1 //===- Scalarizer.cpp - Scalarize vector operations -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass converts vector operations into scalar operations, in order 10 // to expose optimization opportunities on the individual scalar operations. 11 // It is mainly intended for targets that do not have vector units, but it 12 // may also be useful for revectorizing code to different vector widths. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/PostOrderIterator.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/VectorUtils.h" 20 #include "llvm/IR/Argument.h" 21 #include "llvm/IR/BasicBlock.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstVisitor.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/Options.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include "llvm/Transforms/Scalar/Scalarizer.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <map> 46 #include <utility> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "scalarizer" 51 52 // This is disabled by default because having separate loads and stores 53 // makes it more likely that the -combiner-alias-analysis limits will be 54 // reached. 55 static cl::opt<bool> 56 ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden, 57 cl::desc("Allow the scalarizer pass to scalarize loads and store")); 58 59 namespace { 60 61 // Used to store the scattered form of a vector. 62 using ValueVector = SmallVector<Value *, 8>; 63 64 // Used to map a vector Value to its scattered form. We use std::map 65 // because we want iterators to persist across insertion and because the 66 // values are relatively large. 67 using ScatterMap = std::map<Value *, ValueVector>; 68 69 // Lists Instructions that have been replaced with scalar implementations, 70 // along with a pointer to their scattered forms. 71 using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>; 72 73 // Provides a very limited vector-like interface for lazily accessing one 74 // component of a scattered vector or vector pointer. 75 class Scatterer { 76 public: 77 Scatterer() = default; 78 79 // Scatter V into Size components. If new instructions are needed, 80 // insert them before BBI in BB. If Cache is nonnull, use it to cache 81 // the results. 82 Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, 83 ValueVector *cachePtr = nullptr); 84 85 // Return component I, creating a new Value for it if necessary. 86 Value *operator[](unsigned I); 87 88 // Return the number of components. 89 unsigned size() const { return Size; } 90 91 private: 92 BasicBlock *BB; 93 BasicBlock::iterator BBI; 94 Value *V; 95 ValueVector *CachePtr; 96 PointerType *PtrTy; 97 ValueVector Tmp; 98 unsigned Size; 99 }; 100 101 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp 102 // called Name that compares X and Y in the same way as FCI. 103 struct FCmpSplitter { 104 FCmpSplitter(FCmpInst &fci) : FCI(fci) {} 105 106 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 107 const Twine &Name) const { 108 return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name); 109 } 110 111 FCmpInst &FCI; 112 }; 113 114 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp 115 // called Name that compares X and Y in the same way as ICI. 116 struct ICmpSplitter { 117 ICmpSplitter(ICmpInst &ici) : ICI(ici) {} 118 119 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 120 const Twine &Name) const { 121 return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name); 122 } 123 124 ICmpInst &ICI; 125 }; 126 127 // UnarySpliiter(UO)(Builder, X, Name) uses Builder to create 128 // a unary operator like UO called Name with operand X. 129 struct UnarySplitter { 130 UnarySplitter(UnaryOperator &uo) : UO(uo) {} 131 132 Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const { 133 return Builder.CreateUnOp(UO.getOpcode(), Op, Name); 134 } 135 136 UnaryOperator &UO; 137 }; 138 139 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create 140 // a binary operator like BO called Name with operands X and Y. 141 struct BinarySplitter { 142 BinarySplitter(BinaryOperator &bo) : BO(bo) {} 143 144 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 145 const Twine &Name) const { 146 return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name); 147 } 148 149 BinaryOperator &BO; 150 }; 151 152 // Information about a load or store that we're scalarizing. 153 struct VectorLayout { 154 VectorLayout() = default; 155 156 // Return the alignment of element I. 157 uint64_t getElemAlign(unsigned I) { 158 return MinAlign(VecAlign, I * ElemSize); 159 } 160 161 // The type of the vector. 162 VectorType *VecTy = nullptr; 163 164 // The type of each element. 165 Type *ElemTy = nullptr; 166 167 // The alignment of the vector. 168 uint64_t VecAlign = 0; 169 170 // The size of each element. 171 uint64_t ElemSize = 0; 172 }; 173 174 class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> { 175 public: 176 ScalarizerVisitor(unsigned ParallelLoopAccessMDKind) 177 : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind) { 178 } 179 180 bool visit(Function &F); 181 182 // InstVisitor methods. They return true if the instruction was scalarized, 183 // false if nothing changed. 184 bool visitInstruction(Instruction &I) { return false; } 185 bool visitSelectInst(SelectInst &SI); 186 bool visitICmpInst(ICmpInst &ICI); 187 bool visitFCmpInst(FCmpInst &FCI); 188 bool visitUnaryOperator(UnaryOperator &UO); 189 bool visitBinaryOperator(BinaryOperator &BO); 190 bool visitGetElementPtrInst(GetElementPtrInst &GEPI); 191 bool visitCastInst(CastInst &CI); 192 bool visitBitCastInst(BitCastInst &BCI); 193 bool visitShuffleVectorInst(ShuffleVectorInst &SVI); 194 bool visitPHINode(PHINode &PHI); 195 bool visitLoadInst(LoadInst &LI); 196 bool visitStoreInst(StoreInst &SI); 197 bool visitCallInst(CallInst &ICI); 198 199 private: 200 Scatterer scatter(Instruction *Point, Value *V); 201 void gather(Instruction *Op, const ValueVector &CV); 202 bool canTransferMetadata(unsigned Kind); 203 void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV); 204 bool getVectorLayout(Type *Ty, unsigned Alignment, VectorLayout &Layout, 205 const DataLayout &DL); 206 bool finish(); 207 208 template<typename T> bool splitUnary(Instruction &, const T &); 209 template<typename T> bool splitBinary(Instruction &, const T &); 210 211 bool splitCall(CallInst &CI); 212 213 ScatterMap Scattered; 214 GatherList Gathered; 215 216 unsigned ParallelLoopAccessMDKind; 217 }; 218 219 class ScalarizerLegacyPass : public FunctionPass { 220 public: 221 static char ID; 222 223 ScalarizerLegacyPass() : FunctionPass(ID) { 224 initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry()); 225 } 226 227 bool runOnFunction(Function &F) override; 228 }; 229 230 } // end anonymous namespace 231 232 char ScalarizerLegacyPass::ID = 0; 233 INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer", 234 "Scalarize vector operations", false, false) 235 INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer", 236 "Scalarize vector operations", false, false) 237 238 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, 239 ValueVector *cachePtr) 240 : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) { 241 Type *Ty = V->getType(); 242 PtrTy = dyn_cast<PointerType>(Ty); 243 if (PtrTy) 244 Ty = PtrTy->getElementType(); 245 Size = Ty->getVectorNumElements(); 246 if (!CachePtr) 247 Tmp.resize(Size, nullptr); 248 else if (CachePtr->empty()) 249 CachePtr->resize(Size, nullptr); 250 else 251 assert(Size == CachePtr->size() && "Inconsistent vector sizes"); 252 } 253 254 // Return component I, creating a new Value for it if necessary. 255 Value *Scatterer::operator[](unsigned I) { 256 ValueVector &CV = (CachePtr ? *CachePtr : Tmp); 257 // Try to reuse a previous value. 258 if (CV[I]) 259 return CV[I]; 260 IRBuilder<> Builder(BB, BBI); 261 if (PtrTy) { 262 Type *ElTy = PtrTy->getElementType()->getVectorElementType(); 263 if (!CV[0]) { 264 Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace()); 265 CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0"); 266 } 267 if (I != 0) 268 CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I, 269 V->getName() + ".i" + Twine(I)); 270 } else { 271 // Search through a chain of InsertElementInsts looking for element I. 272 // Record other elements in the cache. The new V is still suitable 273 // for all uncached indices. 274 while (true) { 275 InsertElementInst *Insert = dyn_cast<InsertElementInst>(V); 276 if (!Insert) 277 break; 278 ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2)); 279 if (!Idx) 280 break; 281 unsigned J = Idx->getZExtValue(); 282 V = Insert->getOperand(0); 283 if (I == J) { 284 CV[J] = Insert->getOperand(1); 285 return CV[J]; 286 } else if (!CV[J]) { 287 // Only cache the first entry we find for each index we're not actively 288 // searching for. This prevents us from going too far up the chain and 289 // caching incorrect entries. 290 CV[J] = Insert->getOperand(1); 291 } 292 } 293 CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I), 294 V->getName() + ".i" + Twine(I)); 295 } 296 return CV[I]; 297 } 298 299 bool ScalarizerLegacyPass::runOnFunction(Function &F) { 300 if (skipFunction(F)) 301 return false; 302 303 Module &M = *F.getParent(); 304 unsigned ParallelLoopAccessMDKind = 305 M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); 306 ScalarizerVisitor Impl(ParallelLoopAccessMDKind); 307 return Impl.visit(F); 308 } 309 310 FunctionPass *llvm::createScalarizerPass() { 311 return new ScalarizerLegacyPass(); 312 } 313 314 bool ScalarizerVisitor::visit(Function &F) { 315 assert(Gathered.empty() && Scattered.empty()); 316 317 // To ensure we replace gathered components correctly we need to do an ordered 318 // traversal of the basic blocks in the function. 319 ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock()); 320 for (BasicBlock *BB : RPOT) { 321 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 322 Instruction *I = &*II; 323 bool Done = InstVisitor::visit(I); 324 ++II; 325 if (Done && I->getType()->isVoidTy()) 326 I->eraseFromParent(); 327 } 328 } 329 return finish(); 330 } 331 332 // Return a scattered form of V that can be accessed by Point. V must be a 333 // vector or a pointer to a vector. 334 Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) { 335 if (Argument *VArg = dyn_cast<Argument>(V)) { 336 // Put the scattered form of arguments in the entry block, 337 // so that it can be used everywhere. 338 Function *F = VArg->getParent(); 339 BasicBlock *BB = &F->getEntryBlock(); 340 return Scatterer(BB, BB->begin(), V, &Scattered[V]); 341 } 342 if (Instruction *VOp = dyn_cast<Instruction>(V)) { 343 // Put the scattered form of an instruction directly after the 344 // instruction. 345 BasicBlock *BB = VOp->getParent(); 346 return Scatterer(BB, std::next(BasicBlock::iterator(VOp)), 347 V, &Scattered[V]); 348 } 349 // In the fallback case, just put the scattered before Point and 350 // keep the result local to Point. 351 return Scatterer(Point->getParent(), Point->getIterator(), V); 352 } 353 354 // Replace Op with the gathered form of the components in CV. Defer the 355 // deletion of Op and creation of the gathered form to the end of the pass, 356 // so that we can avoid creating the gathered form if all uses of Op are 357 // replaced with uses of CV. 358 void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) { 359 // Since we're not deleting Op yet, stub out its operands, so that it 360 // doesn't make anything live unnecessarily. 361 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) 362 Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType())); 363 364 transferMetadataAndIRFlags(Op, CV); 365 366 // If we already have a scattered form of Op (created from ExtractElements 367 // of Op itself), replace them with the new form. 368 ValueVector &SV = Scattered[Op]; 369 if (!SV.empty()) { 370 for (unsigned I = 0, E = SV.size(); I != E; ++I) { 371 Value *V = SV[I]; 372 if (V == nullptr) 373 continue; 374 375 Instruction *Old = cast<Instruction>(V); 376 CV[I]->takeName(Old); 377 Old->replaceAllUsesWith(CV[I]); 378 Old->eraseFromParent(); 379 } 380 } 381 SV = CV; 382 Gathered.push_back(GatherList::value_type(Op, &SV)); 383 } 384 385 // Return true if it is safe to transfer the given metadata tag from 386 // vector to scalar instructions. 387 bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) { 388 return (Tag == LLVMContext::MD_tbaa 389 || Tag == LLVMContext::MD_fpmath 390 || Tag == LLVMContext::MD_tbaa_struct 391 || Tag == LLVMContext::MD_invariant_load 392 || Tag == LLVMContext::MD_alias_scope 393 || Tag == LLVMContext::MD_noalias 394 || Tag == ParallelLoopAccessMDKind 395 || Tag == LLVMContext::MD_access_group); 396 } 397 398 // Transfer metadata from Op to the instructions in CV if it is known 399 // to be safe to do so. 400 void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op, 401 const ValueVector &CV) { 402 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 403 Op->getAllMetadataOtherThanDebugLoc(MDs); 404 for (unsigned I = 0, E = CV.size(); I != E; ++I) { 405 if (Instruction *New = dyn_cast<Instruction>(CV[I])) { 406 for (const auto &MD : MDs) 407 if (canTransferMetadata(MD.first)) 408 New->setMetadata(MD.first, MD.second); 409 New->copyIRFlags(Op); 410 if (Op->getDebugLoc() && !New->getDebugLoc()) 411 New->setDebugLoc(Op->getDebugLoc()); 412 } 413 } 414 } 415 416 // Try to fill in Layout from Ty, returning true on success. Alignment is 417 // the alignment of the vector, or 0 if the ABI default should be used. 418 bool ScalarizerVisitor::getVectorLayout(Type *Ty, unsigned Alignment, 419 VectorLayout &Layout, const DataLayout &DL) { 420 // Make sure we're dealing with a vector. 421 Layout.VecTy = dyn_cast<VectorType>(Ty); 422 if (!Layout.VecTy) 423 return false; 424 425 // Check that we're dealing with full-byte elements. 426 Layout.ElemTy = Layout.VecTy->getElementType(); 427 if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy)) 428 return false; 429 430 if (Alignment) 431 Layout.VecAlign = Alignment; 432 else 433 Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy); 434 Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy); 435 return true; 436 } 437 438 // Scalarize one-operand instruction I, using Split(Builder, X, Name) 439 // to create an instruction like I with operand X and name Name. 440 template<typename Splitter> 441 bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) { 442 VectorType *VT = dyn_cast<VectorType>(I.getType()); 443 if (!VT) 444 return false; 445 446 unsigned NumElems = VT->getNumElements(); 447 IRBuilder<> Builder(&I); 448 Scatterer Op = scatter(&I, I.getOperand(0)); 449 assert(Op.size() == NumElems && "Mismatched unary operation"); 450 ValueVector Res; 451 Res.resize(NumElems); 452 for (unsigned Elem = 0; Elem < NumElems; ++Elem) 453 Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem)); 454 gather(&I, Res); 455 return true; 456 } 457 458 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name) 459 // to create an instruction like I with operands X and Y and name Name. 460 template<typename Splitter> 461 bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) { 462 VectorType *VT = dyn_cast<VectorType>(I.getType()); 463 if (!VT) 464 return false; 465 466 unsigned NumElems = VT->getNumElements(); 467 IRBuilder<> Builder(&I); 468 Scatterer Op0 = scatter(&I, I.getOperand(0)); 469 Scatterer Op1 = scatter(&I, I.getOperand(1)); 470 assert(Op0.size() == NumElems && "Mismatched binary operation"); 471 assert(Op1.size() == NumElems && "Mismatched binary operation"); 472 ValueVector Res; 473 Res.resize(NumElems); 474 for (unsigned Elem = 0; Elem < NumElems; ++Elem) 475 Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem], 476 I.getName() + ".i" + Twine(Elem)); 477 gather(&I, Res); 478 return true; 479 } 480 481 static bool isTriviallyScalariable(Intrinsic::ID ID) { 482 return isTriviallyVectorizable(ID); 483 } 484 485 // All of the current scalarizable intrinsics only have one mangled type. 486 static Function *getScalarIntrinsicDeclaration(Module *M, 487 Intrinsic::ID ID, 488 VectorType *Ty) { 489 return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() }); 490 } 491 492 /// If a call to a vector typed intrinsic function, split into a scalar call per 493 /// element if possible for the intrinsic. 494 bool ScalarizerVisitor::splitCall(CallInst &CI) { 495 VectorType *VT = dyn_cast<VectorType>(CI.getType()); 496 if (!VT) 497 return false; 498 499 Function *F = CI.getCalledFunction(); 500 if (!F) 501 return false; 502 503 Intrinsic::ID ID = F->getIntrinsicID(); 504 if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID)) 505 return false; 506 507 unsigned NumElems = VT->getNumElements(); 508 unsigned NumArgs = CI.getNumArgOperands(); 509 510 ValueVector ScalarOperands(NumArgs); 511 SmallVector<Scatterer, 8> Scattered(NumArgs); 512 513 Scattered.resize(NumArgs); 514 515 // Assumes that any vector type has the same number of elements as the return 516 // vector type, which is true for all current intrinsics. 517 for (unsigned I = 0; I != NumArgs; ++I) { 518 Value *OpI = CI.getOperand(I); 519 if (OpI->getType()->isVectorTy()) { 520 Scattered[I] = scatter(&CI, OpI); 521 assert(Scattered[I].size() == NumElems && "mismatched call operands"); 522 } else { 523 ScalarOperands[I] = OpI; 524 } 525 } 526 527 ValueVector Res(NumElems); 528 ValueVector ScalarCallOps(NumArgs); 529 530 Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT); 531 IRBuilder<> Builder(&CI); 532 533 // Perform actual scalarization, taking care to preserve any scalar operands. 534 for (unsigned Elem = 0; Elem < NumElems; ++Elem) { 535 ScalarCallOps.clear(); 536 537 for (unsigned J = 0; J != NumArgs; ++J) { 538 if (hasVectorInstrinsicScalarOpd(ID, J)) 539 ScalarCallOps.push_back(ScalarOperands[J]); 540 else 541 ScalarCallOps.push_back(Scattered[J][Elem]); 542 } 543 544 Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps, 545 CI.getName() + ".i" + Twine(Elem)); 546 } 547 548 gather(&CI, Res); 549 return true; 550 } 551 552 bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) { 553 VectorType *VT = dyn_cast<VectorType>(SI.getType()); 554 if (!VT) 555 return false; 556 557 unsigned NumElems = VT->getNumElements(); 558 IRBuilder<> Builder(&SI); 559 Scatterer Op1 = scatter(&SI, SI.getOperand(1)); 560 Scatterer Op2 = scatter(&SI, SI.getOperand(2)); 561 assert(Op1.size() == NumElems && "Mismatched select"); 562 assert(Op2.size() == NumElems && "Mismatched select"); 563 ValueVector Res; 564 Res.resize(NumElems); 565 566 if (SI.getOperand(0)->getType()->isVectorTy()) { 567 Scatterer Op0 = scatter(&SI, SI.getOperand(0)); 568 assert(Op0.size() == NumElems && "Mismatched select"); 569 for (unsigned I = 0; I < NumElems; ++I) 570 Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I], 571 SI.getName() + ".i" + Twine(I)); 572 } else { 573 Value *Op0 = SI.getOperand(0); 574 for (unsigned I = 0; I < NumElems; ++I) 575 Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I], 576 SI.getName() + ".i" + Twine(I)); 577 } 578 gather(&SI, Res); 579 return true; 580 } 581 582 bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) { 583 return splitBinary(ICI, ICmpSplitter(ICI)); 584 } 585 586 bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) { 587 return splitBinary(FCI, FCmpSplitter(FCI)); 588 } 589 590 bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) { 591 return splitUnary(UO, UnarySplitter(UO)); 592 } 593 594 bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) { 595 return splitBinary(BO, BinarySplitter(BO)); 596 } 597 598 bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 599 VectorType *VT = dyn_cast<VectorType>(GEPI.getType()); 600 if (!VT) 601 return false; 602 603 IRBuilder<> Builder(&GEPI); 604 unsigned NumElems = VT->getNumElements(); 605 unsigned NumIndices = GEPI.getNumIndices(); 606 607 // The base pointer might be scalar even if it's a vector GEP. In those cases, 608 // splat the pointer into a vector value, and scatter that vector. 609 Value *Op0 = GEPI.getOperand(0); 610 if (!Op0->getType()->isVectorTy()) 611 Op0 = Builder.CreateVectorSplat(NumElems, Op0); 612 Scatterer Base = scatter(&GEPI, Op0); 613 614 SmallVector<Scatterer, 8> Ops; 615 Ops.resize(NumIndices); 616 for (unsigned I = 0; I < NumIndices; ++I) { 617 Value *Op = GEPI.getOperand(I + 1); 618 619 // The indices might be scalars even if it's a vector GEP. In those cases, 620 // splat the scalar into a vector value, and scatter that vector. 621 if (!Op->getType()->isVectorTy()) 622 Op = Builder.CreateVectorSplat(NumElems, Op); 623 624 Ops[I] = scatter(&GEPI, Op); 625 } 626 627 ValueVector Res; 628 Res.resize(NumElems); 629 for (unsigned I = 0; I < NumElems; ++I) { 630 SmallVector<Value *, 8> Indices; 631 Indices.resize(NumIndices); 632 for (unsigned J = 0; J < NumIndices; ++J) 633 Indices[J] = Ops[J][I]; 634 Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices, 635 GEPI.getName() + ".i" + Twine(I)); 636 if (GEPI.isInBounds()) 637 if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I])) 638 NewGEPI->setIsInBounds(); 639 } 640 gather(&GEPI, Res); 641 return true; 642 } 643 644 bool ScalarizerVisitor::visitCastInst(CastInst &CI) { 645 VectorType *VT = dyn_cast<VectorType>(CI.getDestTy()); 646 if (!VT) 647 return false; 648 649 unsigned NumElems = VT->getNumElements(); 650 IRBuilder<> Builder(&CI); 651 Scatterer Op0 = scatter(&CI, CI.getOperand(0)); 652 assert(Op0.size() == NumElems && "Mismatched cast"); 653 ValueVector Res; 654 Res.resize(NumElems); 655 for (unsigned I = 0; I < NumElems; ++I) 656 Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(), 657 CI.getName() + ".i" + Twine(I)); 658 gather(&CI, Res); 659 return true; 660 } 661 662 bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) { 663 VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy()); 664 VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy()); 665 if (!DstVT || !SrcVT) 666 return false; 667 668 unsigned DstNumElems = DstVT->getNumElements(); 669 unsigned SrcNumElems = SrcVT->getNumElements(); 670 IRBuilder<> Builder(&BCI); 671 Scatterer Op0 = scatter(&BCI, BCI.getOperand(0)); 672 ValueVector Res; 673 Res.resize(DstNumElems); 674 675 if (DstNumElems == SrcNumElems) { 676 for (unsigned I = 0; I < DstNumElems; ++I) 677 Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(), 678 BCI.getName() + ".i" + Twine(I)); 679 } else if (DstNumElems > SrcNumElems) { 680 // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the 681 // individual elements to the destination. 682 unsigned FanOut = DstNumElems / SrcNumElems; 683 Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut); 684 unsigned ResI = 0; 685 for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) { 686 Value *V = Op0[Op0I]; 687 Instruction *VI; 688 // Look through any existing bitcasts before converting to <N x t2>. 689 // In the best case, the resulting conversion might be a no-op. 690 while ((VI = dyn_cast<Instruction>(V)) && 691 VI->getOpcode() == Instruction::BitCast) 692 V = VI->getOperand(0); 693 V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast"); 694 Scatterer Mid = scatter(&BCI, V); 695 for (unsigned MidI = 0; MidI < FanOut; ++MidI) 696 Res[ResI++] = Mid[MidI]; 697 } 698 } else { 699 // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2. 700 unsigned FanIn = SrcNumElems / DstNumElems; 701 Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn); 702 unsigned Op0I = 0; 703 for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) { 704 Value *V = UndefValue::get(MidTy); 705 for (unsigned MidI = 0; MidI < FanIn; ++MidI) 706 V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI), 707 BCI.getName() + ".i" + Twine(ResI) 708 + ".upto" + Twine(MidI)); 709 Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(), 710 BCI.getName() + ".i" + Twine(ResI)); 711 } 712 } 713 gather(&BCI, Res); 714 return true; 715 } 716 717 bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 718 VectorType *VT = dyn_cast<VectorType>(SVI.getType()); 719 if (!VT) 720 return false; 721 722 unsigned NumElems = VT->getNumElements(); 723 Scatterer Op0 = scatter(&SVI, SVI.getOperand(0)); 724 Scatterer Op1 = scatter(&SVI, SVI.getOperand(1)); 725 ValueVector Res; 726 Res.resize(NumElems); 727 728 for (unsigned I = 0; I < NumElems; ++I) { 729 int Selector = SVI.getMaskValue(I); 730 if (Selector < 0) 731 Res[I] = UndefValue::get(VT->getElementType()); 732 else if (unsigned(Selector) < Op0.size()) 733 Res[I] = Op0[Selector]; 734 else 735 Res[I] = Op1[Selector - Op0.size()]; 736 } 737 gather(&SVI, Res); 738 return true; 739 } 740 741 bool ScalarizerVisitor::visitPHINode(PHINode &PHI) { 742 VectorType *VT = dyn_cast<VectorType>(PHI.getType()); 743 if (!VT) 744 return false; 745 746 unsigned NumElems = VT->getNumElements(); 747 IRBuilder<> Builder(&PHI); 748 ValueVector Res; 749 Res.resize(NumElems); 750 751 unsigned NumOps = PHI.getNumOperands(); 752 for (unsigned I = 0; I < NumElems; ++I) 753 Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps, 754 PHI.getName() + ".i" + Twine(I)); 755 756 for (unsigned I = 0; I < NumOps; ++I) { 757 Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I)); 758 BasicBlock *IncomingBlock = PHI.getIncomingBlock(I); 759 for (unsigned J = 0; J < NumElems; ++J) 760 cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock); 761 } 762 gather(&PHI, Res); 763 return true; 764 } 765 766 bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) { 767 if (!ScalarizeLoadStore) 768 return false; 769 if (!LI.isSimple()) 770 return false; 771 772 VectorLayout Layout; 773 if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout, 774 LI.getModule()->getDataLayout())) 775 return false; 776 777 unsigned NumElems = Layout.VecTy->getNumElements(); 778 IRBuilder<> Builder(&LI); 779 Scatterer Ptr = scatter(&LI, LI.getPointerOperand()); 780 ValueVector Res; 781 Res.resize(NumElems); 782 783 for (unsigned I = 0; I < NumElems; ++I) 784 Res[I] = Builder.CreateAlignedLoad(Layout.VecTy->getElementType(), Ptr[I], 785 Layout.getElemAlign(I), 786 LI.getName() + ".i" + Twine(I)); 787 gather(&LI, Res); 788 return true; 789 } 790 791 bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) { 792 if (!ScalarizeLoadStore) 793 return false; 794 if (!SI.isSimple()) 795 return false; 796 797 VectorLayout Layout; 798 Value *FullValue = SI.getValueOperand(); 799 if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout, 800 SI.getModule()->getDataLayout())) 801 return false; 802 803 unsigned NumElems = Layout.VecTy->getNumElements(); 804 IRBuilder<> Builder(&SI); 805 Scatterer Ptr = scatter(&SI, SI.getPointerOperand()); 806 Scatterer Val = scatter(&SI, FullValue); 807 808 ValueVector Stores; 809 Stores.resize(NumElems); 810 for (unsigned I = 0; I < NumElems; ++I) { 811 unsigned Align = Layout.getElemAlign(I); 812 Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align); 813 } 814 transferMetadataAndIRFlags(&SI, Stores); 815 return true; 816 } 817 818 bool ScalarizerVisitor::visitCallInst(CallInst &CI) { 819 return splitCall(CI); 820 } 821 822 // Delete the instructions that we scalarized. If a full vector result 823 // is still needed, recreate it using InsertElements. 824 bool ScalarizerVisitor::finish() { 825 // The presence of data in Gathered or Scattered indicates changes 826 // made to the Function. 827 if (Gathered.empty() && Scattered.empty()) 828 return false; 829 for (const auto &GMI : Gathered) { 830 Instruction *Op = GMI.first; 831 ValueVector &CV = *GMI.second; 832 if (!Op->use_empty()) { 833 // The value is still needed, so recreate it using a series of 834 // InsertElements. 835 Type *Ty = Op->getType(); 836 Value *Res = UndefValue::get(Ty); 837 BasicBlock *BB = Op->getParent(); 838 unsigned Count = Ty->getVectorNumElements(); 839 IRBuilder<> Builder(Op); 840 if (isa<PHINode>(Op)) 841 Builder.SetInsertPoint(BB, BB->getFirstInsertionPt()); 842 for (unsigned I = 0; I < Count; ++I) 843 Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I), 844 Op->getName() + ".upto" + Twine(I)); 845 Res->takeName(Op); 846 Op->replaceAllUsesWith(Res); 847 } 848 Op->eraseFromParent(); 849 } 850 Gathered.clear(); 851 Scattered.clear(); 852 return true; 853 } 854 855 PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) { 856 Module &M = *F.getParent(); 857 unsigned ParallelLoopAccessMDKind = 858 M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); 859 ScalarizerVisitor Impl(ParallelLoopAccessMDKind); 860 bool Changed = Impl.visit(F); 861 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 862 } 863