1 //===- Scalarizer.cpp - Scalarize vector operations -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass converts vector operations into scalar operations, in order 10 // to expose optimization opportunities on the individual scalar operations. 11 // It is mainly intended for targets that do not have vector units, but it 12 // may also be useful for revectorizing code to different vector widths. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Transforms/Scalar/Scalarizer.h" 17 #include "llvm/ADT/PostOrderIterator.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/VectorUtils.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InstVisitor.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <map> 49 #include <utility> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "scalarizer" 54 55 static cl::opt<bool> ScalarizeVariableInsertExtract( 56 "scalarize-variable-insert-extract", cl::init(true), cl::Hidden, 57 cl::desc("Allow the scalarizer pass to scalarize " 58 "insertelement/extractelement with variable index")); 59 60 // This is disabled by default because having separate loads and stores 61 // makes it more likely that the -combiner-alias-analysis limits will be 62 // reached. 63 static cl::opt<bool> 64 ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden, 65 cl::desc("Allow the scalarizer pass to scalarize loads and store")); 66 67 namespace { 68 69 // Used to store the scattered form of a vector. 70 using ValueVector = SmallVector<Value *, 8>; 71 72 // Used to map a vector Value to its scattered form. We use std::map 73 // because we want iterators to persist across insertion and because the 74 // values are relatively large. 75 using ScatterMap = std::map<Value *, ValueVector>; 76 77 // Lists Instructions that have been replaced with scalar implementations, 78 // along with a pointer to their scattered forms. 79 using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>; 80 81 // Provides a very limited vector-like interface for lazily accessing one 82 // component of a scattered vector or vector pointer. 83 class Scatterer { 84 public: 85 Scatterer() = default; 86 87 // Scatter V into Size components. If new instructions are needed, 88 // insert them before BBI in BB. If Cache is nonnull, use it to cache 89 // the results. 90 Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, 91 ValueVector *cachePtr = nullptr); 92 93 // Return component I, creating a new Value for it if necessary. 94 Value *operator[](unsigned I); 95 96 // Return the number of components. 97 unsigned size() const { return Size; } 98 99 private: 100 BasicBlock *BB; 101 BasicBlock::iterator BBI; 102 Value *V; 103 ValueVector *CachePtr; 104 PointerType *PtrTy; 105 ValueVector Tmp; 106 unsigned Size; 107 }; 108 109 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp 110 // called Name that compares X and Y in the same way as FCI. 111 struct FCmpSplitter { 112 FCmpSplitter(FCmpInst &fci) : FCI(fci) {} 113 114 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 115 const Twine &Name) const { 116 return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name); 117 } 118 119 FCmpInst &FCI; 120 }; 121 122 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp 123 // called Name that compares X and Y in the same way as ICI. 124 struct ICmpSplitter { 125 ICmpSplitter(ICmpInst &ici) : ICI(ici) {} 126 127 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 128 const Twine &Name) const { 129 return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name); 130 } 131 132 ICmpInst &ICI; 133 }; 134 135 // UnarySpliiter(UO)(Builder, X, Name) uses Builder to create 136 // a unary operator like UO called Name with operand X. 137 struct UnarySplitter { 138 UnarySplitter(UnaryOperator &uo) : UO(uo) {} 139 140 Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const { 141 return Builder.CreateUnOp(UO.getOpcode(), Op, Name); 142 } 143 144 UnaryOperator &UO; 145 }; 146 147 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create 148 // a binary operator like BO called Name with operands X and Y. 149 struct BinarySplitter { 150 BinarySplitter(BinaryOperator &bo) : BO(bo) {} 151 152 Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1, 153 const Twine &Name) const { 154 return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name); 155 } 156 157 BinaryOperator &BO; 158 }; 159 160 // Information about a load or store that we're scalarizing. 161 struct VectorLayout { 162 VectorLayout() = default; 163 164 // Return the alignment of element I. 165 Align getElemAlign(unsigned I) { 166 return commonAlignment(VecAlign, I * ElemSize); 167 } 168 169 // The type of the vector. 170 VectorType *VecTy = nullptr; 171 172 // The type of each element. 173 Type *ElemTy = nullptr; 174 175 // The alignment of the vector. 176 Align VecAlign; 177 178 // The size of each element. 179 uint64_t ElemSize = 0; 180 }; 181 182 class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> { 183 public: 184 ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT) 185 : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT) { 186 } 187 188 bool visit(Function &F); 189 190 // InstVisitor methods. They return true if the instruction was scalarized, 191 // false if nothing changed. 192 bool visitInstruction(Instruction &I) { return false; } 193 bool visitSelectInst(SelectInst &SI); 194 bool visitICmpInst(ICmpInst &ICI); 195 bool visitFCmpInst(FCmpInst &FCI); 196 bool visitUnaryOperator(UnaryOperator &UO); 197 bool visitBinaryOperator(BinaryOperator &BO); 198 bool visitGetElementPtrInst(GetElementPtrInst &GEPI); 199 bool visitCastInst(CastInst &CI); 200 bool visitBitCastInst(BitCastInst &BCI); 201 bool visitInsertElementInst(InsertElementInst &IEI); 202 bool visitExtractElementInst(ExtractElementInst &EEI); 203 bool visitShuffleVectorInst(ShuffleVectorInst &SVI); 204 bool visitPHINode(PHINode &PHI); 205 bool visitLoadInst(LoadInst &LI); 206 bool visitStoreInst(StoreInst &SI); 207 bool visitCallInst(CallInst &ICI); 208 209 private: 210 Scatterer scatter(Instruction *Point, Value *V); 211 void gather(Instruction *Op, const ValueVector &CV); 212 bool canTransferMetadata(unsigned Kind); 213 void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV); 214 Optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment, 215 const DataLayout &DL); 216 bool finish(); 217 218 template<typename T> bool splitUnary(Instruction &, const T &); 219 template<typename T> bool splitBinary(Instruction &, const T &); 220 221 bool splitCall(CallInst &CI); 222 223 ScatterMap Scattered; 224 GatherList Gathered; 225 226 SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs; 227 228 unsigned ParallelLoopAccessMDKind; 229 230 DominatorTree *DT; 231 }; 232 233 class ScalarizerLegacyPass : public FunctionPass { 234 public: 235 static char ID; 236 237 ScalarizerLegacyPass() : FunctionPass(ID) { 238 initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry()); 239 } 240 241 bool runOnFunction(Function &F) override; 242 243 void getAnalysisUsage(AnalysisUsage& AU) const override { 244 AU.addRequired<DominatorTreeWrapperPass>(); 245 AU.addPreserved<DominatorTreeWrapperPass>(); 246 } 247 }; 248 249 } // end anonymous namespace 250 251 char ScalarizerLegacyPass::ID = 0; 252 INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer", 253 "Scalarize vector operations", false, false) 254 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 255 INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer", 256 "Scalarize vector operations", false, false) 257 258 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, 259 ValueVector *cachePtr) 260 : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) { 261 Type *Ty = V->getType(); 262 PtrTy = dyn_cast<PointerType>(Ty); 263 if (PtrTy) 264 Ty = PtrTy->getElementType(); 265 Size = cast<FixedVectorType>(Ty)->getNumElements(); 266 if (!CachePtr) 267 Tmp.resize(Size, nullptr); 268 else if (CachePtr->empty()) 269 CachePtr->resize(Size, nullptr); 270 else 271 assert(Size == CachePtr->size() && "Inconsistent vector sizes"); 272 } 273 274 // Return component I, creating a new Value for it if necessary. 275 Value *Scatterer::operator[](unsigned I) { 276 ValueVector &CV = (CachePtr ? *CachePtr : Tmp); 277 // Try to reuse a previous value. 278 if (CV[I]) 279 return CV[I]; 280 IRBuilder<> Builder(BB, BBI); 281 if (PtrTy) { 282 Type *ElTy = cast<VectorType>(PtrTy->getElementType())->getElementType(); 283 if (!CV[0]) { 284 Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace()); 285 CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0"); 286 } 287 if (I != 0) 288 CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I, 289 V->getName() + ".i" + Twine(I)); 290 } else { 291 // Search through a chain of InsertElementInsts looking for element I. 292 // Record other elements in the cache. The new V is still suitable 293 // for all uncached indices. 294 while (true) { 295 InsertElementInst *Insert = dyn_cast<InsertElementInst>(V); 296 if (!Insert) 297 break; 298 ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2)); 299 if (!Idx) 300 break; 301 unsigned J = Idx->getZExtValue(); 302 V = Insert->getOperand(0); 303 if (I == J) { 304 CV[J] = Insert->getOperand(1); 305 return CV[J]; 306 } else if (!CV[J]) { 307 // Only cache the first entry we find for each index we're not actively 308 // searching for. This prevents us from going too far up the chain and 309 // caching incorrect entries. 310 CV[J] = Insert->getOperand(1); 311 } 312 } 313 CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I), 314 V->getName() + ".i" + Twine(I)); 315 } 316 return CV[I]; 317 } 318 319 bool ScalarizerLegacyPass::runOnFunction(Function &F) { 320 if (skipFunction(F)) 321 return false; 322 323 Module &M = *F.getParent(); 324 unsigned ParallelLoopAccessMDKind = 325 M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); 326 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 327 ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT); 328 return Impl.visit(F); 329 } 330 331 FunctionPass *llvm::createScalarizerPass() { 332 return new ScalarizerLegacyPass(); 333 } 334 335 bool ScalarizerVisitor::visit(Function &F) { 336 assert(Gathered.empty() && Scattered.empty()); 337 338 // To ensure we replace gathered components correctly we need to do an ordered 339 // traversal of the basic blocks in the function. 340 ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock()); 341 for (BasicBlock *BB : RPOT) { 342 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 343 Instruction *I = &*II; 344 bool Done = InstVisitor::visit(I); 345 ++II; 346 if (Done && I->getType()->isVoidTy()) 347 I->eraseFromParent(); 348 } 349 } 350 return finish(); 351 } 352 353 // Return a scattered form of V that can be accessed by Point. V must be a 354 // vector or a pointer to a vector. 355 Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) { 356 if (Argument *VArg = dyn_cast<Argument>(V)) { 357 // Put the scattered form of arguments in the entry block, 358 // so that it can be used everywhere. 359 Function *F = VArg->getParent(); 360 BasicBlock *BB = &F->getEntryBlock(); 361 return Scatterer(BB, BB->begin(), V, &Scattered[V]); 362 } 363 if (Instruction *VOp = dyn_cast<Instruction>(V)) { 364 // When scalarizing PHI nodes we might try to examine/rewrite InsertElement 365 // nodes in predecessors. If those predecessors are unreachable from entry, 366 // then the IR in those blocks could have unexpected properties resulting in 367 // infinite loops in Scatterer::operator[]. By simply treating values 368 // originating from instructions in unreachable blocks as undef we do not 369 // need to analyse them further. 370 if (!DT->isReachableFromEntry(VOp->getParent())) 371 return Scatterer(Point->getParent(), Point->getIterator(), 372 UndefValue::get(V->getType())); 373 // Put the scattered form of an instruction directly after the 374 // instruction. 375 BasicBlock *BB = VOp->getParent(); 376 return Scatterer(BB, std::next(BasicBlock::iterator(VOp)), 377 V, &Scattered[V]); 378 } 379 // In the fallback case, just put the scattered before Point and 380 // keep the result local to Point. 381 return Scatterer(Point->getParent(), Point->getIterator(), V); 382 } 383 384 // Replace Op with the gathered form of the components in CV. Defer the 385 // deletion of Op and creation of the gathered form to the end of the pass, 386 // so that we can avoid creating the gathered form if all uses of Op are 387 // replaced with uses of CV. 388 void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) { 389 transferMetadataAndIRFlags(Op, CV); 390 391 // If we already have a scattered form of Op (created from ExtractElements 392 // of Op itself), replace them with the new form. 393 ValueVector &SV = Scattered[Op]; 394 if (!SV.empty()) { 395 for (unsigned I = 0, E = SV.size(); I != E; ++I) { 396 Value *V = SV[I]; 397 if (V == nullptr || SV[I] == CV[I]) 398 continue; 399 400 Instruction *Old = cast<Instruction>(V); 401 if (isa<Instruction>(CV[I])) 402 CV[I]->takeName(Old); 403 Old->replaceAllUsesWith(CV[I]); 404 PotentiallyDeadInstrs.emplace_back(Old); 405 } 406 } 407 SV = CV; 408 Gathered.push_back(GatherList::value_type(Op, &SV)); 409 } 410 411 // Return true if it is safe to transfer the given metadata tag from 412 // vector to scalar instructions. 413 bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) { 414 return (Tag == LLVMContext::MD_tbaa 415 || Tag == LLVMContext::MD_fpmath 416 || Tag == LLVMContext::MD_tbaa_struct 417 || Tag == LLVMContext::MD_invariant_load 418 || Tag == LLVMContext::MD_alias_scope 419 || Tag == LLVMContext::MD_noalias 420 || Tag == ParallelLoopAccessMDKind 421 || Tag == LLVMContext::MD_access_group); 422 } 423 424 // Transfer metadata from Op to the instructions in CV if it is known 425 // to be safe to do so. 426 void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op, 427 const ValueVector &CV) { 428 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 429 Op->getAllMetadataOtherThanDebugLoc(MDs); 430 for (unsigned I = 0, E = CV.size(); I != E; ++I) { 431 if (Instruction *New = dyn_cast<Instruction>(CV[I])) { 432 for (const auto &MD : MDs) 433 if (canTransferMetadata(MD.first)) 434 New->setMetadata(MD.first, MD.second); 435 New->copyIRFlags(Op); 436 if (Op->getDebugLoc() && !New->getDebugLoc()) 437 New->setDebugLoc(Op->getDebugLoc()); 438 } 439 } 440 } 441 442 // Try to fill in Layout from Ty, returning true on success. Alignment is 443 // the alignment of the vector, or None if the ABI default should be used. 444 Optional<VectorLayout> 445 ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment, 446 const DataLayout &DL) { 447 VectorLayout Layout; 448 // Make sure we're dealing with a vector. 449 Layout.VecTy = dyn_cast<VectorType>(Ty); 450 if (!Layout.VecTy) 451 return None; 452 // Check that we're dealing with full-byte elements. 453 Layout.ElemTy = Layout.VecTy->getElementType(); 454 if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy)) 455 return None; 456 Layout.VecAlign = Alignment; 457 Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy); 458 return Layout; 459 } 460 461 // Scalarize one-operand instruction I, using Split(Builder, X, Name) 462 // to create an instruction like I with operand X and name Name. 463 template<typename Splitter> 464 bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) { 465 VectorType *VT = dyn_cast<VectorType>(I.getType()); 466 if (!VT) 467 return false; 468 469 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 470 IRBuilder<> Builder(&I); 471 Scatterer Op = scatter(&I, I.getOperand(0)); 472 assert(Op.size() == NumElems && "Mismatched unary operation"); 473 ValueVector Res; 474 Res.resize(NumElems); 475 for (unsigned Elem = 0; Elem < NumElems; ++Elem) 476 Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem)); 477 gather(&I, Res); 478 return true; 479 } 480 481 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name) 482 // to create an instruction like I with operands X and Y and name Name. 483 template<typename Splitter> 484 bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) { 485 VectorType *VT = dyn_cast<VectorType>(I.getType()); 486 if (!VT) 487 return false; 488 489 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 490 IRBuilder<> Builder(&I); 491 Scatterer VOp0 = scatter(&I, I.getOperand(0)); 492 Scatterer VOp1 = scatter(&I, I.getOperand(1)); 493 assert(VOp0.size() == NumElems && "Mismatched binary operation"); 494 assert(VOp1.size() == NumElems && "Mismatched binary operation"); 495 ValueVector Res; 496 Res.resize(NumElems); 497 for (unsigned Elem = 0; Elem < NumElems; ++Elem) { 498 Value *Op0 = VOp0[Elem]; 499 Value *Op1 = VOp1[Elem]; 500 Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem)); 501 } 502 gather(&I, Res); 503 return true; 504 } 505 506 static bool isTriviallyScalariable(Intrinsic::ID ID) { 507 return isTriviallyVectorizable(ID); 508 } 509 510 // All of the current scalarizable intrinsics only have one mangled type. 511 static Function *getScalarIntrinsicDeclaration(Module *M, 512 Intrinsic::ID ID, 513 ArrayRef<Type*> Tys) { 514 return Intrinsic::getDeclaration(M, ID, Tys); 515 } 516 517 /// If a call to a vector typed intrinsic function, split into a scalar call per 518 /// element if possible for the intrinsic. 519 bool ScalarizerVisitor::splitCall(CallInst &CI) { 520 VectorType *VT = dyn_cast<VectorType>(CI.getType()); 521 if (!VT) 522 return false; 523 524 Function *F = CI.getCalledFunction(); 525 if (!F) 526 return false; 527 528 Intrinsic::ID ID = F->getIntrinsicID(); 529 if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID)) 530 return false; 531 532 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 533 unsigned NumArgs = CI.getNumArgOperands(); 534 535 ValueVector ScalarOperands(NumArgs); 536 SmallVector<Scatterer, 8> Scattered(NumArgs); 537 538 Scattered.resize(NumArgs); 539 540 SmallVector<llvm::Type *, 3> Tys; 541 Tys.push_back(VT->getScalarType()); 542 543 // Assumes that any vector type has the same number of elements as the return 544 // vector type, which is true for all current intrinsics. 545 for (unsigned I = 0; I != NumArgs; ++I) { 546 Value *OpI = CI.getOperand(I); 547 if (OpI->getType()->isVectorTy()) { 548 Scattered[I] = scatter(&CI, OpI); 549 assert(Scattered[I].size() == NumElems && "mismatched call operands"); 550 } else { 551 ScalarOperands[I] = OpI; 552 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I)) 553 Tys.push_back(OpI->getType()); 554 } 555 } 556 557 ValueVector Res(NumElems); 558 ValueVector ScalarCallOps(NumArgs); 559 560 Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, Tys); 561 IRBuilder<> Builder(&CI); 562 563 // Perform actual scalarization, taking care to preserve any scalar operands. 564 for (unsigned Elem = 0; Elem < NumElems; ++Elem) { 565 ScalarCallOps.clear(); 566 567 for (unsigned J = 0; J != NumArgs; ++J) { 568 if (hasVectorInstrinsicScalarOpd(ID, J)) 569 ScalarCallOps.push_back(ScalarOperands[J]); 570 else 571 ScalarCallOps.push_back(Scattered[J][Elem]); 572 } 573 574 Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps, 575 CI.getName() + ".i" + Twine(Elem)); 576 } 577 578 gather(&CI, Res); 579 return true; 580 } 581 582 bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) { 583 VectorType *VT = dyn_cast<VectorType>(SI.getType()); 584 if (!VT) 585 return false; 586 587 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 588 IRBuilder<> Builder(&SI); 589 Scatterer VOp1 = scatter(&SI, SI.getOperand(1)); 590 Scatterer VOp2 = scatter(&SI, SI.getOperand(2)); 591 assert(VOp1.size() == NumElems && "Mismatched select"); 592 assert(VOp2.size() == NumElems && "Mismatched select"); 593 ValueVector Res; 594 Res.resize(NumElems); 595 596 if (SI.getOperand(0)->getType()->isVectorTy()) { 597 Scatterer VOp0 = scatter(&SI, SI.getOperand(0)); 598 assert(VOp0.size() == NumElems && "Mismatched select"); 599 for (unsigned I = 0; I < NumElems; ++I) { 600 Value *Op0 = VOp0[I]; 601 Value *Op1 = VOp1[I]; 602 Value *Op2 = VOp2[I]; 603 Res[I] = Builder.CreateSelect(Op0, Op1, Op2, 604 SI.getName() + ".i" + Twine(I)); 605 } 606 } else { 607 Value *Op0 = SI.getOperand(0); 608 for (unsigned I = 0; I < NumElems; ++I) { 609 Value *Op1 = VOp1[I]; 610 Value *Op2 = VOp2[I]; 611 Res[I] = Builder.CreateSelect(Op0, Op1, Op2, 612 SI.getName() + ".i" + Twine(I)); 613 } 614 } 615 gather(&SI, Res); 616 return true; 617 } 618 619 bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) { 620 return splitBinary(ICI, ICmpSplitter(ICI)); 621 } 622 623 bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) { 624 return splitBinary(FCI, FCmpSplitter(FCI)); 625 } 626 627 bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) { 628 return splitUnary(UO, UnarySplitter(UO)); 629 } 630 631 bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) { 632 return splitBinary(BO, BinarySplitter(BO)); 633 } 634 635 bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 636 VectorType *VT = dyn_cast<VectorType>(GEPI.getType()); 637 if (!VT) 638 return false; 639 640 IRBuilder<> Builder(&GEPI); 641 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 642 unsigned NumIndices = GEPI.getNumIndices(); 643 644 // The base pointer might be scalar even if it's a vector GEP. In those cases, 645 // splat the pointer into a vector value, and scatter that vector. 646 Value *Op0 = GEPI.getOperand(0); 647 if (!Op0->getType()->isVectorTy()) 648 Op0 = Builder.CreateVectorSplat(NumElems, Op0); 649 Scatterer Base = scatter(&GEPI, Op0); 650 651 SmallVector<Scatterer, 8> Ops; 652 Ops.resize(NumIndices); 653 for (unsigned I = 0; I < NumIndices; ++I) { 654 Value *Op = GEPI.getOperand(I + 1); 655 656 // The indices might be scalars even if it's a vector GEP. In those cases, 657 // splat the scalar into a vector value, and scatter that vector. 658 if (!Op->getType()->isVectorTy()) 659 Op = Builder.CreateVectorSplat(NumElems, Op); 660 661 Ops[I] = scatter(&GEPI, Op); 662 } 663 664 ValueVector Res; 665 Res.resize(NumElems); 666 for (unsigned I = 0; I < NumElems; ++I) { 667 SmallVector<Value *, 8> Indices; 668 Indices.resize(NumIndices); 669 for (unsigned J = 0; J < NumIndices; ++J) 670 Indices[J] = Ops[J][I]; 671 Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices, 672 GEPI.getName() + ".i" + Twine(I)); 673 if (GEPI.isInBounds()) 674 if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I])) 675 NewGEPI->setIsInBounds(); 676 } 677 gather(&GEPI, Res); 678 return true; 679 } 680 681 bool ScalarizerVisitor::visitCastInst(CastInst &CI) { 682 VectorType *VT = dyn_cast<VectorType>(CI.getDestTy()); 683 if (!VT) 684 return false; 685 686 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 687 IRBuilder<> Builder(&CI); 688 Scatterer Op0 = scatter(&CI, CI.getOperand(0)); 689 assert(Op0.size() == NumElems && "Mismatched cast"); 690 ValueVector Res; 691 Res.resize(NumElems); 692 for (unsigned I = 0; I < NumElems; ++I) 693 Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(), 694 CI.getName() + ".i" + Twine(I)); 695 gather(&CI, Res); 696 return true; 697 } 698 699 bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) { 700 VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy()); 701 VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy()); 702 if (!DstVT || !SrcVT) 703 return false; 704 705 unsigned DstNumElems = cast<FixedVectorType>(DstVT)->getNumElements(); 706 unsigned SrcNumElems = cast<FixedVectorType>(SrcVT)->getNumElements(); 707 IRBuilder<> Builder(&BCI); 708 Scatterer Op0 = scatter(&BCI, BCI.getOperand(0)); 709 ValueVector Res; 710 Res.resize(DstNumElems); 711 712 if (DstNumElems == SrcNumElems) { 713 for (unsigned I = 0; I < DstNumElems; ++I) 714 Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(), 715 BCI.getName() + ".i" + Twine(I)); 716 } else if (DstNumElems > SrcNumElems) { 717 // <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the 718 // individual elements to the destination. 719 unsigned FanOut = DstNumElems / SrcNumElems; 720 auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut); 721 unsigned ResI = 0; 722 for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) { 723 Value *V = Op0[Op0I]; 724 Instruction *VI; 725 // Look through any existing bitcasts before converting to <N x t2>. 726 // In the best case, the resulting conversion might be a no-op. 727 while ((VI = dyn_cast<Instruction>(V)) && 728 VI->getOpcode() == Instruction::BitCast) 729 V = VI->getOperand(0); 730 V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast"); 731 Scatterer Mid = scatter(&BCI, V); 732 for (unsigned MidI = 0; MidI < FanOut; ++MidI) 733 Res[ResI++] = Mid[MidI]; 734 } 735 } else { 736 // <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2. 737 unsigned FanIn = SrcNumElems / DstNumElems; 738 auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn); 739 unsigned Op0I = 0; 740 for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) { 741 Value *V = PoisonValue::get(MidTy); 742 for (unsigned MidI = 0; MidI < FanIn; ++MidI) 743 V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI), 744 BCI.getName() + ".i" + Twine(ResI) 745 + ".upto" + Twine(MidI)); 746 Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(), 747 BCI.getName() + ".i" + Twine(ResI)); 748 } 749 } 750 gather(&BCI, Res); 751 return true; 752 } 753 754 bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) { 755 VectorType *VT = dyn_cast<VectorType>(IEI.getType()); 756 if (!VT) 757 return false; 758 759 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 760 IRBuilder<> Builder(&IEI); 761 Scatterer Op0 = scatter(&IEI, IEI.getOperand(0)); 762 Value *NewElt = IEI.getOperand(1); 763 Value *InsIdx = IEI.getOperand(2); 764 765 ValueVector Res; 766 Res.resize(NumElems); 767 768 if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) { 769 for (unsigned I = 0; I < NumElems; ++I) 770 Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I]; 771 } else { 772 if (!ScalarizeVariableInsertExtract) 773 return false; 774 775 for (unsigned I = 0; I < NumElems; ++I) { 776 Value *ShouldReplace = 777 Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I), 778 InsIdx->getName() + ".is." + Twine(I)); 779 Value *OldElt = Op0[I]; 780 Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt, 781 IEI.getName() + ".i" + Twine(I)); 782 } 783 } 784 785 gather(&IEI, Res); 786 return true; 787 } 788 789 bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) { 790 VectorType *VT = dyn_cast<VectorType>(EEI.getOperand(0)->getType()); 791 if (!VT) 792 return false; 793 794 unsigned NumSrcElems = cast<FixedVectorType>(VT)->getNumElements(); 795 IRBuilder<> Builder(&EEI); 796 Scatterer Op0 = scatter(&EEI, EEI.getOperand(0)); 797 Value *ExtIdx = EEI.getOperand(1); 798 799 if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) { 800 Value *Res = Op0[CI->getValue().getZExtValue()]; 801 gather(&EEI, {Res}); 802 return true; 803 } 804 805 if (!ScalarizeVariableInsertExtract) 806 return false; 807 808 Value *Res = UndefValue::get(VT->getElementType()); 809 for (unsigned I = 0; I < NumSrcElems; ++I) { 810 Value *ShouldExtract = 811 Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I), 812 ExtIdx->getName() + ".is." + Twine(I)); 813 Value *Elt = Op0[I]; 814 Res = Builder.CreateSelect(ShouldExtract, Elt, Res, 815 EEI.getName() + ".upto" + Twine(I)); 816 } 817 gather(&EEI, {Res}); 818 return true; 819 } 820 821 bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) { 822 VectorType *VT = dyn_cast<VectorType>(SVI.getType()); 823 if (!VT) 824 return false; 825 826 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 827 Scatterer Op0 = scatter(&SVI, SVI.getOperand(0)); 828 Scatterer Op1 = scatter(&SVI, SVI.getOperand(1)); 829 ValueVector Res; 830 Res.resize(NumElems); 831 832 for (unsigned I = 0; I < NumElems; ++I) { 833 int Selector = SVI.getMaskValue(I); 834 if (Selector < 0) 835 Res[I] = UndefValue::get(VT->getElementType()); 836 else if (unsigned(Selector) < Op0.size()) 837 Res[I] = Op0[Selector]; 838 else 839 Res[I] = Op1[Selector - Op0.size()]; 840 } 841 gather(&SVI, Res); 842 return true; 843 } 844 845 bool ScalarizerVisitor::visitPHINode(PHINode &PHI) { 846 VectorType *VT = dyn_cast<VectorType>(PHI.getType()); 847 if (!VT) 848 return false; 849 850 unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements(); 851 IRBuilder<> Builder(&PHI); 852 ValueVector Res; 853 Res.resize(NumElems); 854 855 unsigned NumOps = PHI.getNumOperands(); 856 for (unsigned I = 0; I < NumElems; ++I) 857 Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps, 858 PHI.getName() + ".i" + Twine(I)); 859 860 for (unsigned I = 0; I < NumOps; ++I) { 861 Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I)); 862 BasicBlock *IncomingBlock = PHI.getIncomingBlock(I); 863 for (unsigned J = 0; J < NumElems; ++J) 864 cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock); 865 } 866 gather(&PHI, Res); 867 return true; 868 } 869 870 bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) { 871 if (!ScalarizeLoadStore) 872 return false; 873 if (!LI.isSimple()) 874 return false; 875 876 Optional<VectorLayout> Layout = getVectorLayout( 877 LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout()); 878 if (!Layout) 879 return false; 880 881 unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements(); 882 IRBuilder<> Builder(&LI); 883 Scatterer Ptr = scatter(&LI, LI.getPointerOperand()); 884 ValueVector Res; 885 Res.resize(NumElems); 886 887 for (unsigned I = 0; I < NumElems; ++I) 888 Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I], 889 Align(Layout->getElemAlign(I)), 890 LI.getName() + ".i" + Twine(I)); 891 gather(&LI, Res); 892 return true; 893 } 894 895 bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) { 896 if (!ScalarizeLoadStore) 897 return false; 898 if (!SI.isSimple()) 899 return false; 900 901 Value *FullValue = SI.getValueOperand(); 902 Optional<VectorLayout> Layout = getVectorLayout( 903 FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout()); 904 if (!Layout) 905 return false; 906 907 unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements(); 908 IRBuilder<> Builder(&SI); 909 Scatterer VPtr = scatter(&SI, SI.getPointerOperand()); 910 Scatterer VVal = scatter(&SI, FullValue); 911 912 ValueVector Stores; 913 Stores.resize(NumElems); 914 for (unsigned I = 0; I < NumElems; ++I) { 915 Value *Val = VVal[I]; 916 Value *Ptr = VPtr[I]; 917 Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I)); 918 } 919 transferMetadataAndIRFlags(&SI, Stores); 920 return true; 921 } 922 923 bool ScalarizerVisitor::visitCallInst(CallInst &CI) { 924 return splitCall(CI); 925 } 926 927 // Delete the instructions that we scalarized. If a full vector result 928 // is still needed, recreate it using InsertElements. 929 bool ScalarizerVisitor::finish() { 930 // The presence of data in Gathered or Scattered indicates changes 931 // made to the Function. 932 if (Gathered.empty() && Scattered.empty()) 933 return false; 934 for (const auto &GMI : Gathered) { 935 Instruction *Op = GMI.first; 936 ValueVector &CV = *GMI.second; 937 if (!Op->use_empty()) { 938 // The value is still needed, so recreate it using a series of 939 // InsertElements. 940 Value *Res = PoisonValue::get(Op->getType()); 941 if (auto *Ty = dyn_cast<VectorType>(Op->getType())) { 942 BasicBlock *BB = Op->getParent(); 943 unsigned Count = cast<FixedVectorType>(Ty)->getNumElements(); 944 IRBuilder<> Builder(Op); 945 if (isa<PHINode>(Op)) 946 Builder.SetInsertPoint(BB, BB->getFirstInsertionPt()); 947 for (unsigned I = 0; I < Count; ++I) 948 Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I), 949 Op->getName() + ".upto" + Twine(I)); 950 Res->takeName(Op); 951 } else { 952 assert(CV.size() == 1 && Op->getType() == CV[0]->getType()); 953 Res = CV[0]; 954 if (Op == Res) 955 continue; 956 } 957 Op->replaceAllUsesWith(Res); 958 } 959 PotentiallyDeadInstrs.emplace_back(Op); 960 } 961 Gathered.clear(); 962 Scattered.clear(); 963 964 RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs); 965 966 return true; 967 } 968 969 PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) { 970 Module &M = *F.getParent(); 971 unsigned ParallelLoopAccessMDKind = 972 M.getContext().getMDKindID("llvm.mem.parallel_loop_access"); 973 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); 974 ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT); 975 bool Changed = Impl.visit(F); 976 PreservedAnalyses PA; 977 PA.preserve<DominatorTreeAnalysis>(); 978 return Changed ? PA : PreservedAnalyses::all(); 979 } 980