1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This transformation implements the well known scalar replacement of 10 /// aggregates transformation. It tries to identify promotable elements of an 11 /// aggregate alloca, and promote them to registers. It will also try to 12 /// convert uses of an element (or set of elements) of an alloca into a vector 13 /// or bitfield-style integer scalar if appropriate. 14 /// 15 /// It works to do this with minimal slicing of the alloca so that regions 16 /// which are merely transferred in and out of external memory remain unchanged 17 /// and are not decomposed to scalar code. 18 /// 19 /// Because this also performs alloca promotion, it can be thought of as also 20 /// serving the purpose of SSA formation. The algorithm iterates on the 21 /// function until all opportunities for promotion have been realized. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/SROA.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/PointerIntPair.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/ADT/iterator.h" 39 #include "llvm/ADT/iterator_range.h" 40 #include "llvm/Analysis/AssumptionCache.h" 41 #include "llvm/Analysis/GlobalsModRef.h" 42 #include "llvm/Analysis/Loads.h" 43 #include "llvm/Analysis/PtrUseVisitor.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/ConstantFolder.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DIBuilder.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfo.h" 52 #include "llvm/IR/DebugInfoMetadata.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/GetElementPtrTypeIterator.h" 57 #include "llvm/IR/GlobalAlias.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstVisitor.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/InitializePasses.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/ErrorHandling.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/Local.h" 82 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 83 #include <algorithm> 84 #include <cassert> 85 #include <cstddef> 86 #include <cstdint> 87 #include <cstring> 88 #include <iterator> 89 #include <string> 90 #include <tuple> 91 #include <utility> 92 #include <vector> 93 94 using namespace llvm; 95 using namespace llvm::sroa; 96 97 #define DEBUG_TYPE "sroa" 98 99 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 100 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 101 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 102 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 103 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 104 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 105 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 106 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 107 STATISTIC(NumDeleted, "Number of instructions deleted"); 108 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 109 110 /// Hidden option to experiment with completely strict handling of inbounds 111 /// GEPs. 112 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), 113 cl::Hidden); 114 115 namespace { 116 117 /// A custom IRBuilder inserter which prefixes all names, but only in 118 /// Assert builds. 119 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { 120 std::string Prefix; 121 122 Twine getNameWithPrefix(const Twine &Name) const { 123 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 124 } 125 126 public: 127 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 128 129 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 130 BasicBlock::iterator InsertPt) const override { 131 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, 132 InsertPt); 133 } 134 }; 135 136 /// Provide a type for IRBuilder that drops names in release builds. 137 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 138 139 /// A used slice of an alloca. 140 /// 141 /// This structure represents a slice of an alloca used by some instruction. It 142 /// stores both the begin and end offsets of this use, a pointer to the use 143 /// itself, and a flag indicating whether we can classify the use as splittable 144 /// or not when forming partitions of the alloca. 145 class Slice { 146 /// The beginning offset of the range. 147 uint64_t BeginOffset = 0; 148 149 /// The ending offset, not included in the range. 150 uint64_t EndOffset = 0; 151 152 /// Storage for both the use of this slice and whether it can be 153 /// split. 154 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 155 156 public: 157 Slice() = default; 158 159 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 160 : BeginOffset(BeginOffset), EndOffset(EndOffset), 161 UseAndIsSplittable(U, IsSplittable) {} 162 163 uint64_t beginOffset() const { return BeginOffset; } 164 uint64_t endOffset() const { return EndOffset; } 165 166 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 167 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 168 169 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 170 171 bool isDead() const { return getUse() == nullptr; } 172 void kill() { UseAndIsSplittable.setPointer(nullptr); } 173 174 /// Support for ordering ranges. 175 /// 176 /// This provides an ordering over ranges such that start offsets are 177 /// always increasing, and within equal start offsets, the end offsets are 178 /// decreasing. Thus the spanning range comes first in a cluster with the 179 /// same start position. 180 bool operator<(const Slice &RHS) const { 181 if (beginOffset() < RHS.beginOffset()) 182 return true; 183 if (beginOffset() > RHS.beginOffset()) 184 return false; 185 if (isSplittable() != RHS.isSplittable()) 186 return !isSplittable(); 187 if (endOffset() > RHS.endOffset()) 188 return true; 189 return false; 190 } 191 192 /// Support comparison with a single offset to allow binary searches. 193 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 194 uint64_t RHSOffset) { 195 return LHS.beginOffset() < RHSOffset; 196 } 197 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 198 const Slice &RHS) { 199 return LHSOffset < RHS.beginOffset(); 200 } 201 202 bool operator==(const Slice &RHS) const { 203 return isSplittable() == RHS.isSplittable() && 204 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 205 } 206 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 207 }; 208 209 } // end anonymous namespace 210 211 /// Representation of the alloca slices. 212 /// 213 /// This class represents the slices of an alloca which are formed by its 214 /// various uses. If a pointer escapes, we can't fully build a representation 215 /// for the slices used and we reflect that in this structure. The uses are 216 /// stored, sorted by increasing beginning offset and with unsplittable slices 217 /// starting at a particular offset before splittable slices. 218 class llvm::sroa::AllocaSlices { 219 public: 220 /// Construct the slices of a particular alloca. 221 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 222 223 /// Test whether a pointer to the allocation escapes our analysis. 224 /// 225 /// If this is true, the slices are never fully built and should be 226 /// ignored. 227 bool isEscaped() const { return PointerEscapingInstr; } 228 229 /// Support for iterating over the slices. 230 /// @{ 231 using iterator = SmallVectorImpl<Slice>::iterator; 232 using range = iterator_range<iterator>; 233 234 iterator begin() { return Slices.begin(); } 235 iterator end() { return Slices.end(); } 236 237 using const_iterator = SmallVectorImpl<Slice>::const_iterator; 238 using const_range = iterator_range<const_iterator>; 239 240 const_iterator begin() const { return Slices.begin(); } 241 const_iterator end() const { return Slices.end(); } 242 /// @} 243 244 /// Erase a range of slices. 245 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 246 247 /// Insert new slices for this alloca. 248 /// 249 /// This moves the slices into the alloca's slices collection, and re-sorts 250 /// everything so that the usual ordering properties of the alloca's slices 251 /// hold. 252 void insert(ArrayRef<Slice> NewSlices) { 253 int OldSize = Slices.size(); 254 Slices.append(NewSlices.begin(), NewSlices.end()); 255 auto SliceI = Slices.begin() + OldSize; 256 llvm::sort(SliceI, Slices.end()); 257 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 258 } 259 260 // Forward declare the iterator and range accessor for walking the 261 // partitions. 262 class partition_iterator; 263 iterator_range<partition_iterator> partitions(); 264 265 /// Access the dead users for this alloca. 266 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 267 268 /// Access Uses that should be dropped if the alloca is promotable. 269 ArrayRef<Use *> getDeadUsesIfPromotable() const { 270 return DeadUseIfPromotable; 271 } 272 273 /// Access the dead operands referring to this alloca. 274 /// 275 /// These are operands which have cannot actually be used to refer to the 276 /// alloca as they are outside its range and the user doesn't correct for 277 /// that. These mostly consist of PHI node inputs and the like which we just 278 /// need to replace with undef. 279 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 280 281 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 282 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 283 void printSlice(raw_ostream &OS, const_iterator I, 284 StringRef Indent = " ") const; 285 void printUse(raw_ostream &OS, const_iterator I, 286 StringRef Indent = " ") const; 287 void print(raw_ostream &OS) const; 288 void dump(const_iterator I) const; 289 void dump() const; 290 #endif 291 292 private: 293 template <typename DerivedT, typename RetT = void> class BuilderBase; 294 class SliceBuilder; 295 296 friend class AllocaSlices::SliceBuilder; 297 298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 299 /// Handle to alloca instruction to simplify method interfaces. 300 AllocaInst &AI; 301 #endif 302 303 /// The instruction responsible for this alloca not having a known set 304 /// of slices. 305 /// 306 /// When an instruction (potentially) escapes the pointer to the alloca, we 307 /// store a pointer to that here and abort trying to form slices of the 308 /// alloca. This will be null if the alloca slices are analyzed successfully. 309 Instruction *PointerEscapingInstr; 310 311 /// The slices of the alloca. 312 /// 313 /// We store a vector of the slices formed by uses of the alloca here. This 314 /// vector is sorted by increasing begin offset, and then the unsplittable 315 /// slices before the splittable ones. See the Slice inner class for more 316 /// details. 317 SmallVector<Slice, 8> Slices; 318 319 /// Instructions which will become dead if we rewrite the alloca. 320 /// 321 /// Note that these are not separated by slice. This is because we expect an 322 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 323 /// all these instructions can simply be removed and replaced with poison as 324 /// they come from outside of the allocated space. 325 SmallVector<Instruction *, 8> DeadUsers; 326 327 /// Uses which will become dead if can promote the alloca. 328 SmallVector<Use *, 8> DeadUseIfPromotable; 329 330 /// Operands which will become dead if we rewrite the alloca. 331 /// 332 /// These are operands that in their particular use can be replaced with 333 /// poison when we rewrite the alloca. These show up in out-of-bounds inputs 334 /// to PHI nodes and the like. They aren't entirely dead (there might be 335 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 336 /// want to swap this particular input for poison to simplify the use lists of 337 /// the alloca. 338 SmallVector<Use *, 8> DeadOperands; 339 }; 340 341 /// A partition of the slices. 342 /// 343 /// An ephemeral representation for a range of slices which can be viewed as 344 /// a partition of the alloca. This range represents a span of the alloca's 345 /// memory which cannot be split, and provides access to all of the slices 346 /// overlapping some part of the partition. 347 /// 348 /// Objects of this type are produced by traversing the alloca's slices, but 349 /// are only ephemeral and not persistent. 350 class llvm::sroa::Partition { 351 private: 352 friend class AllocaSlices; 353 friend class AllocaSlices::partition_iterator; 354 355 using iterator = AllocaSlices::iterator; 356 357 /// The beginning and ending offsets of the alloca for this 358 /// partition. 359 uint64_t BeginOffset = 0, EndOffset = 0; 360 361 /// The start and end iterators of this partition. 362 iterator SI, SJ; 363 364 /// A collection of split slice tails overlapping the partition. 365 SmallVector<Slice *, 4> SplitTails; 366 367 /// Raw constructor builds an empty partition starting and ending at 368 /// the given iterator. 369 Partition(iterator SI) : SI(SI), SJ(SI) {} 370 371 public: 372 /// The start offset of this partition. 373 /// 374 /// All of the contained slices start at or after this offset. 375 uint64_t beginOffset() const { return BeginOffset; } 376 377 /// The end offset of this partition. 378 /// 379 /// All of the contained slices end at or before this offset. 380 uint64_t endOffset() const { return EndOffset; } 381 382 /// The size of the partition. 383 /// 384 /// Note that this can never be zero. 385 uint64_t size() const { 386 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 387 return EndOffset - BeginOffset; 388 } 389 390 /// Test whether this partition contains no slices, and merely spans 391 /// a region occupied by split slices. 392 bool empty() const { return SI == SJ; } 393 394 /// \name Iterate slices that start within the partition. 395 /// These may be splittable or unsplittable. They have a begin offset >= the 396 /// partition begin offset. 397 /// @{ 398 // FIXME: We should probably define a "concat_iterator" helper and use that 399 // to stitch together pointee_iterators over the split tails and the 400 // contiguous iterators of the partition. That would give a much nicer 401 // interface here. We could then additionally expose filtered iterators for 402 // split, unsplit, and unsplittable splices based on the usage patterns. 403 iterator begin() const { return SI; } 404 iterator end() const { return SJ; } 405 /// @} 406 407 /// Get the sequence of split slice tails. 408 /// 409 /// These tails are of slices which start before this partition but are 410 /// split and overlap into the partition. We accumulate these while forming 411 /// partitions. 412 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 413 }; 414 415 /// An iterator over partitions of the alloca's slices. 416 /// 417 /// This iterator implements the core algorithm for partitioning the alloca's 418 /// slices. It is a forward iterator as we don't support backtracking for 419 /// efficiency reasons, and re-use a single storage area to maintain the 420 /// current set of split slices. 421 /// 422 /// It is templated on the slice iterator type to use so that it can operate 423 /// with either const or non-const slice iterators. 424 class AllocaSlices::partition_iterator 425 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 426 Partition> { 427 friend class AllocaSlices; 428 429 /// Most of the state for walking the partitions is held in a class 430 /// with a nice interface for examining them. 431 Partition P; 432 433 /// We need to keep the end of the slices to know when to stop. 434 AllocaSlices::iterator SE; 435 436 /// We also need to keep track of the maximum split end offset seen. 437 /// FIXME: Do we really? 438 uint64_t MaxSplitSliceEndOffset = 0; 439 440 /// Sets the partition to be empty at given iterator, and sets the 441 /// end iterator. 442 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 443 : P(SI), SE(SE) { 444 // If not already at the end, advance our state to form the initial 445 // partition. 446 if (SI != SE) 447 advance(); 448 } 449 450 /// Advance the iterator to the next partition. 451 /// 452 /// Requires that the iterator not be at the end of the slices. 453 void advance() { 454 assert((P.SI != SE || !P.SplitTails.empty()) && 455 "Cannot advance past the end of the slices!"); 456 457 // Clear out any split uses which have ended. 458 if (!P.SplitTails.empty()) { 459 if (P.EndOffset >= MaxSplitSliceEndOffset) { 460 // If we've finished all splits, this is easy. 461 P.SplitTails.clear(); 462 MaxSplitSliceEndOffset = 0; 463 } else { 464 // Remove the uses which have ended in the prior partition. This 465 // cannot change the max split slice end because we just checked that 466 // the prior partition ended prior to that max. 467 llvm::erase_if(P.SplitTails, 468 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }); 469 assert(llvm::any_of(P.SplitTails, 470 [&](Slice *S) { 471 return S->endOffset() == MaxSplitSliceEndOffset; 472 }) && 473 "Could not find the current max split slice offset!"); 474 assert(llvm::all_of(P.SplitTails, 475 [&](Slice *S) { 476 return S->endOffset() <= MaxSplitSliceEndOffset; 477 }) && 478 "Max split slice end offset is not actually the max!"); 479 } 480 } 481 482 // If P.SI is already at the end, then we've cleared the split tail and 483 // now have an end iterator. 484 if (P.SI == SE) { 485 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 486 return; 487 } 488 489 // If we had a non-empty partition previously, set up the state for 490 // subsequent partitions. 491 if (P.SI != P.SJ) { 492 // Accumulate all the splittable slices which started in the old 493 // partition into the split list. 494 for (Slice &S : P) 495 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 496 P.SplitTails.push_back(&S); 497 MaxSplitSliceEndOffset = 498 std::max(S.endOffset(), MaxSplitSliceEndOffset); 499 } 500 501 // Start from the end of the previous partition. 502 P.SI = P.SJ; 503 504 // If P.SI is now at the end, we at most have a tail of split slices. 505 if (P.SI == SE) { 506 P.BeginOffset = P.EndOffset; 507 P.EndOffset = MaxSplitSliceEndOffset; 508 return; 509 } 510 511 // If the we have split slices and the next slice is after a gap and is 512 // not splittable immediately form an empty partition for the split 513 // slices up until the next slice begins. 514 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 515 !P.SI->isSplittable()) { 516 P.BeginOffset = P.EndOffset; 517 P.EndOffset = P.SI->beginOffset(); 518 return; 519 } 520 } 521 522 // OK, we need to consume new slices. Set the end offset based on the 523 // current slice, and step SJ past it. The beginning offset of the 524 // partition is the beginning offset of the next slice unless we have 525 // pre-existing split slices that are continuing, in which case we begin 526 // at the prior end offset. 527 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 528 P.EndOffset = P.SI->endOffset(); 529 ++P.SJ; 530 531 // There are two strategies to form a partition based on whether the 532 // partition starts with an unsplittable slice or a splittable slice. 533 if (!P.SI->isSplittable()) { 534 // When we're forming an unsplittable region, it must always start at 535 // the first slice and will extend through its end. 536 assert(P.BeginOffset == P.SI->beginOffset()); 537 538 // Form a partition including all of the overlapping slices with this 539 // unsplittable slice. 540 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 541 if (!P.SJ->isSplittable()) 542 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 543 ++P.SJ; 544 } 545 546 // We have a partition across a set of overlapping unsplittable 547 // partitions. 548 return; 549 } 550 551 // If we're starting with a splittable slice, then we need to form 552 // a synthetic partition spanning it and any other overlapping splittable 553 // splices. 554 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 555 556 // Collect all of the overlapping splittable slices. 557 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 558 P.SJ->isSplittable()) { 559 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 560 ++P.SJ; 561 } 562 563 // Back upiP.EndOffset if we ended the span early when encountering an 564 // unsplittable slice. This synthesizes the early end offset of 565 // a partition spanning only splittable slices. 566 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 567 assert(!P.SJ->isSplittable()); 568 P.EndOffset = P.SJ->beginOffset(); 569 } 570 } 571 572 public: 573 bool operator==(const partition_iterator &RHS) const { 574 assert(SE == RHS.SE && 575 "End iterators don't match between compared partition iterators!"); 576 577 // The observed positions of partitions is marked by the P.SI iterator and 578 // the emptiness of the split slices. The latter is only relevant when 579 // P.SI == SE, as the end iterator will additionally have an empty split 580 // slices list, but the prior may have the same P.SI and a tail of split 581 // slices. 582 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 583 assert(P.SJ == RHS.P.SJ && 584 "Same set of slices formed two different sized partitions!"); 585 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 586 "Same slice position with differently sized non-empty split " 587 "slice tails!"); 588 return true; 589 } 590 return false; 591 } 592 593 partition_iterator &operator++() { 594 advance(); 595 return *this; 596 } 597 598 Partition &operator*() { return P; } 599 }; 600 601 /// A forward range over the partitions of the alloca's slices. 602 /// 603 /// This accesses an iterator range over the partitions of the alloca's 604 /// slices. It computes these partitions on the fly based on the overlapping 605 /// offsets of the slices and the ability to split them. It will visit "empty" 606 /// partitions to cover regions of the alloca only accessed via split 607 /// slices. 608 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 609 return make_range(partition_iterator(begin(), end()), 610 partition_iterator(end(), end())); 611 } 612 613 static Value *foldSelectInst(SelectInst &SI) { 614 // If the condition being selected on is a constant or the same value is 615 // being selected between, fold the select. Yes this does (rarely) happen 616 // early on. 617 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 618 return SI.getOperand(1 + CI->isZero()); 619 if (SI.getOperand(1) == SI.getOperand(2)) 620 return SI.getOperand(1); 621 622 return nullptr; 623 } 624 625 /// A helper that folds a PHI node or a select. 626 static Value *foldPHINodeOrSelectInst(Instruction &I) { 627 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 628 // If PN merges together the same value, return that value. 629 return PN->hasConstantValue(); 630 } 631 return foldSelectInst(cast<SelectInst>(I)); 632 } 633 634 /// Builder for the alloca slices. 635 /// 636 /// This class builds a set of alloca slices by recursively visiting the uses 637 /// of an alloca and making a slice for each load and store at each offset. 638 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 639 friend class PtrUseVisitor<SliceBuilder>; 640 friend class InstVisitor<SliceBuilder>; 641 642 using Base = PtrUseVisitor<SliceBuilder>; 643 644 const uint64_t AllocSize; 645 AllocaSlices &AS; 646 647 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 648 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 649 650 /// Set to de-duplicate dead instructions found in the use walk. 651 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 652 653 public: 654 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 655 : PtrUseVisitor<SliceBuilder>(DL), 656 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()), 657 AS(AS) {} 658 659 private: 660 void markAsDead(Instruction &I) { 661 if (VisitedDeadInsts.insert(&I).second) 662 AS.DeadUsers.push_back(&I); 663 } 664 665 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 666 bool IsSplittable = false) { 667 // Completely skip uses which have a zero size or start either before or 668 // past the end of the allocation. 669 if (Size == 0 || Offset.uge(AllocSize)) { 670 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" 671 << Offset 672 << " which has zero size or starts outside of the " 673 << AllocSize << " byte alloca:\n" 674 << " alloca: " << AS.AI << "\n" 675 << " use: " << I << "\n"); 676 return markAsDead(I); 677 } 678 679 uint64_t BeginOffset = Offset.getZExtValue(); 680 uint64_t EndOffset = BeginOffset + Size; 681 682 // Clamp the end offset to the end of the allocation. Note that this is 683 // formulated to handle even the case where "BeginOffset + Size" overflows. 684 // This may appear superficially to be something we could ignore entirely, 685 // but that is not so! There may be widened loads or PHI-node uses where 686 // some instructions are dead but not others. We can't completely ignore 687 // them, and so have to record at least the information here. 688 assert(AllocSize >= BeginOffset); // Established above. 689 if (Size > AllocSize - BeginOffset) { 690 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" 691 << Offset << " to remain within the " << AllocSize 692 << " byte alloca:\n" 693 << " alloca: " << AS.AI << "\n" 694 << " use: " << I << "\n"); 695 EndOffset = AllocSize; 696 } 697 698 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 699 } 700 701 void visitBitCastInst(BitCastInst &BC) { 702 if (BC.use_empty()) 703 return markAsDead(BC); 704 705 return Base::visitBitCastInst(BC); 706 } 707 708 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 709 if (ASC.use_empty()) 710 return markAsDead(ASC); 711 712 return Base::visitAddrSpaceCastInst(ASC); 713 } 714 715 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 716 if (GEPI.use_empty()) 717 return markAsDead(GEPI); 718 719 if (SROAStrictInbounds && GEPI.isInBounds()) { 720 // FIXME: This is a manually un-factored variant of the basic code inside 721 // of GEPs with checking of the inbounds invariant specified in the 722 // langref in a very strict sense. If we ever want to enable 723 // SROAStrictInbounds, this code should be factored cleanly into 724 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 725 // by writing out the code here where we have the underlying allocation 726 // size readily available. 727 APInt GEPOffset = Offset; 728 const DataLayout &DL = GEPI.getModule()->getDataLayout(); 729 for (gep_type_iterator GTI = gep_type_begin(GEPI), 730 GTE = gep_type_end(GEPI); 731 GTI != GTE; ++GTI) { 732 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 733 if (!OpC) 734 break; 735 736 // Handle a struct index, which adds its field offset to the pointer. 737 if (StructType *STy = GTI.getStructTypeOrNull()) { 738 unsigned ElementIdx = OpC->getZExtValue(); 739 const StructLayout *SL = DL.getStructLayout(STy); 740 GEPOffset += 741 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 742 } else { 743 // For array or vector indices, scale the index by the size of the 744 // type. 745 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 746 GEPOffset += 747 Index * 748 APInt(Offset.getBitWidth(), 749 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 750 } 751 752 // If this index has computed an intermediate pointer which is not 753 // inbounds, then the result of the GEP is a poison value and we can 754 // delete it and all uses. 755 if (GEPOffset.ugt(AllocSize)) 756 return markAsDead(GEPI); 757 } 758 } 759 760 return Base::visitGetElementPtrInst(GEPI); 761 } 762 763 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 764 uint64_t Size, bool IsVolatile) { 765 // We allow splitting of non-volatile loads and stores where the type is an 766 // integer type. These may be used to implement 'memcpy' or other "transfer 767 // of bits" patterns. 768 bool IsSplittable = 769 Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty); 770 771 insertUse(I, Offset, Size, IsSplittable); 772 } 773 774 void visitLoadInst(LoadInst &LI) { 775 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 776 "All simple FCA loads should have been pre-split"); 777 778 if (!IsOffsetKnown) 779 return PI.setAborted(&LI); 780 781 if (LI.isVolatile() && 782 LI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 783 return PI.setAborted(&LI); 784 785 if (isa<ScalableVectorType>(LI.getType())) 786 return PI.setAborted(&LI); 787 788 uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize(); 789 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 790 } 791 792 void visitStoreInst(StoreInst &SI) { 793 Value *ValOp = SI.getValueOperand(); 794 if (ValOp == *U) 795 return PI.setEscapedAndAborted(&SI); 796 if (!IsOffsetKnown) 797 return PI.setAborted(&SI); 798 799 if (SI.isVolatile() && 800 SI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 801 return PI.setAborted(&SI); 802 803 if (isa<ScalableVectorType>(ValOp->getType())) 804 return PI.setAborted(&SI); 805 806 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize(); 807 808 // If this memory access can be shown to *statically* extend outside the 809 // bounds of the allocation, it's behavior is undefined, so simply 810 // ignore it. Note that this is more strict than the generic clamping 811 // behavior of insertUse. We also try to handle cases which might run the 812 // risk of overflow. 813 // FIXME: We should instead consider the pointer to have escaped if this 814 // function is being instrumented for addressing bugs or race conditions. 815 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 816 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" 817 << Offset << " which extends past the end of the " 818 << AllocSize << " byte alloca:\n" 819 << " alloca: " << AS.AI << "\n" 820 << " use: " << SI << "\n"); 821 return markAsDead(SI); 822 } 823 824 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 825 "All simple FCA stores should have been pre-split"); 826 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 827 } 828 829 void visitMemSetInst(MemSetInst &II) { 830 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 831 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 832 if ((Length && Length->getValue() == 0) || 833 (IsOffsetKnown && Offset.uge(AllocSize))) 834 // Zero-length mem transfer intrinsics can be ignored entirely. 835 return markAsDead(II); 836 837 if (!IsOffsetKnown) 838 return PI.setAborted(&II); 839 840 // Don't replace this with a store with a different address space. TODO: 841 // Use a store with the casted new alloca? 842 if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace()) 843 return PI.setAborted(&II); 844 845 insertUse(II, Offset, Length ? Length->getLimitedValue() 846 : AllocSize - Offset.getLimitedValue(), 847 (bool)Length); 848 } 849 850 void visitMemTransferInst(MemTransferInst &II) { 851 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 852 if (Length && Length->getValue() == 0) 853 // Zero-length mem transfer intrinsics can be ignored entirely. 854 return markAsDead(II); 855 856 // Because we can visit these intrinsics twice, also check to see if the 857 // first time marked this instruction as dead. If so, skip it. 858 if (VisitedDeadInsts.count(&II)) 859 return; 860 861 if (!IsOffsetKnown) 862 return PI.setAborted(&II); 863 864 // Don't replace this with a load/store with a different address space. 865 // TODO: Use a store with the casted new alloca? 866 if (II.isVolatile() && 867 (II.getDestAddressSpace() != DL.getAllocaAddrSpace() || 868 II.getSourceAddressSpace() != DL.getAllocaAddrSpace())) 869 return PI.setAborted(&II); 870 871 // This side of the transfer is completely out-of-bounds, and so we can 872 // nuke the entire transfer. However, we also need to nuke the other side 873 // if already added to our partitions. 874 // FIXME: Yet another place we really should bypass this when 875 // instrumenting for ASan. 876 if (Offset.uge(AllocSize)) { 877 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 878 MemTransferSliceMap.find(&II); 879 if (MTPI != MemTransferSliceMap.end()) 880 AS.Slices[MTPI->second].kill(); 881 return markAsDead(II); 882 } 883 884 uint64_t RawOffset = Offset.getLimitedValue(); 885 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 886 887 // Check for the special case where the same exact value is used for both 888 // source and dest. 889 if (*U == II.getRawDest() && *U == II.getRawSource()) { 890 // For non-volatile transfers this is a no-op. 891 if (!II.isVolatile()) 892 return markAsDead(II); 893 894 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 895 } 896 897 // If we have seen both source and destination for a mem transfer, then 898 // they both point to the same alloca. 899 bool Inserted; 900 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 901 std::tie(MTPI, Inserted) = 902 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 903 unsigned PrevIdx = MTPI->second; 904 if (!Inserted) { 905 Slice &PrevP = AS.Slices[PrevIdx]; 906 907 // Check if the begin offsets match and this is a non-volatile transfer. 908 // In that case, we can completely elide the transfer. 909 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 910 PrevP.kill(); 911 return markAsDead(II); 912 } 913 914 // Otherwise we have an offset transfer within the same alloca. We can't 915 // split those. 916 PrevP.makeUnsplittable(); 917 } 918 919 // Insert the use now that we've fixed up the splittable nature. 920 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 921 922 // Check that we ended up with a valid index in the map. 923 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 924 "Map index doesn't point back to a slice with this user."); 925 } 926 927 // Disable SRoA for any intrinsics except for lifetime invariants and 928 // invariant group. 929 // FIXME: What about debug intrinsics? This matches old behavior, but 930 // doesn't make sense. 931 void visitIntrinsicInst(IntrinsicInst &II) { 932 if (II.isDroppable()) { 933 AS.DeadUseIfPromotable.push_back(U); 934 return; 935 } 936 937 if (!IsOffsetKnown) 938 return PI.setAborted(&II); 939 940 if (II.isLifetimeStartOrEnd()) { 941 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 942 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 943 Length->getLimitedValue()); 944 insertUse(II, Offset, Size, true); 945 return; 946 } 947 948 if (II.isLaunderOrStripInvariantGroup()) { 949 enqueueUsers(II); 950 return; 951 } 952 953 Base::visitIntrinsicInst(II); 954 } 955 956 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 957 // We consider any PHI or select that results in a direct load or store of 958 // the same offset to be a viable use for slicing purposes. These uses 959 // are considered unsplittable and the size is the maximum loaded or stored 960 // size. 961 SmallPtrSet<Instruction *, 4> Visited; 962 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 963 Visited.insert(Root); 964 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 965 const DataLayout &DL = Root->getModule()->getDataLayout(); 966 // If there are no loads or stores, the access is dead. We mark that as 967 // a size zero access. 968 Size = 0; 969 do { 970 Instruction *I, *UsedI; 971 std::tie(UsedI, I) = Uses.pop_back_val(); 972 973 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 974 Size = std::max(Size, 975 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 976 continue; 977 } 978 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 979 Value *Op = SI->getOperand(0); 980 if (Op == UsedI) 981 return SI; 982 Size = std::max(Size, 983 DL.getTypeStoreSize(Op->getType()).getFixedSize()); 984 continue; 985 } 986 987 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 988 if (!GEP->hasAllZeroIndices()) 989 return GEP; 990 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 991 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) { 992 return I; 993 } 994 995 for (User *U : I->users()) 996 if (Visited.insert(cast<Instruction>(U)).second) 997 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 998 } while (!Uses.empty()); 999 1000 return nullptr; 1001 } 1002 1003 void visitPHINodeOrSelectInst(Instruction &I) { 1004 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 1005 if (I.use_empty()) 1006 return markAsDead(I); 1007 1008 // If this is a PHI node before a catchswitch, we cannot insert any non-PHI 1009 // instructions in this BB, which may be required during rewriting. Bail out 1010 // on these cases. 1011 if (isa<PHINode>(I) && 1012 I.getParent()->getFirstInsertionPt() == I.getParent()->end()) 1013 return PI.setAborted(&I); 1014 1015 // TODO: We could use simplifyInstruction here to fold PHINodes and 1016 // SelectInsts. However, doing so requires to change the current 1017 // dead-operand-tracking mechanism. For instance, suppose neither loading 1018 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 1019 // trap either. However, if we simply replace %U with undef using the 1020 // current dead-operand-tracking mechanism, "load (select undef, undef, 1021 // %other)" may trap because the select may return the first operand 1022 // "undef". 1023 if (Value *Result = foldPHINodeOrSelectInst(I)) { 1024 if (Result == *U) 1025 // If the result of the constant fold will be the pointer, recurse 1026 // through the PHI/select as if we had RAUW'ed it. 1027 enqueueUsers(I); 1028 else 1029 // Otherwise the operand to the PHI/select is dead, and we can replace 1030 // it with poison. 1031 AS.DeadOperands.push_back(U); 1032 1033 return; 1034 } 1035 1036 if (!IsOffsetKnown) 1037 return PI.setAborted(&I); 1038 1039 // See if we already have computed info on this node. 1040 uint64_t &Size = PHIOrSelectSizes[&I]; 1041 if (!Size) { 1042 // This is a new PHI/Select, check for an unsafe use of it. 1043 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 1044 return PI.setAborted(UnsafeI); 1045 } 1046 1047 // For PHI and select operands outside the alloca, we can't nuke the entire 1048 // phi or select -- the other side might still be relevant, so we special 1049 // case them here and use a separate structure to track the operands 1050 // themselves which should be replaced with poison. 1051 // FIXME: This should instead be escaped in the event we're instrumenting 1052 // for address sanitization. 1053 if (Offset.uge(AllocSize)) { 1054 AS.DeadOperands.push_back(U); 1055 return; 1056 } 1057 1058 insertUse(I, Offset, Size); 1059 } 1060 1061 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 1062 1063 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 1064 1065 /// Disable SROA entirely if there are unhandled users of the alloca. 1066 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 1067 }; 1068 1069 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 1070 : 1071 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1072 AI(AI), 1073 #endif 1074 PointerEscapingInstr(nullptr) { 1075 SliceBuilder PB(DL, AI, *this); 1076 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 1077 if (PtrI.isEscaped() || PtrI.isAborted()) { 1078 // FIXME: We should sink the escape vs. abort info into the caller nicely, 1079 // possibly by just storing the PtrInfo in the AllocaSlices. 1080 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 1081 : PtrI.getAbortingInst(); 1082 assert(PointerEscapingInstr && "Did not track a bad instruction"); 1083 return; 1084 } 1085 1086 llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); }); 1087 1088 // Sort the uses. This arranges for the offsets to be in ascending order, 1089 // and the sizes to be in descending order. 1090 llvm::stable_sort(Slices); 1091 } 1092 1093 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1094 1095 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1096 StringRef Indent) const { 1097 printSlice(OS, I, Indent); 1098 OS << "\n"; 1099 printUse(OS, I, Indent); 1100 } 1101 1102 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1103 StringRef Indent) const { 1104 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1105 << " slice #" << (I - begin()) 1106 << (I->isSplittable() ? " (splittable)" : ""); 1107 } 1108 1109 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1110 StringRef Indent) const { 1111 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1112 } 1113 1114 void AllocaSlices::print(raw_ostream &OS) const { 1115 if (PointerEscapingInstr) { 1116 OS << "Can't analyze slices for alloca: " << AI << "\n" 1117 << " A pointer to this alloca escaped by:\n" 1118 << " " << *PointerEscapingInstr << "\n"; 1119 return; 1120 } 1121 1122 OS << "Slices of alloca: " << AI << "\n"; 1123 for (const_iterator I = begin(), E = end(); I != E; ++I) 1124 print(OS, I); 1125 } 1126 1127 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1128 print(dbgs(), I); 1129 } 1130 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1131 1132 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1133 1134 /// Walk the range of a partitioning looking for a common type to cover this 1135 /// sequence of slices. 1136 static std::pair<Type *, IntegerType *> 1137 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, 1138 uint64_t EndOffset) { 1139 Type *Ty = nullptr; 1140 bool TyIsCommon = true; 1141 IntegerType *ITy = nullptr; 1142 1143 // Note that we need to look at *every* alloca slice's Use to ensure we 1144 // always get consistent results regardless of the order of slices. 1145 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1146 Use *U = I->getUse(); 1147 if (isa<IntrinsicInst>(*U->getUser())) 1148 continue; 1149 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1150 continue; 1151 1152 Type *UserTy = nullptr; 1153 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1154 UserTy = LI->getType(); 1155 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1156 UserTy = SI->getValueOperand()->getType(); 1157 } 1158 1159 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1160 // If the type is larger than the partition, skip it. We only encounter 1161 // this for split integer operations where we want to use the type of the 1162 // entity causing the split. Also skip if the type is not a byte width 1163 // multiple. 1164 if (UserITy->getBitWidth() % 8 != 0 || 1165 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1166 continue; 1167 1168 // Track the largest bitwidth integer type used in this way in case there 1169 // is no common type. 1170 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1171 ITy = UserITy; 1172 } 1173 1174 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1175 // depend on types skipped above. 1176 if (!UserTy || (Ty && Ty != UserTy)) 1177 TyIsCommon = false; // Give up on anything but an iN type. 1178 else 1179 Ty = UserTy; 1180 } 1181 1182 return {TyIsCommon ? Ty : nullptr, ITy}; 1183 } 1184 1185 /// PHI instructions that use an alloca and are subsequently loaded can be 1186 /// rewritten to load both input pointers in the pred blocks and then PHI the 1187 /// results, allowing the load of the alloca to be promoted. 1188 /// From this: 1189 /// %P2 = phi [i32* %Alloca, i32* %Other] 1190 /// %V = load i32* %P2 1191 /// to: 1192 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1193 /// ... 1194 /// %V2 = load i32* %Other 1195 /// ... 1196 /// %V = phi [i32 %V1, i32 %V2] 1197 /// 1198 /// We can do this to a select if its only uses are loads and if the operands 1199 /// to the select can be loaded unconditionally. 1200 /// 1201 /// FIXME: This should be hoisted into a generic utility, likely in 1202 /// Transforms/Util/Local.h 1203 static bool isSafePHIToSpeculate(PHINode &PN) { 1204 const DataLayout &DL = PN.getModule()->getDataLayout(); 1205 1206 // For now, we can only do this promotion if the load is in the same block 1207 // as the PHI, and if there are no stores between the phi and load. 1208 // TODO: Allow recursive phi users. 1209 // TODO: Allow stores. 1210 BasicBlock *BB = PN.getParent(); 1211 Align MaxAlign; 1212 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); 1213 Type *LoadType = nullptr; 1214 for (User *U : PN.users()) { 1215 LoadInst *LI = dyn_cast<LoadInst>(U); 1216 if (!LI || !LI->isSimple()) 1217 return false; 1218 1219 // For now we only allow loads in the same block as the PHI. This is 1220 // a common case that happens when instcombine merges two loads through 1221 // a PHI. 1222 if (LI->getParent() != BB) 1223 return false; 1224 1225 if (LoadType) { 1226 if (LoadType != LI->getType()) 1227 return false; 1228 } else { 1229 LoadType = LI->getType(); 1230 } 1231 1232 // Ensure that there are no instructions between the PHI and the load that 1233 // could store. 1234 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1235 if (BBI->mayWriteToMemory()) 1236 return false; 1237 1238 MaxAlign = std::max(MaxAlign, LI->getAlign()); 1239 } 1240 1241 if (!LoadType) 1242 return false; 1243 1244 APInt LoadSize = APInt(APWidth, DL.getTypeStoreSize(LoadType).getFixedSize()); 1245 1246 // We can only transform this if it is safe to push the loads into the 1247 // predecessor blocks. The only thing to watch out for is that we can't put 1248 // a possibly trapping load in the predecessor if it is a critical edge. 1249 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1250 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1251 Value *InVal = PN.getIncomingValue(Idx); 1252 1253 // If the value is produced by the terminator of the predecessor (an 1254 // invoke) or it has side-effects, there is no valid place to put a load 1255 // in the predecessor. 1256 if (TI == InVal || TI->mayHaveSideEffects()) 1257 return false; 1258 1259 // If the predecessor has a single successor, then the edge isn't 1260 // critical. 1261 if (TI->getNumSuccessors() == 1) 1262 continue; 1263 1264 // If this pointer is always safe to load, or if we can prove that there 1265 // is already a load in the block, then we can move the load to the pred 1266 // block. 1267 if (isSafeToLoadUnconditionally(InVal, MaxAlign, LoadSize, DL, TI)) 1268 continue; 1269 1270 return false; 1271 } 1272 1273 return true; 1274 } 1275 1276 static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) { 1277 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 1278 1279 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1280 Type *LoadTy = SomeLoad->getType(); 1281 IRB.SetInsertPoint(&PN); 1282 PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1283 PN.getName() + ".sroa.speculated"); 1284 1285 // Get the AA tags and alignment to use from one of the loads. It does not 1286 // matter which one we get and if any differ. 1287 AAMDNodes AATags = SomeLoad->getAAMetadata(); 1288 Align Alignment = SomeLoad->getAlign(); 1289 1290 // Rewrite all loads of the PN to use the new PHI. 1291 while (!PN.use_empty()) { 1292 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1293 LI->replaceAllUsesWith(NewPN); 1294 LI->eraseFromParent(); 1295 } 1296 1297 // Inject loads into all of the pred blocks. 1298 DenseMap<BasicBlock*, Value*> InjectedLoads; 1299 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1300 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1301 Value *InVal = PN.getIncomingValue(Idx); 1302 1303 // A PHI node is allowed to have multiple (duplicated) entries for the same 1304 // basic block, as long as the value is the same. So if we already injected 1305 // a load in the predecessor, then we should reuse the same load for all 1306 // duplicated entries. 1307 if (Value* V = InjectedLoads.lookup(Pred)) { 1308 NewPN->addIncoming(V, Pred); 1309 continue; 1310 } 1311 1312 Instruction *TI = Pred->getTerminator(); 1313 IRB.SetInsertPoint(TI); 1314 1315 LoadInst *Load = IRB.CreateAlignedLoad( 1316 LoadTy, InVal, Alignment, 1317 (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1318 ++NumLoadsSpeculated; 1319 if (AATags) 1320 Load->setAAMetadata(AATags); 1321 NewPN->addIncoming(Load, Pred); 1322 InjectedLoads[Pred] = Load; 1323 } 1324 1325 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1326 PN.eraseFromParent(); 1327 } 1328 1329 /// Select instructions that use an alloca and are subsequently loaded can be 1330 /// rewritten to load both input pointers and then select between the result, 1331 /// allowing the load of the alloca to be promoted. 1332 /// From this: 1333 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 1334 /// %V = load i32* %P2 1335 /// to: 1336 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1337 /// %V2 = load i32* %Other 1338 /// %V = select i1 %cond, i32 %V1, i32 %V2 1339 /// 1340 /// We can do this to a select if its only uses are loads and if the operand 1341 /// to the select can be loaded unconditionally. If found an intervening bitcast 1342 /// with a single use of the load, allow the promotion. 1343 static bool isSafeSelectToSpeculate(SelectInst &SI) { 1344 Value *TValue = SI.getTrueValue(); 1345 Value *FValue = SI.getFalseValue(); 1346 const DataLayout &DL = SI.getModule()->getDataLayout(); 1347 1348 for (User *U : SI.users()) { 1349 LoadInst *LI; 1350 BitCastInst *BC = dyn_cast<BitCastInst>(U); 1351 if (BC && BC->hasOneUse()) 1352 LI = dyn_cast<LoadInst>(*BC->user_begin()); 1353 else 1354 LI = dyn_cast<LoadInst>(U); 1355 1356 if (!LI || !LI->isSimple()) 1357 return false; 1358 1359 // Both operands to the select need to be dereferenceable, either 1360 // absolutely (e.g. allocas) or at this point because we can see other 1361 // accesses to it. 1362 if (!isSafeToLoadUnconditionally(TValue, LI->getType(), 1363 LI->getAlign(), DL, LI)) 1364 return false; 1365 if (!isSafeToLoadUnconditionally(FValue, LI->getType(), 1366 LI->getAlign(), DL, LI)) 1367 return false; 1368 } 1369 1370 return true; 1371 } 1372 1373 static void speculateSelectInstLoads(IRBuilderTy &IRB, SelectInst &SI) { 1374 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 1375 1376 IRB.SetInsertPoint(&SI); 1377 Value *TV = SI.getTrueValue(); 1378 Value *FV = SI.getFalseValue(); 1379 // Replace the loads of the select with a select of two loads. 1380 while (!SI.use_empty()) { 1381 LoadInst *LI; 1382 BitCastInst *BC = dyn_cast<BitCastInst>(SI.user_back()); 1383 if (BC) { 1384 assert(BC->hasOneUse() && "Bitcast should have a single use."); 1385 LI = cast<LoadInst>(BC->user_back()); 1386 } else { 1387 LI = cast<LoadInst>(SI.user_back()); 1388 } 1389 1390 assert(LI->isSimple() && "We only speculate simple loads"); 1391 1392 IRB.SetInsertPoint(LI); 1393 Value *NewTV = 1394 BC ? IRB.CreateBitCast(TV, BC->getType(), TV->getName() + ".sroa.cast") 1395 : TV; 1396 Value *NewFV = 1397 BC ? IRB.CreateBitCast(FV, BC->getType(), FV->getName() + ".sroa.cast") 1398 : FV; 1399 LoadInst *TL = IRB.CreateLoad(LI->getType(), NewTV, 1400 LI->getName() + ".sroa.speculate.load.true"); 1401 LoadInst *FL = IRB.CreateLoad(LI->getType(), NewFV, 1402 LI->getName() + ".sroa.speculate.load.false"); 1403 NumLoadsSpeculated += 2; 1404 1405 // Transfer alignment and AA info if present. 1406 TL->setAlignment(LI->getAlign()); 1407 FL->setAlignment(LI->getAlign()); 1408 1409 AAMDNodes Tags = LI->getAAMetadata(); 1410 if (Tags) { 1411 TL->setAAMetadata(Tags); 1412 FL->setAAMetadata(Tags); 1413 } 1414 1415 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1416 LI->getName() + ".sroa.speculated"); 1417 1418 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1419 LI->replaceAllUsesWith(V); 1420 LI->eraseFromParent(); 1421 if (BC) 1422 BC->eraseFromParent(); 1423 } 1424 SI.eraseFromParent(); 1425 } 1426 1427 /// Build a GEP out of a base pointer and indices. 1428 /// 1429 /// This will return the BasePtr if that is valid, or build a new GEP 1430 /// instruction using the IRBuilder if GEP-ing is needed. 1431 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1432 SmallVectorImpl<Value *> &Indices, 1433 const Twine &NamePrefix) { 1434 if (Indices.empty()) 1435 return BasePtr; 1436 1437 // A single zero index is a no-op, so check for this and avoid building a GEP 1438 // in that case. 1439 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1440 return BasePtr; 1441 1442 // buildGEP() is only called for non-opaque pointers. 1443 return IRB.CreateInBoundsGEP( 1444 BasePtr->getType()->getNonOpaquePointerElementType(), BasePtr, Indices, 1445 NamePrefix + "sroa_idx"); 1446 } 1447 1448 /// Get a natural GEP off of the BasePtr walking through Ty toward 1449 /// TargetTy without changing the offset of the pointer. 1450 /// 1451 /// This routine assumes we've already established a properly offset GEP with 1452 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1453 /// zero-indices down through type layers until we find one the same as 1454 /// TargetTy. If we can't find one with the same type, we at least try to use 1455 /// one with the same size. If none of that works, we just produce the GEP as 1456 /// indicated by Indices to have the correct offset. 1457 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1458 Value *BasePtr, Type *Ty, Type *TargetTy, 1459 SmallVectorImpl<Value *> &Indices, 1460 const Twine &NamePrefix) { 1461 if (Ty == TargetTy) 1462 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1463 1464 // Offset size to use for the indices. 1465 unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType()); 1466 1467 // See if we can descend into a struct and locate a field with the correct 1468 // type. 1469 unsigned NumLayers = 0; 1470 Type *ElementTy = Ty; 1471 do { 1472 if (ElementTy->isPointerTy()) 1473 break; 1474 1475 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { 1476 ElementTy = ArrayTy->getElementType(); 1477 Indices.push_back(IRB.getIntN(OffsetSize, 0)); 1478 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { 1479 ElementTy = VectorTy->getElementType(); 1480 Indices.push_back(IRB.getInt32(0)); 1481 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1482 if (STy->element_begin() == STy->element_end()) 1483 break; // Nothing left to descend into. 1484 ElementTy = *STy->element_begin(); 1485 Indices.push_back(IRB.getInt32(0)); 1486 } else { 1487 break; 1488 } 1489 ++NumLayers; 1490 } while (ElementTy != TargetTy); 1491 if (ElementTy != TargetTy) 1492 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1493 1494 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1495 } 1496 1497 /// Get a natural GEP from a base pointer to a particular offset and 1498 /// resulting in a particular type. 1499 /// 1500 /// The goal is to produce a "natural" looking GEP that works with the existing 1501 /// composite types to arrive at the appropriate offset and element type for 1502 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1503 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1504 /// Indices, and setting Ty to the result subtype. 1505 /// 1506 /// If no natural GEP can be constructed, this function returns null. 1507 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1508 Value *Ptr, APInt Offset, Type *TargetTy, 1509 SmallVectorImpl<Value *> &Indices, 1510 const Twine &NamePrefix) { 1511 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1512 1513 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1514 // an i8. 1515 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) 1516 return nullptr; 1517 1518 Type *ElementTy = Ty->getNonOpaquePointerElementType(); 1519 if (!ElementTy->isSized()) 1520 return nullptr; // We can't GEP through an unsized element. 1521 1522 SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(ElementTy, Offset); 1523 if (Offset != 0) 1524 return nullptr; 1525 1526 for (const APInt &Index : IntIndices) 1527 Indices.push_back(IRB.getInt(Index)); 1528 return getNaturalGEPWithType(IRB, DL, Ptr, ElementTy, TargetTy, Indices, 1529 NamePrefix); 1530 } 1531 1532 /// Compute an adjusted pointer from Ptr by Offset bytes where the 1533 /// resulting pointer has PointerTy. 1534 /// 1535 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1536 /// and produces the pointer type desired. Where it cannot, it will try to use 1537 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1538 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1539 /// bitcast to the type. 1540 /// 1541 /// The strategy for finding the more natural GEPs is to peel off layers of the 1542 /// pointer, walking back through bit casts and GEPs, searching for a base 1543 /// pointer from which we can compute a natural GEP with the desired 1544 /// properties. The algorithm tries to fold as many constant indices into 1545 /// a single GEP as possible, thus making each GEP more independent of the 1546 /// surrounding code. 1547 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1548 APInt Offset, Type *PointerTy, 1549 const Twine &NamePrefix) { 1550 // Create i8 GEP for opaque pointers. 1551 if (Ptr->getType()->isOpaquePointerTy()) { 1552 if (Offset != 0) 1553 Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset), 1554 NamePrefix + "sroa_idx"); 1555 return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy, 1556 NamePrefix + "sroa_cast"); 1557 } 1558 1559 // Even though we don't look through PHI nodes, we could be called on an 1560 // instruction in an unreachable block, which may be on a cycle. 1561 SmallPtrSet<Value *, 4> Visited; 1562 Visited.insert(Ptr); 1563 SmallVector<Value *, 4> Indices; 1564 1565 // We may end up computing an offset pointer that has the wrong type. If we 1566 // never are able to compute one directly that has the correct type, we'll 1567 // fall back to it, so keep it and the base it was computed from around here. 1568 Value *OffsetPtr = nullptr; 1569 Value *OffsetBasePtr; 1570 1571 // Remember any i8 pointer we come across to re-use if we need to do a raw 1572 // byte offset. 1573 Value *Int8Ptr = nullptr; 1574 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1575 1576 PointerType *TargetPtrTy = cast<PointerType>(PointerTy); 1577 Type *TargetTy = TargetPtrTy->getNonOpaquePointerElementType(); 1578 1579 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different 1580 // address space from the expected `PointerTy` (the pointer to be used). 1581 // Adjust the pointer type based the original storage pointer. 1582 auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace(); 1583 PointerTy = TargetTy->getPointerTo(AS); 1584 1585 do { 1586 // First fold any existing GEPs into the offset. 1587 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1588 APInt GEPOffset(Offset.getBitWidth(), 0); 1589 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1590 break; 1591 Offset += GEPOffset; 1592 Ptr = GEP->getPointerOperand(); 1593 if (!Visited.insert(Ptr).second) 1594 break; 1595 } 1596 1597 // See if we can perform a natural GEP here. 1598 Indices.clear(); 1599 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1600 Indices, NamePrefix)) { 1601 // If we have a new natural pointer at the offset, clear out any old 1602 // offset pointer we computed. Unless it is the base pointer or 1603 // a non-instruction, we built a GEP we don't need. Zap it. 1604 if (OffsetPtr && OffsetPtr != OffsetBasePtr) 1605 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { 1606 assert(I->use_empty() && "Built a GEP with uses some how!"); 1607 I->eraseFromParent(); 1608 } 1609 OffsetPtr = P; 1610 OffsetBasePtr = Ptr; 1611 // If we also found a pointer of the right type, we're done. 1612 if (P->getType() == PointerTy) 1613 break; 1614 } 1615 1616 // Stash this pointer if we've found an i8*. 1617 if (Ptr->getType()->isIntegerTy(8)) { 1618 Int8Ptr = Ptr; 1619 Int8PtrOffset = Offset; 1620 } 1621 1622 // Peel off a layer of the pointer and update the offset appropriately. 1623 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1624 Ptr = cast<Operator>(Ptr)->getOperand(0); 1625 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1626 if (GA->isInterposable()) 1627 break; 1628 Ptr = GA->getAliasee(); 1629 } else { 1630 break; 1631 } 1632 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1633 } while (Visited.insert(Ptr).second); 1634 1635 if (!OffsetPtr) { 1636 if (!Int8Ptr) { 1637 Int8Ptr = IRB.CreateBitCast( 1638 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), 1639 NamePrefix + "sroa_raw_cast"); 1640 Int8PtrOffset = Offset; 1641 } 1642 1643 OffsetPtr = Int8PtrOffset == 0 1644 ? Int8Ptr 1645 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, 1646 IRB.getInt(Int8PtrOffset), 1647 NamePrefix + "sroa_raw_idx"); 1648 } 1649 Ptr = OffsetPtr; 1650 1651 // On the off chance we were targeting i8*, guard the bitcast here. 1652 if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) { 1653 Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, 1654 TargetPtrTy, 1655 NamePrefix + "sroa_cast"); 1656 } 1657 1658 return Ptr; 1659 } 1660 1661 /// Compute the adjusted alignment for a load or store from an offset. 1662 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { 1663 return commonAlignment(getLoadStoreAlignment(I), Offset); 1664 } 1665 1666 /// Test whether we can convert a value from the old to the new type. 1667 /// 1668 /// This predicate should be used to guard calls to convertValue in order to 1669 /// ensure that we only try to convert viable values. The strategy is that we 1670 /// will peel off single element struct and array wrappings to get to an 1671 /// underlying value, and convert that value. 1672 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1673 if (OldTy == NewTy) 1674 return true; 1675 1676 // For integer types, we can't handle any bit-width differences. This would 1677 // break both vector conversions with extension and introduce endianness 1678 // issues when in conjunction with loads and stores. 1679 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1680 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1681 cast<IntegerType>(NewTy)->getBitWidth() && 1682 "We can't have the same bitwidth for different int types"); 1683 return false; 1684 } 1685 1686 if (DL.getTypeSizeInBits(NewTy).getFixedSize() != 1687 DL.getTypeSizeInBits(OldTy).getFixedSize()) 1688 return false; 1689 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1690 return false; 1691 1692 // We can convert pointers to integers and vice-versa. Same for vectors 1693 // of pointers and integers. 1694 OldTy = OldTy->getScalarType(); 1695 NewTy = NewTy->getScalarType(); 1696 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1697 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1698 unsigned OldAS = OldTy->getPointerAddressSpace(); 1699 unsigned NewAS = NewTy->getPointerAddressSpace(); 1700 // Convert pointers if they are pointers from the same address space or 1701 // different integral (not non-integral) address spaces with the same 1702 // pointer size. 1703 return OldAS == NewAS || 1704 (!DL.isNonIntegralAddressSpace(OldAS) && 1705 !DL.isNonIntegralAddressSpace(NewAS) && 1706 DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1707 } 1708 1709 // We can convert integers to integral pointers, but not to non-integral 1710 // pointers. 1711 if (OldTy->isIntegerTy()) 1712 return !DL.isNonIntegralPointerType(NewTy); 1713 1714 // We can convert integral pointers to integers, but non-integral pointers 1715 // need to remain pointers. 1716 if (!DL.isNonIntegralPointerType(OldTy)) 1717 return NewTy->isIntegerTy(); 1718 1719 return false; 1720 } 1721 1722 return true; 1723 } 1724 1725 /// Generic routine to convert an SSA value to a value of a different 1726 /// type. 1727 /// 1728 /// This will try various different casting techniques, such as bitcasts, 1729 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1730 /// two types for viability with this routine. 1731 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1732 Type *NewTy) { 1733 Type *OldTy = V->getType(); 1734 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1735 1736 if (OldTy == NewTy) 1737 return V; 1738 1739 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1740 "Integer types must be the exact same to convert."); 1741 1742 // See if we need inttoptr for this type pair. May require additional bitcast. 1743 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1744 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1745 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1746 // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*> 1747 // Directly handle i64 to i8* 1748 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1749 NewTy); 1750 } 1751 1752 // See if we need ptrtoint for this type pair. May require additional bitcast. 1753 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { 1754 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1755 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1756 // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32> 1757 // Expand i8* to i64 --> i8* to i64 to i64 1758 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1759 NewTy); 1760 } 1761 1762 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1763 unsigned OldAS = OldTy->getPointerAddressSpace(); 1764 unsigned NewAS = NewTy->getPointerAddressSpace(); 1765 // To convert pointers with different address spaces (they are already 1766 // checked convertible, i.e. they have the same pointer size), so far we 1767 // cannot use `bitcast` (which has restrict on the same address space) or 1768 // `addrspacecast` (which is not always no-op casting). Instead, use a pair 1769 // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit 1770 // size. 1771 if (OldAS != NewAS) { 1772 assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1773 return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1774 NewTy); 1775 } 1776 } 1777 1778 return IRB.CreateBitCast(V, NewTy); 1779 } 1780 1781 /// Test whether the given slice use can be promoted to a vector. 1782 /// 1783 /// This function is called to test each entry in a partition which is slated 1784 /// for a single slice. 1785 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 1786 VectorType *Ty, 1787 uint64_t ElementSize, 1788 const DataLayout &DL) { 1789 // First validate the slice offsets. 1790 uint64_t BeginOffset = 1791 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 1792 uint64_t BeginIndex = BeginOffset / ElementSize; 1793 if (BeginIndex * ElementSize != BeginOffset || 1794 BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements()) 1795 return false; 1796 uint64_t EndOffset = 1797 std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 1798 uint64_t EndIndex = EndOffset / ElementSize; 1799 if (EndIndex * ElementSize != EndOffset || 1800 EndIndex > cast<FixedVectorType>(Ty)->getNumElements()) 1801 return false; 1802 1803 assert(EndIndex > BeginIndex && "Empty vector!"); 1804 uint64_t NumElements = EndIndex - BeginIndex; 1805 Type *SliceTy = (NumElements == 1) 1806 ? Ty->getElementType() 1807 : FixedVectorType::get(Ty->getElementType(), NumElements); 1808 1809 Type *SplitIntTy = 1810 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1811 1812 Use *U = S.getUse(); 1813 1814 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1815 if (MI->isVolatile()) 1816 return false; 1817 if (!S.isSplittable()) 1818 return false; // Skip any unsplittable intrinsics. 1819 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1820 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 1821 return false; 1822 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1823 if (LI->isVolatile()) 1824 return false; 1825 Type *LTy = LI->getType(); 1826 // Disable vector promotion when there are loads or stores of an FCA. 1827 if (LTy->isStructTy()) 1828 return false; 1829 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1830 assert(LTy->isIntegerTy()); 1831 LTy = SplitIntTy; 1832 } 1833 if (!canConvertValue(DL, SliceTy, LTy)) 1834 return false; 1835 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1836 if (SI->isVolatile()) 1837 return false; 1838 Type *STy = SI->getValueOperand()->getType(); 1839 // Disable vector promotion when there are loads or stores of an FCA. 1840 if (STy->isStructTy()) 1841 return false; 1842 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1843 assert(STy->isIntegerTy()); 1844 STy = SplitIntTy; 1845 } 1846 if (!canConvertValue(DL, STy, SliceTy)) 1847 return false; 1848 } else { 1849 return false; 1850 } 1851 1852 return true; 1853 } 1854 1855 /// Test whether the given alloca partitioning and range of slices can be 1856 /// promoted to a vector. 1857 /// 1858 /// This is a quick test to check whether we can rewrite a particular alloca 1859 /// partition (and its newly formed alloca) into a vector alloca with only 1860 /// whole-vector loads and stores such that it could be promoted to a vector 1861 /// SSA value. We only can ensure this for a limited set of operations, and we 1862 /// don't want to do the rewrites unless we are confident that the result will 1863 /// be promotable, so we have an early test here. 1864 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 1865 // Collect the candidate types for vector-based promotion. Also track whether 1866 // we have different element types. 1867 SmallVector<VectorType *, 4> CandidateTys; 1868 Type *CommonEltTy = nullptr; 1869 bool HaveCommonEltTy = true; 1870 auto CheckCandidateType = [&](Type *Ty) { 1871 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 1872 // Return if bitcast to vectors is different for total size in bits. 1873 if (!CandidateTys.empty()) { 1874 VectorType *V = CandidateTys[0]; 1875 if (DL.getTypeSizeInBits(VTy).getFixedSize() != 1876 DL.getTypeSizeInBits(V).getFixedSize()) { 1877 CandidateTys.clear(); 1878 return; 1879 } 1880 } 1881 CandidateTys.push_back(VTy); 1882 if (!CommonEltTy) 1883 CommonEltTy = VTy->getElementType(); 1884 else if (CommonEltTy != VTy->getElementType()) 1885 HaveCommonEltTy = false; 1886 } 1887 }; 1888 // Consider any loads or stores that are the exact size of the slice. 1889 for (const Slice &S : P) 1890 if (S.beginOffset() == P.beginOffset() && 1891 S.endOffset() == P.endOffset()) { 1892 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 1893 CheckCandidateType(LI->getType()); 1894 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 1895 CheckCandidateType(SI->getValueOperand()->getType()); 1896 } 1897 1898 // If we didn't find a vector type, nothing to do here. 1899 if (CandidateTys.empty()) 1900 return nullptr; 1901 1902 // Remove non-integer vector types if we had multiple common element types. 1903 // FIXME: It'd be nice to replace them with integer vector types, but we can't 1904 // do that until all the backends are known to produce good code for all 1905 // integer vector types. 1906 if (!HaveCommonEltTy) { 1907 llvm::erase_if(CandidateTys, [](VectorType *VTy) { 1908 return !VTy->getElementType()->isIntegerTy(); 1909 }); 1910 1911 // If there were no integer vector types, give up. 1912 if (CandidateTys.empty()) 1913 return nullptr; 1914 1915 // Rank the remaining candidate vector types. This is easy because we know 1916 // they're all integer vectors. We sort by ascending number of elements. 1917 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 1918 (void)DL; 1919 assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() == 1920 DL.getTypeSizeInBits(LHSTy).getFixedSize() && 1921 "Cannot have vector types of different sizes!"); 1922 assert(RHSTy->getElementType()->isIntegerTy() && 1923 "All non-integer types eliminated!"); 1924 assert(LHSTy->getElementType()->isIntegerTy() && 1925 "All non-integer types eliminated!"); 1926 return cast<FixedVectorType>(RHSTy)->getNumElements() < 1927 cast<FixedVectorType>(LHSTy)->getNumElements(); 1928 }; 1929 llvm::sort(CandidateTys, RankVectorTypes); 1930 CandidateTys.erase( 1931 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), 1932 CandidateTys.end()); 1933 } else { 1934 // The only way to have the same element type in every vector type is to 1935 // have the same vector type. Check that and remove all but one. 1936 #ifndef NDEBUG 1937 for (VectorType *VTy : CandidateTys) { 1938 assert(VTy->getElementType() == CommonEltTy && 1939 "Unaccounted for element type!"); 1940 assert(VTy == CandidateTys[0] && 1941 "Different vector types with the same element type!"); 1942 } 1943 #endif 1944 CandidateTys.resize(1); 1945 } 1946 1947 // Try each vector type, and return the one which works. 1948 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { 1949 uint64_t ElementSize = 1950 DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize(); 1951 1952 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1953 // that aren't byte sized. 1954 if (ElementSize % 8) 1955 return false; 1956 assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 && 1957 "vector size not a multiple of element size?"); 1958 ElementSize /= 8; 1959 1960 for (const Slice &S : P) 1961 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 1962 return false; 1963 1964 for (const Slice *S : P.splitSliceTails()) 1965 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 1966 return false; 1967 1968 return true; 1969 }; 1970 for (VectorType *VTy : CandidateTys) 1971 if (CheckVectorTypeForPromotion(VTy)) 1972 return VTy; 1973 1974 return nullptr; 1975 } 1976 1977 /// Test whether a slice of an alloca is valid for integer widening. 1978 /// 1979 /// This implements the necessary checking for the \c isIntegerWideningViable 1980 /// test below on a single slice of the alloca. 1981 static bool isIntegerWideningViableForSlice(const Slice &S, 1982 uint64_t AllocBeginOffset, 1983 Type *AllocaTy, 1984 const DataLayout &DL, 1985 bool &WholeAllocaOp) { 1986 uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize(); 1987 1988 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 1989 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 1990 1991 Use *U = S.getUse(); 1992 1993 // Lifetime intrinsics operate over the whole alloca whose sizes are usually 1994 // larger than other load/store slices (RelEnd > Size). But lifetime are 1995 // always promotable and should not impact other slices' promotability of the 1996 // partition. 1997 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1998 if (II->isLifetimeStartOrEnd() || II->isDroppable()) 1999 return true; 2000 } 2001 2002 // We can't reasonably handle cases where the load or store extends past 2003 // the end of the alloca's type and into its padding. 2004 if (RelEnd > Size) 2005 return false; 2006 2007 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 2008 if (LI->isVolatile()) 2009 return false; 2010 // We can't handle loads that extend past the allocated memory. 2011 if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size) 2012 return false; 2013 // So far, AllocaSliceRewriter does not support widening split slice tails 2014 // in rewriteIntegerLoad. 2015 if (S.beginOffset() < AllocBeginOffset) 2016 return false; 2017 // Note that we don't count vector loads or stores as whole-alloca 2018 // operations which enable integer widening because we would prefer to use 2019 // vector widening instead. 2020 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 2021 WholeAllocaOp = true; 2022 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 2023 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2024 return false; 2025 } else if (RelBegin != 0 || RelEnd != Size || 2026 !canConvertValue(DL, AllocaTy, LI->getType())) { 2027 // Non-integer loads need to be convertible from the alloca type so that 2028 // they are promotable. 2029 return false; 2030 } 2031 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2032 Type *ValueTy = SI->getValueOperand()->getType(); 2033 if (SI->isVolatile()) 2034 return false; 2035 // We can't handle stores that extend past the allocated memory. 2036 if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size) 2037 return false; 2038 // So far, AllocaSliceRewriter does not support widening split slice tails 2039 // in rewriteIntegerStore. 2040 if (S.beginOffset() < AllocBeginOffset) 2041 return false; 2042 // Note that we don't count vector loads or stores as whole-alloca 2043 // operations which enable integer widening because we would prefer to use 2044 // vector widening instead. 2045 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 2046 WholeAllocaOp = true; 2047 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 2048 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2049 return false; 2050 } else if (RelBegin != 0 || RelEnd != Size || 2051 !canConvertValue(DL, ValueTy, AllocaTy)) { 2052 // Non-integer stores need to be convertible to the alloca type so that 2053 // they are promotable. 2054 return false; 2055 } 2056 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2057 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 2058 return false; 2059 if (!S.isSplittable()) 2060 return false; // Skip any unsplittable intrinsics. 2061 } else { 2062 return false; 2063 } 2064 2065 return true; 2066 } 2067 2068 /// Test whether the given alloca partition's integer operations can be 2069 /// widened to promotable ones. 2070 /// 2071 /// This is a quick test to check whether we can rewrite the integer loads and 2072 /// stores to a particular alloca into wider loads and stores and be able to 2073 /// promote the resulting alloca. 2074 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 2075 const DataLayout &DL) { 2076 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize(); 2077 // Don't create integer types larger than the maximum bitwidth. 2078 if (SizeInBits > IntegerType::MAX_INT_BITS) 2079 return false; 2080 2081 // Don't try to handle allocas with bit-padding. 2082 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize()) 2083 return false; 2084 2085 // We need to ensure that an integer type with the appropriate bitwidth can 2086 // be converted to the alloca type, whatever that is. We don't want to force 2087 // the alloca itself to have an integer type if there is a more suitable one. 2088 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 2089 if (!canConvertValue(DL, AllocaTy, IntTy) || 2090 !canConvertValue(DL, IntTy, AllocaTy)) 2091 return false; 2092 2093 // While examining uses, we ensure that the alloca has a covering load or 2094 // store. We don't want to widen the integer operations only to fail to 2095 // promote due to some other unsplittable entry (which we may make splittable 2096 // later). However, if there are only splittable uses, go ahead and assume 2097 // that we cover the alloca. 2098 // FIXME: We shouldn't consider split slices that happen to start in the 2099 // partition here... 2100 bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits); 2101 2102 for (const Slice &S : P) 2103 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 2104 WholeAllocaOp)) 2105 return false; 2106 2107 for (const Slice *S : P.splitSliceTails()) 2108 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2109 WholeAllocaOp)) 2110 return false; 2111 2112 return WholeAllocaOp; 2113 } 2114 2115 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2116 IntegerType *Ty, uint64_t Offset, 2117 const Twine &Name) { 2118 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2119 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2120 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2121 DL.getTypeStoreSize(IntTy).getFixedSize() && 2122 "Element extends past full value"); 2123 uint64_t ShAmt = 8 * Offset; 2124 if (DL.isBigEndian()) 2125 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2126 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2127 if (ShAmt) { 2128 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2129 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2130 } 2131 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2132 "Cannot extract to a larger integer!"); 2133 if (Ty != IntTy) { 2134 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2135 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); 2136 } 2137 return V; 2138 } 2139 2140 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2141 Value *V, uint64_t Offset, const Twine &Name) { 2142 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2143 IntegerType *Ty = cast<IntegerType>(V->getType()); 2144 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2145 "Cannot insert a larger integer!"); 2146 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2147 if (Ty != IntTy) { 2148 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2149 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); 2150 } 2151 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2152 DL.getTypeStoreSize(IntTy).getFixedSize() && 2153 "Element store outside of alloca store"); 2154 uint64_t ShAmt = 8 * Offset; 2155 if (DL.isBigEndian()) 2156 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2157 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2158 if (ShAmt) { 2159 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2160 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2161 } 2162 2163 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2164 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2165 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2166 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); 2167 V = IRB.CreateOr(Old, V, Name + ".insert"); 2168 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); 2169 } 2170 return V; 2171 } 2172 2173 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2174 unsigned EndIndex, const Twine &Name) { 2175 auto *VecTy = cast<FixedVectorType>(V->getType()); 2176 unsigned NumElements = EndIndex - BeginIndex; 2177 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2178 2179 if (NumElements == VecTy->getNumElements()) 2180 return V; 2181 2182 if (NumElements == 1) { 2183 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2184 Name + ".extract"); 2185 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); 2186 return V; 2187 } 2188 2189 auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex)); 2190 V = IRB.CreateShuffleVector(V, Mask, Name + ".extract"); 2191 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2192 return V; 2193 } 2194 2195 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2196 unsigned BeginIndex, const Twine &Name) { 2197 VectorType *VecTy = cast<VectorType>(Old->getType()); 2198 assert(VecTy && "Can only insert a vector into a vector"); 2199 2200 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2201 if (!Ty) { 2202 // Single element to insert. 2203 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2204 Name + ".insert"); 2205 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); 2206 return V; 2207 } 2208 2209 assert(cast<FixedVectorType>(Ty)->getNumElements() <= 2210 cast<FixedVectorType>(VecTy)->getNumElements() && 2211 "Too many elements!"); 2212 if (cast<FixedVectorType>(Ty)->getNumElements() == 2213 cast<FixedVectorType>(VecTy)->getNumElements()) { 2214 assert(V->getType() == VecTy && "Vector type mismatch"); 2215 return V; 2216 } 2217 unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements(); 2218 2219 // When inserting a smaller vector into the larger to store, we first 2220 // use a shuffle vector to widen it with undef elements, and then 2221 // a second shuffle vector to select between the loaded vector and the 2222 // incoming vector. 2223 SmallVector<int, 8> Mask; 2224 Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2225 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2226 if (i >= BeginIndex && i < EndIndex) 2227 Mask.push_back(i - BeginIndex); 2228 else 2229 Mask.push_back(-1); 2230 V = IRB.CreateShuffleVector(V, Mask, Name + ".expand"); 2231 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2232 2233 SmallVector<Constant *, 8> Mask2; 2234 Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2235 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2236 Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2237 2238 V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend"); 2239 2240 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); 2241 return V; 2242 } 2243 2244 /// Visitor to rewrite instructions using p particular slice of an alloca 2245 /// to use a new alloca. 2246 /// 2247 /// Also implements the rewriting to vector-based accesses when the partition 2248 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2249 /// lives here. 2250 class llvm::sroa::AllocaSliceRewriter 2251 : public InstVisitor<AllocaSliceRewriter, bool> { 2252 // Befriend the base class so it can delegate to private visit methods. 2253 friend class InstVisitor<AllocaSliceRewriter, bool>; 2254 2255 using Base = InstVisitor<AllocaSliceRewriter, bool>; 2256 2257 const DataLayout &DL; 2258 AllocaSlices &AS; 2259 SROAPass &Pass; 2260 AllocaInst &OldAI, &NewAI; 2261 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2262 Type *NewAllocaTy; 2263 2264 // This is a convenience and flag variable that will be null unless the new 2265 // alloca's integer operations should be widened to this integer type due to 2266 // passing isIntegerWideningViable above. If it is non-null, the desired 2267 // integer type will be stored here for easy access during rewriting. 2268 IntegerType *IntTy; 2269 2270 // If we are rewriting an alloca partition which can be written as pure 2271 // vector operations, we stash extra information here. When VecTy is 2272 // non-null, we have some strict guarantees about the rewritten alloca: 2273 // - The new alloca is exactly the size of the vector type here. 2274 // - The accesses all either map to the entire vector or to a single 2275 // element. 2276 // - The set of accessing instructions is only one of those handled above 2277 // in isVectorPromotionViable. Generally these are the same access kinds 2278 // which are promotable via mem2reg. 2279 VectorType *VecTy; 2280 Type *ElementTy; 2281 uint64_t ElementSize; 2282 2283 // The original offset of the slice currently being rewritten relative to 2284 // the original alloca. 2285 uint64_t BeginOffset = 0; 2286 uint64_t EndOffset = 0; 2287 2288 // The new offsets of the slice currently being rewritten relative to the 2289 // original alloca. 2290 uint64_t NewBeginOffset = 0, NewEndOffset = 0; 2291 2292 uint64_t SliceSize = 0; 2293 bool IsSplittable = false; 2294 bool IsSplit = false; 2295 Use *OldUse = nullptr; 2296 Instruction *OldPtr = nullptr; 2297 2298 // Track post-rewrite users which are PHI nodes and Selects. 2299 SmallSetVector<PHINode *, 8> &PHIUsers; 2300 SmallSetVector<SelectInst *, 8> &SelectUsers; 2301 2302 // Utility IR builder, whose name prefix is setup for each visited use, and 2303 // the insertion point is set to point to the user. 2304 IRBuilderTy IRB; 2305 2306 public: 2307 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass, 2308 AllocaInst &OldAI, AllocaInst &NewAI, 2309 uint64_t NewAllocaBeginOffset, 2310 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2311 VectorType *PromotableVecTy, 2312 SmallSetVector<PHINode *, 8> &PHIUsers, 2313 SmallSetVector<SelectInst *, 8> &SelectUsers) 2314 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2315 NewAllocaBeginOffset(NewAllocaBeginOffset), 2316 NewAllocaEndOffset(NewAllocaEndOffset), 2317 NewAllocaTy(NewAI.getAllocatedType()), 2318 IntTy( 2319 IsIntegerPromotable 2320 ? Type::getIntNTy(NewAI.getContext(), 2321 DL.getTypeSizeInBits(NewAI.getAllocatedType()) 2322 .getFixedSize()) 2323 : nullptr), 2324 VecTy(PromotableVecTy), 2325 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2326 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8 2327 : 0), 2328 PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2329 IRB(NewAI.getContext(), ConstantFolder()) { 2330 if (VecTy) { 2331 assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 && 2332 "Only multiple-of-8 sized vector elements are viable"); 2333 ++NumVectorized; 2334 } 2335 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2336 } 2337 2338 bool visit(AllocaSlices::const_iterator I) { 2339 bool CanSROA = true; 2340 BeginOffset = I->beginOffset(); 2341 EndOffset = I->endOffset(); 2342 IsSplittable = I->isSplittable(); 2343 IsSplit = 2344 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2345 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2346 LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); 2347 LLVM_DEBUG(dbgs() << "\n"); 2348 2349 // Compute the intersecting offset range. 2350 assert(BeginOffset < NewAllocaEndOffset); 2351 assert(EndOffset > NewAllocaBeginOffset); 2352 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2353 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2354 2355 SliceSize = NewEndOffset - NewBeginOffset; 2356 2357 OldUse = I->getUse(); 2358 OldPtr = cast<Instruction>(OldUse->get()); 2359 2360 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2361 IRB.SetInsertPoint(OldUserI); 2362 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2363 IRB.getInserter().SetNamePrefix( 2364 Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2365 2366 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2367 if (VecTy || IntTy) 2368 assert(CanSROA); 2369 return CanSROA; 2370 } 2371 2372 private: 2373 // Make sure the other visit overloads are visible. 2374 using Base::visit; 2375 2376 // Every instruction which can end up as a user must have a rewrite rule. 2377 bool visitInstruction(Instruction &I) { 2378 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2379 llvm_unreachable("No rewrite rule for this instruction!"); 2380 } 2381 2382 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2383 // Note that the offset computation can use BeginOffset or NewBeginOffset 2384 // interchangeably for unsplit slices. 2385 assert(IsSplit || BeginOffset == NewBeginOffset); 2386 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2387 2388 #ifndef NDEBUG 2389 StringRef OldName = OldPtr->getName(); 2390 // Skip through the last '.sroa.' component of the name. 2391 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2392 if (LastSROAPrefix != StringRef::npos) { 2393 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2394 // Look for an SROA slice index. 2395 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2396 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2397 // Strip the index and look for the offset. 2398 OldName = OldName.substr(IndexEnd + 1); 2399 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2400 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2401 // Strip the offset. 2402 OldName = OldName.substr(OffsetEnd + 1); 2403 } 2404 } 2405 // Strip any SROA suffixes as well. 2406 OldName = OldName.substr(0, OldName.find(".sroa_")); 2407 #endif 2408 2409 return getAdjustedPtr(IRB, DL, &NewAI, 2410 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), 2411 PointerTy, 2412 #ifndef NDEBUG 2413 Twine(OldName) + "." 2414 #else 2415 Twine() 2416 #endif 2417 ); 2418 } 2419 2420 /// Compute suitable alignment to access this slice of the *new* 2421 /// alloca. 2422 /// 2423 /// You can optionally pass a type to this routine and if that type's ABI 2424 /// alignment is itself suitable, this will return zero. 2425 Align getSliceAlign() { 2426 return commonAlignment(NewAI.getAlign(), 2427 NewBeginOffset - NewAllocaBeginOffset); 2428 } 2429 2430 unsigned getIndex(uint64_t Offset) { 2431 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2432 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2433 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2434 uint32_t Index = RelOffset / ElementSize; 2435 assert(Index * ElementSize == RelOffset); 2436 return Index; 2437 } 2438 2439 void deleteIfTriviallyDead(Value *V) { 2440 Instruction *I = cast<Instruction>(V); 2441 if (isInstructionTriviallyDead(I)) 2442 Pass.DeadInsts.push_back(I); 2443 } 2444 2445 Value *rewriteVectorizedLoadInst(LoadInst &LI) { 2446 unsigned BeginIndex = getIndex(NewBeginOffset); 2447 unsigned EndIndex = getIndex(NewEndOffset); 2448 assert(EndIndex > BeginIndex && "Empty vector!"); 2449 2450 LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2451 NewAI.getAlign(), "load"); 2452 2453 Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2454 LLVMContext::MD_access_group}); 2455 return extractVector(IRB, Load, BeginIndex, EndIndex, "vec"); 2456 } 2457 2458 Value *rewriteIntegerLoad(LoadInst &LI) { 2459 assert(IntTy && "We cannot insert an integer to the alloca"); 2460 assert(!LI.isVolatile()); 2461 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2462 NewAI.getAlign(), "load"); 2463 V = convertValue(DL, IRB, V, IntTy); 2464 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2465 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2466 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2467 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2468 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2469 } 2470 // It is possible that the extracted type is not the load type. This 2471 // happens if there is a load past the end of the alloca, and as 2472 // a consequence the slice is narrower but still a candidate for integer 2473 // lowering. To handle this case, we just zero extend the extracted 2474 // integer. 2475 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2476 "Can only handle an extract for an overly wide load"); 2477 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2478 V = IRB.CreateZExt(V, LI.getType()); 2479 return V; 2480 } 2481 2482 bool visitLoadInst(LoadInst &LI) { 2483 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 2484 Value *OldOp = LI.getOperand(0); 2485 assert(OldOp == OldPtr); 2486 2487 AAMDNodes AATags = LI.getAAMetadata(); 2488 2489 unsigned AS = LI.getPointerAddressSpace(); 2490 2491 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2492 : LI.getType(); 2493 const bool IsLoadPastEnd = 2494 DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize; 2495 bool IsPtrAdjusted = false; 2496 Value *V; 2497 if (VecTy) { 2498 V = rewriteVectorizedLoadInst(LI); 2499 } else if (IntTy && LI.getType()->isIntegerTy()) { 2500 V = rewriteIntegerLoad(LI); 2501 } else if (NewBeginOffset == NewAllocaBeginOffset && 2502 NewEndOffset == NewAllocaEndOffset && 2503 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2504 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2505 TargetTy->isIntegerTy()))) { 2506 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2507 NewAI.getAlign(), LI.isVolatile(), 2508 LI.getName()); 2509 if (AATags) 2510 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2511 if (LI.isVolatile()) 2512 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2513 if (NewLI->isAtomic()) 2514 NewLI->setAlignment(LI.getAlign()); 2515 2516 // Any !nonnull metadata or !range metadata on the old load is also valid 2517 // on the new load. This is even true in some cases even when the loads 2518 // are different types, for example by mapping !nonnull metadata to 2519 // !range metadata by modeling the null pointer constant converted to the 2520 // integer type. 2521 // FIXME: Add support for range metadata here. Currently the utilities 2522 // for this don't propagate range metadata in trivial cases from one 2523 // integer load to another, don't handle non-addrspace-0 null pointers 2524 // correctly, and don't have any support for mapping ranges as the 2525 // integer type becomes winder or narrower. 2526 if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull)) 2527 copyNonnullMetadata(LI, N, *NewLI); 2528 2529 // Try to preserve nonnull metadata 2530 V = NewLI; 2531 2532 // If this is an integer load past the end of the slice (which means the 2533 // bytes outside the slice are undef or this load is dead) just forcibly 2534 // fix the integer size with correct handling of endianness. 2535 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2536 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2537 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2538 V = IRB.CreateZExt(V, TITy, "load.ext"); 2539 if (DL.isBigEndian()) 2540 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2541 "endian_shift"); 2542 } 2543 } else { 2544 Type *LTy = TargetTy->getPointerTo(AS); 2545 LoadInst *NewLI = 2546 IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy), 2547 getSliceAlign(), LI.isVolatile(), LI.getName()); 2548 if (AATags) 2549 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2550 if (LI.isVolatile()) 2551 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2552 NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2553 LLVMContext::MD_access_group}); 2554 2555 V = NewLI; 2556 IsPtrAdjusted = true; 2557 } 2558 V = convertValue(DL, IRB, V, TargetTy); 2559 2560 if (IsSplit) { 2561 assert(!LI.isVolatile()); 2562 assert(LI.getType()->isIntegerTy() && 2563 "Only integer type loads and stores are split"); 2564 assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() && 2565 "Split load isn't smaller than original load"); 2566 assert(DL.typeSizeEqualsStoreSize(LI.getType()) && 2567 "Non-byte-multiple bit width"); 2568 // Move the insertion point just past the load so that we can refer to it. 2569 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); 2570 // Create a placeholder value with the same type as LI to use as the 2571 // basis for the new value. This allows us to replace the uses of LI with 2572 // the computed value, and then replace the placeholder with LI, leaving 2573 // LI only used for this computation. 2574 Value *Placeholder = new LoadInst( 2575 LI.getType(), PoisonValue::get(LI.getType()->getPointerTo(AS)), "", 2576 false, Align(1)); 2577 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2578 "insert"); 2579 LI.replaceAllUsesWith(V); 2580 Placeholder->replaceAllUsesWith(&LI); 2581 Placeholder->deleteValue(); 2582 } else { 2583 LI.replaceAllUsesWith(V); 2584 } 2585 2586 Pass.DeadInsts.push_back(&LI); 2587 deleteIfTriviallyDead(OldOp); 2588 LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); 2589 return !LI.isVolatile() && !IsPtrAdjusted; 2590 } 2591 2592 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, 2593 AAMDNodes AATags) { 2594 if (V->getType() != VecTy) { 2595 unsigned BeginIndex = getIndex(NewBeginOffset); 2596 unsigned EndIndex = getIndex(NewEndOffset); 2597 assert(EndIndex > BeginIndex && "Empty vector!"); 2598 unsigned NumElements = EndIndex - BeginIndex; 2599 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2600 "Too many elements!"); 2601 Type *SliceTy = (NumElements == 1) 2602 ? ElementTy 2603 : FixedVectorType::get(ElementTy, NumElements); 2604 if (V->getType() != SliceTy) 2605 V = convertValue(DL, IRB, V, SliceTy); 2606 2607 // Mix in the existing elements. 2608 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2609 NewAI.getAlign(), "load"); 2610 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2611 } 2612 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2613 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2614 LLVMContext::MD_access_group}); 2615 if (AATags) 2616 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2617 Pass.DeadInsts.push_back(&SI); 2618 2619 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2620 return true; 2621 } 2622 2623 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { 2624 assert(IntTy && "We cannot extract an integer from the alloca"); 2625 assert(!SI.isVolatile()); 2626 if (DL.getTypeSizeInBits(V->getType()).getFixedSize() != 2627 IntTy->getBitWidth()) { 2628 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2629 NewAI.getAlign(), "oldload"); 2630 Old = convertValue(DL, IRB, Old, IntTy); 2631 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2632 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2633 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 2634 } 2635 V = convertValue(DL, IRB, V, NewAllocaTy); 2636 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2637 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2638 LLVMContext::MD_access_group}); 2639 if (AATags) 2640 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2641 Pass.DeadInsts.push_back(&SI); 2642 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2643 return true; 2644 } 2645 2646 bool visitStoreInst(StoreInst &SI) { 2647 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 2648 Value *OldOp = SI.getOperand(1); 2649 assert(OldOp == OldPtr); 2650 2651 AAMDNodes AATags = SI.getAAMetadata(); 2652 Value *V = SI.getValueOperand(); 2653 2654 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2655 // alloca that should be re-examined after promoting this alloca. 2656 if (V->getType()->isPointerTy()) 2657 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2658 Pass.PostPromotionWorklist.insert(AI); 2659 2660 if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) { 2661 assert(!SI.isVolatile()); 2662 assert(V->getType()->isIntegerTy() && 2663 "Only integer type loads and stores are split"); 2664 assert(DL.typeSizeEqualsStoreSize(V->getType()) && 2665 "Non-byte-multiple bit width"); 2666 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2667 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 2668 "extract"); 2669 } 2670 2671 if (VecTy) 2672 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); 2673 if (IntTy && V->getType()->isIntegerTy()) 2674 return rewriteIntegerStore(V, SI, AATags); 2675 2676 const bool IsStorePastEnd = 2677 DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize; 2678 StoreInst *NewSI; 2679 if (NewBeginOffset == NewAllocaBeginOffset && 2680 NewEndOffset == NewAllocaEndOffset && 2681 (canConvertValue(DL, V->getType(), NewAllocaTy) || 2682 (IsStorePastEnd && NewAllocaTy->isIntegerTy() && 2683 V->getType()->isIntegerTy()))) { 2684 // If this is an integer store past the end of slice (and thus the bytes 2685 // past that point are irrelevant or this is unreachable), truncate the 2686 // value prior to storing. 2687 if (auto *VITy = dyn_cast<IntegerType>(V->getType())) 2688 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2689 if (VITy->getBitWidth() > AITy->getBitWidth()) { 2690 if (DL.isBigEndian()) 2691 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), 2692 "endian_shift"); 2693 V = IRB.CreateTrunc(V, AITy, "load.trunc"); 2694 } 2695 2696 V = convertValue(DL, IRB, V, NewAllocaTy); 2697 NewSI = 2698 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile()); 2699 } else { 2700 unsigned AS = SI.getPointerAddressSpace(); 2701 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS)); 2702 NewSI = 2703 IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile()); 2704 } 2705 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2706 LLVMContext::MD_access_group}); 2707 if (AATags) 2708 NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2709 if (SI.isVolatile()) 2710 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 2711 if (NewSI->isAtomic()) 2712 NewSI->setAlignment(SI.getAlign()); 2713 Pass.DeadInsts.push_back(&SI); 2714 deleteIfTriviallyDead(OldOp); 2715 2716 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2717 return NewSI->getPointerOperand() == &NewAI && 2718 NewSI->getValueOperand()->getType() == NewAllocaTy && 2719 !SI.isVolatile(); 2720 } 2721 2722 /// Compute an integer value from splatting an i8 across the given 2723 /// number of bytes. 2724 /// 2725 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2726 /// call this routine. 2727 /// FIXME: Heed the advice above. 2728 /// 2729 /// \param V The i8 value to splat. 2730 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2731 Value *getIntegerSplat(Value *V, unsigned Size) { 2732 assert(Size > 0 && "Expected a positive number of bytes."); 2733 IntegerType *VTy = cast<IntegerType>(V->getType()); 2734 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2735 if (Size == 1) 2736 return V; 2737 2738 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 2739 V = IRB.CreateMul( 2740 IRB.CreateZExt(V, SplatIntTy, "zext"), 2741 IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy), 2742 IRB.CreateZExt(Constant::getAllOnesValue(V->getType()), 2743 SplatIntTy)), 2744 "isplat"); 2745 return V; 2746 } 2747 2748 /// Compute a vector splat for a given element value. 2749 Value *getVectorSplat(Value *V, unsigned NumElements) { 2750 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2751 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); 2752 return V; 2753 } 2754 2755 bool visitMemSetInst(MemSetInst &II) { 2756 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2757 assert(II.getRawDest() == OldPtr); 2758 2759 AAMDNodes AATags = II.getAAMetadata(); 2760 2761 // If the memset has a variable size, it cannot be split, just adjust the 2762 // pointer to the new alloca. 2763 if (!isa<ConstantInt>(II.getLength())) { 2764 assert(!IsSplit); 2765 assert(NewBeginOffset == BeginOffset); 2766 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 2767 II.setDestAlignment(getSliceAlign()); 2768 2769 deleteIfTriviallyDead(OldPtr); 2770 return false; 2771 } 2772 2773 // Record this instruction for deletion. 2774 Pass.DeadInsts.push_back(&II); 2775 2776 Type *AllocaTy = NewAI.getAllocatedType(); 2777 Type *ScalarTy = AllocaTy->getScalarType(); 2778 2779 const bool CanContinue = [&]() { 2780 if (VecTy || IntTy) 2781 return true; 2782 if (BeginOffset > NewAllocaBeginOffset || 2783 EndOffset < NewAllocaEndOffset) 2784 return false; 2785 // Length must be in range for FixedVectorType. 2786 auto *C = cast<ConstantInt>(II.getLength()); 2787 const uint64_t Len = C->getLimitedValue(); 2788 if (Len > std::numeric_limits<unsigned>::max()) 2789 return false; 2790 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); 2791 auto *SrcTy = FixedVectorType::get(Int8Ty, Len); 2792 return canConvertValue(DL, SrcTy, AllocaTy) && 2793 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize()); 2794 }(); 2795 2796 // If this doesn't map cleanly onto the alloca type, and that type isn't 2797 // a single value type, just emit a memset. 2798 if (!CanContinue) { 2799 Type *SizeTy = II.getLength()->getType(); 2800 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2801 CallInst *New = IRB.CreateMemSet( 2802 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 2803 MaybeAlign(getSliceAlign()), II.isVolatile()); 2804 if (AATags) 2805 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2806 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2807 return false; 2808 } 2809 2810 // If we can represent this as a simple value, we have to build the actual 2811 // value to store, which requires expanding the byte present in memset to 2812 // a sensible representation for the alloca type. This is essentially 2813 // splatting the byte to a sufficiently wide integer, splatting it across 2814 // any desired vector width, and bitcasting to the final type. 2815 Value *V; 2816 2817 if (VecTy) { 2818 // If this is a memset of a vectorized alloca, insert it. 2819 assert(ElementTy == ScalarTy); 2820 2821 unsigned BeginIndex = getIndex(NewBeginOffset); 2822 unsigned EndIndex = getIndex(NewEndOffset); 2823 assert(EndIndex > BeginIndex && "Empty vector!"); 2824 unsigned NumElements = EndIndex - BeginIndex; 2825 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2826 "Too many elements!"); 2827 2828 Value *Splat = getIntegerSplat( 2829 II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8); 2830 Splat = convertValue(DL, IRB, Splat, ElementTy); 2831 if (NumElements > 1) 2832 Splat = getVectorSplat(Splat, NumElements); 2833 2834 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2835 NewAI.getAlign(), "oldload"); 2836 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 2837 } else if (IntTy) { 2838 // If this is a memset on an alloca where we can widen stores, insert the 2839 // set integer. 2840 assert(!II.isVolatile()); 2841 2842 uint64_t Size = NewEndOffset - NewBeginOffset; 2843 V = getIntegerSplat(II.getValue(), Size); 2844 2845 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 2846 EndOffset != NewAllocaBeginOffset)) { 2847 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2848 NewAI.getAlign(), "oldload"); 2849 Old = convertValue(DL, IRB, Old, IntTy); 2850 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2851 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 2852 } else { 2853 assert(V->getType() == IntTy && 2854 "Wrong type for an alloca wide integer!"); 2855 } 2856 V = convertValue(DL, IRB, V, AllocaTy); 2857 } else { 2858 // Established these invariants above. 2859 assert(NewBeginOffset == NewAllocaBeginOffset); 2860 assert(NewEndOffset == NewAllocaEndOffset); 2861 2862 V = getIntegerSplat(II.getValue(), 2863 DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8); 2864 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 2865 V = getVectorSplat( 2866 V, cast<FixedVectorType>(AllocaVecTy)->getNumElements()); 2867 2868 V = convertValue(DL, IRB, V, AllocaTy); 2869 } 2870 2871 StoreInst *New = 2872 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile()); 2873 New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 2874 LLVMContext::MD_access_group}); 2875 if (AATags) 2876 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2877 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2878 return !II.isVolatile(); 2879 } 2880 2881 bool visitMemTransferInst(MemTransferInst &II) { 2882 // Rewriting of memory transfer instructions can be a bit tricky. We break 2883 // them into two categories: split intrinsics and unsplit intrinsics. 2884 2885 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2886 2887 AAMDNodes AATags = II.getAAMetadata(); 2888 2889 bool IsDest = &II.getRawDestUse() == OldUse; 2890 assert((IsDest && II.getRawDest() == OldPtr) || 2891 (!IsDest && II.getRawSource() == OldPtr)); 2892 2893 Align SliceAlign = getSliceAlign(); 2894 2895 // For unsplit intrinsics, we simply modify the source and destination 2896 // pointers in place. This isn't just an optimization, it is a matter of 2897 // correctness. With unsplit intrinsics we may be dealing with transfers 2898 // within a single alloca before SROA ran, or with transfers that have 2899 // a variable length. We may also be dealing with memmove instead of 2900 // memcpy, and so simply updating the pointers is the necessary for us to 2901 // update both source and dest of a single call. 2902 if (!IsSplittable) { 2903 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2904 if (IsDest) { 2905 II.setDest(AdjustedPtr); 2906 II.setDestAlignment(SliceAlign); 2907 } 2908 else { 2909 II.setSource(AdjustedPtr); 2910 II.setSourceAlignment(SliceAlign); 2911 } 2912 2913 LLVM_DEBUG(dbgs() << " to: " << II << "\n"); 2914 deleteIfTriviallyDead(OldPtr); 2915 return false; 2916 } 2917 // For split transfer intrinsics we have an incredibly useful assurance: 2918 // the source and destination do not reside within the same alloca, and at 2919 // least one of them does not escape. This means that we can replace 2920 // memmove with memcpy, and we don't need to worry about all manner of 2921 // downsides to splitting and transforming the operations. 2922 2923 // If this doesn't map cleanly onto the alloca type, and that type isn't 2924 // a single value type, just emit a memcpy. 2925 bool EmitMemCpy = 2926 !VecTy && !IntTy && 2927 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 2928 SliceSize != 2929 DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() || 2930 !NewAI.getAllocatedType()->isSingleValueType()); 2931 2932 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 2933 // size hasn't been shrunk based on analysis of the viable range, this is 2934 // a no-op. 2935 if (EmitMemCpy && &OldAI == &NewAI) { 2936 // Ensure the start lines up. 2937 assert(NewBeginOffset == BeginOffset); 2938 2939 // Rewrite the size as needed. 2940 if (NewEndOffset != EndOffset) 2941 II.setLength(ConstantInt::get(II.getLength()->getType(), 2942 NewEndOffset - NewBeginOffset)); 2943 return false; 2944 } 2945 // Record this instruction for deletion. 2946 Pass.DeadInsts.push_back(&II); 2947 2948 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2949 // alloca that should be re-examined after rewriting this instruction. 2950 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 2951 if (AllocaInst *AI = 2952 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 2953 assert(AI != &OldAI && AI != &NewAI && 2954 "Splittable transfers cannot reach the same alloca on both ends."); 2955 Pass.Worklist.insert(AI); 2956 } 2957 2958 Type *OtherPtrTy = OtherPtr->getType(); 2959 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 2960 2961 // Compute the relative offset for the other pointer within the transfer. 2962 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); 2963 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); 2964 Align OtherAlign = 2965 (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); 2966 OtherAlign = 2967 commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue()); 2968 2969 if (EmitMemCpy) { 2970 // Compute the other pointer, folding as much as possible to produce 2971 // a single, simple GEP in most cases. 2972 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2973 OtherPtr->getName() + "."); 2974 2975 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2976 Type *SizeTy = II.getLength()->getType(); 2977 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2978 2979 Value *DestPtr, *SrcPtr; 2980 MaybeAlign DestAlign, SrcAlign; 2981 // Note: IsDest is true iff we're copying into the new alloca slice 2982 if (IsDest) { 2983 DestPtr = OurPtr; 2984 DestAlign = SliceAlign; 2985 SrcPtr = OtherPtr; 2986 SrcAlign = OtherAlign; 2987 } else { 2988 DestPtr = OtherPtr; 2989 DestAlign = OtherAlign; 2990 SrcPtr = OurPtr; 2991 SrcAlign = SliceAlign; 2992 } 2993 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, 2994 Size, II.isVolatile()); 2995 if (AATags) 2996 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2997 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2998 return false; 2999 } 3000 3001 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 3002 NewEndOffset == NewAllocaEndOffset; 3003 uint64_t Size = NewEndOffset - NewBeginOffset; 3004 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 3005 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 3006 unsigned NumElements = EndIndex - BeginIndex; 3007 IntegerType *SubIntTy = 3008 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 3009 3010 // Reset the other pointer type to match the register type we're going to 3011 // use, but using the address space of the original other pointer. 3012 Type *OtherTy; 3013 if (VecTy && !IsWholeAlloca) { 3014 if (NumElements == 1) 3015 OtherTy = VecTy->getElementType(); 3016 else 3017 OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements); 3018 } else if (IntTy && !IsWholeAlloca) { 3019 OtherTy = SubIntTy; 3020 } else { 3021 OtherTy = NewAllocaTy; 3022 } 3023 OtherPtrTy = OtherTy->getPointerTo(OtherAS); 3024 3025 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3026 OtherPtr->getName() + "."); 3027 MaybeAlign SrcAlign = OtherAlign; 3028 Value *DstPtr = &NewAI; 3029 MaybeAlign DstAlign = SliceAlign; 3030 if (!IsDest) { 3031 std::swap(SrcPtr, DstPtr); 3032 std::swap(SrcAlign, DstAlign); 3033 } 3034 3035 Value *Src; 3036 if (VecTy && !IsWholeAlloca && !IsDest) { 3037 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3038 NewAI.getAlign(), "load"); 3039 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 3040 } else if (IntTy && !IsWholeAlloca && !IsDest) { 3041 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3042 NewAI.getAlign(), "load"); 3043 Src = convertValue(DL, IRB, Src, IntTy); 3044 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3045 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 3046 } else { 3047 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, 3048 II.isVolatile(), "copyload"); 3049 Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3050 LLVMContext::MD_access_group}); 3051 if (AATags) 3052 Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3053 Src = Load; 3054 } 3055 3056 if (VecTy && !IsWholeAlloca && IsDest) { 3057 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3058 NewAI.getAlign(), "oldload"); 3059 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 3060 } else if (IntTy && !IsWholeAlloca && IsDest) { 3061 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3062 NewAI.getAlign(), "oldload"); 3063 Old = convertValue(DL, IRB, Old, IntTy); 3064 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3065 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 3066 Src = convertValue(DL, IRB, Src, NewAllocaTy); 3067 } 3068 3069 StoreInst *Store = cast<StoreInst>( 3070 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 3071 Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3072 LLVMContext::MD_access_group}); 3073 if (AATags) 3074 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3075 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3076 return !II.isVolatile(); 3077 } 3078 3079 bool visitIntrinsicInst(IntrinsicInst &II) { 3080 assert((II.isLifetimeStartOrEnd() || II.isDroppable()) && 3081 "Unexpected intrinsic!"); 3082 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3083 3084 // Record this instruction for deletion. 3085 Pass.DeadInsts.push_back(&II); 3086 3087 if (II.isDroppable()) { 3088 assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume"); 3089 // TODO For now we forget assumed information, this can be improved. 3090 OldPtr->dropDroppableUsesIn(II); 3091 return true; 3092 } 3093 3094 assert(II.getArgOperand(1) == OldPtr); 3095 // Lifetime intrinsics are only promotable if they cover the whole alloca. 3096 // Therefore, we drop lifetime intrinsics which don't cover the whole 3097 // alloca. 3098 // (In theory, intrinsics which partially cover an alloca could be 3099 // promoted, but PromoteMemToReg doesn't handle that case.) 3100 // FIXME: Check whether the alloca is promotable before dropping the 3101 // lifetime intrinsics? 3102 if (NewBeginOffset != NewAllocaBeginOffset || 3103 NewEndOffset != NewAllocaEndOffset) 3104 return true; 3105 3106 ConstantInt *Size = 3107 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 3108 NewEndOffset - NewBeginOffset); 3109 // Lifetime intrinsics always expect an i8* so directly get such a pointer 3110 // for the new alloca slice. 3111 Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace()); 3112 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); 3113 Value *New; 3114 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 3115 New = IRB.CreateLifetimeStart(Ptr, Size); 3116 else 3117 New = IRB.CreateLifetimeEnd(Ptr, Size); 3118 3119 (void)New; 3120 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3121 3122 return true; 3123 } 3124 3125 void fixLoadStoreAlign(Instruction &Root) { 3126 // This algorithm implements the same visitor loop as 3127 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load 3128 // or store found. 3129 SmallPtrSet<Instruction *, 4> Visited; 3130 SmallVector<Instruction *, 4> Uses; 3131 Visited.insert(&Root); 3132 Uses.push_back(&Root); 3133 do { 3134 Instruction *I = Uses.pop_back_val(); 3135 3136 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3137 LI->setAlignment(std::min(LI->getAlign(), getSliceAlign())); 3138 continue; 3139 } 3140 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3141 SI->setAlignment(std::min(SI->getAlign(), getSliceAlign())); 3142 continue; 3143 } 3144 3145 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || 3146 isa<PHINode>(I) || isa<SelectInst>(I) || 3147 isa<GetElementPtrInst>(I)); 3148 for (User *U : I->users()) 3149 if (Visited.insert(cast<Instruction>(U)).second) 3150 Uses.push_back(cast<Instruction>(U)); 3151 } while (!Uses.empty()); 3152 } 3153 3154 bool visitPHINode(PHINode &PN) { 3155 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 3156 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 3157 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 3158 3159 // We would like to compute a new pointer in only one place, but have it be 3160 // as local as possible to the PHI. To do that, we re-use the location of 3161 // the old pointer, which necessarily must be in the right position to 3162 // dominate the PHI. 3163 IRBuilderBase::InsertPointGuard Guard(IRB); 3164 if (isa<PHINode>(OldPtr)) 3165 IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); 3166 else 3167 IRB.SetInsertPoint(OldPtr); 3168 IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 3169 3170 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3171 // Replace the operands which were using the old pointer. 3172 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 3173 3174 LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); 3175 deleteIfTriviallyDead(OldPtr); 3176 3177 // Fix the alignment of any loads or stores using this PHI node. 3178 fixLoadStoreAlign(PN); 3179 3180 // PHIs can't be promoted on their own, but often can be speculated. We 3181 // check the speculation outside of the rewriter so that we see the 3182 // fully-rewritten alloca. 3183 PHIUsers.insert(&PN); 3184 return true; 3185 } 3186 3187 bool visitSelectInst(SelectInst &SI) { 3188 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3189 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 3190 "Pointer isn't an operand!"); 3191 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 3192 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 3193 3194 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3195 // Replace the operands which were using the old pointer. 3196 if (SI.getOperand(1) == OldPtr) 3197 SI.setOperand(1, NewPtr); 3198 if (SI.getOperand(2) == OldPtr) 3199 SI.setOperand(2, NewPtr); 3200 3201 LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); 3202 deleteIfTriviallyDead(OldPtr); 3203 3204 // Fix the alignment of any loads or stores using this select. 3205 fixLoadStoreAlign(SI); 3206 3207 // Selects can't be promoted on their own, but often can be speculated. We 3208 // check the speculation outside of the rewriter so that we see the 3209 // fully-rewritten alloca. 3210 SelectUsers.insert(&SI); 3211 return true; 3212 } 3213 }; 3214 3215 namespace { 3216 3217 /// Visitor to rewrite aggregate loads and stores as scalar. 3218 /// 3219 /// This pass aggressively rewrites all aggregate loads and stores on 3220 /// a particular pointer (or any pointer derived from it which we can identify) 3221 /// with scalar loads and stores. 3222 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 3223 // Befriend the base class so it can delegate to private visit methods. 3224 friend class InstVisitor<AggLoadStoreRewriter, bool>; 3225 3226 /// Queue of pointer uses to analyze and potentially rewrite. 3227 SmallVector<Use *, 8> Queue; 3228 3229 /// Set to prevent us from cycling with phi nodes and loops. 3230 SmallPtrSet<User *, 8> Visited; 3231 3232 /// The current pointer use being rewritten. This is used to dig up the used 3233 /// value (as opposed to the user). 3234 Use *U = nullptr; 3235 3236 /// Used to calculate offsets, and hence alignment, of subobjects. 3237 const DataLayout &DL; 3238 3239 IRBuilderTy &IRB; 3240 3241 public: 3242 AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB) 3243 : DL(DL), IRB(IRB) {} 3244 3245 /// Rewrite loads and stores through a pointer and all pointers derived from 3246 /// it. 3247 bool rewrite(Instruction &I) { 3248 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 3249 enqueueUsers(I); 3250 bool Changed = false; 3251 while (!Queue.empty()) { 3252 U = Queue.pop_back_val(); 3253 Changed |= visit(cast<Instruction>(U->getUser())); 3254 } 3255 return Changed; 3256 } 3257 3258 private: 3259 /// Enqueue all the users of the given instruction for further processing. 3260 /// This uses a set to de-duplicate users. 3261 void enqueueUsers(Instruction &I) { 3262 for (Use &U : I.uses()) 3263 if (Visited.insert(U.getUser()).second) 3264 Queue.push_back(&U); 3265 } 3266 3267 // Conservative default is to not rewrite anything. 3268 bool visitInstruction(Instruction &I) { return false; } 3269 3270 /// Generic recursive split emission class. 3271 template <typename Derived> class OpSplitter { 3272 protected: 3273 /// The builder used to form new instructions. 3274 IRBuilderTy &IRB; 3275 3276 /// The indices which to be used with insert- or extractvalue to select the 3277 /// appropriate value within the aggregate. 3278 SmallVector<unsigned, 4> Indices; 3279 3280 /// The indices to a GEP instruction which will move Ptr to the correct slot 3281 /// within the aggregate. 3282 SmallVector<Value *, 4> GEPIndices; 3283 3284 /// The base pointer of the original op, used as a base for GEPing the 3285 /// split operations. 3286 Value *Ptr; 3287 3288 /// The base pointee type being GEPed into. 3289 Type *BaseTy; 3290 3291 /// Known alignment of the base pointer. 3292 Align BaseAlign; 3293 3294 /// To calculate offset of each component so we can correctly deduce 3295 /// alignments. 3296 const DataLayout &DL; 3297 3298 /// Initialize the splitter with an insertion point, Ptr and start with a 3299 /// single zero GEP index. 3300 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3301 Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB) 3302 : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy), 3303 BaseAlign(BaseAlign), DL(DL) { 3304 IRB.SetInsertPoint(InsertionPoint); 3305 } 3306 3307 public: 3308 /// Generic recursive split emission routine. 3309 /// 3310 /// This method recursively splits an aggregate op (load or store) into 3311 /// scalar or vector ops. It splits recursively until it hits a single value 3312 /// and emits that single value operation via the template argument. 3313 /// 3314 /// The logic of this routine relies on GEPs and insertvalue and 3315 /// extractvalue all operating with the same fundamental index list, merely 3316 /// formatted differently (GEPs need actual values). 3317 /// 3318 /// \param Ty The type being split recursively into smaller ops. 3319 /// \param Agg The aggregate value being built up or stored, depending on 3320 /// whether this is splitting a load or a store respectively. 3321 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3322 if (Ty->isSingleValueType()) { 3323 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); 3324 return static_cast<Derived *>(this)->emitFunc( 3325 Ty, Agg, commonAlignment(BaseAlign, Offset), Name); 3326 } 3327 3328 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3329 unsigned OldSize = Indices.size(); 3330 (void)OldSize; 3331 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3332 ++Idx) { 3333 assert(Indices.size() == OldSize && "Did not return to the old size"); 3334 Indices.push_back(Idx); 3335 GEPIndices.push_back(IRB.getInt32(Idx)); 3336 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3337 GEPIndices.pop_back(); 3338 Indices.pop_back(); 3339 } 3340 return; 3341 } 3342 3343 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3344 unsigned OldSize = Indices.size(); 3345 (void)OldSize; 3346 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3347 ++Idx) { 3348 assert(Indices.size() == OldSize && "Did not return to the old size"); 3349 Indices.push_back(Idx); 3350 GEPIndices.push_back(IRB.getInt32(Idx)); 3351 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3352 GEPIndices.pop_back(); 3353 Indices.pop_back(); 3354 } 3355 return; 3356 } 3357 3358 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3359 } 3360 }; 3361 3362 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3363 AAMDNodes AATags; 3364 3365 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3366 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL, 3367 IRBuilderTy &IRB) 3368 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL, 3369 IRB), 3370 AATags(AATags) {} 3371 3372 /// Emit a leaf load of a single value. This is called at the leaves of the 3373 /// recursive emission to actually load values. 3374 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3375 assert(Ty->isSingleValueType()); 3376 // Load the single value and insert it using the indices. 3377 Value *GEP = 3378 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3379 LoadInst *Load = 3380 IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load"); 3381 3382 APInt Offset( 3383 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3384 if (AATags && 3385 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3386 Load->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3387 3388 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3389 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); 3390 } 3391 }; 3392 3393 bool visitLoadInst(LoadInst &LI) { 3394 assert(LI.getPointerOperand() == *U); 3395 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3396 return false; 3397 3398 // We have an aggregate being loaded, split it apart. 3399 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 3400 LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(), 3401 getAdjustedAlignment(&LI, 0), DL, IRB); 3402 Value *V = PoisonValue::get(LI.getType()); 3403 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3404 Visited.erase(&LI); 3405 LI.replaceAllUsesWith(V); 3406 LI.eraseFromParent(); 3407 return true; 3408 } 3409 3410 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3411 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3412 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL, 3413 IRBuilderTy &IRB) 3414 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3415 DL, IRB), 3416 AATags(AATags) {} 3417 AAMDNodes AATags; 3418 /// Emit a leaf store of a single value. This is called at the leaves of the 3419 /// recursive emission to actually produce stores. 3420 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3421 assert(Ty->isSingleValueType()); 3422 // Extract the single value and store it using the indices. 3423 // 3424 // The gep and extractvalue values are factored out of the CreateStore 3425 // call to make the output independent of the argument evaluation order. 3426 Value *ExtractValue = 3427 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3428 Value *InBoundsGEP = 3429 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3430 StoreInst *Store = 3431 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment); 3432 3433 APInt Offset( 3434 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3435 if (AATags && 3436 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3437 Store->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3438 3439 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3440 } 3441 }; 3442 3443 bool visitStoreInst(StoreInst &SI) { 3444 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3445 return false; 3446 Value *V = SI.getValueOperand(); 3447 if (V->getType()->isSingleValueType()) 3448 return false; 3449 3450 // We have an aggregate being stored, split it apart. 3451 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3452 StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), 3453 getAdjustedAlignment(&SI, 0), DL, IRB); 3454 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3455 Visited.erase(&SI); 3456 SI.eraseFromParent(); 3457 return true; 3458 } 3459 3460 bool visitBitCastInst(BitCastInst &BC) { 3461 enqueueUsers(BC); 3462 return false; 3463 } 3464 3465 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 3466 enqueueUsers(ASC); 3467 return false; 3468 } 3469 3470 // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2) 3471 bool foldGEPSelect(GetElementPtrInst &GEPI) { 3472 if (!GEPI.hasAllConstantIndices()) 3473 return false; 3474 3475 SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand()); 3476 3477 LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):" 3478 << "\n original: " << *Sel 3479 << "\n " << GEPI); 3480 3481 IRB.SetInsertPoint(&GEPI); 3482 SmallVector<Value *, 4> Index(GEPI.indices()); 3483 bool IsInBounds = GEPI.isInBounds(); 3484 3485 Type *Ty = GEPI.getSourceElementType(); 3486 Value *True = Sel->getTrueValue(); 3487 Value *NTrue = IRB.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep", 3488 IsInBounds); 3489 3490 Value *False = Sel->getFalseValue(); 3491 3492 Value *NFalse = IRB.CreateGEP(Ty, False, Index, 3493 False->getName() + ".sroa.gep", IsInBounds); 3494 3495 Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse, 3496 Sel->getName() + ".sroa.sel"); 3497 Visited.erase(&GEPI); 3498 GEPI.replaceAllUsesWith(NSel); 3499 GEPI.eraseFromParent(); 3500 Instruction *NSelI = cast<Instruction>(NSel); 3501 Visited.insert(NSelI); 3502 enqueueUsers(*NSelI); 3503 3504 LLVM_DEBUG(dbgs() << "\n to: " << *NTrue 3505 << "\n " << *NFalse 3506 << "\n " << *NSel << '\n'); 3507 3508 return true; 3509 } 3510 3511 // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2) 3512 bool foldGEPPhi(GetElementPtrInst &GEPI) { 3513 if (!GEPI.hasAllConstantIndices()) 3514 return false; 3515 3516 PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand()); 3517 if (GEPI.getParent() != PHI->getParent() || 3518 llvm::any_of(PHI->incoming_values(), [](Value *In) 3519 { Instruction *I = dyn_cast<Instruction>(In); 3520 return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) || 3521 succ_empty(I->getParent()) || 3522 !I->getParent()->isLegalToHoistInto(); 3523 })) 3524 return false; 3525 3526 LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):" 3527 << "\n original: " << *PHI 3528 << "\n " << GEPI 3529 << "\n to: "); 3530 3531 SmallVector<Value *, 4> Index(GEPI.indices()); 3532 bool IsInBounds = GEPI.isInBounds(); 3533 IRB.SetInsertPoint(GEPI.getParent()->getFirstNonPHI()); 3534 PHINode *NewPN = IRB.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(), 3535 PHI->getName() + ".sroa.phi"); 3536 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) { 3537 BasicBlock *B = PHI->getIncomingBlock(I); 3538 Value *NewVal = nullptr; 3539 int Idx = NewPN->getBasicBlockIndex(B); 3540 if (Idx >= 0) { 3541 NewVal = NewPN->getIncomingValue(Idx); 3542 } else { 3543 Instruction *In = cast<Instruction>(PHI->getIncomingValue(I)); 3544 3545 IRB.SetInsertPoint(In->getParent(), std::next(In->getIterator())); 3546 Type *Ty = GEPI.getSourceElementType(); 3547 NewVal = IRB.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep", 3548 IsInBounds); 3549 } 3550 NewPN->addIncoming(NewVal, B); 3551 } 3552 3553 Visited.erase(&GEPI); 3554 GEPI.replaceAllUsesWith(NewPN); 3555 GEPI.eraseFromParent(); 3556 Visited.insert(NewPN); 3557 enqueueUsers(*NewPN); 3558 3559 LLVM_DEBUG(for (Value *In : NewPN->incoming_values()) 3560 dbgs() << "\n " << *In; 3561 dbgs() << "\n " << *NewPN << '\n'); 3562 3563 return true; 3564 } 3565 3566 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 3567 if (isa<SelectInst>(GEPI.getPointerOperand()) && 3568 foldGEPSelect(GEPI)) 3569 return true; 3570 3571 if (isa<PHINode>(GEPI.getPointerOperand()) && 3572 foldGEPPhi(GEPI)) 3573 return true; 3574 3575 enqueueUsers(GEPI); 3576 return false; 3577 } 3578 3579 bool visitPHINode(PHINode &PN) { 3580 enqueueUsers(PN); 3581 return false; 3582 } 3583 3584 bool visitSelectInst(SelectInst &SI) { 3585 enqueueUsers(SI); 3586 return false; 3587 } 3588 }; 3589 3590 } // end anonymous namespace 3591 3592 /// Strip aggregate type wrapping. 3593 /// 3594 /// This removes no-op aggregate types wrapping an underlying type. It will 3595 /// strip as many layers of types as it can without changing either the type 3596 /// size or the allocated size. 3597 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 3598 if (Ty->isSingleValueType()) 3599 return Ty; 3600 3601 uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize(); 3602 uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize(); 3603 3604 Type *InnerTy; 3605 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 3606 InnerTy = ArrTy->getElementType(); 3607 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 3608 const StructLayout *SL = DL.getStructLayout(STy); 3609 unsigned Index = SL->getElementContainingOffset(0); 3610 InnerTy = STy->getElementType(Index); 3611 } else { 3612 return Ty; 3613 } 3614 3615 if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() || 3616 TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize()) 3617 return Ty; 3618 3619 return stripAggregateTypeWrapping(DL, InnerTy); 3620 } 3621 3622 /// Try to find a partition of the aggregate type passed in for a given 3623 /// offset and size. 3624 /// 3625 /// This recurses through the aggregate type and tries to compute a subtype 3626 /// based on the offset and size. When the offset and size span a sub-section 3627 /// of an array, it will even compute a new array type for that sub-section, 3628 /// and the same for structs. 3629 /// 3630 /// Note that this routine is very strict and tries to find a partition of the 3631 /// type which produces the *exact* right offset and size. It is not forgiving 3632 /// when the size or offset cause either end of type-based partition to be off. 3633 /// Also, this is a best-effort routine. It is reasonable to give up and not 3634 /// return a type if necessary. 3635 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 3636 uint64_t Size) { 3637 if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size) 3638 return stripAggregateTypeWrapping(DL, Ty); 3639 if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() || 3640 (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size) 3641 return nullptr; 3642 3643 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 3644 Type *ElementTy; 3645 uint64_t TyNumElements; 3646 if (auto *AT = dyn_cast<ArrayType>(Ty)) { 3647 ElementTy = AT->getElementType(); 3648 TyNumElements = AT->getNumElements(); 3649 } else { 3650 // FIXME: This isn't right for vectors with non-byte-sized or 3651 // non-power-of-two sized elements. 3652 auto *VT = cast<FixedVectorType>(Ty); 3653 ElementTy = VT->getElementType(); 3654 TyNumElements = VT->getNumElements(); 3655 } 3656 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3657 uint64_t NumSkippedElements = Offset / ElementSize; 3658 if (NumSkippedElements >= TyNumElements) 3659 return nullptr; 3660 Offset -= NumSkippedElements * ElementSize; 3661 3662 // First check if we need to recurse. 3663 if (Offset > 0 || Size < ElementSize) { 3664 // Bail if the partition ends in a different array element. 3665 if ((Offset + Size) > ElementSize) 3666 return nullptr; 3667 // Recurse through the element type trying to peel off offset bytes. 3668 return getTypePartition(DL, ElementTy, Offset, Size); 3669 } 3670 assert(Offset == 0); 3671 3672 if (Size == ElementSize) 3673 return stripAggregateTypeWrapping(DL, ElementTy); 3674 assert(Size > ElementSize); 3675 uint64_t NumElements = Size / ElementSize; 3676 if (NumElements * ElementSize != Size) 3677 return nullptr; 3678 return ArrayType::get(ElementTy, NumElements); 3679 } 3680 3681 StructType *STy = dyn_cast<StructType>(Ty); 3682 if (!STy) 3683 return nullptr; 3684 3685 const StructLayout *SL = DL.getStructLayout(STy); 3686 if (Offset >= SL->getSizeInBytes()) 3687 return nullptr; 3688 uint64_t EndOffset = Offset + Size; 3689 if (EndOffset > SL->getSizeInBytes()) 3690 return nullptr; 3691 3692 unsigned Index = SL->getElementContainingOffset(Offset); 3693 Offset -= SL->getElementOffset(Index); 3694 3695 Type *ElementTy = STy->getElementType(Index); 3696 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3697 if (Offset >= ElementSize) 3698 return nullptr; // The offset points into alignment padding. 3699 3700 // See if any partition must be contained by the element. 3701 if (Offset > 0 || Size < ElementSize) { 3702 if ((Offset + Size) > ElementSize) 3703 return nullptr; 3704 return getTypePartition(DL, ElementTy, Offset, Size); 3705 } 3706 assert(Offset == 0); 3707 3708 if (Size == ElementSize) 3709 return stripAggregateTypeWrapping(DL, ElementTy); 3710 3711 StructType::element_iterator EI = STy->element_begin() + Index, 3712 EE = STy->element_end(); 3713 if (EndOffset < SL->getSizeInBytes()) { 3714 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 3715 if (Index == EndIndex) 3716 return nullptr; // Within a single element and its padding. 3717 3718 // Don't try to form "natural" types if the elements don't line up with the 3719 // expected size. 3720 // FIXME: We could potentially recurse down through the last element in the 3721 // sub-struct to find a natural end point. 3722 if (SL->getElementOffset(EndIndex) != EndOffset) 3723 return nullptr; 3724 3725 assert(Index < EndIndex); 3726 EE = STy->element_begin() + EndIndex; 3727 } 3728 3729 // Try to build up a sub-structure. 3730 StructType *SubTy = 3731 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); 3732 const StructLayout *SubSL = DL.getStructLayout(SubTy); 3733 if (Size != SubSL->getSizeInBytes()) 3734 return nullptr; // The sub-struct doesn't have quite the size needed. 3735 3736 return SubTy; 3737 } 3738 3739 /// Pre-split loads and stores to simplify rewriting. 3740 /// 3741 /// We want to break up the splittable load+store pairs as much as 3742 /// possible. This is important to do as a preprocessing step, as once we 3743 /// start rewriting the accesses to partitions of the alloca we lose the 3744 /// necessary information to correctly split apart paired loads and stores 3745 /// which both point into this alloca. The case to consider is something like 3746 /// the following: 3747 /// 3748 /// %a = alloca [12 x i8] 3749 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 3750 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 3751 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 3752 /// %iptr1 = bitcast i8* %gep1 to i64* 3753 /// %iptr2 = bitcast i8* %gep2 to i64* 3754 /// %fptr1 = bitcast i8* %gep1 to float* 3755 /// %fptr2 = bitcast i8* %gep2 to float* 3756 /// %fptr3 = bitcast i8* %gep3 to float* 3757 /// store float 0.0, float* %fptr1 3758 /// store float 1.0, float* %fptr2 3759 /// %v = load i64* %iptr1 3760 /// store i64 %v, i64* %iptr2 3761 /// %f1 = load float* %fptr2 3762 /// %f2 = load float* %fptr3 3763 /// 3764 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 3765 /// promote everything so we recover the 2 SSA values that should have been 3766 /// there all along. 3767 /// 3768 /// \returns true if any changes are made. 3769 bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 3770 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 3771 3772 // Track the loads and stores which are candidates for pre-splitting here, in 3773 // the order they first appear during the partition scan. These give stable 3774 // iteration order and a basis for tracking which loads and stores we 3775 // actually split. 3776 SmallVector<LoadInst *, 4> Loads; 3777 SmallVector<StoreInst *, 4> Stores; 3778 3779 // We need to accumulate the splits required of each load or store where we 3780 // can find them via a direct lookup. This is important to cross-check loads 3781 // and stores against each other. We also track the slice so that we can kill 3782 // all the slices that end up split. 3783 struct SplitOffsets { 3784 Slice *S; 3785 std::vector<uint64_t> Splits; 3786 }; 3787 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 3788 3789 // Track loads out of this alloca which cannot, for any reason, be pre-split. 3790 // This is important as we also cannot pre-split stores of those loads! 3791 // FIXME: This is all pretty gross. It means that we can be more aggressive 3792 // in pre-splitting when the load feeding the store happens to come from 3793 // a separate alloca. Put another way, the effectiveness of SROA would be 3794 // decreased by a frontend which just concatenated all of its local allocas 3795 // into one big flat alloca. But defeating such patterns is exactly the job 3796 // SROA is tasked with! Sadly, to not have this discrepancy we would have 3797 // change store pre-splitting to actually force pre-splitting of the load 3798 // that feeds it *and all stores*. That makes pre-splitting much harder, but 3799 // maybe it would make it more principled? 3800 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 3801 3802 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 3803 for (auto &P : AS.partitions()) { 3804 for (Slice &S : P) { 3805 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 3806 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 3807 // If this is a load we have to track that it can't participate in any 3808 // pre-splitting. If this is a store of a load we have to track that 3809 // that load also can't participate in any pre-splitting. 3810 if (auto *LI = dyn_cast<LoadInst>(I)) 3811 UnsplittableLoads.insert(LI); 3812 else if (auto *SI = dyn_cast<StoreInst>(I)) 3813 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 3814 UnsplittableLoads.insert(LI); 3815 continue; 3816 } 3817 assert(P.endOffset() > S.beginOffset() && 3818 "Empty or backwards partition!"); 3819 3820 // Determine if this is a pre-splittable slice. 3821 if (auto *LI = dyn_cast<LoadInst>(I)) { 3822 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 3823 3824 // The load must be used exclusively to store into other pointers for 3825 // us to be able to arbitrarily pre-split it. The stores must also be 3826 // simple to avoid changing semantics. 3827 auto IsLoadSimplyStored = [](LoadInst *LI) { 3828 for (User *LU : LI->users()) { 3829 auto *SI = dyn_cast<StoreInst>(LU); 3830 if (!SI || !SI->isSimple()) 3831 return false; 3832 } 3833 return true; 3834 }; 3835 if (!IsLoadSimplyStored(LI)) { 3836 UnsplittableLoads.insert(LI); 3837 continue; 3838 } 3839 3840 Loads.push_back(LI); 3841 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3842 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 3843 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 3844 continue; 3845 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 3846 if (!StoredLoad || !StoredLoad->isSimple()) 3847 continue; 3848 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 3849 3850 Stores.push_back(SI); 3851 } else { 3852 // Other uses cannot be pre-split. 3853 continue; 3854 } 3855 3856 // Record the initial split. 3857 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); 3858 auto &Offsets = SplitOffsetsMap[I]; 3859 assert(Offsets.Splits.empty() && 3860 "Should not have splits the first time we see an instruction!"); 3861 Offsets.S = &S; 3862 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 3863 } 3864 3865 // Now scan the already split slices, and add a split for any of them which 3866 // we're going to pre-split. 3867 for (Slice *S : P.splitSliceTails()) { 3868 auto SplitOffsetsMapI = 3869 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 3870 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 3871 continue; 3872 auto &Offsets = SplitOffsetsMapI->second; 3873 3874 assert(Offsets.S == S && "Found a mismatched slice!"); 3875 assert(!Offsets.Splits.empty() && 3876 "Cannot have an empty set of splits on the second partition!"); 3877 assert(Offsets.Splits.back() == 3878 P.beginOffset() - Offsets.S->beginOffset() && 3879 "Previous split does not end where this one begins!"); 3880 3881 // Record each split. The last partition's end isn't needed as the size 3882 // of the slice dictates that. 3883 if (S->endOffset() > P.endOffset()) 3884 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 3885 } 3886 } 3887 3888 // We may have split loads where some of their stores are split stores. For 3889 // such loads and stores, we can only pre-split them if their splits exactly 3890 // match relative to their starting offset. We have to verify this prior to 3891 // any rewriting. 3892 llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 3893 // Lookup the load we are storing in our map of split 3894 // offsets. 3895 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3896 // If it was completely unsplittable, then we're done, 3897 // and this store can't be pre-split. 3898 if (UnsplittableLoads.count(LI)) 3899 return true; 3900 3901 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 3902 if (LoadOffsetsI == SplitOffsetsMap.end()) 3903 return false; // Unrelated loads are definitely safe. 3904 auto &LoadOffsets = LoadOffsetsI->second; 3905 3906 // Now lookup the store's offsets. 3907 auto &StoreOffsets = SplitOffsetsMap[SI]; 3908 3909 // If the relative offsets of each split in the load and 3910 // store match exactly, then we can split them and we 3911 // don't need to remove them here. 3912 if (LoadOffsets.Splits == StoreOffsets.Splits) 3913 return false; 3914 3915 LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n" 3916 << " " << *LI << "\n" 3917 << " " << *SI << "\n"); 3918 3919 // We've found a store and load that we need to split 3920 // with mismatched relative splits. Just give up on them 3921 // and remove both instructions from our list of 3922 // candidates. 3923 UnsplittableLoads.insert(LI); 3924 return true; 3925 }); 3926 // Now we have to go *back* through all the stores, because a later store may 3927 // have caused an earlier store's load to become unsplittable and if it is 3928 // unsplittable for the later store, then we can't rely on it being split in 3929 // the earlier store either. 3930 llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) { 3931 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3932 return UnsplittableLoads.count(LI); 3933 }); 3934 // Once we've established all the loads that can't be split for some reason, 3935 // filter any that made it into our list out. 3936 llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) { 3937 return UnsplittableLoads.count(LI); 3938 }); 3939 3940 // If no loads or stores are left, there is no pre-splitting to be done for 3941 // this alloca. 3942 if (Loads.empty() && Stores.empty()) 3943 return false; 3944 3945 // From here on, we can't fail and will be building new accesses, so rig up 3946 // an IR builder. 3947 IRBuilderTy IRB(&AI); 3948 3949 // Collect the new slices which we will merge into the alloca slices. 3950 SmallVector<Slice, 4> NewSlices; 3951 3952 // Track any allocas we end up splitting loads and stores for so we iterate 3953 // on them. 3954 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 3955 3956 // At this point, we have collected all of the loads and stores we can 3957 // pre-split, and the specific splits needed for them. We actually do the 3958 // splitting in a specific order in order to handle when one of the loads in 3959 // the value operand to one of the stores. 3960 // 3961 // First, we rewrite all of the split loads, and just accumulate each split 3962 // load in a parallel structure. We also build the slices for them and append 3963 // them to the alloca slices. 3964 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 3965 std::vector<LoadInst *> SplitLoads; 3966 const DataLayout &DL = AI.getModule()->getDataLayout(); 3967 for (LoadInst *LI : Loads) { 3968 SplitLoads.clear(); 3969 3970 auto &Offsets = SplitOffsetsMap[LI]; 3971 unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset(); 3972 assert(LI->getType()->getIntegerBitWidth() % 8 == 0 && 3973 "Load must have type size equal to store size"); 3974 assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize && 3975 "Load must be >= slice size"); 3976 3977 uint64_t BaseOffset = Offsets.S->beginOffset(); 3978 assert(BaseOffset + SliceSize > BaseOffset && 3979 "Cannot represent alloca access size using 64-bit integers!"); 3980 3981 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 3982 IRB.SetInsertPoint(LI); 3983 3984 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 3985 3986 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 3987 int Idx = 0, Size = Offsets.Splits.size(); 3988 for (;;) { 3989 auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8); 3990 auto AS = LI->getPointerAddressSpace(); 3991 auto *PartPtrTy = PartTy->getPointerTo(AS); 3992 LoadInst *PLoad = IRB.CreateAlignedLoad( 3993 PartTy, 3994 getAdjustedPtr(IRB, DL, BasePtr, 3995 APInt(DL.getIndexSizeInBits(AS), PartOffset), 3996 PartPtrTy, BasePtr->getName() + "."), 3997 getAdjustedAlignment(LI, PartOffset), 3998 /*IsVolatile*/ false, LI->getName()); 3999 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4000 LLVMContext::MD_access_group}); 4001 4002 // Append this load onto the list of split loads so we can find it later 4003 // to rewrite the stores. 4004 SplitLoads.push_back(PLoad); 4005 4006 // Now build a new slice for the alloca. 4007 NewSlices.push_back( 4008 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4009 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 4010 /*IsSplittable*/ false)); 4011 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4012 << ", " << NewSlices.back().endOffset() 4013 << "): " << *PLoad << "\n"); 4014 4015 // See if we've handled all the splits. 4016 if (Idx >= Size) 4017 break; 4018 4019 // Setup the next partition. 4020 PartOffset = Offsets.Splits[Idx]; 4021 ++Idx; 4022 PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset; 4023 } 4024 4025 // Now that we have the split loads, do the slow walk over all uses of the 4026 // load and rewrite them as split stores, or save the split loads to use 4027 // below if the store is going to be split there anyways. 4028 bool DeferredStores = false; 4029 for (User *LU : LI->users()) { 4030 StoreInst *SI = cast<StoreInst>(LU); 4031 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 4032 DeferredStores = true; 4033 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI 4034 << "\n"); 4035 continue; 4036 } 4037 4038 Value *StoreBasePtr = SI->getPointerOperand(); 4039 IRB.SetInsertPoint(SI); 4040 4041 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 4042 4043 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 4044 LoadInst *PLoad = SplitLoads[Idx]; 4045 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 4046 auto *PartPtrTy = 4047 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); 4048 4049 auto AS = SI->getPointerAddressSpace(); 4050 StoreInst *PStore = IRB.CreateAlignedStore( 4051 PLoad, 4052 getAdjustedPtr(IRB, DL, StoreBasePtr, 4053 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4054 PartPtrTy, StoreBasePtr->getName() + "."), 4055 getAdjustedAlignment(SI, PartOffset), 4056 /*IsVolatile*/ false); 4057 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4058 LLVMContext::MD_access_group}); 4059 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 4060 } 4061 4062 // We want to immediately iterate on any allocas impacted by splitting 4063 // this store, and we have to track any promotable alloca (indicated by 4064 // a direct store) as needing to be resplit because it is no longer 4065 // promotable. 4066 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 4067 ResplitPromotableAllocas.insert(OtherAI); 4068 Worklist.insert(OtherAI); 4069 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4070 StoreBasePtr->stripInBoundsOffsets())) { 4071 Worklist.insert(OtherAI); 4072 } 4073 4074 // Mark the original store as dead. 4075 DeadInsts.push_back(SI); 4076 } 4077 4078 // Save the split loads if there are deferred stores among the users. 4079 if (DeferredStores) 4080 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 4081 4082 // Mark the original load as dead and kill the original slice. 4083 DeadInsts.push_back(LI); 4084 Offsets.S->kill(); 4085 } 4086 4087 // Second, we rewrite all of the split stores. At this point, we know that 4088 // all loads from this alloca have been split already. For stores of such 4089 // loads, we can simply look up the pre-existing split loads. For stores of 4090 // other loads, we split those loads first and then write split stores of 4091 // them. 4092 for (StoreInst *SI : Stores) { 4093 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4094 IntegerType *Ty = cast<IntegerType>(LI->getType()); 4095 assert(Ty->getBitWidth() % 8 == 0); 4096 uint64_t StoreSize = Ty->getBitWidth() / 8; 4097 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 4098 4099 auto &Offsets = SplitOffsetsMap[SI]; 4100 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 4101 "Slice size should always match load size exactly!"); 4102 uint64_t BaseOffset = Offsets.S->beginOffset(); 4103 assert(BaseOffset + StoreSize > BaseOffset && 4104 "Cannot represent alloca access size using 64-bit integers!"); 4105 4106 Value *LoadBasePtr = LI->getPointerOperand(); 4107 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 4108 4109 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 4110 4111 // Check whether we have an already split load. 4112 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 4113 std::vector<LoadInst *> *SplitLoads = nullptr; 4114 if (SplitLoadsMapI != SplitLoadsMap.end()) { 4115 SplitLoads = &SplitLoadsMapI->second; 4116 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 4117 "Too few split loads for the number of splits in the store!"); 4118 } else { 4119 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); 4120 } 4121 4122 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4123 int Idx = 0, Size = Offsets.Splits.size(); 4124 for (;;) { 4125 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 4126 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); 4127 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); 4128 4129 // Either lookup a split load or create one. 4130 LoadInst *PLoad; 4131 if (SplitLoads) { 4132 PLoad = (*SplitLoads)[Idx]; 4133 } else { 4134 IRB.SetInsertPoint(LI); 4135 auto AS = LI->getPointerAddressSpace(); 4136 PLoad = IRB.CreateAlignedLoad( 4137 PartTy, 4138 getAdjustedPtr(IRB, DL, LoadBasePtr, 4139 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4140 LoadPartPtrTy, LoadBasePtr->getName() + "."), 4141 getAdjustedAlignment(LI, PartOffset), 4142 /*IsVolatile*/ false, LI->getName()); 4143 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4144 LLVMContext::MD_access_group}); 4145 } 4146 4147 // And store this partition. 4148 IRB.SetInsertPoint(SI); 4149 auto AS = SI->getPointerAddressSpace(); 4150 StoreInst *PStore = IRB.CreateAlignedStore( 4151 PLoad, 4152 getAdjustedPtr(IRB, DL, StoreBasePtr, 4153 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4154 StorePartPtrTy, StoreBasePtr->getName() + "."), 4155 getAdjustedAlignment(SI, PartOffset), 4156 /*IsVolatile*/ false); 4157 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4158 LLVMContext::MD_access_group}); 4159 4160 // Now build a new slice for the alloca. 4161 NewSlices.push_back( 4162 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4163 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 4164 /*IsSplittable*/ false)); 4165 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4166 << ", " << NewSlices.back().endOffset() 4167 << "): " << *PStore << "\n"); 4168 if (!SplitLoads) { 4169 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 4170 } 4171 4172 // See if we've finished all the splits. 4173 if (Idx >= Size) 4174 break; 4175 4176 // Setup the next partition. 4177 PartOffset = Offsets.Splits[Idx]; 4178 ++Idx; 4179 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 4180 } 4181 4182 // We want to immediately iterate on any allocas impacted by splitting 4183 // this load, which is only relevant if it isn't a load of this alloca and 4184 // thus we didn't already split the loads above. We also have to keep track 4185 // of any promotable allocas we split loads on as they can no longer be 4186 // promoted. 4187 if (!SplitLoads) { 4188 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 4189 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4190 ResplitPromotableAllocas.insert(OtherAI); 4191 Worklist.insert(OtherAI); 4192 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4193 LoadBasePtr->stripInBoundsOffsets())) { 4194 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4195 Worklist.insert(OtherAI); 4196 } 4197 } 4198 4199 // Mark the original store as dead now that we've split it up and kill its 4200 // slice. Note that we leave the original load in place unless this store 4201 // was its only use. It may in turn be split up if it is an alloca load 4202 // for some other alloca, but it may be a normal load. This may introduce 4203 // redundant loads, but where those can be merged the rest of the optimizer 4204 // should handle the merging, and this uncovers SSA splits which is more 4205 // important. In practice, the original loads will almost always be fully 4206 // split and removed eventually, and the splits will be merged by any 4207 // trivial CSE, including instcombine. 4208 if (LI->hasOneUse()) { 4209 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 4210 DeadInsts.push_back(LI); 4211 } 4212 DeadInsts.push_back(SI); 4213 Offsets.S->kill(); 4214 } 4215 4216 // Remove the killed slices that have ben pre-split. 4217 llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); }); 4218 4219 // Insert our new slices. This will sort and merge them into the sorted 4220 // sequence. 4221 AS.insert(NewSlices); 4222 4223 LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); 4224 #ifndef NDEBUG 4225 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 4226 LLVM_DEBUG(AS.print(dbgs(), I, " ")); 4227 #endif 4228 4229 // Finally, don't try to promote any allocas that new require re-splitting. 4230 // They have already been added to the worklist above. 4231 llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) { 4232 return ResplitPromotableAllocas.count(AI); 4233 }); 4234 4235 return true; 4236 } 4237 4238 /// Rewrite an alloca partition's users. 4239 /// 4240 /// This routine drives both of the rewriting goals of the SROA pass. It tries 4241 /// to rewrite uses of an alloca partition to be conducive for SSA value 4242 /// promotion. If the partition needs a new, more refined alloca, this will 4243 /// build that new alloca, preserving as much type information as possible, and 4244 /// rewrite the uses of the old alloca to point at the new one and have the 4245 /// appropriate new offsets. It also evaluates how successful the rewrite was 4246 /// at enabling promotion and if it was successful queues the alloca to be 4247 /// promoted. 4248 AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 4249 Partition &P) { 4250 // Try to compute a friendly type for this partition of the alloca. This 4251 // won't always succeed, in which case we fall back to a legal integer type 4252 // or an i8 array of an appropriate size. 4253 Type *SliceTy = nullptr; 4254 const DataLayout &DL = AI.getModule()->getDataLayout(); 4255 std::pair<Type *, IntegerType *> CommonUseTy = 4256 findCommonType(P.begin(), P.end(), P.endOffset()); 4257 // Do all uses operate on the same type? 4258 if (CommonUseTy.first) 4259 if (DL.getTypeAllocSize(CommonUseTy.first).getFixedSize() >= P.size()) 4260 SliceTy = CommonUseTy.first; 4261 // If not, can we find an appropriate subtype in the original allocated type? 4262 if (!SliceTy) 4263 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4264 P.beginOffset(), P.size())) 4265 SliceTy = TypePartitionTy; 4266 // If still not, can we use the largest bitwidth integer type used? 4267 if (!SliceTy && CommonUseTy.second) 4268 if (DL.getTypeAllocSize(CommonUseTy.second).getFixedSize() >= P.size()) 4269 SliceTy = CommonUseTy.second; 4270 if ((!SliceTy || (SliceTy->isArrayTy() && 4271 SliceTy->getArrayElementType()->isIntegerTy())) && 4272 DL.isLegalInteger(P.size() * 8)) 4273 SliceTy = Type::getIntNTy(*C, P.size() * 8); 4274 if (!SliceTy) 4275 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 4276 assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size()); 4277 4278 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 4279 4280 VectorType *VecTy = 4281 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 4282 if (VecTy) 4283 SliceTy = VecTy; 4284 4285 // Check for the case where we're going to rewrite to a new alloca of the 4286 // exact same type as the original, and with the same access offsets. In that 4287 // case, re-use the existing alloca, but still run through the rewriter to 4288 // perform phi and select speculation. 4289 // P.beginOffset() can be non-zero even with the same type in a case with 4290 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). 4291 AllocaInst *NewAI; 4292 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { 4293 NewAI = &AI; 4294 // FIXME: We should be able to bail at this point with "nothing changed". 4295 // FIXME: We might want to defer PHI speculation until after here. 4296 // FIXME: return nullptr; 4297 } else { 4298 // Make sure the alignment is compatible with P.beginOffset(). 4299 const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset()); 4300 // If we will get at least this much alignment from the type alone, leave 4301 // the alloca's alignment unconstrained. 4302 const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy); 4303 NewAI = new AllocaInst( 4304 SliceTy, AI.getType()->getAddressSpace(), nullptr, 4305 IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment, 4306 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); 4307 // Copy the old AI debug location over to the new one. 4308 NewAI->setDebugLoc(AI.getDebugLoc()); 4309 ++NumNewAllocas; 4310 } 4311 4312 LLVM_DEBUG(dbgs() << "Rewriting alloca partition " 4313 << "[" << P.beginOffset() << "," << P.endOffset() 4314 << ") to: " << *NewAI << "\n"); 4315 4316 // Track the high watermark on the worklist as it is only relevant for 4317 // promoted allocas. We will reset it to this point if the alloca is not in 4318 // fact scheduled for promotion. 4319 unsigned PPWOldSize = PostPromotionWorklist.size(); 4320 unsigned NumUses = 0; 4321 SmallSetVector<PHINode *, 8> PHIUsers; 4322 SmallSetVector<SelectInst *, 8> SelectUsers; 4323 4324 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 4325 P.endOffset(), IsIntegerPromotable, VecTy, 4326 PHIUsers, SelectUsers); 4327 bool Promotable = true; 4328 for (Slice *S : P.splitSliceTails()) { 4329 Promotable &= Rewriter.visit(S); 4330 ++NumUses; 4331 } 4332 for (Slice &S : P) { 4333 Promotable &= Rewriter.visit(&S); 4334 ++NumUses; 4335 } 4336 4337 NumAllocaPartitionUses += NumUses; 4338 MaxUsesPerAllocaPartition.updateMax(NumUses); 4339 4340 // Now that we've processed all the slices in the new partition, check if any 4341 // PHIs or Selects would block promotion. 4342 for (PHINode *PHI : PHIUsers) 4343 if (!isSafePHIToSpeculate(*PHI)) { 4344 Promotable = false; 4345 PHIUsers.clear(); 4346 SelectUsers.clear(); 4347 break; 4348 } 4349 4350 for (SelectInst *Sel : SelectUsers) 4351 if (!isSafeSelectToSpeculate(*Sel)) { 4352 Promotable = false; 4353 PHIUsers.clear(); 4354 SelectUsers.clear(); 4355 break; 4356 } 4357 4358 if (Promotable) { 4359 for (Use *U : AS.getDeadUsesIfPromotable()) { 4360 auto *OldInst = dyn_cast<Instruction>(U->get()); 4361 Value::dropDroppableUse(*U); 4362 if (OldInst) 4363 if (isInstructionTriviallyDead(OldInst)) 4364 DeadInsts.push_back(OldInst); 4365 } 4366 if (PHIUsers.empty() && SelectUsers.empty()) { 4367 // Promote the alloca. 4368 PromotableAllocas.push_back(NewAI); 4369 } else { 4370 // If we have either PHIs or Selects to speculate, add them to those 4371 // worklists and re-queue the new alloca so that we promote in on the 4372 // next iteration. 4373 for (PHINode *PHIUser : PHIUsers) 4374 SpeculatablePHIs.insert(PHIUser); 4375 for (SelectInst *SelectUser : SelectUsers) 4376 SpeculatableSelects.insert(SelectUser); 4377 Worklist.insert(NewAI); 4378 } 4379 } else { 4380 // Drop any post-promotion work items if promotion didn't happen. 4381 while (PostPromotionWorklist.size() > PPWOldSize) 4382 PostPromotionWorklist.pop_back(); 4383 4384 // We couldn't promote and we didn't create a new partition, nothing 4385 // happened. 4386 if (NewAI == &AI) 4387 return nullptr; 4388 4389 // If we can't promote the alloca, iterate on it to check for new 4390 // refinements exposed by splitting the current alloca. Don't iterate on an 4391 // alloca which didn't actually change and didn't get promoted. 4392 Worklist.insert(NewAI); 4393 } 4394 4395 return NewAI; 4396 } 4397 4398 /// Walks the slices of an alloca and form partitions based on them, 4399 /// rewriting each of their uses. 4400 bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 4401 if (AS.begin() == AS.end()) 4402 return false; 4403 4404 unsigned NumPartitions = 0; 4405 bool Changed = false; 4406 const DataLayout &DL = AI.getModule()->getDataLayout(); 4407 4408 // First try to pre-split loads and stores. 4409 Changed |= presplitLoadsAndStores(AI, AS); 4410 4411 // Now that we have identified any pre-splitting opportunities, 4412 // mark loads and stores unsplittable except for the following case. 4413 // We leave a slice splittable if all other slices are disjoint or fully 4414 // included in the slice, such as whole-alloca loads and stores. 4415 // If we fail to split these during pre-splitting, we want to force them 4416 // to be rewritten into a partition. 4417 bool IsSorted = true; 4418 4419 uint64_t AllocaSize = 4420 DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize(); 4421 const uint64_t MaxBitVectorSize = 1024; 4422 if (AllocaSize <= MaxBitVectorSize) { 4423 // If a byte boundary is included in any load or store, a slice starting or 4424 // ending at the boundary is not splittable. 4425 SmallBitVector SplittableOffset(AllocaSize + 1, true); 4426 for (Slice &S : AS) 4427 for (unsigned O = S.beginOffset() + 1; 4428 O < S.endOffset() && O < AllocaSize; O++) 4429 SplittableOffset.reset(O); 4430 4431 for (Slice &S : AS) { 4432 if (!S.isSplittable()) 4433 continue; 4434 4435 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && 4436 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) 4437 continue; 4438 4439 if (isa<LoadInst>(S.getUse()->getUser()) || 4440 isa<StoreInst>(S.getUse()->getUser())) { 4441 S.makeUnsplittable(); 4442 IsSorted = false; 4443 } 4444 } 4445 } 4446 else { 4447 // We only allow whole-alloca splittable loads and stores 4448 // for a large alloca to avoid creating too large BitVector. 4449 for (Slice &S : AS) { 4450 if (!S.isSplittable()) 4451 continue; 4452 4453 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) 4454 continue; 4455 4456 if (isa<LoadInst>(S.getUse()->getUser()) || 4457 isa<StoreInst>(S.getUse()->getUser())) { 4458 S.makeUnsplittable(); 4459 IsSorted = false; 4460 } 4461 } 4462 } 4463 4464 if (!IsSorted) 4465 llvm::sort(AS); 4466 4467 /// Describes the allocas introduced by rewritePartition in order to migrate 4468 /// the debug info. 4469 struct Fragment { 4470 AllocaInst *Alloca; 4471 uint64_t Offset; 4472 uint64_t Size; 4473 Fragment(AllocaInst *AI, uint64_t O, uint64_t S) 4474 : Alloca(AI), Offset(O), Size(S) {} 4475 }; 4476 SmallVector<Fragment, 4> Fragments; 4477 4478 // Rewrite each partition. 4479 for (auto &P : AS.partitions()) { 4480 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 4481 Changed = true; 4482 if (NewAI != &AI) { 4483 uint64_t SizeOfByte = 8; 4484 uint64_t AllocaSize = 4485 DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize(); 4486 // Don't include any padding. 4487 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 4488 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); 4489 } 4490 } 4491 ++NumPartitions; 4492 } 4493 4494 NumAllocaPartitions += NumPartitions; 4495 MaxPartitionsPerAlloca.updateMax(NumPartitions); 4496 4497 // Migrate debug information from the old alloca to the new alloca(s) 4498 // and the individual partitions. 4499 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI); 4500 for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) { 4501 auto *Expr = DbgDeclare->getExpression(); 4502 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 4503 uint64_t AllocaSize = 4504 DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize(); 4505 for (auto Fragment : Fragments) { 4506 // Create a fragment expression describing the new partition or reuse AI's 4507 // expression if there is only one partition. 4508 auto *FragmentExpr = Expr; 4509 if (Fragment.Size < AllocaSize || Expr->isFragment()) { 4510 // If this alloca is already a scalar replacement of a larger aggregate, 4511 // Fragment.Offset describes the offset inside the scalar. 4512 auto ExprFragment = Expr->getFragmentInfo(); 4513 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0; 4514 uint64_t Start = Offset + Fragment.Offset; 4515 uint64_t Size = Fragment.Size; 4516 if (ExprFragment) { 4517 uint64_t AbsEnd = 4518 ExprFragment->OffsetInBits + ExprFragment->SizeInBits; 4519 if (Start >= AbsEnd) 4520 // No need to describe a SROAed padding. 4521 continue; 4522 Size = std::min(Size, AbsEnd - Start); 4523 } 4524 // The new, smaller fragment is stenciled out from the old fragment. 4525 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) { 4526 assert(Start >= OrigFragment->OffsetInBits && 4527 "new fragment is outside of original fragment"); 4528 Start -= OrigFragment->OffsetInBits; 4529 } 4530 4531 // The alloca may be larger than the variable. 4532 auto VarSize = DbgDeclare->getVariable()->getSizeInBits(); 4533 if (VarSize) { 4534 if (Size > *VarSize) 4535 Size = *VarSize; 4536 if (Size == 0 || Start + Size > *VarSize) 4537 continue; 4538 } 4539 4540 // Avoid creating a fragment expression that covers the entire variable. 4541 if (!VarSize || *VarSize != Size) { 4542 if (auto E = 4543 DIExpression::createFragmentExpression(Expr, Start, Size)) 4544 FragmentExpr = *E; 4545 else 4546 continue; 4547 } 4548 } 4549 4550 // Remove any existing intrinsics on the new alloca describing 4551 // the variable fragment. 4552 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) { 4553 auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS, 4554 const DbgVariableIntrinsic *RHS) { 4555 return LHS->getVariable() == RHS->getVariable() && 4556 LHS->getDebugLoc()->getInlinedAt() == 4557 RHS->getDebugLoc()->getInlinedAt(); 4558 }; 4559 if (SameVariableFragment(OldDII, DbgDeclare)) 4560 OldDII->eraseFromParent(); 4561 } 4562 4563 DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), FragmentExpr, 4564 DbgDeclare->getDebugLoc(), &AI); 4565 } 4566 } 4567 return Changed; 4568 } 4569 4570 /// Clobber a use with poison, deleting the used value if it becomes dead. 4571 void SROAPass::clobberUse(Use &U) { 4572 Value *OldV = U; 4573 // Replace the use with an poison value. 4574 U = PoisonValue::get(OldV->getType()); 4575 4576 // Check for this making an instruction dead. We have to garbage collect 4577 // all the dead instructions to ensure the uses of any alloca end up being 4578 // minimal. 4579 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 4580 if (isInstructionTriviallyDead(OldI)) { 4581 DeadInsts.push_back(OldI); 4582 } 4583 } 4584 4585 /// Analyze an alloca for SROA. 4586 /// 4587 /// This analyzes the alloca to ensure we can reason about it, builds 4588 /// the slices of the alloca, and then hands it off to be split and 4589 /// rewritten as needed. 4590 bool SROAPass::runOnAlloca(AllocaInst &AI) { 4591 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 4592 ++NumAllocasAnalyzed; 4593 4594 // Special case dead allocas, as they're trivial. 4595 if (AI.use_empty()) { 4596 AI.eraseFromParent(); 4597 return true; 4598 } 4599 const DataLayout &DL = AI.getModule()->getDataLayout(); 4600 4601 // Skip alloca forms that this analysis can't handle. 4602 auto *AT = AI.getAllocatedType(); 4603 if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) || 4604 DL.getTypeAllocSize(AT).getFixedSize() == 0) 4605 return false; 4606 4607 bool Changed = false; 4608 4609 // First, split any FCA loads and stores touching this alloca to promote 4610 // better splitting and promotion opportunities. 4611 IRBuilderTy IRB(&AI); 4612 AggLoadStoreRewriter AggRewriter(DL, IRB); 4613 Changed |= AggRewriter.rewrite(AI); 4614 4615 // Build the slices using a recursive instruction-visiting builder. 4616 AllocaSlices AS(DL, AI); 4617 LLVM_DEBUG(AS.print(dbgs())); 4618 if (AS.isEscaped()) 4619 return Changed; 4620 4621 // Delete all the dead users of this alloca before splitting and rewriting it. 4622 for (Instruction *DeadUser : AS.getDeadUsers()) { 4623 // Free up everything used by this instruction. 4624 for (Use &DeadOp : DeadUser->operands()) 4625 clobberUse(DeadOp); 4626 4627 // Now replace the uses of this instruction. 4628 DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType())); 4629 4630 // And mark it for deletion. 4631 DeadInsts.push_back(DeadUser); 4632 Changed = true; 4633 } 4634 for (Use *DeadOp : AS.getDeadOperands()) { 4635 clobberUse(*DeadOp); 4636 Changed = true; 4637 } 4638 4639 // No slices to split. Leave the dead alloca for a later pass to clean up. 4640 if (AS.begin() == AS.end()) 4641 return Changed; 4642 4643 Changed |= splitAlloca(AI, AS); 4644 4645 LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); 4646 while (!SpeculatablePHIs.empty()) 4647 speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val()); 4648 4649 LLVM_DEBUG(dbgs() << " Speculating Selects\n"); 4650 while (!SpeculatableSelects.empty()) 4651 speculateSelectInstLoads(IRB, *SpeculatableSelects.pop_back_val()); 4652 4653 return Changed; 4654 } 4655 4656 /// Delete the dead instructions accumulated in this run. 4657 /// 4658 /// Recursively deletes the dead instructions we've accumulated. This is done 4659 /// at the very end to maximize locality of the recursive delete and to 4660 /// minimize the problems of invalidated instruction pointers as such pointers 4661 /// are used heavily in the intermediate stages of the algorithm. 4662 /// 4663 /// We also record the alloca instructions deleted here so that they aren't 4664 /// subsequently handed to mem2reg to promote. 4665 bool SROAPass::deleteDeadInstructions( 4666 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 4667 bool Changed = false; 4668 while (!DeadInsts.empty()) { 4669 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()); 4670 if (!I) continue; 4671 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 4672 4673 // If the instruction is an alloca, find the possible dbg.declare connected 4674 // to it, and remove it too. We must do this before calling RAUW or we will 4675 // not be able to find it. 4676 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4677 DeletedAllocas.insert(AI); 4678 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI)) 4679 OldDII->eraseFromParent(); 4680 } 4681 4682 I->replaceAllUsesWith(UndefValue::get(I->getType())); 4683 4684 for (Use &Operand : I->operands()) 4685 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 4686 // Zero out the operand and see if it becomes trivially dead. 4687 Operand = nullptr; 4688 if (isInstructionTriviallyDead(U)) 4689 DeadInsts.push_back(U); 4690 } 4691 4692 ++NumDeleted; 4693 I->eraseFromParent(); 4694 Changed = true; 4695 } 4696 return Changed; 4697 } 4698 4699 /// Promote the allocas, using the best available technique. 4700 /// 4701 /// This attempts to promote whatever allocas have been identified as viable in 4702 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 4703 /// This function returns whether any promotion occurred. 4704 bool SROAPass::promoteAllocas(Function &F) { 4705 if (PromotableAllocas.empty()) 4706 return false; 4707 4708 NumPromoted += PromotableAllocas.size(); 4709 4710 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 4711 PromoteMemToReg(PromotableAllocas, *DT, AC); 4712 PromotableAllocas.clear(); 4713 return true; 4714 } 4715 4716 PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT, 4717 AssumptionCache &RunAC) { 4718 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 4719 C = &F.getContext(); 4720 DT = &RunDT; 4721 AC = &RunAC; 4722 4723 BasicBlock &EntryBB = F.getEntryBlock(); 4724 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 4725 I != E; ++I) { 4726 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4727 if (isa<ScalableVectorType>(AI->getAllocatedType())) { 4728 if (isAllocaPromotable(AI)) 4729 PromotableAllocas.push_back(AI); 4730 } else { 4731 Worklist.insert(AI); 4732 } 4733 } 4734 } 4735 4736 bool Changed = false; 4737 // A set of deleted alloca instruction pointers which should be removed from 4738 // the list of promotable allocas. 4739 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 4740 4741 do { 4742 while (!Worklist.empty()) { 4743 Changed |= runOnAlloca(*Worklist.pop_back_val()); 4744 Changed |= deleteDeadInstructions(DeletedAllocas); 4745 4746 // Remove the deleted allocas from various lists so that we don't try to 4747 // continue processing them. 4748 if (!DeletedAllocas.empty()) { 4749 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; 4750 Worklist.remove_if(IsInSet); 4751 PostPromotionWorklist.remove_if(IsInSet); 4752 llvm::erase_if(PromotableAllocas, IsInSet); 4753 DeletedAllocas.clear(); 4754 } 4755 } 4756 4757 Changed |= promoteAllocas(F); 4758 4759 Worklist = PostPromotionWorklist; 4760 PostPromotionWorklist.clear(); 4761 } while (!Worklist.empty()); 4762 4763 if (!Changed) 4764 return PreservedAnalyses::all(); 4765 4766 PreservedAnalyses PA; 4767 PA.preserveSet<CFGAnalyses>(); 4768 return PA; 4769 } 4770 4771 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) { 4772 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F), 4773 AM.getResult<AssumptionAnalysis>(F)); 4774 } 4775 4776 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 4777 /// 4778 /// This is in the llvm namespace purely to allow it to be a friend of the \c 4779 /// SROA pass. 4780 class llvm::sroa::SROALegacyPass : public FunctionPass { 4781 /// The SROA implementation. 4782 SROAPass Impl; 4783 4784 public: 4785 static char ID; 4786 4787 SROALegacyPass() : FunctionPass(ID) { 4788 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 4789 } 4790 4791 bool runOnFunction(Function &F) override { 4792 if (skipFunction(F)) 4793 return false; 4794 4795 auto PA = Impl.runImpl( 4796 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4797 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 4798 return !PA.areAllPreserved(); 4799 } 4800 4801 void getAnalysisUsage(AnalysisUsage &AU) const override { 4802 AU.addRequired<AssumptionCacheTracker>(); 4803 AU.addRequired<DominatorTreeWrapperPass>(); 4804 AU.addPreserved<GlobalsAAWrapperPass>(); 4805 AU.setPreservesCFG(); 4806 } 4807 4808 StringRef getPassName() const override { return "SROA"; } 4809 }; 4810 4811 char SROALegacyPass::ID = 0; 4812 4813 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); } 4814 4815 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 4816 "Scalar Replacement Of Aggregates", false, false) 4817 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4818 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4819 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 4820 false, false) 4821