776   if (ConstantOffset == 0) {
777     UserChainTail = nullptr;
778     return nullptr;
779   }
780   // Separates the constant offset from the GEP index.
781   Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
782   UserChainTail = Extractor.UserChain.back();
783   return IdxWithoutConstOffset;
784 }
785 
786 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
787                                       const DominatorTree *DT) {
788   // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
789   return ConstantOffsetExtractor(GEP, DT)
790       .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
791             GEP->isInBounds())
792       .getSExtValue();
793 }
794 
795 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
796     GetElementPtrInst *GEP) {
797   bool Changed = false;
798   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
799   gep_type_iterator GTI = gep_type_begin(*GEP);
800   for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
801        I != E; ++I, ++GTI) {
802     // Skip struct member indices which must be i32.
803     if (GTI.isSequential()) {
804       if ((*I)->getType() != IntPtrTy) {
805         *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
806         Changed = true;
807       }
808     }
809   }
810   return Changed;
811 }
812 
813 int64_t
814 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
815                                                  bool &NeedsExtraction) {
816   NeedsExtraction = false;
817   int64_t AccumulativeByteOffset = 0;
818   gep_type_iterator GTI = gep_type_begin(*GEP);
819   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
820     if (GTI.isSequential()) {
821       // Tries to extract a constant offset from this GEP index.
822       int64_t ConstantOffset =
823           ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
824       if (ConstantOffset != 0) {
825         NeedsExtraction = true;
826         // A GEP may have multiple indices.  We accumulate the extracted
827         // constant offset to a byte offset, and later offset the remainder of
828         // the original GEP with this byte offset.
829         AccumulativeByteOffset +=
830             ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
831       }
832     } else if (LowerGEP) {
833       StructType *StTy = GTI.getStructType();
834       uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
835       // Skip field 0 as the offset is always 0.
836       if (Field != 0) {
837         NeedsExtraction = true;
838         AccumulativeByteOffset +=
839             DL->getStructLayout(StTy)->getElementOffset(Field);
840       }
841     }
842   }
843   return AccumulativeByteOffset;
844 }
845 
846 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
847     GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
848   IRBuilder<> Builder(Variadic);
849   Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
850 
851   Type *I8PtrTy =
852       Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
853   Value *ResultPtr = Variadic->getOperand(0);
854   Loop *L = LI->getLoopFor(Variadic->getParent());
855   // Check if the base is not loop invariant or used more than once.
856   bool isSwapCandidate =
857       L && L->isLoopInvariant(ResultPtr) &&
858       !hasMoreThanOneUseInLoop(ResultPtr, L);
859   Value *FirstResult = nullptr;
860 
861   if (ResultPtr->getType() != I8PtrTy)
862     ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
863 
864   gep_type_iterator GTI = gep_type_begin(*Variadic);
865   // Create an ugly GEP for each sequential index. We don't create GEPs for
866   // structure indices, as they are accumulated in the constant offset index.
867   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
868     if (GTI.isSequential()) {
869       Value *Idx = Variadic->getOperand(I);
870       // Skip zero indices.
871       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
872         if (CI->isZero())
873           continue;
874 
875       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
876                                 DL->getTypeAllocSize(GTI.getIndexedType()));
877       // Scale the index by element size.
878       if (ElementSize != 1) {
879         if (ElementSize.isPowerOf2()) {
880           Idx = Builder.CreateShl(
881               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
882         } else {
883           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
884         }
885       }
886       // Create an ugly GEP with a single index for each index.
887       ResultPtr =
888           Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
889       if (FirstResult == nullptr)
890         FirstResult = ResultPtr;
891     }
892   }
893 
894   // Create a GEP with the constant offset index.
895   if (AccumulativeByteOffset != 0) {
896     Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
897     ResultPtr =
898         Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
899   } else
900     isSwapCandidate = false;
901 
902   // If we created a GEP with constant index, and the base is loop invariant,
903   // then we swap the first one with it, so LICM can move constant GEP out
904   // later.
905   auto *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
906   auto *SecondGEP = dyn_cast<GetElementPtrInst>(ResultPtr);
907   if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
908     swapGEPOperand(FirstGEP, SecondGEP);
909 
910   if (ResultPtr->getType() != Variadic->getType())
911     ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
912 
913   Variadic->replaceAllUsesWith(ResultPtr);
914   Variadic->eraseFromParent();
915 }
916 
917 void
918 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
919                                                int64_t AccumulativeByteOffset) {
920   IRBuilder<> Builder(Variadic);
921   Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
922 
923   Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
924   gep_type_iterator GTI = gep_type_begin(*Variadic);
925   // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
926   // don't create arithmetics for structure indices, as they are accumulated
927   // in the constant offset index.
928   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
929     if (GTI.isSequential()) {
930       Value *Idx = Variadic->getOperand(I);
931       // Skip zero indices.
932       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
933         if (CI->isZero())
934           continue;
935 
936       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
937                                 DL->getTypeAllocSize(GTI.getIndexedType()));
938       // Scale the index by element size.
939       if (ElementSize != 1) {
940         if (ElementSize.isPowerOf2()) {
941           Idx = Builder.CreateShl(
942               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
943         } else {
944           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
945         }
946       }
947       // Create an ADD for each index.
948       ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
949     }
950   }
951 
952   // Create an ADD for the constant offset index.
953   if (AccumulativeByteOffset != 0) {
954     ResultPtr = Builder.CreateAdd(
955         ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
956   }
957 
958   ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
959   Variadic->replaceAllUsesWith(ResultPtr);
960   Variadic->eraseFromParent();
961 }
962 
963 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
964   // Skip vector GEPs.
965   if (GEP->getType()->isVectorTy())
966     return false;
967 
968   // The backend can already nicely handle the case where all indices are
969   // constant.
970   if (GEP->hasAllConstantIndices())
971     return false;
972 
973   bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
974 
975   bool NeedsExtraction;
976   int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
977 
978   if (!NeedsExtraction)
979     return Changed;
980 
981   TargetTransformInfo &TTI = GetTTI(*GEP->getFunction());
982 
983   // If LowerGEP is disabled, before really splitting the GEP, check whether the
984   // backend supports the addressing mode we are about to produce. If no, this
985   // splitting probably won't be beneficial.
986   // If LowerGEP is enabled, even the extracted constant offset can not match
987   // the addressing mode, we can still do optimizations to other lowered parts
988   // of variable indices. Therefore, we don't check for addressing modes in that
989   // case.
990   if (!LowerGEP) {
991     unsigned AddrSpace = GEP->getPointerAddressSpace();
992     if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
993                                    /*BaseGV=*/nullptr, AccumulativeByteOffset,
994                                    /*HasBaseReg=*/true, /*Scale=*/0,
995                                    AddrSpace)) {
996       return Changed;
997     }
998   }
999 
1000   // Remove the constant offset in each sequential index. The resultant GEP
1001   // computes the variadic base.
1002   // Notice that we don't remove struct field indices here. If LowerGEP is
1003   // disabled, a structure index is not accumulated and we still use the old
1004   // one. If LowerGEP is enabled, a structure index is accumulated in the
1005   // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
1006   // handle the constant offset and won't need a new structure index.
1007   gep_type_iterator GTI = gep_type_begin(*GEP);
1008   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
1009     if (GTI.isSequential()) {
1010       // Splits this GEP index into a variadic part and a constant offset, and
1011       // uses the variadic part as the new index.
1012       Value *OldIdx = GEP->getOperand(I);
1013       User *UserChainTail;
1014       Value *NewIdx =
1015           ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
1016       if (NewIdx != nullptr) {
1017         // Switches to the index with the constant offset removed.
1018         GEP->setOperand(I, NewIdx);
1019         // After switching to the new index, we can garbage-collect UserChain
1020         // and the old index if they are not used.
1021         RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
1022         RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
1023       }
1024     }
1025   }
1026 
1027   // Clear the inbounds attribute because the new index may be off-bound.
1028   // e.g.,
1029   //
1030   //   b     = add i64 a, 5
1031   //   addr  = gep inbounds float, float* p, i64 b
1032   //
1033   // is transformed to:
1034   //
1035   //   addr2 = gep float, float* p, i64 a ; inbounds removed
1036   //   addr  = gep inbounds float, float* addr2, i64 5
1037   //
1038   // If a is -4, although the old index b is in bounds, the new index a is
1039   // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
1040   // inbounds keyword is not present, the offsets are added to the base
1041   // address with silently-wrapping two's complement arithmetic".
1042   // Therefore, the final code will be a semantically equivalent.
1043   //
1044   // TODO(jingyue): do some range analysis to keep as many inbounds as
1045   // possible. GEPs with inbounds are more friendly to alias analysis.
1046   bool GEPWasInBounds = GEP->isInBounds();
1047   GEP->setIsInBounds(false);
1048 
1049   // Lowers a GEP to either GEPs with a single index or arithmetic operations.
1050   if (LowerGEP) {
1051     // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
1052     // arithmetic operations if the target uses alias analysis in codegen.
1053     if (TTI.useAA())
1054       lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
1055     else
1056       lowerToArithmetics(GEP, AccumulativeByteOffset);
1057     return true;
1058   }
1059 
1060   // No need to create another GEP if the accumulative byte offset is 0.
1061   if (AccumulativeByteOffset == 0)
1062     return true;
1063 
1064   // Offsets the base with the accumulative byte offset.
1065   //
1066   //   %gep                        ; the base
1067   //   ... %gep ...
1068   //
1069   // => add the offset
1070   //
1071   //   %gep2                       ; clone of %gep
1072   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1073   //   %gep                        ; will be removed
1074   //   ... %gep ...
1075   //
1076   // => replace all uses of %gep with %new.gep and remove %gep
1077   //
1078   //   %gep2                       ; clone of %gep
1079   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1080   //   ... %new.gep ...
1081   //
1082   // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
1083   // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
1084   // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
1085   // type of %gep.
1086   //
1087   //   %gep2                       ; clone of %gep
1088   //   %0       = bitcast %gep2 to i8*
1089   //   %uglygep = gep %0, <offset>
1090   //   %new.gep = bitcast %uglygep to <type of %gep>
1091   //   ... %new.gep ...
1092   Instruction *NewGEP = GEP->clone();
1093   NewGEP->insertBefore(GEP);
1094 
1095   // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
1096   // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
1097   // used with unsigned integers later.
1098   int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
1099       DL->getTypeAllocSize(GEP->getResultElementType()));
1100   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
1101   if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
1102     // Very likely. As long as %gep is naturally aligned, the byte offset we
1103     // extracted should be a multiple of sizeof(*%gep).
1104     int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
1105     NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
1106                                        ConstantInt::get(IntPtrTy, Index, true),
1107                                        GEP->getName(), GEP);
1108     NewGEP->copyMetadata(*GEP);
1109     // Inherit the inbounds attribute of the original GEP.
1110     cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1111   } else {
1112     // Unlikely but possible. For example,
1113     // #pragma pack(1)
1114     // struct S {
1115     //   int a[3];
1116     //   int64 b[8];
1117     // };
1118     // #pragma pack()
1119     //
1120     // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
1121     // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
1122     // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
1123     // sizeof(int64).
1124     //
1125     // Emit an uglygep in this case.
1126     Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
1127                                        GEP->getPointerAddressSpace());
1128     NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
1129     NewGEP = GetElementPtrInst::Create(
1130         Type::getInt8Ty(GEP->getContext()), NewGEP,
1131         ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
1132         GEP);
1133     NewGEP->copyMetadata(*GEP);
1134     // Inherit the inbounds attribute of the original GEP.
1135     cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1136     if (GEP->getType() != I8PtrTy)
1137       NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
1138   }
1139 
1140   GEP->replaceAllUsesWith(NewGEP);
1141   GEP->eraseFromParent();
1142 
1143   return true;
1144 }
1145 
1146 bool SeparateConstOffsetFromGEPLegacyPass::runOnFunction(Function &F) {
1147   if (skipFunction(F))
1148     return false;
1149   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1150   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1151   auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1152   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1153   auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
1154     return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1155   };
1156   SeparateConstOffsetFromGEP Impl(DT, SE, LI, TLI, GetTTI, LowerGEP);
1157   return Impl.run(F);
1158 }
1159 
1160 bool SeparateConstOffsetFromGEP::run(Function &F) {
1161   if (DisableSeparateConstOffsetFromGEP)
1162     return false;
1163 
1164   DL = &F.getParent()->getDataLayout();
1165   bool Changed = false;
1166   for (BasicBlock &B : F) {
1167     if (!DT->isReachableFromEntry(&B))
1168       continue;
1169 
1170     for (Instruction &I : llvm::make_early_inc_range(B))
1171       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I))
1172         Changed |= splitGEP(GEP);
1173     // No need to split GEP ConstantExprs because all its indices are constant
1174     // already.
1175   }
1176 
1177   Changed |= reuniteExts(F);
1178 
1179   if (VerifyNoDeadCode)
1180     verifyNoDeadCode(F);
1181 
1182   return Changed;
1183 }
1184 
1185 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1186     const SCEV *Key, Instruction *Dominatee,
1187     DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs) {
1188   auto Pos = DominatingExprs.find(Key);
1189   if (Pos == DominatingExprs.end())
1190     return nullptr;
1191 
1192   auto &Candidates = Pos->second;
1193   // Because we process the basic blocks in pre-order of the dominator tree, a
1194   // candidate that doesn't dominate the current instruction won't dominate any
1195   // future instruction either. Therefore, we pop it out of the stack. This
1196   // optimization makes the algorithm O(n).
1197   while (!Candidates.empty()) {
1198     Instruction *Candidate = Candidates.back();
1199     if (DT->dominates(Candidate, Dominatee))
1200       return Candidate;
1201     Candidates.pop_back();
1202   }
1203   return nullptr;
1204 }
1205 
1206 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
1207   if (!SE->isSCEVable(I->getType()))
1208     return false;
1209 
1210   //   Dom: LHS+RHS
1211   //   I: sext(LHS)+sext(RHS)
1212   // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1213   // TODO: handle zext
1214   Value *LHS = nullptr, *RHS = nullptr;
1215   if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1216     if (LHS->getType() == RHS->getType()) {
1217       const SCEV *Key =
1218           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1219       if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingAdds)) {
1220         Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1221         NewSExt->takeName(I);
1222         I->replaceAllUsesWith(NewSExt);
1223         RecursivelyDeleteTriviallyDeadInstructions(I);
1224         return true;
1225       }
1226     }
1227   } else if (match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1228     if (LHS->getType() == RHS->getType()) {
1229       const SCEV *Key =
1230           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1231       if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingSubs)) {
1232         Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1233         NewSExt->takeName(I);
1234         I->replaceAllUsesWith(NewSExt);
1235         RecursivelyDeleteTriviallyDeadInstructions(I);
1236         return true;
1237       }
1238     }
1239   }
1240 
1241   // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1242   if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS)))) {
1243     if (programUndefinedIfPoison(I)) {
1244       const SCEV *Key =
1245           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1246       DominatingAdds[Key].push_back(I);
1247     }
1248   } else if (match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
1249     if (programUndefinedIfPoison(I)) {
1250       const SCEV *Key =
1251           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1252       DominatingSubs[Key].push_back(I);
1253     }
1254   }
1255   return false;
1256 }
1257 
1258 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
1259   bool Changed = false;
1260   DominatingAdds.clear();
1261   DominatingSubs.clear();
1262   for (const auto Node : depth_first(DT)) {
1263     BasicBlock *BB = Node->getBlock();
1264     for (Instruction &I : llvm::make_early_inc_range(*BB))
1265       Changed |= reuniteExts(&I);
1266   }
1267   return Changed;
1268 }
1269 
1270 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
1271   for (BasicBlock &B : F) {
1272     for (Instruction &I : B) {
1273       if (isInstructionTriviallyDead(&I)) {
1274         std::string ErrMessage;
1275         raw_string_ostream RSO(ErrMessage);
1276         RSO << "Dead instruction detected!\n" << I << "\n";
1277         llvm_unreachable(RSO.str().c_str());
1278       }
1279     }
1280   }
1281 }
1282 
1283 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1284     GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
1285   if (!FirstGEP || !FirstGEP->hasOneUse())
1286     return false;
1287 
1288   if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
1289     return false;
1290 
1291   if (FirstGEP == SecondGEP)
1292     return false;
1293 
1294   unsigned FirstNum = FirstGEP->getNumOperands();
1295   unsigned SecondNum = SecondGEP->getNumOperands();
1296   // Give up if the number of operands are not 2.
1297   if (FirstNum != SecondNum || FirstNum != 2)
1298     return false;
1299 
1300   Value *FirstBase = FirstGEP->getOperand(0);
1301   Value *SecondBase = SecondGEP->getOperand(0);
1302   Value *FirstOffset = FirstGEP->getOperand(1);
1303   // Give up if the index of the first GEP is loop invariant.
1304   if (CurLoop->isLoopInvariant(FirstOffset))
1305     return false;
1306 
1307   // Give up if base doesn't have same type.
1308   if (FirstBase->getType() != SecondBase->getType())
1309     return false;
1310 
1311   Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
1312 
1313   // Check if the second operand of first GEP has constant coefficient.
1314   // For an example, for the following code,  we won't gain anything by
1315   // hoisting the second GEP out because the second GEP can be folded away.
1316   //   %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1317   //   %67 = shl i64 %scevgep.sum.ur159, 2
1318   //   %uglygep160 = getelementptr i8* %65, i64 %67
1319   //   %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1320 
1321   // Skip constant shift instruction which may be generated by Splitting GEPs.
1322   if (FirstOffsetDef && FirstOffsetDef->isShift() &&
1323       isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
1324     FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
1325 
1326   // Give up if FirstOffsetDef is an Add or Sub with constant.
1327   // Because it may not profitable at all due to constant folding.
1328   if (FirstOffsetDef)
1329     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
1330       unsigned opc = BO->getOpcode();
1331       if ((opc == Instruction::Add || opc == Instruction::Sub) &&
1332           (isa<ConstantInt>(BO->getOperand(0)) ||
1333            isa<ConstantInt>(BO->getOperand(1))))
1334         return false;
1335     }
1336   return true;
1337 }
1338 
1339 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
1340   int UsesInLoop = 0;
1341   for (User *U : V->users()) {
1342     if (Instruction *User = dyn_cast<Instruction>(U))
1343       if (L->contains(User))
1344         if (++UsesInLoop > 1)
1345           return true;
1346   }
1347   return false;
1348 }
1349 
1350 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
1351                                                 GetElementPtrInst *Second) {
1352   Value *Offset1 = First->getOperand(1);
1353   Value *Offset2 = Second->getOperand(1);
1354   First->setOperand(1, Offset2);
1355   Second->setOperand(1, Offset1);
1356 
1357   // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1358   const DataLayout &DAL = First->getModule()->getDataLayout();
1359   APInt Offset(DAL.getIndexSizeInBits(
1360                    cast<PointerType>(First->getType())->getAddressSpace()),
1361                0);
1362   Value *NewBase =
1363       First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
1364   uint64_t ObjectSize;
1365   if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
1366      Offset.ugt(ObjectSize)) {
1367     First->setIsInBounds(false);
1368     Second->setIsInBounds(false);
1369   } else
1370     First->setIsInBounds(true);
1371 }
1372 
1373 PreservedAnalyses
1374 SeparateConstOffsetFromGEPPass::run(Function &F, FunctionAnalysisManager &AM) {
1375   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1376   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
1377   auto *LI = &AM.getResult<LoopAnalysis>(F);
1378   auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1379   auto GetTTI = [&AM](Function &F) -> TargetTransformInfo & {
1380     return AM.getResult<TargetIRAnalysis>(F);
1381   };
1382   SeparateConstOffsetFromGEP Impl(DT, SE, LI, TLI, GetTTI, LowerGEP);
1383   if (!Impl.run(F))
1384     return PreservedAnalyses::all();
1385   PreservedAnalyses PA;
1386   PA.preserveSet<CFGAnalyses>();
1387   return PA;
1388 }
1389