xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/Scalarizer.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts vector operations into scalar operations, in order
10 // to expose optimization opportunities on the individual scalar operations.
11 // It is mainly intended for targets that do not have vector units, but it
12 // may also be useful for revectorizing code to different vector widths.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Scalar/Scalarizer.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/VectorUtils.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstVisitor.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <map>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "scalarizer"
52 
53 static cl::opt<bool> ClScalarizeVariableInsertExtract(
54     "scalarize-variable-insert-extract", cl::init(true), cl::Hidden,
55     cl::desc("Allow the scalarizer pass to scalarize "
56              "insertelement/extractelement with variable index"));
57 
58 // This is disabled by default because having separate loads and stores
59 // makes it more likely that the -combiner-alias-analysis limits will be
60 // reached.
61 static cl::opt<bool> ClScalarizeLoadStore(
62     "scalarize-load-store", cl::init(false), cl::Hidden,
63     cl::desc("Allow the scalarizer pass to scalarize loads and store"));
64 
65 namespace {
66 
67 BasicBlock::iterator skipPastPhiNodesAndDbg(BasicBlock::iterator Itr) {
68   BasicBlock *BB = Itr->getParent();
69   if (isa<PHINode>(Itr))
70     Itr = BB->getFirstInsertionPt();
71   if (Itr != BB->end())
72     Itr = skipDebugIntrinsics(Itr);
73   return Itr;
74 }
75 
76 // Used to store the scattered form of a vector.
77 using ValueVector = SmallVector<Value *, 8>;
78 
79 // Used to map a vector Value and associated type to its scattered form.
80 // The associated type is only non-null for pointer values that are "scattered"
81 // when used as pointer operands to load or store.
82 //
83 // We use std::map because we want iterators to persist across insertion and
84 // because the values are relatively large.
85 using ScatterMap = std::map<std::pair<Value *, Type *>, ValueVector>;
86 
87 // Lists Instructions that have been replaced with scalar implementations,
88 // along with a pointer to their scattered forms.
89 using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
90 
91 // Provides a very limited vector-like interface for lazily accessing one
92 // component of a scattered vector or vector pointer.
93 class Scatterer {
94 public:
95   Scatterer() = default;
96 
97   // Scatter V into Size components.  If new instructions are needed,
98   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
99   // the results.
100   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v, Type *PtrElemTy,
101             ValueVector *cachePtr = nullptr);
102 
103   // Return component I, creating a new Value for it if necessary.
104   Value *operator[](unsigned I);
105 
106   // Return the number of components.
107   unsigned size() const { return Size; }
108 
109 private:
110   BasicBlock *BB;
111   BasicBlock::iterator BBI;
112   Value *V;
113   Type *PtrElemTy;
114   ValueVector *CachePtr;
115   ValueVector Tmp;
116   unsigned Size;
117 };
118 
119 // FCmpSplitter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
120 // called Name that compares X and Y in the same way as FCI.
121 struct FCmpSplitter {
122   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
123 
124   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
125                     const Twine &Name) const {
126     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
127   }
128 
129   FCmpInst &FCI;
130 };
131 
132 // ICmpSplitter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
133 // called Name that compares X and Y in the same way as ICI.
134 struct ICmpSplitter {
135   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
136 
137   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
138                     const Twine &Name) const {
139     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
140   }
141 
142   ICmpInst &ICI;
143 };
144 
145 // UnarySplitter(UO)(Builder, X, Name) uses Builder to create
146 // a unary operator like UO called Name with operand X.
147 struct UnarySplitter {
148   UnarySplitter(UnaryOperator &uo) : UO(uo) {}
149 
150   Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
151     return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
152   }
153 
154   UnaryOperator &UO;
155 };
156 
157 // BinarySplitter(BO)(Builder, X, Y, Name) uses Builder to create
158 // a binary operator like BO called Name with operands X and Y.
159 struct BinarySplitter {
160   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
161 
162   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
163                     const Twine &Name) const {
164     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
165   }
166 
167   BinaryOperator &BO;
168 };
169 
170 // Information about a load or store that we're scalarizing.
171 struct VectorLayout {
172   VectorLayout() = default;
173 
174   // Return the alignment of element I.
175   Align getElemAlign(unsigned I) {
176     return commonAlignment(VecAlign, I * ElemSize);
177   }
178 
179   // The type of the vector.
180   FixedVectorType *VecTy = nullptr;
181 
182   // The type of each element.
183   Type *ElemTy = nullptr;
184 
185   // The alignment of the vector.
186   Align VecAlign;
187 
188   // The size of each element.
189   uint64_t ElemSize = 0;
190 };
191 
192 template <typename T>
193 T getWithDefaultOverride(const cl::opt<T> &ClOption,
194                          const std::optional<T> &DefaultOverride) {
195   return ClOption.getNumOccurrences() ? ClOption
196                                       : DefaultOverride.value_or(ClOption);
197 }
198 
199 class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
200 public:
201   ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT,
202                     ScalarizerPassOptions Options)
203       : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT),
204         ScalarizeVariableInsertExtract(
205             getWithDefaultOverride(ClScalarizeVariableInsertExtract,
206                                    Options.ScalarizeVariableInsertExtract)),
207         ScalarizeLoadStore(getWithDefaultOverride(ClScalarizeLoadStore,
208                                                   Options.ScalarizeLoadStore)) {
209   }
210 
211   bool visit(Function &F);
212 
213   // InstVisitor methods.  They return true if the instruction was scalarized,
214   // false if nothing changed.
215   bool visitInstruction(Instruction &I) { return false; }
216   bool visitSelectInst(SelectInst &SI);
217   bool visitICmpInst(ICmpInst &ICI);
218   bool visitFCmpInst(FCmpInst &FCI);
219   bool visitUnaryOperator(UnaryOperator &UO);
220   bool visitBinaryOperator(BinaryOperator &BO);
221   bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
222   bool visitCastInst(CastInst &CI);
223   bool visitBitCastInst(BitCastInst &BCI);
224   bool visitInsertElementInst(InsertElementInst &IEI);
225   bool visitExtractElementInst(ExtractElementInst &EEI);
226   bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
227   bool visitPHINode(PHINode &PHI);
228   bool visitLoadInst(LoadInst &LI);
229   bool visitStoreInst(StoreInst &SI);
230   bool visitCallInst(CallInst &ICI);
231 
232 private:
233   Scatterer scatter(Instruction *Point, Value *V, Type *PtrElemTy = nullptr);
234   void gather(Instruction *Op, const ValueVector &CV);
235   void replaceUses(Instruction *Op, Value *CV);
236   bool canTransferMetadata(unsigned Kind);
237   void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
238   std::optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment,
239                                               const DataLayout &DL);
240   bool finish();
241 
242   template<typename T> bool splitUnary(Instruction &, const T &);
243   template<typename T> bool splitBinary(Instruction &, const T &);
244 
245   bool splitCall(CallInst &CI);
246 
247   ScatterMap Scattered;
248   GatherList Gathered;
249   bool Scalarized;
250 
251   SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs;
252 
253   unsigned ParallelLoopAccessMDKind;
254 
255   DominatorTree *DT;
256 
257   const bool ScalarizeVariableInsertExtract;
258   const bool ScalarizeLoadStore;
259 };
260 
261 class ScalarizerLegacyPass : public FunctionPass {
262 public:
263   static char ID;
264 
265   ScalarizerLegacyPass() : FunctionPass(ID) {
266     initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
267   }
268 
269   bool runOnFunction(Function &F) override;
270 
271   void getAnalysisUsage(AnalysisUsage& AU) const override {
272     AU.addRequired<DominatorTreeWrapperPass>();
273     AU.addPreserved<DominatorTreeWrapperPass>();
274   }
275 };
276 
277 } // end anonymous namespace
278 
279 char ScalarizerLegacyPass::ID = 0;
280 INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
281                       "Scalarize vector operations", false, false)
282 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
283 INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
284                     "Scalarize vector operations", false, false)
285 
286 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
287                      Type *PtrElemTy, ValueVector *cachePtr)
288     : BB(bb), BBI(bbi), V(v), PtrElemTy(PtrElemTy), CachePtr(cachePtr) {
289   Type *Ty = V->getType();
290   if (Ty->isPointerTy()) {
291     assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(PtrElemTy) &&
292            "Pointer element type mismatch");
293     Ty = PtrElemTy;
294   }
295   Size = cast<FixedVectorType>(Ty)->getNumElements();
296   if (!CachePtr)
297     Tmp.resize(Size, nullptr);
298   else if (CachePtr->empty())
299     CachePtr->resize(Size, nullptr);
300   else
301     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
302 }
303 
304 // Return component I, creating a new Value for it if necessary.
305 Value *Scatterer::operator[](unsigned I) {
306   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
307   // Try to reuse a previous value.
308   if (CV[I])
309     return CV[I];
310   IRBuilder<> Builder(BB, BBI);
311   if (PtrElemTy) {
312     Type *VectorElemTy = cast<VectorType>(PtrElemTy)->getElementType();
313     if (!CV[0]) {
314       Type *NewPtrTy = PointerType::get(
315           VectorElemTy, V->getType()->getPointerAddressSpace());
316       CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
317     }
318     if (I != 0)
319       CV[I] = Builder.CreateConstGEP1_32(VectorElemTy, CV[0], I,
320                                          V->getName() + ".i" + Twine(I));
321   } else {
322     // Search through a chain of InsertElementInsts looking for element I.
323     // Record other elements in the cache.  The new V is still suitable
324     // for all uncached indices.
325     while (true) {
326       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
327       if (!Insert)
328         break;
329       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
330       if (!Idx)
331         break;
332       unsigned J = Idx->getZExtValue();
333       V = Insert->getOperand(0);
334       if (I == J) {
335         CV[J] = Insert->getOperand(1);
336         return CV[J];
337       } else if (!CV[J]) {
338         // Only cache the first entry we find for each index we're not actively
339         // searching for. This prevents us from going too far up the chain and
340         // caching incorrect entries.
341         CV[J] = Insert->getOperand(1);
342       }
343     }
344     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
345                                          V->getName() + ".i" + Twine(I));
346   }
347   return CV[I];
348 }
349 
350 bool ScalarizerLegacyPass::runOnFunction(Function &F) {
351   if (skipFunction(F))
352     return false;
353 
354   Module &M = *F.getParent();
355   unsigned ParallelLoopAccessMDKind =
356       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
357   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
358   ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, ScalarizerPassOptions());
359   return Impl.visit(F);
360 }
361 
362 FunctionPass *llvm::createScalarizerPass() {
363   return new ScalarizerLegacyPass();
364 }
365 
366 bool ScalarizerVisitor::visit(Function &F) {
367   assert(Gathered.empty() && Scattered.empty());
368 
369   Scalarized = false;
370 
371   // To ensure we replace gathered components correctly we need to do an ordered
372   // traversal of the basic blocks in the function.
373   ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
374   for (BasicBlock *BB : RPOT) {
375     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
376       Instruction *I = &*II;
377       bool Done = InstVisitor::visit(I);
378       ++II;
379       if (Done && I->getType()->isVoidTy())
380         I->eraseFromParent();
381     }
382   }
383   return finish();
384 }
385 
386 // Return a scattered form of V that can be accessed by Point.  V must be a
387 // vector or a pointer to a vector.
388 Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V,
389                                      Type *PtrElemTy) {
390   if (Argument *VArg = dyn_cast<Argument>(V)) {
391     // Put the scattered form of arguments in the entry block,
392     // so that it can be used everywhere.
393     Function *F = VArg->getParent();
394     BasicBlock *BB = &F->getEntryBlock();
395     return Scatterer(BB, BB->begin(), V, PtrElemTy, &Scattered[{V, PtrElemTy}]);
396   }
397   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
398     // When scalarizing PHI nodes we might try to examine/rewrite InsertElement
399     // nodes in predecessors. If those predecessors are unreachable from entry,
400     // then the IR in those blocks could have unexpected properties resulting in
401     // infinite loops in Scatterer::operator[]. By simply treating values
402     // originating from instructions in unreachable blocks as undef we do not
403     // need to analyse them further.
404     if (!DT->isReachableFromEntry(VOp->getParent()))
405       return Scatterer(Point->getParent(), Point->getIterator(),
406                        PoisonValue::get(V->getType()), PtrElemTy);
407     // Put the scattered form of an instruction directly after the
408     // instruction, skipping over PHI nodes and debug intrinsics.
409     BasicBlock *BB = VOp->getParent();
410     return Scatterer(
411         BB, skipPastPhiNodesAndDbg(std::next(BasicBlock::iterator(VOp))), V,
412         PtrElemTy, &Scattered[{V, PtrElemTy}]);
413   }
414   // In the fallback case, just put the scattered before Point and
415   // keep the result local to Point.
416   return Scatterer(Point->getParent(), Point->getIterator(), V, PtrElemTy);
417 }
418 
419 // Replace Op with the gathered form of the components in CV.  Defer the
420 // deletion of Op and creation of the gathered form to the end of the pass,
421 // so that we can avoid creating the gathered form if all uses of Op are
422 // replaced with uses of CV.
423 void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
424   transferMetadataAndIRFlags(Op, CV);
425 
426   // If we already have a scattered form of Op (created from ExtractElements
427   // of Op itself), replace them with the new form.
428   ValueVector &SV = Scattered[{Op, nullptr}];
429   if (!SV.empty()) {
430     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
431       Value *V = SV[I];
432       if (V == nullptr || SV[I] == CV[I])
433         continue;
434 
435       Instruction *Old = cast<Instruction>(V);
436       if (isa<Instruction>(CV[I]))
437         CV[I]->takeName(Old);
438       Old->replaceAllUsesWith(CV[I]);
439       PotentiallyDeadInstrs.emplace_back(Old);
440     }
441   }
442   SV = CV;
443   Gathered.push_back(GatherList::value_type(Op, &SV));
444 }
445 
446 // Replace Op with CV and collect Op has a potentially dead instruction.
447 void ScalarizerVisitor::replaceUses(Instruction *Op, Value *CV) {
448   if (CV != Op) {
449     Op->replaceAllUsesWith(CV);
450     PotentiallyDeadInstrs.emplace_back(Op);
451     Scalarized = true;
452   }
453 }
454 
455 // Return true if it is safe to transfer the given metadata tag from
456 // vector to scalar instructions.
457 bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
458   return (Tag == LLVMContext::MD_tbaa
459           || Tag == LLVMContext::MD_fpmath
460           || Tag == LLVMContext::MD_tbaa_struct
461           || Tag == LLVMContext::MD_invariant_load
462           || Tag == LLVMContext::MD_alias_scope
463           || Tag == LLVMContext::MD_noalias
464           || Tag == ParallelLoopAccessMDKind
465           || Tag == LLVMContext::MD_access_group);
466 }
467 
468 // Transfer metadata from Op to the instructions in CV if it is known
469 // to be safe to do so.
470 void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
471                                                    const ValueVector &CV) {
472   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
473   Op->getAllMetadataOtherThanDebugLoc(MDs);
474   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
475     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
476       for (const auto &MD : MDs)
477         if (canTransferMetadata(MD.first))
478           New->setMetadata(MD.first, MD.second);
479       New->copyIRFlags(Op);
480       if (Op->getDebugLoc() && !New->getDebugLoc())
481         New->setDebugLoc(Op->getDebugLoc());
482     }
483   }
484 }
485 
486 // Try to fill in Layout from Ty, returning true on success.  Alignment is
487 // the alignment of the vector, or std::nullopt if the ABI default should be
488 // used.
489 std::optional<VectorLayout>
490 ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment,
491                                    const DataLayout &DL) {
492   VectorLayout Layout;
493   // Make sure we're dealing with a vector.
494   Layout.VecTy = dyn_cast<FixedVectorType>(Ty);
495   if (!Layout.VecTy)
496     return std::nullopt;
497   // Check that we're dealing with full-byte elements.
498   Layout.ElemTy = Layout.VecTy->getElementType();
499   if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy))
500     return std::nullopt;
501   Layout.VecAlign = Alignment;
502   Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
503   return Layout;
504 }
505 
506 // Scalarize one-operand instruction I, using Split(Builder, X, Name)
507 // to create an instruction like I with operand X and name Name.
508 template<typename Splitter>
509 bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
510   auto *VT = dyn_cast<FixedVectorType>(I.getType());
511   if (!VT)
512     return false;
513 
514   unsigned NumElems = VT->getNumElements();
515   IRBuilder<> Builder(&I);
516   Scatterer Op = scatter(&I, I.getOperand(0));
517   assert(Op.size() == NumElems && "Mismatched unary operation");
518   ValueVector Res;
519   Res.resize(NumElems);
520   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
521     Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
522   gather(&I, Res);
523   return true;
524 }
525 
526 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
527 // to create an instruction like I with operands X and Y and name Name.
528 template<typename Splitter>
529 bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
530   auto *VT = dyn_cast<FixedVectorType>(I.getType());
531   if (!VT)
532     return false;
533 
534   unsigned NumElems = VT->getNumElements();
535   IRBuilder<> Builder(&I);
536   Scatterer VOp0 = scatter(&I, I.getOperand(0));
537   Scatterer VOp1 = scatter(&I, I.getOperand(1));
538   assert(VOp0.size() == NumElems && "Mismatched binary operation");
539   assert(VOp1.size() == NumElems && "Mismatched binary operation");
540   ValueVector Res;
541   Res.resize(NumElems);
542   for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
543     Value *Op0 = VOp0[Elem];
544     Value *Op1 = VOp1[Elem];
545     Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem));
546   }
547   gather(&I, Res);
548   return true;
549 }
550 
551 static bool isTriviallyScalariable(Intrinsic::ID ID) {
552   return isTriviallyVectorizable(ID);
553 }
554 
555 // All of the current scalarizable intrinsics only have one mangled type.
556 static Function *getScalarIntrinsicDeclaration(Module *M,
557                                                Intrinsic::ID ID,
558                                                ArrayRef<Type*> Tys) {
559   return Intrinsic::getDeclaration(M, ID, Tys);
560 }
561 
562 /// If a call to a vector typed intrinsic function, split into a scalar call per
563 /// element if possible for the intrinsic.
564 bool ScalarizerVisitor::splitCall(CallInst &CI) {
565   auto *VT = dyn_cast<FixedVectorType>(CI.getType());
566   if (!VT)
567     return false;
568 
569   Function *F = CI.getCalledFunction();
570   if (!F)
571     return false;
572 
573   Intrinsic::ID ID = F->getIntrinsicID();
574   if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
575     return false;
576 
577   unsigned NumElems = VT->getNumElements();
578   unsigned NumArgs = CI.arg_size();
579 
580   ValueVector ScalarOperands(NumArgs);
581   SmallVector<Scatterer, 8> Scattered(NumArgs);
582 
583   Scattered.resize(NumArgs);
584 
585   SmallVector<llvm::Type *, 3> Tys;
586   Tys.push_back(VT->getScalarType());
587 
588   // Assumes that any vector type has the same number of elements as the return
589   // vector type, which is true for all current intrinsics.
590   for (unsigned I = 0; I != NumArgs; ++I) {
591     Value *OpI = CI.getOperand(I);
592     if (OpI->getType()->isVectorTy()) {
593       Scattered[I] = scatter(&CI, OpI);
594       assert(Scattered[I].size() == NumElems && "mismatched call operands");
595       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I))
596         Tys.push_back(OpI->getType()->getScalarType());
597     } else {
598       ScalarOperands[I] = OpI;
599       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I))
600         Tys.push_back(OpI->getType());
601     }
602   }
603 
604   ValueVector Res(NumElems);
605   ValueVector ScalarCallOps(NumArgs);
606 
607   Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, Tys);
608   IRBuilder<> Builder(&CI);
609 
610   // Perform actual scalarization, taking care to preserve any scalar operands.
611   for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
612     ScalarCallOps.clear();
613 
614     for (unsigned J = 0; J != NumArgs; ++J) {
615       if (isVectorIntrinsicWithScalarOpAtArg(ID, J))
616         ScalarCallOps.push_back(ScalarOperands[J]);
617       else
618         ScalarCallOps.push_back(Scattered[J][Elem]);
619     }
620 
621     Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
622                                    CI.getName() + ".i" + Twine(Elem));
623   }
624 
625   gather(&CI, Res);
626   return true;
627 }
628 
629 bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
630   auto *VT = dyn_cast<FixedVectorType>(SI.getType());
631   if (!VT)
632     return false;
633 
634   unsigned NumElems = VT->getNumElements();
635   IRBuilder<> Builder(&SI);
636   Scatterer VOp1 = scatter(&SI, SI.getOperand(1));
637   Scatterer VOp2 = scatter(&SI, SI.getOperand(2));
638   assert(VOp1.size() == NumElems && "Mismatched select");
639   assert(VOp2.size() == NumElems && "Mismatched select");
640   ValueVector Res;
641   Res.resize(NumElems);
642 
643   if (SI.getOperand(0)->getType()->isVectorTy()) {
644     Scatterer VOp0 = scatter(&SI, SI.getOperand(0));
645     assert(VOp0.size() == NumElems && "Mismatched select");
646     for (unsigned I = 0; I < NumElems; ++I) {
647       Value *Op0 = VOp0[I];
648       Value *Op1 = VOp1[I];
649       Value *Op2 = VOp2[I];
650       Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
651                                     SI.getName() + ".i" + Twine(I));
652     }
653   } else {
654     Value *Op0 = SI.getOperand(0);
655     for (unsigned I = 0; I < NumElems; ++I) {
656       Value *Op1 = VOp1[I];
657       Value *Op2 = VOp2[I];
658       Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
659                                     SI.getName() + ".i" + Twine(I));
660     }
661   }
662   gather(&SI, Res);
663   return true;
664 }
665 
666 bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
667   return splitBinary(ICI, ICmpSplitter(ICI));
668 }
669 
670 bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
671   return splitBinary(FCI, FCmpSplitter(FCI));
672 }
673 
674 bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
675   return splitUnary(UO, UnarySplitter(UO));
676 }
677 
678 bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
679   return splitBinary(BO, BinarySplitter(BO));
680 }
681 
682 bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
683   auto *VT = dyn_cast<FixedVectorType>(GEPI.getType());
684   if (!VT)
685     return false;
686 
687   IRBuilder<> Builder(&GEPI);
688   unsigned NumElems = VT->getNumElements();
689   unsigned NumIndices = GEPI.getNumIndices();
690 
691   // The base pointer might be scalar even if it's a vector GEP. In those cases,
692   // splat the pointer into a vector value, and scatter that vector.
693   Value *Op0 = GEPI.getOperand(0);
694   if (!Op0->getType()->isVectorTy())
695     Op0 = Builder.CreateVectorSplat(NumElems, Op0);
696   Scatterer Base = scatter(&GEPI, Op0);
697 
698   SmallVector<Scatterer, 8> Ops;
699   Ops.resize(NumIndices);
700   for (unsigned I = 0; I < NumIndices; ++I) {
701     Value *Op = GEPI.getOperand(I + 1);
702 
703     // The indices might be scalars even if it's a vector GEP. In those cases,
704     // splat the scalar into a vector value, and scatter that vector.
705     if (!Op->getType()->isVectorTy())
706       Op = Builder.CreateVectorSplat(NumElems, Op);
707 
708     Ops[I] = scatter(&GEPI, Op);
709   }
710 
711   ValueVector Res;
712   Res.resize(NumElems);
713   for (unsigned I = 0; I < NumElems; ++I) {
714     SmallVector<Value *, 8> Indices;
715     Indices.resize(NumIndices);
716     for (unsigned J = 0; J < NumIndices; ++J)
717       Indices[J] = Ops[J][I];
718     Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
719                                GEPI.getName() + ".i" + Twine(I));
720     if (GEPI.isInBounds())
721       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
722         NewGEPI->setIsInBounds();
723   }
724   gather(&GEPI, Res);
725   return true;
726 }
727 
728 bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
729   auto *VT = dyn_cast<FixedVectorType>(CI.getDestTy());
730   if (!VT)
731     return false;
732 
733   unsigned NumElems = VT->getNumElements();
734   IRBuilder<> Builder(&CI);
735   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
736   assert(Op0.size() == NumElems && "Mismatched cast");
737   ValueVector Res;
738   Res.resize(NumElems);
739   for (unsigned I = 0; I < NumElems; ++I)
740     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
741                                 CI.getName() + ".i" + Twine(I));
742   gather(&CI, Res);
743   return true;
744 }
745 
746 bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
747   auto *DstVT = dyn_cast<FixedVectorType>(BCI.getDestTy());
748   auto *SrcVT = dyn_cast<FixedVectorType>(BCI.getSrcTy());
749   if (!DstVT || !SrcVT)
750     return false;
751 
752   unsigned DstNumElems = DstVT->getNumElements();
753   unsigned SrcNumElems = SrcVT->getNumElements();
754   IRBuilder<> Builder(&BCI);
755   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
756   ValueVector Res;
757   Res.resize(DstNumElems);
758 
759   if (DstNumElems == SrcNumElems) {
760     for (unsigned I = 0; I < DstNumElems; ++I)
761       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
762                                      BCI.getName() + ".i" + Twine(I));
763   } else if (DstNumElems > SrcNumElems) {
764     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
765     // individual elements to the destination.
766     unsigned FanOut = DstNumElems / SrcNumElems;
767     auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut);
768     unsigned ResI = 0;
769     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
770       Value *V = Op0[Op0I];
771       Instruction *VI;
772       // Look through any existing bitcasts before converting to <N x t2>.
773       // In the best case, the resulting conversion might be a no-op.
774       while ((VI = dyn_cast<Instruction>(V)) &&
775              VI->getOpcode() == Instruction::BitCast)
776         V = VI->getOperand(0);
777       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
778       Scatterer Mid = scatter(&BCI, V);
779       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
780         Res[ResI++] = Mid[MidI];
781     }
782   } else {
783     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
784     unsigned FanIn = SrcNumElems / DstNumElems;
785     auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn);
786     unsigned Op0I = 0;
787     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
788       Value *V = PoisonValue::get(MidTy);
789       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
790         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
791                                         BCI.getName() + ".i" + Twine(ResI)
792                                         + ".upto" + Twine(MidI));
793       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
794                                         BCI.getName() + ".i" + Twine(ResI));
795     }
796   }
797   gather(&BCI, Res);
798   return true;
799 }
800 
801 bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) {
802   auto *VT = dyn_cast<FixedVectorType>(IEI.getType());
803   if (!VT)
804     return false;
805 
806   unsigned NumElems = VT->getNumElements();
807   IRBuilder<> Builder(&IEI);
808   Scatterer Op0 = scatter(&IEI, IEI.getOperand(0));
809   Value *NewElt = IEI.getOperand(1);
810   Value *InsIdx = IEI.getOperand(2);
811 
812   ValueVector Res;
813   Res.resize(NumElems);
814 
815   if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) {
816     for (unsigned I = 0; I < NumElems; ++I)
817       Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I];
818   } else {
819     if (!ScalarizeVariableInsertExtract)
820       return false;
821 
822     for (unsigned I = 0; I < NumElems; ++I) {
823       Value *ShouldReplace =
824           Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I),
825                                InsIdx->getName() + ".is." + Twine(I));
826       Value *OldElt = Op0[I];
827       Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt,
828                                     IEI.getName() + ".i" + Twine(I));
829     }
830   }
831 
832   gather(&IEI, Res);
833   return true;
834 }
835 
836 bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) {
837   auto *VT = dyn_cast<FixedVectorType>(EEI.getOperand(0)->getType());
838   if (!VT)
839     return false;
840 
841   unsigned NumSrcElems = VT->getNumElements();
842   IRBuilder<> Builder(&EEI);
843   Scatterer Op0 = scatter(&EEI, EEI.getOperand(0));
844   Value *ExtIdx = EEI.getOperand(1);
845 
846   if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) {
847     Value *Res = Op0[CI->getValue().getZExtValue()];
848     replaceUses(&EEI, Res);
849     return true;
850   }
851 
852   if (!ScalarizeVariableInsertExtract)
853     return false;
854 
855   Value *Res = PoisonValue::get(VT->getElementType());
856   for (unsigned I = 0; I < NumSrcElems; ++I) {
857     Value *ShouldExtract =
858         Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I),
859                              ExtIdx->getName() + ".is." + Twine(I));
860     Value *Elt = Op0[I];
861     Res = Builder.CreateSelect(ShouldExtract, Elt, Res,
862                                EEI.getName() + ".upto" + Twine(I));
863   }
864   replaceUses(&EEI, Res);
865   return true;
866 }
867 
868 bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
869   auto *VT = dyn_cast<FixedVectorType>(SVI.getType());
870   if (!VT)
871     return false;
872 
873   unsigned NumElems = VT->getNumElements();
874   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
875   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
876   ValueVector Res;
877   Res.resize(NumElems);
878 
879   for (unsigned I = 0; I < NumElems; ++I) {
880     int Selector = SVI.getMaskValue(I);
881     if (Selector < 0)
882       Res[I] = UndefValue::get(VT->getElementType());
883     else if (unsigned(Selector) < Op0.size())
884       Res[I] = Op0[Selector];
885     else
886       Res[I] = Op1[Selector - Op0.size()];
887   }
888   gather(&SVI, Res);
889   return true;
890 }
891 
892 bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
893   auto *VT = dyn_cast<FixedVectorType>(PHI.getType());
894   if (!VT)
895     return false;
896 
897   unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
898   IRBuilder<> Builder(&PHI);
899   ValueVector Res;
900   Res.resize(NumElems);
901 
902   unsigned NumOps = PHI.getNumOperands();
903   for (unsigned I = 0; I < NumElems; ++I)
904     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
905                                PHI.getName() + ".i" + Twine(I));
906 
907   for (unsigned I = 0; I < NumOps; ++I) {
908     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
909     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
910     for (unsigned J = 0; J < NumElems; ++J)
911       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
912   }
913   gather(&PHI, Res);
914   return true;
915 }
916 
917 bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
918   if (!ScalarizeLoadStore)
919     return false;
920   if (!LI.isSimple())
921     return false;
922 
923   std::optional<VectorLayout> Layout = getVectorLayout(
924       LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout());
925   if (!Layout)
926     return false;
927 
928   unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
929   IRBuilder<> Builder(&LI);
930   Scatterer Ptr = scatter(&LI, LI.getPointerOperand(), LI.getType());
931   ValueVector Res;
932   Res.resize(NumElems);
933 
934   for (unsigned I = 0; I < NumElems; ++I)
935     Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I],
936                                        Align(Layout->getElemAlign(I)),
937                                        LI.getName() + ".i" + Twine(I));
938   gather(&LI, Res);
939   return true;
940 }
941 
942 bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
943   if (!ScalarizeLoadStore)
944     return false;
945   if (!SI.isSimple())
946     return false;
947 
948   Value *FullValue = SI.getValueOperand();
949   std::optional<VectorLayout> Layout = getVectorLayout(
950       FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout());
951   if (!Layout)
952     return false;
953 
954   unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
955   IRBuilder<> Builder(&SI);
956   Scatterer VPtr = scatter(&SI, SI.getPointerOperand(), FullValue->getType());
957   Scatterer VVal = scatter(&SI, FullValue);
958 
959   ValueVector Stores;
960   Stores.resize(NumElems);
961   for (unsigned I = 0; I < NumElems; ++I) {
962     Value *Val = VVal[I];
963     Value *Ptr = VPtr[I];
964     Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I));
965   }
966   transferMetadataAndIRFlags(&SI, Stores);
967   return true;
968 }
969 
970 bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
971   return splitCall(CI);
972 }
973 
974 // Delete the instructions that we scalarized.  If a full vector result
975 // is still needed, recreate it using InsertElements.
976 bool ScalarizerVisitor::finish() {
977   // The presence of data in Gathered or Scattered indicates changes
978   // made to the Function.
979   if (Gathered.empty() && Scattered.empty() && !Scalarized)
980     return false;
981   for (const auto &GMI : Gathered) {
982     Instruction *Op = GMI.first;
983     ValueVector &CV = *GMI.second;
984     if (!Op->use_empty()) {
985       // The value is still needed, so recreate it using a series of
986       // InsertElements.
987       Value *Res = PoisonValue::get(Op->getType());
988       if (auto *Ty = dyn_cast<FixedVectorType>(Op->getType())) {
989         BasicBlock *BB = Op->getParent();
990         unsigned Count = Ty->getNumElements();
991         IRBuilder<> Builder(Op);
992         if (isa<PHINode>(Op))
993           Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
994         for (unsigned I = 0; I < Count; ++I)
995           Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
996                                             Op->getName() + ".upto" + Twine(I));
997         Res->takeName(Op);
998       } else {
999         assert(CV.size() == 1 && Op->getType() == CV[0]->getType());
1000         Res = CV[0];
1001         if (Op == Res)
1002           continue;
1003       }
1004       Op->replaceAllUsesWith(Res);
1005     }
1006     PotentiallyDeadInstrs.emplace_back(Op);
1007   }
1008   Gathered.clear();
1009   Scattered.clear();
1010   Scalarized = false;
1011 
1012   RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);
1013 
1014   return true;
1015 }
1016 
1017 PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
1018   Module &M = *F.getParent();
1019   unsigned ParallelLoopAccessMDKind =
1020       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
1021   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1022   ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT, Options);
1023   bool Changed = Impl.visit(F);
1024   PreservedAnalyses PA;
1025   PA.preserve<DominatorTreeAnalysis>();
1026   return Changed ? PA : PreservedAnalyses::all();
1027 }
1028