1 //===- SeparateConstOffsetFromGEP.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Loop unrolling may create many similar GEPs for array accesses. 10 // e.g., a 2-level loop 11 // 12 // float a[32][32]; // global variable 13 // 14 // for (int i = 0; i < 2; ++i) { 15 // for (int j = 0; j < 2; ++j) { 16 // ... 17 // ... = a[x + i][y + j]; 18 // ... 19 // } 20 // } 21 // 22 // will probably be unrolled to: 23 // 24 // gep %a, 0, %x, %y; load 25 // gep %a, 0, %x, %y + 1; load 26 // gep %a, 0, %x + 1, %y; load 27 // gep %a, 0, %x + 1, %y + 1; load 28 // 29 // LLVM's GVN does not use partial redundancy elimination yet, and is thus 30 // unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs 31 // significant slowdown in targets with limited addressing modes. For instance, 32 // because the PTX target does not support the reg+reg addressing mode, the 33 // NVPTX backend emits PTX code that literally computes the pointer address of 34 // each GEP, wasting tons of registers. It emits the following PTX for the 35 // first load and similar PTX for other loads. 36 // 37 // mov.u32 %r1, %x; 38 // mov.u32 %r2, %y; 39 // mul.wide.u32 %rl2, %r1, 128; 40 // mov.u64 %rl3, a; 41 // add.s64 %rl4, %rl3, %rl2; 42 // mul.wide.u32 %rl5, %r2, 4; 43 // add.s64 %rl6, %rl4, %rl5; 44 // ld.global.f32 %f1, [%rl6]; 45 // 46 // To reduce the register pressure, the optimization implemented in this file 47 // merges the common part of a group of GEPs, so we can compute each pointer 48 // address by adding a simple offset to the common part, saving many registers. 49 // 50 // It works by splitting each GEP into a variadic base and a constant offset. 51 // The variadic base can be computed once and reused by multiple GEPs, and the 52 // constant offsets can be nicely folded into the reg+immediate addressing mode 53 // (supported by most targets) without using any extra register. 54 // 55 // For instance, we transform the four GEPs and four loads in the above example 56 // into: 57 // 58 // base = gep a, 0, x, y 59 // load base 60 // laod base + 1 * sizeof(float) 61 // load base + 32 * sizeof(float) 62 // load base + 33 * sizeof(float) 63 // 64 // Given the transformed IR, a backend that supports the reg+immediate 65 // addressing mode can easily fold the pointer arithmetics into the loads. For 66 // example, the NVPTX backend can easily fold the pointer arithmetics into the 67 // ld.global.f32 instructions, and the resultant PTX uses much fewer registers. 68 // 69 // mov.u32 %r1, %tid.x; 70 // mov.u32 %r2, %tid.y; 71 // mul.wide.u32 %rl2, %r1, 128; 72 // mov.u64 %rl3, a; 73 // add.s64 %rl4, %rl3, %rl2; 74 // mul.wide.u32 %rl5, %r2, 4; 75 // add.s64 %rl6, %rl4, %rl5; 76 // ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX 77 // ld.global.f32 %f2, [%rl6+4]; // much better 78 // ld.global.f32 %f3, [%rl6+128]; // much better 79 // ld.global.f32 %f4, [%rl6+132]; // much better 80 // 81 // Another improvement enabled by the LowerGEP flag is to lower a GEP with 82 // multiple indices to either multiple GEPs with a single index or arithmetic 83 // operations (depending on whether the target uses alias analysis in codegen). 84 // Such transformation can have following benefits: 85 // (1) It can always extract constants in the indices of structure type. 86 // (2) After such Lowering, there are more optimization opportunities such as 87 // CSE, LICM and CGP. 88 // 89 // E.g. The following GEPs have multiple indices: 90 // BB1: 91 // %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3 92 // load %p 93 // ... 94 // BB2: 95 // %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2 96 // load %p2 97 // ... 98 // 99 // We can not do CSE to the common part related to index "i64 %i". Lowering 100 // GEPs can achieve such goals. 101 // If the target does not use alias analysis in codegen, this pass will 102 // lower a GEP with multiple indices into arithmetic operations: 103 // BB1: 104 // %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity 105 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity 106 // %3 = add i64 %1, %2 ; CSE opportunity 107 // %4 = mul i64 %j1, length_of_struct 108 // %5 = add i64 %3, %4 109 // %6 = add i64 %3, struct_field_3 ; Constant offset 110 // %p = inttoptr i64 %6 to i32* 111 // load %p 112 // ... 113 // BB2: 114 // %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity 115 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity 116 // %9 = add i64 %7, %8 ; CSE opportunity 117 // %10 = mul i64 %j2, length_of_struct 118 // %11 = add i64 %9, %10 119 // %12 = add i64 %11, struct_field_2 ; Constant offset 120 // %p = inttoptr i64 %12 to i32* 121 // load %p2 122 // ... 123 // 124 // If the target uses alias analysis in codegen, this pass will lower a GEP 125 // with multiple indices into multiple GEPs with a single index: 126 // BB1: 127 // %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity 128 // %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity 129 // %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity 130 // %4 = mul i64 %j1, length_of_struct 131 // %5 = getelementptr i8* %3, i64 %4 132 // %6 = getelementptr i8* %5, struct_field_3 ; Constant offset 133 // %p = bitcast i8* %6 to i32* 134 // load %p 135 // ... 136 // BB2: 137 // %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity 138 // %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity 139 // %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity 140 // %10 = mul i64 %j2, length_of_struct 141 // %11 = getelementptr i8* %9, i64 %10 142 // %12 = getelementptr i8* %11, struct_field_2 ; Constant offset 143 // %p2 = bitcast i8* %12 to i32* 144 // load %p2 145 // ... 146 // 147 // Lowering GEPs can also benefit other passes such as LICM and CGP. 148 // LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple 149 // indices if one of the index is variant. If we lower such GEP into invariant 150 // parts and variant parts, LICM can hoist/sink those invariant parts. 151 // CGP (CodeGen Prepare) tries to sink address calculations that match the 152 // target's addressing modes. A GEP with multiple indices may not match and will 153 // not be sunk. If we lower such GEP into smaller parts, CGP may sink some of 154 // them. So we end up with a better addressing mode. 155 // 156 //===----------------------------------------------------------------------===// 157 158 #include "llvm/Transforms/Scalar/SeparateConstOffsetFromGEP.h" 159 #include "llvm/ADT/APInt.h" 160 #include "llvm/ADT/DenseMap.h" 161 #include "llvm/ADT/DepthFirstIterator.h" 162 #include "llvm/ADT/SmallVector.h" 163 #include "llvm/Analysis/LoopInfo.h" 164 #include "llvm/Analysis/MemoryBuiltins.h" 165 #include "llvm/Analysis/ScalarEvolution.h" 166 #include "llvm/Analysis/TargetLibraryInfo.h" 167 #include "llvm/Analysis/TargetTransformInfo.h" 168 #include "llvm/Analysis/ValueTracking.h" 169 #include "llvm/IR/BasicBlock.h" 170 #include "llvm/IR/Constant.h" 171 #include "llvm/IR/Constants.h" 172 #include "llvm/IR/DataLayout.h" 173 #include "llvm/IR/DerivedTypes.h" 174 #include "llvm/IR/Dominators.h" 175 #include "llvm/IR/Function.h" 176 #include "llvm/IR/GetElementPtrTypeIterator.h" 177 #include "llvm/IR/IRBuilder.h" 178 #include "llvm/IR/Instruction.h" 179 #include "llvm/IR/Instructions.h" 180 #include "llvm/IR/Module.h" 181 #include "llvm/IR/PassManager.h" 182 #include "llvm/IR/PatternMatch.h" 183 #include "llvm/IR/Type.h" 184 #include "llvm/IR/User.h" 185 #include "llvm/IR/Value.h" 186 #include "llvm/InitializePasses.h" 187 #include "llvm/Pass.h" 188 #include "llvm/Support/Casting.h" 189 #include "llvm/Support/CommandLine.h" 190 #include "llvm/Support/ErrorHandling.h" 191 #include "llvm/Support/raw_ostream.h" 192 #include "llvm/Transforms/Scalar.h" 193 #include "llvm/Transforms/Utils/Local.h" 194 #include <cassert> 195 #include <cstdint> 196 #include <string> 197 198 using namespace llvm; 199 using namespace llvm::PatternMatch; 200 201 static cl::opt<bool> DisableSeparateConstOffsetFromGEP( 202 "disable-separate-const-offset-from-gep", cl::init(false), 203 cl::desc("Do not separate the constant offset from a GEP instruction"), 204 cl::Hidden); 205 206 // Setting this flag may emit false positives when the input module already 207 // contains dead instructions. Therefore, we set it only in unit tests that are 208 // free of dead code. 209 static cl::opt<bool> 210 VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false), 211 cl::desc("Verify this pass produces no dead code"), 212 cl::Hidden); 213 214 namespace { 215 216 /// A helper class for separating a constant offset from a GEP index. 217 /// 218 /// In real programs, a GEP index may be more complicated than a simple addition 219 /// of something and a constant integer which can be trivially splitted. For 220 /// example, to split ((a << 3) | 5) + b, we need to search deeper for the 221 /// constant offset, so that we can separate the index to (a << 3) + b and 5. 222 /// 223 /// Therefore, this class looks into the expression that computes a given GEP 224 /// index, and tries to find a constant integer that can be hoisted to the 225 /// outermost level of the expression as an addition. Not every constant in an 226 /// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a + 227 /// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case, 228 /// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15). 229 class ConstantOffsetExtractor { 230 public: 231 /// Extracts a constant offset from the given GEP index. It returns the 232 /// new index representing the remainder (equal to the original index minus 233 /// the constant offset), or nullptr if we cannot extract a constant offset. 234 /// \p Idx The given GEP index 235 /// \p GEP The given GEP 236 /// \p UserChainTail Outputs the tail of UserChain so that we can 237 /// garbage-collect unused instructions in UserChain. 238 static Value *Extract(Value *Idx, GetElementPtrInst *GEP, 239 User *&UserChainTail, const DominatorTree *DT); 240 241 /// Looks for a constant offset from the given GEP index without extracting 242 /// it. It returns the numeric value of the extracted constant offset (0 if 243 /// failed). The meaning of the arguments are the same as Extract. 244 static int64_t Find(Value *Idx, GetElementPtrInst *GEP, 245 const DominatorTree *DT); 246 247 private: 248 ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT) 249 : IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) { 250 } 251 252 /// Searches the expression that computes V for a non-zero constant C s.t. 253 /// V can be reassociated into the form V' + C. If the searching is 254 /// successful, returns C and update UserChain as a def-use chain from C to V; 255 /// otherwise, UserChain is empty. 256 /// 257 /// \p V The given expression 258 /// \p SignExtended Whether V will be sign-extended in the computation of the 259 /// GEP index 260 /// \p ZeroExtended Whether V will be zero-extended in the computation of the 261 /// GEP index 262 /// \p NonNegative Whether V is guaranteed to be non-negative. For example, 263 /// an index of an inbounds GEP is guaranteed to be 264 /// non-negative. Levaraging this, we can better split 265 /// inbounds GEPs. 266 APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative); 267 268 /// A helper function to look into both operands of a binary operator. 269 APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended, 270 bool ZeroExtended); 271 272 /// After finding the constant offset C from the GEP index I, we build a new 273 /// index I' s.t. I' + C = I. This function builds and returns the new 274 /// index I' according to UserChain produced by function "find". 275 /// 276 /// The building conceptually takes two steps: 277 /// 1) iteratively distribute s/zext towards the leaves of the expression tree 278 /// that computes I 279 /// 2) reassociate the expression tree to the form I' + C. 280 /// 281 /// For example, to extract the 5 from sext(a + (b + 5)), we first distribute 282 /// sext to a, b and 5 so that we have 283 /// sext(a) + (sext(b) + 5). 284 /// Then, we reassociate it to 285 /// (sext(a) + sext(b)) + 5. 286 /// Given this form, we know I' is sext(a) + sext(b). 287 Value *rebuildWithoutConstOffset(); 288 289 /// After the first step of rebuilding the GEP index without the constant 290 /// offset, distribute s/zext to the operands of all operators in UserChain. 291 /// e.g., zext(sext(a + (b + 5)) (assuming no overflow) => 292 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))). 293 /// 294 /// The function also updates UserChain to point to new subexpressions after 295 /// distributing s/zext. e.g., the old UserChain of the above example is 296 /// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)), 297 /// and the new UserChain is 298 /// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) -> 299 /// zext(sext(a)) + (zext(sext(b)) + zext(sext(5)) 300 /// 301 /// \p ChainIndex The index to UserChain. ChainIndex is initially 302 /// UserChain.size() - 1, and is decremented during 303 /// the recursion. 304 Value *distributeExtsAndCloneChain(unsigned ChainIndex); 305 306 /// Reassociates the GEP index to the form I' + C and returns I'. 307 Value *removeConstOffset(unsigned ChainIndex); 308 309 /// A helper function to apply ExtInsts, a list of s/zext, to value V. 310 /// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function 311 /// returns "sext i32 (zext i16 V to i32) to i64". 312 Value *applyExts(Value *V); 313 314 /// A helper function that returns whether we can trace into the operands 315 /// of binary operator BO for a constant offset. 316 /// 317 /// \p SignExtended Whether BO is surrounded by sext 318 /// \p ZeroExtended Whether BO is surrounded by zext 319 /// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound 320 /// array index. 321 bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO, 322 bool NonNegative); 323 324 /// The path from the constant offset to the old GEP index. e.g., if the GEP 325 /// index is "a * b + (c + 5)". After running function find, UserChain[0] will 326 /// be the constant 5, UserChain[1] will be the subexpression "c + 5", and 327 /// UserChain[2] will be the entire expression "a * b + (c + 5)". 328 /// 329 /// This path helps to rebuild the new GEP index. 330 SmallVector<User *, 8> UserChain; 331 332 /// A data structure used in rebuildWithoutConstOffset. Contains all 333 /// sext/zext instructions along UserChain. 334 SmallVector<CastInst *, 16> ExtInsts; 335 336 /// Insertion position of cloned instructions. 337 Instruction *IP; 338 339 const DataLayout &DL; 340 const DominatorTree *DT; 341 }; 342 343 /// A pass that tries to split every GEP in the function into a variadic 344 /// base and a constant offset. It is a FunctionPass because searching for the 345 /// constant offset may inspect other basic blocks. 346 class SeparateConstOffsetFromGEPLegacyPass : public FunctionPass { 347 public: 348 static char ID; 349 350 SeparateConstOffsetFromGEPLegacyPass(bool LowerGEP = false) 351 : FunctionPass(ID), LowerGEP(LowerGEP) { 352 initializeSeparateConstOffsetFromGEPLegacyPassPass( 353 *PassRegistry::getPassRegistry()); 354 } 355 356 void getAnalysisUsage(AnalysisUsage &AU) const override { 357 AU.addRequired<DominatorTreeWrapperPass>(); 358 AU.addRequired<ScalarEvolutionWrapperPass>(); 359 AU.addRequired<TargetTransformInfoWrapperPass>(); 360 AU.addRequired<LoopInfoWrapperPass>(); 361 AU.setPreservesCFG(); 362 AU.addRequired<TargetLibraryInfoWrapperPass>(); 363 } 364 365 bool runOnFunction(Function &F) override; 366 367 private: 368 bool LowerGEP; 369 }; 370 371 /// A pass that tries to split every GEP in the function into a variadic 372 /// base and a constant offset. It is a FunctionPass because searching for the 373 /// constant offset may inspect other basic blocks. 374 class SeparateConstOffsetFromGEP { 375 public: 376 SeparateConstOffsetFromGEP( 377 DominatorTree *DT, ScalarEvolution *SE, LoopInfo *LI, 378 TargetLibraryInfo *TLI, 379 function_ref<TargetTransformInfo &(Function &)> GetTTI, bool LowerGEP) 380 : DT(DT), SE(SE), LI(LI), TLI(TLI), GetTTI(GetTTI), LowerGEP(LowerGEP) {} 381 382 bool run(Function &F); 383 384 private: 385 /// Tries to split the given GEP into a variadic base and a constant offset, 386 /// and returns true if the splitting succeeds. 387 bool splitGEP(GetElementPtrInst *GEP); 388 389 /// Lower a GEP with multiple indices into multiple GEPs with a single index. 390 /// Function splitGEP already split the original GEP into a variadic part and 391 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the 392 /// variadic part into a set of GEPs with a single index and applies 393 /// AccumulativeByteOffset to it. 394 /// \p Variadic The variadic part of the original GEP. 395 /// \p AccumulativeByteOffset The constant offset. 396 void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic, 397 int64_t AccumulativeByteOffset); 398 399 /// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form. 400 /// Function splitGEP already split the original GEP into a variadic part and 401 /// a constant offset (i.e., AccumulativeByteOffset). This function lowers the 402 /// variadic part into a set of arithmetic operations and applies 403 /// AccumulativeByteOffset to it. 404 /// \p Variadic The variadic part of the original GEP. 405 /// \p AccumulativeByteOffset The constant offset. 406 void lowerToArithmetics(GetElementPtrInst *Variadic, 407 int64_t AccumulativeByteOffset); 408 409 /// Finds the constant offset within each index and accumulates them. If 410 /// LowerGEP is true, it finds in indices of both sequential and structure 411 /// types, otherwise it only finds in sequential indices. The output 412 /// NeedsExtraction indicates whether we successfully find a non-zero constant 413 /// offset. 414 int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction); 415 416 /// Canonicalize array indices to pointer-size integers. This helps to 417 /// simplify the logic of splitting a GEP. For example, if a + b is a 418 /// pointer-size integer, we have 419 /// gep base, a + b = gep (gep base, a), b 420 /// However, this equality may not hold if the size of a + b is smaller than 421 /// the pointer size, because LLVM conceptually sign-extends GEP indices to 422 /// pointer size before computing the address 423 /// (http://llvm.org/docs/LangRef.html#id181). 424 /// 425 /// This canonicalization is very likely already done in clang and 426 /// instcombine. Therefore, the program will probably remain the same. 427 /// 428 /// Returns true if the module changes. 429 /// 430 /// Verified in @i32_add in split-gep.ll 431 bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP); 432 433 /// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow. 434 /// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting 435 /// the constant offset. After extraction, it becomes desirable to reunion the 436 /// distributed sexts. For example, 437 /// 438 /// &a[sext(i +nsw (j +nsw 5)] 439 /// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)] 440 /// => constant extraction &a[sext(i) + sext(j)] + 5 441 /// => reunion &a[sext(i +nsw j)] + 5 442 bool reuniteExts(Function &F); 443 444 /// A helper that reunites sexts in an instruction. 445 bool reuniteExts(Instruction *I); 446 447 /// Find the closest dominator of <Dominatee> that is equivalent to <Key>. 448 Instruction *findClosestMatchingDominator( 449 const SCEV *Key, Instruction *Dominatee, 450 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs); 451 452 /// Verify F is free of dead code. 453 void verifyNoDeadCode(Function &F); 454 455 bool hasMoreThanOneUseInLoop(Value *v, Loop *L); 456 457 // Swap the index operand of two GEP. 458 void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second); 459 460 // Check if it is safe to swap operand of two GEP. 461 bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second, 462 Loop *CurLoop); 463 464 const DataLayout *DL = nullptr; 465 DominatorTree *DT = nullptr; 466 ScalarEvolution *SE; 467 LoopInfo *LI; 468 TargetLibraryInfo *TLI; 469 // Retrieved lazily since not always used. 470 function_ref<TargetTransformInfo &(Function &)> GetTTI; 471 472 /// Whether to lower a GEP with multiple indices into arithmetic operations or 473 /// multiple GEPs with a single index. 474 bool LowerGEP; 475 476 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingAdds; 477 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingSubs; 478 }; 479 480 } // end anonymous namespace 481 482 char SeparateConstOffsetFromGEPLegacyPass::ID = 0; 483 484 INITIALIZE_PASS_BEGIN( 485 SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep", 486 "Split GEPs to a variadic base and a constant offset for better CSE", false, 487 false) 488 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 489 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 490 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 491 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 492 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 493 INITIALIZE_PASS_END( 494 SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep", 495 "Split GEPs to a variadic base and a constant offset for better CSE", false, 496 false) 497 498 FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) { 499 return new SeparateConstOffsetFromGEPLegacyPass(LowerGEP); 500 } 501 502 bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended, 503 bool ZeroExtended, 504 BinaryOperator *BO, 505 bool NonNegative) { 506 // We only consider ADD, SUB and OR, because a non-zero constant found in 507 // expressions composed of these operations can be easily hoisted as a 508 // constant offset by reassociation. 509 if (BO->getOpcode() != Instruction::Add && 510 BO->getOpcode() != Instruction::Sub && 511 BO->getOpcode() != Instruction::Or) { 512 return false; 513 } 514 515 Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1); 516 // Do not trace into "or" unless it is equivalent to "add". If LHS and RHS 517 // don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS). 518 // FIXME: this does not appear to be covered by any tests 519 // (with x86/aarch64 backends at least) 520 if (BO->getOpcode() == Instruction::Or && 521 !haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT)) 522 return false; 523 524 // In addition, tracing into BO requires that its surrounding s/zext (if 525 // any) is distributable to both operands. 526 // 527 // Suppose BO = A op B. 528 // SignExtended | ZeroExtended | Distributable? 529 // --------------+--------------+---------------------------------- 530 // 0 | 0 | true because no s/zext exists 531 // 0 | 1 | zext(BO) == zext(A) op zext(B) 532 // 1 | 0 | sext(BO) == sext(A) op sext(B) 533 // 1 | 1 | zext(sext(BO)) == 534 // | | zext(sext(A)) op zext(sext(B)) 535 if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) { 536 // If a + b >= 0 and (a >= 0 or b >= 0), then 537 // sext(a + b) = sext(a) + sext(b) 538 // even if the addition is not marked nsw. 539 // 540 // Leveraging this invariant, we can trace into an sext'ed inbound GEP 541 // index if the constant offset is non-negative. 542 // 543 // Verified in @sext_add in split-gep.ll. 544 if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) { 545 if (!ConstLHS->isNegative()) 546 return true; 547 } 548 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) { 549 if (!ConstRHS->isNegative()) 550 return true; 551 } 552 } 553 554 // sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B) 555 // zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B) 556 if (BO->getOpcode() == Instruction::Add || 557 BO->getOpcode() == Instruction::Sub) { 558 if (SignExtended && !BO->hasNoSignedWrap()) 559 return false; 560 if (ZeroExtended && !BO->hasNoUnsignedWrap()) 561 return false; 562 } 563 564 return true; 565 } 566 567 APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO, 568 bool SignExtended, 569 bool ZeroExtended) { 570 // Save off the current height of the chain, in case we need to restore it. 571 size_t ChainLength = UserChain.size(); 572 573 // BO being non-negative does not shed light on whether its operands are 574 // non-negative. Clear the NonNegative flag here. 575 APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended, 576 /* NonNegative */ false); 577 // If we found a constant offset in the left operand, stop and return that. 578 // This shortcut might cause us to miss opportunities of combining the 579 // constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9. 580 // However, such cases are probably already handled by -instcombine, 581 // given this pass runs after the standard optimizations. 582 if (ConstantOffset != 0) return ConstantOffset; 583 584 // Reset the chain back to where it was when we started exploring this node, 585 // since visiting the LHS didn't pan out. 586 UserChain.resize(ChainLength); 587 588 ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended, 589 /* NonNegative */ false); 590 // If U is a sub operator, negate the constant offset found in the right 591 // operand. 592 if (BO->getOpcode() == Instruction::Sub) 593 ConstantOffset = -ConstantOffset; 594 595 // If RHS wasn't a suitable candidate either, reset the chain again. 596 if (ConstantOffset == 0) 597 UserChain.resize(ChainLength); 598 599 return ConstantOffset; 600 } 601 602 APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended, 603 bool ZeroExtended, bool NonNegative) { 604 // TODO(jingyue): We could trace into integer/pointer casts, such as 605 // inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only 606 // integers because it gives good enough results for our benchmarks. 607 unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 608 609 // We cannot do much with Values that are not a User, such as an Argument. 610 User *U = dyn_cast<User>(V); 611 if (U == nullptr) return APInt(BitWidth, 0); 612 613 APInt ConstantOffset(BitWidth, 0); 614 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 615 // Hooray, we found it! 616 ConstantOffset = CI->getValue(); 617 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) { 618 // Trace into subexpressions for more hoisting opportunities. 619 if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) 620 ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended); 621 } else if (isa<TruncInst>(V)) { 622 ConstantOffset = 623 find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative) 624 .trunc(BitWidth); 625 } else if (isa<SExtInst>(V)) { 626 ConstantOffset = find(U->getOperand(0), /* SignExtended */ true, 627 ZeroExtended, NonNegative).sext(BitWidth); 628 } else if (isa<ZExtInst>(V)) { 629 // As an optimization, we can clear the SignExtended flag because 630 // sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll. 631 // 632 // Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0. 633 ConstantOffset = 634 find(U->getOperand(0), /* SignExtended */ false, 635 /* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth); 636 } 637 638 // If we found a non-zero constant offset, add it to the path for 639 // rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't 640 // help this optimization. 641 if (ConstantOffset != 0) 642 UserChain.push_back(U); 643 return ConstantOffset; 644 } 645 646 Value *ConstantOffsetExtractor::applyExts(Value *V) { 647 Value *Current = V; 648 // ExtInsts is built in the use-def order. Therefore, we apply them to V 649 // in the reversed order. 650 for (CastInst *I : llvm::reverse(ExtInsts)) { 651 if (Constant *C = dyn_cast<Constant>(Current)) { 652 // If Current is a constant, apply s/zext using ConstantExpr::getCast. 653 // ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt. 654 Current = ConstantExpr::getCast(I->getOpcode(), C, I->getType()); 655 } else { 656 Instruction *Ext = I->clone(); 657 Ext->setOperand(0, Current); 658 Ext->insertBefore(IP); 659 Current = Ext; 660 } 661 } 662 return Current; 663 } 664 665 Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() { 666 distributeExtsAndCloneChain(UserChain.size() - 1); 667 // Remove all nullptrs (used to be s/zext) from UserChain. 668 unsigned NewSize = 0; 669 for (User *I : UserChain) { 670 if (I != nullptr) { 671 UserChain[NewSize] = I; 672 NewSize++; 673 } 674 } 675 UserChain.resize(NewSize); 676 return removeConstOffset(UserChain.size() - 1); 677 } 678 679 Value * 680 ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) { 681 User *U = UserChain[ChainIndex]; 682 if (ChainIndex == 0) { 683 assert(isa<ConstantInt>(U)); 684 // If U is a ConstantInt, applyExts will return a ConstantInt as well. 685 return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U)); 686 } 687 688 if (CastInst *Cast = dyn_cast<CastInst>(U)) { 689 assert( 690 (isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) && 691 "Only following instructions can be traced: sext, zext & trunc"); 692 ExtInsts.push_back(Cast); 693 UserChain[ChainIndex] = nullptr; 694 return distributeExtsAndCloneChain(ChainIndex - 1); 695 } 696 697 // Function find only trace into BinaryOperator and CastInst. 698 BinaryOperator *BO = cast<BinaryOperator>(U); 699 // OpNo = which operand of BO is UserChain[ChainIndex - 1] 700 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); 701 Value *TheOther = applyExts(BO->getOperand(1 - OpNo)); 702 Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1); 703 704 BinaryOperator *NewBO = nullptr; 705 if (OpNo == 0) { 706 NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther, 707 BO->getName(), IP); 708 } else { 709 NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain, 710 BO->getName(), IP); 711 } 712 return UserChain[ChainIndex] = NewBO; 713 } 714 715 Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) { 716 if (ChainIndex == 0) { 717 assert(isa<ConstantInt>(UserChain[ChainIndex])); 718 return ConstantInt::getNullValue(UserChain[ChainIndex]->getType()); 719 } 720 721 BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]); 722 assert((BO->use_empty() || BO->hasOneUse()) && 723 "distributeExtsAndCloneChain clones each BinaryOperator in " 724 "UserChain, so no one should be used more than " 725 "once"); 726 727 unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1); 728 assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]); 729 Value *NextInChain = removeConstOffset(ChainIndex - 1); 730 Value *TheOther = BO->getOperand(1 - OpNo); 731 732 // If NextInChain is 0 and not the LHS of a sub, we can simplify the 733 // sub-expression to be just TheOther. 734 if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) { 735 if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0)) 736 return TheOther; 737 } 738 739 BinaryOperator::BinaryOps NewOp = BO->getOpcode(); 740 if (BO->getOpcode() == Instruction::Or) { 741 // Rebuild "or" as "add", because "or" may be invalid for the new 742 // expression. 743 // 744 // For instance, given 745 // a | (b + 5) where a and b + 5 have no common bits, 746 // we can extract 5 as the constant offset. 747 // 748 // However, reusing the "or" in the new index would give us 749 // (a | b) + 5 750 // which does not equal a | (b + 5). 751 // 752 // Replacing the "or" with "add" is fine, because 753 // a | (b + 5) = a + (b + 5) = (a + b) + 5 754 NewOp = Instruction::Add; 755 } 756 757 BinaryOperator *NewBO; 758 if (OpNo == 0) { 759 NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP); 760 } else { 761 NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP); 762 } 763 NewBO->takeName(BO); 764 return NewBO; 765 } 766 767 Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP, 768 User *&UserChainTail, 769 const DominatorTree *DT) { 770 ConstantOffsetExtractor Extractor(GEP, DT); 771 // Find a non-zero constant offset first. 772 APInt ConstantOffset = 773 Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, 774 GEP->isInBounds()); 775 if (ConstantOffset == 0) { 776 UserChainTail = nullptr; 777 return nullptr; 778 } 779 // Separates the constant offset from the GEP index. 780 Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset(); 781 UserChainTail = Extractor.UserChain.back(); 782 return IdxWithoutConstOffset; 783 } 784 785 int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP, 786 const DominatorTree *DT) { 787 // If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative. 788 return ConstantOffsetExtractor(GEP, DT) 789 .find(Idx, /* SignExtended */ false, /* ZeroExtended */ false, 790 GEP->isInBounds()) 791 .getSExtValue(); 792 } 793 794 bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize( 795 GetElementPtrInst *GEP) { 796 bool Changed = false; 797 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 798 gep_type_iterator GTI = gep_type_begin(*GEP); 799 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); 800 I != E; ++I, ++GTI) { 801 // Skip struct member indices which must be i32. 802 if (GTI.isSequential()) { 803 if ((*I)->getType() != IntPtrTy) { 804 *I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP); 805 Changed = true; 806 } 807 } 808 } 809 return Changed; 810 } 811 812 int64_t 813 SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP, 814 bool &NeedsExtraction) { 815 NeedsExtraction = false; 816 int64_t AccumulativeByteOffset = 0; 817 gep_type_iterator GTI = gep_type_begin(*GEP); 818 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 819 if (GTI.isSequential()) { 820 // Constant offsets of scalable types are not really constant. 821 if (isa<ScalableVectorType>(GTI.getIndexedType())) 822 continue; 823 824 // Tries to extract a constant offset from this GEP index. 825 int64_t ConstantOffset = 826 ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT); 827 if (ConstantOffset != 0) { 828 NeedsExtraction = true; 829 // A GEP may have multiple indices. We accumulate the extracted 830 // constant offset to a byte offset, and later offset the remainder of 831 // the original GEP with this byte offset. 832 AccumulativeByteOffset += 833 ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType()); 834 } 835 } else if (LowerGEP) { 836 StructType *StTy = GTI.getStructType(); 837 uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue(); 838 // Skip field 0 as the offset is always 0. 839 if (Field != 0) { 840 NeedsExtraction = true; 841 AccumulativeByteOffset += 842 DL->getStructLayout(StTy)->getElementOffset(Field); 843 } 844 } 845 } 846 return AccumulativeByteOffset; 847 } 848 849 void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs( 850 GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) { 851 IRBuilder<> Builder(Variadic); 852 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType()); 853 854 Type *I8PtrTy = 855 Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace()); 856 Value *ResultPtr = Variadic->getOperand(0); 857 Loop *L = LI->getLoopFor(Variadic->getParent()); 858 // Check if the base is not loop invariant or used more than once. 859 bool isSwapCandidate = 860 L && L->isLoopInvariant(ResultPtr) && 861 !hasMoreThanOneUseInLoop(ResultPtr, L); 862 Value *FirstResult = nullptr; 863 864 if (ResultPtr->getType() != I8PtrTy) 865 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 866 867 gep_type_iterator GTI = gep_type_begin(*Variadic); 868 // Create an ugly GEP for each sequential index. We don't create GEPs for 869 // structure indices, as they are accumulated in the constant offset index. 870 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { 871 if (GTI.isSequential()) { 872 Value *Idx = Variadic->getOperand(I); 873 // Skip zero indices. 874 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) 875 if (CI->isZero()) 876 continue; 877 878 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(), 879 DL->getTypeAllocSize(GTI.getIndexedType())); 880 // Scale the index by element size. 881 if (ElementSize != 1) { 882 if (ElementSize.isPowerOf2()) { 883 Idx = Builder.CreateShl( 884 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2())); 885 } else { 886 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize)); 887 } 888 } 889 // Create an ugly GEP with a single index for each index. 890 ResultPtr = 891 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep"); 892 if (FirstResult == nullptr) 893 FirstResult = ResultPtr; 894 } 895 } 896 897 // Create a GEP with the constant offset index. 898 if (AccumulativeByteOffset != 0) { 899 Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset); 900 ResultPtr = 901 Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep"); 902 } else 903 isSwapCandidate = false; 904 905 // If we created a GEP with constant index, and the base is loop invariant, 906 // then we swap the first one with it, so LICM can move constant GEP out 907 // later. 908 auto *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult); 909 auto *SecondGEP = dyn_cast<GetElementPtrInst>(ResultPtr); 910 if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L)) 911 swapGEPOperand(FirstGEP, SecondGEP); 912 913 if (ResultPtr->getType() != Variadic->getType()) 914 ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType()); 915 916 Variadic->replaceAllUsesWith(ResultPtr); 917 Variadic->eraseFromParent(); 918 } 919 920 void 921 SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic, 922 int64_t AccumulativeByteOffset) { 923 IRBuilder<> Builder(Variadic); 924 Type *IntPtrTy = DL->getIntPtrType(Variadic->getType()); 925 926 Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy); 927 gep_type_iterator GTI = gep_type_begin(*Variadic); 928 // Create ADD/SHL/MUL arithmetic operations for each sequential indices. We 929 // don't create arithmetics for structure indices, as they are accumulated 930 // in the constant offset index. 931 for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) { 932 if (GTI.isSequential()) { 933 Value *Idx = Variadic->getOperand(I); 934 // Skip zero indices. 935 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) 936 if (CI->isZero()) 937 continue; 938 939 APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(), 940 DL->getTypeAllocSize(GTI.getIndexedType())); 941 // Scale the index by element size. 942 if (ElementSize != 1) { 943 if (ElementSize.isPowerOf2()) { 944 Idx = Builder.CreateShl( 945 Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2())); 946 } else { 947 Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize)); 948 } 949 } 950 // Create an ADD for each index. 951 ResultPtr = Builder.CreateAdd(ResultPtr, Idx); 952 } 953 } 954 955 // Create an ADD for the constant offset index. 956 if (AccumulativeByteOffset != 0) { 957 ResultPtr = Builder.CreateAdd( 958 ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset)); 959 } 960 961 ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType()); 962 Variadic->replaceAllUsesWith(ResultPtr); 963 Variadic->eraseFromParent(); 964 } 965 966 bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) { 967 // Skip vector GEPs. 968 if (GEP->getType()->isVectorTy()) 969 return false; 970 971 // The backend can already nicely handle the case where all indices are 972 // constant. 973 if (GEP->hasAllConstantIndices()) 974 return false; 975 976 bool Changed = canonicalizeArrayIndicesToPointerSize(GEP); 977 978 bool NeedsExtraction; 979 int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction); 980 981 if (!NeedsExtraction) 982 return Changed; 983 984 TargetTransformInfo &TTI = GetTTI(*GEP->getFunction()); 985 986 // If LowerGEP is disabled, before really splitting the GEP, check whether the 987 // backend supports the addressing mode we are about to produce. If no, this 988 // splitting probably won't be beneficial. 989 // If LowerGEP is enabled, even the extracted constant offset can not match 990 // the addressing mode, we can still do optimizations to other lowered parts 991 // of variable indices. Therefore, we don't check for addressing modes in that 992 // case. 993 if (!LowerGEP) { 994 unsigned AddrSpace = GEP->getPointerAddressSpace(); 995 if (!TTI.isLegalAddressingMode(GEP->getResultElementType(), 996 /*BaseGV=*/nullptr, AccumulativeByteOffset, 997 /*HasBaseReg=*/true, /*Scale=*/0, 998 AddrSpace)) { 999 return Changed; 1000 } 1001 } 1002 1003 // Remove the constant offset in each sequential index. The resultant GEP 1004 // computes the variadic base. 1005 // Notice that we don't remove struct field indices here. If LowerGEP is 1006 // disabled, a structure index is not accumulated and we still use the old 1007 // one. If LowerGEP is enabled, a structure index is accumulated in the 1008 // constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later 1009 // handle the constant offset and won't need a new structure index. 1010 gep_type_iterator GTI = gep_type_begin(*GEP); 1011 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 1012 if (GTI.isSequential()) { 1013 // Constant offsets of scalable types are not really constant. 1014 if (isa<ScalableVectorType>(GTI.getIndexedType())) 1015 continue; 1016 1017 // Splits this GEP index into a variadic part and a constant offset, and 1018 // uses the variadic part as the new index. 1019 Value *OldIdx = GEP->getOperand(I); 1020 User *UserChainTail; 1021 Value *NewIdx = 1022 ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT); 1023 if (NewIdx != nullptr) { 1024 // Switches to the index with the constant offset removed. 1025 GEP->setOperand(I, NewIdx); 1026 // After switching to the new index, we can garbage-collect UserChain 1027 // and the old index if they are not used. 1028 RecursivelyDeleteTriviallyDeadInstructions(UserChainTail); 1029 RecursivelyDeleteTriviallyDeadInstructions(OldIdx); 1030 } 1031 } 1032 } 1033 1034 // Clear the inbounds attribute because the new index may be off-bound. 1035 // e.g., 1036 // 1037 // b = add i64 a, 5 1038 // addr = gep inbounds float, float* p, i64 b 1039 // 1040 // is transformed to: 1041 // 1042 // addr2 = gep float, float* p, i64 a ; inbounds removed 1043 // addr = gep inbounds float, float* addr2, i64 5 1044 // 1045 // If a is -4, although the old index b is in bounds, the new index a is 1046 // off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the 1047 // inbounds keyword is not present, the offsets are added to the base 1048 // address with silently-wrapping two's complement arithmetic". 1049 // Therefore, the final code will be a semantically equivalent. 1050 // 1051 // TODO(jingyue): do some range analysis to keep as many inbounds as 1052 // possible. GEPs with inbounds are more friendly to alias analysis. 1053 bool GEPWasInBounds = GEP->isInBounds(); 1054 GEP->setIsInBounds(false); 1055 1056 // Lowers a GEP to either GEPs with a single index or arithmetic operations. 1057 if (LowerGEP) { 1058 // As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to 1059 // arithmetic operations if the target uses alias analysis in codegen. 1060 if (TTI.useAA()) 1061 lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset); 1062 else 1063 lowerToArithmetics(GEP, AccumulativeByteOffset); 1064 return true; 1065 } 1066 1067 // No need to create another GEP if the accumulative byte offset is 0. 1068 if (AccumulativeByteOffset == 0) 1069 return true; 1070 1071 // Offsets the base with the accumulative byte offset. 1072 // 1073 // %gep ; the base 1074 // ... %gep ... 1075 // 1076 // => add the offset 1077 // 1078 // %gep2 ; clone of %gep 1079 // %new.gep = gep %gep2, <offset / sizeof(*%gep)> 1080 // %gep ; will be removed 1081 // ... %gep ... 1082 // 1083 // => replace all uses of %gep with %new.gep and remove %gep 1084 // 1085 // %gep2 ; clone of %gep 1086 // %new.gep = gep %gep2, <offset / sizeof(*%gep)> 1087 // ... %new.gep ... 1088 // 1089 // If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an 1090 // uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep): 1091 // bitcast %gep2 to i8*, add the offset, and bitcast the result back to the 1092 // type of %gep. 1093 // 1094 // %gep2 ; clone of %gep 1095 // %0 = bitcast %gep2 to i8* 1096 // %uglygep = gep %0, <offset> 1097 // %new.gep = bitcast %uglygep to <type of %gep> 1098 // ... %new.gep ... 1099 Instruction *NewGEP = GEP->clone(); 1100 NewGEP->insertBefore(GEP); 1101 1102 // Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned = 1103 // unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is 1104 // used with unsigned integers later. 1105 int64_t ElementTypeSizeOfGEP = static_cast<int64_t>( 1106 DL->getTypeAllocSize(GEP->getResultElementType())); 1107 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 1108 if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) { 1109 // Very likely. As long as %gep is naturally aligned, the byte offset we 1110 // extracted should be a multiple of sizeof(*%gep). 1111 int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP; 1112 NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP, 1113 ConstantInt::get(IntPtrTy, Index, true), 1114 GEP->getName(), GEP); 1115 NewGEP->copyMetadata(*GEP); 1116 // Inherit the inbounds attribute of the original GEP. 1117 cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds); 1118 } else { 1119 // Unlikely but possible. For example, 1120 // #pragma pack(1) 1121 // struct S { 1122 // int a[3]; 1123 // int64 b[8]; 1124 // }; 1125 // #pragma pack() 1126 // 1127 // Suppose the gep before extraction is &s[i + 1].b[j + 3]. After 1128 // extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is 1129 // sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of 1130 // sizeof(int64). 1131 // 1132 // Emit an uglygep in this case. 1133 IRBuilder<> Builder(GEP); 1134 Type *I8PtrTy = 1135 Builder.getInt8Ty()->getPointerTo(GEP->getPointerAddressSpace()); 1136 1137 NewGEP = cast<Instruction>(Builder.CreateGEP( 1138 Builder.getInt8Ty(), Builder.CreateBitCast(NewGEP, I8PtrTy), 1139 {ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true)}, "uglygep", 1140 GEPWasInBounds)); 1141 1142 NewGEP->copyMetadata(*GEP); 1143 NewGEP = cast<Instruction>(Builder.CreateBitCast(NewGEP, GEP->getType())); 1144 } 1145 1146 GEP->replaceAllUsesWith(NewGEP); 1147 GEP->eraseFromParent(); 1148 1149 return true; 1150 } 1151 1152 bool SeparateConstOffsetFromGEPLegacyPass::runOnFunction(Function &F) { 1153 if (skipFunction(F)) 1154 return false; 1155 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1156 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1157 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1158 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1159 auto GetTTI = [this](Function &F) -> TargetTransformInfo & { 1160 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1161 }; 1162 SeparateConstOffsetFromGEP Impl(DT, SE, LI, TLI, GetTTI, LowerGEP); 1163 return Impl.run(F); 1164 } 1165 1166 bool SeparateConstOffsetFromGEP::run(Function &F) { 1167 if (DisableSeparateConstOffsetFromGEP) 1168 return false; 1169 1170 DL = &F.getParent()->getDataLayout(); 1171 bool Changed = false; 1172 for (BasicBlock &B : F) { 1173 if (!DT->isReachableFromEntry(&B)) 1174 continue; 1175 1176 for (Instruction &I : llvm::make_early_inc_range(B)) 1177 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) 1178 Changed |= splitGEP(GEP); 1179 // No need to split GEP ConstantExprs because all its indices are constant 1180 // already. 1181 } 1182 1183 Changed |= reuniteExts(F); 1184 1185 if (VerifyNoDeadCode) 1186 verifyNoDeadCode(F); 1187 1188 return Changed; 1189 } 1190 1191 Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator( 1192 const SCEV *Key, Instruction *Dominatee, 1193 DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs) { 1194 auto Pos = DominatingExprs.find(Key); 1195 if (Pos == DominatingExprs.end()) 1196 return nullptr; 1197 1198 auto &Candidates = Pos->second; 1199 // Because we process the basic blocks in pre-order of the dominator tree, a 1200 // candidate that doesn't dominate the current instruction won't dominate any 1201 // future instruction either. Therefore, we pop it out of the stack. This 1202 // optimization makes the algorithm O(n). 1203 while (!Candidates.empty()) { 1204 Instruction *Candidate = Candidates.back(); 1205 if (DT->dominates(Candidate, Dominatee)) 1206 return Candidate; 1207 Candidates.pop_back(); 1208 } 1209 return nullptr; 1210 } 1211 1212 bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) { 1213 if (!SE->isSCEVable(I->getType())) 1214 return false; 1215 1216 // Dom: LHS+RHS 1217 // I: sext(LHS)+sext(RHS) 1218 // If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom). 1219 // TODO: handle zext 1220 Value *LHS = nullptr, *RHS = nullptr; 1221 if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) { 1222 if (LHS->getType() == RHS->getType()) { 1223 const SCEV *Key = 1224 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1225 if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingAdds)) { 1226 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I); 1227 NewSExt->takeName(I); 1228 I->replaceAllUsesWith(NewSExt); 1229 RecursivelyDeleteTriviallyDeadInstructions(I); 1230 return true; 1231 } 1232 } 1233 } else if (match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) { 1234 if (LHS->getType() == RHS->getType()) { 1235 const SCEV *Key = 1236 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1237 if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingSubs)) { 1238 Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I); 1239 NewSExt->takeName(I); 1240 I->replaceAllUsesWith(NewSExt); 1241 RecursivelyDeleteTriviallyDeadInstructions(I); 1242 return true; 1243 } 1244 } 1245 } 1246 1247 // Add I to DominatingExprs if it's an add/sub that can't sign overflow. 1248 if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS)))) { 1249 if (programUndefinedIfPoison(I)) { 1250 const SCEV *Key = 1251 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1252 DominatingAdds[Key].push_back(I); 1253 } 1254 } else if (match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) { 1255 if (programUndefinedIfPoison(I)) { 1256 const SCEV *Key = 1257 SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS)); 1258 DominatingSubs[Key].push_back(I); 1259 } 1260 } 1261 return false; 1262 } 1263 1264 bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) { 1265 bool Changed = false; 1266 DominatingAdds.clear(); 1267 DominatingSubs.clear(); 1268 for (const auto Node : depth_first(DT)) { 1269 BasicBlock *BB = Node->getBlock(); 1270 for (Instruction &I : llvm::make_early_inc_range(*BB)) 1271 Changed |= reuniteExts(&I); 1272 } 1273 return Changed; 1274 } 1275 1276 void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) { 1277 for (BasicBlock &B : F) { 1278 for (Instruction &I : B) { 1279 if (isInstructionTriviallyDead(&I)) { 1280 std::string ErrMessage; 1281 raw_string_ostream RSO(ErrMessage); 1282 RSO << "Dead instruction detected!\n" << I << "\n"; 1283 llvm_unreachable(RSO.str().c_str()); 1284 } 1285 } 1286 } 1287 } 1288 1289 bool SeparateConstOffsetFromGEP::isLegalToSwapOperand( 1290 GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) { 1291 if (!FirstGEP || !FirstGEP->hasOneUse()) 1292 return false; 1293 1294 if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent()) 1295 return false; 1296 1297 if (FirstGEP == SecondGEP) 1298 return false; 1299 1300 unsigned FirstNum = FirstGEP->getNumOperands(); 1301 unsigned SecondNum = SecondGEP->getNumOperands(); 1302 // Give up if the number of operands are not 2. 1303 if (FirstNum != SecondNum || FirstNum != 2) 1304 return false; 1305 1306 Value *FirstBase = FirstGEP->getOperand(0); 1307 Value *SecondBase = SecondGEP->getOperand(0); 1308 Value *FirstOffset = FirstGEP->getOperand(1); 1309 // Give up if the index of the first GEP is loop invariant. 1310 if (CurLoop->isLoopInvariant(FirstOffset)) 1311 return false; 1312 1313 // Give up if base doesn't have same type. 1314 if (FirstBase->getType() != SecondBase->getType()) 1315 return false; 1316 1317 Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset); 1318 1319 // Check if the second operand of first GEP has constant coefficient. 1320 // For an example, for the following code, we won't gain anything by 1321 // hoisting the second GEP out because the second GEP can be folded away. 1322 // %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256 1323 // %67 = shl i64 %scevgep.sum.ur159, 2 1324 // %uglygep160 = getelementptr i8* %65, i64 %67 1325 // %uglygep161 = getelementptr i8* %uglygep160, i64 -1024 1326 1327 // Skip constant shift instruction which may be generated by Splitting GEPs. 1328 if (FirstOffsetDef && FirstOffsetDef->isShift() && 1329 isa<ConstantInt>(FirstOffsetDef->getOperand(1))) 1330 FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0)); 1331 1332 // Give up if FirstOffsetDef is an Add or Sub with constant. 1333 // Because it may not profitable at all due to constant folding. 1334 if (FirstOffsetDef) 1335 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) { 1336 unsigned opc = BO->getOpcode(); 1337 if ((opc == Instruction::Add || opc == Instruction::Sub) && 1338 (isa<ConstantInt>(BO->getOperand(0)) || 1339 isa<ConstantInt>(BO->getOperand(1)))) 1340 return false; 1341 } 1342 return true; 1343 } 1344 1345 bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) { 1346 int UsesInLoop = 0; 1347 for (User *U : V->users()) { 1348 if (Instruction *User = dyn_cast<Instruction>(U)) 1349 if (L->contains(User)) 1350 if (++UsesInLoop > 1) 1351 return true; 1352 } 1353 return false; 1354 } 1355 1356 void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First, 1357 GetElementPtrInst *Second) { 1358 Value *Offset1 = First->getOperand(1); 1359 Value *Offset2 = Second->getOperand(1); 1360 First->setOperand(1, Offset2); 1361 Second->setOperand(1, Offset1); 1362 1363 // We changed p+o+c to p+c+o, p+c may not be inbound anymore. 1364 const DataLayout &DAL = First->getModule()->getDataLayout(); 1365 APInt Offset(DAL.getIndexSizeInBits( 1366 cast<PointerType>(First->getType())->getAddressSpace()), 1367 0); 1368 Value *NewBase = 1369 First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset); 1370 uint64_t ObjectSize; 1371 if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) || 1372 Offset.ugt(ObjectSize)) { 1373 First->setIsInBounds(false); 1374 Second->setIsInBounds(false); 1375 } else 1376 First->setIsInBounds(true); 1377 } 1378 1379 PreservedAnalyses 1380 SeparateConstOffsetFromGEPPass::run(Function &F, FunctionAnalysisManager &AM) { 1381 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1382 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 1383 auto *LI = &AM.getResult<LoopAnalysis>(F); 1384 auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1385 auto GetTTI = [&AM](Function &F) -> TargetTransformInfo & { 1386 return AM.getResult<TargetIRAnalysis>(F); 1387 }; 1388 SeparateConstOffsetFromGEP Impl(DT, SE, LI, TLI, GetTTI, LowerGEP); 1389 if (!Impl.run(F)) 1390 return PreservedAnalyses::all(); 1391 PreservedAnalyses PA; 1392 PA.preserveSet<CFGAnalyses>(); 1393 return PA; 1394 } 1395