xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/Scalarizer.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts vector operations into scalar operations, in order
10 // to expose optimization opportunities on the individual scalar operations.
11 // It is mainly intended for targets that do not have vector units, but it
12 // may also be useful for revectorizing code to different vector widths.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/Scalarizer.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/VectorUtils.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstVisitor.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <map>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "scalarizer"
53 
54 // This is disabled by default because having separate loads and stores
55 // makes it more likely that the -combiner-alias-analysis limits will be
56 // reached.
57 static cl::opt<bool>
58     ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden,
59                        cl::desc("Allow the scalarizer pass to scalarize loads and store"));
60 
61 namespace {
62 
63 // Used to store the scattered form of a vector.
64 using ValueVector = SmallVector<Value *, 8>;
65 
66 // Used to map a vector Value to its scattered form.  We use std::map
67 // because we want iterators to persist across insertion and because the
68 // values are relatively large.
69 using ScatterMap = std::map<Value *, ValueVector>;
70 
71 // Lists Instructions that have been replaced with scalar implementations,
72 // along with a pointer to their scattered forms.
73 using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
74 
75 // Provides a very limited vector-like interface for lazily accessing one
76 // component of a scattered vector or vector pointer.
77 class Scatterer {
78 public:
79   Scatterer() = default;
80 
81   // Scatter V into Size components.  If new instructions are needed,
82   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
83   // the results.
84   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
85             ValueVector *cachePtr = nullptr);
86 
87   // Return component I, creating a new Value for it if necessary.
88   Value *operator[](unsigned I);
89 
90   // Return the number of components.
91   unsigned size() const { return Size; }
92 
93 private:
94   BasicBlock *BB;
95   BasicBlock::iterator BBI;
96   Value *V;
97   ValueVector *CachePtr;
98   PointerType *PtrTy;
99   ValueVector Tmp;
100   unsigned Size;
101 };
102 
103 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
104 // called Name that compares X and Y in the same way as FCI.
105 struct FCmpSplitter {
106   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
107 
108   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
109                     const Twine &Name) const {
110     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
111   }
112 
113   FCmpInst &FCI;
114 };
115 
116 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
117 // called Name that compares X and Y in the same way as ICI.
118 struct ICmpSplitter {
119   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
120 
121   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
122                     const Twine &Name) const {
123     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
124   }
125 
126   ICmpInst &ICI;
127 };
128 
129 // UnarySpliiter(UO)(Builder, X, Name) uses Builder to create
130 // a unary operator like UO called Name with operand X.
131 struct UnarySplitter {
132   UnarySplitter(UnaryOperator &uo) : UO(uo) {}
133 
134   Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
135     return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
136   }
137 
138   UnaryOperator &UO;
139 };
140 
141 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
142 // a binary operator like BO called Name with operands X and Y.
143 struct BinarySplitter {
144   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
145 
146   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
147                     const Twine &Name) const {
148     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
149   }
150 
151   BinaryOperator &BO;
152 };
153 
154 // Information about a load or store that we're scalarizing.
155 struct VectorLayout {
156   VectorLayout() = default;
157 
158   // Return the alignment of element I.
159   uint64_t getElemAlign(unsigned I) {
160     return MinAlign(VecAlign, I * ElemSize);
161   }
162 
163   // The type of the vector.
164   VectorType *VecTy = nullptr;
165 
166   // The type of each element.
167   Type *ElemTy = nullptr;
168 
169   // The alignment of the vector.
170   uint64_t VecAlign = 0;
171 
172   // The size of each element.
173   uint64_t ElemSize = 0;
174 };
175 
176 class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
177 public:
178   ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT)
179     : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT) {
180   }
181 
182   bool visit(Function &F);
183 
184   // InstVisitor methods.  They return true if the instruction was scalarized,
185   // false if nothing changed.
186   bool visitInstruction(Instruction &I) { return false; }
187   bool visitSelectInst(SelectInst &SI);
188   bool visitICmpInst(ICmpInst &ICI);
189   bool visitFCmpInst(FCmpInst &FCI);
190   bool visitUnaryOperator(UnaryOperator &UO);
191   bool visitBinaryOperator(BinaryOperator &BO);
192   bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
193   bool visitCastInst(CastInst &CI);
194   bool visitBitCastInst(BitCastInst &BCI);
195   bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
196   bool visitPHINode(PHINode &PHI);
197   bool visitLoadInst(LoadInst &LI);
198   bool visitStoreInst(StoreInst &SI);
199   bool visitCallInst(CallInst &ICI);
200 
201 private:
202   Scatterer scatter(Instruction *Point, Value *V);
203   void gather(Instruction *Op, const ValueVector &CV);
204   bool canTransferMetadata(unsigned Kind);
205   void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
206   bool getVectorLayout(Type *Ty, unsigned Alignment, VectorLayout &Layout,
207                        const DataLayout &DL);
208   bool finish();
209 
210   template<typename T> bool splitUnary(Instruction &, const T &);
211   template<typename T> bool splitBinary(Instruction &, const T &);
212 
213   bool splitCall(CallInst &CI);
214 
215   ScatterMap Scattered;
216   GatherList Gathered;
217 
218   unsigned ParallelLoopAccessMDKind;
219 
220   DominatorTree *DT;
221 };
222 
223 class ScalarizerLegacyPass : public FunctionPass {
224 public:
225   static char ID;
226 
227   ScalarizerLegacyPass() : FunctionPass(ID) {
228     initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
229   }
230 
231   bool runOnFunction(Function &F) override;
232 
233   void getAnalysisUsage(AnalysisUsage& AU) const override {
234     AU.addRequired<DominatorTreeWrapperPass>();
235     AU.addPreserved<DominatorTreeWrapperPass>();
236   }
237 };
238 
239 } // end anonymous namespace
240 
241 char ScalarizerLegacyPass::ID = 0;
242 INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
243                       "Scalarize vector operations", false, false)
244 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
245 INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
246                     "Scalarize vector operations", false, false)
247 
248 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
249                      ValueVector *cachePtr)
250   : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
251   Type *Ty = V->getType();
252   PtrTy = dyn_cast<PointerType>(Ty);
253   if (PtrTy)
254     Ty = PtrTy->getElementType();
255   Size = Ty->getVectorNumElements();
256   if (!CachePtr)
257     Tmp.resize(Size, nullptr);
258   else if (CachePtr->empty())
259     CachePtr->resize(Size, nullptr);
260   else
261     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
262 }
263 
264 // Return component I, creating a new Value for it if necessary.
265 Value *Scatterer::operator[](unsigned I) {
266   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
267   // Try to reuse a previous value.
268   if (CV[I])
269     return CV[I];
270   IRBuilder<> Builder(BB, BBI);
271   if (PtrTy) {
272     Type *ElTy = PtrTy->getElementType()->getVectorElementType();
273     if (!CV[0]) {
274       Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace());
275       CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
276     }
277     if (I != 0)
278       CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I,
279                                          V->getName() + ".i" + Twine(I));
280   } else {
281     // Search through a chain of InsertElementInsts looking for element I.
282     // Record other elements in the cache.  The new V is still suitable
283     // for all uncached indices.
284     while (true) {
285       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
286       if (!Insert)
287         break;
288       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
289       if (!Idx)
290         break;
291       unsigned J = Idx->getZExtValue();
292       V = Insert->getOperand(0);
293       if (I == J) {
294         CV[J] = Insert->getOperand(1);
295         return CV[J];
296       } else if (!CV[J]) {
297         // Only cache the first entry we find for each index we're not actively
298         // searching for. This prevents us from going too far up the chain and
299         // caching incorrect entries.
300         CV[J] = Insert->getOperand(1);
301       }
302     }
303     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
304                                          V->getName() + ".i" + Twine(I));
305   }
306   return CV[I];
307 }
308 
309 bool ScalarizerLegacyPass::runOnFunction(Function &F) {
310   if (skipFunction(F))
311     return false;
312 
313   Module &M = *F.getParent();
314   unsigned ParallelLoopAccessMDKind =
315       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
316   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
317   ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
318   return Impl.visit(F);
319 }
320 
321 FunctionPass *llvm::createScalarizerPass() {
322   return new ScalarizerLegacyPass();
323 }
324 
325 bool ScalarizerVisitor::visit(Function &F) {
326   assert(Gathered.empty() && Scattered.empty());
327 
328   // To ensure we replace gathered components correctly we need to do an ordered
329   // traversal of the basic blocks in the function.
330   ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
331   for (BasicBlock *BB : RPOT) {
332     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
333       Instruction *I = &*II;
334       bool Done = InstVisitor::visit(I);
335       ++II;
336       if (Done && I->getType()->isVoidTy())
337         I->eraseFromParent();
338     }
339   }
340   return finish();
341 }
342 
343 // Return a scattered form of V that can be accessed by Point.  V must be a
344 // vector or a pointer to a vector.
345 Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) {
346   if (Argument *VArg = dyn_cast<Argument>(V)) {
347     // Put the scattered form of arguments in the entry block,
348     // so that it can be used everywhere.
349     Function *F = VArg->getParent();
350     BasicBlock *BB = &F->getEntryBlock();
351     return Scatterer(BB, BB->begin(), V, &Scattered[V]);
352   }
353   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
354     // When scalarizing PHI nodes we might try to examine/rewrite InsertElement
355     // nodes in predecessors. If those predecessors are unreachable from entry,
356     // then the IR in those blocks could have unexpected properties resulting in
357     // infinite loops in Scatterer::operator[]. By simply treating values
358     // originating from instructions in unreachable blocks as undef we do not
359     // need to analyse them further.
360     if (!DT->isReachableFromEntry(VOp->getParent()))
361       return Scatterer(Point->getParent(), Point->getIterator(),
362                        UndefValue::get(V->getType()));
363     // Put the scattered form of an instruction directly after the
364     // instruction.
365     BasicBlock *BB = VOp->getParent();
366     return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
367                      V, &Scattered[V]);
368   }
369   // In the fallback case, just put the scattered before Point and
370   // keep the result local to Point.
371   return Scatterer(Point->getParent(), Point->getIterator(), V);
372 }
373 
374 // Replace Op with the gathered form of the components in CV.  Defer the
375 // deletion of Op and creation of the gathered form to the end of the pass,
376 // so that we can avoid creating the gathered form if all uses of Op are
377 // replaced with uses of CV.
378 void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
379   // Since we're not deleting Op yet, stub out its operands, so that it
380   // doesn't make anything live unnecessarily.
381   for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
382     Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
383 
384   transferMetadataAndIRFlags(Op, CV);
385 
386   // If we already have a scattered form of Op (created from ExtractElements
387   // of Op itself), replace them with the new form.
388   ValueVector &SV = Scattered[Op];
389   if (!SV.empty()) {
390     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
391       Value *V = SV[I];
392       if (V == nullptr)
393         continue;
394 
395       Instruction *Old = cast<Instruction>(V);
396       CV[I]->takeName(Old);
397       Old->replaceAllUsesWith(CV[I]);
398       Old->eraseFromParent();
399     }
400   }
401   SV = CV;
402   Gathered.push_back(GatherList::value_type(Op, &SV));
403 }
404 
405 // Return true if it is safe to transfer the given metadata tag from
406 // vector to scalar instructions.
407 bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
408   return (Tag == LLVMContext::MD_tbaa
409           || Tag == LLVMContext::MD_fpmath
410           || Tag == LLVMContext::MD_tbaa_struct
411           || Tag == LLVMContext::MD_invariant_load
412           || Tag == LLVMContext::MD_alias_scope
413           || Tag == LLVMContext::MD_noalias
414           || Tag == ParallelLoopAccessMDKind
415           || Tag == LLVMContext::MD_access_group);
416 }
417 
418 // Transfer metadata from Op to the instructions in CV if it is known
419 // to be safe to do so.
420 void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
421                                                    const ValueVector &CV) {
422   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
423   Op->getAllMetadataOtherThanDebugLoc(MDs);
424   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
425     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
426       for (const auto &MD : MDs)
427         if (canTransferMetadata(MD.first))
428           New->setMetadata(MD.first, MD.second);
429       New->copyIRFlags(Op);
430       if (Op->getDebugLoc() && !New->getDebugLoc())
431         New->setDebugLoc(Op->getDebugLoc());
432     }
433   }
434 }
435 
436 // Try to fill in Layout from Ty, returning true on success.  Alignment is
437 // the alignment of the vector, or 0 if the ABI default should be used.
438 bool ScalarizerVisitor::getVectorLayout(Type *Ty, unsigned Alignment,
439                                  VectorLayout &Layout, const DataLayout &DL) {
440   // Make sure we're dealing with a vector.
441   Layout.VecTy = dyn_cast<VectorType>(Ty);
442   if (!Layout.VecTy)
443     return false;
444 
445   // Check that we're dealing with full-byte elements.
446   Layout.ElemTy = Layout.VecTy->getElementType();
447   if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy))
448     return false;
449 
450   if (Alignment)
451     Layout.VecAlign = Alignment;
452   else
453     Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
454   Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
455   return true;
456 }
457 
458 // Scalarize one-operand instruction I, using Split(Builder, X, Name)
459 // to create an instruction like I with operand X and name Name.
460 template<typename Splitter>
461 bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
462   VectorType *VT = dyn_cast<VectorType>(I.getType());
463   if (!VT)
464     return false;
465 
466   unsigned NumElems = VT->getNumElements();
467   IRBuilder<> Builder(&I);
468   Scatterer Op = scatter(&I, I.getOperand(0));
469   assert(Op.size() == NumElems && "Mismatched unary operation");
470   ValueVector Res;
471   Res.resize(NumElems);
472   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
473     Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
474   gather(&I, Res);
475   return true;
476 }
477 
478 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
479 // to create an instruction like I with operands X and Y and name Name.
480 template<typename Splitter>
481 bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
482   VectorType *VT = dyn_cast<VectorType>(I.getType());
483   if (!VT)
484     return false;
485 
486   unsigned NumElems = VT->getNumElements();
487   IRBuilder<> Builder(&I);
488   Scatterer Op0 = scatter(&I, I.getOperand(0));
489   Scatterer Op1 = scatter(&I, I.getOperand(1));
490   assert(Op0.size() == NumElems && "Mismatched binary operation");
491   assert(Op1.size() == NumElems && "Mismatched binary operation");
492   ValueVector Res;
493   Res.resize(NumElems);
494   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
495     Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
496                       I.getName() + ".i" + Twine(Elem));
497   gather(&I, Res);
498   return true;
499 }
500 
501 static bool isTriviallyScalariable(Intrinsic::ID ID) {
502   return isTriviallyVectorizable(ID);
503 }
504 
505 // All of the current scalarizable intrinsics only have one mangled type.
506 static Function *getScalarIntrinsicDeclaration(Module *M,
507                                                Intrinsic::ID ID,
508                                                VectorType *Ty) {
509   return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() });
510 }
511 
512 /// If a call to a vector typed intrinsic function, split into a scalar call per
513 /// element if possible for the intrinsic.
514 bool ScalarizerVisitor::splitCall(CallInst &CI) {
515   VectorType *VT = dyn_cast<VectorType>(CI.getType());
516   if (!VT)
517     return false;
518 
519   Function *F = CI.getCalledFunction();
520   if (!F)
521     return false;
522 
523   Intrinsic::ID ID = F->getIntrinsicID();
524   if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
525     return false;
526 
527   unsigned NumElems = VT->getNumElements();
528   unsigned NumArgs = CI.getNumArgOperands();
529 
530   ValueVector ScalarOperands(NumArgs);
531   SmallVector<Scatterer, 8> Scattered(NumArgs);
532 
533   Scattered.resize(NumArgs);
534 
535   // Assumes that any vector type has the same number of elements as the return
536   // vector type, which is true for all current intrinsics.
537   for (unsigned I = 0; I != NumArgs; ++I) {
538     Value *OpI = CI.getOperand(I);
539     if (OpI->getType()->isVectorTy()) {
540       Scattered[I] = scatter(&CI, OpI);
541       assert(Scattered[I].size() == NumElems && "mismatched call operands");
542     } else {
543       ScalarOperands[I] = OpI;
544     }
545   }
546 
547   ValueVector Res(NumElems);
548   ValueVector ScalarCallOps(NumArgs);
549 
550   Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT);
551   IRBuilder<> Builder(&CI);
552 
553   // Perform actual scalarization, taking care to preserve any scalar operands.
554   for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
555     ScalarCallOps.clear();
556 
557     for (unsigned J = 0; J != NumArgs; ++J) {
558       if (hasVectorInstrinsicScalarOpd(ID, J))
559         ScalarCallOps.push_back(ScalarOperands[J]);
560       else
561         ScalarCallOps.push_back(Scattered[J][Elem]);
562     }
563 
564     Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
565                                    CI.getName() + ".i" + Twine(Elem));
566   }
567 
568   gather(&CI, Res);
569   return true;
570 }
571 
572 bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
573   VectorType *VT = dyn_cast<VectorType>(SI.getType());
574   if (!VT)
575     return false;
576 
577   unsigned NumElems = VT->getNumElements();
578   IRBuilder<> Builder(&SI);
579   Scatterer Op1 = scatter(&SI, SI.getOperand(1));
580   Scatterer Op2 = scatter(&SI, SI.getOperand(2));
581   assert(Op1.size() == NumElems && "Mismatched select");
582   assert(Op2.size() == NumElems && "Mismatched select");
583   ValueVector Res;
584   Res.resize(NumElems);
585 
586   if (SI.getOperand(0)->getType()->isVectorTy()) {
587     Scatterer Op0 = scatter(&SI, SI.getOperand(0));
588     assert(Op0.size() == NumElems && "Mismatched select");
589     for (unsigned I = 0; I < NumElems; ++I)
590       Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
591                                     SI.getName() + ".i" + Twine(I));
592   } else {
593     Value *Op0 = SI.getOperand(0);
594     for (unsigned I = 0; I < NumElems; ++I)
595       Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
596                                     SI.getName() + ".i" + Twine(I));
597   }
598   gather(&SI, Res);
599   return true;
600 }
601 
602 bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
603   return splitBinary(ICI, ICmpSplitter(ICI));
604 }
605 
606 bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
607   return splitBinary(FCI, FCmpSplitter(FCI));
608 }
609 
610 bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
611   return splitUnary(UO, UnarySplitter(UO));
612 }
613 
614 bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
615   return splitBinary(BO, BinarySplitter(BO));
616 }
617 
618 bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
619   VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
620   if (!VT)
621     return false;
622 
623   IRBuilder<> Builder(&GEPI);
624   unsigned NumElems = VT->getNumElements();
625   unsigned NumIndices = GEPI.getNumIndices();
626 
627   // The base pointer might be scalar even if it's a vector GEP. In those cases,
628   // splat the pointer into a vector value, and scatter that vector.
629   Value *Op0 = GEPI.getOperand(0);
630   if (!Op0->getType()->isVectorTy())
631     Op0 = Builder.CreateVectorSplat(NumElems, Op0);
632   Scatterer Base = scatter(&GEPI, Op0);
633 
634   SmallVector<Scatterer, 8> Ops;
635   Ops.resize(NumIndices);
636   for (unsigned I = 0; I < NumIndices; ++I) {
637     Value *Op = GEPI.getOperand(I + 1);
638 
639     // The indices might be scalars even if it's a vector GEP. In those cases,
640     // splat the scalar into a vector value, and scatter that vector.
641     if (!Op->getType()->isVectorTy())
642       Op = Builder.CreateVectorSplat(NumElems, Op);
643 
644     Ops[I] = scatter(&GEPI, Op);
645   }
646 
647   ValueVector Res;
648   Res.resize(NumElems);
649   for (unsigned I = 0; I < NumElems; ++I) {
650     SmallVector<Value *, 8> Indices;
651     Indices.resize(NumIndices);
652     for (unsigned J = 0; J < NumIndices; ++J)
653       Indices[J] = Ops[J][I];
654     Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
655                                GEPI.getName() + ".i" + Twine(I));
656     if (GEPI.isInBounds())
657       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
658         NewGEPI->setIsInBounds();
659   }
660   gather(&GEPI, Res);
661   return true;
662 }
663 
664 bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
665   VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
666   if (!VT)
667     return false;
668 
669   unsigned NumElems = VT->getNumElements();
670   IRBuilder<> Builder(&CI);
671   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
672   assert(Op0.size() == NumElems && "Mismatched cast");
673   ValueVector Res;
674   Res.resize(NumElems);
675   for (unsigned I = 0; I < NumElems; ++I)
676     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
677                                 CI.getName() + ".i" + Twine(I));
678   gather(&CI, Res);
679   return true;
680 }
681 
682 bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
683   VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
684   VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
685   if (!DstVT || !SrcVT)
686     return false;
687 
688   unsigned DstNumElems = DstVT->getNumElements();
689   unsigned SrcNumElems = SrcVT->getNumElements();
690   IRBuilder<> Builder(&BCI);
691   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
692   ValueVector Res;
693   Res.resize(DstNumElems);
694 
695   if (DstNumElems == SrcNumElems) {
696     for (unsigned I = 0; I < DstNumElems; ++I)
697       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
698                                      BCI.getName() + ".i" + Twine(I));
699   } else if (DstNumElems > SrcNumElems) {
700     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
701     // individual elements to the destination.
702     unsigned FanOut = DstNumElems / SrcNumElems;
703     Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
704     unsigned ResI = 0;
705     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
706       Value *V = Op0[Op0I];
707       Instruction *VI;
708       // Look through any existing bitcasts before converting to <N x t2>.
709       // In the best case, the resulting conversion might be a no-op.
710       while ((VI = dyn_cast<Instruction>(V)) &&
711              VI->getOpcode() == Instruction::BitCast)
712         V = VI->getOperand(0);
713       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
714       Scatterer Mid = scatter(&BCI, V);
715       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
716         Res[ResI++] = Mid[MidI];
717     }
718   } else {
719     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
720     unsigned FanIn = SrcNumElems / DstNumElems;
721     Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
722     unsigned Op0I = 0;
723     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
724       Value *V = UndefValue::get(MidTy);
725       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
726         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
727                                         BCI.getName() + ".i" + Twine(ResI)
728                                         + ".upto" + Twine(MidI));
729       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
730                                         BCI.getName() + ".i" + Twine(ResI));
731     }
732   }
733   gather(&BCI, Res);
734   return true;
735 }
736 
737 bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
738   VectorType *VT = dyn_cast<VectorType>(SVI.getType());
739   if (!VT)
740     return false;
741 
742   unsigned NumElems = VT->getNumElements();
743   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
744   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
745   ValueVector Res;
746   Res.resize(NumElems);
747 
748   for (unsigned I = 0; I < NumElems; ++I) {
749     int Selector = SVI.getMaskValue(I);
750     if (Selector < 0)
751       Res[I] = UndefValue::get(VT->getElementType());
752     else if (unsigned(Selector) < Op0.size())
753       Res[I] = Op0[Selector];
754     else
755       Res[I] = Op1[Selector - Op0.size()];
756   }
757   gather(&SVI, Res);
758   return true;
759 }
760 
761 bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
762   VectorType *VT = dyn_cast<VectorType>(PHI.getType());
763   if (!VT)
764     return false;
765 
766   unsigned NumElems = VT->getNumElements();
767   IRBuilder<> Builder(&PHI);
768   ValueVector Res;
769   Res.resize(NumElems);
770 
771   unsigned NumOps = PHI.getNumOperands();
772   for (unsigned I = 0; I < NumElems; ++I)
773     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
774                                PHI.getName() + ".i" + Twine(I));
775 
776   for (unsigned I = 0; I < NumOps; ++I) {
777     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
778     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
779     for (unsigned J = 0; J < NumElems; ++J)
780       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
781   }
782   gather(&PHI, Res);
783   return true;
784 }
785 
786 bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
787   if (!ScalarizeLoadStore)
788     return false;
789   if (!LI.isSimple())
790     return false;
791 
792   VectorLayout Layout;
793   if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
794                        LI.getModule()->getDataLayout()))
795     return false;
796 
797   unsigned NumElems = Layout.VecTy->getNumElements();
798   IRBuilder<> Builder(&LI);
799   Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
800   ValueVector Res;
801   Res.resize(NumElems);
802 
803   for (unsigned I = 0; I < NumElems; ++I)
804     Res[I] = Builder.CreateAlignedLoad(Layout.VecTy->getElementType(), Ptr[I],
805                                        Layout.getElemAlign(I),
806                                        LI.getName() + ".i" + Twine(I));
807   gather(&LI, Res);
808   return true;
809 }
810 
811 bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
812   if (!ScalarizeLoadStore)
813     return false;
814   if (!SI.isSimple())
815     return false;
816 
817   VectorLayout Layout;
818   Value *FullValue = SI.getValueOperand();
819   if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
820                        SI.getModule()->getDataLayout()))
821     return false;
822 
823   unsigned NumElems = Layout.VecTy->getNumElements();
824   IRBuilder<> Builder(&SI);
825   Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
826   Scatterer Val = scatter(&SI, FullValue);
827 
828   ValueVector Stores;
829   Stores.resize(NumElems);
830   for (unsigned I = 0; I < NumElems; ++I) {
831     unsigned Align = Layout.getElemAlign(I);
832     Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
833   }
834   transferMetadataAndIRFlags(&SI, Stores);
835   return true;
836 }
837 
838 bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
839   return splitCall(CI);
840 }
841 
842 // Delete the instructions that we scalarized.  If a full vector result
843 // is still needed, recreate it using InsertElements.
844 bool ScalarizerVisitor::finish() {
845   // The presence of data in Gathered or Scattered indicates changes
846   // made to the Function.
847   if (Gathered.empty() && Scattered.empty())
848     return false;
849   for (const auto &GMI : Gathered) {
850     Instruction *Op = GMI.first;
851     ValueVector &CV = *GMI.second;
852     if (!Op->use_empty()) {
853       // The value is still needed, so recreate it using a series of
854       // InsertElements.
855       Type *Ty = Op->getType();
856       Value *Res = UndefValue::get(Ty);
857       BasicBlock *BB = Op->getParent();
858       unsigned Count = Ty->getVectorNumElements();
859       IRBuilder<> Builder(Op);
860       if (isa<PHINode>(Op))
861         Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
862       for (unsigned I = 0; I < Count; ++I)
863         Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
864                                           Op->getName() + ".upto" + Twine(I));
865       Res->takeName(Op);
866       Op->replaceAllUsesWith(Res);
867     }
868     Op->eraseFromParent();
869   }
870   Gathered.clear();
871   Scattered.clear();
872   return true;
873 }
874 
875 PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
876   Module &M = *F.getParent();
877   unsigned ParallelLoopAccessMDKind =
878       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
879   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
880   ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
881   bool Changed = Impl.visit(F);
882   PreservedAnalyses PA;
883   PA.preserve<DominatorTreeAnalysis>();
884   return Changed ? PA : PreservedAnalyses::all();
885 }
886