xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/Scalarizer.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts vector operations into scalar operations, in order
10 // to expose optimization opportunities on the individual scalar operations.
11 // It is mainly intended for targets that do not have vector units, but it
12 // may also be useful for revectorizing code to different vector widths.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/Scalarizer.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/VectorUtils.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstVisitor.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <map>
49 #include <utility>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "scalarizer"
54 
55 static cl::opt<bool> ScalarizeVariableInsertExtract(
56     "scalarize-variable-insert-extract", cl::init(true), cl::Hidden,
57     cl::desc("Allow the scalarizer pass to scalarize "
58              "insertelement/extractelement with variable index"));
59 
60 // This is disabled by default because having separate loads and stores
61 // makes it more likely that the -combiner-alias-analysis limits will be
62 // reached.
63 static cl::opt<bool>
64     ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden,
65                        cl::desc("Allow the scalarizer pass to scalarize loads and store"));
66 
67 namespace {
68 
69 // Used to store the scattered form of a vector.
70 using ValueVector = SmallVector<Value *, 8>;
71 
72 // Used to map a vector Value to its scattered form.  We use std::map
73 // because we want iterators to persist across insertion and because the
74 // values are relatively large.
75 using ScatterMap = std::map<Value *, ValueVector>;
76 
77 // Lists Instructions that have been replaced with scalar implementations,
78 // along with a pointer to their scattered forms.
79 using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
80 
81 // Provides a very limited vector-like interface for lazily accessing one
82 // component of a scattered vector or vector pointer.
83 class Scatterer {
84 public:
85   Scatterer() = default;
86 
87   // Scatter V into Size components.  If new instructions are needed,
88   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
89   // the results.
90   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
91             ValueVector *cachePtr = nullptr);
92 
93   // Return component I, creating a new Value for it if necessary.
94   Value *operator[](unsigned I);
95 
96   // Return the number of components.
97   unsigned size() const { return Size; }
98 
99 private:
100   BasicBlock *BB;
101   BasicBlock::iterator BBI;
102   Value *V;
103   ValueVector *CachePtr;
104   PointerType *PtrTy;
105   ValueVector Tmp;
106   unsigned Size;
107 };
108 
109 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
110 // called Name that compares X and Y in the same way as FCI.
111 struct FCmpSplitter {
112   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
113 
114   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
115                     const Twine &Name) const {
116     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
117   }
118 
119   FCmpInst &FCI;
120 };
121 
122 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
123 // called Name that compares X and Y in the same way as ICI.
124 struct ICmpSplitter {
125   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
126 
127   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
128                     const Twine &Name) const {
129     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
130   }
131 
132   ICmpInst &ICI;
133 };
134 
135 // UnarySpliiter(UO)(Builder, X, Name) uses Builder to create
136 // a unary operator like UO called Name with operand X.
137 struct UnarySplitter {
138   UnarySplitter(UnaryOperator &uo) : UO(uo) {}
139 
140   Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
141     return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
142   }
143 
144   UnaryOperator &UO;
145 };
146 
147 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
148 // a binary operator like BO called Name with operands X and Y.
149 struct BinarySplitter {
150   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
151 
152   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
153                     const Twine &Name) const {
154     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
155   }
156 
157   BinaryOperator &BO;
158 };
159 
160 // Information about a load or store that we're scalarizing.
161 struct VectorLayout {
162   VectorLayout() = default;
163 
164   // Return the alignment of element I.
165   Align getElemAlign(unsigned I) {
166     return commonAlignment(VecAlign, I * ElemSize);
167   }
168 
169   // The type of the vector.
170   VectorType *VecTy = nullptr;
171 
172   // The type of each element.
173   Type *ElemTy = nullptr;
174 
175   // The alignment of the vector.
176   Align VecAlign;
177 
178   // The size of each element.
179   uint64_t ElemSize = 0;
180 };
181 
182 class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
183 public:
184   ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT)
185     : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT) {
186   }
187 
188   bool visit(Function &F);
189 
190   // InstVisitor methods.  They return true if the instruction was scalarized,
191   // false if nothing changed.
192   bool visitInstruction(Instruction &I) { return false; }
193   bool visitSelectInst(SelectInst &SI);
194   bool visitICmpInst(ICmpInst &ICI);
195   bool visitFCmpInst(FCmpInst &FCI);
196   bool visitUnaryOperator(UnaryOperator &UO);
197   bool visitBinaryOperator(BinaryOperator &BO);
198   bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
199   bool visitCastInst(CastInst &CI);
200   bool visitBitCastInst(BitCastInst &BCI);
201   bool visitInsertElementInst(InsertElementInst &IEI);
202   bool visitExtractElementInst(ExtractElementInst &EEI);
203   bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
204   bool visitPHINode(PHINode &PHI);
205   bool visitLoadInst(LoadInst &LI);
206   bool visitStoreInst(StoreInst &SI);
207   bool visitCallInst(CallInst &ICI);
208 
209 private:
210   Scatterer scatter(Instruction *Point, Value *V);
211   void gather(Instruction *Op, const ValueVector &CV);
212   bool canTransferMetadata(unsigned Kind);
213   void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
214   Optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment,
215                                          const DataLayout &DL);
216   bool finish();
217 
218   template<typename T> bool splitUnary(Instruction &, const T &);
219   template<typename T> bool splitBinary(Instruction &, const T &);
220 
221   bool splitCall(CallInst &CI);
222 
223   ScatterMap Scattered;
224   GatherList Gathered;
225 
226   SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs;
227 
228   unsigned ParallelLoopAccessMDKind;
229 
230   DominatorTree *DT;
231 };
232 
233 class ScalarizerLegacyPass : public FunctionPass {
234 public:
235   static char ID;
236 
237   ScalarizerLegacyPass() : FunctionPass(ID) {
238     initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
239   }
240 
241   bool runOnFunction(Function &F) override;
242 
243   void getAnalysisUsage(AnalysisUsage& AU) const override {
244     AU.addRequired<DominatorTreeWrapperPass>();
245     AU.addPreserved<DominatorTreeWrapperPass>();
246   }
247 };
248 
249 } // end anonymous namespace
250 
251 char ScalarizerLegacyPass::ID = 0;
252 INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
253                       "Scalarize vector operations", false, false)
254 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
255 INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
256                     "Scalarize vector operations", false, false)
257 
258 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
259                      ValueVector *cachePtr)
260   : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
261   Type *Ty = V->getType();
262   PtrTy = dyn_cast<PointerType>(Ty);
263   if (PtrTy)
264     Ty = PtrTy->getElementType();
265   Size = cast<FixedVectorType>(Ty)->getNumElements();
266   if (!CachePtr)
267     Tmp.resize(Size, nullptr);
268   else if (CachePtr->empty())
269     CachePtr->resize(Size, nullptr);
270   else
271     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
272 }
273 
274 // Return component I, creating a new Value for it if necessary.
275 Value *Scatterer::operator[](unsigned I) {
276   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
277   // Try to reuse a previous value.
278   if (CV[I])
279     return CV[I];
280   IRBuilder<> Builder(BB, BBI);
281   if (PtrTy) {
282     Type *ElTy = cast<VectorType>(PtrTy->getElementType())->getElementType();
283     if (!CV[0]) {
284       Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace());
285       CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
286     }
287     if (I != 0)
288       CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I,
289                                          V->getName() + ".i" + Twine(I));
290   } else {
291     // Search through a chain of InsertElementInsts looking for element I.
292     // Record other elements in the cache.  The new V is still suitable
293     // for all uncached indices.
294     while (true) {
295       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
296       if (!Insert)
297         break;
298       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
299       if (!Idx)
300         break;
301       unsigned J = Idx->getZExtValue();
302       V = Insert->getOperand(0);
303       if (I == J) {
304         CV[J] = Insert->getOperand(1);
305         return CV[J];
306       } else if (!CV[J]) {
307         // Only cache the first entry we find for each index we're not actively
308         // searching for. This prevents us from going too far up the chain and
309         // caching incorrect entries.
310         CV[J] = Insert->getOperand(1);
311       }
312     }
313     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
314                                          V->getName() + ".i" + Twine(I));
315   }
316   return CV[I];
317 }
318 
319 bool ScalarizerLegacyPass::runOnFunction(Function &F) {
320   if (skipFunction(F))
321     return false;
322 
323   Module &M = *F.getParent();
324   unsigned ParallelLoopAccessMDKind =
325       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
326   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
327   ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
328   return Impl.visit(F);
329 }
330 
331 FunctionPass *llvm::createScalarizerPass() {
332   return new ScalarizerLegacyPass();
333 }
334 
335 bool ScalarizerVisitor::visit(Function &F) {
336   assert(Gathered.empty() && Scattered.empty());
337 
338   // To ensure we replace gathered components correctly we need to do an ordered
339   // traversal of the basic blocks in the function.
340   ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
341   for (BasicBlock *BB : RPOT) {
342     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
343       Instruction *I = &*II;
344       bool Done = InstVisitor::visit(I);
345       ++II;
346       if (Done && I->getType()->isVoidTy())
347         I->eraseFromParent();
348     }
349   }
350   return finish();
351 }
352 
353 // Return a scattered form of V that can be accessed by Point.  V must be a
354 // vector or a pointer to a vector.
355 Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) {
356   if (Argument *VArg = dyn_cast<Argument>(V)) {
357     // Put the scattered form of arguments in the entry block,
358     // so that it can be used everywhere.
359     Function *F = VArg->getParent();
360     BasicBlock *BB = &F->getEntryBlock();
361     return Scatterer(BB, BB->begin(), V, &Scattered[V]);
362   }
363   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
364     // When scalarizing PHI nodes we might try to examine/rewrite InsertElement
365     // nodes in predecessors. If those predecessors are unreachable from entry,
366     // then the IR in those blocks could have unexpected properties resulting in
367     // infinite loops in Scatterer::operator[]. By simply treating values
368     // originating from instructions in unreachable blocks as undef we do not
369     // need to analyse them further.
370     if (!DT->isReachableFromEntry(VOp->getParent()))
371       return Scatterer(Point->getParent(), Point->getIterator(),
372                        UndefValue::get(V->getType()));
373     // Put the scattered form of an instruction directly after the
374     // instruction.
375     BasicBlock *BB = VOp->getParent();
376     return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
377                      V, &Scattered[V]);
378   }
379   // In the fallback case, just put the scattered before Point and
380   // keep the result local to Point.
381   return Scatterer(Point->getParent(), Point->getIterator(), V);
382 }
383 
384 // Replace Op with the gathered form of the components in CV.  Defer the
385 // deletion of Op and creation of the gathered form to the end of the pass,
386 // so that we can avoid creating the gathered form if all uses of Op are
387 // replaced with uses of CV.
388 void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
389   transferMetadataAndIRFlags(Op, CV);
390 
391   // If we already have a scattered form of Op (created from ExtractElements
392   // of Op itself), replace them with the new form.
393   ValueVector &SV = Scattered[Op];
394   if (!SV.empty()) {
395     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
396       Value *V = SV[I];
397       if (V == nullptr || SV[I] == CV[I])
398         continue;
399 
400       Instruction *Old = cast<Instruction>(V);
401       if (isa<Instruction>(CV[I]))
402         CV[I]->takeName(Old);
403       Old->replaceAllUsesWith(CV[I]);
404       PotentiallyDeadInstrs.emplace_back(Old);
405     }
406   }
407   SV = CV;
408   Gathered.push_back(GatherList::value_type(Op, &SV));
409 }
410 
411 // Return true if it is safe to transfer the given metadata tag from
412 // vector to scalar instructions.
413 bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
414   return (Tag == LLVMContext::MD_tbaa
415           || Tag == LLVMContext::MD_fpmath
416           || Tag == LLVMContext::MD_tbaa_struct
417           || Tag == LLVMContext::MD_invariant_load
418           || Tag == LLVMContext::MD_alias_scope
419           || Tag == LLVMContext::MD_noalias
420           || Tag == ParallelLoopAccessMDKind
421           || Tag == LLVMContext::MD_access_group);
422 }
423 
424 // Transfer metadata from Op to the instructions in CV if it is known
425 // to be safe to do so.
426 void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
427                                                    const ValueVector &CV) {
428   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
429   Op->getAllMetadataOtherThanDebugLoc(MDs);
430   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
431     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
432       for (const auto &MD : MDs)
433         if (canTransferMetadata(MD.first))
434           New->setMetadata(MD.first, MD.second);
435       New->copyIRFlags(Op);
436       if (Op->getDebugLoc() && !New->getDebugLoc())
437         New->setDebugLoc(Op->getDebugLoc());
438     }
439   }
440 }
441 
442 // Try to fill in Layout from Ty, returning true on success.  Alignment is
443 // the alignment of the vector, or None if the ABI default should be used.
444 Optional<VectorLayout>
445 ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment,
446                                    const DataLayout &DL) {
447   VectorLayout Layout;
448   // Make sure we're dealing with a vector.
449   Layout.VecTy = dyn_cast<VectorType>(Ty);
450   if (!Layout.VecTy)
451     return None;
452   // Check that we're dealing with full-byte elements.
453   Layout.ElemTy = Layout.VecTy->getElementType();
454   if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy))
455     return None;
456   Layout.VecAlign = Alignment;
457   Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
458   return Layout;
459 }
460 
461 // Scalarize one-operand instruction I, using Split(Builder, X, Name)
462 // to create an instruction like I with operand X and name Name.
463 template<typename Splitter>
464 bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
465   VectorType *VT = dyn_cast<VectorType>(I.getType());
466   if (!VT)
467     return false;
468 
469   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
470   IRBuilder<> Builder(&I);
471   Scatterer Op = scatter(&I, I.getOperand(0));
472   assert(Op.size() == NumElems && "Mismatched unary operation");
473   ValueVector Res;
474   Res.resize(NumElems);
475   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
476     Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
477   gather(&I, Res);
478   return true;
479 }
480 
481 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
482 // to create an instruction like I with operands X and Y and name Name.
483 template<typename Splitter>
484 bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
485   VectorType *VT = dyn_cast<VectorType>(I.getType());
486   if (!VT)
487     return false;
488 
489   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
490   IRBuilder<> Builder(&I);
491   Scatterer VOp0 = scatter(&I, I.getOperand(0));
492   Scatterer VOp1 = scatter(&I, I.getOperand(1));
493   assert(VOp0.size() == NumElems && "Mismatched binary operation");
494   assert(VOp1.size() == NumElems && "Mismatched binary operation");
495   ValueVector Res;
496   Res.resize(NumElems);
497   for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
498     Value *Op0 = VOp0[Elem];
499     Value *Op1 = VOp1[Elem];
500     Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem));
501   }
502   gather(&I, Res);
503   return true;
504 }
505 
506 static bool isTriviallyScalariable(Intrinsic::ID ID) {
507   return isTriviallyVectorizable(ID);
508 }
509 
510 // All of the current scalarizable intrinsics only have one mangled type.
511 static Function *getScalarIntrinsicDeclaration(Module *M,
512                                                Intrinsic::ID ID,
513                                                ArrayRef<Type*> Tys) {
514   return Intrinsic::getDeclaration(M, ID, Tys);
515 }
516 
517 /// If a call to a vector typed intrinsic function, split into a scalar call per
518 /// element if possible for the intrinsic.
519 bool ScalarizerVisitor::splitCall(CallInst &CI) {
520   VectorType *VT = dyn_cast<VectorType>(CI.getType());
521   if (!VT)
522     return false;
523 
524   Function *F = CI.getCalledFunction();
525   if (!F)
526     return false;
527 
528   Intrinsic::ID ID = F->getIntrinsicID();
529   if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
530     return false;
531 
532   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
533   unsigned NumArgs = CI.getNumArgOperands();
534 
535   ValueVector ScalarOperands(NumArgs);
536   SmallVector<Scatterer, 8> Scattered(NumArgs);
537 
538   Scattered.resize(NumArgs);
539 
540   SmallVector<llvm::Type *, 3> Tys;
541   Tys.push_back(VT->getScalarType());
542 
543   // Assumes that any vector type has the same number of elements as the return
544   // vector type, which is true for all current intrinsics.
545   for (unsigned I = 0; I != NumArgs; ++I) {
546     Value *OpI = CI.getOperand(I);
547     if (OpI->getType()->isVectorTy()) {
548       Scattered[I] = scatter(&CI, OpI);
549       assert(Scattered[I].size() == NumElems && "mismatched call operands");
550     } else {
551       ScalarOperands[I] = OpI;
552       if (hasVectorInstrinsicOverloadedScalarOpd(ID, I))
553         Tys.push_back(OpI->getType());
554     }
555   }
556 
557   ValueVector Res(NumElems);
558   ValueVector ScalarCallOps(NumArgs);
559 
560   Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, Tys);
561   IRBuilder<> Builder(&CI);
562 
563   // Perform actual scalarization, taking care to preserve any scalar operands.
564   for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
565     ScalarCallOps.clear();
566 
567     for (unsigned J = 0; J != NumArgs; ++J) {
568       if (hasVectorInstrinsicScalarOpd(ID, J))
569         ScalarCallOps.push_back(ScalarOperands[J]);
570       else
571         ScalarCallOps.push_back(Scattered[J][Elem]);
572     }
573 
574     Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
575                                    CI.getName() + ".i" + Twine(Elem));
576   }
577 
578   gather(&CI, Res);
579   return true;
580 }
581 
582 bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
583   VectorType *VT = dyn_cast<VectorType>(SI.getType());
584   if (!VT)
585     return false;
586 
587   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
588   IRBuilder<> Builder(&SI);
589   Scatterer VOp1 = scatter(&SI, SI.getOperand(1));
590   Scatterer VOp2 = scatter(&SI, SI.getOperand(2));
591   assert(VOp1.size() == NumElems && "Mismatched select");
592   assert(VOp2.size() == NumElems && "Mismatched select");
593   ValueVector Res;
594   Res.resize(NumElems);
595 
596   if (SI.getOperand(0)->getType()->isVectorTy()) {
597     Scatterer VOp0 = scatter(&SI, SI.getOperand(0));
598     assert(VOp0.size() == NumElems && "Mismatched select");
599     for (unsigned I = 0; I < NumElems; ++I) {
600       Value *Op0 = VOp0[I];
601       Value *Op1 = VOp1[I];
602       Value *Op2 = VOp2[I];
603       Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
604                                     SI.getName() + ".i" + Twine(I));
605     }
606   } else {
607     Value *Op0 = SI.getOperand(0);
608     for (unsigned I = 0; I < NumElems; ++I) {
609       Value *Op1 = VOp1[I];
610       Value *Op2 = VOp2[I];
611       Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
612                                     SI.getName() + ".i" + Twine(I));
613     }
614   }
615   gather(&SI, Res);
616   return true;
617 }
618 
619 bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
620   return splitBinary(ICI, ICmpSplitter(ICI));
621 }
622 
623 bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
624   return splitBinary(FCI, FCmpSplitter(FCI));
625 }
626 
627 bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
628   return splitUnary(UO, UnarySplitter(UO));
629 }
630 
631 bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
632   return splitBinary(BO, BinarySplitter(BO));
633 }
634 
635 bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
636   VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
637   if (!VT)
638     return false;
639 
640   IRBuilder<> Builder(&GEPI);
641   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
642   unsigned NumIndices = GEPI.getNumIndices();
643 
644   // The base pointer might be scalar even if it's a vector GEP. In those cases,
645   // splat the pointer into a vector value, and scatter that vector.
646   Value *Op0 = GEPI.getOperand(0);
647   if (!Op0->getType()->isVectorTy())
648     Op0 = Builder.CreateVectorSplat(NumElems, Op0);
649   Scatterer Base = scatter(&GEPI, Op0);
650 
651   SmallVector<Scatterer, 8> Ops;
652   Ops.resize(NumIndices);
653   for (unsigned I = 0; I < NumIndices; ++I) {
654     Value *Op = GEPI.getOperand(I + 1);
655 
656     // The indices might be scalars even if it's a vector GEP. In those cases,
657     // splat the scalar into a vector value, and scatter that vector.
658     if (!Op->getType()->isVectorTy())
659       Op = Builder.CreateVectorSplat(NumElems, Op);
660 
661     Ops[I] = scatter(&GEPI, Op);
662   }
663 
664   ValueVector Res;
665   Res.resize(NumElems);
666   for (unsigned I = 0; I < NumElems; ++I) {
667     SmallVector<Value *, 8> Indices;
668     Indices.resize(NumIndices);
669     for (unsigned J = 0; J < NumIndices; ++J)
670       Indices[J] = Ops[J][I];
671     Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
672                                GEPI.getName() + ".i" + Twine(I));
673     if (GEPI.isInBounds())
674       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
675         NewGEPI->setIsInBounds();
676   }
677   gather(&GEPI, Res);
678   return true;
679 }
680 
681 bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
682   VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
683   if (!VT)
684     return false;
685 
686   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
687   IRBuilder<> Builder(&CI);
688   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
689   assert(Op0.size() == NumElems && "Mismatched cast");
690   ValueVector Res;
691   Res.resize(NumElems);
692   for (unsigned I = 0; I < NumElems; ++I)
693     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
694                                 CI.getName() + ".i" + Twine(I));
695   gather(&CI, Res);
696   return true;
697 }
698 
699 bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
700   VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
701   VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
702   if (!DstVT || !SrcVT)
703     return false;
704 
705   unsigned DstNumElems = cast<FixedVectorType>(DstVT)->getNumElements();
706   unsigned SrcNumElems = cast<FixedVectorType>(SrcVT)->getNumElements();
707   IRBuilder<> Builder(&BCI);
708   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
709   ValueVector Res;
710   Res.resize(DstNumElems);
711 
712   if (DstNumElems == SrcNumElems) {
713     for (unsigned I = 0; I < DstNumElems; ++I)
714       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
715                                      BCI.getName() + ".i" + Twine(I));
716   } else if (DstNumElems > SrcNumElems) {
717     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
718     // individual elements to the destination.
719     unsigned FanOut = DstNumElems / SrcNumElems;
720     auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut);
721     unsigned ResI = 0;
722     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
723       Value *V = Op0[Op0I];
724       Instruction *VI;
725       // Look through any existing bitcasts before converting to <N x t2>.
726       // In the best case, the resulting conversion might be a no-op.
727       while ((VI = dyn_cast<Instruction>(V)) &&
728              VI->getOpcode() == Instruction::BitCast)
729         V = VI->getOperand(0);
730       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
731       Scatterer Mid = scatter(&BCI, V);
732       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
733         Res[ResI++] = Mid[MidI];
734     }
735   } else {
736     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
737     unsigned FanIn = SrcNumElems / DstNumElems;
738     auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn);
739     unsigned Op0I = 0;
740     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
741       Value *V = PoisonValue::get(MidTy);
742       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
743         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
744                                         BCI.getName() + ".i" + Twine(ResI)
745                                         + ".upto" + Twine(MidI));
746       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
747                                         BCI.getName() + ".i" + Twine(ResI));
748     }
749   }
750   gather(&BCI, Res);
751   return true;
752 }
753 
754 bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) {
755   VectorType *VT = dyn_cast<VectorType>(IEI.getType());
756   if (!VT)
757     return false;
758 
759   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
760   IRBuilder<> Builder(&IEI);
761   Scatterer Op0 = scatter(&IEI, IEI.getOperand(0));
762   Value *NewElt = IEI.getOperand(1);
763   Value *InsIdx = IEI.getOperand(2);
764 
765   ValueVector Res;
766   Res.resize(NumElems);
767 
768   if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) {
769     for (unsigned I = 0; I < NumElems; ++I)
770       Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I];
771   } else {
772     if (!ScalarizeVariableInsertExtract)
773       return false;
774 
775     for (unsigned I = 0; I < NumElems; ++I) {
776       Value *ShouldReplace =
777           Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I),
778                                InsIdx->getName() + ".is." + Twine(I));
779       Value *OldElt = Op0[I];
780       Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt,
781                                     IEI.getName() + ".i" + Twine(I));
782     }
783   }
784 
785   gather(&IEI, Res);
786   return true;
787 }
788 
789 bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) {
790   VectorType *VT = dyn_cast<VectorType>(EEI.getOperand(0)->getType());
791   if (!VT)
792     return false;
793 
794   unsigned NumSrcElems = cast<FixedVectorType>(VT)->getNumElements();
795   IRBuilder<> Builder(&EEI);
796   Scatterer Op0 = scatter(&EEI, EEI.getOperand(0));
797   Value *ExtIdx = EEI.getOperand(1);
798 
799   if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) {
800     Value *Res = Op0[CI->getValue().getZExtValue()];
801     gather(&EEI, {Res});
802     return true;
803   }
804 
805   if (!ScalarizeVariableInsertExtract)
806     return false;
807 
808   Value *Res = UndefValue::get(VT->getElementType());
809   for (unsigned I = 0; I < NumSrcElems; ++I) {
810     Value *ShouldExtract =
811         Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I),
812                              ExtIdx->getName() + ".is." + Twine(I));
813     Value *Elt = Op0[I];
814     Res = Builder.CreateSelect(ShouldExtract, Elt, Res,
815                                EEI.getName() + ".upto" + Twine(I));
816   }
817   gather(&EEI, {Res});
818   return true;
819 }
820 
821 bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
822   VectorType *VT = dyn_cast<VectorType>(SVI.getType());
823   if (!VT)
824     return false;
825 
826   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
827   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
828   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
829   ValueVector Res;
830   Res.resize(NumElems);
831 
832   for (unsigned I = 0; I < NumElems; ++I) {
833     int Selector = SVI.getMaskValue(I);
834     if (Selector < 0)
835       Res[I] = UndefValue::get(VT->getElementType());
836     else if (unsigned(Selector) < Op0.size())
837       Res[I] = Op0[Selector];
838     else
839       Res[I] = Op1[Selector - Op0.size()];
840   }
841   gather(&SVI, Res);
842   return true;
843 }
844 
845 bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
846   VectorType *VT = dyn_cast<VectorType>(PHI.getType());
847   if (!VT)
848     return false;
849 
850   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
851   IRBuilder<> Builder(&PHI);
852   ValueVector Res;
853   Res.resize(NumElems);
854 
855   unsigned NumOps = PHI.getNumOperands();
856   for (unsigned I = 0; I < NumElems; ++I)
857     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
858                                PHI.getName() + ".i" + Twine(I));
859 
860   for (unsigned I = 0; I < NumOps; ++I) {
861     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
862     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
863     for (unsigned J = 0; J < NumElems; ++J)
864       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
865   }
866   gather(&PHI, Res);
867   return true;
868 }
869 
870 bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
871   if (!ScalarizeLoadStore)
872     return false;
873   if (!LI.isSimple())
874     return false;
875 
876   Optional<VectorLayout> Layout = getVectorLayout(
877       LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout());
878   if (!Layout)
879     return false;
880 
881   unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
882   IRBuilder<> Builder(&LI);
883   Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
884   ValueVector Res;
885   Res.resize(NumElems);
886 
887   for (unsigned I = 0; I < NumElems; ++I)
888     Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I],
889                                        Align(Layout->getElemAlign(I)),
890                                        LI.getName() + ".i" + Twine(I));
891   gather(&LI, Res);
892   return true;
893 }
894 
895 bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
896   if (!ScalarizeLoadStore)
897     return false;
898   if (!SI.isSimple())
899     return false;
900 
901   Value *FullValue = SI.getValueOperand();
902   Optional<VectorLayout> Layout = getVectorLayout(
903       FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout());
904   if (!Layout)
905     return false;
906 
907   unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
908   IRBuilder<> Builder(&SI);
909   Scatterer VPtr = scatter(&SI, SI.getPointerOperand());
910   Scatterer VVal = scatter(&SI, FullValue);
911 
912   ValueVector Stores;
913   Stores.resize(NumElems);
914   for (unsigned I = 0; I < NumElems; ++I) {
915     Value *Val = VVal[I];
916     Value *Ptr = VPtr[I];
917     Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I));
918   }
919   transferMetadataAndIRFlags(&SI, Stores);
920   return true;
921 }
922 
923 bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
924   return splitCall(CI);
925 }
926 
927 // Delete the instructions that we scalarized.  If a full vector result
928 // is still needed, recreate it using InsertElements.
929 bool ScalarizerVisitor::finish() {
930   // The presence of data in Gathered or Scattered indicates changes
931   // made to the Function.
932   if (Gathered.empty() && Scattered.empty())
933     return false;
934   for (const auto &GMI : Gathered) {
935     Instruction *Op = GMI.first;
936     ValueVector &CV = *GMI.second;
937     if (!Op->use_empty()) {
938       // The value is still needed, so recreate it using a series of
939       // InsertElements.
940       Value *Res = PoisonValue::get(Op->getType());
941       if (auto *Ty = dyn_cast<VectorType>(Op->getType())) {
942         BasicBlock *BB = Op->getParent();
943         unsigned Count = cast<FixedVectorType>(Ty)->getNumElements();
944         IRBuilder<> Builder(Op);
945         if (isa<PHINode>(Op))
946           Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
947         for (unsigned I = 0; I < Count; ++I)
948           Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
949                                             Op->getName() + ".upto" + Twine(I));
950         Res->takeName(Op);
951       } else {
952         assert(CV.size() == 1 && Op->getType() == CV[0]->getType());
953         Res = CV[0];
954         if (Op == Res)
955           continue;
956       }
957       Op->replaceAllUsesWith(Res);
958     }
959     PotentiallyDeadInstrs.emplace_back(Op);
960   }
961   Gathered.clear();
962   Scattered.clear();
963 
964   RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);
965 
966   return true;
967 }
968 
969 PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
970   Module &M = *F.getParent();
971   unsigned ParallelLoopAccessMDKind =
972       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
973   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
974   ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
975   bool Changed = Impl.visit(F);
976   PreservedAnalyses PA;
977   PA.preserve<DominatorTreeAnalysis>();
978   return Changed ? PA : PreservedAnalyses::all();
979 }
980