xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/SROA.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
14 ///
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
18 ///
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/PointerIntPair.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SetVector.h"
33 #include "llvm/ADT/SmallBitVector.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/ADT/iterator.h"
40 #include "llvm/ADT/iterator_range.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/DomTreeUpdater.h"
43 #include "llvm/Analysis/GlobalsModRef.h"
44 #include "llvm/Analysis/Loads.h"
45 #include "llvm/Analysis/PtrUseVisitor.h"
46 #include "llvm/Config/llvm-config.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/ConstantFolder.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/DIBuilder.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugInfo.h"
54 #include "llvm/IR/DebugInfoMetadata.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GetElementPtrTypeIterator.h"
59 #include "llvm/IR/GlobalAlias.h"
60 #include "llvm/IR/IRBuilder.h"
61 #include "llvm/IR/InstVisitor.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/Metadata.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PassManager.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
85 #include "llvm/Transforms/Utils/Local.h"
86 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
87 #include <algorithm>
88 #include <cassert>
89 #include <cstddef>
90 #include <cstdint>
91 #include <cstring>
92 #include <iterator>
93 #include <string>
94 #include <tuple>
95 #include <utility>
96 #include <variant>
97 #include <vector>
98 
99 using namespace llvm;
100 
101 #define DEBUG_TYPE "sroa"
102 
103 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
104 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
105 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
106 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
107 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
108 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
109 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
110 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
111 STATISTIC(NumLoadsPredicated,
112           "Number of loads rewritten into predicated loads to allow promotion");
113 STATISTIC(
114     NumStoresPredicated,
115     "Number of stores rewritten into predicated loads to allow promotion");
116 STATISTIC(NumDeleted, "Number of instructions deleted");
117 STATISTIC(NumVectorized, "Number of vectorized aggregates");
118 
119 /// Disable running mem2reg during SROA in order to test or debug SROA.
120 static cl::opt<bool> SROASkipMem2Reg("sroa-skip-mem2reg", cl::init(false),
121                                      cl::Hidden);
122 namespace {
123 
124 class AllocaSliceRewriter;
125 class AllocaSlices;
126 class Partition;
127 
128 class SelectHandSpeculativity {
129   unsigned char Storage = 0; // None are speculatable by default.
130   using TrueVal = Bitfield::Element<bool, 0, 1>;  // Low 0'th bit.
131   using FalseVal = Bitfield::Element<bool, 1, 1>; // Low 1'th bit.
132 public:
133   SelectHandSpeculativity() = default;
134   SelectHandSpeculativity &setAsSpeculatable(bool isTrueVal);
135   bool isSpeculatable(bool isTrueVal) const;
136   bool areAllSpeculatable() const;
137   bool areAnySpeculatable() const;
138   bool areNoneSpeculatable() const;
139   // For interop as int half of PointerIntPair.
140   explicit operator intptr_t() const { return static_cast<intptr_t>(Storage); }
141   explicit SelectHandSpeculativity(intptr_t Storage_) : Storage(Storage_) {}
142 };
143 static_assert(sizeof(SelectHandSpeculativity) == sizeof(unsigned char));
144 
145 using PossiblySpeculatableLoad =
146     PointerIntPair<LoadInst *, 2, SelectHandSpeculativity>;
147 using UnspeculatableStore = StoreInst *;
148 using RewriteableMemOp =
149     std::variant<PossiblySpeculatableLoad, UnspeculatableStore>;
150 using RewriteableMemOps = SmallVector<RewriteableMemOp, 2>;
151 
152 /// An optimization pass providing Scalar Replacement of Aggregates.
153 ///
154 /// This pass takes allocations which can be completely analyzed (that is, they
155 /// don't escape) and tries to turn them into scalar SSA values. There are
156 /// a few steps to this process.
157 ///
158 /// 1) It takes allocations of aggregates and analyzes the ways in which they
159 ///    are used to try to split them into smaller allocations, ideally of
160 ///    a single scalar data type. It will split up memcpy and memset accesses
161 ///    as necessary and try to isolate individual scalar accesses.
162 /// 2) It will transform accesses into forms which are suitable for SSA value
163 ///    promotion. This can be replacing a memset with a scalar store of an
164 ///    integer value, or it can involve speculating operations on a PHI or
165 ///    select to be a PHI or select of the results.
166 /// 3) Finally, this will try to detect a pattern of accesses which map cleanly
167 ///    onto insert and extract operations on a vector value, and convert them to
168 ///    this form. By doing so, it will enable promotion of vector aggregates to
169 ///    SSA vector values.
170 class SROA {
171   LLVMContext *const C;
172   DomTreeUpdater *const DTU;
173   AssumptionCache *const AC;
174   const bool PreserveCFG;
175 
176   /// Worklist of alloca instructions to simplify.
177   ///
178   /// Each alloca in the function is added to this. Each new alloca formed gets
179   /// added to it as well to recursively simplify unless that alloca can be
180   /// directly promoted. Finally, each time we rewrite a use of an alloca other
181   /// the one being actively rewritten, we add it back onto the list if not
182   /// already present to ensure it is re-visited.
183   SmallSetVector<AllocaInst *, 16> Worklist;
184 
185   /// A collection of instructions to delete.
186   /// We try to batch deletions to simplify code and make things a bit more
187   /// efficient. We also make sure there is no dangling pointers.
188   SmallVector<WeakVH, 8> DeadInsts;
189 
190   /// Post-promotion worklist.
191   ///
192   /// Sometimes we discover an alloca which has a high probability of becoming
193   /// viable for SROA after a round of promotion takes place. In those cases,
194   /// the alloca is enqueued here for re-processing.
195   ///
196   /// Note that we have to be very careful to clear allocas out of this list in
197   /// the event they are deleted.
198   SmallSetVector<AllocaInst *, 16> PostPromotionWorklist;
199 
200   /// A collection of alloca instructions we can directly promote.
201   std::vector<AllocaInst *> PromotableAllocas;
202 
203   /// A worklist of PHIs to speculate prior to promoting allocas.
204   ///
205   /// All of these PHIs have been checked for the safety of speculation and by
206   /// being speculated will allow promoting allocas currently in the promotable
207   /// queue.
208   SmallSetVector<PHINode *, 8> SpeculatablePHIs;
209 
210   /// A worklist of select instructions to rewrite prior to promoting
211   /// allocas.
212   SmallMapVector<SelectInst *, RewriteableMemOps, 8> SelectsToRewrite;
213 
214   /// Select instructions that use an alloca and are subsequently loaded can be
215   /// rewritten to load both input pointers and then select between the result,
216   /// allowing the load of the alloca to be promoted.
217   /// From this:
218   ///   %P2 = select i1 %cond, ptr %Alloca, ptr %Other
219   ///   %V = load <type>, ptr %P2
220   /// to:
221   ///   %V1 = load <type>, ptr %Alloca      -> will be mem2reg'd
222   ///   %V2 = load <type>, ptr %Other
223   ///   %V = select i1 %cond, <type> %V1, <type> %V2
224   ///
225   /// We can do this to a select if its only uses are loads
226   /// and if either the operand to the select can be loaded unconditionally,
227   ///        or if we are allowed to perform CFG modifications.
228   /// If found an intervening bitcast with a single use of the load,
229   /// allow the promotion.
230   static std::optional<RewriteableMemOps>
231   isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG);
232 
233 public:
234   SROA(LLVMContext *C, DomTreeUpdater *DTU, AssumptionCache *AC,
235        SROAOptions PreserveCFG_)
236       : C(C), DTU(DTU), AC(AC),
237         PreserveCFG(PreserveCFG_ == SROAOptions::PreserveCFG) {}
238 
239   /// Main run method used by both the SROAPass and by the legacy pass.
240   std::pair<bool /*Changed*/, bool /*CFGChanged*/> runSROA(Function &F);
241 
242 private:
243   friend class AllocaSliceRewriter;
244 
245   bool presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS);
246   AllocaInst *rewritePartition(AllocaInst &AI, AllocaSlices &AS, Partition &P);
247   bool splitAlloca(AllocaInst &AI, AllocaSlices &AS);
248   std::pair<bool /*Changed*/, bool /*CFGChanged*/> runOnAlloca(AllocaInst &AI);
249   void clobberUse(Use &U);
250   bool deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas);
251   bool promoteAllocas(Function &F);
252 };
253 
254 } // end anonymous namespace
255 
256 /// Calculate the fragment of a variable to use when slicing a store
257 /// based on the slice dimensions, existing fragment, and base storage
258 /// fragment.
259 /// Results:
260 /// UseFrag - Use Target as the new fragment.
261 /// UseNoFrag - The new slice already covers the whole variable.
262 /// Skip - The new alloca slice doesn't include this variable.
263 /// FIXME: Can we use calculateFragmentIntersect instead?
264 namespace {
265 enum FragCalcResult { UseFrag, UseNoFrag, Skip };
266 }
267 static FragCalcResult
268 calculateFragment(DILocalVariable *Variable,
269                   uint64_t NewStorageSliceOffsetInBits,
270                   uint64_t NewStorageSliceSizeInBits,
271                   std::optional<DIExpression::FragmentInfo> StorageFragment,
272                   std::optional<DIExpression::FragmentInfo> CurrentFragment,
273                   DIExpression::FragmentInfo &Target) {
274   // If the base storage describes part of the variable apply the offset and
275   // the size constraint.
276   if (StorageFragment) {
277     Target.SizeInBits =
278         std::min(NewStorageSliceSizeInBits, StorageFragment->SizeInBits);
279     Target.OffsetInBits =
280         NewStorageSliceOffsetInBits + StorageFragment->OffsetInBits;
281   } else {
282     Target.SizeInBits = NewStorageSliceSizeInBits;
283     Target.OffsetInBits = NewStorageSliceOffsetInBits;
284   }
285 
286   // If this slice extracts the entirety of an independent variable from a
287   // larger alloca, do not produce a fragment expression, as the variable is
288   // not fragmented.
289   if (!CurrentFragment) {
290     if (auto Size = Variable->getSizeInBits()) {
291       // Treat the current fragment as covering the whole variable.
292       CurrentFragment = DIExpression::FragmentInfo(*Size, 0);
293       if (Target == CurrentFragment)
294         return UseNoFrag;
295     }
296   }
297 
298   // No additional work to do if there isn't a fragment already, or there is
299   // but it already exactly describes the new assignment.
300   if (!CurrentFragment || *CurrentFragment == Target)
301     return UseFrag;
302 
303   // Reject the target fragment if it doesn't fit wholly within the current
304   // fragment. TODO: We could instead chop up the target to fit in the case of
305   // a partial overlap.
306   if (Target.startInBits() < CurrentFragment->startInBits() ||
307       Target.endInBits() > CurrentFragment->endInBits())
308     return Skip;
309 
310   // Target fits within the current fragment, return it.
311   return UseFrag;
312 }
313 
314 static DebugVariable getAggregateVariable(DbgVariableIntrinsic *DVI) {
315   return DebugVariable(DVI->getVariable(), std::nullopt,
316                        DVI->getDebugLoc().getInlinedAt());
317 }
318 static DebugVariable getAggregateVariable(DbgVariableRecord *DVR) {
319   return DebugVariable(DVR->getVariable(), std::nullopt,
320                        DVR->getDebugLoc().getInlinedAt());
321 }
322 
323 /// Helpers for handling new and old debug info modes in migrateDebugInfo.
324 /// These overloads unwrap a DbgInstPtr {Instruction* | DbgRecord*} union based
325 /// on the \p Unused parameter type.
326 DbgVariableRecord *UnwrapDbgInstPtr(DbgInstPtr P, DbgVariableRecord *Unused) {
327   (void)Unused;
328   return static_cast<DbgVariableRecord *>(cast<DbgRecord *>(P));
329 }
330 DbgAssignIntrinsic *UnwrapDbgInstPtr(DbgInstPtr P, DbgAssignIntrinsic *Unused) {
331   (void)Unused;
332   return static_cast<DbgAssignIntrinsic *>(cast<Instruction *>(P));
333 }
334 
335 /// Find linked dbg.assign and generate a new one with the correct
336 /// FragmentInfo. Link Inst to the new dbg.assign.  If Value is nullptr the
337 /// value component is copied from the old dbg.assign to the new.
338 /// \param OldAlloca             Alloca for the variable before splitting.
339 /// \param IsSplit               True if the store (not necessarily alloca)
340 ///                              is being split.
341 /// \param OldAllocaOffsetInBits Offset of the slice taken from OldAlloca.
342 /// \param SliceSizeInBits       New number of bits being written to.
343 /// \param OldInst               Instruction that is being split.
344 /// \param Inst                  New instruction performing this part of the
345 ///                              split store.
346 /// \param Dest                  Store destination.
347 /// \param Value                 Stored value.
348 /// \param DL                    Datalayout.
349 static void migrateDebugInfo(AllocaInst *OldAlloca, bool IsSplit,
350                              uint64_t OldAllocaOffsetInBits,
351                              uint64_t SliceSizeInBits, Instruction *OldInst,
352                              Instruction *Inst, Value *Dest, Value *Value,
353                              const DataLayout &DL) {
354   auto MarkerRange = at::getAssignmentMarkers(OldInst);
355   auto DVRAssignMarkerRange = at::getDVRAssignmentMarkers(OldInst);
356   // Nothing to do if OldInst has no linked dbg.assign intrinsics.
357   if (MarkerRange.empty() && DVRAssignMarkerRange.empty())
358     return;
359 
360   LLVM_DEBUG(dbgs() << "  migrateDebugInfo\n");
361   LLVM_DEBUG(dbgs() << "    OldAlloca: " << *OldAlloca << "\n");
362   LLVM_DEBUG(dbgs() << "    IsSplit: " << IsSplit << "\n");
363   LLVM_DEBUG(dbgs() << "    OldAllocaOffsetInBits: " << OldAllocaOffsetInBits
364                     << "\n");
365   LLVM_DEBUG(dbgs() << "    SliceSizeInBits: " << SliceSizeInBits << "\n");
366   LLVM_DEBUG(dbgs() << "    OldInst: " << *OldInst << "\n");
367   LLVM_DEBUG(dbgs() << "    Inst: " << *Inst << "\n");
368   LLVM_DEBUG(dbgs() << "    Dest: " << *Dest << "\n");
369   if (Value)
370     LLVM_DEBUG(dbgs() << "    Value: " << *Value << "\n");
371 
372   /// Map of aggregate variables to their fragment associated with OldAlloca.
373   DenseMap<DebugVariable, std::optional<DIExpression::FragmentInfo>>
374       BaseFragments;
375   for (auto *DAI : at::getAssignmentMarkers(OldAlloca))
376     BaseFragments[getAggregateVariable(DAI)] =
377         DAI->getExpression()->getFragmentInfo();
378   for (auto *DVR : at::getDVRAssignmentMarkers(OldAlloca))
379     BaseFragments[getAggregateVariable(DVR)] =
380         DVR->getExpression()->getFragmentInfo();
381 
382   // The new inst needs a DIAssignID unique metadata tag (if OldInst has
383   // one). It shouldn't already have one: assert this assumption.
384   assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID));
385   DIAssignID *NewID = nullptr;
386   auto &Ctx = Inst->getContext();
387   DIBuilder DIB(*OldInst->getModule(), /*AllowUnresolved*/ false);
388   assert(OldAlloca->isStaticAlloca());
389 
390   auto MigrateDbgAssign = [&](auto *DbgAssign) {
391     LLVM_DEBUG(dbgs() << "      existing dbg.assign is: " << *DbgAssign
392                       << "\n");
393     auto *Expr = DbgAssign->getExpression();
394     bool SetKillLocation = false;
395 
396     if (IsSplit) {
397       std::optional<DIExpression::FragmentInfo> BaseFragment;
398       {
399         auto R = BaseFragments.find(getAggregateVariable(DbgAssign));
400         if (R == BaseFragments.end())
401           return;
402         BaseFragment = R->second;
403       }
404       std::optional<DIExpression::FragmentInfo> CurrentFragment =
405           Expr->getFragmentInfo();
406       DIExpression::FragmentInfo NewFragment;
407       FragCalcResult Result = calculateFragment(
408           DbgAssign->getVariable(), OldAllocaOffsetInBits, SliceSizeInBits,
409           BaseFragment, CurrentFragment, NewFragment);
410 
411       if (Result == Skip)
412         return;
413       if (Result == UseFrag && !(NewFragment == CurrentFragment)) {
414         if (CurrentFragment) {
415           // Rewrite NewFragment to be relative to the existing one (this is
416           // what createFragmentExpression wants).  CalculateFragment has
417           // already resolved the size for us. FIXME: Should it return the
418           // relative fragment too?
419           NewFragment.OffsetInBits -= CurrentFragment->OffsetInBits;
420         }
421         // Add the new fragment info to the existing expression if possible.
422         if (auto E = DIExpression::createFragmentExpression(
423                 Expr, NewFragment.OffsetInBits, NewFragment.SizeInBits)) {
424           Expr = *E;
425         } else {
426           // Otherwise, add the new fragment info to an empty expression and
427           // discard the value component of this dbg.assign as the value cannot
428           // be computed with the new fragment.
429           Expr = *DIExpression::createFragmentExpression(
430               DIExpression::get(Expr->getContext(), std::nullopt),
431               NewFragment.OffsetInBits, NewFragment.SizeInBits);
432           SetKillLocation = true;
433         }
434       }
435     }
436 
437     // If we haven't created a DIAssignID ID do that now and attach it to Inst.
438     if (!NewID) {
439       NewID = DIAssignID::getDistinct(Ctx);
440       Inst->setMetadata(LLVMContext::MD_DIAssignID, NewID);
441     }
442 
443     ::Value *NewValue = Value ? Value : DbgAssign->getValue();
444     auto *NewAssign = UnwrapDbgInstPtr(
445         DIB.insertDbgAssign(Inst, NewValue, DbgAssign->getVariable(), Expr,
446                             Dest,
447                             DIExpression::get(Expr->getContext(), std::nullopt),
448                             DbgAssign->getDebugLoc()),
449         DbgAssign);
450 
451     // If we've updated the value but the original dbg.assign has an arglist
452     // then kill it now - we can't use the requested new value.
453     // We can't replace the DIArgList with the new value as it'd leave
454     // the DIExpression in an invalid state (DW_OP_LLVM_arg operands without
455     // an arglist). And we can't keep the DIArgList in case the linked store
456     // is being split - in which case the DIArgList + expression may no longer
457     // be computing the correct value.
458     // This should be a very rare situation as it requires the value being
459     // stored to differ from the dbg.assign (i.e., the value has been
460     // represented differently in the debug intrinsic for some reason).
461     SetKillLocation |=
462         Value && (DbgAssign->hasArgList() ||
463                   !DbgAssign->getExpression()->isSingleLocationExpression());
464     if (SetKillLocation)
465       NewAssign->setKillLocation();
466 
467     // We could use more precision here at the cost of some additional (code)
468     // complexity - if the original dbg.assign was adjacent to its store, we
469     // could position this new dbg.assign adjacent to its store rather than the
470     // old dbg.assgn. That would result in interleaved dbg.assigns rather than
471     // what we get now:
472     //    split store !1
473     //    split store !2
474     //    dbg.assign !1
475     //    dbg.assign !2
476     // This (current behaviour) results results in debug assignments being
477     // noted as slightly offset (in code) from the store. In practice this
478     // should have little effect on the debugging experience due to the fact
479     // that all the split stores should get the same line number.
480     NewAssign->moveBefore(DbgAssign);
481 
482     NewAssign->setDebugLoc(DbgAssign->getDebugLoc());
483     LLVM_DEBUG(dbgs() << "Created new assign: " << *NewAssign << "\n");
484   };
485 
486   for_each(MarkerRange, MigrateDbgAssign);
487   for_each(DVRAssignMarkerRange, MigrateDbgAssign);
488 }
489 
490 namespace {
491 
492 /// A custom IRBuilder inserter which prefixes all names, but only in
493 /// Assert builds.
494 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
495   std::string Prefix;
496 
497   Twine getNameWithPrefix(const Twine &Name) const {
498     return Name.isTriviallyEmpty() ? Name : Prefix + Name;
499   }
500 
501 public:
502   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
503 
504   void InsertHelper(Instruction *I, const Twine &Name,
505                     BasicBlock::iterator InsertPt) const override {
506     IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name),
507                                            InsertPt);
508   }
509 };
510 
511 /// Provide a type for IRBuilder that drops names in release builds.
512 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
513 
514 /// A used slice of an alloca.
515 ///
516 /// This structure represents a slice of an alloca used by some instruction. It
517 /// stores both the begin and end offsets of this use, a pointer to the use
518 /// itself, and a flag indicating whether we can classify the use as splittable
519 /// or not when forming partitions of the alloca.
520 class Slice {
521   /// The beginning offset of the range.
522   uint64_t BeginOffset = 0;
523 
524   /// The ending offset, not included in the range.
525   uint64_t EndOffset = 0;
526 
527   /// Storage for both the use of this slice and whether it can be
528   /// split.
529   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
530 
531 public:
532   Slice() = default;
533 
534   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
535       : BeginOffset(BeginOffset), EndOffset(EndOffset),
536         UseAndIsSplittable(U, IsSplittable) {}
537 
538   uint64_t beginOffset() const { return BeginOffset; }
539   uint64_t endOffset() const { return EndOffset; }
540 
541   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
542   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
543 
544   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
545 
546   bool isDead() const { return getUse() == nullptr; }
547   void kill() { UseAndIsSplittable.setPointer(nullptr); }
548 
549   /// Support for ordering ranges.
550   ///
551   /// This provides an ordering over ranges such that start offsets are
552   /// always increasing, and within equal start offsets, the end offsets are
553   /// decreasing. Thus the spanning range comes first in a cluster with the
554   /// same start position.
555   bool operator<(const Slice &RHS) const {
556     if (beginOffset() < RHS.beginOffset())
557       return true;
558     if (beginOffset() > RHS.beginOffset())
559       return false;
560     if (isSplittable() != RHS.isSplittable())
561       return !isSplittable();
562     if (endOffset() > RHS.endOffset())
563       return true;
564     return false;
565   }
566 
567   /// Support comparison with a single offset to allow binary searches.
568   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
569                                               uint64_t RHSOffset) {
570     return LHS.beginOffset() < RHSOffset;
571   }
572   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
573                                               const Slice &RHS) {
574     return LHSOffset < RHS.beginOffset();
575   }
576 
577   bool operator==(const Slice &RHS) const {
578     return isSplittable() == RHS.isSplittable() &&
579            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
580   }
581   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
582 };
583 
584 /// Representation of the alloca slices.
585 ///
586 /// This class represents the slices of an alloca which are formed by its
587 /// various uses. If a pointer escapes, we can't fully build a representation
588 /// for the slices used and we reflect that in this structure. The uses are
589 /// stored, sorted by increasing beginning offset and with unsplittable slices
590 /// starting at a particular offset before splittable slices.
591 class AllocaSlices {
592 public:
593   /// Construct the slices of a particular alloca.
594   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
595 
596   /// Test whether a pointer to the allocation escapes our analysis.
597   ///
598   /// If this is true, the slices are never fully built and should be
599   /// ignored.
600   bool isEscaped() const { return PointerEscapingInstr; }
601 
602   /// Support for iterating over the slices.
603   /// @{
604   using iterator = SmallVectorImpl<Slice>::iterator;
605   using range = iterator_range<iterator>;
606 
607   iterator begin() { return Slices.begin(); }
608   iterator end() { return Slices.end(); }
609 
610   using const_iterator = SmallVectorImpl<Slice>::const_iterator;
611   using const_range = iterator_range<const_iterator>;
612 
613   const_iterator begin() const { return Slices.begin(); }
614   const_iterator end() const { return Slices.end(); }
615   /// @}
616 
617   /// Erase a range of slices.
618   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
619 
620   /// Insert new slices for this alloca.
621   ///
622   /// This moves the slices into the alloca's slices collection, and re-sorts
623   /// everything so that the usual ordering properties of the alloca's slices
624   /// hold.
625   void insert(ArrayRef<Slice> NewSlices) {
626     int OldSize = Slices.size();
627     Slices.append(NewSlices.begin(), NewSlices.end());
628     auto SliceI = Slices.begin() + OldSize;
629     std::stable_sort(SliceI, Slices.end());
630     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
631   }
632 
633   // Forward declare the iterator and range accessor for walking the
634   // partitions.
635   class partition_iterator;
636   iterator_range<partition_iterator> partitions();
637 
638   /// Access the dead users for this alloca.
639   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
640 
641   /// Access Uses that should be dropped if the alloca is promotable.
642   ArrayRef<Use *> getDeadUsesIfPromotable() const {
643     return DeadUseIfPromotable;
644   }
645 
646   /// Access the dead operands referring to this alloca.
647   ///
648   /// These are operands which have cannot actually be used to refer to the
649   /// alloca as they are outside its range and the user doesn't correct for
650   /// that. These mostly consist of PHI node inputs and the like which we just
651   /// need to replace with undef.
652   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
653 
654 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
655   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
656   void printSlice(raw_ostream &OS, const_iterator I,
657                   StringRef Indent = "  ") const;
658   void printUse(raw_ostream &OS, const_iterator I,
659                 StringRef Indent = "  ") const;
660   void print(raw_ostream &OS) const;
661   void dump(const_iterator I) const;
662   void dump() const;
663 #endif
664 
665 private:
666   template <typename DerivedT, typename RetT = void> class BuilderBase;
667   class SliceBuilder;
668 
669   friend class AllocaSlices::SliceBuilder;
670 
671 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
672   /// Handle to alloca instruction to simplify method interfaces.
673   AllocaInst &AI;
674 #endif
675 
676   /// The instruction responsible for this alloca not having a known set
677   /// of slices.
678   ///
679   /// When an instruction (potentially) escapes the pointer to the alloca, we
680   /// store a pointer to that here and abort trying to form slices of the
681   /// alloca. This will be null if the alloca slices are analyzed successfully.
682   Instruction *PointerEscapingInstr;
683 
684   /// The slices of the alloca.
685   ///
686   /// We store a vector of the slices formed by uses of the alloca here. This
687   /// vector is sorted by increasing begin offset, and then the unsplittable
688   /// slices before the splittable ones. See the Slice inner class for more
689   /// details.
690   SmallVector<Slice, 8> Slices;
691 
692   /// Instructions which will become dead if we rewrite the alloca.
693   ///
694   /// Note that these are not separated by slice. This is because we expect an
695   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
696   /// all these instructions can simply be removed and replaced with poison as
697   /// they come from outside of the allocated space.
698   SmallVector<Instruction *, 8> DeadUsers;
699 
700   /// Uses which will become dead if can promote the alloca.
701   SmallVector<Use *, 8> DeadUseIfPromotable;
702 
703   /// Operands which will become dead if we rewrite the alloca.
704   ///
705   /// These are operands that in their particular use can be replaced with
706   /// poison when we rewrite the alloca. These show up in out-of-bounds inputs
707   /// to PHI nodes and the like. They aren't entirely dead (there might be
708   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
709   /// want to swap this particular input for poison to simplify the use lists of
710   /// the alloca.
711   SmallVector<Use *, 8> DeadOperands;
712 };
713 
714 /// A partition of the slices.
715 ///
716 /// An ephemeral representation for a range of slices which can be viewed as
717 /// a partition of the alloca. This range represents a span of the alloca's
718 /// memory which cannot be split, and provides access to all of the slices
719 /// overlapping some part of the partition.
720 ///
721 /// Objects of this type are produced by traversing the alloca's slices, but
722 /// are only ephemeral and not persistent.
723 class Partition {
724 private:
725   friend class AllocaSlices;
726   friend class AllocaSlices::partition_iterator;
727 
728   using iterator = AllocaSlices::iterator;
729 
730   /// The beginning and ending offsets of the alloca for this
731   /// partition.
732   uint64_t BeginOffset = 0, EndOffset = 0;
733 
734   /// The start and end iterators of this partition.
735   iterator SI, SJ;
736 
737   /// A collection of split slice tails overlapping the partition.
738   SmallVector<Slice *, 4> SplitTails;
739 
740   /// Raw constructor builds an empty partition starting and ending at
741   /// the given iterator.
742   Partition(iterator SI) : SI(SI), SJ(SI) {}
743 
744 public:
745   /// The start offset of this partition.
746   ///
747   /// All of the contained slices start at or after this offset.
748   uint64_t beginOffset() const { return BeginOffset; }
749 
750   /// The end offset of this partition.
751   ///
752   /// All of the contained slices end at or before this offset.
753   uint64_t endOffset() const { return EndOffset; }
754 
755   /// The size of the partition.
756   ///
757   /// Note that this can never be zero.
758   uint64_t size() const {
759     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
760     return EndOffset - BeginOffset;
761   }
762 
763   /// Test whether this partition contains no slices, and merely spans
764   /// a region occupied by split slices.
765   bool empty() const { return SI == SJ; }
766 
767   /// \name Iterate slices that start within the partition.
768   /// These may be splittable or unsplittable. They have a begin offset >= the
769   /// partition begin offset.
770   /// @{
771   // FIXME: We should probably define a "concat_iterator" helper and use that
772   // to stitch together pointee_iterators over the split tails and the
773   // contiguous iterators of the partition. That would give a much nicer
774   // interface here. We could then additionally expose filtered iterators for
775   // split, unsplit, and unsplittable splices based on the usage patterns.
776   iterator begin() const { return SI; }
777   iterator end() const { return SJ; }
778   /// @}
779 
780   /// Get the sequence of split slice tails.
781   ///
782   /// These tails are of slices which start before this partition but are
783   /// split and overlap into the partition. We accumulate these while forming
784   /// partitions.
785   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
786 };
787 
788 } // end anonymous namespace
789 
790 /// An iterator over partitions of the alloca's slices.
791 ///
792 /// This iterator implements the core algorithm for partitioning the alloca's
793 /// slices. It is a forward iterator as we don't support backtracking for
794 /// efficiency reasons, and re-use a single storage area to maintain the
795 /// current set of split slices.
796 ///
797 /// It is templated on the slice iterator type to use so that it can operate
798 /// with either const or non-const slice iterators.
799 class AllocaSlices::partition_iterator
800     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
801                                   Partition> {
802   friend class AllocaSlices;
803 
804   /// Most of the state for walking the partitions is held in a class
805   /// with a nice interface for examining them.
806   Partition P;
807 
808   /// We need to keep the end of the slices to know when to stop.
809   AllocaSlices::iterator SE;
810 
811   /// We also need to keep track of the maximum split end offset seen.
812   /// FIXME: Do we really?
813   uint64_t MaxSplitSliceEndOffset = 0;
814 
815   /// Sets the partition to be empty at given iterator, and sets the
816   /// end iterator.
817   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
818       : P(SI), SE(SE) {
819     // If not already at the end, advance our state to form the initial
820     // partition.
821     if (SI != SE)
822       advance();
823   }
824 
825   /// Advance the iterator to the next partition.
826   ///
827   /// Requires that the iterator not be at the end of the slices.
828   void advance() {
829     assert((P.SI != SE || !P.SplitTails.empty()) &&
830            "Cannot advance past the end of the slices!");
831 
832     // Clear out any split uses which have ended.
833     if (!P.SplitTails.empty()) {
834       if (P.EndOffset >= MaxSplitSliceEndOffset) {
835         // If we've finished all splits, this is easy.
836         P.SplitTails.clear();
837         MaxSplitSliceEndOffset = 0;
838       } else {
839         // Remove the uses which have ended in the prior partition. This
840         // cannot change the max split slice end because we just checked that
841         // the prior partition ended prior to that max.
842         llvm::erase_if(P.SplitTails,
843                        [&](Slice *S) { return S->endOffset() <= P.EndOffset; });
844         assert(llvm::any_of(P.SplitTails,
845                             [&](Slice *S) {
846                               return S->endOffset() == MaxSplitSliceEndOffset;
847                             }) &&
848                "Could not find the current max split slice offset!");
849         assert(llvm::all_of(P.SplitTails,
850                             [&](Slice *S) {
851                               return S->endOffset() <= MaxSplitSliceEndOffset;
852                             }) &&
853                "Max split slice end offset is not actually the max!");
854       }
855     }
856 
857     // If P.SI is already at the end, then we've cleared the split tail and
858     // now have an end iterator.
859     if (P.SI == SE) {
860       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
861       return;
862     }
863 
864     // If we had a non-empty partition previously, set up the state for
865     // subsequent partitions.
866     if (P.SI != P.SJ) {
867       // Accumulate all the splittable slices which started in the old
868       // partition into the split list.
869       for (Slice &S : P)
870         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
871           P.SplitTails.push_back(&S);
872           MaxSplitSliceEndOffset =
873               std::max(S.endOffset(), MaxSplitSliceEndOffset);
874         }
875 
876       // Start from the end of the previous partition.
877       P.SI = P.SJ;
878 
879       // If P.SI is now at the end, we at most have a tail of split slices.
880       if (P.SI == SE) {
881         P.BeginOffset = P.EndOffset;
882         P.EndOffset = MaxSplitSliceEndOffset;
883         return;
884       }
885 
886       // If the we have split slices and the next slice is after a gap and is
887       // not splittable immediately form an empty partition for the split
888       // slices up until the next slice begins.
889       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
890           !P.SI->isSplittable()) {
891         P.BeginOffset = P.EndOffset;
892         P.EndOffset = P.SI->beginOffset();
893         return;
894       }
895     }
896 
897     // OK, we need to consume new slices. Set the end offset based on the
898     // current slice, and step SJ past it. The beginning offset of the
899     // partition is the beginning offset of the next slice unless we have
900     // pre-existing split slices that are continuing, in which case we begin
901     // at the prior end offset.
902     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
903     P.EndOffset = P.SI->endOffset();
904     ++P.SJ;
905 
906     // There are two strategies to form a partition based on whether the
907     // partition starts with an unsplittable slice or a splittable slice.
908     if (!P.SI->isSplittable()) {
909       // When we're forming an unsplittable region, it must always start at
910       // the first slice and will extend through its end.
911       assert(P.BeginOffset == P.SI->beginOffset());
912 
913       // Form a partition including all of the overlapping slices with this
914       // unsplittable slice.
915       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
916         if (!P.SJ->isSplittable())
917           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
918         ++P.SJ;
919       }
920 
921       // We have a partition across a set of overlapping unsplittable
922       // partitions.
923       return;
924     }
925 
926     // If we're starting with a splittable slice, then we need to form
927     // a synthetic partition spanning it and any other overlapping splittable
928     // splices.
929     assert(P.SI->isSplittable() && "Forming a splittable partition!");
930 
931     // Collect all of the overlapping splittable slices.
932     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
933            P.SJ->isSplittable()) {
934       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
935       ++P.SJ;
936     }
937 
938     // Back upiP.EndOffset if we ended the span early when encountering an
939     // unsplittable slice. This synthesizes the early end offset of
940     // a partition spanning only splittable slices.
941     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
942       assert(!P.SJ->isSplittable());
943       P.EndOffset = P.SJ->beginOffset();
944     }
945   }
946 
947 public:
948   bool operator==(const partition_iterator &RHS) const {
949     assert(SE == RHS.SE &&
950            "End iterators don't match between compared partition iterators!");
951 
952     // The observed positions of partitions is marked by the P.SI iterator and
953     // the emptiness of the split slices. The latter is only relevant when
954     // P.SI == SE, as the end iterator will additionally have an empty split
955     // slices list, but the prior may have the same P.SI and a tail of split
956     // slices.
957     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
958       assert(P.SJ == RHS.P.SJ &&
959              "Same set of slices formed two different sized partitions!");
960       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
961              "Same slice position with differently sized non-empty split "
962              "slice tails!");
963       return true;
964     }
965     return false;
966   }
967 
968   partition_iterator &operator++() {
969     advance();
970     return *this;
971   }
972 
973   Partition &operator*() { return P; }
974 };
975 
976 /// A forward range over the partitions of the alloca's slices.
977 ///
978 /// This accesses an iterator range over the partitions of the alloca's
979 /// slices. It computes these partitions on the fly based on the overlapping
980 /// offsets of the slices and the ability to split them. It will visit "empty"
981 /// partitions to cover regions of the alloca only accessed via split
982 /// slices.
983 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
984   return make_range(partition_iterator(begin(), end()),
985                     partition_iterator(end(), end()));
986 }
987 
988 static Value *foldSelectInst(SelectInst &SI) {
989   // If the condition being selected on is a constant or the same value is
990   // being selected between, fold the select. Yes this does (rarely) happen
991   // early on.
992   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
993     return SI.getOperand(1 + CI->isZero());
994   if (SI.getOperand(1) == SI.getOperand(2))
995     return SI.getOperand(1);
996 
997   return nullptr;
998 }
999 
1000 /// A helper that folds a PHI node or a select.
1001 static Value *foldPHINodeOrSelectInst(Instruction &I) {
1002   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
1003     // If PN merges together the same value, return that value.
1004     return PN->hasConstantValue();
1005   }
1006   return foldSelectInst(cast<SelectInst>(I));
1007 }
1008 
1009 /// Builder for the alloca slices.
1010 ///
1011 /// This class builds a set of alloca slices by recursively visiting the uses
1012 /// of an alloca and making a slice for each load and store at each offset.
1013 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
1014   friend class PtrUseVisitor<SliceBuilder>;
1015   friend class InstVisitor<SliceBuilder>;
1016 
1017   using Base = PtrUseVisitor<SliceBuilder>;
1018 
1019   const uint64_t AllocSize;
1020   AllocaSlices &AS;
1021 
1022   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
1023   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
1024 
1025   /// Set to de-duplicate dead instructions found in the use walk.
1026   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
1027 
1028 public:
1029   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
1030       : PtrUseVisitor<SliceBuilder>(DL),
1031         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue()),
1032         AS(AS) {}
1033 
1034 private:
1035   void markAsDead(Instruction &I) {
1036     if (VisitedDeadInsts.insert(&I).second)
1037       AS.DeadUsers.push_back(&I);
1038   }
1039 
1040   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
1041                  bool IsSplittable = false) {
1042     // Completely skip uses which have a zero size or start either before or
1043     // past the end of the allocation.
1044     if (Size == 0 || Offset.uge(AllocSize)) {
1045       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
1046                         << Offset
1047                         << " which has zero size or starts outside of the "
1048                         << AllocSize << " byte alloca:\n"
1049                         << "    alloca: " << AS.AI << "\n"
1050                         << "       use: " << I << "\n");
1051       return markAsDead(I);
1052     }
1053 
1054     uint64_t BeginOffset = Offset.getZExtValue();
1055     uint64_t EndOffset = BeginOffset + Size;
1056 
1057     // Clamp the end offset to the end of the allocation. Note that this is
1058     // formulated to handle even the case where "BeginOffset + Size" overflows.
1059     // This may appear superficially to be something we could ignore entirely,
1060     // but that is not so! There may be widened loads or PHI-node uses where
1061     // some instructions are dead but not others. We can't completely ignore
1062     // them, and so have to record at least the information here.
1063     assert(AllocSize >= BeginOffset); // Established above.
1064     if (Size > AllocSize - BeginOffset) {
1065       LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
1066                         << Offset << " to remain within the " << AllocSize
1067                         << " byte alloca:\n"
1068                         << "    alloca: " << AS.AI << "\n"
1069                         << "       use: " << I << "\n");
1070       EndOffset = AllocSize;
1071     }
1072 
1073     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
1074   }
1075 
1076   void visitBitCastInst(BitCastInst &BC) {
1077     if (BC.use_empty())
1078       return markAsDead(BC);
1079 
1080     return Base::visitBitCastInst(BC);
1081   }
1082 
1083   void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
1084     if (ASC.use_empty())
1085       return markAsDead(ASC);
1086 
1087     return Base::visitAddrSpaceCastInst(ASC);
1088   }
1089 
1090   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1091     if (GEPI.use_empty())
1092       return markAsDead(GEPI);
1093 
1094     return Base::visitGetElementPtrInst(GEPI);
1095   }
1096 
1097   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
1098                          uint64_t Size, bool IsVolatile) {
1099     // We allow splitting of non-volatile loads and stores where the type is an
1100     // integer type. These may be used to implement 'memcpy' or other "transfer
1101     // of bits" patterns.
1102     bool IsSplittable =
1103         Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty);
1104 
1105     insertUse(I, Offset, Size, IsSplittable);
1106   }
1107 
1108   void visitLoadInst(LoadInst &LI) {
1109     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
1110            "All simple FCA loads should have been pre-split");
1111 
1112     if (!IsOffsetKnown)
1113       return PI.setAborted(&LI);
1114 
1115     TypeSize Size = DL.getTypeStoreSize(LI.getType());
1116     if (Size.isScalable())
1117       return PI.setAborted(&LI);
1118 
1119     return handleLoadOrStore(LI.getType(), LI, Offset, Size.getFixedValue(),
1120                              LI.isVolatile());
1121   }
1122 
1123   void visitStoreInst(StoreInst &SI) {
1124     Value *ValOp = SI.getValueOperand();
1125     if (ValOp == *U)
1126       return PI.setEscapedAndAborted(&SI);
1127     if (!IsOffsetKnown)
1128       return PI.setAborted(&SI);
1129 
1130     TypeSize StoreSize = DL.getTypeStoreSize(ValOp->getType());
1131     if (StoreSize.isScalable())
1132       return PI.setAborted(&SI);
1133 
1134     uint64_t Size = StoreSize.getFixedValue();
1135 
1136     // If this memory access can be shown to *statically* extend outside the
1137     // bounds of the allocation, it's behavior is undefined, so simply
1138     // ignore it. Note that this is more strict than the generic clamping
1139     // behavior of insertUse. We also try to handle cases which might run the
1140     // risk of overflow.
1141     // FIXME: We should instead consider the pointer to have escaped if this
1142     // function is being instrumented for addressing bugs or race conditions.
1143     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
1144       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
1145                         << Offset << " which extends past the end of the "
1146                         << AllocSize << " byte alloca:\n"
1147                         << "    alloca: " << AS.AI << "\n"
1148                         << "       use: " << SI << "\n");
1149       return markAsDead(SI);
1150     }
1151 
1152     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
1153            "All simple FCA stores should have been pre-split");
1154     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
1155   }
1156 
1157   void visitMemSetInst(MemSetInst &II) {
1158     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
1159     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
1160     if ((Length && Length->getValue() == 0) ||
1161         (IsOffsetKnown && Offset.uge(AllocSize)))
1162       // Zero-length mem transfer intrinsics can be ignored entirely.
1163       return markAsDead(II);
1164 
1165     if (!IsOffsetKnown)
1166       return PI.setAborted(&II);
1167 
1168     insertUse(II, Offset,
1169               Length ? Length->getLimitedValue()
1170                      : AllocSize - Offset.getLimitedValue(),
1171               (bool)Length);
1172   }
1173 
1174   void visitMemTransferInst(MemTransferInst &II) {
1175     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
1176     if (Length && Length->getValue() == 0)
1177       // Zero-length mem transfer intrinsics can be ignored entirely.
1178       return markAsDead(II);
1179 
1180     // Because we can visit these intrinsics twice, also check to see if the
1181     // first time marked this instruction as dead. If so, skip it.
1182     if (VisitedDeadInsts.count(&II))
1183       return;
1184 
1185     if (!IsOffsetKnown)
1186       return PI.setAborted(&II);
1187 
1188     // This side of the transfer is completely out-of-bounds, and so we can
1189     // nuke the entire transfer. However, we also need to nuke the other side
1190     // if already added to our partitions.
1191     // FIXME: Yet another place we really should bypass this when
1192     // instrumenting for ASan.
1193     if (Offset.uge(AllocSize)) {
1194       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
1195           MemTransferSliceMap.find(&II);
1196       if (MTPI != MemTransferSliceMap.end())
1197         AS.Slices[MTPI->second].kill();
1198       return markAsDead(II);
1199     }
1200 
1201     uint64_t RawOffset = Offset.getLimitedValue();
1202     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
1203 
1204     // Check for the special case where the same exact value is used for both
1205     // source and dest.
1206     if (*U == II.getRawDest() && *U == II.getRawSource()) {
1207       // For non-volatile transfers this is a no-op.
1208       if (!II.isVolatile())
1209         return markAsDead(II);
1210 
1211       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
1212     }
1213 
1214     // If we have seen both source and destination for a mem transfer, then
1215     // they both point to the same alloca.
1216     bool Inserted;
1217     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
1218     std::tie(MTPI, Inserted) =
1219         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
1220     unsigned PrevIdx = MTPI->second;
1221     if (!Inserted) {
1222       Slice &PrevP = AS.Slices[PrevIdx];
1223 
1224       // Check if the begin offsets match and this is a non-volatile transfer.
1225       // In that case, we can completely elide the transfer.
1226       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
1227         PrevP.kill();
1228         return markAsDead(II);
1229       }
1230 
1231       // Otherwise we have an offset transfer within the same alloca. We can't
1232       // split those.
1233       PrevP.makeUnsplittable();
1234     }
1235 
1236     // Insert the use now that we've fixed up the splittable nature.
1237     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
1238 
1239     // Check that we ended up with a valid index in the map.
1240     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
1241            "Map index doesn't point back to a slice with this user.");
1242   }
1243 
1244   // Disable SRoA for any intrinsics except for lifetime invariants and
1245   // invariant group.
1246   // FIXME: What about debug intrinsics? This matches old behavior, but
1247   // doesn't make sense.
1248   void visitIntrinsicInst(IntrinsicInst &II) {
1249     if (II.isDroppable()) {
1250       AS.DeadUseIfPromotable.push_back(U);
1251       return;
1252     }
1253 
1254     if (!IsOffsetKnown)
1255       return PI.setAborted(&II);
1256 
1257     if (II.isLifetimeStartOrEnd()) {
1258       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
1259       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
1260                                Length->getLimitedValue());
1261       insertUse(II, Offset, Size, true);
1262       return;
1263     }
1264 
1265     if (II.isLaunderOrStripInvariantGroup()) {
1266       insertUse(II, Offset, AllocSize, true);
1267       enqueueUsers(II);
1268       return;
1269     }
1270 
1271     Base::visitIntrinsicInst(II);
1272   }
1273 
1274   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
1275     // We consider any PHI or select that results in a direct load or store of
1276     // the same offset to be a viable use for slicing purposes. These uses
1277     // are considered unsplittable and the size is the maximum loaded or stored
1278     // size.
1279     SmallPtrSet<Instruction *, 4> Visited;
1280     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
1281     Visited.insert(Root);
1282     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
1283     const DataLayout &DL = Root->getDataLayout();
1284     // If there are no loads or stores, the access is dead. We mark that as
1285     // a size zero access.
1286     Size = 0;
1287     do {
1288       Instruction *I, *UsedI;
1289       std::tie(UsedI, I) = Uses.pop_back_val();
1290 
1291       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1292         TypeSize LoadSize = DL.getTypeStoreSize(LI->getType());
1293         if (LoadSize.isScalable()) {
1294           PI.setAborted(LI);
1295           return nullptr;
1296         }
1297         Size = std::max(Size, LoadSize.getFixedValue());
1298         continue;
1299       }
1300       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1301         Value *Op = SI->getOperand(0);
1302         if (Op == UsedI)
1303           return SI;
1304         TypeSize StoreSize = DL.getTypeStoreSize(Op->getType());
1305         if (StoreSize.isScalable()) {
1306           PI.setAborted(SI);
1307           return nullptr;
1308         }
1309         Size = std::max(Size, StoreSize.getFixedValue());
1310         continue;
1311       }
1312 
1313       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
1314         if (!GEP->hasAllZeroIndices())
1315           return GEP;
1316       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
1317                  !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
1318         return I;
1319       }
1320 
1321       for (User *U : I->users())
1322         if (Visited.insert(cast<Instruction>(U)).second)
1323           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
1324     } while (!Uses.empty());
1325 
1326     return nullptr;
1327   }
1328 
1329   void visitPHINodeOrSelectInst(Instruction &I) {
1330     assert(isa<PHINode>(I) || isa<SelectInst>(I));
1331     if (I.use_empty())
1332       return markAsDead(I);
1333 
1334     // If this is a PHI node before a catchswitch, we cannot insert any non-PHI
1335     // instructions in this BB, which may be required during rewriting. Bail out
1336     // on these cases.
1337     if (isa<PHINode>(I) &&
1338         I.getParent()->getFirstInsertionPt() == I.getParent()->end())
1339       return PI.setAborted(&I);
1340 
1341     // TODO: We could use simplifyInstruction here to fold PHINodes and
1342     // SelectInsts. However, doing so requires to change the current
1343     // dead-operand-tracking mechanism. For instance, suppose neither loading
1344     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1345     // trap either.  However, if we simply replace %U with undef using the
1346     // current dead-operand-tracking mechanism, "load (select undef, undef,
1347     // %other)" may trap because the select may return the first operand
1348     // "undef".
1349     if (Value *Result = foldPHINodeOrSelectInst(I)) {
1350       if (Result == *U)
1351         // If the result of the constant fold will be the pointer, recurse
1352         // through the PHI/select as if we had RAUW'ed it.
1353         enqueueUsers(I);
1354       else
1355         // Otherwise the operand to the PHI/select is dead, and we can replace
1356         // it with poison.
1357         AS.DeadOperands.push_back(U);
1358 
1359       return;
1360     }
1361 
1362     if (!IsOffsetKnown)
1363       return PI.setAborted(&I);
1364 
1365     // See if we already have computed info on this node.
1366     uint64_t &Size = PHIOrSelectSizes[&I];
1367     if (!Size) {
1368       // This is a new PHI/Select, check for an unsafe use of it.
1369       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1370         return PI.setAborted(UnsafeI);
1371     }
1372 
1373     // For PHI and select operands outside the alloca, we can't nuke the entire
1374     // phi or select -- the other side might still be relevant, so we special
1375     // case them here and use a separate structure to track the operands
1376     // themselves which should be replaced with poison.
1377     // FIXME: This should instead be escaped in the event we're instrumenting
1378     // for address sanitization.
1379     if (Offset.uge(AllocSize)) {
1380       AS.DeadOperands.push_back(U);
1381       return;
1382     }
1383 
1384     insertUse(I, Offset, Size);
1385   }
1386 
1387   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1388 
1389   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1390 
1391   /// Disable SROA entirely if there are unhandled users of the alloca.
1392   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1393 };
1394 
1395 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1396     :
1397 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1398       AI(AI),
1399 #endif
1400       PointerEscapingInstr(nullptr) {
1401   SliceBuilder PB(DL, AI, *this);
1402   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1403   if (PtrI.isEscaped() || PtrI.isAborted()) {
1404     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1405     // possibly by just storing the PtrInfo in the AllocaSlices.
1406     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1407                                                   : PtrI.getAbortingInst();
1408     assert(PointerEscapingInstr && "Did not track a bad instruction");
1409     return;
1410   }
1411 
1412   llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); });
1413 
1414   // Sort the uses. This arranges for the offsets to be in ascending order,
1415   // and the sizes to be in descending order.
1416   llvm::stable_sort(Slices);
1417 }
1418 
1419 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1420 
1421 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1422                          StringRef Indent) const {
1423   printSlice(OS, I, Indent);
1424   OS << "\n";
1425   printUse(OS, I, Indent);
1426 }
1427 
1428 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1429                               StringRef Indent) const {
1430   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1431      << " slice #" << (I - begin())
1432      << (I->isSplittable() ? " (splittable)" : "");
1433 }
1434 
1435 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1436                             StringRef Indent) const {
1437   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1438 }
1439 
1440 void AllocaSlices::print(raw_ostream &OS) const {
1441   if (PointerEscapingInstr) {
1442     OS << "Can't analyze slices for alloca: " << AI << "\n"
1443        << "  A pointer to this alloca escaped by:\n"
1444        << "  " << *PointerEscapingInstr << "\n";
1445     return;
1446   }
1447 
1448   OS << "Slices of alloca: " << AI << "\n";
1449   for (const_iterator I = begin(), E = end(); I != E; ++I)
1450     print(OS, I);
1451 }
1452 
1453 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1454   print(dbgs(), I);
1455 }
1456 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1457 
1458 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1459 
1460 /// Walk the range of a partitioning looking for a common type to cover this
1461 /// sequence of slices.
1462 static std::pair<Type *, IntegerType *>
1463 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E,
1464                uint64_t EndOffset) {
1465   Type *Ty = nullptr;
1466   bool TyIsCommon = true;
1467   IntegerType *ITy = nullptr;
1468 
1469   // Note that we need to look at *every* alloca slice's Use to ensure we
1470   // always get consistent results regardless of the order of slices.
1471   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1472     Use *U = I->getUse();
1473     if (isa<IntrinsicInst>(*U->getUser()))
1474       continue;
1475     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1476       continue;
1477 
1478     Type *UserTy = nullptr;
1479     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1480       UserTy = LI->getType();
1481     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1482       UserTy = SI->getValueOperand()->getType();
1483     }
1484 
1485     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1486       // If the type is larger than the partition, skip it. We only encounter
1487       // this for split integer operations where we want to use the type of the
1488       // entity causing the split. Also skip if the type is not a byte width
1489       // multiple.
1490       if (UserITy->getBitWidth() % 8 != 0 ||
1491           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1492         continue;
1493 
1494       // Track the largest bitwidth integer type used in this way in case there
1495       // is no common type.
1496       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1497         ITy = UserITy;
1498     }
1499 
1500     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1501     // depend on types skipped above.
1502     if (!UserTy || (Ty && Ty != UserTy))
1503       TyIsCommon = false; // Give up on anything but an iN type.
1504     else
1505       Ty = UserTy;
1506   }
1507 
1508   return {TyIsCommon ? Ty : nullptr, ITy};
1509 }
1510 
1511 /// PHI instructions that use an alloca and are subsequently loaded can be
1512 /// rewritten to load both input pointers in the pred blocks and then PHI the
1513 /// results, allowing the load of the alloca to be promoted.
1514 /// From this:
1515 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1516 ///   %V = load i32* %P2
1517 /// to:
1518 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1519 ///   ...
1520 ///   %V2 = load i32* %Other
1521 ///   ...
1522 ///   %V = phi [i32 %V1, i32 %V2]
1523 ///
1524 /// We can do this to a select if its only uses are loads and if the operands
1525 /// to the select can be loaded unconditionally.
1526 ///
1527 /// FIXME: This should be hoisted into a generic utility, likely in
1528 /// Transforms/Util/Local.h
1529 static bool isSafePHIToSpeculate(PHINode &PN) {
1530   const DataLayout &DL = PN.getDataLayout();
1531 
1532   // For now, we can only do this promotion if the load is in the same block
1533   // as the PHI, and if there are no stores between the phi and load.
1534   // TODO: Allow recursive phi users.
1535   // TODO: Allow stores.
1536   BasicBlock *BB = PN.getParent();
1537   Align MaxAlign;
1538   uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1539   Type *LoadType = nullptr;
1540   for (User *U : PN.users()) {
1541     LoadInst *LI = dyn_cast<LoadInst>(U);
1542     if (!LI || !LI->isSimple())
1543       return false;
1544 
1545     // For now we only allow loads in the same block as the PHI.  This is
1546     // a common case that happens when instcombine merges two loads through
1547     // a PHI.
1548     if (LI->getParent() != BB)
1549       return false;
1550 
1551     if (LoadType) {
1552       if (LoadType != LI->getType())
1553         return false;
1554     } else {
1555       LoadType = LI->getType();
1556     }
1557 
1558     // Ensure that there are no instructions between the PHI and the load that
1559     // could store.
1560     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1561       if (BBI->mayWriteToMemory())
1562         return false;
1563 
1564     MaxAlign = std::max(MaxAlign, LI->getAlign());
1565   }
1566 
1567   if (!LoadType)
1568     return false;
1569 
1570   APInt LoadSize =
1571       APInt(APWidth, DL.getTypeStoreSize(LoadType).getFixedValue());
1572 
1573   // We can only transform this if it is safe to push the loads into the
1574   // predecessor blocks. The only thing to watch out for is that we can't put
1575   // a possibly trapping load in the predecessor if it is a critical edge.
1576   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1577     Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1578     Value *InVal = PN.getIncomingValue(Idx);
1579 
1580     // If the value is produced by the terminator of the predecessor (an
1581     // invoke) or it has side-effects, there is no valid place to put a load
1582     // in the predecessor.
1583     if (TI == InVal || TI->mayHaveSideEffects())
1584       return false;
1585 
1586     // If the predecessor has a single successor, then the edge isn't
1587     // critical.
1588     if (TI->getNumSuccessors() == 1)
1589       continue;
1590 
1591     // If this pointer is always safe to load, or if we can prove that there
1592     // is already a load in the block, then we can move the load to the pred
1593     // block.
1594     if (isSafeToLoadUnconditionally(InVal, MaxAlign, LoadSize, DL, TI))
1595       continue;
1596 
1597     return false;
1598   }
1599 
1600   return true;
1601 }
1602 
1603 static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) {
1604   LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1605 
1606   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1607   Type *LoadTy = SomeLoad->getType();
1608   IRB.SetInsertPoint(&PN);
1609   PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1610                                  PN.getName() + ".sroa.speculated");
1611 
1612   // Get the AA tags and alignment to use from one of the loads. It does not
1613   // matter which one we get and if any differ.
1614   AAMDNodes AATags = SomeLoad->getAAMetadata();
1615   Align Alignment = SomeLoad->getAlign();
1616 
1617   // Rewrite all loads of the PN to use the new PHI.
1618   while (!PN.use_empty()) {
1619     LoadInst *LI = cast<LoadInst>(PN.user_back());
1620     LI->replaceAllUsesWith(NewPN);
1621     LI->eraseFromParent();
1622   }
1623 
1624   // Inject loads into all of the pred blocks.
1625   DenseMap<BasicBlock *, Value *> InjectedLoads;
1626   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1627     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1628     Value *InVal = PN.getIncomingValue(Idx);
1629 
1630     // A PHI node is allowed to have multiple (duplicated) entries for the same
1631     // basic block, as long as the value is the same. So if we already injected
1632     // a load in the predecessor, then we should reuse the same load for all
1633     // duplicated entries.
1634     if (Value *V = InjectedLoads.lookup(Pred)) {
1635       NewPN->addIncoming(V, Pred);
1636       continue;
1637     }
1638 
1639     Instruction *TI = Pred->getTerminator();
1640     IRB.SetInsertPoint(TI);
1641 
1642     LoadInst *Load = IRB.CreateAlignedLoad(
1643         LoadTy, InVal, Alignment,
1644         (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1645     ++NumLoadsSpeculated;
1646     if (AATags)
1647       Load->setAAMetadata(AATags);
1648     NewPN->addIncoming(Load, Pred);
1649     InjectedLoads[Pred] = Load;
1650   }
1651 
1652   LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1653   PN.eraseFromParent();
1654 }
1655 
1656 SelectHandSpeculativity &
1657 SelectHandSpeculativity::setAsSpeculatable(bool isTrueVal) {
1658   if (isTrueVal)
1659     Bitfield::set<SelectHandSpeculativity::TrueVal>(Storage, true);
1660   else
1661     Bitfield::set<SelectHandSpeculativity::FalseVal>(Storage, true);
1662   return *this;
1663 }
1664 
1665 bool SelectHandSpeculativity::isSpeculatable(bool isTrueVal) const {
1666   return isTrueVal ? Bitfield::get<SelectHandSpeculativity::TrueVal>(Storage)
1667                    : Bitfield::get<SelectHandSpeculativity::FalseVal>(Storage);
1668 }
1669 
1670 bool SelectHandSpeculativity::areAllSpeculatable() const {
1671   return isSpeculatable(/*isTrueVal=*/true) &&
1672          isSpeculatable(/*isTrueVal=*/false);
1673 }
1674 
1675 bool SelectHandSpeculativity::areAnySpeculatable() const {
1676   return isSpeculatable(/*isTrueVal=*/true) ||
1677          isSpeculatable(/*isTrueVal=*/false);
1678 }
1679 bool SelectHandSpeculativity::areNoneSpeculatable() const {
1680   return !areAnySpeculatable();
1681 }
1682 
1683 static SelectHandSpeculativity
1684 isSafeLoadOfSelectToSpeculate(LoadInst &LI, SelectInst &SI, bool PreserveCFG) {
1685   assert(LI.isSimple() && "Only for simple loads");
1686   SelectHandSpeculativity Spec;
1687 
1688   const DataLayout &DL = SI.getDataLayout();
1689   for (Value *Value : {SI.getTrueValue(), SI.getFalseValue()})
1690     if (isSafeToLoadUnconditionally(Value, LI.getType(), LI.getAlign(), DL,
1691                                     &LI))
1692       Spec.setAsSpeculatable(/*isTrueVal=*/Value == SI.getTrueValue());
1693     else if (PreserveCFG)
1694       return Spec;
1695 
1696   return Spec;
1697 }
1698 
1699 std::optional<RewriteableMemOps>
1700 SROA::isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG) {
1701   RewriteableMemOps Ops;
1702 
1703   for (User *U : SI.users()) {
1704     if (auto *BC = dyn_cast<BitCastInst>(U); BC && BC->hasOneUse())
1705       U = *BC->user_begin();
1706 
1707     if (auto *Store = dyn_cast<StoreInst>(U)) {
1708       // Note that atomic stores can be transformed; atomic semantics do not
1709       // have any meaning for a local alloca. Stores are not speculatable,
1710       // however, so if we can't turn it into a predicated store, we are done.
1711       if (Store->isVolatile() || PreserveCFG)
1712         return {}; // Give up on this `select`.
1713       Ops.emplace_back(Store);
1714       continue;
1715     }
1716 
1717     auto *LI = dyn_cast<LoadInst>(U);
1718 
1719     // Note that atomic loads can be transformed;
1720     // atomic semantics do not have any meaning for a local alloca.
1721     if (!LI || LI->isVolatile())
1722       return {}; // Give up on this `select`.
1723 
1724     PossiblySpeculatableLoad Load(LI);
1725     if (!LI->isSimple()) {
1726       // If the `load` is not simple, we can't speculatively execute it,
1727       // but we could handle this via a CFG modification. But can we?
1728       if (PreserveCFG)
1729         return {}; // Give up on this `select`.
1730       Ops.emplace_back(Load);
1731       continue;
1732     }
1733 
1734     SelectHandSpeculativity Spec =
1735         isSafeLoadOfSelectToSpeculate(*LI, SI, PreserveCFG);
1736     if (PreserveCFG && !Spec.areAllSpeculatable())
1737       return {}; // Give up on this `select`.
1738 
1739     Load.setInt(Spec);
1740     Ops.emplace_back(Load);
1741   }
1742 
1743   return Ops;
1744 }
1745 
1746 static void speculateSelectInstLoads(SelectInst &SI, LoadInst &LI,
1747                                      IRBuilderTy &IRB) {
1748   LLVM_DEBUG(dbgs() << "    original load: " << SI << "\n");
1749 
1750   Value *TV = SI.getTrueValue();
1751   Value *FV = SI.getFalseValue();
1752   // Replace the given load of the select with a select of two loads.
1753 
1754   assert(LI.isSimple() && "We only speculate simple loads");
1755 
1756   IRB.SetInsertPoint(&LI);
1757 
1758   LoadInst *TL =
1759       IRB.CreateAlignedLoad(LI.getType(), TV, LI.getAlign(),
1760                             LI.getName() + ".sroa.speculate.load.true");
1761   LoadInst *FL =
1762       IRB.CreateAlignedLoad(LI.getType(), FV, LI.getAlign(),
1763                             LI.getName() + ".sroa.speculate.load.false");
1764   NumLoadsSpeculated += 2;
1765 
1766   // Transfer alignment and AA info if present.
1767   TL->setAlignment(LI.getAlign());
1768   FL->setAlignment(LI.getAlign());
1769 
1770   AAMDNodes Tags = LI.getAAMetadata();
1771   if (Tags) {
1772     TL->setAAMetadata(Tags);
1773     FL->setAAMetadata(Tags);
1774   }
1775 
1776   Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1777                               LI.getName() + ".sroa.speculated");
1778 
1779   LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1780   LI.replaceAllUsesWith(V);
1781 }
1782 
1783 template <typename T>
1784 static void rewriteMemOpOfSelect(SelectInst &SI, T &I,
1785                                  SelectHandSpeculativity Spec,
1786                                  DomTreeUpdater &DTU) {
1787   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Only for load and store!");
1788   LLVM_DEBUG(dbgs() << "    original mem op: " << I << "\n");
1789   BasicBlock *Head = I.getParent();
1790   Instruction *ThenTerm = nullptr;
1791   Instruction *ElseTerm = nullptr;
1792   if (Spec.areNoneSpeculatable())
1793     SplitBlockAndInsertIfThenElse(SI.getCondition(), &I, &ThenTerm, &ElseTerm,
1794                                   SI.getMetadata(LLVMContext::MD_prof), &DTU);
1795   else {
1796     SplitBlockAndInsertIfThen(SI.getCondition(), &I, /*Unreachable=*/false,
1797                               SI.getMetadata(LLVMContext::MD_prof), &DTU,
1798                               /*LI=*/nullptr, /*ThenBlock=*/nullptr);
1799     if (Spec.isSpeculatable(/*isTrueVal=*/true))
1800       cast<BranchInst>(Head->getTerminator())->swapSuccessors();
1801   }
1802   auto *HeadBI = cast<BranchInst>(Head->getTerminator());
1803   Spec = {}; // Do not use `Spec` beyond this point.
1804   BasicBlock *Tail = I.getParent();
1805   Tail->setName(Head->getName() + ".cont");
1806   PHINode *PN;
1807   if (isa<LoadInst>(I))
1808     PN = PHINode::Create(I.getType(), 2, "", I.getIterator());
1809   for (BasicBlock *SuccBB : successors(Head)) {
1810     bool IsThen = SuccBB == HeadBI->getSuccessor(0);
1811     int SuccIdx = IsThen ? 0 : 1;
1812     auto *NewMemOpBB = SuccBB == Tail ? Head : SuccBB;
1813     auto &CondMemOp = cast<T>(*I.clone());
1814     if (NewMemOpBB != Head) {
1815       NewMemOpBB->setName(Head->getName() + (IsThen ? ".then" : ".else"));
1816       if (isa<LoadInst>(I))
1817         ++NumLoadsPredicated;
1818       else
1819         ++NumStoresPredicated;
1820     } else {
1821       CondMemOp.dropUBImplyingAttrsAndMetadata();
1822       ++NumLoadsSpeculated;
1823     }
1824     CondMemOp.insertBefore(NewMemOpBB->getTerminator());
1825     Value *Ptr = SI.getOperand(1 + SuccIdx);
1826     CondMemOp.setOperand(I.getPointerOperandIndex(), Ptr);
1827     if (isa<LoadInst>(I)) {
1828       CondMemOp.setName(I.getName() + (IsThen ? ".then" : ".else") + ".val");
1829       PN->addIncoming(&CondMemOp, NewMemOpBB);
1830     } else
1831       LLVM_DEBUG(dbgs() << "                 to: " << CondMemOp << "\n");
1832   }
1833   if (isa<LoadInst>(I)) {
1834     PN->takeName(&I);
1835     LLVM_DEBUG(dbgs() << "          to: " << *PN << "\n");
1836     I.replaceAllUsesWith(PN);
1837   }
1838 }
1839 
1840 static void rewriteMemOpOfSelect(SelectInst &SelInst, Instruction &I,
1841                                  SelectHandSpeculativity Spec,
1842                                  DomTreeUpdater &DTU) {
1843   if (auto *LI = dyn_cast<LoadInst>(&I))
1844     rewriteMemOpOfSelect(SelInst, *LI, Spec, DTU);
1845   else if (auto *SI = dyn_cast<StoreInst>(&I))
1846     rewriteMemOpOfSelect(SelInst, *SI, Spec, DTU);
1847   else
1848     llvm_unreachable_internal("Only for load and store.");
1849 }
1850 
1851 static bool rewriteSelectInstMemOps(SelectInst &SI,
1852                                     const RewriteableMemOps &Ops,
1853                                     IRBuilderTy &IRB, DomTreeUpdater *DTU) {
1854   bool CFGChanged = false;
1855   LLVM_DEBUG(dbgs() << "    original select: " << SI << "\n");
1856 
1857   for (const RewriteableMemOp &Op : Ops) {
1858     SelectHandSpeculativity Spec;
1859     Instruction *I;
1860     if (auto *const *US = std::get_if<UnspeculatableStore>(&Op)) {
1861       I = *US;
1862     } else {
1863       auto PSL = std::get<PossiblySpeculatableLoad>(Op);
1864       I = PSL.getPointer();
1865       Spec = PSL.getInt();
1866     }
1867     if (Spec.areAllSpeculatable()) {
1868       speculateSelectInstLoads(SI, cast<LoadInst>(*I), IRB);
1869     } else {
1870       assert(DTU && "Should not get here when not allowed to modify the CFG!");
1871       rewriteMemOpOfSelect(SI, *I, Spec, *DTU);
1872       CFGChanged = true;
1873     }
1874     I->eraseFromParent();
1875   }
1876 
1877   for (User *U : make_early_inc_range(SI.users()))
1878     cast<BitCastInst>(U)->eraseFromParent();
1879   SI.eraseFromParent();
1880   return CFGChanged;
1881 }
1882 
1883 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1884 /// resulting pointer has PointerTy.
1885 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1886                              APInt Offset, Type *PointerTy,
1887                              const Twine &NamePrefix) {
1888   if (Offset != 0)
1889     Ptr = IRB.CreateInBoundsPtrAdd(Ptr, IRB.getInt(Offset),
1890                                    NamePrefix + "sroa_idx");
1891   return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy,
1892                                                  NamePrefix + "sroa_cast");
1893 }
1894 
1895 /// Compute the adjusted alignment for a load or store from an offset.
1896 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
1897   return commonAlignment(getLoadStoreAlignment(I), Offset);
1898 }
1899 
1900 /// Test whether we can convert a value from the old to the new type.
1901 ///
1902 /// This predicate should be used to guard calls to convertValue in order to
1903 /// ensure that we only try to convert viable values. The strategy is that we
1904 /// will peel off single element struct and array wrappings to get to an
1905 /// underlying value, and convert that value.
1906 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1907   if (OldTy == NewTy)
1908     return true;
1909 
1910   // For integer types, we can't handle any bit-width differences. This would
1911   // break both vector conversions with extension and introduce endianness
1912   // issues when in conjunction with loads and stores.
1913   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1914     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1915                cast<IntegerType>(NewTy)->getBitWidth() &&
1916            "We can't have the same bitwidth for different int types");
1917     return false;
1918   }
1919 
1920   if (DL.getTypeSizeInBits(NewTy).getFixedValue() !=
1921       DL.getTypeSizeInBits(OldTy).getFixedValue())
1922     return false;
1923   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1924     return false;
1925 
1926   // We can convert pointers to integers and vice-versa. Same for vectors
1927   // of pointers and integers.
1928   OldTy = OldTy->getScalarType();
1929   NewTy = NewTy->getScalarType();
1930   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1931     if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1932       unsigned OldAS = OldTy->getPointerAddressSpace();
1933       unsigned NewAS = NewTy->getPointerAddressSpace();
1934       // Convert pointers if they are pointers from the same address space or
1935       // different integral (not non-integral) address spaces with the same
1936       // pointer size.
1937       return OldAS == NewAS ||
1938              (!DL.isNonIntegralAddressSpace(OldAS) &&
1939               !DL.isNonIntegralAddressSpace(NewAS) &&
1940               DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1941     }
1942 
1943     // We can convert integers to integral pointers, but not to non-integral
1944     // pointers.
1945     if (OldTy->isIntegerTy())
1946       return !DL.isNonIntegralPointerType(NewTy);
1947 
1948     // We can convert integral pointers to integers, but non-integral pointers
1949     // need to remain pointers.
1950     if (!DL.isNonIntegralPointerType(OldTy))
1951       return NewTy->isIntegerTy();
1952 
1953     return false;
1954   }
1955 
1956   if (OldTy->isTargetExtTy() || NewTy->isTargetExtTy())
1957     return false;
1958 
1959   return true;
1960 }
1961 
1962 /// Generic routine to convert an SSA value to a value of a different
1963 /// type.
1964 ///
1965 /// This will try various different casting techniques, such as bitcasts,
1966 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1967 /// two types for viability with this routine.
1968 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1969                            Type *NewTy) {
1970   Type *OldTy = V->getType();
1971   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1972 
1973   if (OldTy == NewTy)
1974     return V;
1975 
1976   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1977          "Integer types must be the exact same to convert.");
1978 
1979   // See if we need inttoptr for this type pair. May require additional bitcast.
1980   if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1981     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1982     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1983     // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
1984     // Directly handle i64 to i8*
1985     return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1986                               NewTy);
1987   }
1988 
1989   // See if we need ptrtoint for this type pair. May require additional bitcast.
1990   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1991     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1992     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1993     // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
1994     // Expand i8* to i64 --> i8* to i64 to i64
1995     return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1996                              NewTy);
1997   }
1998 
1999   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
2000     unsigned OldAS = OldTy->getPointerAddressSpace();
2001     unsigned NewAS = NewTy->getPointerAddressSpace();
2002     // To convert pointers with different address spaces (they are already
2003     // checked convertible, i.e. they have the same pointer size), so far we
2004     // cannot use `bitcast` (which has restrict on the same address space) or
2005     // `addrspacecast` (which is not always no-op casting). Instead, use a pair
2006     // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
2007     // size.
2008     if (OldAS != NewAS) {
2009       assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
2010       return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
2011                                 NewTy);
2012     }
2013   }
2014 
2015   return IRB.CreateBitCast(V, NewTy);
2016 }
2017 
2018 /// Test whether the given slice use can be promoted to a vector.
2019 ///
2020 /// This function is called to test each entry in a partition which is slated
2021 /// for a single slice.
2022 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
2023                                             VectorType *Ty,
2024                                             uint64_t ElementSize,
2025                                             const DataLayout &DL) {
2026   // First validate the slice offsets.
2027   uint64_t BeginOffset =
2028       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
2029   uint64_t BeginIndex = BeginOffset / ElementSize;
2030   if (BeginIndex * ElementSize != BeginOffset ||
2031       BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements())
2032     return false;
2033   uint64_t EndOffset = std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
2034   uint64_t EndIndex = EndOffset / ElementSize;
2035   if (EndIndex * ElementSize != EndOffset ||
2036       EndIndex > cast<FixedVectorType>(Ty)->getNumElements())
2037     return false;
2038 
2039   assert(EndIndex > BeginIndex && "Empty vector!");
2040   uint64_t NumElements = EndIndex - BeginIndex;
2041   Type *SliceTy = (NumElements == 1)
2042                       ? Ty->getElementType()
2043                       : FixedVectorType::get(Ty->getElementType(), NumElements);
2044 
2045   Type *SplitIntTy =
2046       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
2047 
2048   Use *U = S.getUse();
2049 
2050   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2051     if (MI->isVolatile())
2052       return false;
2053     if (!S.isSplittable())
2054       return false; // Skip any unsplittable intrinsics.
2055   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2056     if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
2057       return false;
2058   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2059     if (LI->isVolatile())
2060       return false;
2061     Type *LTy = LI->getType();
2062     // Disable vector promotion when there are loads or stores of an FCA.
2063     if (LTy->isStructTy())
2064       return false;
2065     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
2066       assert(LTy->isIntegerTy());
2067       LTy = SplitIntTy;
2068     }
2069     if (!canConvertValue(DL, SliceTy, LTy))
2070       return false;
2071   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2072     if (SI->isVolatile())
2073       return false;
2074     Type *STy = SI->getValueOperand()->getType();
2075     // Disable vector promotion when there are loads or stores of an FCA.
2076     if (STy->isStructTy())
2077       return false;
2078     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
2079       assert(STy->isIntegerTy());
2080       STy = SplitIntTy;
2081     }
2082     if (!canConvertValue(DL, STy, SliceTy))
2083       return false;
2084   } else {
2085     return false;
2086   }
2087 
2088   return true;
2089 }
2090 
2091 /// Test whether a vector type is viable for promotion.
2092 ///
2093 /// This implements the necessary checking for \c checkVectorTypesForPromotion
2094 /// (and thus isVectorPromotionViable) over all slices of the alloca for the
2095 /// given VectorType.
2096 static bool checkVectorTypeForPromotion(Partition &P, VectorType *VTy,
2097                                         const DataLayout &DL) {
2098   uint64_t ElementSize =
2099       DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue();
2100 
2101   // While the definition of LLVM vectors is bitpacked, we don't support sizes
2102   // that aren't byte sized.
2103   if (ElementSize % 8)
2104     return false;
2105   assert((DL.getTypeSizeInBits(VTy).getFixedValue() % 8) == 0 &&
2106          "vector size not a multiple of element size?");
2107   ElementSize /= 8;
2108 
2109   for (const Slice &S : P)
2110     if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
2111       return false;
2112 
2113   for (const Slice *S : P.splitSliceTails())
2114     if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
2115       return false;
2116 
2117   return true;
2118 }
2119 
2120 /// Test whether any vector type in \p CandidateTys is viable for promotion.
2121 ///
2122 /// This implements the necessary checking for \c isVectorPromotionViable over
2123 /// all slices of the alloca for the given VectorType.
2124 static VectorType *
2125 checkVectorTypesForPromotion(Partition &P, const DataLayout &DL,
2126                              SmallVectorImpl<VectorType *> &CandidateTys,
2127                              bool HaveCommonEltTy, Type *CommonEltTy,
2128                              bool HaveVecPtrTy, bool HaveCommonVecPtrTy,
2129                              VectorType *CommonVecPtrTy) {
2130   // If we didn't find a vector type, nothing to do here.
2131   if (CandidateTys.empty())
2132     return nullptr;
2133 
2134   // Pointer-ness is sticky, if we had a vector-of-pointers candidate type,
2135   // then we should choose it, not some other alternative.
2136   // But, we can't perform a no-op pointer address space change via bitcast,
2137   // so if we didn't have a common pointer element type, bail.
2138   if (HaveVecPtrTy && !HaveCommonVecPtrTy)
2139     return nullptr;
2140 
2141   // Try to pick the "best" element type out of the choices.
2142   if (!HaveCommonEltTy && HaveVecPtrTy) {
2143     // If there was a pointer element type, there's really only one choice.
2144     CandidateTys.clear();
2145     CandidateTys.push_back(CommonVecPtrTy);
2146   } else if (!HaveCommonEltTy && !HaveVecPtrTy) {
2147     // Integer-ify vector types.
2148     for (VectorType *&VTy : CandidateTys) {
2149       if (!VTy->getElementType()->isIntegerTy())
2150         VTy = cast<VectorType>(VTy->getWithNewType(IntegerType::getIntNTy(
2151             VTy->getContext(), VTy->getScalarSizeInBits())));
2152     }
2153 
2154     // Rank the remaining candidate vector types. This is easy because we know
2155     // they're all integer vectors. We sort by ascending number of elements.
2156     auto RankVectorTypesComp = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
2157       (void)DL;
2158       assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() ==
2159                  DL.getTypeSizeInBits(LHSTy).getFixedValue() &&
2160              "Cannot have vector types of different sizes!");
2161       assert(RHSTy->getElementType()->isIntegerTy() &&
2162              "All non-integer types eliminated!");
2163       assert(LHSTy->getElementType()->isIntegerTy() &&
2164              "All non-integer types eliminated!");
2165       return cast<FixedVectorType>(RHSTy)->getNumElements() <
2166              cast<FixedVectorType>(LHSTy)->getNumElements();
2167     };
2168     auto RankVectorTypesEq = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
2169       (void)DL;
2170       assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() ==
2171                  DL.getTypeSizeInBits(LHSTy).getFixedValue() &&
2172              "Cannot have vector types of different sizes!");
2173       assert(RHSTy->getElementType()->isIntegerTy() &&
2174              "All non-integer types eliminated!");
2175       assert(LHSTy->getElementType()->isIntegerTy() &&
2176              "All non-integer types eliminated!");
2177       return cast<FixedVectorType>(RHSTy)->getNumElements() ==
2178              cast<FixedVectorType>(LHSTy)->getNumElements();
2179     };
2180     llvm::sort(CandidateTys, RankVectorTypesComp);
2181     CandidateTys.erase(llvm::unique(CandidateTys, RankVectorTypesEq),
2182                        CandidateTys.end());
2183   } else {
2184 // The only way to have the same element type in every vector type is to
2185 // have the same vector type. Check that and remove all but one.
2186 #ifndef NDEBUG
2187     for (VectorType *VTy : CandidateTys) {
2188       assert(VTy->getElementType() == CommonEltTy &&
2189              "Unaccounted for element type!");
2190       assert(VTy == CandidateTys[0] &&
2191              "Different vector types with the same element type!");
2192     }
2193 #endif
2194     CandidateTys.resize(1);
2195   }
2196 
2197   // FIXME: hack. Do we have a named constant for this?
2198   // SDAG SDNode can't have more than 65535 operands.
2199   llvm::erase_if(CandidateTys, [](VectorType *VTy) {
2200     return cast<FixedVectorType>(VTy)->getNumElements() >
2201            std::numeric_limits<unsigned short>::max();
2202   });
2203 
2204   for (VectorType *VTy : CandidateTys)
2205     if (checkVectorTypeForPromotion(P, VTy, DL))
2206       return VTy;
2207 
2208   return nullptr;
2209 }
2210 
2211 static VectorType *createAndCheckVectorTypesForPromotion(
2212     SetVector<Type *> &OtherTys, ArrayRef<VectorType *> CandidateTysCopy,
2213     function_ref<void(Type *)> CheckCandidateType, Partition &P,
2214     const DataLayout &DL, SmallVectorImpl<VectorType *> &CandidateTys,
2215     bool &HaveCommonEltTy, Type *&CommonEltTy, bool &HaveVecPtrTy,
2216     bool &HaveCommonVecPtrTy, VectorType *&CommonVecPtrTy) {
2217   [[maybe_unused]] VectorType *OriginalElt =
2218       CandidateTysCopy.size() ? CandidateTysCopy[0] : nullptr;
2219   // Consider additional vector types where the element type size is a
2220   // multiple of load/store element size.
2221   for (Type *Ty : OtherTys) {
2222     if (!VectorType::isValidElementType(Ty))
2223       continue;
2224     unsigned TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue();
2225     // Make a copy of CandidateTys and iterate through it, because we
2226     // might append to CandidateTys in the loop.
2227     for (VectorType *const VTy : CandidateTysCopy) {
2228       // The elements in the copy should remain invariant throughout the loop
2229       assert(CandidateTysCopy[0] == OriginalElt && "Different Element");
2230       unsigned VectorSize = DL.getTypeSizeInBits(VTy).getFixedValue();
2231       unsigned ElementSize =
2232           DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue();
2233       if (TypeSize != VectorSize && TypeSize != ElementSize &&
2234           VectorSize % TypeSize == 0) {
2235         VectorType *NewVTy = VectorType::get(Ty, VectorSize / TypeSize, false);
2236         CheckCandidateType(NewVTy);
2237       }
2238     }
2239   }
2240 
2241   return checkVectorTypesForPromotion(P, DL, CandidateTys, HaveCommonEltTy,
2242                                       CommonEltTy, HaveVecPtrTy,
2243                                       HaveCommonVecPtrTy, CommonVecPtrTy);
2244 }
2245 
2246 /// Test whether the given alloca partitioning and range of slices can be
2247 /// promoted to a vector.
2248 ///
2249 /// This is a quick test to check whether we can rewrite a particular alloca
2250 /// partition (and its newly formed alloca) into a vector alloca with only
2251 /// whole-vector loads and stores such that it could be promoted to a vector
2252 /// SSA value. We only can ensure this for a limited set of operations, and we
2253 /// don't want to do the rewrites unless we are confident that the result will
2254 /// be promotable, so we have an early test here.
2255 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
2256   // Collect the candidate types for vector-based promotion. Also track whether
2257   // we have different element types.
2258   SmallVector<VectorType *, 4> CandidateTys;
2259   SetVector<Type *> LoadStoreTys;
2260   SetVector<Type *> DeferredTys;
2261   Type *CommonEltTy = nullptr;
2262   VectorType *CommonVecPtrTy = nullptr;
2263   bool HaveVecPtrTy = false;
2264   bool HaveCommonEltTy = true;
2265   bool HaveCommonVecPtrTy = true;
2266   auto CheckCandidateType = [&](Type *Ty) {
2267     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2268       // Return if bitcast to vectors is different for total size in bits.
2269       if (!CandidateTys.empty()) {
2270         VectorType *V = CandidateTys[0];
2271         if (DL.getTypeSizeInBits(VTy).getFixedValue() !=
2272             DL.getTypeSizeInBits(V).getFixedValue()) {
2273           CandidateTys.clear();
2274           return;
2275         }
2276       }
2277       CandidateTys.push_back(VTy);
2278       Type *EltTy = VTy->getElementType();
2279 
2280       if (!CommonEltTy)
2281         CommonEltTy = EltTy;
2282       else if (CommonEltTy != EltTy)
2283         HaveCommonEltTy = false;
2284 
2285       if (EltTy->isPointerTy()) {
2286         HaveVecPtrTy = true;
2287         if (!CommonVecPtrTy)
2288           CommonVecPtrTy = VTy;
2289         else if (CommonVecPtrTy != VTy)
2290           HaveCommonVecPtrTy = false;
2291       }
2292     }
2293   };
2294 
2295   // Put load and store types into a set for de-duplication.
2296   for (const Slice &S : P) {
2297     Type *Ty;
2298     if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
2299       Ty = LI->getType();
2300     else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
2301       Ty = SI->getValueOperand()->getType();
2302     else
2303       continue;
2304 
2305     auto CandTy = Ty->getScalarType();
2306     if (CandTy->isPointerTy() && (S.beginOffset() != P.beginOffset() ||
2307                                   S.endOffset() != P.endOffset())) {
2308       DeferredTys.insert(Ty);
2309       continue;
2310     }
2311 
2312     LoadStoreTys.insert(Ty);
2313     // Consider any loads or stores that are the exact size of the slice.
2314     if (S.beginOffset() == P.beginOffset() && S.endOffset() == P.endOffset())
2315       CheckCandidateType(Ty);
2316   }
2317 
2318   SmallVector<VectorType *, 4> CandidateTysCopy = CandidateTys;
2319   if (auto *VTy = createAndCheckVectorTypesForPromotion(
2320           LoadStoreTys, CandidateTysCopy, CheckCandidateType, P, DL,
2321           CandidateTys, HaveCommonEltTy, CommonEltTy, HaveVecPtrTy,
2322           HaveCommonVecPtrTy, CommonVecPtrTy))
2323     return VTy;
2324 
2325   CandidateTys.clear();
2326   return createAndCheckVectorTypesForPromotion(
2327       DeferredTys, CandidateTysCopy, CheckCandidateType, P, DL, CandidateTys,
2328       HaveCommonEltTy, CommonEltTy, HaveVecPtrTy, HaveCommonVecPtrTy,
2329       CommonVecPtrTy);
2330 }
2331 
2332 /// Test whether a slice of an alloca is valid for integer widening.
2333 ///
2334 /// This implements the necessary checking for the \c isIntegerWideningViable
2335 /// test below on a single slice of the alloca.
2336 static bool isIntegerWideningViableForSlice(const Slice &S,
2337                                             uint64_t AllocBeginOffset,
2338                                             Type *AllocaTy,
2339                                             const DataLayout &DL,
2340                                             bool &WholeAllocaOp) {
2341   uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedValue();
2342 
2343   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2344   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2345 
2346   Use *U = S.getUse();
2347 
2348   // Lifetime intrinsics operate over the whole alloca whose sizes are usually
2349   // larger than other load/store slices (RelEnd > Size). But lifetime are
2350   // always promotable and should not impact other slices' promotability of the
2351   // partition.
2352   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2353     if (II->isLifetimeStartOrEnd() || II->isDroppable())
2354       return true;
2355   }
2356 
2357   // We can't reasonably handle cases where the load or store extends past
2358   // the end of the alloca's type and into its padding.
2359   if (RelEnd > Size)
2360     return false;
2361 
2362   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2363     if (LI->isVolatile())
2364       return false;
2365     // We can't handle loads that extend past the allocated memory.
2366     if (DL.getTypeStoreSize(LI->getType()).getFixedValue() > Size)
2367       return false;
2368     // So far, AllocaSliceRewriter does not support widening split slice tails
2369     // in rewriteIntegerLoad.
2370     if (S.beginOffset() < AllocBeginOffset)
2371       return false;
2372     // Note that we don't count vector loads or stores as whole-alloca
2373     // operations which enable integer widening because we would prefer to use
2374     // vector widening instead.
2375     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2376       WholeAllocaOp = true;
2377     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2378       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
2379         return false;
2380     } else if (RelBegin != 0 || RelEnd != Size ||
2381                !canConvertValue(DL, AllocaTy, LI->getType())) {
2382       // Non-integer loads need to be convertible from the alloca type so that
2383       // they are promotable.
2384       return false;
2385     }
2386   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2387     Type *ValueTy = SI->getValueOperand()->getType();
2388     if (SI->isVolatile())
2389       return false;
2390     // We can't handle stores that extend past the allocated memory.
2391     if (DL.getTypeStoreSize(ValueTy).getFixedValue() > Size)
2392       return false;
2393     // So far, AllocaSliceRewriter does not support widening split slice tails
2394     // in rewriteIntegerStore.
2395     if (S.beginOffset() < AllocBeginOffset)
2396       return false;
2397     // Note that we don't count vector loads or stores as whole-alloca
2398     // operations which enable integer widening because we would prefer to use
2399     // vector widening instead.
2400     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2401       WholeAllocaOp = true;
2402     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2403       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
2404         return false;
2405     } else if (RelBegin != 0 || RelEnd != Size ||
2406                !canConvertValue(DL, ValueTy, AllocaTy)) {
2407       // Non-integer stores need to be convertible to the alloca type so that
2408       // they are promotable.
2409       return false;
2410     }
2411   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2412     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2413       return false;
2414     if (!S.isSplittable())
2415       return false; // Skip any unsplittable intrinsics.
2416   } else {
2417     return false;
2418   }
2419 
2420   return true;
2421 }
2422 
2423 /// Test whether the given alloca partition's integer operations can be
2424 /// widened to promotable ones.
2425 ///
2426 /// This is a quick test to check whether we can rewrite the integer loads and
2427 /// stores to a particular alloca into wider loads and stores and be able to
2428 /// promote the resulting alloca.
2429 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2430                                     const DataLayout &DL) {
2431   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedValue();
2432   // Don't create integer types larger than the maximum bitwidth.
2433   if (SizeInBits > IntegerType::MAX_INT_BITS)
2434     return false;
2435 
2436   // Don't try to handle allocas with bit-padding.
2437   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedValue())
2438     return false;
2439 
2440   // We need to ensure that an integer type with the appropriate bitwidth can
2441   // be converted to the alloca type, whatever that is. We don't want to force
2442   // the alloca itself to have an integer type if there is a more suitable one.
2443   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2444   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2445       !canConvertValue(DL, IntTy, AllocaTy))
2446     return false;
2447 
2448   // While examining uses, we ensure that the alloca has a covering load or
2449   // store. We don't want to widen the integer operations only to fail to
2450   // promote due to some other unsplittable entry (which we may make splittable
2451   // later). However, if there are only splittable uses, go ahead and assume
2452   // that we cover the alloca.
2453   // FIXME: We shouldn't consider split slices that happen to start in the
2454   // partition here...
2455   bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits);
2456 
2457   for (const Slice &S : P)
2458     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2459                                          WholeAllocaOp))
2460       return false;
2461 
2462   for (const Slice *S : P.splitSliceTails())
2463     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2464                                          WholeAllocaOp))
2465       return false;
2466 
2467   return WholeAllocaOp;
2468 }
2469 
2470 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2471                              IntegerType *Ty, uint64_t Offset,
2472                              const Twine &Name) {
2473   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2474   IntegerType *IntTy = cast<IntegerType>(V->getType());
2475   assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
2476              DL.getTypeStoreSize(IntTy).getFixedValue() &&
2477          "Element extends past full value");
2478   uint64_t ShAmt = 8 * Offset;
2479   if (DL.isBigEndian())
2480     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
2481                  DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
2482   if (ShAmt) {
2483     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2484     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2485   }
2486   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2487          "Cannot extract to a larger integer!");
2488   if (Ty != IntTy) {
2489     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2490     LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2491   }
2492   return V;
2493 }
2494 
2495 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2496                             Value *V, uint64_t Offset, const Twine &Name) {
2497   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2498   IntegerType *Ty = cast<IntegerType>(V->getType());
2499   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2500          "Cannot insert a larger integer!");
2501   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2502   if (Ty != IntTy) {
2503     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2504     LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2505   }
2506   assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
2507              DL.getTypeStoreSize(IntTy).getFixedValue() &&
2508          "Element store outside of alloca store");
2509   uint64_t ShAmt = 8 * Offset;
2510   if (DL.isBigEndian())
2511     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
2512                  DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
2513   if (ShAmt) {
2514     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2515     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2516   }
2517 
2518   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2519     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2520     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2521     LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2522     V = IRB.CreateOr(Old, V, Name + ".insert");
2523     LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2524   }
2525   return V;
2526 }
2527 
2528 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2529                             unsigned EndIndex, const Twine &Name) {
2530   auto *VecTy = cast<FixedVectorType>(V->getType());
2531   unsigned NumElements = EndIndex - BeginIndex;
2532   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2533 
2534   if (NumElements == VecTy->getNumElements())
2535     return V;
2536 
2537   if (NumElements == 1) {
2538     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2539                                  Name + ".extract");
2540     LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2541     return V;
2542   }
2543 
2544   auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex));
2545   V = IRB.CreateShuffleVector(V, Mask, Name + ".extract");
2546   LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2547   return V;
2548 }
2549 
2550 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2551                            unsigned BeginIndex, const Twine &Name) {
2552   VectorType *VecTy = cast<VectorType>(Old->getType());
2553   assert(VecTy && "Can only insert a vector into a vector");
2554 
2555   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2556   if (!Ty) {
2557     // Single element to insert.
2558     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2559                                 Name + ".insert");
2560     LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2561     return V;
2562   }
2563 
2564   assert(cast<FixedVectorType>(Ty)->getNumElements() <=
2565              cast<FixedVectorType>(VecTy)->getNumElements() &&
2566          "Too many elements!");
2567   if (cast<FixedVectorType>(Ty)->getNumElements() ==
2568       cast<FixedVectorType>(VecTy)->getNumElements()) {
2569     assert(V->getType() == VecTy && "Vector type mismatch");
2570     return V;
2571   }
2572   unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements();
2573 
2574   // When inserting a smaller vector into the larger to store, we first
2575   // use a shuffle vector to widen it with undef elements, and then
2576   // a second shuffle vector to select between the loaded vector and the
2577   // incoming vector.
2578   SmallVector<int, 8> Mask;
2579   Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2580   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2581     if (i >= BeginIndex && i < EndIndex)
2582       Mask.push_back(i - BeginIndex);
2583     else
2584       Mask.push_back(-1);
2585   V = IRB.CreateShuffleVector(V, Mask, Name + ".expand");
2586   LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2587 
2588   SmallVector<Constant *, 8> Mask2;
2589   Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2590   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2591     Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2592 
2593   V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend");
2594 
2595   LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2596   return V;
2597 }
2598 
2599 namespace {
2600 
2601 /// Visitor to rewrite instructions using p particular slice of an alloca
2602 /// to use a new alloca.
2603 ///
2604 /// Also implements the rewriting to vector-based accesses when the partition
2605 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2606 /// lives here.
2607 class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
2608   // Befriend the base class so it can delegate to private visit methods.
2609   friend class InstVisitor<AllocaSliceRewriter, bool>;
2610 
2611   using Base = InstVisitor<AllocaSliceRewriter, bool>;
2612 
2613   const DataLayout &DL;
2614   AllocaSlices &AS;
2615   SROA &Pass;
2616   AllocaInst &OldAI, &NewAI;
2617   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2618   Type *NewAllocaTy;
2619 
2620   // This is a convenience and flag variable that will be null unless the new
2621   // alloca's integer operations should be widened to this integer type due to
2622   // passing isIntegerWideningViable above. If it is non-null, the desired
2623   // integer type will be stored here for easy access during rewriting.
2624   IntegerType *IntTy;
2625 
2626   // If we are rewriting an alloca partition which can be written as pure
2627   // vector operations, we stash extra information here. When VecTy is
2628   // non-null, we have some strict guarantees about the rewritten alloca:
2629   //   - The new alloca is exactly the size of the vector type here.
2630   //   - The accesses all either map to the entire vector or to a single
2631   //     element.
2632   //   - The set of accessing instructions is only one of those handled above
2633   //     in isVectorPromotionViable. Generally these are the same access kinds
2634   //     which are promotable via mem2reg.
2635   VectorType *VecTy;
2636   Type *ElementTy;
2637   uint64_t ElementSize;
2638 
2639   // The original offset of the slice currently being rewritten relative to
2640   // the original alloca.
2641   uint64_t BeginOffset = 0;
2642   uint64_t EndOffset = 0;
2643 
2644   // The new offsets of the slice currently being rewritten relative to the
2645   // original alloca.
2646   uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2647 
2648   uint64_t SliceSize = 0;
2649   bool IsSplittable = false;
2650   bool IsSplit = false;
2651   Use *OldUse = nullptr;
2652   Instruction *OldPtr = nullptr;
2653 
2654   // Track post-rewrite users which are PHI nodes and Selects.
2655   SmallSetVector<PHINode *, 8> &PHIUsers;
2656   SmallSetVector<SelectInst *, 8> &SelectUsers;
2657 
2658   // Utility IR builder, whose name prefix is setup for each visited use, and
2659   // the insertion point is set to point to the user.
2660   IRBuilderTy IRB;
2661 
2662   // Return the new alloca, addrspacecasted if required to avoid changing the
2663   // addrspace of a volatile access.
2664   Value *getPtrToNewAI(unsigned AddrSpace, bool IsVolatile) {
2665     if (!IsVolatile || AddrSpace == NewAI.getType()->getPointerAddressSpace())
2666       return &NewAI;
2667 
2668     Type *AccessTy = IRB.getPtrTy(AddrSpace);
2669     return IRB.CreateAddrSpaceCast(&NewAI, AccessTy);
2670   }
2671 
2672 public:
2673   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2674                       AllocaInst &OldAI, AllocaInst &NewAI,
2675                       uint64_t NewAllocaBeginOffset,
2676                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2677                       VectorType *PromotableVecTy,
2678                       SmallSetVector<PHINode *, 8> &PHIUsers,
2679                       SmallSetVector<SelectInst *, 8> &SelectUsers)
2680       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2681         NewAllocaBeginOffset(NewAllocaBeginOffset),
2682         NewAllocaEndOffset(NewAllocaEndOffset),
2683         NewAllocaTy(NewAI.getAllocatedType()),
2684         IntTy(
2685             IsIntegerPromotable
2686                 ? Type::getIntNTy(NewAI.getContext(),
2687                                   DL.getTypeSizeInBits(NewAI.getAllocatedType())
2688                                       .getFixedValue())
2689                 : nullptr),
2690         VecTy(PromotableVecTy),
2691         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2692         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8
2693                           : 0),
2694         PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2695         IRB(NewAI.getContext(), ConstantFolder()) {
2696     if (VecTy) {
2697       assert((DL.getTypeSizeInBits(ElementTy).getFixedValue() % 8) == 0 &&
2698              "Only multiple-of-8 sized vector elements are viable");
2699       ++NumVectorized;
2700     }
2701     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2702   }
2703 
2704   bool visit(AllocaSlices::const_iterator I) {
2705     bool CanSROA = true;
2706     BeginOffset = I->beginOffset();
2707     EndOffset = I->endOffset();
2708     IsSplittable = I->isSplittable();
2709     IsSplit =
2710         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2711     LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2712     LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2713     LLVM_DEBUG(dbgs() << "\n");
2714 
2715     // Compute the intersecting offset range.
2716     assert(BeginOffset < NewAllocaEndOffset);
2717     assert(EndOffset > NewAllocaBeginOffset);
2718     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2719     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2720 
2721     SliceSize = NewEndOffset - NewBeginOffset;
2722     LLVM_DEBUG(dbgs() << "   Begin:(" << BeginOffset << ", " << EndOffset
2723                       << ") NewBegin:(" << NewBeginOffset << ", "
2724                       << NewEndOffset << ") NewAllocaBegin:("
2725                       << NewAllocaBeginOffset << ", " << NewAllocaEndOffset
2726                       << ")\n");
2727     assert(IsSplit || NewBeginOffset == BeginOffset);
2728     OldUse = I->getUse();
2729     OldPtr = cast<Instruction>(OldUse->get());
2730 
2731     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2732     IRB.SetInsertPoint(OldUserI);
2733     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2734     IRB.getInserter().SetNamePrefix(Twine(NewAI.getName()) + "." +
2735                                     Twine(BeginOffset) + ".");
2736 
2737     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2738     if (VecTy || IntTy)
2739       assert(CanSROA);
2740     return CanSROA;
2741   }
2742 
2743 private:
2744   // Make sure the other visit overloads are visible.
2745   using Base::visit;
2746 
2747   // Every instruction which can end up as a user must have a rewrite rule.
2748   bool visitInstruction(Instruction &I) {
2749     LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2750     llvm_unreachable("No rewrite rule for this instruction!");
2751   }
2752 
2753   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2754     // Note that the offset computation can use BeginOffset or NewBeginOffset
2755     // interchangeably for unsplit slices.
2756     assert(IsSplit || BeginOffset == NewBeginOffset);
2757     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2758 
2759 #ifndef NDEBUG
2760     StringRef OldName = OldPtr->getName();
2761     // Skip through the last '.sroa.' component of the name.
2762     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2763     if (LastSROAPrefix != StringRef::npos) {
2764       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2765       // Look for an SROA slice index.
2766       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2767       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2768         // Strip the index and look for the offset.
2769         OldName = OldName.substr(IndexEnd + 1);
2770         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2771         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2772           // Strip the offset.
2773           OldName = OldName.substr(OffsetEnd + 1);
2774       }
2775     }
2776     // Strip any SROA suffixes as well.
2777     OldName = OldName.substr(0, OldName.find(".sroa_"));
2778 #endif
2779 
2780     return getAdjustedPtr(IRB, DL, &NewAI,
2781                           APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2782                           PointerTy,
2783 #ifndef NDEBUG
2784                           Twine(OldName) + "."
2785 #else
2786                           Twine()
2787 #endif
2788     );
2789   }
2790 
2791   /// Compute suitable alignment to access this slice of the *new*
2792   /// alloca.
2793   ///
2794   /// You can optionally pass a type to this routine and if that type's ABI
2795   /// alignment is itself suitable, this will return zero.
2796   Align getSliceAlign() {
2797     return commonAlignment(NewAI.getAlign(),
2798                            NewBeginOffset - NewAllocaBeginOffset);
2799   }
2800 
2801   unsigned getIndex(uint64_t Offset) {
2802     assert(VecTy && "Can only call getIndex when rewriting a vector");
2803     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2804     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2805     uint32_t Index = RelOffset / ElementSize;
2806     assert(Index * ElementSize == RelOffset);
2807     return Index;
2808   }
2809 
2810   void deleteIfTriviallyDead(Value *V) {
2811     Instruction *I = cast<Instruction>(V);
2812     if (isInstructionTriviallyDead(I))
2813       Pass.DeadInsts.push_back(I);
2814   }
2815 
2816   Value *rewriteVectorizedLoadInst(LoadInst &LI) {
2817     unsigned BeginIndex = getIndex(NewBeginOffset);
2818     unsigned EndIndex = getIndex(NewEndOffset);
2819     assert(EndIndex > BeginIndex && "Empty vector!");
2820 
2821     LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2822                                            NewAI.getAlign(), "load");
2823 
2824     Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2825                             LLVMContext::MD_access_group});
2826     return extractVector(IRB, Load, BeginIndex, EndIndex, "vec");
2827   }
2828 
2829   Value *rewriteIntegerLoad(LoadInst &LI) {
2830     assert(IntTy && "We cannot insert an integer to the alloca");
2831     assert(!LI.isVolatile());
2832     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2833                                      NewAI.getAlign(), "load");
2834     V = convertValue(DL, IRB, V, IntTy);
2835     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2836     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2837     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2838       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2839       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2840     }
2841     // It is possible that the extracted type is not the load type. This
2842     // happens if there is a load past the end of the alloca, and as
2843     // a consequence the slice is narrower but still a candidate for integer
2844     // lowering. To handle this case, we just zero extend the extracted
2845     // integer.
2846     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2847            "Can only handle an extract for an overly wide load");
2848     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2849       V = IRB.CreateZExt(V, LI.getType());
2850     return V;
2851   }
2852 
2853   bool visitLoadInst(LoadInst &LI) {
2854     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2855     Value *OldOp = LI.getOperand(0);
2856     assert(OldOp == OldPtr);
2857 
2858     AAMDNodes AATags = LI.getAAMetadata();
2859 
2860     unsigned AS = LI.getPointerAddressSpace();
2861 
2862     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2863                              : LI.getType();
2864     const bool IsLoadPastEnd =
2865         DL.getTypeStoreSize(TargetTy).getFixedValue() > SliceSize;
2866     bool IsPtrAdjusted = false;
2867     Value *V;
2868     if (VecTy) {
2869       V = rewriteVectorizedLoadInst(LI);
2870     } else if (IntTy && LI.getType()->isIntegerTy()) {
2871       V = rewriteIntegerLoad(LI);
2872     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2873                NewEndOffset == NewAllocaEndOffset &&
2874                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2875                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2876                  TargetTy->isIntegerTy() && !LI.isVolatile()))) {
2877       Value *NewPtr =
2878           getPtrToNewAI(LI.getPointerAddressSpace(), LI.isVolatile());
2879       LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), NewPtr,
2880                                               NewAI.getAlign(), LI.isVolatile(),
2881                                               LI.getName());
2882       if (LI.isVolatile())
2883         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2884       if (NewLI->isAtomic())
2885         NewLI->setAlignment(LI.getAlign());
2886 
2887       // Copy any metadata that is valid for the new load. This may require
2888       // conversion to a different kind of metadata, e.g. !nonnull might change
2889       // to !range or vice versa.
2890       copyMetadataForLoad(*NewLI, LI);
2891 
2892       // Do this after copyMetadataForLoad() to preserve the TBAA shift.
2893       if (AATags)
2894         NewLI->setAAMetadata(AATags.adjustForAccess(
2895             NewBeginOffset - BeginOffset, NewLI->getType(), DL));
2896 
2897       // Try to preserve nonnull metadata
2898       V = NewLI;
2899 
2900       // If this is an integer load past the end of the slice (which means the
2901       // bytes outside the slice are undef or this load is dead) just forcibly
2902       // fix the integer size with correct handling of endianness.
2903       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2904         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2905           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2906             V = IRB.CreateZExt(V, TITy, "load.ext");
2907             if (DL.isBigEndian())
2908               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2909                                 "endian_shift");
2910           }
2911     } else {
2912       Type *LTy = IRB.getPtrTy(AS);
2913       LoadInst *NewLI =
2914           IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
2915                                 getSliceAlign(), LI.isVolatile(), LI.getName());
2916 
2917       if (AATags)
2918         NewLI->setAAMetadata(AATags.adjustForAccess(
2919             NewBeginOffset - BeginOffset, NewLI->getType(), DL));
2920 
2921       if (LI.isVolatile())
2922         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2923       NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2924                                LLVMContext::MD_access_group});
2925 
2926       V = NewLI;
2927       IsPtrAdjusted = true;
2928     }
2929     V = convertValue(DL, IRB, V, TargetTy);
2930 
2931     if (IsSplit) {
2932       assert(!LI.isVolatile());
2933       assert(LI.getType()->isIntegerTy() &&
2934              "Only integer type loads and stores are split");
2935       assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedValue() &&
2936              "Split load isn't smaller than original load");
2937       assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2938              "Non-byte-multiple bit width");
2939       // Move the insertion point just past the load so that we can refer to it.
2940       BasicBlock::iterator LIIt = std::next(LI.getIterator());
2941       // Ensure the insertion point comes before any debug-info immediately
2942       // after the load, so that variable values referring to the load are
2943       // dominated by it.
2944       LIIt.setHeadBit(true);
2945       IRB.SetInsertPoint(LI.getParent(), LIIt);
2946       // Create a placeholder value with the same type as LI to use as the
2947       // basis for the new value. This allows us to replace the uses of LI with
2948       // the computed value, and then replace the placeholder with LI, leaving
2949       // LI only used for this computation.
2950       Value *Placeholder =
2951           new LoadInst(LI.getType(), PoisonValue::get(IRB.getPtrTy(AS)), "",
2952                        false, Align(1));
2953       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2954                         "insert");
2955       LI.replaceAllUsesWith(V);
2956       Placeholder->replaceAllUsesWith(&LI);
2957       Placeholder->deleteValue();
2958     } else {
2959       LI.replaceAllUsesWith(V);
2960     }
2961 
2962     Pass.DeadInsts.push_back(&LI);
2963     deleteIfTriviallyDead(OldOp);
2964     LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2965     return !LI.isVolatile() && !IsPtrAdjusted;
2966   }
2967 
2968   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2969                                   AAMDNodes AATags) {
2970     // Capture V for the purpose of debug-info accounting once it's converted
2971     // to a vector store.
2972     Value *OrigV = V;
2973     if (V->getType() != VecTy) {
2974       unsigned BeginIndex = getIndex(NewBeginOffset);
2975       unsigned EndIndex = getIndex(NewEndOffset);
2976       assert(EndIndex > BeginIndex && "Empty vector!");
2977       unsigned NumElements = EndIndex - BeginIndex;
2978       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2979              "Too many elements!");
2980       Type *SliceTy = (NumElements == 1)
2981                           ? ElementTy
2982                           : FixedVectorType::get(ElementTy, NumElements);
2983       if (V->getType() != SliceTy)
2984         V = convertValue(DL, IRB, V, SliceTy);
2985 
2986       // Mix in the existing elements.
2987       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2988                                          NewAI.getAlign(), "load");
2989       V = insertVector(IRB, Old, V, BeginIndex, "vec");
2990     }
2991     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2992     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2993                              LLVMContext::MD_access_group});
2994     if (AATags)
2995       Store->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset,
2996                                                   V->getType(), DL));
2997     Pass.DeadInsts.push_back(&SI);
2998 
2999     // NOTE: Careful to use OrigV rather than V.
3000     migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI,
3001                      Store, Store->getPointerOperand(), OrigV, DL);
3002     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3003     return true;
3004   }
3005 
3006   bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
3007     assert(IntTy && "We cannot extract an integer from the alloca");
3008     assert(!SI.isVolatile());
3009     if (DL.getTypeSizeInBits(V->getType()).getFixedValue() !=
3010         IntTy->getBitWidth()) {
3011       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3012                                          NewAI.getAlign(), "oldload");
3013       Old = convertValue(DL, IRB, Old, IntTy);
3014       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
3015       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
3016       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
3017     }
3018     V = convertValue(DL, IRB, V, NewAllocaTy);
3019     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
3020     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
3021                              LLVMContext::MD_access_group});
3022     if (AATags)
3023       Store->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset,
3024                                                   V->getType(), DL));
3025 
3026     migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI,
3027                      Store, Store->getPointerOperand(),
3028                      Store->getValueOperand(), DL);
3029 
3030     Pass.DeadInsts.push_back(&SI);
3031     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3032     return true;
3033   }
3034 
3035   bool visitStoreInst(StoreInst &SI) {
3036     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3037     Value *OldOp = SI.getOperand(1);
3038     assert(OldOp == OldPtr);
3039 
3040     AAMDNodes AATags = SI.getAAMetadata();
3041     Value *V = SI.getValueOperand();
3042 
3043     // Strip all inbounds GEPs and pointer casts to try to dig out any root
3044     // alloca that should be re-examined after promoting this alloca.
3045     if (V->getType()->isPointerTy())
3046       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
3047         Pass.PostPromotionWorklist.insert(AI);
3048 
3049     if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedValue()) {
3050       assert(!SI.isVolatile());
3051       assert(V->getType()->isIntegerTy() &&
3052              "Only integer type loads and stores are split");
3053       assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
3054              "Non-byte-multiple bit width");
3055       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
3056       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
3057                          "extract");
3058     }
3059 
3060     if (VecTy)
3061       return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
3062     if (IntTy && V->getType()->isIntegerTy())
3063       return rewriteIntegerStore(V, SI, AATags);
3064 
3065     StoreInst *NewSI;
3066     if (NewBeginOffset == NewAllocaBeginOffset &&
3067         NewEndOffset == NewAllocaEndOffset &&
3068         canConvertValue(DL, V->getType(), NewAllocaTy)) {
3069       V = convertValue(DL, IRB, V, NewAllocaTy);
3070       Value *NewPtr =
3071           getPtrToNewAI(SI.getPointerAddressSpace(), SI.isVolatile());
3072 
3073       NewSI =
3074           IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), SI.isVolatile());
3075     } else {
3076       unsigned AS = SI.getPointerAddressSpace();
3077       Value *NewPtr = getNewAllocaSlicePtr(IRB, IRB.getPtrTy(AS));
3078       NewSI =
3079           IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
3080     }
3081     NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
3082                              LLVMContext::MD_access_group});
3083     if (AATags)
3084       NewSI->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset,
3085                                                   V->getType(), DL));
3086     if (SI.isVolatile())
3087       NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
3088     if (NewSI->isAtomic())
3089       NewSI->setAlignment(SI.getAlign());
3090 
3091     migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI,
3092                      NewSI, NewSI->getPointerOperand(),
3093                      NewSI->getValueOperand(), DL);
3094 
3095     Pass.DeadInsts.push_back(&SI);
3096     deleteIfTriviallyDead(OldOp);
3097 
3098     LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
3099     return NewSI->getPointerOperand() == &NewAI &&
3100            NewSI->getValueOperand()->getType() == NewAllocaTy &&
3101            !SI.isVolatile();
3102   }
3103 
3104   /// Compute an integer value from splatting an i8 across the given
3105   /// number of bytes.
3106   ///
3107   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
3108   /// call this routine.
3109   /// FIXME: Heed the advice above.
3110   ///
3111   /// \param V The i8 value to splat.
3112   /// \param Size The number of bytes in the output (assuming i8 is one byte)
3113   Value *getIntegerSplat(Value *V, unsigned Size) {
3114     assert(Size > 0 && "Expected a positive number of bytes.");
3115     IntegerType *VTy = cast<IntegerType>(V->getType());
3116     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
3117     if (Size == 1)
3118       return V;
3119 
3120     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
3121     V = IRB.CreateMul(
3122         IRB.CreateZExt(V, SplatIntTy, "zext"),
3123         IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy),
3124                        IRB.CreateZExt(Constant::getAllOnesValue(V->getType()),
3125                                       SplatIntTy)),
3126         "isplat");
3127     return V;
3128   }
3129 
3130   /// Compute a vector splat for a given element value.
3131   Value *getVectorSplat(Value *V, unsigned NumElements) {
3132     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
3133     LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
3134     return V;
3135   }
3136 
3137   bool visitMemSetInst(MemSetInst &II) {
3138     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3139     assert(II.getRawDest() == OldPtr);
3140 
3141     AAMDNodes AATags = II.getAAMetadata();
3142 
3143     // If the memset has a variable size, it cannot be split, just adjust the
3144     // pointer to the new alloca.
3145     if (!isa<ConstantInt>(II.getLength())) {
3146       assert(!IsSplit);
3147       assert(NewBeginOffset == BeginOffset);
3148       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
3149       II.setDestAlignment(getSliceAlign());
3150       // In theory we should call migrateDebugInfo here. However, we do not
3151       // emit dbg.assign intrinsics for mem intrinsics storing through non-
3152       // constant geps, or storing a variable number of bytes.
3153       assert(at::getAssignmentMarkers(&II).empty() &&
3154              at::getDVRAssignmentMarkers(&II).empty() &&
3155              "AT: Unexpected link to non-const GEP");
3156       deleteIfTriviallyDead(OldPtr);
3157       return false;
3158     }
3159 
3160     // Record this instruction for deletion.
3161     Pass.DeadInsts.push_back(&II);
3162 
3163     Type *AllocaTy = NewAI.getAllocatedType();
3164     Type *ScalarTy = AllocaTy->getScalarType();
3165 
3166     const bool CanContinue = [&]() {
3167       if (VecTy || IntTy)
3168         return true;
3169       if (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset)
3170         return false;
3171       // Length must be in range for FixedVectorType.
3172       auto *C = cast<ConstantInt>(II.getLength());
3173       const uint64_t Len = C->getLimitedValue();
3174       if (Len > std::numeric_limits<unsigned>::max())
3175         return false;
3176       auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
3177       auto *SrcTy = FixedVectorType::get(Int8Ty, Len);
3178       return canConvertValue(DL, SrcTy, AllocaTy) &&
3179              DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedValue());
3180     }();
3181 
3182     // If this doesn't map cleanly onto the alloca type, and that type isn't
3183     // a single value type, just emit a memset.
3184     if (!CanContinue) {
3185       Type *SizeTy = II.getLength()->getType();
3186       unsigned Sz = NewEndOffset - NewBeginOffset;
3187       Constant *Size = ConstantInt::get(SizeTy, Sz);
3188       MemIntrinsic *New = cast<MemIntrinsic>(IRB.CreateMemSet(
3189           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
3190           MaybeAlign(getSliceAlign()), II.isVolatile()));
3191       if (AATags)
3192         New->setAAMetadata(
3193             AATags.adjustForAccess(NewBeginOffset - BeginOffset, Sz));
3194 
3195       migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II,
3196                        New, New->getRawDest(), nullptr, DL);
3197 
3198       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3199       return false;
3200     }
3201 
3202     // If we can represent this as a simple value, we have to build the actual
3203     // value to store, which requires expanding the byte present in memset to
3204     // a sensible representation for the alloca type. This is essentially
3205     // splatting the byte to a sufficiently wide integer, splatting it across
3206     // any desired vector width, and bitcasting to the final type.
3207     Value *V;
3208 
3209     if (VecTy) {
3210       // If this is a memset of a vectorized alloca, insert it.
3211       assert(ElementTy == ScalarTy);
3212 
3213       unsigned BeginIndex = getIndex(NewBeginOffset);
3214       unsigned EndIndex = getIndex(NewEndOffset);
3215       assert(EndIndex > BeginIndex && "Empty vector!");
3216       unsigned NumElements = EndIndex - BeginIndex;
3217       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
3218              "Too many elements!");
3219 
3220       Value *Splat = getIntegerSplat(
3221           II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8);
3222       Splat = convertValue(DL, IRB, Splat, ElementTy);
3223       if (NumElements > 1)
3224         Splat = getVectorSplat(Splat, NumElements);
3225 
3226       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3227                                          NewAI.getAlign(), "oldload");
3228       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
3229     } else if (IntTy) {
3230       // If this is a memset on an alloca where we can widen stores, insert the
3231       // set integer.
3232       assert(!II.isVolatile());
3233 
3234       uint64_t Size = NewEndOffset - NewBeginOffset;
3235       V = getIntegerSplat(II.getValue(), Size);
3236 
3237       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
3238                     EndOffset != NewAllocaBeginOffset)) {
3239         Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3240                                            NewAI.getAlign(), "oldload");
3241         Old = convertValue(DL, IRB, Old, IntTy);
3242         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3243         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
3244       } else {
3245         assert(V->getType() == IntTy &&
3246                "Wrong type for an alloca wide integer!");
3247       }
3248       V = convertValue(DL, IRB, V, AllocaTy);
3249     } else {
3250       // Established these invariants above.
3251       assert(NewBeginOffset == NewAllocaBeginOffset);
3252       assert(NewEndOffset == NewAllocaEndOffset);
3253 
3254       V = getIntegerSplat(II.getValue(),
3255                           DL.getTypeSizeInBits(ScalarTy).getFixedValue() / 8);
3256       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
3257         V = getVectorSplat(
3258             V, cast<FixedVectorType>(AllocaVecTy)->getNumElements());
3259 
3260       V = convertValue(DL, IRB, V, AllocaTy);
3261     }
3262 
3263     Value *NewPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
3264     StoreInst *New =
3265         IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), II.isVolatile());
3266     New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3267                            LLVMContext::MD_access_group});
3268     if (AATags)
3269       New->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset,
3270                                                 V->getType(), DL));
3271 
3272     migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II,
3273                      New, New->getPointerOperand(), V, DL);
3274 
3275     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3276     return !II.isVolatile();
3277   }
3278 
3279   bool visitMemTransferInst(MemTransferInst &II) {
3280     // Rewriting of memory transfer instructions can be a bit tricky. We break
3281     // them into two categories: split intrinsics and unsplit intrinsics.
3282 
3283     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3284 
3285     AAMDNodes AATags = II.getAAMetadata();
3286 
3287     bool IsDest = &II.getRawDestUse() == OldUse;
3288     assert((IsDest && II.getRawDest() == OldPtr) ||
3289            (!IsDest && II.getRawSource() == OldPtr));
3290 
3291     Align SliceAlign = getSliceAlign();
3292     // For unsplit intrinsics, we simply modify the source and destination
3293     // pointers in place. This isn't just an optimization, it is a matter of
3294     // correctness. With unsplit intrinsics we may be dealing with transfers
3295     // within a single alloca before SROA ran, or with transfers that have
3296     // a variable length. We may also be dealing with memmove instead of
3297     // memcpy, and so simply updating the pointers is the necessary for us to
3298     // update both source and dest of a single call.
3299     if (!IsSplittable) {
3300       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3301       if (IsDest) {
3302         // Update the address component of linked dbg.assigns.
3303         auto UpdateAssignAddress = [&](auto *DbgAssign) {
3304           if (llvm::is_contained(DbgAssign->location_ops(), II.getDest()) ||
3305               DbgAssign->getAddress() == II.getDest())
3306             DbgAssign->replaceVariableLocationOp(II.getDest(), AdjustedPtr);
3307         };
3308         for_each(at::getAssignmentMarkers(&II), UpdateAssignAddress);
3309         for_each(at::getDVRAssignmentMarkers(&II), UpdateAssignAddress);
3310         II.setDest(AdjustedPtr);
3311         II.setDestAlignment(SliceAlign);
3312       } else {
3313         II.setSource(AdjustedPtr);
3314         II.setSourceAlignment(SliceAlign);
3315       }
3316 
3317       LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
3318       deleteIfTriviallyDead(OldPtr);
3319       return false;
3320     }
3321     // For split transfer intrinsics we have an incredibly useful assurance:
3322     // the source and destination do not reside within the same alloca, and at
3323     // least one of them does not escape. This means that we can replace
3324     // memmove with memcpy, and we don't need to worry about all manner of
3325     // downsides to splitting and transforming the operations.
3326 
3327     // If this doesn't map cleanly onto the alloca type, and that type isn't
3328     // a single value type, just emit a memcpy.
3329     bool EmitMemCpy =
3330         !VecTy && !IntTy &&
3331         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
3332          SliceSize !=
3333              DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedValue() ||
3334          !DL.typeSizeEqualsStoreSize(NewAI.getAllocatedType()) ||
3335          !NewAI.getAllocatedType()->isSingleValueType());
3336 
3337     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
3338     // size hasn't been shrunk based on analysis of the viable range, this is
3339     // a no-op.
3340     if (EmitMemCpy && &OldAI == &NewAI) {
3341       // Ensure the start lines up.
3342       assert(NewBeginOffset == BeginOffset);
3343 
3344       // Rewrite the size as needed.
3345       if (NewEndOffset != EndOffset)
3346         II.setLength(ConstantInt::get(II.getLength()->getType(),
3347                                       NewEndOffset - NewBeginOffset));
3348       return false;
3349     }
3350     // Record this instruction for deletion.
3351     Pass.DeadInsts.push_back(&II);
3352 
3353     // Strip all inbounds GEPs and pointer casts to try to dig out any root
3354     // alloca that should be re-examined after rewriting this instruction.
3355     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
3356     if (AllocaInst *AI =
3357             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
3358       assert(AI != &OldAI && AI != &NewAI &&
3359              "Splittable transfers cannot reach the same alloca on both ends.");
3360       Pass.Worklist.insert(AI);
3361     }
3362 
3363     Type *OtherPtrTy = OtherPtr->getType();
3364     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
3365 
3366     // Compute the relative offset for the other pointer within the transfer.
3367     unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
3368     APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
3369     Align OtherAlign =
3370         (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne();
3371     OtherAlign =
3372         commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
3373 
3374     if (EmitMemCpy) {
3375       // Compute the other pointer, folding as much as possible to produce
3376       // a single, simple GEP in most cases.
3377       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3378                                 OtherPtr->getName() + ".");
3379 
3380       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3381       Type *SizeTy = II.getLength()->getType();
3382       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
3383 
3384       Value *DestPtr, *SrcPtr;
3385       MaybeAlign DestAlign, SrcAlign;
3386       // Note: IsDest is true iff we're copying into the new alloca slice
3387       if (IsDest) {
3388         DestPtr = OurPtr;
3389         DestAlign = SliceAlign;
3390         SrcPtr = OtherPtr;
3391         SrcAlign = OtherAlign;
3392       } else {
3393         DestPtr = OtherPtr;
3394         DestAlign = OtherAlign;
3395         SrcPtr = OurPtr;
3396         SrcAlign = SliceAlign;
3397       }
3398       CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
3399                                        Size, II.isVolatile());
3400       if (AATags)
3401         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3402 
3403       APInt Offset(DL.getIndexTypeSizeInBits(DestPtr->getType()), 0);
3404       if (IsDest) {
3405         migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8,
3406                          &II, New, DestPtr, nullptr, DL);
3407       } else if (AllocaInst *Base = dyn_cast<AllocaInst>(
3408                      DestPtr->stripAndAccumulateConstantOffsets(
3409                          DL, Offset, /*AllowNonInbounds*/ true))) {
3410         migrateDebugInfo(Base, IsSplit, Offset.getZExtValue() * 8,
3411                          SliceSize * 8, &II, New, DestPtr, nullptr, DL);
3412       }
3413       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3414       return false;
3415     }
3416 
3417     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
3418                          NewEndOffset == NewAllocaEndOffset;
3419     uint64_t Size = NewEndOffset - NewBeginOffset;
3420     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3421     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3422     unsigned NumElements = EndIndex - BeginIndex;
3423     IntegerType *SubIntTy =
3424         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3425 
3426     // Reset the other pointer type to match the register type we're going to
3427     // use, but using the address space of the original other pointer.
3428     Type *OtherTy;
3429     if (VecTy && !IsWholeAlloca) {
3430       if (NumElements == 1)
3431         OtherTy = VecTy->getElementType();
3432       else
3433         OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements);
3434     } else if (IntTy && !IsWholeAlloca) {
3435       OtherTy = SubIntTy;
3436     } else {
3437       OtherTy = NewAllocaTy;
3438     }
3439 
3440     Value *AdjPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3441                                    OtherPtr->getName() + ".");
3442     MaybeAlign SrcAlign = OtherAlign;
3443     MaybeAlign DstAlign = SliceAlign;
3444     if (!IsDest)
3445       std::swap(SrcAlign, DstAlign);
3446 
3447     Value *SrcPtr;
3448     Value *DstPtr;
3449 
3450     if (IsDest) {
3451       DstPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
3452       SrcPtr = AdjPtr;
3453     } else {
3454       DstPtr = AdjPtr;
3455       SrcPtr = getPtrToNewAI(II.getSourceAddressSpace(), II.isVolatile());
3456     }
3457 
3458     Value *Src;
3459     if (VecTy && !IsWholeAlloca && !IsDest) {
3460       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3461                                   NewAI.getAlign(), "load");
3462       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3463     } else if (IntTy && !IsWholeAlloca && !IsDest) {
3464       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3465                                   NewAI.getAlign(), "load");
3466       Src = convertValue(DL, IRB, Src, IntTy);
3467       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3468       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3469     } else {
3470       LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3471                                              II.isVolatile(), "copyload");
3472       Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3473                               LLVMContext::MD_access_group});
3474       if (AATags)
3475         Load->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset,
3476                                                    Load->getType(), DL));
3477       Src = Load;
3478     }
3479 
3480     if (VecTy && !IsWholeAlloca && IsDest) {
3481       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3482                                          NewAI.getAlign(), "oldload");
3483       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3484     } else if (IntTy && !IsWholeAlloca && IsDest) {
3485       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3486                                          NewAI.getAlign(), "oldload");
3487       Old = convertValue(DL, IRB, Old, IntTy);
3488       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3489       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3490       Src = convertValue(DL, IRB, Src, NewAllocaTy);
3491     }
3492 
3493     StoreInst *Store = cast<StoreInst>(
3494         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3495     Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3496                              LLVMContext::MD_access_group});
3497     if (AATags)
3498       Store->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset,
3499                                                   Src->getType(), DL));
3500 
3501     APInt Offset(DL.getIndexTypeSizeInBits(DstPtr->getType()), 0);
3502     if (IsDest) {
3503 
3504       migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II,
3505                        Store, DstPtr, Src, DL);
3506     } else if (AllocaInst *Base = dyn_cast<AllocaInst>(
3507                    DstPtr->stripAndAccumulateConstantOffsets(
3508                        DL, Offset, /*AllowNonInbounds*/ true))) {
3509       migrateDebugInfo(Base, IsSplit, Offset.getZExtValue() * 8, SliceSize * 8,
3510                        &II, Store, DstPtr, Src, DL);
3511     }
3512 
3513     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3514     return !II.isVolatile();
3515   }
3516 
3517   bool visitIntrinsicInst(IntrinsicInst &II) {
3518     assert((II.isLifetimeStartOrEnd() || II.isLaunderOrStripInvariantGroup() ||
3519             II.isDroppable()) &&
3520            "Unexpected intrinsic!");
3521     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3522 
3523     // Record this instruction for deletion.
3524     Pass.DeadInsts.push_back(&II);
3525 
3526     if (II.isDroppable()) {
3527       assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume");
3528       // TODO For now we forget assumed information, this can be improved.
3529       OldPtr->dropDroppableUsesIn(II);
3530       return true;
3531     }
3532 
3533     if (II.isLaunderOrStripInvariantGroup())
3534       return true;
3535 
3536     assert(II.getArgOperand(1) == OldPtr);
3537     // Lifetime intrinsics are only promotable if they cover the whole alloca.
3538     // Therefore, we drop lifetime intrinsics which don't cover the whole
3539     // alloca.
3540     // (In theory, intrinsics which partially cover an alloca could be
3541     // promoted, but PromoteMemToReg doesn't handle that case.)
3542     // FIXME: Check whether the alloca is promotable before dropping the
3543     // lifetime intrinsics?
3544     if (NewBeginOffset != NewAllocaBeginOffset ||
3545         NewEndOffset != NewAllocaEndOffset)
3546       return true;
3547 
3548     ConstantInt *Size =
3549         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3550                          NewEndOffset - NewBeginOffset);
3551     // Lifetime intrinsics always expect an i8* so directly get such a pointer
3552     // for the new alloca slice.
3553     Type *PointerTy = IRB.getPtrTy(OldPtr->getType()->getPointerAddressSpace());
3554     Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3555     Value *New;
3556     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3557       New = IRB.CreateLifetimeStart(Ptr, Size);
3558     else
3559       New = IRB.CreateLifetimeEnd(Ptr, Size);
3560 
3561     (void)New;
3562     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3563 
3564     return true;
3565   }
3566 
3567   void fixLoadStoreAlign(Instruction &Root) {
3568     // This algorithm implements the same visitor loop as
3569     // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3570     // or store found.
3571     SmallPtrSet<Instruction *, 4> Visited;
3572     SmallVector<Instruction *, 4> Uses;
3573     Visited.insert(&Root);
3574     Uses.push_back(&Root);
3575     do {
3576       Instruction *I = Uses.pop_back_val();
3577 
3578       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3579         LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
3580         continue;
3581       }
3582       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3583         SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
3584         continue;
3585       }
3586 
3587       assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3588              isa<PHINode>(I) || isa<SelectInst>(I) ||
3589              isa<GetElementPtrInst>(I));
3590       for (User *U : I->users())
3591         if (Visited.insert(cast<Instruction>(U)).second)
3592           Uses.push_back(cast<Instruction>(U));
3593     } while (!Uses.empty());
3594   }
3595 
3596   bool visitPHINode(PHINode &PN) {
3597     LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3598     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3599     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3600 
3601     // We would like to compute a new pointer in only one place, but have it be
3602     // as local as possible to the PHI. To do that, we re-use the location of
3603     // the old pointer, which necessarily must be in the right position to
3604     // dominate the PHI.
3605     IRBuilderBase::InsertPointGuard Guard(IRB);
3606     if (isa<PHINode>(OldPtr))
3607       IRB.SetInsertPoint(OldPtr->getParent(),
3608                          OldPtr->getParent()->getFirstInsertionPt());
3609     else
3610       IRB.SetInsertPoint(OldPtr);
3611     IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3612 
3613     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3614     // Replace the operands which were using the old pointer.
3615     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3616 
3617     LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3618     deleteIfTriviallyDead(OldPtr);
3619 
3620     // Fix the alignment of any loads or stores using this PHI node.
3621     fixLoadStoreAlign(PN);
3622 
3623     // PHIs can't be promoted on their own, but often can be speculated. We
3624     // check the speculation outside of the rewriter so that we see the
3625     // fully-rewritten alloca.
3626     PHIUsers.insert(&PN);
3627     return true;
3628   }
3629 
3630   bool visitSelectInst(SelectInst &SI) {
3631     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3632     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3633            "Pointer isn't an operand!");
3634     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3635     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3636 
3637     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3638     // Replace the operands which were using the old pointer.
3639     if (SI.getOperand(1) == OldPtr)
3640       SI.setOperand(1, NewPtr);
3641     if (SI.getOperand(2) == OldPtr)
3642       SI.setOperand(2, NewPtr);
3643 
3644     LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3645     deleteIfTriviallyDead(OldPtr);
3646 
3647     // Fix the alignment of any loads or stores using this select.
3648     fixLoadStoreAlign(SI);
3649 
3650     // Selects can't be promoted on their own, but often can be speculated. We
3651     // check the speculation outside of the rewriter so that we see the
3652     // fully-rewritten alloca.
3653     SelectUsers.insert(&SI);
3654     return true;
3655   }
3656 };
3657 
3658 /// Visitor to rewrite aggregate loads and stores as scalar.
3659 ///
3660 /// This pass aggressively rewrites all aggregate loads and stores on
3661 /// a particular pointer (or any pointer derived from it which we can identify)
3662 /// with scalar loads and stores.
3663 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3664   // Befriend the base class so it can delegate to private visit methods.
3665   friend class InstVisitor<AggLoadStoreRewriter, bool>;
3666 
3667   /// Queue of pointer uses to analyze and potentially rewrite.
3668   SmallVector<Use *, 8> Queue;
3669 
3670   /// Set to prevent us from cycling with phi nodes and loops.
3671   SmallPtrSet<User *, 8> Visited;
3672 
3673   /// The current pointer use being rewritten. This is used to dig up the used
3674   /// value (as opposed to the user).
3675   Use *U = nullptr;
3676 
3677   /// Used to calculate offsets, and hence alignment, of subobjects.
3678   const DataLayout &DL;
3679 
3680   IRBuilderTy &IRB;
3681 
3682 public:
3683   AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB)
3684       : DL(DL), IRB(IRB) {}
3685 
3686   /// Rewrite loads and stores through a pointer and all pointers derived from
3687   /// it.
3688   bool rewrite(Instruction &I) {
3689     LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3690     enqueueUsers(I);
3691     bool Changed = false;
3692     while (!Queue.empty()) {
3693       U = Queue.pop_back_val();
3694       Changed |= visit(cast<Instruction>(U->getUser()));
3695     }
3696     return Changed;
3697   }
3698 
3699 private:
3700   /// Enqueue all the users of the given instruction for further processing.
3701   /// This uses a set to de-duplicate users.
3702   void enqueueUsers(Instruction &I) {
3703     for (Use &U : I.uses())
3704       if (Visited.insert(U.getUser()).second)
3705         Queue.push_back(&U);
3706   }
3707 
3708   // Conservative default is to not rewrite anything.
3709   bool visitInstruction(Instruction &I) { return false; }
3710 
3711   /// Generic recursive split emission class.
3712   template <typename Derived> class OpSplitter {
3713   protected:
3714     /// The builder used to form new instructions.
3715     IRBuilderTy &IRB;
3716 
3717     /// The indices which to be used with insert- or extractvalue to select the
3718     /// appropriate value within the aggregate.
3719     SmallVector<unsigned, 4> Indices;
3720 
3721     /// The indices to a GEP instruction which will move Ptr to the correct slot
3722     /// within the aggregate.
3723     SmallVector<Value *, 4> GEPIndices;
3724 
3725     /// The base pointer of the original op, used as a base for GEPing the
3726     /// split operations.
3727     Value *Ptr;
3728 
3729     /// The base pointee type being GEPed into.
3730     Type *BaseTy;
3731 
3732     /// Known alignment of the base pointer.
3733     Align BaseAlign;
3734 
3735     /// To calculate offset of each component so we can correctly deduce
3736     /// alignments.
3737     const DataLayout &DL;
3738 
3739     /// Initialize the splitter with an insertion point, Ptr and start with a
3740     /// single zero GEP index.
3741     OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3742                Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB)
3743         : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy),
3744           BaseAlign(BaseAlign), DL(DL) {
3745       IRB.SetInsertPoint(InsertionPoint);
3746     }
3747 
3748   public:
3749     /// Generic recursive split emission routine.
3750     ///
3751     /// This method recursively splits an aggregate op (load or store) into
3752     /// scalar or vector ops. It splits recursively until it hits a single value
3753     /// and emits that single value operation via the template argument.
3754     ///
3755     /// The logic of this routine relies on GEPs and insertvalue and
3756     /// extractvalue all operating with the same fundamental index list, merely
3757     /// formatted differently (GEPs need actual values).
3758     ///
3759     /// \param Ty  The type being split recursively into smaller ops.
3760     /// \param Agg The aggregate value being built up or stored, depending on
3761     /// whether this is splitting a load or a store respectively.
3762     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3763       if (Ty->isSingleValueType()) {
3764         unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3765         return static_cast<Derived *>(this)->emitFunc(
3766             Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3767       }
3768 
3769       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3770         unsigned OldSize = Indices.size();
3771         (void)OldSize;
3772         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3773              ++Idx) {
3774           assert(Indices.size() == OldSize && "Did not return to the old size");
3775           Indices.push_back(Idx);
3776           GEPIndices.push_back(IRB.getInt32(Idx));
3777           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3778           GEPIndices.pop_back();
3779           Indices.pop_back();
3780         }
3781         return;
3782       }
3783 
3784       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3785         unsigned OldSize = Indices.size();
3786         (void)OldSize;
3787         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3788              ++Idx) {
3789           assert(Indices.size() == OldSize && "Did not return to the old size");
3790           Indices.push_back(Idx);
3791           GEPIndices.push_back(IRB.getInt32(Idx));
3792           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3793           GEPIndices.pop_back();
3794           Indices.pop_back();
3795         }
3796         return;
3797       }
3798 
3799       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3800     }
3801   };
3802 
3803   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3804     AAMDNodes AATags;
3805 
3806     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3807                    AAMDNodes AATags, Align BaseAlign, const DataLayout &DL,
3808                    IRBuilderTy &IRB)
3809         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL,
3810                                      IRB),
3811           AATags(AATags) {}
3812 
3813     /// Emit a leaf load of a single value. This is called at the leaves of the
3814     /// recursive emission to actually load values.
3815     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3816       assert(Ty->isSingleValueType());
3817       // Load the single value and insert it using the indices.
3818       Value *GEP =
3819           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3820       LoadInst *Load =
3821           IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
3822 
3823       APInt Offset(
3824           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3825       if (AATags &&
3826           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3827         Load->setAAMetadata(
3828             AATags.adjustForAccess(Offset.getZExtValue(), Load->getType(), DL));
3829 
3830       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3831       LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3832     }
3833   };
3834 
3835   bool visitLoadInst(LoadInst &LI) {
3836     assert(LI.getPointerOperand() == *U);
3837     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3838       return false;
3839 
3840     // We have an aggregate being loaded, split it apart.
3841     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3842     LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(),
3843                             getAdjustedAlignment(&LI, 0), DL, IRB);
3844     Value *V = PoisonValue::get(LI.getType());
3845     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3846     Visited.erase(&LI);
3847     LI.replaceAllUsesWith(V);
3848     LI.eraseFromParent();
3849     return true;
3850   }
3851 
3852   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3853     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3854                     AAMDNodes AATags, StoreInst *AggStore, Align BaseAlign,
3855                     const DataLayout &DL, IRBuilderTy &IRB)
3856         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3857                                       DL, IRB),
3858           AATags(AATags), AggStore(AggStore) {}
3859     AAMDNodes AATags;
3860     StoreInst *AggStore;
3861     /// Emit a leaf store of a single value. This is called at the leaves of the
3862     /// recursive emission to actually produce stores.
3863     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3864       assert(Ty->isSingleValueType());
3865       // Extract the single value and store it using the indices.
3866       //
3867       // The gep and extractvalue values are factored out of the CreateStore
3868       // call to make the output independent of the argument evaluation order.
3869       Value *ExtractValue =
3870           IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3871       Value *InBoundsGEP =
3872           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3873       StoreInst *Store =
3874           IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
3875 
3876       APInt Offset(
3877           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3878       GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset);
3879       if (AATags) {
3880         Store->setAAMetadata(AATags.adjustForAccess(
3881             Offset.getZExtValue(), ExtractValue->getType(), DL));
3882       }
3883 
3884       // migrateDebugInfo requires the base Alloca. Walk to it from this gep.
3885       // If we cannot (because there's an intervening non-const or unbounded
3886       // gep) then we wouldn't expect to see dbg.assign intrinsics linked to
3887       // this instruction.
3888       Value *Base = AggStore->getPointerOperand()->stripInBoundsOffsets();
3889       if (auto *OldAI = dyn_cast<AllocaInst>(Base)) {
3890         uint64_t SizeInBits =
3891             DL.getTypeSizeInBits(Store->getValueOperand()->getType());
3892         migrateDebugInfo(OldAI, /*IsSplit*/ true, Offset.getZExtValue() * 8,
3893                          SizeInBits, AggStore, Store,
3894                          Store->getPointerOperand(), Store->getValueOperand(),
3895                          DL);
3896       } else {
3897         assert(at::getAssignmentMarkers(Store).empty() &&
3898                at::getDVRAssignmentMarkers(Store).empty() &&
3899                "AT: unexpected debug.assign linked to store through "
3900                "unbounded GEP");
3901       }
3902       LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3903     }
3904   };
3905 
3906   bool visitStoreInst(StoreInst &SI) {
3907     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3908       return false;
3909     Value *V = SI.getValueOperand();
3910     if (V->getType()->isSingleValueType())
3911       return false;
3912 
3913     // We have an aggregate being stored, split it apart.
3914     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3915     StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), &SI,
3916                              getAdjustedAlignment(&SI, 0), DL, IRB);
3917     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3918     Visited.erase(&SI);
3919     // The stores replacing SI each have markers describing fragments of the
3920     // assignment so delete the assignment markers linked to SI.
3921     at::deleteAssignmentMarkers(&SI);
3922     SI.eraseFromParent();
3923     return true;
3924   }
3925 
3926   bool visitBitCastInst(BitCastInst &BC) {
3927     enqueueUsers(BC);
3928     return false;
3929   }
3930 
3931   bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3932     enqueueUsers(ASC);
3933     return false;
3934   }
3935 
3936   // Unfold gep (select cond, ptr1, ptr2), idx
3937   //   => select cond, gep(ptr1, idx), gep(ptr2, idx)
3938   // and  gep ptr, (select cond, idx1, idx2)
3939   //   => select cond, gep(ptr, idx1), gep(ptr, idx2)
3940   bool unfoldGEPSelect(GetElementPtrInst &GEPI) {
3941     // Check whether the GEP has exactly one select operand and all indices
3942     // will become constant after the transform.
3943     SelectInst *Sel = dyn_cast<SelectInst>(GEPI.getPointerOperand());
3944     for (Value *Op : GEPI.indices()) {
3945       if (auto *SI = dyn_cast<SelectInst>(Op)) {
3946         if (Sel)
3947           return false;
3948 
3949         Sel = SI;
3950         if (!isa<ConstantInt>(Sel->getTrueValue()) ||
3951             !isa<ConstantInt>(Sel->getFalseValue()))
3952           return false;
3953         continue;
3954       }
3955 
3956       if (!isa<ConstantInt>(Op))
3957         return false;
3958     }
3959 
3960     if (!Sel)
3961       return false;
3962 
3963     LLVM_DEBUG(dbgs() << "  Rewriting gep(select) -> select(gep):\n";
3964                dbgs() << "    original: " << *Sel << "\n";
3965                dbgs() << "              " << GEPI << "\n";);
3966 
3967     auto GetNewOps = [&](Value *SelOp) {
3968       SmallVector<Value *> NewOps;
3969       for (Value *Op : GEPI.operands())
3970         if (Op == Sel)
3971           NewOps.push_back(SelOp);
3972         else
3973           NewOps.push_back(Op);
3974       return NewOps;
3975     };
3976 
3977     Value *True = Sel->getTrueValue();
3978     Value *False = Sel->getFalseValue();
3979     SmallVector<Value *> TrueOps = GetNewOps(True);
3980     SmallVector<Value *> FalseOps = GetNewOps(False);
3981 
3982     IRB.SetInsertPoint(&GEPI);
3983     GEPNoWrapFlags NW = GEPI.getNoWrapFlags();
3984 
3985     Type *Ty = GEPI.getSourceElementType();
3986     Value *NTrue = IRB.CreateGEP(Ty, TrueOps[0], ArrayRef(TrueOps).drop_front(),
3987                                  True->getName() + ".sroa.gep", NW);
3988 
3989     Value *NFalse =
3990         IRB.CreateGEP(Ty, FalseOps[0], ArrayRef(FalseOps).drop_front(),
3991                       False->getName() + ".sroa.gep", NW);
3992 
3993     Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse,
3994                                    Sel->getName() + ".sroa.sel");
3995     Visited.erase(&GEPI);
3996     GEPI.replaceAllUsesWith(NSel);
3997     GEPI.eraseFromParent();
3998     Instruction *NSelI = cast<Instruction>(NSel);
3999     Visited.insert(NSelI);
4000     enqueueUsers(*NSelI);
4001 
4002     LLVM_DEBUG(dbgs() << "          to: " << *NTrue << "\n";
4003                dbgs() << "              " << *NFalse << "\n";
4004                dbgs() << "              " << *NSel << "\n";);
4005 
4006     return true;
4007   }
4008 
4009   // Unfold gep (phi ptr1, ptr2), idx
4010   //   => phi ((gep ptr1, idx), (gep ptr2, idx))
4011   // and  gep ptr, (phi idx1, idx2)
4012   //   => phi ((gep ptr, idx1), (gep ptr, idx2))
4013   bool unfoldGEPPhi(GetElementPtrInst &GEPI) {
4014     // To prevent infinitely expanding recursive phis, bail if the GEP pointer
4015     // operand (looking through the phi if it is the phi we want to unfold) is
4016     // an instruction besides a static alloca.
4017     PHINode *Phi = dyn_cast<PHINode>(GEPI.getPointerOperand());
4018     auto IsInvalidPointerOperand = [](Value *V) {
4019       if (!isa<Instruction>(V))
4020         return false;
4021       if (auto *AI = dyn_cast<AllocaInst>(V))
4022         return !AI->isStaticAlloca();
4023       return true;
4024     };
4025     if (Phi) {
4026       if (any_of(Phi->operands(), IsInvalidPointerOperand))
4027         return false;
4028     } else {
4029       if (IsInvalidPointerOperand(GEPI.getPointerOperand()))
4030         return false;
4031     }
4032     // Check whether the GEP has exactly one phi operand (including the pointer
4033     // operand) and all indices will become constant after the transform.
4034     for (Value *Op : GEPI.indices()) {
4035       if (auto *SI = dyn_cast<PHINode>(Op)) {
4036         if (Phi)
4037           return false;
4038 
4039         Phi = SI;
4040         if (!all_of(Phi->incoming_values(),
4041                     [](Value *V) { return isa<ConstantInt>(V); }))
4042           return false;
4043         continue;
4044       }
4045 
4046       if (!isa<ConstantInt>(Op))
4047         return false;
4048     }
4049 
4050     if (!Phi)
4051       return false;
4052 
4053     LLVM_DEBUG(dbgs() << "  Rewriting gep(phi) -> phi(gep):\n";
4054                dbgs() << "    original: " << *Phi << "\n";
4055                dbgs() << "              " << GEPI << "\n";);
4056 
4057     auto GetNewOps = [&](Value *PhiOp) {
4058       SmallVector<Value *> NewOps;
4059       for (Value *Op : GEPI.operands())
4060         if (Op == Phi)
4061           NewOps.push_back(PhiOp);
4062         else
4063           NewOps.push_back(Op);
4064       return NewOps;
4065     };
4066 
4067     IRB.SetInsertPoint(Phi);
4068     PHINode *NewPhi = IRB.CreatePHI(GEPI.getType(), Phi->getNumIncomingValues(),
4069                                     Phi->getName() + ".sroa.phi");
4070 
4071     Type *SourceTy = GEPI.getSourceElementType();
4072     // We only handle arguments, constants, and static allocas here, so we can
4073     // insert GEPs at the end of the entry block.
4074     IRB.SetInsertPoint(GEPI.getFunction()->getEntryBlock().getTerminator());
4075     for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
4076       Value *Op = Phi->getIncomingValue(I);
4077       BasicBlock *BB = Phi->getIncomingBlock(I);
4078       Value *NewGEP;
4079       if (int NI = NewPhi->getBasicBlockIndex(BB); NI >= 0) {
4080         NewGEP = NewPhi->getIncomingValue(NI);
4081       } else {
4082         SmallVector<Value *> NewOps = GetNewOps(Op);
4083         NewGEP =
4084             IRB.CreateGEP(SourceTy, NewOps[0], ArrayRef(NewOps).drop_front(),
4085                           Phi->getName() + ".sroa.gep", GEPI.getNoWrapFlags());
4086       }
4087       NewPhi->addIncoming(NewGEP, BB);
4088     }
4089 
4090     Visited.erase(&GEPI);
4091     GEPI.replaceAllUsesWith(NewPhi);
4092     GEPI.eraseFromParent();
4093     Visited.insert(NewPhi);
4094     enqueueUsers(*NewPhi);
4095 
4096     LLVM_DEBUG(dbgs() << "          to: ";
4097                for (Value *In
4098                     : NewPhi->incoming_values()) dbgs()
4099                << "\n              " << *In;
4100                dbgs() << "\n              " << *NewPhi << '\n');
4101 
4102     return true;
4103   }
4104 
4105   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
4106     if (unfoldGEPSelect(GEPI))
4107       return true;
4108 
4109     if (unfoldGEPPhi(GEPI))
4110       return true;
4111 
4112     enqueueUsers(GEPI);
4113     return false;
4114   }
4115 
4116   bool visitPHINode(PHINode &PN) {
4117     enqueueUsers(PN);
4118     return false;
4119   }
4120 
4121   bool visitSelectInst(SelectInst &SI) {
4122     enqueueUsers(SI);
4123     return false;
4124   }
4125 };
4126 
4127 } // end anonymous namespace
4128 
4129 /// Strip aggregate type wrapping.
4130 ///
4131 /// This removes no-op aggregate types wrapping an underlying type. It will
4132 /// strip as many layers of types as it can without changing either the type
4133 /// size or the allocated size.
4134 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
4135   if (Ty->isSingleValueType())
4136     return Ty;
4137 
4138   uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedValue();
4139   uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue();
4140 
4141   Type *InnerTy;
4142   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
4143     InnerTy = ArrTy->getElementType();
4144   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
4145     const StructLayout *SL = DL.getStructLayout(STy);
4146     unsigned Index = SL->getElementContainingOffset(0);
4147     InnerTy = STy->getElementType(Index);
4148   } else {
4149     return Ty;
4150   }
4151 
4152   if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedValue() ||
4153       TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedValue())
4154     return Ty;
4155 
4156   return stripAggregateTypeWrapping(DL, InnerTy);
4157 }
4158 
4159 /// Try to find a partition of the aggregate type passed in for a given
4160 /// offset and size.
4161 ///
4162 /// This recurses through the aggregate type and tries to compute a subtype
4163 /// based on the offset and size. When the offset and size span a sub-section
4164 /// of an array, it will even compute a new array type for that sub-section,
4165 /// and the same for structs.
4166 ///
4167 /// Note that this routine is very strict and tries to find a partition of the
4168 /// type which produces the *exact* right offset and size. It is not forgiving
4169 /// when the size or offset cause either end of type-based partition to be off.
4170 /// Also, this is a best-effort routine. It is reasonable to give up and not
4171 /// return a type if necessary.
4172 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
4173                               uint64_t Size) {
4174   if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedValue() == Size)
4175     return stripAggregateTypeWrapping(DL, Ty);
4176   if (Offset > DL.getTypeAllocSize(Ty).getFixedValue() ||
4177       (DL.getTypeAllocSize(Ty).getFixedValue() - Offset) < Size)
4178     return nullptr;
4179 
4180   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
4181     Type *ElementTy;
4182     uint64_t TyNumElements;
4183     if (auto *AT = dyn_cast<ArrayType>(Ty)) {
4184       ElementTy = AT->getElementType();
4185       TyNumElements = AT->getNumElements();
4186     } else {
4187       // FIXME: This isn't right for vectors with non-byte-sized or
4188       // non-power-of-two sized elements.
4189       auto *VT = cast<FixedVectorType>(Ty);
4190       ElementTy = VT->getElementType();
4191       TyNumElements = VT->getNumElements();
4192     }
4193     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
4194     uint64_t NumSkippedElements = Offset / ElementSize;
4195     if (NumSkippedElements >= TyNumElements)
4196       return nullptr;
4197     Offset -= NumSkippedElements * ElementSize;
4198 
4199     // First check if we need to recurse.
4200     if (Offset > 0 || Size < ElementSize) {
4201       // Bail if the partition ends in a different array element.
4202       if ((Offset + Size) > ElementSize)
4203         return nullptr;
4204       // Recurse through the element type trying to peel off offset bytes.
4205       return getTypePartition(DL, ElementTy, Offset, Size);
4206     }
4207     assert(Offset == 0);
4208 
4209     if (Size == ElementSize)
4210       return stripAggregateTypeWrapping(DL, ElementTy);
4211     assert(Size > ElementSize);
4212     uint64_t NumElements = Size / ElementSize;
4213     if (NumElements * ElementSize != Size)
4214       return nullptr;
4215     return ArrayType::get(ElementTy, NumElements);
4216   }
4217 
4218   StructType *STy = dyn_cast<StructType>(Ty);
4219   if (!STy)
4220     return nullptr;
4221 
4222   const StructLayout *SL = DL.getStructLayout(STy);
4223 
4224   if (SL->getSizeInBits().isScalable())
4225     return nullptr;
4226 
4227   if (Offset >= SL->getSizeInBytes())
4228     return nullptr;
4229   uint64_t EndOffset = Offset + Size;
4230   if (EndOffset > SL->getSizeInBytes())
4231     return nullptr;
4232 
4233   unsigned Index = SL->getElementContainingOffset(Offset);
4234   Offset -= SL->getElementOffset(Index);
4235 
4236   Type *ElementTy = STy->getElementType(Index);
4237   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
4238   if (Offset >= ElementSize)
4239     return nullptr; // The offset points into alignment padding.
4240 
4241   // See if any partition must be contained by the element.
4242   if (Offset > 0 || Size < ElementSize) {
4243     if ((Offset + Size) > ElementSize)
4244       return nullptr;
4245     return getTypePartition(DL, ElementTy, Offset, Size);
4246   }
4247   assert(Offset == 0);
4248 
4249   if (Size == ElementSize)
4250     return stripAggregateTypeWrapping(DL, ElementTy);
4251 
4252   StructType::element_iterator EI = STy->element_begin() + Index,
4253                                EE = STy->element_end();
4254   if (EndOffset < SL->getSizeInBytes()) {
4255     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
4256     if (Index == EndIndex)
4257       return nullptr; // Within a single element and its padding.
4258 
4259     // Don't try to form "natural" types if the elements don't line up with the
4260     // expected size.
4261     // FIXME: We could potentially recurse down through the last element in the
4262     // sub-struct to find a natural end point.
4263     if (SL->getElementOffset(EndIndex) != EndOffset)
4264       return nullptr;
4265 
4266     assert(Index < EndIndex);
4267     EE = STy->element_begin() + EndIndex;
4268   }
4269 
4270   // Try to build up a sub-structure.
4271   StructType *SubTy =
4272       StructType::get(STy->getContext(), ArrayRef(EI, EE), STy->isPacked());
4273   const StructLayout *SubSL = DL.getStructLayout(SubTy);
4274   if (Size != SubSL->getSizeInBytes())
4275     return nullptr; // The sub-struct doesn't have quite the size needed.
4276 
4277   return SubTy;
4278 }
4279 
4280 /// Pre-split loads and stores to simplify rewriting.
4281 ///
4282 /// We want to break up the splittable load+store pairs as much as
4283 /// possible. This is important to do as a preprocessing step, as once we
4284 /// start rewriting the accesses to partitions of the alloca we lose the
4285 /// necessary information to correctly split apart paired loads and stores
4286 /// which both point into this alloca. The case to consider is something like
4287 /// the following:
4288 ///
4289 ///   %a = alloca [12 x i8]
4290 ///   %gep1 = getelementptr i8, ptr %a, i32 0
4291 ///   %gep2 = getelementptr i8, ptr %a, i32 4
4292 ///   %gep3 = getelementptr i8, ptr %a, i32 8
4293 ///   store float 0.0, ptr %gep1
4294 ///   store float 1.0, ptr %gep2
4295 ///   %v = load i64, ptr %gep1
4296 ///   store i64 %v, ptr %gep2
4297 ///   %f1 = load float, ptr %gep2
4298 ///   %f2 = load float, ptr %gep3
4299 ///
4300 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
4301 /// promote everything so we recover the 2 SSA values that should have been
4302 /// there all along.
4303 ///
4304 /// \returns true if any changes are made.
4305 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
4306   LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
4307 
4308   // Track the loads and stores which are candidates for pre-splitting here, in
4309   // the order they first appear during the partition scan. These give stable
4310   // iteration order and a basis for tracking which loads and stores we
4311   // actually split.
4312   SmallVector<LoadInst *, 4> Loads;
4313   SmallVector<StoreInst *, 4> Stores;
4314 
4315   // We need to accumulate the splits required of each load or store where we
4316   // can find them via a direct lookup. This is important to cross-check loads
4317   // and stores against each other. We also track the slice so that we can kill
4318   // all the slices that end up split.
4319   struct SplitOffsets {
4320     Slice *S;
4321     std::vector<uint64_t> Splits;
4322   };
4323   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
4324 
4325   // Track loads out of this alloca which cannot, for any reason, be pre-split.
4326   // This is important as we also cannot pre-split stores of those loads!
4327   // FIXME: This is all pretty gross. It means that we can be more aggressive
4328   // in pre-splitting when the load feeding the store happens to come from
4329   // a separate alloca. Put another way, the effectiveness of SROA would be
4330   // decreased by a frontend which just concatenated all of its local allocas
4331   // into one big flat alloca. But defeating such patterns is exactly the job
4332   // SROA is tasked with! Sadly, to not have this discrepancy we would have
4333   // change store pre-splitting to actually force pre-splitting of the load
4334   // that feeds it *and all stores*. That makes pre-splitting much harder, but
4335   // maybe it would make it more principled?
4336   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
4337 
4338   LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
4339   for (auto &P : AS.partitions()) {
4340     for (Slice &S : P) {
4341       Instruction *I = cast<Instruction>(S.getUse()->getUser());
4342       if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
4343         // If this is a load we have to track that it can't participate in any
4344         // pre-splitting. If this is a store of a load we have to track that
4345         // that load also can't participate in any pre-splitting.
4346         if (auto *LI = dyn_cast<LoadInst>(I))
4347           UnsplittableLoads.insert(LI);
4348         else if (auto *SI = dyn_cast<StoreInst>(I))
4349           if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
4350             UnsplittableLoads.insert(LI);
4351         continue;
4352       }
4353       assert(P.endOffset() > S.beginOffset() &&
4354              "Empty or backwards partition!");
4355 
4356       // Determine if this is a pre-splittable slice.
4357       if (auto *LI = dyn_cast<LoadInst>(I)) {
4358         assert(!LI->isVolatile() && "Cannot split volatile loads!");
4359 
4360         // The load must be used exclusively to store into other pointers for
4361         // us to be able to arbitrarily pre-split it. The stores must also be
4362         // simple to avoid changing semantics.
4363         auto IsLoadSimplyStored = [](LoadInst *LI) {
4364           for (User *LU : LI->users()) {
4365             auto *SI = dyn_cast<StoreInst>(LU);
4366             if (!SI || !SI->isSimple())
4367               return false;
4368           }
4369           return true;
4370         };
4371         if (!IsLoadSimplyStored(LI)) {
4372           UnsplittableLoads.insert(LI);
4373           continue;
4374         }
4375 
4376         Loads.push_back(LI);
4377       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
4378         if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
4379           // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
4380           continue;
4381         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
4382         if (!StoredLoad || !StoredLoad->isSimple())
4383           continue;
4384         assert(!SI->isVolatile() && "Cannot split volatile stores!");
4385 
4386         Stores.push_back(SI);
4387       } else {
4388         // Other uses cannot be pre-split.
4389         continue;
4390       }
4391 
4392       // Record the initial split.
4393       LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
4394       auto &Offsets = SplitOffsetsMap[I];
4395       assert(Offsets.Splits.empty() &&
4396              "Should not have splits the first time we see an instruction!");
4397       Offsets.S = &S;
4398       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
4399     }
4400 
4401     // Now scan the already split slices, and add a split for any of them which
4402     // we're going to pre-split.
4403     for (Slice *S : P.splitSliceTails()) {
4404       auto SplitOffsetsMapI =
4405           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
4406       if (SplitOffsetsMapI == SplitOffsetsMap.end())
4407         continue;
4408       auto &Offsets = SplitOffsetsMapI->second;
4409 
4410       assert(Offsets.S == S && "Found a mismatched slice!");
4411       assert(!Offsets.Splits.empty() &&
4412              "Cannot have an empty set of splits on the second partition!");
4413       assert(Offsets.Splits.back() ==
4414                  P.beginOffset() - Offsets.S->beginOffset() &&
4415              "Previous split does not end where this one begins!");
4416 
4417       // Record each split. The last partition's end isn't needed as the size
4418       // of the slice dictates that.
4419       if (S->endOffset() > P.endOffset())
4420         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
4421     }
4422   }
4423 
4424   // We may have split loads where some of their stores are split stores. For
4425   // such loads and stores, we can only pre-split them if their splits exactly
4426   // match relative to their starting offset. We have to verify this prior to
4427   // any rewriting.
4428   llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
4429     // Lookup the load we are storing in our map of split
4430     // offsets.
4431     auto *LI = cast<LoadInst>(SI->getValueOperand());
4432     // If it was completely unsplittable, then we're done,
4433     // and this store can't be pre-split.
4434     if (UnsplittableLoads.count(LI))
4435       return true;
4436 
4437     auto LoadOffsetsI = SplitOffsetsMap.find(LI);
4438     if (LoadOffsetsI == SplitOffsetsMap.end())
4439       return false; // Unrelated loads are definitely safe.
4440     auto &LoadOffsets = LoadOffsetsI->second;
4441 
4442     // Now lookup the store's offsets.
4443     auto &StoreOffsets = SplitOffsetsMap[SI];
4444 
4445     // If the relative offsets of each split in the load and
4446     // store match exactly, then we can split them and we
4447     // don't need to remove them here.
4448     if (LoadOffsets.Splits == StoreOffsets.Splits)
4449       return false;
4450 
4451     LLVM_DEBUG(dbgs() << "    Mismatched splits for load and store:\n"
4452                       << "      " << *LI << "\n"
4453                       << "      " << *SI << "\n");
4454 
4455     // We've found a store and load that we need to split
4456     // with mismatched relative splits. Just give up on them
4457     // and remove both instructions from our list of
4458     // candidates.
4459     UnsplittableLoads.insert(LI);
4460     return true;
4461   });
4462   // Now we have to go *back* through all the stores, because a later store may
4463   // have caused an earlier store's load to become unsplittable and if it is
4464   // unsplittable for the later store, then we can't rely on it being split in
4465   // the earlier store either.
4466   llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) {
4467     auto *LI = cast<LoadInst>(SI->getValueOperand());
4468     return UnsplittableLoads.count(LI);
4469   });
4470   // Once we've established all the loads that can't be split for some reason,
4471   // filter any that made it into our list out.
4472   llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) {
4473     return UnsplittableLoads.count(LI);
4474   });
4475 
4476   // If no loads or stores are left, there is no pre-splitting to be done for
4477   // this alloca.
4478   if (Loads.empty() && Stores.empty())
4479     return false;
4480 
4481   // From here on, we can't fail and will be building new accesses, so rig up
4482   // an IR builder.
4483   IRBuilderTy IRB(&AI);
4484 
4485   // Collect the new slices which we will merge into the alloca slices.
4486   SmallVector<Slice, 4> NewSlices;
4487 
4488   // Track any allocas we end up splitting loads and stores for so we iterate
4489   // on them.
4490   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
4491 
4492   // At this point, we have collected all of the loads and stores we can
4493   // pre-split, and the specific splits needed for them. We actually do the
4494   // splitting in a specific order in order to handle when one of the loads in
4495   // the value operand to one of the stores.
4496   //
4497   // First, we rewrite all of the split loads, and just accumulate each split
4498   // load in a parallel structure. We also build the slices for them and append
4499   // them to the alloca slices.
4500   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
4501   std::vector<LoadInst *> SplitLoads;
4502   const DataLayout &DL = AI.getDataLayout();
4503   for (LoadInst *LI : Loads) {
4504     SplitLoads.clear();
4505 
4506     auto &Offsets = SplitOffsetsMap[LI];
4507     unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset();
4508     assert(LI->getType()->getIntegerBitWidth() % 8 == 0 &&
4509            "Load must have type size equal to store size");
4510     assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize &&
4511            "Load must be >= slice size");
4512 
4513     uint64_t BaseOffset = Offsets.S->beginOffset();
4514     assert(BaseOffset + SliceSize > BaseOffset &&
4515            "Cannot represent alloca access size using 64-bit integers!");
4516 
4517     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
4518     IRB.SetInsertPoint(LI);
4519 
4520     LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
4521 
4522     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4523     int Idx = 0, Size = Offsets.Splits.size();
4524     for (;;) {
4525       auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8);
4526       auto AS = LI->getPointerAddressSpace();
4527       auto *PartPtrTy = LI->getPointerOperandType();
4528       LoadInst *PLoad = IRB.CreateAlignedLoad(
4529           PartTy,
4530           getAdjustedPtr(IRB, DL, BasePtr,
4531                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4532                          PartPtrTy, BasePtr->getName() + "."),
4533           getAdjustedAlignment(LI, PartOffset),
4534           /*IsVolatile*/ false, LI->getName());
4535       PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4536                                 LLVMContext::MD_access_group});
4537 
4538       // Append this load onto the list of split loads so we can find it later
4539       // to rewrite the stores.
4540       SplitLoads.push_back(PLoad);
4541 
4542       // Now build a new slice for the alloca.
4543       NewSlices.push_back(
4544           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4545                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
4546                 /*IsSplittable*/ false));
4547       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4548                         << ", " << NewSlices.back().endOffset()
4549                         << "): " << *PLoad << "\n");
4550 
4551       // See if we've handled all the splits.
4552       if (Idx >= Size)
4553         break;
4554 
4555       // Setup the next partition.
4556       PartOffset = Offsets.Splits[Idx];
4557       ++Idx;
4558       PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset;
4559     }
4560 
4561     // Now that we have the split loads, do the slow walk over all uses of the
4562     // load and rewrite them as split stores, or save the split loads to use
4563     // below if the store is going to be split there anyways.
4564     bool DeferredStores = false;
4565     for (User *LU : LI->users()) {
4566       StoreInst *SI = cast<StoreInst>(LU);
4567       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
4568         DeferredStores = true;
4569         LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
4570                           << "\n");
4571         continue;
4572       }
4573 
4574       Value *StoreBasePtr = SI->getPointerOperand();
4575       IRB.SetInsertPoint(SI);
4576       AAMDNodes AATags = SI->getAAMetadata();
4577 
4578       LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
4579 
4580       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
4581         LoadInst *PLoad = SplitLoads[Idx];
4582         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
4583         auto *PartPtrTy = SI->getPointerOperandType();
4584 
4585         auto AS = SI->getPointerAddressSpace();
4586         StoreInst *PStore = IRB.CreateAlignedStore(
4587             PLoad,
4588             getAdjustedPtr(IRB, DL, StoreBasePtr,
4589                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4590                            PartPtrTy, StoreBasePtr->getName() + "."),
4591             getAdjustedAlignment(SI, PartOffset),
4592             /*IsVolatile*/ false);
4593         PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4594                                    LLVMContext::MD_access_group,
4595                                    LLVMContext::MD_DIAssignID});
4596 
4597         if (AATags)
4598           PStore->setAAMetadata(
4599               AATags.adjustForAccess(PartOffset, PLoad->getType(), DL));
4600         LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
4601       }
4602 
4603       // We want to immediately iterate on any allocas impacted by splitting
4604       // this store, and we have to track any promotable alloca (indicated by
4605       // a direct store) as needing to be resplit because it is no longer
4606       // promotable.
4607       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
4608         ResplitPromotableAllocas.insert(OtherAI);
4609         Worklist.insert(OtherAI);
4610       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4611                      StoreBasePtr->stripInBoundsOffsets())) {
4612         Worklist.insert(OtherAI);
4613       }
4614 
4615       // Mark the original store as dead.
4616       DeadInsts.push_back(SI);
4617     }
4618 
4619     // Save the split loads if there are deferred stores among the users.
4620     if (DeferredStores)
4621       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
4622 
4623     // Mark the original load as dead and kill the original slice.
4624     DeadInsts.push_back(LI);
4625     Offsets.S->kill();
4626   }
4627 
4628   // Second, we rewrite all of the split stores. At this point, we know that
4629   // all loads from this alloca have been split already. For stores of such
4630   // loads, we can simply look up the pre-existing split loads. For stores of
4631   // other loads, we split those loads first and then write split stores of
4632   // them.
4633   for (StoreInst *SI : Stores) {
4634     auto *LI = cast<LoadInst>(SI->getValueOperand());
4635     IntegerType *Ty = cast<IntegerType>(LI->getType());
4636     assert(Ty->getBitWidth() % 8 == 0);
4637     uint64_t StoreSize = Ty->getBitWidth() / 8;
4638     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
4639 
4640     auto &Offsets = SplitOffsetsMap[SI];
4641     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
4642            "Slice size should always match load size exactly!");
4643     uint64_t BaseOffset = Offsets.S->beginOffset();
4644     assert(BaseOffset + StoreSize > BaseOffset &&
4645            "Cannot represent alloca access size using 64-bit integers!");
4646 
4647     Value *LoadBasePtr = LI->getPointerOperand();
4648     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
4649 
4650     LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
4651 
4652     // Check whether we have an already split load.
4653     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
4654     std::vector<LoadInst *> *SplitLoads = nullptr;
4655     if (SplitLoadsMapI != SplitLoadsMap.end()) {
4656       SplitLoads = &SplitLoadsMapI->second;
4657       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
4658              "Too few split loads for the number of splits in the store!");
4659     } else {
4660       LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
4661     }
4662 
4663     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4664     int Idx = 0, Size = Offsets.Splits.size();
4665     for (;;) {
4666       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4667       auto *LoadPartPtrTy = LI->getPointerOperandType();
4668       auto *StorePartPtrTy = SI->getPointerOperandType();
4669 
4670       // Either lookup a split load or create one.
4671       LoadInst *PLoad;
4672       if (SplitLoads) {
4673         PLoad = (*SplitLoads)[Idx];
4674       } else {
4675         IRB.SetInsertPoint(LI);
4676         auto AS = LI->getPointerAddressSpace();
4677         PLoad = IRB.CreateAlignedLoad(
4678             PartTy,
4679             getAdjustedPtr(IRB, DL, LoadBasePtr,
4680                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4681                            LoadPartPtrTy, LoadBasePtr->getName() + "."),
4682             getAdjustedAlignment(LI, PartOffset),
4683             /*IsVolatile*/ false, LI->getName());
4684         PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4685                                   LLVMContext::MD_access_group});
4686       }
4687 
4688       // And store this partition.
4689       IRB.SetInsertPoint(SI);
4690       auto AS = SI->getPointerAddressSpace();
4691       StoreInst *PStore = IRB.CreateAlignedStore(
4692           PLoad,
4693           getAdjustedPtr(IRB, DL, StoreBasePtr,
4694                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4695                          StorePartPtrTy, StoreBasePtr->getName() + "."),
4696           getAdjustedAlignment(SI, PartOffset),
4697           /*IsVolatile*/ false);
4698       PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4699                                  LLVMContext::MD_access_group});
4700 
4701       // Now build a new slice for the alloca.
4702       NewSlices.push_back(
4703           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4704                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4705                 /*IsSplittable*/ false));
4706       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4707                         << ", " << NewSlices.back().endOffset()
4708                         << "): " << *PStore << "\n");
4709       if (!SplitLoads) {
4710         LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4711       }
4712 
4713       // See if we've finished all the splits.
4714       if (Idx >= Size)
4715         break;
4716 
4717       // Setup the next partition.
4718       PartOffset = Offsets.Splits[Idx];
4719       ++Idx;
4720       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4721     }
4722 
4723     // We want to immediately iterate on any allocas impacted by splitting
4724     // this load, which is only relevant if it isn't a load of this alloca and
4725     // thus we didn't already split the loads above. We also have to keep track
4726     // of any promotable allocas we split loads on as they can no longer be
4727     // promoted.
4728     if (!SplitLoads) {
4729       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4730         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4731         ResplitPromotableAllocas.insert(OtherAI);
4732         Worklist.insert(OtherAI);
4733       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4734                      LoadBasePtr->stripInBoundsOffsets())) {
4735         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4736         Worklist.insert(OtherAI);
4737       }
4738     }
4739 
4740     // Mark the original store as dead now that we've split it up and kill its
4741     // slice. Note that we leave the original load in place unless this store
4742     // was its only use. It may in turn be split up if it is an alloca load
4743     // for some other alloca, but it may be a normal load. This may introduce
4744     // redundant loads, but where those can be merged the rest of the optimizer
4745     // should handle the merging, and this uncovers SSA splits which is more
4746     // important. In practice, the original loads will almost always be fully
4747     // split and removed eventually, and the splits will be merged by any
4748     // trivial CSE, including instcombine.
4749     if (LI->hasOneUse()) {
4750       assert(*LI->user_begin() == SI && "Single use isn't this store!");
4751       DeadInsts.push_back(LI);
4752     }
4753     DeadInsts.push_back(SI);
4754     Offsets.S->kill();
4755   }
4756 
4757   // Remove the killed slices that have ben pre-split.
4758   llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); });
4759 
4760   // Insert our new slices. This will sort and merge them into the sorted
4761   // sequence.
4762   AS.insert(NewSlices);
4763 
4764   LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4765 #ifndef NDEBUG
4766   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4767     LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4768 #endif
4769 
4770   // Finally, don't try to promote any allocas that new require re-splitting.
4771   // They have already been added to the worklist above.
4772   llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) {
4773     return ResplitPromotableAllocas.count(AI);
4774   });
4775 
4776   return true;
4777 }
4778 
4779 /// Rewrite an alloca partition's users.
4780 ///
4781 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4782 /// to rewrite uses of an alloca partition to be conducive for SSA value
4783 /// promotion. If the partition needs a new, more refined alloca, this will
4784 /// build that new alloca, preserving as much type information as possible, and
4785 /// rewrite the uses of the old alloca to point at the new one and have the
4786 /// appropriate new offsets. It also evaluates how successful the rewrite was
4787 /// at enabling promotion and if it was successful queues the alloca to be
4788 /// promoted.
4789 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4790                                    Partition &P) {
4791   // Try to compute a friendly type for this partition of the alloca. This
4792   // won't always succeed, in which case we fall back to a legal integer type
4793   // or an i8 array of an appropriate size.
4794   Type *SliceTy = nullptr;
4795   VectorType *SliceVecTy = nullptr;
4796   const DataLayout &DL = AI.getDataLayout();
4797   std::pair<Type *, IntegerType *> CommonUseTy =
4798       findCommonType(P.begin(), P.end(), P.endOffset());
4799   // Do all uses operate on the same type?
4800   if (CommonUseTy.first)
4801     if (DL.getTypeAllocSize(CommonUseTy.first).getFixedValue() >= P.size()) {
4802       SliceTy = CommonUseTy.first;
4803       SliceVecTy = dyn_cast<VectorType>(SliceTy);
4804     }
4805   // If not, can we find an appropriate subtype in the original allocated type?
4806   if (!SliceTy)
4807     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4808                                                  P.beginOffset(), P.size()))
4809       SliceTy = TypePartitionTy;
4810 
4811   // If still not, can we use the largest bitwidth integer type used?
4812   if (!SliceTy && CommonUseTy.second)
4813     if (DL.getTypeAllocSize(CommonUseTy.second).getFixedValue() >= P.size()) {
4814       SliceTy = CommonUseTy.second;
4815       SliceVecTy = dyn_cast<VectorType>(SliceTy);
4816     }
4817   if ((!SliceTy || (SliceTy->isArrayTy() &&
4818                     SliceTy->getArrayElementType()->isIntegerTy())) &&
4819       DL.isLegalInteger(P.size() * 8)) {
4820     SliceTy = Type::getIntNTy(*C, P.size() * 8);
4821   }
4822 
4823   // If the common use types are not viable for promotion then attempt to find
4824   // another type that is viable.
4825   if (SliceVecTy && !checkVectorTypeForPromotion(P, SliceVecTy, DL))
4826     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4827                                                  P.beginOffset(), P.size())) {
4828       VectorType *TypePartitionVecTy = dyn_cast<VectorType>(TypePartitionTy);
4829       if (TypePartitionVecTy &&
4830           checkVectorTypeForPromotion(P, TypePartitionVecTy, DL))
4831         SliceTy = TypePartitionTy;
4832     }
4833 
4834   if (!SliceTy)
4835     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4836   assert(DL.getTypeAllocSize(SliceTy).getFixedValue() >= P.size());
4837 
4838   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4839 
4840   VectorType *VecTy =
4841       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4842   if (VecTy)
4843     SliceTy = VecTy;
4844 
4845   // Check for the case where we're going to rewrite to a new alloca of the
4846   // exact same type as the original, and with the same access offsets. In that
4847   // case, re-use the existing alloca, but still run through the rewriter to
4848   // perform phi and select speculation.
4849   // P.beginOffset() can be non-zero even with the same type in a case with
4850   // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4851   AllocaInst *NewAI;
4852   if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4853     NewAI = &AI;
4854     // FIXME: We should be able to bail at this point with "nothing changed".
4855     // FIXME: We might want to defer PHI speculation until after here.
4856     // FIXME: return nullptr;
4857   } else {
4858     // Make sure the alignment is compatible with P.beginOffset().
4859     const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
4860     // If we will get at least this much alignment from the type alone, leave
4861     // the alloca's alignment unconstrained.
4862     const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy);
4863     NewAI = new AllocaInst(
4864         SliceTy, AI.getAddressSpace(), nullptr,
4865         IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
4866         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()),
4867         AI.getIterator());
4868     // Copy the old AI debug location over to the new one.
4869     NewAI->setDebugLoc(AI.getDebugLoc());
4870     ++NumNewAllocas;
4871   }
4872 
4873   LLVM_DEBUG(dbgs() << "Rewriting alloca partition " << "[" << P.beginOffset()
4874                     << "," << P.endOffset() << ") to: " << *NewAI << "\n");
4875 
4876   // Track the high watermark on the worklist as it is only relevant for
4877   // promoted allocas. We will reset it to this point if the alloca is not in
4878   // fact scheduled for promotion.
4879   unsigned PPWOldSize = PostPromotionWorklist.size();
4880   unsigned NumUses = 0;
4881   SmallSetVector<PHINode *, 8> PHIUsers;
4882   SmallSetVector<SelectInst *, 8> SelectUsers;
4883 
4884   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4885                                P.endOffset(), IsIntegerPromotable, VecTy,
4886                                PHIUsers, SelectUsers);
4887   bool Promotable = true;
4888   for (Slice *S : P.splitSliceTails()) {
4889     Promotable &= Rewriter.visit(S);
4890     ++NumUses;
4891   }
4892   for (Slice &S : P) {
4893     Promotable &= Rewriter.visit(&S);
4894     ++NumUses;
4895   }
4896 
4897   NumAllocaPartitionUses += NumUses;
4898   MaxUsesPerAllocaPartition.updateMax(NumUses);
4899 
4900   // Now that we've processed all the slices in the new partition, check if any
4901   // PHIs or Selects would block promotion.
4902   for (PHINode *PHI : PHIUsers)
4903     if (!isSafePHIToSpeculate(*PHI)) {
4904       Promotable = false;
4905       PHIUsers.clear();
4906       SelectUsers.clear();
4907       break;
4908     }
4909 
4910   SmallVector<std::pair<SelectInst *, RewriteableMemOps>, 2>
4911       NewSelectsToRewrite;
4912   NewSelectsToRewrite.reserve(SelectUsers.size());
4913   for (SelectInst *Sel : SelectUsers) {
4914     std::optional<RewriteableMemOps> Ops =
4915         isSafeSelectToSpeculate(*Sel, PreserveCFG);
4916     if (!Ops) {
4917       Promotable = false;
4918       PHIUsers.clear();
4919       SelectUsers.clear();
4920       NewSelectsToRewrite.clear();
4921       break;
4922     }
4923     NewSelectsToRewrite.emplace_back(std::make_pair(Sel, *Ops));
4924   }
4925 
4926   if (Promotable) {
4927     for (Use *U : AS.getDeadUsesIfPromotable()) {
4928       auto *OldInst = dyn_cast<Instruction>(U->get());
4929       Value::dropDroppableUse(*U);
4930       if (OldInst)
4931         if (isInstructionTriviallyDead(OldInst))
4932           DeadInsts.push_back(OldInst);
4933     }
4934     if (PHIUsers.empty() && SelectUsers.empty()) {
4935       // Promote the alloca.
4936       PromotableAllocas.push_back(NewAI);
4937     } else {
4938       // If we have either PHIs or Selects to speculate, add them to those
4939       // worklists and re-queue the new alloca so that we promote in on the
4940       // next iteration.
4941       for (PHINode *PHIUser : PHIUsers)
4942         SpeculatablePHIs.insert(PHIUser);
4943       SelectsToRewrite.reserve(SelectsToRewrite.size() +
4944                                NewSelectsToRewrite.size());
4945       for (auto &&KV : llvm::make_range(
4946                std::make_move_iterator(NewSelectsToRewrite.begin()),
4947                std::make_move_iterator(NewSelectsToRewrite.end())))
4948         SelectsToRewrite.insert(std::move(KV));
4949       Worklist.insert(NewAI);
4950     }
4951   } else {
4952     // Drop any post-promotion work items if promotion didn't happen.
4953     while (PostPromotionWorklist.size() > PPWOldSize)
4954       PostPromotionWorklist.pop_back();
4955 
4956     // We couldn't promote and we didn't create a new partition, nothing
4957     // happened.
4958     if (NewAI == &AI)
4959       return nullptr;
4960 
4961     // If we can't promote the alloca, iterate on it to check for new
4962     // refinements exposed by splitting the current alloca. Don't iterate on an
4963     // alloca which didn't actually change and didn't get promoted.
4964     Worklist.insert(NewAI);
4965   }
4966 
4967   return NewAI;
4968 }
4969 
4970 // There isn't a shared interface to get the "address" parts out of a
4971 // dbg.declare and dbg.assign, so provide some wrappers now for
4972 // both debug intrinsics and records.
4973 const Value *getAddress(const DbgVariableIntrinsic *DVI) {
4974   if (const auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI))
4975     return DAI->getAddress();
4976   return cast<DbgDeclareInst>(DVI)->getAddress();
4977 }
4978 
4979 const Value *getAddress(const DbgVariableRecord *DVR) {
4980   assert(DVR->getType() == DbgVariableRecord::LocationType::Declare ||
4981          DVR->getType() == DbgVariableRecord::LocationType::Assign);
4982   return DVR->getAddress();
4983 }
4984 
4985 bool isKillAddress(const DbgVariableIntrinsic *DVI) {
4986   if (const auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI))
4987     return DAI->isKillAddress();
4988   return cast<DbgDeclareInst>(DVI)->isKillLocation();
4989 }
4990 
4991 bool isKillAddress(const DbgVariableRecord *DVR) {
4992   assert(DVR->getType() == DbgVariableRecord::LocationType::Declare ||
4993          DVR->getType() == DbgVariableRecord::LocationType::Assign);
4994   if (DVR->getType() == DbgVariableRecord::LocationType::Assign)
4995     return DVR->isKillAddress();
4996   return DVR->isKillLocation();
4997 }
4998 
4999 const DIExpression *getAddressExpression(const DbgVariableIntrinsic *DVI) {
5000   if (const auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI))
5001     return DAI->getAddressExpression();
5002   return cast<DbgDeclareInst>(DVI)->getExpression();
5003 }
5004 
5005 const DIExpression *getAddressExpression(const DbgVariableRecord *DVR) {
5006   assert(DVR->getType() == DbgVariableRecord::LocationType::Declare ||
5007          DVR->getType() == DbgVariableRecord::LocationType::Assign);
5008   if (DVR->getType() == DbgVariableRecord::LocationType::Assign)
5009     return DVR->getAddressExpression();
5010   return DVR->getExpression();
5011 }
5012 
5013 /// Create or replace an existing fragment in a DIExpression with \p Frag.
5014 /// If the expression already contains a DW_OP_LLVM_extract_bits_[sz]ext
5015 /// operation, add \p BitExtractOffset to the offset part.
5016 ///
5017 /// Returns the new expression, or nullptr if this fails (see details below).
5018 ///
5019 /// This function is similar to DIExpression::createFragmentExpression except
5020 /// for 3 important distinctions:
5021 ///   1. The new fragment isn't relative to an existing fragment.
5022 ///   2. It assumes the computed location is a memory location. This means we
5023 ///      don't need to perform checks that creating the fragment preserves the
5024 ///      expression semantics.
5025 ///   3. Existing extract_bits are modified independently of fragment changes
5026 ///      using \p BitExtractOffset. A change to the fragment offset or size
5027 ///      may affect a bit extract. But a bit extract offset can change
5028 ///      independently of the fragment dimensions.
5029 ///
5030 /// Returns the new expression, or nullptr if one couldn't be created.
5031 /// Ideally this is only used to signal that a bit-extract has become
5032 /// zero-sized (and thus the new debug record has no size and can be
5033 /// dropped), however, it fails for other reasons too - see the FIXME below.
5034 ///
5035 /// FIXME: To keep the change that introduces this function NFC it bails
5036 /// in some situations unecessarily, e.g. when fragment and bit extract
5037 /// sizes differ.
5038 static DIExpression *createOrReplaceFragment(const DIExpression *Expr,
5039                                              DIExpression::FragmentInfo Frag,
5040                                              int64_t BitExtractOffset) {
5041   SmallVector<uint64_t, 8> Ops;
5042   bool HasFragment = false;
5043   bool HasBitExtract = false;
5044 
5045   for (auto &Op : Expr->expr_ops()) {
5046     if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
5047       HasFragment = true;
5048       continue;
5049     }
5050     if (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_zext ||
5051         Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext) {
5052       HasBitExtract = true;
5053       int64_t ExtractOffsetInBits = Op.getArg(0);
5054       int64_t ExtractSizeInBits = Op.getArg(1);
5055 
5056       // DIExpression::createFragmentExpression doesn't know how to handle
5057       // a fragment that is smaller than the extract. Copy the behaviour
5058       // (bail) to avoid non-NFC changes.
5059       // FIXME: Don't do this.
5060       if (Frag.SizeInBits < uint64_t(ExtractSizeInBits))
5061         return nullptr;
5062 
5063       assert(BitExtractOffset <= 0);
5064       int64_t AdjustedOffset = ExtractOffsetInBits + BitExtractOffset;
5065 
5066       // DIExpression::createFragmentExpression doesn't know what to do
5067       // if the new extract starts "outside" the existing one. Copy the
5068       // behaviour (bail) to avoid non-NFC changes.
5069       // FIXME: Don't do this.
5070       if (AdjustedOffset < 0)
5071         return nullptr;
5072 
5073       Ops.push_back(Op.getOp());
5074       Ops.push_back(std::max<int64_t>(0, AdjustedOffset));
5075       Ops.push_back(ExtractSizeInBits);
5076       continue;
5077     }
5078     Op.appendToVector(Ops);
5079   }
5080 
5081   // Unsupported by createFragmentExpression, so don't support it here yet to
5082   // preserve NFC-ness.
5083   if (HasFragment && HasBitExtract)
5084     return nullptr;
5085 
5086   if (!HasBitExtract) {
5087     Ops.push_back(dwarf::DW_OP_LLVM_fragment);
5088     Ops.push_back(Frag.OffsetInBits);
5089     Ops.push_back(Frag.SizeInBits);
5090   }
5091   return DIExpression::get(Expr->getContext(), Ops);
5092 }
5093 
5094 /// Insert a new dbg.declare.
5095 /// \p Orig Original to copy debug loc and variable from.
5096 /// \p NewAddr Location's new base address.
5097 /// \p NewAddrExpr New expression to apply to address.
5098 /// \p BeforeInst Insert position.
5099 /// \p NewFragment New fragment (absolute, non-relative).
5100 /// \p BitExtractAdjustment Offset to apply to any extract_bits op.
5101 static void
5102 insertNewDbgInst(DIBuilder &DIB, DbgDeclareInst *Orig, AllocaInst *NewAddr,
5103                  DIExpression *NewAddrExpr, Instruction *BeforeInst,
5104                  std::optional<DIExpression::FragmentInfo> NewFragment,
5105                  int64_t BitExtractAdjustment) {
5106   if (NewFragment)
5107     NewAddrExpr = createOrReplaceFragment(NewAddrExpr, *NewFragment,
5108                                           BitExtractAdjustment);
5109   if (!NewAddrExpr)
5110     return;
5111 
5112   DIB.insertDeclare(NewAddr, Orig->getVariable(), NewAddrExpr,
5113                     Orig->getDebugLoc(), BeforeInst);
5114 }
5115 
5116 /// Insert a new dbg.assign.
5117 /// \p Orig Original to copy debug loc, variable, value and value expression
5118 ///    from.
5119 /// \p NewAddr Location's new base address.
5120 /// \p NewAddrExpr New expression to apply to address.
5121 /// \p BeforeInst Insert position.
5122 /// \p NewFragment New fragment (absolute, non-relative).
5123 /// \p BitExtractAdjustment Offset to apply to any extract_bits op.
5124 static void
5125 insertNewDbgInst(DIBuilder &DIB, DbgAssignIntrinsic *Orig, AllocaInst *NewAddr,
5126                  DIExpression *NewAddrExpr, Instruction *BeforeInst,
5127                  std::optional<DIExpression::FragmentInfo> NewFragment,
5128                  int64_t BitExtractAdjustment) {
5129   // DIBuilder::insertDbgAssign will insert the #dbg_assign after NewAddr.
5130   (void)BeforeInst;
5131 
5132   // A dbg.assign puts fragment info in the value expression only. The address
5133   // expression has already been built: NewAddrExpr.
5134   DIExpression *NewFragmentExpr = Orig->getExpression();
5135   if (NewFragment)
5136     NewFragmentExpr = createOrReplaceFragment(NewFragmentExpr, *NewFragment,
5137                                               BitExtractAdjustment);
5138   if (!NewFragmentExpr)
5139     return;
5140 
5141   // Apply a DIAssignID to the store if it doesn't already have it.
5142   if (!NewAddr->hasMetadata(LLVMContext::MD_DIAssignID)) {
5143     NewAddr->setMetadata(LLVMContext::MD_DIAssignID,
5144                          DIAssignID::getDistinct(NewAddr->getContext()));
5145   }
5146 
5147   Instruction *NewAssign =
5148       DIB.insertDbgAssign(NewAddr, Orig->getValue(), Orig->getVariable(),
5149                           NewFragmentExpr, NewAddr, NewAddrExpr,
5150                           Orig->getDebugLoc())
5151           .get<Instruction *>();
5152   LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign << "\n");
5153   (void)NewAssign;
5154 }
5155 
5156 /// Insert a new DbgRecord.
5157 /// \p Orig Original to copy record type, debug loc and variable from, and
5158 ///    additionally value and value expression for dbg_assign records.
5159 /// \p NewAddr Location's new base address.
5160 /// \p NewAddrExpr New expression to apply to address.
5161 /// \p BeforeInst Insert position.
5162 /// \p NewFragment New fragment (absolute, non-relative).
5163 /// \p BitExtractAdjustment Offset to apply to any extract_bits op.
5164 static void
5165 insertNewDbgInst(DIBuilder &DIB, DbgVariableRecord *Orig, AllocaInst *NewAddr,
5166                  DIExpression *NewAddrExpr, Instruction *BeforeInst,
5167                  std::optional<DIExpression::FragmentInfo> NewFragment,
5168                  int64_t BitExtractAdjustment) {
5169   (void)DIB;
5170 
5171   // A dbg_assign puts fragment info in the value expression only. The address
5172   // expression has already been built: NewAddrExpr. A dbg_declare puts the
5173   // new fragment info into NewAddrExpr (as it only has one expression).
5174   DIExpression *NewFragmentExpr =
5175       Orig->isDbgAssign() ? Orig->getExpression() : NewAddrExpr;
5176   if (NewFragment)
5177     NewFragmentExpr = createOrReplaceFragment(NewFragmentExpr, *NewFragment,
5178                                               BitExtractAdjustment);
5179   if (!NewFragmentExpr)
5180     return;
5181 
5182   if (Orig->isDbgDeclare()) {
5183     DbgVariableRecord *DVR = DbgVariableRecord::createDVRDeclare(
5184         NewAddr, Orig->getVariable(), NewFragmentExpr, Orig->getDebugLoc());
5185     BeforeInst->getParent()->insertDbgRecordBefore(DVR,
5186                                                    BeforeInst->getIterator());
5187     return;
5188   }
5189 
5190   // Apply a DIAssignID to the store if it doesn't already have it.
5191   if (!NewAddr->hasMetadata(LLVMContext::MD_DIAssignID)) {
5192     NewAddr->setMetadata(LLVMContext::MD_DIAssignID,
5193                          DIAssignID::getDistinct(NewAddr->getContext()));
5194   }
5195 
5196   DbgVariableRecord *NewAssign = DbgVariableRecord::createLinkedDVRAssign(
5197       NewAddr, Orig->getValue(), Orig->getVariable(), NewFragmentExpr, NewAddr,
5198       NewAddrExpr, Orig->getDebugLoc());
5199   LLVM_DEBUG(dbgs() << "Created new DVRAssign: " << *NewAssign << "\n");
5200   (void)NewAssign;
5201 }
5202 
5203 /// Walks the slices of an alloca and form partitions based on them,
5204 /// rewriting each of their uses.
5205 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
5206   if (AS.begin() == AS.end())
5207     return false;
5208 
5209   unsigned NumPartitions = 0;
5210   bool Changed = false;
5211   const DataLayout &DL = AI.getModule()->getDataLayout();
5212 
5213   // First try to pre-split loads and stores.
5214   Changed |= presplitLoadsAndStores(AI, AS);
5215 
5216   // Now that we have identified any pre-splitting opportunities,
5217   // mark loads and stores unsplittable except for the following case.
5218   // We leave a slice splittable if all other slices are disjoint or fully
5219   // included in the slice, such as whole-alloca loads and stores.
5220   // If we fail to split these during pre-splitting, we want to force them
5221   // to be rewritten into a partition.
5222   bool IsSorted = true;
5223 
5224   uint64_t AllocaSize =
5225       DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue();
5226   const uint64_t MaxBitVectorSize = 1024;
5227   if (AllocaSize <= MaxBitVectorSize) {
5228     // If a byte boundary is included in any load or store, a slice starting or
5229     // ending at the boundary is not splittable.
5230     SmallBitVector SplittableOffset(AllocaSize + 1, true);
5231     for (Slice &S : AS)
5232       for (unsigned O = S.beginOffset() + 1;
5233            O < S.endOffset() && O < AllocaSize; O++)
5234         SplittableOffset.reset(O);
5235 
5236     for (Slice &S : AS) {
5237       if (!S.isSplittable())
5238         continue;
5239 
5240       if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
5241           (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
5242         continue;
5243 
5244       if (isa<LoadInst>(S.getUse()->getUser()) ||
5245           isa<StoreInst>(S.getUse()->getUser())) {
5246         S.makeUnsplittable();
5247         IsSorted = false;
5248       }
5249     }
5250   } else {
5251     // We only allow whole-alloca splittable loads and stores
5252     // for a large alloca to avoid creating too large BitVector.
5253     for (Slice &S : AS) {
5254       if (!S.isSplittable())
5255         continue;
5256 
5257       if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
5258         continue;
5259 
5260       if (isa<LoadInst>(S.getUse()->getUser()) ||
5261           isa<StoreInst>(S.getUse()->getUser())) {
5262         S.makeUnsplittable();
5263         IsSorted = false;
5264       }
5265     }
5266   }
5267 
5268   if (!IsSorted)
5269     llvm::stable_sort(AS);
5270 
5271   /// Describes the allocas introduced by rewritePartition in order to migrate
5272   /// the debug info.
5273   struct Fragment {
5274     AllocaInst *Alloca;
5275     uint64_t Offset;
5276     uint64_t Size;
5277     Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
5278         : Alloca(AI), Offset(O), Size(S) {}
5279   };
5280   SmallVector<Fragment, 4> Fragments;
5281 
5282   // Rewrite each partition.
5283   for (auto &P : AS.partitions()) {
5284     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
5285       Changed = true;
5286       if (NewAI != &AI) {
5287         uint64_t SizeOfByte = 8;
5288         uint64_t AllocaSize =
5289             DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedValue();
5290         // Don't include any padding.
5291         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
5292         Fragments.push_back(
5293             Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
5294       }
5295     }
5296     ++NumPartitions;
5297   }
5298 
5299   NumAllocaPartitions += NumPartitions;
5300   MaxPartitionsPerAlloca.updateMax(NumPartitions);
5301 
5302   // Migrate debug information from the old alloca to the new alloca(s)
5303   // and the individual partitions.
5304   auto MigrateOne = [&](auto *DbgVariable) {
5305     // Can't overlap with undef memory.
5306     if (isKillAddress(DbgVariable))
5307       return;
5308 
5309     const Value *DbgPtr = getAddress(DbgVariable);
5310     DIExpression::FragmentInfo VarFrag =
5311         DbgVariable->getFragmentOrEntireVariable();
5312     // Get the address expression constant offset if one exists and the ops
5313     // that come after it.
5314     int64_t CurrentExprOffsetInBytes = 0;
5315     SmallVector<uint64_t> PostOffsetOps;
5316     if (!getAddressExpression(DbgVariable)
5317              ->extractLeadingOffset(CurrentExprOffsetInBytes, PostOffsetOps))
5318       return; // Couldn't interpret this DIExpression - drop the var.
5319 
5320     // Offset defined by a DW_OP_LLVM_extract_bits_[sz]ext.
5321     int64_t ExtractOffsetInBits = 0;
5322     for (auto Op : getAddressExpression(DbgVariable)->expr_ops()) {
5323       if (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_zext ||
5324           Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext) {
5325         ExtractOffsetInBits = Op.getArg(0);
5326         break;
5327       }
5328     }
5329 
5330     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
5331     for (auto Fragment : Fragments) {
5332       int64_t OffsetFromLocationInBits;
5333       std::optional<DIExpression::FragmentInfo> NewDbgFragment;
5334       // Find the variable fragment that the new alloca slice covers.
5335       // Drop debug info for this variable fragment if we can't compute an
5336       // intersect between it and the alloca slice.
5337       if (!DIExpression::calculateFragmentIntersect(
5338               DL, &AI, Fragment.Offset, Fragment.Size, DbgPtr,
5339               CurrentExprOffsetInBytes * 8, ExtractOffsetInBits, VarFrag,
5340               NewDbgFragment, OffsetFromLocationInBits))
5341         continue; // Do not migrate this fragment to this slice.
5342 
5343       // Zero sized fragment indicates there's no intersect between the variable
5344       // fragment and the alloca slice. Skip this slice for this variable
5345       // fragment.
5346       if (NewDbgFragment && !NewDbgFragment->SizeInBits)
5347         continue; // Do not migrate this fragment to this slice.
5348 
5349       // No fragment indicates DbgVariable's variable or fragment exactly
5350       // overlaps the slice; copy its fragment (or nullopt if there isn't one).
5351       if (!NewDbgFragment)
5352         NewDbgFragment = DbgVariable->getFragment();
5353 
5354       // Reduce the new expression offset by the bit-extract offset since
5355       // we'll be keeping that.
5356       int64_t OffestFromNewAllocaInBits =
5357           OffsetFromLocationInBits - ExtractOffsetInBits;
5358       // We need to adjust an existing bit extract if the offset expression
5359       // can't eat the slack (i.e., if the new offset would be negative).
5360       int64_t BitExtractOffset =
5361           std::min<int64_t>(0, OffestFromNewAllocaInBits);
5362       // The magnitude of a negative value indicates the number of bits into
5363       // the existing variable fragment that the memory region begins. The new
5364       // variable fragment already excludes those bits - the new DbgPtr offset
5365       // only needs to be applied if it's positive.
5366       OffestFromNewAllocaInBits =
5367           std::max(int64_t(0), OffestFromNewAllocaInBits);
5368 
5369       // Rebuild the expression:
5370       //    {Offset(OffestFromNewAllocaInBits), PostOffsetOps, NewDbgFragment}
5371       // Add NewDbgFragment later, because dbg.assigns don't want it in the
5372       // address expression but the value expression instead.
5373       DIExpression *NewExpr = DIExpression::get(AI.getContext(), PostOffsetOps);
5374       if (OffestFromNewAllocaInBits > 0) {
5375         int64_t OffsetInBytes = (OffestFromNewAllocaInBits + 7) / 8;
5376         NewExpr = DIExpression::prepend(NewExpr, /*flags=*/0, OffsetInBytes);
5377       }
5378 
5379       // Remove any existing intrinsics on the new alloca describing
5380       // the variable fragment.
5381       auto RemoveOne = [DbgVariable](auto *OldDII) {
5382         auto SameVariableFragment = [](const auto *LHS, const auto *RHS) {
5383           return LHS->getVariable() == RHS->getVariable() &&
5384                  LHS->getDebugLoc()->getInlinedAt() ==
5385                      RHS->getDebugLoc()->getInlinedAt();
5386         };
5387         if (SameVariableFragment(OldDII, DbgVariable))
5388           OldDII->eraseFromParent();
5389       };
5390       for_each(findDbgDeclares(Fragment.Alloca), RemoveOne);
5391       for_each(findDVRDeclares(Fragment.Alloca), RemoveOne);
5392 
5393       insertNewDbgInst(DIB, DbgVariable, Fragment.Alloca, NewExpr, &AI,
5394                        NewDbgFragment, BitExtractOffset);
5395     }
5396   };
5397 
5398   // Migrate debug information from the old alloca to the new alloca(s)
5399   // and the individual partitions.
5400   for_each(findDbgDeclares(&AI), MigrateOne);
5401   for_each(findDVRDeclares(&AI), MigrateOne);
5402   for_each(at::getAssignmentMarkers(&AI), MigrateOne);
5403   for_each(at::getDVRAssignmentMarkers(&AI), MigrateOne);
5404 
5405   return Changed;
5406 }
5407 
5408 /// Clobber a use with poison, deleting the used value if it becomes dead.
5409 void SROA::clobberUse(Use &U) {
5410   Value *OldV = U;
5411   // Replace the use with an poison value.
5412   U = PoisonValue::get(OldV->getType());
5413 
5414   // Check for this making an instruction dead. We have to garbage collect
5415   // all the dead instructions to ensure the uses of any alloca end up being
5416   // minimal.
5417   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
5418     if (isInstructionTriviallyDead(OldI)) {
5419       DeadInsts.push_back(OldI);
5420     }
5421 }
5422 
5423 /// Analyze an alloca for SROA.
5424 ///
5425 /// This analyzes the alloca to ensure we can reason about it, builds
5426 /// the slices of the alloca, and then hands it off to be split and
5427 /// rewritten as needed.
5428 std::pair<bool /*Changed*/, bool /*CFGChanged*/>
5429 SROA::runOnAlloca(AllocaInst &AI) {
5430   bool Changed = false;
5431   bool CFGChanged = false;
5432 
5433   LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
5434   ++NumAllocasAnalyzed;
5435 
5436   // Special case dead allocas, as they're trivial.
5437   if (AI.use_empty()) {
5438     AI.eraseFromParent();
5439     Changed = true;
5440     return {Changed, CFGChanged};
5441   }
5442   const DataLayout &DL = AI.getDataLayout();
5443 
5444   // Skip alloca forms that this analysis can't handle.
5445   auto *AT = AI.getAllocatedType();
5446   TypeSize Size = DL.getTypeAllocSize(AT);
5447   if (AI.isArrayAllocation() || !AT->isSized() || Size.isScalable() ||
5448       Size.getFixedValue() == 0)
5449     return {Changed, CFGChanged};
5450 
5451   // First, split any FCA loads and stores touching this alloca to promote
5452   // better splitting and promotion opportunities.
5453   IRBuilderTy IRB(&AI);
5454   AggLoadStoreRewriter AggRewriter(DL, IRB);
5455   Changed |= AggRewriter.rewrite(AI);
5456 
5457   // Build the slices using a recursive instruction-visiting builder.
5458   AllocaSlices AS(DL, AI);
5459   LLVM_DEBUG(AS.print(dbgs()));
5460   if (AS.isEscaped())
5461     return {Changed, CFGChanged};
5462 
5463   // Delete all the dead users of this alloca before splitting and rewriting it.
5464   for (Instruction *DeadUser : AS.getDeadUsers()) {
5465     // Free up everything used by this instruction.
5466     for (Use &DeadOp : DeadUser->operands())
5467       clobberUse(DeadOp);
5468 
5469     // Now replace the uses of this instruction.
5470     DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType()));
5471 
5472     // And mark it for deletion.
5473     DeadInsts.push_back(DeadUser);
5474     Changed = true;
5475   }
5476   for (Use *DeadOp : AS.getDeadOperands()) {
5477     clobberUse(*DeadOp);
5478     Changed = true;
5479   }
5480 
5481   // No slices to split. Leave the dead alloca for a later pass to clean up.
5482   if (AS.begin() == AS.end())
5483     return {Changed, CFGChanged};
5484 
5485   Changed |= splitAlloca(AI, AS);
5486 
5487   LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
5488   while (!SpeculatablePHIs.empty())
5489     speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val());
5490 
5491   LLVM_DEBUG(dbgs() << "  Rewriting Selects\n");
5492   auto RemainingSelectsToRewrite = SelectsToRewrite.takeVector();
5493   while (!RemainingSelectsToRewrite.empty()) {
5494     const auto [K, V] = RemainingSelectsToRewrite.pop_back_val();
5495     CFGChanged |=
5496         rewriteSelectInstMemOps(*K, V, IRB, PreserveCFG ? nullptr : DTU);
5497   }
5498 
5499   return {Changed, CFGChanged};
5500 }
5501 
5502 /// Delete the dead instructions accumulated in this run.
5503 ///
5504 /// Recursively deletes the dead instructions we've accumulated. This is done
5505 /// at the very end to maximize locality of the recursive delete and to
5506 /// minimize the problems of invalidated instruction pointers as such pointers
5507 /// are used heavily in the intermediate stages of the algorithm.
5508 ///
5509 /// We also record the alloca instructions deleted here so that they aren't
5510 /// subsequently handed to mem2reg to promote.
5511 bool SROA::deleteDeadInstructions(
5512     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
5513   bool Changed = false;
5514   while (!DeadInsts.empty()) {
5515     Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
5516     if (!I)
5517       continue;
5518     LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
5519 
5520     // If the instruction is an alloca, find the possible dbg.declare connected
5521     // to it, and remove it too. We must do this before calling RAUW or we will
5522     // not be able to find it.
5523     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
5524       DeletedAllocas.insert(AI);
5525       for (DbgDeclareInst *OldDII : findDbgDeclares(AI))
5526         OldDII->eraseFromParent();
5527       for (DbgVariableRecord *OldDII : findDVRDeclares(AI))
5528         OldDII->eraseFromParent();
5529     }
5530 
5531     at::deleteAssignmentMarkers(I);
5532     I->replaceAllUsesWith(UndefValue::get(I->getType()));
5533 
5534     for (Use &Operand : I->operands())
5535       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
5536         // Zero out the operand and see if it becomes trivially dead.
5537         Operand = nullptr;
5538         if (isInstructionTriviallyDead(U))
5539           DeadInsts.push_back(U);
5540       }
5541 
5542     ++NumDeleted;
5543     I->eraseFromParent();
5544     Changed = true;
5545   }
5546   return Changed;
5547 }
5548 
5549 /// Promote the allocas, using the best available technique.
5550 ///
5551 /// This attempts to promote whatever allocas have been identified as viable in
5552 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
5553 /// This function returns whether any promotion occurred.
5554 bool SROA::promoteAllocas(Function &F) {
5555   if (PromotableAllocas.empty())
5556     return false;
5557 
5558   NumPromoted += PromotableAllocas.size();
5559 
5560   if (SROASkipMem2Reg) {
5561     LLVM_DEBUG(dbgs() << "Not promoting allocas with mem2reg!\n");
5562   } else {
5563     LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
5564     PromoteMemToReg(PromotableAllocas, DTU->getDomTree(), AC);
5565   }
5566 
5567   PromotableAllocas.clear();
5568   return true;
5569 }
5570 
5571 std::pair<bool /*Changed*/, bool /*CFGChanged*/> SROA::runSROA(Function &F) {
5572   LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
5573 
5574   const DataLayout &DL = F.getDataLayout();
5575   BasicBlock &EntryBB = F.getEntryBlock();
5576   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
5577        I != E; ++I) {
5578     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
5579       if (DL.getTypeAllocSize(AI->getAllocatedType()).isScalable() &&
5580           isAllocaPromotable(AI))
5581         PromotableAllocas.push_back(AI);
5582       else
5583         Worklist.insert(AI);
5584     }
5585   }
5586 
5587   bool Changed = false;
5588   bool CFGChanged = false;
5589   // A set of deleted alloca instruction pointers which should be removed from
5590   // the list of promotable allocas.
5591   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
5592 
5593   do {
5594     while (!Worklist.empty()) {
5595       auto [IterationChanged, IterationCFGChanged] =
5596           runOnAlloca(*Worklist.pop_back_val());
5597       Changed |= IterationChanged;
5598       CFGChanged |= IterationCFGChanged;
5599 
5600       Changed |= deleteDeadInstructions(DeletedAllocas);
5601 
5602       // Remove the deleted allocas from various lists so that we don't try to
5603       // continue processing them.
5604       if (!DeletedAllocas.empty()) {
5605         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
5606         Worklist.remove_if(IsInSet);
5607         PostPromotionWorklist.remove_if(IsInSet);
5608         llvm::erase_if(PromotableAllocas, IsInSet);
5609         DeletedAllocas.clear();
5610       }
5611     }
5612 
5613     Changed |= promoteAllocas(F);
5614 
5615     Worklist = PostPromotionWorklist;
5616     PostPromotionWorklist.clear();
5617   } while (!Worklist.empty());
5618 
5619   assert((!CFGChanged || Changed) && "Can not only modify the CFG.");
5620   assert((!CFGChanged || !PreserveCFG) &&
5621          "Should not have modified the CFG when told to preserve it.");
5622 
5623   if (Changed && isAssignmentTrackingEnabled(*F.getParent())) {
5624     for (auto &BB : F) {
5625       RemoveRedundantDbgInstrs(&BB);
5626     }
5627   }
5628 
5629   return {Changed, CFGChanged};
5630 }
5631 
5632 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) {
5633   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
5634   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
5635   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
5636   auto [Changed, CFGChanged] =
5637       SROA(&F.getContext(), &DTU, &AC, PreserveCFG).runSROA(F);
5638   if (!Changed)
5639     return PreservedAnalyses::all();
5640   PreservedAnalyses PA;
5641   if (!CFGChanged)
5642     PA.preserveSet<CFGAnalyses>();
5643   PA.preserve<DominatorTreeAnalysis>();
5644   return PA;
5645 }
5646 
5647 void SROAPass::printPipeline(
5648     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
5649   static_cast<PassInfoMixin<SROAPass> *>(this)->printPipeline(
5650       OS, MapClassName2PassName);
5651   OS << (PreserveCFG == SROAOptions::PreserveCFG ? "<preserve-cfg>"
5652                                                  : "<modify-cfg>");
5653 }
5654 
5655 SROAPass::SROAPass(SROAOptions PreserveCFG) : PreserveCFG(PreserveCFG) {}
5656 
5657 namespace {
5658 
5659 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
5660 class SROALegacyPass : public FunctionPass {
5661   SROAOptions PreserveCFG;
5662 
5663 public:
5664   static char ID;
5665 
5666   SROALegacyPass(SROAOptions PreserveCFG = SROAOptions::PreserveCFG)
5667       : FunctionPass(ID), PreserveCFG(PreserveCFG) {
5668     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
5669   }
5670 
5671   bool runOnFunction(Function &F) override {
5672     if (skipFunction(F))
5673       return false;
5674 
5675     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5676     AssumptionCache &AC =
5677         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5678     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
5679     auto [Changed, _] =
5680         SROA(&F.getContext(), &DTU, &AC, PreserveCFG).runSROA(F);
5681     return Changed;
5682   }
5683 
5684   void getAnalysisUsage(AnalysisUsage &AU) const override {
5685     AU.addRequired<AssumptionCacheTracker>();
5686     AU.addRequired<DominatorTreeWrapperPass>();
5687     AU.addPreserved<GlobalsAAWrapperPass>();
5688     AU.addPreserved<DominatorTreeWrapperPass>();
5689   }
5690 
5691   StringRef getPassName() const override { return "SROA"; }
5692 };
5693 
5694 } // end anonymous namespace
5695 
5696 char SROALegacyPass::ID = 0;
5697 
5698 FunctionPass *llvm::createSROAPass(bool PreserveCFG) {
5699   return new SROALegacyPass(PreserveCFG ? SROAOptions::PreserveCFG
5700                                         : SROAOptions::ModifyCFG);
5701 }
5702 
5703 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
5704                       "Scalar Replacement Of Aggregates", false, false)
5705 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
5706 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5707 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
5708                     false, false)
5709