xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/SeparateConstOffsetFromGEP.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loop unrolling may create many similar GEPs for array accesses.
10 // e.g., a 2-level loop
11 //
12 // float a[32][32]; // global variable
13 //
14 // for (int i = 0; i < 2; ++i) {
15 //   for (int j = 0; j < 2; ++j) {
16 //     ...
17 //     ... = a[x + i][y + j];
18 //     ...
19 //   }
20 // }
21 //
22 // will probably be unrolled to:
23 //
24 // gep %a, 0, %x, %y; load
25 // gep %a, 0, %x, %y + 1; load
26 // gep %a, 0, %x + 1, %y; load
27 // gep %a, 0, %x + 1, %y + 1; load
28 //
29 // LLVM's GVN does not use partial redundancy elimination yet, and is thus
30 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
31 // significant slowdown in targets with limited addressing modes. For instance,
32 // because the PTX target does not support the reg+reg addressing mode, the
33 // NVPTX backend emits PTX code that literally computes the pointer address of
34 // each GEP, wasting tons of registers. It emits the following PTX for the
35 // first load and similar PTX for other loads.
36 //
37 // mov.u32         %r1, %x;
38 // mov.u32         %r2, %y;
39 // mul.wide.u32    %rl2, %r1, 128;
40 // mov.u64         %rl3, a;
41 // add.s64         %rl4, %rl3, %rl2;
42 // mul.wide.u32    %rl5, %r2, 4;
43 // add.s64         %rl6, %rl4, %rl5;
44 // ld.global.f32   %f1, [%rl6];
45 //
46 // To reduce the register pressure, the optimization implemented in this file
47 // merges the common part of a group of GEPs, so we can compute each pointer
48 // address by adding a simple offset to the common part, saving many registers.
49 //
50 // It works by splitting each GEP into a variadic base and a constant offset.
51 // The variadic base can be computed once and reused by multiple GEPs, and the
52 // constant offsets can be nicely folded into the reg+immediate addressing mode
53 // (supported by most targets) without using any extra register.
54 //
55 // For instance, we transform the four GEPs and four loads in the above example
56 // into:
57 //
58 // base = gep a, 0, x, y
59 // load base
60 // laod base + 1  * sizeof(float)
61 // load base + 32 * sizeof(float)
62 // load base + 33 * sizeof(float)
63 //
64 // Given the transformed IR, a backend that supports the reg+immediate
65 // addressing mode can easily fold the pointer arithmetics into the loads. For
66 // example, the NVPTX backend can easily fold the pointer arithmetics into the
67 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
68 //
69 // mov.u32         %r1, %tid.x;
70 // mov.u32         %r2, %tid.y;
71 // mul.wide.u32    %rl2, %r1, 128;
72 // mov.u64         %rl3, a;
73 // add.s64         %rl4, %rl3, %rl2;
74 // mul.wide.u32    %rl5, %r2, 4;
75 // add.s64         %rl6, %rl4, %rl5;
76 // ld.global.f32   %f1, [%rl6]; // so far the same as unoptimized PTX
77 // ld.global.f32   %f2, [%rl6+4]; // much better
78 // ld.global.f32   %f3, [%rl6+128]; // much better
79 // ld.global.f32   %f4, [%rl6+132]; // much better
80 //
81 // Another improvement enabled by the LowerGEP flag is to lower a GEP with
82 // multiple indices to either multiple GEPs with a single index or arithmetic
83 // operations (depending on whether the target uses alias analysis in codegen).
84 // Such transformation can have following benefits:
85 // (1) It can always extract constants in the indices of structure type.
86 // (2) After such Lowering, there are more optimization opportunities such as
87 //     CSE, LICM and CGP.
88 //
89 // E.g. The following GEPs have multiple indices:
90 //  BB1:
91 //    %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
92 //    load %p
93 //    ...
94 //  BB2:
95 //    %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
96 //    load %p2
97 //    ...
98 //
99 // We can not do CSE to the common part related to index "i64 %i". Lowering
100 // GEPs can achieve such goals.
101 // If the target does not use alias analysis in codegen, this pass will
102 // lower a GEP with multiple indices into arithmetic operations:
103 //  BB1:
104 //    %1 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
105 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
106 //    %3 = add i64 %1, %2                          ; CSE opportunity
107 //    %4 = mul i64 %j1, length_of_struct
108 //    %5 = add i64 %3, %4
109 //    %6 = add i64 %3, struct_field_3              ; Constant offset
110 //    %p = inttoptr i64 %6 to i32*
111 //    load %p
112 //    ...
113 //  BB2:
114 //    %7 = ptrtoint [10 x %struct]* %ptr to i64    ; CSE opportunity
115 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
116 //    %9 = add i64 %7, %8                          ; CSE opportunity
117 //    %10 = mul i64 %j2, length_of_struct
118 //    %11 = add i64 %9, %10
119 //    %12 = add i64 %11, struct_field_2            ; Constant offset
120 //    %p = inttoptr i64 %12 to i32*
121 //    load %p2
122 //    ...
123 //
124 // If the target uses alias analysis in codegen, this pass will lower a GEP
125 // with multiple indices into multiple GEPs with a single index:
126 //  BB1:
127 //    %1 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
128 //    %2 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
129 //    %3 = getelementptr i8* %1, i64 %2            ; CSE opportunity
130 //    %4 = mul i64 %j1, length_of_struct
131 //    %5 = getelementptr i8* %3, i64 %4
132 //    %6 = getelementptr i8* %5, struct_field_3    ; Constant offset
133 //    %p = bitcast i8* %6 to i32*
134 //    load %p
135 //    ...
136 //  BB2:
137 //    %7 = bitcast [10 x %struct]* %ptr to i8*     ; CSE opportunity
138 //    %8 = mul i64 %i, length_of_10xstruct         ; CSE opportunity
139 //    %9 = getelementptr i8* %7, i64 %8            ; CSE opportunity
140 //    %10 = mul i64 %j2, length_of_struct
141 //    %11 = getelementptr i8* %9, i64 %10
142 //    %12 = getelementptr i8* %11, struct_field_2  ; Constant offset
143 //    %p2 = bitcast i8* %12 to i32*
144 //    load %p2
145 //    ...
146 //
147 // Lowering GEPs can also benefit other passes such as LICM and CGP.
148 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
149 // indices if one of the index is variant. If we lower such GEP into invariant
150 // parts and variant parts, LICM can hoist/sink those invariant parts.
151 // CGP (CodeGen Prepare) tries to sink address calculations that match the
152 // target's addressing modes. A GEP with multiple indices may not match and will
153 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
154 // them. So we end up with a better addressing mode.
155 //
156 //===----------------------------------------------------------------------===//
157 
158 #include "llvm/ADT/APInt.h"
159 #include "llvm/ADT/DenseMap.h"
160 #include "llvm/ADT/DepthFirstIterator.h"
161 #include "llvm/ADT/SmallVector.h"
162 #include "llvm/Analysis/LoopInfo.h"
163 #include "llvm/Analysis/MemoryBuiltins.h"
164 #include "llvm/Analysis/ScalarEvolution.h"
165 #include "llvm/Analysis/TargetLibraryInfo.h"
166 #include "llvm/Analysis/TargetTransformInfo.h"
167 #include "llvm/Transforms/Utils/Local.h"
168 #include "llvm/Analysis/ValueTracking.h"
169 #include "llvm/IR/BasicBlock.h"
170 #include "llvm/IR/Constant.h"
171 #include "llvm/IR/Constants.h"
172 #include "llvm/IR/DataLayout.h"
173 #include "llvm/IR/DerivedTypes.h"
174 #include "llvm/IR/Dominators.h"
175 #include "llvm/IR/Function.h"
176 #include "llvm/IR/GetElementPtrTypeIterator.h"
177 #include "llvm/IR/IRBuilder.h"
178 #include "llvm/IR/Instruction.h"
179 #include "llvm/IR/Instructions.h"
180 #include "llvm/IR/Module.h"
181 #include "llvm/IR/PatternMatch.h"
182 #include "llvm/IR/Type.h"
183 #include "llvm/IR/User.h"
184 #include "llvm/IR/Value.h"
185 #include "llvm/Pass.h"
186 #include "llvm/Support/Casting.h"
187 #include "llvm/Support/CommandLine.h"
188 #include "llvm/Support/ErrorHandling.h"
189 #include "llvm/Support/raw_ostream.h"
190 #include "llvm/Target/TargetMachine.h"
191 #include "llvm/Transforms/Scalar.h"
192 #include <cassert>
193 #include <cstdint>
194 #include <string>
195 
196 using namespace llvm;
197 using namespace llvm::PatternMatch;
198 
199 static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
200     "disable-separate-const-offset-from-gep", cl::init(false),
201     cl::desc("Do not separate the constant offset from a GEP instruction"),
202     cl::Hidden);
203 
204 // Setting this flag may emit false positives when the input module already
205 // contains dead instructions. Therefore, we set it only in unit tests that are
206 // free of dead code.
207 static cl::opt<bool>
208     VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
209                      cl::desc("Verify this pass produces no dead code"),
210                      cl::Hidden);
211 
212 namespace {
213 
214 /// A helper class for separating a constant offset from a GEP index.
215 ///
216 /// In real programs, a GEP index may be more complicated than a simple addition
217 /// of something and a constant integer which can be trivially splitted. For
218 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the
219 /// constant offset, so that we can separate the index to (a << 3) + b and 5.
220 ///
221 /// Therefore, this class looks into the expression that computes a given GEP
222 /// index, and tries to find a constant integer that can be hoisted to the
223 /// outermost level of the expression as an addition. Not every constant in an
224 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
225 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
226 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
227 class ConstantOffsetExtractor {
228 public:
229   /// Extracts a constant offset from the given GEP index. It returns the
230   /// new index representing the remainder (equal to the original index minus
231   /// the constant offset), or nullptr if we cannot extract a constant offset.
232   /// \p Idx The given GEP index
233   /// \p GEP The given GEP
234   /// \p UserChainTail Outputs the tail of UserChain so that we can
235   ///                  garbage-collect unused instructions in UserChain.
236   static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
237                         User *&UserChainTail, const DominatorTree *DT);
238 
239   /// Looks for a constant offset from the given GEP index without extracting
240   /// it. It returns the numeric value of the extracted constant offset (0 if
241   /// failed). The meaning of the arguments are the same as Extract.
242   static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
243                       const DominatorTree *DT);
244 
245 private:
246   ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
247       : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
248   }
249 
250   /// Searches the expression that computes V for a non-zero constant C s.t.
251   /// V can be reassociated into the form V' + C. If the searching is
252   /// successful, returns C and update UserChain as a def-use chain from C to V;
253   /// otherwise, UserChain is empty.
254   ///
255   /// \p V            The given expression
256   /// \p SignExtended Whether V will be sign-extended in the computation of the
257   ///                 GEP index
258   /// \p ZeroExtended Whether V will be zero-extended in the computation of the
259   ///                 GEP index
260   /// \p NonNegative  Whether V is guaranteed to be non-negative. For example,
261   ///                 an index of an inbounds GEP is guaranteed to be
262   ///                 non-negative. Levaraging this, we can better split
263   ///                 inbounds GEPs.
264   APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
265 
266   /// A helper function to look into both operands of a binary operator.
267   APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
268                             bool ZeroExtended);
269 
270   /// After finding the constant offset C from the GEP index I, we build a new
271   /// index I' s.t. I' + C = I. This function builds and returns the new
272   /// index I' according to UserChain produced by function "find".
273   ///
274   /// The building conceptually takes two steps:
275   /// 1) iteratively distribute s/zext towards the leaves of the expression tree
276   /// that computes I
277   /// 2) reassociate the expression tree to the form I' + C.
278   ///
279   /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
280   /// sext to a, b and 5 so that we have
281   ///   sext(a) + (sext(b) + 5).
282   /// Then, we reassociate it to
283   ///   (sext(a) + sext(b)) + 5.
284   /// Given this form, we know I' is sext(a) + sext(b).
285   Value *rebuildWithoutConstOffset();
286 
287   /// After the first step of rebuilding the GEP index without the constant
288   /// offset, distribute s/zext to the operands of all operators in UserChain.
289   /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
290   /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
291   ///
292   /// The function also updates UserChain to point to new subexpressions after
293   /// distributing s/zext. e.g., the old UserChain of the above example is
294   /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
295   /// and the new UserChain is
296   /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
297   ///   zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
298   ///
299   /// \p ChainIndex The index to UserChain. ChainIndex is initially
300   ///               UserChain.size() - 1, and is decremented during
301   ///               the recursion.
302   Value *distributeExtsAndCloneChain(unsigned ChainIndex);
303 
304   /// Reassociates the GEP index to the form I' + C and returns I'.
305   Value *removeConstOffset(unsigned ChainIndex);
306 
307   /// A helper function to apply ExtInsts, a list of s/zext, to value V.
308   /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
309   /// returns "sext i32 (zext i16 V to i32) to i64".
310   Value *applyExts(Value *V);
311 
312   /// A helper function that returns whether we can trace into the operands
313   /// of binary operator BO for a constant offset.
314   ///
315   /// \p SignExtended Whether BO is surrounded by sext
316   /// \p ZeroExtended Whether BO is surrounded by zext
317   /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
318   ///                array index.
319   bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
320                     bool NonNegative);
321 
322   /// The path from the constant offset to the old GEP index. e.g., if the GEP
323   /// index is "a * b + (c + 5)". After running function find, UserChain[0] will
324   /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
325   /// UserChain[2] will be the entire expression "a * b + (c + 5)".
326   ///
327   /// This path helps to rebuild the new GEP index.
328   SmallVector<User *, 8> UserChain;
329 
330   /// A data structure used in rebuildWithoutConstOffset. Contains all
331   /// sext/zext instructions along UserChain.
332   SmallVector<CastInst *, 16> ExtInsts;
333 
334   /// Insertion position of cloned instructions.
335   Instruction *IP;
336 
337   const DataLayout &DL;
338   const DominatorTree *DT;
339 };
340 
341 /// A pass that tries to split every GEP in the function into a variadic
342 /// base and a constant offset. It is a FunctionPass because searching for the
343 /// constant offset may inspect other basic blocks.
344 class SeparateConstOffsetFromGEP : public FunctionPass {
345 public:
346   static char ID;
347 
348   SeparateConstOffsetFromGEP(bool LowerGEP = false)
349       : FunctionPass(ID), LowerGEP(LowerGEP) {
350     initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
351   }
352 
353   void getAnalysisUsage(AnalysisUsage &AU) const override {
354     AU.addRequired<DominatorTreeWrapperPass>();
355     AU.addRequired<ScalarEvolutionWrapperPass>();
356     AU.addRequired<TargetTransformInfoWrapperPass>();
357     AU.addRequired<LoopInfoWrapperPass>();
358     AU.setPreservesCFG();
359     AU.addRequired<TargetLibraryInfoWrapperPass>();
360   }
361 
362   bool doInitialization(Module &M) override {
363     DL = &M.getDataLayout();
364     return false;
365   }
366 
367   bool runOnFunction(Function &F) override;
368 
369 private:
370   /// Tries to split the given GEP into a variadic base and a constant offset,
371   /// and returns true if the splitting succeeds.
372   bool splitGEP(GetElementPtrInst *GEP);
373 
374   /// Lower a GEP with multiple indices into multiple GEPs with a single index.
375   /// Function splitGEP already split the original GEP into a variadic part and
376   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
377   /// variadic part into a set of GEPs with a single index and applies
378   /// AccumulativeByteOffset to it.
379   /// \p Variadic                  The variadic part of the original GEP.
380   /// \p AccumulativeByteOffset    The constant offset.
381   void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
382                               int64_t AccumulativeByteOffset);
383 
384   /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
385   /// Function splitGEP already split the original GEP into a variadic part and
386   /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
387   /// variadic part into a set of arithmetic operations and applies
388   /// AccumulativeByteOffset to it.
389   /// \p Variadic                  The variadic part of the original GEP.
390   /// \p AccumulativeByteOffset    The constant offset.
391   void lowerToArithmetics(GetElementPtrInst *Variadic,
392                           int64_t AccumulativeByteOffset);
393 
394   /// Finds the constant offset within each index and accumulates them. If
395   /// LowerGEP is true, it finds in indices of both sequential and structure
396   /// types, otherwise it only finds in sequential indices. The output
397   /// NeedsExtraction indicates whether we successfully find a non-zero constant
398   /// offset.
399   int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
400 
401   /// Canonicalize array indices to pointer-size integers. This helps to
402   /// simplify the logic of splitting a GEP. For example, if a + b is a
403   /// pointer-size integer, we have
404   ///   gep base, a + b = gep (gep base, a), b
405   /// However, this equality may not hold if the size of a + b is smaller than
406   /// the pointer size, because LLVM conceptually sign-extends GEP indices to
407   /// pointer size before computing the address
408   /// (http://llvm.org/docs/LangRef.html#id181).
409   ///
410   /// This canonicalization is very likely already done in clang and
411   /// instcombine. Therefore, the program will probably remain the same.
412   ///
413   /// Returns true if the module changes.
414   ///
415   /// Verified in @i32_add in split-gep.ll
416   bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
417 
418   /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
419   /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
420   /// the constant offset. After extraction, it becomes desirable to reunion the
421   /// distributed sexts. For example,
422   ///
423   ///                              &a[sext(i +nsw (j +nsw 5)]
424   ///   => distribute              &a[sext(i) +nsw (sext(j) +nsw 5)]
425   ///   => constant extraction     &a[sext(i) + sext(j)] + 5
426   ///   => reunion                 &a[sext(i +nsw j)] + 5
427   bool reuniteExts(Function &F);
428 
429   /// A helper that reunites sexts in an instruction.
430   bool reuniteExts(Instruction *I);
431 
432   /// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
433   Instruction *findClosestMatchingDominator(const SCEV *Key,
434                                             Instruction *Dominatee);
435   /// Verify F is free of dead code.
436   void verifyNoDeadCode(Function &F);
437 
438   bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
439 
440   // Swap the index operand of two GEP.
441   void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
442 
443   // Check if it is safe to swap operand of two GEP.
444   bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
445                             Loop *CurLoop);
446 
447   const DataLayout *DL = nullptr;
448   DominatorTree *DT = nullptr;
449   ScalarEvolution *SE;
450 
451   LoopInfo *LI;
452   TargetLibraryInfo *TLI;
453 
454   /// Whether to lower a GEP with multiple indices into arithmetic operations or
455   /// multiple GEPs with a single index.
456   bool LowerGEP;
457 
458   DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingExprs;
459 };
460 
461 } // end anonymous namespace
462 
463 char SeparateConstOffsetFromGEP::ID = 0;
464 
465 INITIALIZE_PASS_BEGIN(
466     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
467     "Split GEPs to a variadic base and a constant offset for better CSE", false,
468     false)
469 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
470 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
471 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
472 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
473 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
474 INITIALIZE_PASS_END(
475     SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
476     "Split GEPs to a variadic base and a constant offset for better CSE", false,
477     false)
478 
479 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) {
480   return new SeparateConstOffsetFromGEP(LowerGEP);
481 }
482 
483 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
484                                             bool ZeroExtended,
485                                             BinaryOperator *BO,
486                                             bool NonNegative) {
487   // We only consider ADD, SUB and OR, because a non-zero constant found in
488   // expressions composed of these operations can be easily hoisted as a
489   // constant offset by reassociation.
490   if (BO->getOpcode() != Instruction::Add &&
491       BO->getOpcode() != Instruction::Sub &&
492       BO->getOpcode() != Instruction::Or) {
493     return false;
494   }
495 
496   Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
497   // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
498   // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
499   // FIXME: this does not appear to be covered by any tests
500   //        (with x86/aarch64 backends at least)
501   if (BO->getOpcode() == Instruction::Or &&
502       !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
503     return false;
504 
505   // In addition, tracing into BO requires that its surrounding s/zext (if
506   // any) is distributable to both operands.
507   //
508   // Suppose BO = A op B.
509   //  SignExtended | ZeroExtended | Distributable?
510   // --------------+--------------+----------------------------------
511   //       0       |      0       | true because no s/zext exists
512   //       0       |      1       | zext(BO) == zext(A) op zext(B)
513   //       1       |      0       | sext(BO) == sext(A) op sext(B)
514   //       1       |      1       | zext(sext(BO)) ==
515   //               |              |     zext(sext(A)) op zext(sext(B))
516   if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
517     // If a + b >= 0 and (a >= 0 or b >= 0), then
518     //   sext(a + b) = sext(a) + sext(b)
519     // even if the addition is not marked nsw.
520     //
521     // Leveraging this invarient, we can trace into an sext'ed inbound GEP
522     // index if the constant offset is non-negative.
523     //
524     // Verified in @sext_add in split-gep.ll.
525     if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
526       if (!ConstLHS->isNegative())
527         return true;
528     }
529     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
530       if (!ConstRHS->isNegative())
531         return true;
532     }
533   }
534 
535   // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
536   // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
537   if (BO->getOpcode() == Instruction::Add ||
538       BO->getOpcode() == Instruction::Sub) {
539     if (SignExtended && !BO->hasNoSignedWrap())
540       return false;
541     if (ZeroExtended && !BO->hasNoUnsignedWrap())
542       return false;
543   }
544 
545   return true;
546 }
547 
548 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
549                                                    bool SignExtended,
550                                                    bool ZeroExtended) {
551   // BO being non-negative does not shed light on whether its operands are
552   // non-negative. Clear the NonNegative flag here.
553   APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
554                               /* NonNegative */ false);
555   // If we found a constant offset in the left operand, stop and return that.
556   // This shortcut might cause us to miss opportunities of combining the
557   // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
558   // However, such cases are probably already handled by -instcombine,
559   // given this pass runs after the standard optimizations.
560   if (ConstantOffset != 0) return ConstantOffset;
561   ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
562                         /* NonNegative */ false);
563   // If U is a sub operator, negate the constant offset found in the right
564   // operand.
565   if (BO->getOpcode() == Instruction::Sub)
566     ConstantOffset = -ConstantOffset;
567   return ConstantOffset;
568 }
569 
570 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
571                                     bool ZeroExtended, bool NonNegative) {
572   // TODO(jingyue): We could trace into integer/pointer casts, such as
573   // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
574   // integers because it gives good enough results for our benchmarks.
575   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
576 
577   // We cannot do much with Values that are not a User, such as an Argument.
578   User *U = dyn_cast<User>(V);
579   if (U == nullptr) return APInt(BitWidth, 0);
580 
581   APInt ConstantOffset(BitWidth, 0);
582   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
583     // Hooray, we found it!
584     ConstantOffset = CI->getValue();
585   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
586     // Trace into subexpressions for more hoisting opportunities.
587     if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
588       ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
589   } else if (isa<TruncInst>(V)) {
590     ConstantOffset =
591         find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative)
592             .trunc(BitWidth);
593   } else if (isa<SExtInst>(V)) {
594     ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
595                           ZeroExtended, NonNegative).sext(BitWidth);
596   } else if (isa<ZExtInst>(V)) {
597     // As an optimization, we can clear the SignExtended flag because
598     // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
599     //
600     // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
601     ConstantOffset =
602         find(U->getOperand(0), /* SignExtended */ false,
603              /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
604   }
605 
606   // If we found a non-zero constant offset, add it to the path for
607   // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
608   // help this optimization.
609   if (ConstantOffset != 0)
610     UserChain.push_back(U);
611   return ConstantOffset;
612 }
613 
614 Value *ConstantOffsetExtractor::applyExts(Value *V) {
615   Value *Current = V;
616   // ExtInsts is built in the use-def order. Therefore, we apply them to V
617   // in the reversed order.
618   for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
619     if (Constant *C = dyn_cast<Constant>(Current)) {
620       // If Current is a constant, apply s/zext using ConstantExpr::getCast.
621       // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
622       Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
623     } else {
624       Instruction *Ext = (*I)->clone();
625       Ext->setOperand(0, Current);
626       Ext->insertBefore(IP);
627       Current = Ext;
628     }
629   }
630   return Current;
631 }
632 
633 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
634   distributeExtsAndCloneChain(UserChain.size() - 1);
635   // Remove all nullptrs (used to be s/zext) from UserChain.
636   unsigned NewSize = 0;
637   for (User *I : UserChain) {
638     if (I != nullptr) {
639       UserChain[NewSize] = I;
640       NewSize++;
641     }
642   }
643   UserChain.resize(NewSize);
644   return removeConstOffset(UserChain.size() - 1);
645 }
646 
647 Value *
648 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
649   User *U = UserChain[ChainIndex];
650   if (ChainIndex == 0) {
651     assert(isa<ConstantInt>(U));
652     // If U is a ConstantInt, applyExts will return a ConstantInt as well.
653     return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
654   }
655 
656   if (CastInst *Cast = dyn_cast<CastInst>(U)) {
657     assert(
658         (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) &&
659         "Only following instructions can be traced: sext, zext & trunc");
660     ExtInsts.push_back(Cast);
661     UserChain[ChainIndex] = nullptr;
662     return distributeExtsAndCloneChain(ChainIndex - 1);
663   }
664 
665   // Function find only trace into BinaryOperator and CastInst.
666   BinaryOperator *BO = cast<BinaryOperator>(U);
667   // OpNo = which operand of BO is UserChain[ChainIndex - 1]
668   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
669   Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
670   Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
671 
672   BinaryOperator *NewBO = nullptr;
673   if (OpNo == 0) {
674     NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
675                                    BO->getName(), IP);
676   } else {
677     NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
678                                    BO->getName(), IP);
679   }
680   return UserChain[ChainIndex] = NewBO;
681 }
682 
683 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
684   if (ChainIndex == 0) {
685     assert(isa<ConstantInt>(UserChain[ChainIndex]));
686     return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
687   }
688 
689   BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
690   assert(BO->getNumUses() <= 1 &&
691          "distributeExtsAndCloneChain clones each BinaryOperator in "
692          "UserChain, so no one should be used more than "
693          "once");
694 
695   unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
696   assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
697   Value *NextInChain = removeConstOffset(ChainIndex - 1);
698   Value *TheOther = BO->getOperand(1 - OpNo);
699 
700   // If NextInChain is 0 and not the LHS of a sub, we can simplify the
701   // sub-expression to be just TheOther.
702   if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
703     if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
704       return TheOther;
705   }
706 
707   BinaryOperator::BinaryOps NewOp = BO->getOpcode();
708   if (BO->getOpcode() == Instruction::Or) {
709     // Rebuild "or" as "add", because "or" may be invalid for the new
710     // expression.
711     //
712     // For instance, given
713     //   a | (b + 5) where a and b + 5 have no common bits,
714     // we can extract 5 as the constant offset.
715     //
716     // However, reusing the "or" in the new index would give us
717     //   (a | b) + 5
718     // which does not equal a | (b + 5).
719     //
720     // Replacing the "or" with "add" is fine, because
721     //   a | (b + 5) = a + (b + 5) = (a + b) + 5
722     NewOp = Instruction::Add;
723   }
724 
725   BinaryOperator *NewBO;
726   if (OpNo == 0) {
727     NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
728   } else {
729     NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
730   }
731   NewBO->takeName(BO);
732   return NewBO;
733 }
734 
735 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
736                                         User *&UserChainTail,
737                                         const DominatorTree *DT) {
738   ConstantOffsetExtractor Extractor(GEP, DT);
739   // Find a non-zero constant offset first.
740   APInt ConstantOffset =
741       Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
742                      GEP->isInBounds());
743   if (ConstantOffset == 0) {
744     UserChainTail = nullptr;
745     return nullptr;
746   }
747   // Separates the constant offset from the GEP index.
748   Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
749   UserChainTail = Extractor.UserChain.back();
750   return IdxWithoutConstOffset;
751 }
752 
753 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
754                                       const DominatorTree *DT) {
755   // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
756   return ConstantOffsetExtractor(GEP, DT)
757       .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
758             GEP->isInBounds())
759       .getSExtValue();
760 }
761 
762 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
763     GetElementPtrInst *GEP) {
764   bool Changed = false;
765   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
766   gep_type_iterator GTI = gep_type_begin(*GEP);
767   for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
768        I != E; ++I, ++GTI) {
769     // Skip struct member indices which must be i32.
770     if (GTI.isSequential()) {
771       if ((*I)->getType() != IntPtrTy) {
772         *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
773         Changed = true;
774       }
775     }
776   }
777   return Changed;
778 }
779 
780 int64_t
781 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
782                                                  bool &NeedsExtraction) {
783   NeedsExtraction = false;
784   int64_t AccumulativeByteOffset = 0;
785   gep_type_iterator GTI = gep_type_begin(*GEP);
786   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
787     if (GTI.isSequential()) {
788       // Tries to extract a constant offset from this GEP index.
789       int64_t ConstantOffset =
790           ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
791       if (ConstantOffset != 0) {
792         NeedsExtraction = true;
793         // A GEP may have multiple indices.  We accumulate the extracted
794         // constant offset to a byte offset, and later offset the remainder of
795         // the original GEP with this byte offset.
796         AccumulativeByteOffset +=
797             ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
798       }
799     } else if (LowerGEP) {
800       StructType *StTy = GTI.getStructType();
801       uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
802       // Skip field 0 as the offset is always 0.
803       if (Field != 0) {
804         NeedsExtraction = true;
805         AccumulativeByteOffset +=
806             DL->getStructLayout(StTy)->getElementOffset(Field);
807       }
808     }
809   }
810   return AccumulativeByteOffset;
811 }
812 
813 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
814     GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
815   IRBuilder<> Builder(Variadic);
816   Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
817 
818   Type *I8PtrTy =
819       Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
820   Value *ResultPtr = Variadic->getOperand(0);
821   Loop *L = LI->getLoopFor(Variadic->getParent());
822   // Check if the base is not loop invariant or used more than once.
823   bool isSwapCandidate =
824       L && L->isLoopInvariant(ResultPtr) &&
825       !hasMoreThanOneUseInLoop(ResultPtr, L);
826   Value *FirstResult = nullptr;
827 
828   if (ResultPtr->getType() != I8PtrTy)
829     ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
830 
831   gep_type_iterator GTI = gep_type_begin(*Variadic);
832   // Create an ugly GEP for each sequential index. We don't create GEPs for
833   // structure indices, as they are accumulated in the constant offset index.
834   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
835     if (GTI.isSequential()) {
836       Value *Idx = Variadic->getOperand(I);
837       // Skip zero indices.
838       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
839         if (CI->isZero())
840           continue;
841 
842       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
843                                 DL->getTypeAllocSize(GTI.getIndexedType()));
844       // Scale the index by element size.
845       if (ElementSize != 1) {
846         if (ElementSize.isPowerOf2()) {
847           Idx = Builder.CreateShl(
848               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
849         } else {
850           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
851         }
852       }
853       // Create an ugly GEP with a single index for each index.
854       ResultPtr =
855           Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
856       if (FirstResult == nullptr)
857         FirstResult = ResultPtr;
858     }
859   }
860 
861   // Create a GEP with the constant offset index.
862   if (AccumulativeByteOffset != 0) {
863     Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
864     ResultPtr =
865         Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
866   } else
867     isSwapCandidate = false;
868 
869   // If we created a GEP with constant index, and the base is loop invariant,
870   // then we swap the first one with it, so LICM can move constant GEP out
871   // later.
872   GetElementPtrInst *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
873   GetElementPtrInst *SecondGEP = dyn_cast_or_null<GetElementPtrInst>(ResultPtr);
874   if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
875     swapGEPOperand(FirstGEP, SecondGEP);
876 
877   if (ResultPtr->getType() != Variadic->getType())
878     ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
879 
880   Variadic->replaceAllUsesWith(ResultPtr);
881   Variadic->eraseFromParent();
882 }
883 
884 void
885 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
886                                                int64_t AccumulativeByteOffset) {
887   IRBuilder<> Builder(Variadic);
888   Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
889 
890   Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
891   gep_type_iterator GTI = gep_type_begin(*Variadic);
892   // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
893   // don't create arithmetics for structure indices, as they are accumulated
894   // in the constant offset index.
895   for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
896     if (GTI.isSequential()) {
897       Value *Idx = Variadic->getOperand(I);
898       // Skip zero indices.
899       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
900         if (CI->isZero())
901           continue;
902 
903       APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
904                                 DL->getTypeAllocSize(GTI.getIndexedType()));
905       // Scale the index by element size.
906       if (ElementSize != 1) {
907         if (ElementSize.isPowerOf2()) {
908           Idx = Builder.CreateShl(
909               Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
910         } else {
911           Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
912         }
913       }
914       // Create an ADD for each index.
915       ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
916     }
917   }
918 
919   // Create an ADD for the constant offset index.
920   if (AccumulativeByteOffset != 0) {
921     ResultPtr = Builder.CreateAdd(
922         ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
923   }
924 
925   ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
926   Variadic->replaceAllUsesWith(ResultPtr);
927   Variadic->eraseFromParent();
928 }
929 
930 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
931   // Skip vector GEPs.
932   if (GEP->getType()->isVectorTy())
933     return false;
934 
935   // The backend can already nicely handle the case where all indices are
936   // constant.
937   if (GEP->hasAllConstantIndices())
938     return false;
939 
940   bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
941 
942   bool NeedsExtraction;
943   int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
944 
945   if (!NeedsExtraction)
946     return Changed;
947 
948   TargetTransformInfo &TTI =
949       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*GEP->getFunction());
950 
951   // If LowerGEP is disabled, before really splitting the GEP, check whether the
952   // backend supports the addressing mode we are about to produce. If no, this
953   // splitting probably won't be beneficial.
954   // If LowerGEP is enabled, even the extracted constant offset can not match
955   // the addressing mode, we can still do optimizations to other lowered parts
956   // of variable indices. Therefore, we don't check for addressing modes in that
957   // case.
958   if (!LowerGEP) {
959     unsigned AddrSpace = GEP->getPointerAddressSpace();
960     if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
961                                    /*BaseGV=*/nullptr, AccumulativeByteOffset,
962                                    /*HasBaseReg=*/true, /*Scale=*/0,
963                                    AddrSpace)) {
964       return Changed;
965     }
966   }
967 
968   // Remove the constant offset in each sequential index. The resultant GEP
969   // computes the variadic base.
970   // Notice that we don't remove struct field indices here. If LowerGEP is
971   // disabled, a structure index is not accumulated and we still use the old
972   // one. If LowerGEP is enabled, a structure index is accumulated in the
973   // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
974   // handle the constant offset and won't need a new structure index.
975   gep_type_iterator GTI = gep_type_begin(*GEP);
976   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
977     if (GTI.isSequential()) {
978       // Splits this GEP index into a variadic part and a constant offset, and
979       // uses the variadic part as the new index.
980       Value *OldIdx = GEP->getOperand(I);
981       User *UserChainTail;
982       Value *NewIdx =
983           ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
984       if (NewIdx != nullptr) {
985         // Switches to the index with the constant offset removed.
986         GEP->setOperand(I, NewIdx);
987         // After switching to the new index, we can garbage-collect UserChain
988         // and the old index if they are not used.
989         RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
990         RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
991       }
992     }
993   }
994 
995   // Clear the inbounds attribute because the new index may be off-bound.
996   // e.g.,
997   //
998   //   b     = add i64 a, 5
999   //   addr  = gep inbounds float, float* p, i64 b
1000   //
1001   // is transformed to:
1002   //
1003   //   addr2 = gep float, float* p, i64 a ; inbounds removed
1004   //   addr  = gep inbounds float, float* addr2, i64 5
1005   //
1006   // If a is -4, although the old index b is in bounds, the new index a is
1007   // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
1008   // inbounds keyword is not present, the offsets are added to the base
1009   // address with silently-wrapping two's complement arithmetic".
1010   // Therefore, the final code will be a semantically equivalent.
1011   //
1012   // TODO(jingyue): do some range analysis to keep as many inbounds as
1013   // possible. GEPs with inbounds are more friendly to alias analysis.
1014   bool GEPWasInBounds = GEP->isInBounds();
1015   GEP->setIsInBounds(false);
1016 
1017   // Lowers a GEP to either GEPs with a single index or arithmetic operations.
1018   if (LowerGEP) {
1019     // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
1020     // arithmetic operations if the target uses alias analysis in codegen.
1021     if (TTI.useAA())
1022       lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
1023     else
1024       lowerToArithmetics(GEP, AccumulativeByteOffset);
1025     return true;
1026   }
1027 
1028   // No need to create another GEP if the accumulative byte offset is 0.
1029   if (AccumulativeByteOffset == 0)
1030     return true;
1031 
1032   // Offsets the base with the accumulative byte offset.
1033   //
1034   //   %gep                        ; the base
1035   //   ... %gep ...
1036   //
1037   // => add the offset
1038   //
1039   //   %gep2                       ; clone of %gep
1040   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1041   //   %gep                        ; will be removed
1042   //   ... %gep ...
1043   //
1044   // => replace all uses of %gep with %new.gep and remove %gep
1045   //
1046   //   %gep2                       ; clone of %gep
1047   //   %new.gep = gep %gep2, <offset / sizeof(*%gep)>
1048   //   ... %new.gep ...
1049   //
1050   // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
1051   // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
1052   // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
1053   // type of %gep.
1054   //
1055   //   %gep2                       ; clone of %gep
1056   //   %0       = bitcast %gep2 to i8*
1057   //   %uglygep = gep %0, <offset>
1058   //   %new.gep = bitcast %uglygep to <type of %gep>
1059   //   ... %new.gep ...
1060   Instruction *NewGEP = GEP->clone();
1061   NewGEP->insertBefore(GEP);
1062 
1063   // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
1064   // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
1065   // used with unsigned integers later.
1066   int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
1067       DL->getTypeAllocSize(GEP->getResultElementType()));
1068   Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
1069   if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
1070     // Very likely. As long as %gep is naturally aligned, the byte offset we
1071     // extracted should be a multiple of sizeof(*%gep).
1072     int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
1073     NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
1074                                        ConstantInt::get(IntPtrTy, Index, true),
1075                                        GEP->getName(), GEP);
1076     NewGEP->copyMetadata(*GEP);
1077     // Inherit the inbounds attribute of the original GEP.
1078     cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1079   } else {
1080     // Unlikely but possible. For example,
1081     // #pragma pack(1)
1082     // struct S {
1083     //   int a[3];
1084     //   int64 b[8];
1085     // };
1086     // #pragma pack()
1087     //
1088     // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
1089     // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
1090     // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
1091     // sizeof(int64).
1092     //
1093     // Emit an uglygep in this case.
1094     Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
1095                                        GEP->getPointerAddressSpace());
1096     NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
1097     NewGEP = GetElementPtrInst::Create(
1098         Type::getInt8Ty(GEP->getContext()), NewGEP,
1099         ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
1100         GEP);
1101     NewGEP->copyMetadata(*GEP);
1102     // Inherit the inbounds attribute of the original GEP.
1103     cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
1104     if (GEP->getType() != I8PtrTy)
1105       NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
1106   }
1107 
1108   GEP->replaceAllUsesWith(NewGEP);
1109   GEP->eraseFromParent();
1110 
1111   return true;
1112 }
1113 
1114 bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
1115   if (skipFunction(F))
1116     return false;
1117 
1118   if (DisableSeparateConstOffsetFromGEP)
1119     return false;
1120 
1121   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1122   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1123   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1124   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1125   bool Changed = false;
1126   for (BasicBlock &B : F) {
1127     for (BasicBlock::iterator I = B.begin(), IE = B.end(); I != IE;)
1128       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++))
1129         Changed |= splitGEP(GEP);
1130     // No need to split GEP ConstantExprs because all its indices are constant
1131     // already.
1132   }
1133 
1134   Changed |= reuniteExts(F);
1135 
1136   if (VerifyNoDeadCode)
1137     verifyNoDeadCode(F);
1138 
1139   return Changed;
1140 }
1141 
1142 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
1143     const SCEV *Key, Instruction *Dominatee) {
1144   auto Pos = DominatingExprs.find(Key);
1145   if (Pos == DominatingExprs.end())
1146     return nullptr;
1147 
1148   auto &Candidates = Pos->second;
1149   // Because we process the basic blocks in pre-order of the dominator tree, a
1150   // candidate that doesn't dominate the current instruction won't dominate any
1151   // future instruction either. Therefore, we pop it out of the stack. This
1152   // optimization makes the algorithm O(n).
1153   while (!Candidates.empty()) {
1154     Instruction *Candidate = Candidates.back();
1155     if (DT->dominates(Candidate, Dominatee))
1156       return Candidate;
1157     Candidates.pop_back();
1158   }
1159   return nullptr;
1160 }
1161 
1162 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
1163   if (!SE->isSCEVable(I->getType()))
1164     return false;
1165 
1166   //   Dom: LHS+RHS
1167   //   I: sext(LHS)+sext(RHS)
1168   // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
1169   // TODO: handle zext
1170   Value *LHS = nullptr, *RHS = nullptr;
1171   if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS)))) ||
1172       match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
1173     if (LHS->getType() == RHS->getType()) {
1174       const SCEV *Key =
1175           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1176       if (auto *Dom = findClosestMatchingDominator(Key, I)) {
1177         Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
1178         NewSExt->takeName(I);
1179         I->replaceAllUsesWith(NewSExt);
1180         RecursivelyDeleteTriviallyDeadInstructions(I);
1181         return true;
1182       }
1183     }
1184   }
1185 
1186   // Add I to DominatingExprs if it's an add/sub that can't sign overflow.
1187   if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS))) ||
1188       match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
1189     if (programUndefinedIfFullPoison(I)) {
1190       const SCEV *Key =
1191           SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
1192       DominatingExprs[Key].push_back(I);
1193     }
1194   }
1195   return false;
1196 }
1197 
1198 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
1199   bool Changed = false;
1200   DominatingExprs.clear();
1201   for (const auto Node : depth_first(DT)) {
1202     BasicBlock *BB = Node->getBlock();
1203     for (auto I = BB->begin(); I != BB->end(); ) {
1204       Instruction *Cur = &*I++;
1205       Changed |= reuniteExts(Cur);
1206     }
1207   }
1208   return Changed;
1209 }
1210 
1211 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
1212   for (BasicBlock &B : F) {
1213     for (Instruction &I : B) {
1214       if (isInstructionTriviallyDead(&I)) {
1215         std::string ErrMessage;
1216         raw_string_ostream RSO(ErrMessage);
1217         RSO << "Dead instruction detected!\n" << I << "\n";
1218         llvm_unreachable(RSO.str().c_str());
1219       }
1220     }
1221   }
1222 }
1223 
1224 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
1225     GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
1226   if (!FirstGEP || !FirstGEP->hasOneUse())
1227     return false;
1228 
1229   if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
1230     return false;
1231 
1232   if (FirstGEP == SecondGEP)
1233     return false;
1234 
1235   unsigned FirstNum = FirstGEP->getNumOperands();
1236   unsigned SecondNum = SecondGEP->getNumOperands();
1237   // Give up if the number of operands are not 2.
1238   if (FirstNum != SecondNum || FirstNum != 2)
1239     return false;
1240 
1241   Value *FirstBase = FirstGEP->getOperand(0);
1242   Value *SecondBase = SecondGEP->getOperand(0);
1243   Value *FirstOffset = FirstGEP->getOperand(1);
1244   // Give up if the index of the first GEP is loop invariant.
1245   if (CurLoop->isLoopInvariant(FirstOffset))
1246     return false;
1247 
1248   // Give up if base doesn't have same type.
1249   if (FirstBase->getType() != SecondBase->getType())
1250     return false;
1251 
1252   Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
1253 
1254   // Check if the second operand of first GEP has constant coefficient.
1255   // For an example, for the following code,  we won't gain anything by
1256   // hoisting the second GEP out because the second GEP can be folded away.
1257   //   %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
1258   //   %67 = shl i64 %scevgep.sum.ur159, 2
1259   //   %uglygep160 = getelementptr i8* %65, i64 %67
1260   //   %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
1261 
1262   // Skip constant shift instruction which may be generated by Splitting GEPs.
1263   if (FirstOffsetDef && FirstOffsetDef->isShift() &&
1264       isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
1265     FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
1266 
1267   // Give up if FirstOffsetDef is an Add or Sub with constant.
1268   // Because it may not profitable at all due to constant folding.
1269   if (FirstOffsetDef)
1270     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
1271       unsigned opc = BO->getOpcode();
1272       if ((opc == Instruction::Add || opc == Instruction::Sub) &&
1273           (isa<ConstantInt>(BO->getOperand(0)) ||
1274            isa<ConstantInt>(BO->getOperand(1))))
1275         return false;
1276     }
1277   return true;
1278 }
1279 
1280 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
1281   int UsesInLoop = 0;
1282   for (User *U : V->users()) {
1283     if (Instruction *User = dyn_cast<Instruction>(U))
1284       if (L->contains(User))
1285         if (++UsesInLoop > 1)
1286           return true;
1287   }
1288   return false;
1289 }
1290 
1291 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
1292                                                 GetElementPtrInst *Second) {
1293   Value *Offset1 = First->getOperand(1);
1294   Value *Offset2 = Second->getOperand(1);
1295   First->setOperand(1, Offset2);
1296   Second->setOperand(1, Offset1);
1297 
1298   // We changed p+o+c to p+c+o, p+c may not be inbound anymore.
1299   const DataLayout &DAL = First->getModule()->getDataLayout();
1300   APInt Offset(DAL.getIndexSizeInBits(
1301                    cast<PointerType>(First->getType())->getAddressSpace()),
1302                0);
1303   Value *NewBase =
1304       First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
1305   uint64_t ObjectSize;
1306   if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
1307      Offset.ugt(ObjectSize)) {
1308     First->setIsInBounds(false);
1309     Second->setIsInBounds(false);
1310   } else
1311     First->setIsInBounds(true);
1312 }
1313