1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop unrolling may create many similar GEPs for array accesses. 10 // e.g., a 2-level loop 11 // 12 // float a[32][32]; // global variable 13 // 14 // for (int i = 0; i < 2; ++i) { 15 // for (int j = 0; j < 2; ++j) { 16 // ... 17 // ... = a[x + i][y + j]; 18 // ... 19 // } 20 // } 21 // 22 // will probably be unrolled to: 23 // 24 // gep %a, 0, %x, %y; load 25 // gep %a, 0, %x, %y + 1; load 26 // gep %a, 0, %x + 1, %y; load 27 // gep %a, 0, %x + 1, %y + 1; load 28 // 29 // LLVM's GVN does not use partial redundancy elimination yet, and is thus 30 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs 31 // significant slowdown in targets with limited addressing modes. For instance, 32 // because the PTX target does not support the reg+reg addressing mode, the 33 // NVPTX backend emits PTX code that literally computes the pointer address of 34 // each GEP, wasting tons of registers. It emits the following PTX for the 35 // first load and similar PTX for other loads. 36 // 37 // mov.u32 %r1, %x; 38 // mov.u32 %r2, %y; 39 // mul.wide.u32 %rl2, %r1, 128; 40 // mov.u64 %rl3, a; 41 // add.s64 %rl4, %rl3, %rl2; 42 // mul.wide.u32 %rl5, %r2, 4; 43 // add.s64 %rl6, %rl4, %rl5; 44 // ld.global.f32 %f1, [%rl6]; 45 // 46 // To reduce the register pressure, the optimization implemented in this file 47 // merges the common part of a group of GEPs, so we can compute each pointer 48 // address by adding a simple offset to the common part, saving many registers. 49 // 50 // It works by splitting each GEP into a variadic base and a constant offset. 51 // The variadic base can be computed once and reused by multiple GEPs, and the 52 // constant offsets can be nicely folded into the reg+immediate addressing mode 53 // (supported by most targets) without using any extra register. 54 // 55 // For instance, we transform the four GEPs and four loads in the above example 56 // into: 57 // 58 // base = gep a, 0, x, y 59 // load base 60 // laod base + 1 * sizeof(float) 61 // load base + 32 * sizeof(float) 62 // load base + 33 * sizeof(float) 63 // 64 // Given the transformed IR, a backend that supports the reg+immediate 65 // addressing mode can easily fold the pointer arithmetics into the loads. For 66 // example, the NVPTX backend can easily fold the pointer arithmetics into the 67 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers. 68 // 69 // mov.u32 %r1, %tid.x; 70 // mov.u32 %r2, %tid.y; 71 // mul.wide.u32 %rl2, %r1, 128; 72 // mov.u64 %rl3, a; 73 // add.s64 %rl4, %rl3, %rl2; 74 // mul.wide.u32 %rl5, %r2, 4; 75 // add.s64 %rl6, %rl4, %rl5; 76 // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX 77 // ld.global.f32 %f2, [%rl6+4]; // much better 78 // ld.global.f32 %f3, [%rl6+128]; // much better 79 // ld.global.f32 %f4, [%rl6+132]; // much better 80 // 81 // Another improvement enabled by the LowerGEP flag is to lower a GEP with 82 // multiple indices to either multiple GEPs with a single index or arithmetic 83 // operations (depending on whether the target uses alias analysis in codegen). 84 // Such transformation can have following benefits: 85 // (1) It can always extract constants in the indices of structure type. 86 // (2) After such Lowering, there are more optimization opportunities such as 87 // CSE, LICM and CGP. 88 // 89 // E.g. The following GEPs have multiple indices: 90 // BB1: 91 // %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3 92 // load %p 93 // ... 94 // BB2: 95 // %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2 96 // load %p2 97 // ... 98 // 99 // We can not do CSE to the common part related to index "i64 %i". Lowering 100 // GEPs can achieve such goals. 101 // If the target does not use alias analysis in codegen, this pass will 102 // lower a GEP with multiple indices into arithmetic operations: 103 // BB1: 104 // %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity 105 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity 106 // %3 = add i64 %1, %2 ; CSE opportunity 107 // %4 = mul i64 %j1, length_of_struct 108 // %5 = add i64 %3, %4 109 // %6 = add i64 %3, struct_field_3 ; Constant offset 110 // %p = inttoptr i64 %6 to i32* 111 // load %p 112 // ... 113 // BB2: 114 // %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity 115 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity 116 // %9 = add i64 %7, %8 ; CSE opportunity 117 // %10 = mul i64 %j2, length_of_struct 118 // %11 = add i64 %9, %10 119 // %12 = add i64 %11, struct_field_2 ; Constant offset 120 // %p = inttoptr i64 %12 to i32* 121 // load %p2 122 // ... 123 // 124 // If the target uses alias analysis in codegen, this pass will lower a GEP 125 // with multiple indices into multiple GEPs with a single index: 126 // BB1: 127 // %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity 128 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity 129 // %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity 130 // %4 = mul i64 %j1, length_of_struct 131 // %5 = getelementptr i8* %3, i64 %4 132 // %6 = getelementptr i8* %5, struct_field_3 ; Constant offset 133 // %p = bitcast i8* %6 to i32* 134 // load %p 135 // ... 136 // BB2: 137 // %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity 138 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity 139 // %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity 140 // %10 = mul i64 %j2, length_of_struct 141 // %11 = getelementptr i8* %9, i64 %10 142 // %12 = getelementptr i8* %11, struct_field_2 ; Constant offset 143 // %p2 = bitcast i8* %12 to i32* 144 // load %p2 145 // ... 146 // 147 // Lowering GEPs can also benefit other passes such as LICM and CGP. 148 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple 149 // indices if one of the index is variant. If we lower such GEP into invariant 150 // parts and variant parts, LICM can hoist/sink those invariant parts. 151 // CGP (CodeGen Prepare) tries to sink address calculations that match the 152 // target's addressing modes. A GEP with multiple indices may not match and will 153 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of 154 // them. So we end up with a better addressing mode. 155 // 156 //===----------------------------------------------------------------------===// 157 158 #include "llvm/ADT/APInt.h" 159 #include "llvm/ADT/DenseMap.h" 160 #include "llvm/ADT/DepthFirstIterator.h" 161 #include "llvm/ADT/SmallVector.h" 162 #include "llvm/Analysis/LoopInfo.h" 163 #include "llvm/Analysis/MemoryBuiltins.h" 164 #include "llvm/Analysis/ScalarEvolution.h" 165 #include "llvm/Analysis/TargetLibraryInfo.h" 166 #include "llvm/Analysis/TargetTransformInfo.h" 167 #include "llvm/Transforms/Utils/Local.h" 168 #include "llvm/Analysis/ValueTracking.h" 169 #include "llvm/IR/BasicBlock.h" 170 #include "llvm/IR/Constant.h" 171 #include "llvm/IR/Constants.h" 172 #include "llvm/IR/DataLayout.h" 173 #include "llvm/IR/DerivedTypes.h" 174 #include "llvm/IR/Dominators.h" 175 #include "llvm/IR/Function.h" 176 #include "llvm/IR/GetElementPtrTypeIterator.h" 177 #include "llvm/IR/IRBuilder.h" 178 #include "llvm/IR/Instruction.h" 179 #include "llvm/IR/Instructions.h" 180 #include "llvm/IR/Module.h" 181 #include "llvm/IR/PatternMatch.h" 182 #include "llvm/IR/Type.h" 183 #include "llvm/IR/User.h" 184 #include "llvm/IR/Value.h" 185 #include "llvm/Pass.h" 186 #include "llvm/Support/Casting.h" 187 #include "llvm/Support/CommandLine.h" 188 #include "llvm/Support/ErrorHandling.h" 189 #include "llvm/Support/raw_ostream.h" 190 #include "llvm/Target/TargetMachine.h" 191 #include "llvm/Transforms/Scalar.h" 192 #include <cassert> 193 #include <cstdint> 194 #include <string> 195 196 using namespace llvm; 197 using namespace llvm::PatternMatch; 198 199 static cl::opt<bool> DisableSeparateConstOffsetFromGEP( 200 "disable-separate-const-offset-from-gep", cl::init(false), 201 cl::desc("Do not separate the constant offset from a GEP instruction"), 202 cl::Hidden); 203 204 // Setting this flag may emit false positives when the input module already 205 // contains dead instructions. Therefore, we set it only in unit tests that are 206 // free of dead code. 207 static cl::opt<bool> 208 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false), 209 cl::desc("Verify this pass produces no dead code"), 210 cl::Hidden); 211 212 namespace { 213 214 /// A helper class for separating a constant offset from a GEP index. 215 /// 216 /// In real programs, a GEP index may be more complicated than a simple addition 217 /// of something and a constant integer which can be trivially splitted. For 218 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the 219 /// constant offset, so that we can separate the index to (a << 3) + b and 5. 220 /// 221 /// Therefore, this class looks into the expression that computes a given GEP 222 /// index, and tries to find a constant integer that can be hoisted to the 223 /// outermost level of the expression as an addition. Not every constant in an 224 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a + 225 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case, 226 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15). 227 class ConstantOffsetExtractor { 228 public: 229 /// Extracts a constant offset from the given GEP index. It returns the 230 /// new index representing the remainder (equal to the original index minus 231 /// the constant offset), or nullptr if we cannot extract a constant offset. 232 /// \p Idx The given GEP index 233 /// \p GEP The given GEP 234 /// \p UserChainTail Outputs the tail of UserChain so that we can 235 /// garbage-collect unused instructions in UserChain. 236 static Value *Extract(Value *Idx, GetElementPtrInst *GEP, 237 User *&UserChainTail, const DominatorTree *DT); 238 239 /// Looks for a constant offset from the given GEP index without extracting 240 /// it. It returns the numeric value of the extracted constant offset (0 if 241 /// failed). The meaning of the arguments are the same as Extract. 242 static int64_t Find(Value *Idx, GetElementPtrInst *GEP, 243 const DominatorTree *DT); 244 245 private: 246 ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT) 247 : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) { 248 } 249 250 /// Searches the expression that computes V for a non-zero constant C s.t. 251 /// V can be reassociated into the form V' + C. If the searching is 252 /// successful, returns C and update UserChain as a def-use chain from C to V; 253 /// otherwise, UserChain is empty. 254 /// 255 /// \p V The given expression 256 /// \p SignExtended Whether V will be sign-extended in the computation of the 257 /// GEP index 258 /// \p ZeroExtended Whether V will be zero-extended in the computation of the 259 /// GEP index 260 /// \p NonNegative Whether V is guaranteed to be non-negative. For example, 261 /// an index of an inbounds GEP is guaranteed to be 262 /// non-negative. Levaraging this, we can better split 263 /// inbounds GEPs. 264 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative); 265 266 /// A helper function to look into both operands of a binary operator. 267 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended, 268 bool ZeroExtended); 269 270 /// After finding the constant offset C from the GEP index I, we build a new 271 /// index I' s.t. I' + C = I. This function builds and returns the new 272 /// index I' according to UserChain produced by function "find". 273 /// 274 /// The building conceptually takes two steps: 275 /// 1) iteratively distribute s/zext towards the leaves of the expression tree 276 /// that computes I 277 /// 2) reassociate the expression tree to the form I' + C. 278 /// 279 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute 280 /// sext to a, b and 5 so that we have 281 /// sext(a) + (sext(b) + 5). 282 /// Then, we reassociate it to 283 /// (sext(a) + sext(b)) + 5. 284 /// Given this form, we know I' is sext(a) + sext(b). 285 Value *rebuildWithoutConstOffset(); 286 287 /// After the first step of rebuilding the GEP index without the constant 288 /// offset, distribute s/zext to the operands of all operators in UserChain. 289 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) => 290 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))). 291 /// 292 /// The function also updates UserChain to point to new subexpressions after 293 /// distributing s/zext. e.g., the old UserChain of the above example is 294 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)), 295 /// and the new UserChain is 296 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) -> 297 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5)) 298 /// 299 /// \p ChainIndex The index to UserChain. ChainIndex is initially 300 /// UserChain.size() - 1, and is decremented during 301 /// the recursion. 302 Value *distributeExtsAndCloneChain(unsigned ChainIndex); 303 304 /// Reassociates the GEP index to the form I' + C and returns I'. 305 Value *removeConstOffset(unsigned ChainIndex); 306 307 /// A helper function to apply ExtInsts, a list of s/zext, to value V. 308 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function 309 /// returns "sext i32 (zext i16 V to i32) to i64". 310 Value *applyExts(Value *V); 311 312 /// A helper function that returns whether we can trace into the operands 313 /// of binary operator BO for a constant offset. 314 /// 315 /// \p SignExtended Whether BO is surrounded by sext 316 /// \p ZeroExtended Whether BO is surrounded by zext 317 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound 318 /// array index. 319 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO, 320 bool NonNegative); 321 322 /// The path from the constant offset to the old GEP index. e.g., if the GEP 323 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will 324 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and 325 /// UserChain[2] will be the entire expression "a * b + (c + 5)". 326 /// 327 /// This path helps to rebuild the new GEP index. 328 SmallVector<User *, 8> UserChain; 329 330 /// A data structure used in rebuildWithoutConstOffset. Contains all 331 /// sext/zext instructions along UserChain. 332 SmallVector<CastInst *, 16> ExtInsts; 333 334 /// Insertion position of cloned instructions. 335 Instruction *IP; 336 337 const DataLayout &DL; 338 const DominatorTree *DT; 339 }; 340 341 /// A pass that tries to split every GEP in the function into a variadic 342 /// base and a constant offset. It is a FunctionPass because searching for the 343 /// constant offset may inspect other basic blocks. 344 class SeparateConstOffsetFromGEP : public FunctionPass { 345 public: 346 static char ID; 347 348 SeparateConstOffsetFromGEP(bool LowerGEP = false) 349 : FunctionPass(ID), LowerGEP(LowerGEP) { 350 initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry()); 351 } 352 353 void getAnalysisUsage(AnalysisUsage &AU) const override { 354 AU.addRequired<DominatorTreeWrapperPass>(); 355 AU.addRequired<ScalarEvolutionWrapperPass>(); 356 AU.addRequired<TargetTransformInfoWrapperPass>(); 357 AU.addRequired<LoopInfoWrapperPass>(); 358 AU.setPreservesCFG(); 359 AU.addRequired<TargetLibraryInfoWrapperPass>(); 360 } 361 362 bool doInitialization(Module &M) override { 363 DL = &M.getDataLayout(); 364 return false; 365 } 366 367 bool runOnFunction(Function &F) override; 368 369 private: 370 /// Tries to split the given GEP into a variadic base and a constant offset, 371 /// and returns true if the splitting succeeds. 372 bool splitGEP(GetElementPtrInst *GEP); 373 374 /// Lower a GEP with multiple indices into multiple GEPs with a single index. 375 /// Function splitGEP already split the original GEP into a variadic part and 376 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the 377 /// variadic part into a set of GEPs with a single index and applies 378 /// AccumulativeByteOffset to it. 379 /// \p Variadic The variadic part of the original GEP. 380 /// \p AccumulativeByteOffset The constant offset. 381 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic, 382 int64_t AccumulativeByteOffset); 383 384 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form. 385 /// Function splitGEP already split the original GEP into a variadic part and 386 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the 387 /// variadic part into a set of arithmetic operations and applies 388 /// AccumulativeByteOffset to it. 389 /// \p Variadic The variadic part of the original GEP. 390 /// \p AccumulativeByteOffset The constant offset. 391 void lowerToArithmetics(GetElementPtrInst *Variadic, 392 int64_t AccumulativeByteOffset); 393 394 /// Finds the constant offset within each index and accumulates them. If 395 /// LowerGEP is true, it finds in indices of both sequential and structure 396 /// types, otherwise it only finds in sequential indices. The output 397 /// NeedsExtraction indicates whether we successfully find a non-zero constant 398 /// offset. 399 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction); 400 401 /// Canonicalize array indices to pointer-size integers. This helps to 402 /// simplify the logic of splitting a GEP. For example, if a + b is a 403 /// pointer-size integer, we have 404 /// gep base, a + b = gep (gep base, a), b 405 /// However, this equality may not hold if the size of a + b is smaller than 406 /// the pointer size, because LLVM conceptually sign-extends GEP indices to 407 /// pointer size before computing the address 408 /// (http://llvm.org/docs/LangRef.html#id181). 409 /// 410 /// This canonicalization is very likely already done in clang and 411 /// instcombine. Therefore, the program will probably remain the same. 412 /// 413 /// Returns true if the module changes. 414 /// 415 /// Verified in @i32_add in split-gep.ll 416 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP); 417 418 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow. 419 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting 420 /// the constant offset. After extraction, it becomes desirable to reunion the 421 /// distributed sexts. For example, 422 /// 423 /// &a[sext(i +nsw (j +nsw 5)] 424 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)] 425 /// => constant extraction &a[sext(i) + sext(j)] + 5 426 /// => reunion &a[sext(i +nsw j)] + 5 427 bool reuniteExts(Function &F); 428 429 /// A helper that reunites sexts in an instruction. 430 bool reuniteExts(Instruction *I); 431 432 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>. 433 Instruction *findClosestMatchingDominator(const SCEV *Key, 434 Instruction *Dominatee); 435 /// Verify F is free of dead code. 436 void verifyNoDeadCode(Function &F); 437 438 bool hasMoreThanOneUseInLoop(Value *v, Loop *L); 439 440 // Swap the index operand of two GEP. 441 void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second); 442 443 // Check if it is safe to swap operand of two GEP. 444 bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second, 445 Loop *CurLoop); 446 447 const DataLayout *DL = nullptr; 448 DominatorTree *DT = nullptr; 449 ScalarEvolution *SE; 450 451 LoopInfo *LI; 452 TargetLibraryInfo *TLI; 453 454 /// Whether to lower a GEP with multiple indices into arithmetic operations or 455 /// multiple GEPs with a single index. 456 bool LowerGEP; 457 458 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingExprs; 459 }; 460 461 } // end anonymous namespace 462 463 char SeparateConstOffsetFromGEP::ID = 0; 464 465 INITIALIZE_PASS_BEGIN( 466 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", 467 "Split GEPs to a variadic base and a constant offset for better CSE", false, 468 false) 469 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 470 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 471 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 472 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 473 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 474 INITIALIZE_PASS_END( 475 SeparateConstOffsetFromGEP, "separate-const-offset-from-gep", 476 "Split GEPs to a variadic base and a constant offset for better CSE", false, 477 false) 478 479 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) { 480 return new SeparateConstOffsetFromGEP(LowerGEP); 481 } 482 483 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended, 484 bool ZeroExtended, 485 BinaryOperator *BO, 486 bool NonNegative) { 487 // We only consider ADD, SUB and OR, because a non-zero constant found in 488 // expressions composed of these operations can be easily hoisted as a 489 // constant offset by reassociation. 490 if (BO->getOpcode() != Instruction::Add && 491 BO->getOpcode() != Instruction::Sub && 492 BO->getOpcode() != Instruction::Or) { 493 return false; 494 } 495 496 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1); 497 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS 498 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS). 499 // FIXME: this does not appear to be covered by any tests 500 // (with x86/aarch64 backends at least) 501 if (BO->getOpcode() == Instruction::Or && 502 !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT)) 503 return false; 504 505 // In addition, tracing into BO requires that its surrounding s/zext (if 506 // any) is distributable to both operands. 507 // 508 // Suppose BO = A op B. 509 // SignExtended | ZeroExtended | Distributable? 510 // --------------+--------------+---------------------------------- 511 // 0 | 0 | true because no s/zext exists 512 // 0 | 1 | zext(BO) == zext(A) op zext(B) 513 // 1 | 0 | sext(BO) == sext(A) op sext(B) 514 // 1 | 1 | zext(sext(BO)) == 515 // | | zext(sext(A)) op zext(sext(B)) 516 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) { 517 // If a + b >= 0 and (a >= 0 or b >= 0), then 518 // sext(a + b) = sext(a) + sext(b) 519 // even if the addition is not marked nsw. 520 // 521 // Leveraging this invarient, we can trace into an sext'ed inbound GEP 522 // index if the constant offset is non-negative. 523 // 524 // Verified in @sext_add in split-gep.ll. 525 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) { 526 if (!ConstLHS->isNegative()) 527 return true; 528 } 529 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) { 530 if (!ConstRHS->isNegative()) 531 return true; 532 } 533 } 534 535 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B) 536 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B) 537 if (BO->getOpcode() == Instruction::Add || 538 BO->getOpcode() == Instruction::Sub) { 539 if (SignExtended && !BO->hasNoSignedWrap()) 540 return false; 541 if (ZeroExtended && !BO->hasNoUnsignedWrap()) 542 return false; 543 } 544 545 return true; 546 } 547 548 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO, 549 bool SignExtended, 550 bool ZeroExtended) { 551 // BO being non-negative does not shed light on whether its operands are 552 // non-negative. Clear the NonNegative flag here. 553 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended, 554 /* NonNegative */ false); 555 // If we found a constant offset in the left operand, stop and return that. 556 // This shortcut might cause us to miss opportunities of combining the 557 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9. 558 // However, such cases are probably already handled by -instcombine, 559 // given this pass runs after the standard optimizations. 560 if (ConstantOffset != 0) return ConstantOffset; 561 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended, 562 /* NonNegative */ false); 563 // If U is a sub operator, negate the constant offset found in the right 564 // operand. 565 if (BO->getOpcode() == Instruction::Sub) 566 ConstantOffset = -ConstantOffset; 567 return ConstantOffset; 568 } 569 570 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended, 571 bool ZeroExtended, bool NonNegative) { 572 // TODO(jingyue): We could trace into integer/pointer casts, such as 573 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only 574 // integers because it gives good enough results for our benchmarks. 575 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 576 577 // We cannot do much with Values that are not a User, such as an Argument. 578 User *U = dyn_cast<User>(V); 579 if (U == nullptr) return APInt(BitWidth, 0); 580 581 APInt ConstantOffset(BitWidth, 0); 582 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 583 // Hooray, we found it! 584 ConstantOffset = CI->getValue(); 585 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) { 586 // Trace into subexpressions for more hoisting opportunities. 587 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) 588 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended); 589 } else if (isa<TruncInst>(V)) { 590 ConstantOffset = 591 find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative) 592 .trunc(BitWidth); 593 } else if (isa<SExtInst>(V)) { 594 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true, 595 ZeroExtended, NonNegative).sext(BitWidth); 596 } else if (isa<ZExtInst>(V)) { 597 // As an optimization, we can clear the SignExtended flag because 598 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll. 599 // 600 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0. 601 ConstantOffset = 602 find(U->getOperand(0), /* SignExtended */ false, 603 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth); 604 } 605 606 // If we found a non-zero constant offset, add it to the path for 607 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't 608 // help this optimization. 609 if (ConstantOffset != 0) 610 UserChain.push_back(U); 611 return ConstantOffset; 612 } 613 614 Value *ConstantOffsetExtractor::applyExts(Value *V) { 615 Value *Current = V; 616 // ExtInsts is built in the use-def order. Therefore, we apply them to V 617 // in the reversed order. 618 for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) { 619 if (Constant *C = dyn_cast<Constant>(Current)) { 620 // If Current is a constant, apply s/zext using ConstantExpr::getCast. 621 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt. 622 Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType()); 623 } else { 624 Instruction *Ext = (*I)->clone(); 625 Ext->setOperand(0, Current); 626 Ext->insertBefore(IP); 627 Current = Ext; 628 } 629 } 630 return Current; 631 } 632 633 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() { 634 distributeExtsAndCloneChain(UserChain.size() - 1); 635 // Remove all nullptrs (used to be s/zext) from UserChain. 636 unsigned NewSize = 0; 637 for (User *I : UserChain) { 638 if (I != nullptr) { 639 UserChain[NewSize] = I; 640 NewSize++; 641 } 642 } 643 UserChain.resize(NewSize); 644 return removeConstOffset(UserChain.size() - 1); 645 } 646 647 Value * 648 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) { 649 User *U = UserChain[ChainIndex]; 650 if (ChainIndex == 0) { 651 assert(isa<ConstantInt>(U)); 652 // If U is a ConstantInt, applyExts will return a ConstantInt as well. 653 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U)); 654 } 655 656 if (CastInst *Cast = dyn_cast<CastInst>(U)) { 657 assert( 658 (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) && 659 "Only following instructions can be traced: sext, zext & trunc"); 660 ExtInsts.push_back(Cast); 661 UserChain[ChainIndex] = nullptr; 662 return distributeExtsAndCloneChain(ChainIndex - 1); 663 } 664 665 // Function find only trace into BinaryOperator and CastInst. 666 BinaryOperator *BO = cast<BinaryOperator>(U); 667 // OpNo = which operand of BO is UserChain[ChainIndex - 1] 668 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); 669 Value *TheOther = applyExts(BO->getOperand(1 - OpNo)); 670 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1); 671 672 BinaryOperator *NewBO = nullptr; 673 if (OpNo == 0) { 674 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther, 675 BO->getName(), IP); 676 } else { 677 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain, 678 BO->getName(), IP); 679 } 680 return UserChain[ChainIndex] = NewBO; 681 } 682 683 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) { 684 if (ChainIndex == 0) { 685 assert(isa<ConstantInt>(UserChain[ChainIndex])); 686 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType()); 687 } 688 689 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]); 690 assert(BO->getNumUses() <= 1 && 691 "distributeExtsAndCloneChain clones each BinaryOperator in " 692 "UserChain, so no one should be used more than " 693 "once"); 694 695 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); 696 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]); 697 Value *NextInChain = removeConstOffset(ChainIndex - 1); 698 Value *TheOther = BO->getOperand(1 - OpNo); 699 700 // If NextInChain is 0 and not the LHS of a sub, we can simplify the 701 // sub-expression to be just TheOther. 702 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) { 703 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0)) 704 return TheOther; 705 } 706 707 BinaryOperator::BinaryOps NewOp = BO->getOpcode(); 708 if (BO->getOpcode() == Instruction::Or) { 709 // Rebuild "or" as "add", because "or" may be invalid for the new 710 // expression. 711 // 712 // For instance, given 713 // a | (b + 5) where a and b + 5 have no common bits, 714 // we can extract 5 as the constant offset. 715 // 716 // However, reusing the "or" in the new index would give us 717 // (a | b) + 5 718 // which does not equal a | (b + 5). 719 // 720 // Replacing the "or" with "add" is fine, because 721 // a | (b + 5) = a + (b + 5) = (a + b) + 5 722 NewOp = Instruction::Add; 723 } 724 725 BinaryOperator *NewBO; 726 if (OpNo == 0) { 727 NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP); 728 } else { 729 NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP); 730 } 731 NewBO->takeName(BO); 732 return NewBO; 733 } 734 735 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP, 736 User *&UserChainTail, 737 const DominatorTree *DT) { 738 ConstantOffsetExtractor Extractor(GEP, DT); 739 // Find a non-zero constant offset first. 740 APInt ConstantOffset = 741 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, 742 GEP->isInBounds()); 743 if (ConstantOffset == 0) { 744 UserChainTail = nullptr; 745 return nullptr; 746 } 747 // Separates the constant offset from the GEP index. 748 Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset(); 749 UserChainTail = Extractor.UserChain.back(); 750 return IdxWithoutConstOffset; 751 } 752 753 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP, 754 const DominatorTree *DT) { 755 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative. 756 return ConstantOffsetExtractor(GEP, DT) 757 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, 758 GEP->isInBounds()) 759 .getSExtValue(); 760 } 761 762 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize( 763 GetElementPtrInst *GEP) { 764 bool Changed = false; 765 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 766 gep_type_iterator GTI = gep_type_begin(*GEP); 767 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); 768 I != E; ++I, ++GTI) { 769 // Skip struct member indices which must be i32. 770 if (GTI.isSequential()) { 771 if ((*I)->getType() != IntPtrTy) { 772 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP); 773 Changed = true; 774 } 775 } 776 } 777 return Changed; 778 } 779 780 int64_t 781 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP, 782 bool &NeedsExtraction) { 783 NeedsExtraction = false; 784 int64_t AccumulativeByteOffset = 0; 785 gep_type_iterator GTI = gep_type_begin(*GEP); 786 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 787 if (GTI.isSequential()) { 788 // Tries to extract a constant offset from this GEP index. 789 int64_t ConstantOffset = 790 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT); 791 if (ConstantOffset != 0) { 792 NeedsExtraction = true; 793 // A GEP may have multiple indices. We accumulate the extracted 794 // constant offset to a byte offset, and later offset the remainder of 795 // the original GEP with this byte offset. 796 AccumulativeByteOffset += 797 ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType()); 798 } 799 } else if (LowerGEP) { 800 StructType *StTy = GTI.getStructType(); 801 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue(); 802 // Skip field 0 as the offset is always 0. 803 if (Field != 0) { 804 NeedsExtraction = true; 805 AccumulativeByteOffset += 806 DL->getStructLayout(StTy)->getElementOffset(Field); 807 } 808 } 809 } 810 return AccumulativeByteOffset; 811 } 812 813 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs( 814 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) { 815 IRBuilder<> Builder(Variadic); 816 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType()); 817 818 Type *I8PtrTy = 819 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace()); 820 Value *ResultPtr = Variadic->getOperand(0); 821 Loop *L = LI->getLoopFor(Variadic->getParent()); 822 // Check if the base is not loop invariant or used more than once. 823 bool isSwapCandidate = 824 L && L->isLoopInvariant(ResultPtr) && 825 !hasMoreThanOneUseInLoop(ResultPtr, L); 826 Value *FirstResult = nullptr; 827 828 if (ResultPtr->getType() != I8PtrTy) 829 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 830 831 gep_type_iterator GTI = gep_type_begin(*Variadic); 832 // Create an ugly GEP for each sequential index. We don't create GEPs for 833 // structure indices, as they are accumulated in the constant offset index. 834 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { 835 if (GTI.isSequential()) { 836 Value *Idx = Variadic->getOperand(I); 837 // Skip zero indices. 838 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) 839 if (CI->isZero()) 840 continue; 841 842 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(), 843 DL->getTypeAllocSize(GTI.getIndexedType())); 844 // Scale the index by element size. 845 if (ElementSize != 1) { 846 if (ElementSize.isPowerOf2()) { 847 Idx = Builder.CreateShl( 848 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2())); 849 } else { 850 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize)); 851 } 852 } 853 // Create an ugly GEP with a single index for each index. 854 ResultPtr = 855 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep"); 856 if (FirstResult == nullptr) 857 FirstResult = ResultPtr; 858 } 859 } 860 861 // Create a GEP with the constant offset index. 862 if (AccumulativeByteOffset != 0) { 863 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset); 864 ResultPtr = 865 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep"); 866 } else 867 isSwapCandidate = false; 868 869 // If we created a GEP with constant index, and the base is loop invariant, 870 // then we swap the first one with it, so LICM can move constant GEP out 871 // later. 872 GetElementPtrInst *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult); 873 GetElementPtrInst *SecondGEP = dyn_cast_or_null<GetElementPtrInst>(ResultPtr); 874 if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L)) 875 swapGEPOperand(FirstGEP, SecondGEP); 876 877 if (ResultPtr->getType() != Variadic->getType()) 878 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType()); 879 880 Variadic->replaceAllUsesWith(ResultPtr); 881 Variadic->eraseFromParent(); 882 } 883 884 void 885 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic, 886 int64_t AccumulativeByteOffset) { 887 IRBuilder<> Builder(Variadic); 888 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType()); 889 890 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy); 891 gep_type_iterator GTI = gep_type_begin(*Variadic); 892 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We 893 // don't create arithmetics for structure indices, as they are accumulated 894 // in the constant offset index. 895 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { 896 if (GTI.isSequential()) { 897 Value *Idx = Variadic->getOperand(I); 898 // Skip zero indices. 899 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) 900 if (CI->isZero()) 901 continue; 902 903 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(), 904 DL->getTypeAllocSize(GTI.getIndexedType())); 905 // Scale the index by element size. 906 if (ElementSize != 1) { 907 if (ElementSize.isPowerOf2()) { 908 Idx = Builder.CreateShl( 909 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2())); 910 } else { 911 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize)); 912 } 913 } 914 // Create an ADD for each index. 915 ResultPtr = Builder.CreateAdd(ResultPtr, Idx); 916 } 917 } 918 919 // Create an ADD for the constant offset index. 920 if (AccumulativeByteOffset != 0) { 921 ResultPtr = Builder.CreateAdd( 922 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset)); 923 } 924 925 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType()); 926 Variadic->replaceAllUsesWith(ResultPtr); 927 Variadic->eraseFromParent(); 928 } 929 930 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) { 931 // Skip vector GEPs. 932 if (GEP->getType()->isVectorTy()) 933 return false; 934 935 // The backend can already nicely handle the case where all indices are 936 // constant. 937 if (GEP->hasAllConstantIndices()) 938 return false; 939 940 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP); 941 942 bool NeedsExtraction; 943 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction); 944 945 if (!NeedsExtraction) 946 return Changed; 947 948 TargetTransformInfo &TTI = 949 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*GEP->getFunction()); 950 951 // If LowerGEP is disabled, before really splitting the GEP, check whether the 952 // backend supports the addressing mode we are about to produce. If no, this 953 // splitting probably won't be beneficial. 954 // If LowerGEP is enabled, even the extracted constant offset can not match 955 // the addressing mode, we can still do optimizations to other lowered parts 956 // of variable indices. Therefore, we don't check for addressing modes in that 957 // case. 958 if (!LowerGEP) { 959 unsigned AddrSpace = GEP->getPointerAddressSpace(); 960 if (!TTI.isLegalAddressingMode(GEP->getResultElementType(), 961 /*BaseGV=*/nullptr, AccumulativeByteOffset, 962 /*HasBaseReg=*/true, /*Scale=*/0, 963 AddrSpace)) { 964 return Changed; 965 } 966 } 967 968 // Remove the constant offset in each sequential index. The resultant GEP 969 // computes the variadic base. 970 // Notice that we don't remove struct field indices here. If LowerGEP is 971 // disabled, a structure index is not accumulated and we still use the old 972 // one. If LowerGEP is enabled, a structure index is accumulated in the 973 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later 974 // handle the constant offset and won't need a new structure index. 975 gep_type_iterator GTI = gep_type_begin(*GEP); 976 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 977 if (GTI.isSequential()) { 978 // Splits this GEP index into a variadic part and a constant offset, and 979 // uses the variadic part as the new index. 980 Value *OldIdx = GEP->getOperand(I); 981 User *UserChainTail; 982 Value *NewIdx = 983 ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT); 984 if (NewIdx != nullptr) { 985 // Switches to the index with the constant offset removed. 986 GEP->setOperand(I, NewIdx); 987 // After switching to the new index, we can garbage-collect UserChain 988 // and the old index if they are not used. 989 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail); 990 RecursivelyDeleteTriviallyDeadInstructions(OldIdx); 991 } 992 } 993 } 994 995 // Clear the inbounds attribute because the new index may be off-bound. 996 // e.g., 997 // 998 // b = add i64 a, 5 999 // addr = gep inbounds float, float* p, i64 b 1000 // 1001 // is transformed to: 1002 // 1003 // addr2 = gep float, float* p, i64 a ; inbounds removed 1004 // addr = gep inbounds float, float* addr2, i64 5 1005 // 1006 // If a is -4, although the old index b is in bounds, the new index a is 1007 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the 1008 // inbounds keyword is not present, the offsets are added to the base 1009 // address with silently-wrapping two's complement arithmetic". 1010 // Therefore, the final code will be a semantically equivalent. 1011 // 1012 // TODO(jingyue): do some range analysis to keep as many inbounds as 1013 // possible. GEPs with inbounds are more friendly to alias analysis. 1014 bool GEPWasInBounds = GEP->isInBounds(); 1015 GEP->setIsInBounds(false); 1016 1017 // Lowers a GEP to either GEPs with a single index or arithmetic operations. 1018 if (LowerGEP) { 1019 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to 1020 // arithmetic operations if the target uses alias analysis in codegen. 1021 if (TTI.useAA()) 1022 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset); 1023 else 1024 lowerToArithmetics(GEP, AccumulativeByteOffset); 1025 return true; 1026 } 1027 1028 // No need to create another GEP if the accumulative byte offset is 0. 1029 if (AccumulativeByteOffset == 0) 1030 return true; 1031 1032 // Offsets the base with the accumulative byte offset. 1033 // 1034 // %gep ; the base 1035 // ... %gep ... 1036 // 1037 // => add the offset 1038 // 1039 // %gep2 ; clone of %gep 1040 // %new.gep = gep %gep2, <offset / sizeof(*%gep)> 1041 // %gep ; will be removed 1042 // ... %gep ... 1043 // 1044 // => replace all uses of %gep with %new.gep and remove %gep 1045 // 1046 // %gep2 ; clone of %gep 1047 // %new.gep = gep %gep2, <offset / sizeof(*%gep)> 1048 // ... %new.gep ... 1049 // 1050 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an 1051 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep): 1052 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the 1053 // type of %gep. 1054 // 1055 // %gep2 ; clone of %gep 1056 // %0 = bitcast %gep2 to i8* 1057 // %uglygep = gep %0, <offset> 1058 // %new.gep = bitcast %uglygep to <type of %gep> 1059 // ... %new.gep ... 1060 Instruction *NewGEP = GEP->clone(); 1061 NewGEP->insertBefore(GEP); 1062 1063 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned = 1064 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is 1065 // used with unsigned integers later. 1066 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>( 1067 DL->getTypeAllocSize(GEP->getResultElementType())); 1068 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 1069 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) { 1070 // Very likely. As long as %gep is naturally aligned, the byte offset we 1071 // extracted should be a multiple of sizeof(*%gep). 1072 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP; 1073 NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP, 1074 ConstantInt::get(IntPtrTy, Index, true), 1075 GEP->getName(), GEP); 1076 NewGEP->copyMetadata(*GEP); 1077 // Inherit the inbounds attribute of the original GEP. 1078 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds); 1079 } else { 1080 // Unlikely but possible. For example, 1081 // #pragma pack(1) 1082 // struct S { 1083 // int a[3]; 1084 // int64 b[8]; 1085 // }; 1086 // #pragma pack() 1087 // 1088 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After 1089 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is 1090 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of 1091 // sizeof(int64). 1092 // 1093 // Emit an uglygep in this case. 1094 Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(), 1095 GEP->getPointerAddressSpace()); 1096 NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP); 1097 NewGEP = GetElementPtrInst::Create( 1098 Type::getInt8Ty(GEP->getContext()), NewGEP, 1099 ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep", 1100 GEP); 1101 NewGEP->copyMetadata(*GEP); 1102 // Inherit the inbounds attribute of the original GEP. 1103 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds); 1104 if (GEP->getType() != I8PtrTy) 1105 NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP); 1106 } 1107 1108 GEP->replaceAllUsesWith(NewGEP); 1109 GEP->eraseFromParent(); 1110 1111 return true; 1112 } 1113 1114 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) { 1115 if (skipFunction(F)) 1116 return false; 1117 1118 if (DisableSeparateConstOffsetFromGEP) 1119 return false; 1120 1121 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1122 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1123 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1124 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1125 bool Changed = false; 1126 for (BasicBlock &B : F) { 1127 for (BasicBlock::iterator I = B.begin(), IE = B.end(); I != IE;) 1128 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++)) 1129 Changed |= splitGEP(GEP); 1130 // No need to split GEP ConstantExprs because all its indices are constant 1131 // already. 1132 } 1133 1134 Changed |= reuniteExts(F); 1135 1136 if (VerifyNoDeadCode) 1137 verifyNoDeadCode(F); 1138 1139 return Changed; 1140 } 1141 1142 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator( 1143 const SCEV *Key, Instruction *Dominatee) { 1144 auto Pos = DominatingExprs.find(Key); 1145 if (Pos == DominatingExprs.end()) 1146 return nullptr; 1147 1148 auto &Candidates = Pos->second; 1149 // Because we process the basic blocks in pre-order of the dominator tree, a 1150 // candidate that doesn't dominate the current instruction won't dominate any 1151 // future instruction either. Therefore, we pop it out of the stack. This 1152 // optimization makes the algorithm O(n). 1153 while (!Candidates.empty()) { 1154 Instruction *Candidate = Candidates.back(); 1155 if (DT->dominates(Candidate, Dominatee)) 1156 return Candidate; 1157 Candidates.pop_back(); 1158 } 1159 return nullptr; 1160 } 1161 1162 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) { 1163 if (!SE->isSCEVable(I->getType())) 1164 return false; 1165 1166 // Dom: LHS+RHS 1167 // I: sext(LHS)+sext(RHS) 1168 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom). 1169 // TODO: handle zext 1170 Value *LHS = nullptr, *RHS = nullptr; 1171 if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS)))) || 1172 match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) { 1173 if (LHS->getType() == RHS->getType()) { 1174 const SCEV *Key = 1175 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1176 if (auto *Dom = findClosestMatchingDominator(Key, I)) { 1177 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I); 1178 NewSExt->takeName(I); 1179 I->replaceAllUsesWith(NewSExt); 1180 RecursivelyDeleteTriviallyDeadInstructions(I); 1181 return true; 1182 } 1183 } 1184 } 1185 1186 // Add I to DominatingExprs if it's an add/sub that can't sign overflow. 1187 if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS))) || 1188 match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) { 1189 if (programUndefinedIfFullPoison(I)) { 1190 const SCEV *Key = 1191 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1192 DominatingExprs[Key].push_back(I); 1193 } 1194 } 1195 return false; 1196 } 1197 1198 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) { 1199 bool Changed = false; 1200 DominatingExprs.clear(); 1201 for (const auto Node : depth_first(DT)) { 1202 BasicBlock *BB = Node->getBlock(); 1203 for (auto I = BB->begin(); I != BB->end(); ) { 1204 Instruction *Cur = &*I++; 1205 Changed |= reuniteExts(Cur); 1206 } 1207 } 1208 return Changed; 1209 } 1210 1211 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) { 1212 for (BasicBlock &B : F) { 1213 for (Instruction &I : B) { 1214 if (isInstructionTriviallyDead(&I)) { 1215 std::string ErrMessage; 1216 raw_string_ostream RSO(ErrMessage); 1217 RSO << "Dead instruction detected!\n" << I << "\n"; 1218 llvm_unreachable(RSO.str().c_str()); 1219 } 1220 } 1221 } 1222 } 1223 1224 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand( 1225 GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) { 1226 if (!FirstGEP || !FirstGEP->hasOneUse()) 1227 return false; 1228 1229 if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent()) 1230 return false; 1231 1232 if (FirstGEP == SecondGEP) 1233 return false; 1234 1235 unsigned FirstNum = FirstGEP->getNumOperands(); 1236 unsigned SecondNum = SecondGEP->getNumOperands(); 1237 // Give up if the number of operands are not 2. 1238 if (FirstNum != SecondNum || FirstNum != 2) 1239 return false; 1240 1241 Value *FirstBase = FirstGEP->getOperand(0); 1242 Value *SecondBase = SecondGEP->getOperand(0); 1243 Value *FirstOffset = FirstGEP->getOperand(1); 1244 // Give up if the index of the first GEP is loop invariant. 1245 if (CurLoop->isLoopInvariant(FirstOffset)) 1246 return false; 1247 1248 // Give up if base doesn't have same type. 1249 if (FirstBase->getType() != SecondBase->getType()) 1250 return false; 1251 1252 Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset); 1253 1254 // Check if the second operand of first GEP has constant coefficient. 1255 // For an example, for the following code, we won't gain anything by 1256 // hoisting the second GEP out because the second GEP can be folded away. 1257 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256 1258 // %67 = shl i64 %scevgep.sum.ur159, 2 1259 // %uglygep160 = getelementptr i8* %65, i64 %67 1260 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024 1261 1262 // Skip constant shift instruction which may be generated by Splitting GEPs. 1263 if (FirstOffsetDef && FirstOffsetDef->isShift() && 1264 isa<ConstantInt>(FirstOffsetDef->getOperand(1))) 1265 FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0)); 1266 1267 // Give up if FirstOffsetDef is an Add or Sub with constant. 1268 // Because it may not profitable at all due to constant folding. 1269 if (FirstOffsetDef) 1270 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) { 1271 unsigned opc = BO->getOpcode(); 1272 if ((opc == Instruction::Add || opc == Instruction::Sub) && 1273 (isa<ConstantInt>(BO->getOperand(0)) || 1274 isa<ConstantInt>(BO->getOperand(1)))) 1275 return false; 1276 } 1277 return true; 1278 } 1279 1280 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) { 1281 int UsesInLoop = 0; 1282 for (User *U : V->users()) { 1283 if (Instruction *User = dyn_cast<Instruction>(U)) 1284 if (L->contains(User)) 1285 if (++UsesInLoop > 1) 1286 return true; 1287 } 1288 return false; 1289 } 1290 1291 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First, 1292 GetElementPtrInst *Second) { 1293 Value *Offset1 = First->getOperand(1); 1294 Value *Offset2 = Second->getOperand(1); 1295 First->setOperand(1, Offset2); 1296 Second->setOperand(1, Offset1); 1297 1298 // We changed p+o+c to p+c+o, p+c may not be inbound anymore. 1299 const DataLayout &DAL = First->getModule()->getDataLayout(); 1300 APInt Offset(DAL.getIndexSizeInBits( 1301 cast<PointerType>(First->getType())->getAddressSpace()), 1302 0); 1303 Value *NewBase = 1304 First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset); 1305 uint64_t ObjectSize; 1306 if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) || 1307 Offset.ugt(ObjectSize)) { 1308 First->setIsInBounds(false); 1309 Second->setIsInBounds(false); 1310 } else 1311 First->setIsInBounds(true); 1312 } 1313