1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This transformation implements the well known scalar replacement of 10 /// aggregates transformation. It tries to identify promotable elements of an 11 /// aggregate alloca, and promote them to registers. It will also try to 12 /// convert uses of an element (or set of elements) of an alloca into a vector 13 /// or bitfield-style integer scalar if appropriate. 14 /// 15 /// It works to do this with minimal slicing of the alloca so that regions 16 /// which are merely transferred in and out of external memory remain unchanged 17 /// and are not decomposed to scalar code. 18 /// 19 /// Because this also performs alloca promotion, it can be thought of as also 20 /// serving the purpose of SSA formation. The algorithm iterates on the 21 /// function until all opportunities for promotion have been realized. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/SROA.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/PointerIntPair.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/ADT/iterator.h" 39 #include "llvm/ADT/iterator_range.h" 40 #include "llvm/Analysis/AssumptionCache.h" 41 #include "llvm/Analysis/GlobalsModRef.h" 42 #include "llvm/Analysis/Loads.h" 43 #include "llvm/Analysis/PtrUseVisitor.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/ConstantFolder.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DIBuilder.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfo.h" 52 #include "llvm/IR/DebugInfoMetadata.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/GetElementPtrTypeIterator.h" 57 #include "llvm/IR/GlobalAlias.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstVisitor.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PassManager.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/InitializePasses.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/Casting.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/ErrorHandling.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/Local.h" 82 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 83 #include <algorithm> 84 #include <cassert> 85 #include <cstddef> 86 #include <cstdint> 87 #include <cstring> 88 #include <iterator> 89 #include <string> 90 #include <tuple> 91 #include <utility> 92 #include <vector> 93 94 using namespace llvm; 95 using namespace llvm::sroa; 96 97 #define DEBUG_TYPE "sroa" 98 99 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 100 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 101 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 102 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 103 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 104 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 105 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 106 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 107 STATISTIC(NumDeleted, "Number of instructions deleted"); 108 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 109 110 /// Hidden option to experiment with completely strict handling of inbounds 111 /// GEPs. 112 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), 113 cl::Hidden); 114 115 namespace { 116 117 /// A custom IRBuilder inserter which prefixes all names, but only in 118 /// Assert builds. 119 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { 120 std::string Prefix; 121 122 Twine getNameWithPrefix(const Twine &Name) const { 123 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 124 } 125 126 public: 127 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 128 129 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 130 BasicBlock::iterator InsertPt) const override { 131 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, 132 InsertPt); 133 } 134 }; 135 136 /// Provide a type for IRBuilder that drops names in release builds. 137 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 138 139 /// A used slice of an alloca. 140 /// 141 /// This structure represents a slice of an alloca used by some instruction. It 142 /// stores both the begin and end offsets of this use, a pointer to the use 143 /// itself, and a flag indicating whether we can classify the use as splittable 144 /// or not when forming partitions of the alloca. 145 class Slice { 146 /// The beginning offset of the range. 147 uint64_t BeginOffset = 0; 148 149 /// The ending offset, not included in the range. 150 uint64_t EndOffset = 0; 151 152 /// Storage for both the use of this slice and whether it can be 153 /// split. 154 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 155 156 public: 157 Slice() = default; 158 159 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 160 : BeginOffset(BeginOffset), EndOffset(EndOffset), 161 UseAndIsSplittable(U, IsSplittable) {} 162 163 uint64_t beginOffset() const { return BeginOffset; } 164 uint64_t endOffset() const { return EndOffset; } 165 166 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 167 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 168 169 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 170 171 bool isDead() const { return getUse() == nullptr; } 172 void kill() { UseAndIsSplittable.setPointer(nullptr); } 173 174 /// Support for ordering ranges. 175 /// 176 /// This provides an ordering over ranges such that start offsets are 177 /// always increasing, and within equal start offsets, the end offsets are 178 /// decreasing. Thus the spanning range comes first in a cluster with the 179 /// same start position. 180 bool operator<(const Slice &RHS) const { 181 if (beginOffset() < RHS.beginOffset()) 182 return true; 183 if (beginOffset() > RHS.beginOffset()) 184 return false; 185 if (isSplittable() != RHS.isSplittable()) 186 return !isSplittable(); 187 if (endOffset() > RHS.endOffset()) 188 return true; 189 return false; 190 } 191 192 /// Support comparison with a single offset to allow binary searches. 193 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 194 uint64_t RHSOffset) { 195 return LHS.beginOffset() < RHSOffset; 196 } 197 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 198 const Slice &RHS) { 199 return LHSOffset < RHS.beginOffset(); 200 } 201 202 bool operator==(const Slice &RHS) const { 203 return isSplittable() == RHS.isSplittable() && 204 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 205 } 206 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 207 }; 208 209 } // end anonymous namespace 210 211 /// Representation of the alloca slices. 212 /// 213 /// This class represents the slices of an alloca which are formed by its 214 /// various uses. If a pointer escapes, we can't fully build a representation 215 /// for the slices used and we reflect that in this structure. The uses are 216 /// stored, sorted by increasing beginning offset and with unsplittable slices 217 /// starting at a particular offset before splittable slices. 218 class llvm::sroa::AllocaSlices { 219 public: 220 /// Construct the slices of a particular alloca. 221 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 222 223 /// Test whether a pointer to the allocation escapes our analysis. 224 /// 225 /// If this is true, the slices are never fully built and should be 226 /// ignored. 227 bool isEscaped() const { return PointerEscapingInstr; } 228 229 /// Support for iterating over the slices. 230 /// @{ 231 using iterator = SmallVectorImpl<Slice>::iterator; 232 using range = iterator_range<iterator>; 233 234 iterator begin() { return Slices.begin(); } 235 iterator end() { return Slices.end(); } 236 237 using const_iterator = SmallVectorImpl<Slice>::const_iterator; 238 using const_range = iterator_range<const_iterator>; 239 240 const_iterator begin() const { return Slices.begin(); } 241 const_iterator end() const { return Slices.end(); } 242 /// @} 243 244 /// Erase a range of slices. 245 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 246 247 /// Insert new slices for this alloca. 248 /// 249 /// This moves the slices into the alloca's slices collection, and re-sorts 250 /// everything so that the usual ordering properties of the alloca's slices 251 /// hold. 252 void insert(ArrayRef<Slice> NewSlices) { 253 int OldSize = Slices.size(); 254 Slices.append(NewSlices.begin(), NewSlices.end()); 255 auto SliceI = Slices.begin() + OldSize; 256 llvm::sort(SliceI, Slices.end()); 257 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 258 } 259 260 // Forward declare the iterator and range accessor for walking the 261 // partitions. 262 class partition_iterator; 263 iterator_range<partition_iterator> partitions(); 264 265 /// Access the dead users for this alloca. 266 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 267 268 /// Access Uses that should be dropped if the alloca is promotable. 269 ArrayRef<Use *> getDeadUsesIfPromotable() const { 270 return DeadUseIfPromotable; 271 } 272 273 /// Access the dead operands referring to this alloca. 274 /// 275 /// These are operands which have cannot actually be used to refer to the 276 /// alloca as they are outside its range and the user doesn't correct for 277 /// that. These mostly consist of PHI node inputs and the like which we just 278 /// need to replace with undef. 279 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 280 281 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 282 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 283 void printSlice(raw_ostream &OS, const_iterator I, 284 StringRef Indent = " ") const; 285 void printUse(raw_ostream &OS, const_iterator I, 286 StringRef Indent = " ") const; 287 void print(raw_ostream &OS) const; 288 void dump(const_iterator I) const; 289 void dump() const; 290 #endif 291 292 private: 293 template <typename DerivedT, typename RetT = void> class BuilderBase; 294 class SliceBuilder; 295 296 friend class AllocaSlices::SliceBuilder; 297 298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 299 /// Handle to alloca instruction to simplify method interfaces. 300 AllocaInst &AI; 301 #endif 302 303 /// The instruction responsible for this alloca not having a known set 304 /// of slices. 305 /// 306 /// When an instruction (potentially) escapes the pointer to the alloca, we 307 /// store a pointer to that here and abort trying to form slices of the 308 /// alloca. This will be null if the alloca slices are analyzed successfully. 309 Instruction *PointerEscapingInstr; 310 311 /// The slices of the alloca. 312 /// 313 /// We store a vector of the slices formed by uses of the alloca here. This 314 /// vector is sorted by increasing begin offset, and then the unsplittable 315 /// slices before the splittable ones. See the Slice inner class for more 316 /// details. 317 SmallVector<Slice, 8> Slices; 318 319 /// Instructions which will become dead if we rewrite the alloca. 320 /// 321 /// Note that these are not separated by slice. This is because we expect an 322 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 323 /// all these instructions can simply be removed and replaced with poison as 324 /// they come from outside of the allocated space. 325 SmallVector<Instruction *, 8> DeadUsers; 326 327 /// Uses which will become dead if can promote the alloca. 328 SmallVector<Use *, 8> DeadUseIfPromotable; 329 330 /// Operands which will become dead if we rewrite the alloca. 331 /// 332 /// These are operands that in their particular use can be replaced with 333 /// poison when we rewrite the alloca. These show up in out-of-bounds inputs 334 /// to PHI nodes and the like. They aren't entirely dead (there might be 335 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 336 /// want to swap this particular input for poison to simplify the use lists of 337 /// the alloca. 338 SmallVector<Use *, 8> DeadOperands; 339 }; 340 341 /// A partition of the slices. 342 /// 343 /// An ephemeral representation for a range of slices which can be viewed as 344 /// a partition of the alloca. This range represents a span of the alloca's 345 /// memory which cannot be split, and provides access to all of the slices 346 /// overlapping some part of the partition. 347 /// 348 /// Objects of this type are produced by traversing the alloca's slices, but 349 /// are only ephemeral and not persistent. 350 class llvm::sroa::Partition { 351 private: 352 friend class AllocaSlices; 353 friend class AllocaSlices::partition_iterator; 354 355 using iterator = AllocaSlices::iterator; 356 357 /// The beginning and ending offsets of the alloca for this 358 /// partition. 359 uint64_t BeginOffset = 0, EndOffset = 0; 360 361 /// The start and end iterators of this partition. 362 iterator SI, SJ; 363 364 /// A collection of split slice tails overlapping the partition. 365 SmallVector<Slice *, 4> SplitTails; 366 367 /// Raw constructor builds an empty partition starting and ending at 368 /// the given iterator. 369 Partition(iterator SI) : SI(SI), SJ(SI) {} 370 371 public: 372 /// The start offset of this partition. 373 /// 374 /// All of the contained slices start at or after this offset. 375 uint64_t beginOffset() const { return BeginOffset; } 376 377 /// The end offset of this partition. 378 /// 379 /// All of the contained slices end at or before this offset. 380 uint64_t endOffset() const { return EndOffset; } 381 382 /// The size of the partition. 383 /// 384 /// Note that this can never be zero. 385 uint64_t size() const { 386 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 387 return EndOffset - BeginOffset; 388 } 389 390 /// Test whether this partition contains no slices, and merely spans 391 /// a region occupied by split slices. 392 bool empty() const { return SI == SJ; } 393 394 /// \name Iterate slices that start within the partition. 395 /// These may be splittable or unsplittable. They have a begin offset >= the 396 /// partition begin offset. 397 /// @{ 398 // FIXME: We should probably define a "concat_iterator" helper and use that 399 // to stitch together pointee_iterators over the split tails and the 400 // contiguous iterators of the partition. That would give a much nicer 401 // interface here. We could then additionally expose filtered iterators for 402 // split, unsplit, and unsplittable splices based on the usage patterns. 403 iterator begin() const { return SI; } 404 iterator end() const { return SJ; } 405 /// @} 406 407 /// Get the sequence of split slice tails. 408 /// 409 /// These tails are of slices which start before this partition but are 410 /// split and overlap into the partition. We accumulate these while forming 411 /// partitions. 412 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 413 }; 414 415 /// An iterator over partitions of the alloca's slices. 416 /// 417 /// This iterator implements the core algorithm for partitioning the alloca's 418 /// slices. It is a forward iterator as we don't support backtracking for 419 /// efficiency reasons, and re-use a single storage area to maintain the 420 /// current set of split slices. 421 /// 422 /// It is templated on the slice iterator type to use so that it can operate 423 /// with either const or non-const slice iterators. 424 class AllocaSlices::partition_iterator 425 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 426 Partition> { 427 friend class AllocaSlices; 428 429 /// Most of the state for walking the partitions is held in a class 430 /// with a nice interface for examining them. 431 Partition P; 432 433 /// We need to keep the end of the slices to know when to stop. 434 AllocaSlices::iterator SE; 435 436 /// We also need to keep track of the maximum split end offset seen. 437 /// FIXME: Do we really? 438 uint64_t MaxSplitSliceEndOffset = 0; 439 440 /// Sets the partition to be empty at given iterator, and sets the 441 /// end iterator. 442 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 443 : P(SI), SE(SE) { 444 // If not already at the end, advance our state to form the initial 445 // partition. 446 if (SI != SE) 447 advance(); 448 } 449 450 /// Advance the iterator to the next partition. 451 /// 452 /// Requires that the iterator not be at the end of the slices. 453 void advance() { 454 assert((P.SI != SE || !P.SplitTails.empty()) && 455 "Cannot advance past the end of the slices!"); 456 457 // Clear out any split uses which have ended. 458 if (!P.SplitTails.empty()) { 459 if (P.EndOffset >= MaxSplitSliceEndOffset) { 460 // If we've finished all splits, this is easy. 461 P.SplitTails.clear(); 462 MaxSplitSliceEndOffset = 0; 463 } else { 464 // Remove the uses which have ended in the prior partition. This 465 // cannot change the max split slice end because we just checked that 466 // the prior partition ended prior to that max. 467 llvm::erase_if(P.SplitTails, 468 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }); 469 assert(llvm::any_of(P.SplitTails, 470 [&](Slice *S) { 471 return S->endOffset() == MaxSplitSliceEndOffset; 472 }) && 473 "Could not find the current max split slice offset!"); 474 assert(llvm::all_of(P.SplitTails, 475 [&](Slice *S) { 476 return S->endOffset() <= MaxSplitSliceEndOffset; 477 }) && 478 "Max split slice end offset is not actually the max!"); 479 } 480 } 481 482 // If P.SI is already at the end, then we've cleared the split tail and 483 // now have an end iterator. 484 if (P.SI == SE) { 485 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 486 return; 487 } 488 489 // If we had a non-empty partition previously, set up the state for 490 // subsequent partitions. 491 if (P.SI != P.SJ) { 492 // Accumulate all the splittable slices which started in the old 493 // partition into the split list. 494 for (Slice &S : P) 495 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 496 P.SplitTails.push_back(&S); 497 MaxSplitSliceEndOffset = 498 std::max(S.endOffset(), MaxSplitSliceEndOffset); 499 } 500 501 // Start from the end of the previous partition. 502 P.SI = P.SJ; 503 504 // If P.SI is now at the end, we at most have a tail of split slices. 505 if (P.SI == SE) { 506 P.BeginOffset = P.EndOffset; 507 P.EndOffset = MaxSplitSliceEndOffset; 508 return; 509 } 510 511 // If the we have split slices and the next slice is after a gap and is 512 // not splittable immediately form an empty partition for the split 513 // slices up until the next slice begins. 514 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 515 !P.SI->isSplittable()) { 516 P.BeginOffset = P.EndOffset; 517 P.EndOffset = P.SI->beginOffset(); 518 return; 519 } 520 } 521 522 // OK, we need to consume new slices. Set the end offset based on the 523 // current slice, and step SJ past it. The beginning offset of the 524 // partition is the beginning offset of the next slice unless we have 525 // pre-existing split slices that are continuing, in which case we begin 526 // at the prior end offset. 527 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 528 P.EndOffset = P.SI->endOffset(); 529 ++P.SJ; 530 531 // There are two strategies to form a partition based on whether the 532 // partition starts with an unsplittable slice or a splittable slice. 533 if (!P.SI->isSplittable()) { 534 // When we're forming an unsplittable region, it must always start at 535 // the first slice and will extend through its end. 536 assert(P.BeginOffset == P.SI->beginOffset()); 537 538 // Form a partition including all of the overlapping slices with this 539 // unsplittable slice. 540 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 541 if (!P.SJ->isSplittable()) 542 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 543 ++P.SJ; 544 } 545 546 // We have a partition across a set of overlapping unsplittable 547 // partitions. 548 return; 549 } 550 551 // If we're starting with a splittable slice, then we need to form 552 // a synthetic partition spanning it and any other overlapping splittable 553 // splices. 554 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 555 556 // Collect all of the overlapping splittable slices. 557 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 558 P.SJ->isSplittable()) { 559 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 560 ++P.SJ; 561 } 562 563 // Back upiP.EndOffset if we ended the span early when encountering an 564 // unsplittable slice. This synthesizes the early end offset of 565 // a partition spanning only splittable slices. 566 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 567 assert(!P.SJ->isSplittable()); 568 P.EndOffset = P.SJ->beginOffset(); 569 } 570 } 571 572 public: 573 bool operator==(const partition_iterator &RHS) const { 574 assert(SE == RHS.SE && 575 "End iterators don't match between compared partition iterators!"); 576 577 // The observed positions of partitions is marked by the P.SI iterator and 578 // the emptiness of the split slices. The latter is only relevant when 579 // P.SI == SE, as the end iterator will additionally have an empty split 580 // slices list, but the prior may have the same P.SI and a tail of split 581 // slices. 582 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 583 assert(P.SJ == RHS.P.SJ && 584 "Same set of slices formed two different sized partitions!"); 585 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 586 "Same slice position with differently sized non-empty split " 587 "slice tails!"); 588 return true; 589 } 590 return false; 591 } 592 593 partition_iterator &operator++() { 594 advance(); 595 return *this; 596 } 597 598 Partition &operator*() { return P; } 599 }; 600 601 /// A forward range over the partitions of the alloca's slices. 602 /// 603 /// This accesses an iterator range over the partitions of the alloca's 604 /// slices. It computes these partitions on the fly based on the overlapping 605 /// offsets of the slices and the ability to split them. It will visit "empty" 606 /// partitions to cover regions of the alloca only accessed via split 607 /// slices. 608 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 609 return make_range(partition_iterator(begin(), end()), 610 partition_iterator(end(), end())); 611 } 612 613 static Value *foldSelectInst(SelectInst &SI) { 614 // If the condition being selected on is a constant or the same value is 615 // being selected between, fold the select. Yes this does (rarely) happen 616 // early on. 617 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 618 return SI.getOperand(1 + CI->isZero()); 619 if (SI.getOperand(1) == SI.getOperand(2)) 620 return SI.getOperand(1); 621 622 return nullptr; 623 } 624 625 /// A helper that folds a PHI node or a select. 626 static Value *foldPHINodeOrSelectInst(Instruction &I) { 627 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 628 // If PN merges together the same value, return that value. 629 return PN->hasConstantValue(); 630 } 631 return foldSelectInst(cast<SelectInst>(I)); 632 } 633 634 /// Builder for the alloca slices. 635 /// 636 /// This class builds a set of alloca slices by recursively visiting the uses 637 /// of an alloca and making a slice for each load and store at each offset. 638 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 639 friend class PtrUseVisitor<SliceBuilder>; 640 friend class InstVisitor<SliceBuilder>; 641 642 using Base = PtrUseVisitor<SliceBuilder>; 643 644 const uint64_t AllocSize; 645 AllocaSlices &AS; 646 647 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 648 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 649 650 /// Set to de-duplicate dead instructions found in the use walk. 651 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 652 653 public: 654 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 655 : PtrUseVisitor<SliceBuilder>(DL), 656 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()), 657 AS(AS) {} 658 659 private: 660 void markAsDead(Instruction &I) { 661 if (VisitedDeadInsts.insert(&I).second) 662 AS.DeadUsers.push_back(&I); 663 } 664 665 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 666 bool IsSplittable = false) { 667 // Completely skip uses which have a zero size or start either before or 668 // past the end of the allocation. 669 if (Size == 0 || Offset.uge(AllocSize)) { 670 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" 671 << Offset 672 << " which has zero size or starts outside of the " 673 << AllocSize << " byte alloca:\n" 674 << " alloca: " << AS.AI << "\n" 675 << " use: " << I << "\n"); 676 return markAsDead(I); 677 } 678 679 uint64_t BeginOffset = Offset.getZExtValue(); 680 uint64_t EndOffset = BeginOffset + Size; 681 682 // Clamp the end offset to the end of the allocation. Note that this is 683 // formulated to handle even the case where "BeginOffset + Size" overflows. 684 // This may appear superficially to be something we could ignore entirely, 685 // but that is not so! There may be widened loads or PHI-node uses where 686 // some instructions are dead but not others. We can't completely ignore 687 // them, and so have to record at least the information here. 688 assert(AllocSize >= BeginOffset); // Established above. 689 if (Size > AllocSize - BeginOffset) { 690 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" 691 << Offset << " to remain within the " << AllocSize 692 << " byte alloca:\n" 693 << " alloca: " << AS.AI << "\n" 694 << " use: " << I << "\n"); 695 EndOffset = AllocSize; 696 } 697 698 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 699 } 700 701 void visitBitCastInst(BitCastInst &BC) { 702 if (BC.use_empty()) 703 return markAsDead(BC); 704 705 return Base::visitBitCastInst(BC); 706 } 707 708 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 709 if (ASC.use_empty()) 710 return markAsDead(ASC); 711 712 return Base::visitAddrSpaceCastInst(ASC); 713 } 714 715 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 716 if (GEPI.use_empty()) 717 return markAsDead(GEPI); 718 719 if (SROAStrictInbounds && GEPI.isInBounds()) { 720 // FIXME: This is a manually un-factored variant of the basic code inside 721 // of GEPs with checking of the inbounds invariant specified in the 722 // langref in a very strict sense. If we ever want to enable 723 // SROAStrictInbounds, this code should be factored cleanly into 724 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 725 // by writing out the code here where we have the underlying allocation 726 // size readily available. 727 APInt GEPOffset = Offset; 728 const DataLayout &DL = GEPI.getModule()->getDataLayout(); 729 for (gep_type_iterator GTI = gep_type_begin(GEPI), 730 GTE = gep_type_end(GEPI); 731 GTI != GTE; ++GTI) { 732 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 733 if (!OpC) 734 break; 735 736 // Handle a struct index, which adds its field offset to the pointer. 737 if (StructType *STy = GTI.getStructTypeOrNull()) { 738 unsigned ElementIdx = OpC->getZExtValue(); 739 const StructLayout *SL = DL.getStructLayout(STy); 740 GEPOffset += 741 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 742 } else { 743 // For array or vector indices, scale the index by the size of the 744 // type. 745 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 746 GEPOffset += 747 Index * 748 APInt(Offset.getBitWidth(), 749 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 750 } 751 752 // If this index has computed an intermediate pointer which is not 753 // inbounds, then the result of the GEP is a poison value and we can 754 // delete it and all uses. 755 if (GEPOffset.ugt(AllocSize)) 756 return markAsDead(GEPI); 757 } 758 } 759 760 return Base::visitGetElementPtrInst(GEPI); 761 } 762 763 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 764 uint64_t Size, bool IsVolatile) { 765 // We allow splitting of non-volatile loads and stores where the type is an 766 // integer type. These may be used to implement 'memcpy' or other "transfer 767 // of bits" patterns. 768 bool IsSplittable = 769 Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty); 770 771 insertUse(I, Offset, Size, IsSplittable); 772 } 773 774 void visitLoadInst(LoadInst &LI) { 775 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 776 "All simple FCA loads should have been pre-split"); 777 778 if (!IsOffsetKnown) 779 return PI.setAborted(&LI); 780 781 if (LI.isVolatile() && 782 LI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 783 return PI.setAborted(&LI); 784 785 if (isa<ScalableVectorType>(LI.getType())) 786 return PI.setAborted(&LI); 787 788 uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize(); 789 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 790 } 791 792 void visitStoreInst(StoreInst &SI) { 793 Value *ValOp = SI.getValueOperand(); 794 if (ValOp == *U) 795 return PI.setEscapedAndAborted(&SI); 796 if (!IsOffsetKnown) 797 return PI.setAborted(&SI); 798 799 if (SI.isVolatile() && 800 SI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 801 return PI.setAborted(&SI); 802 803 if (isa<ScalableVectorType>(ValOp->getType())) 804 return PI.setAborted(&SI); 805 806 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize(); 807 808 // If this memory access can be shown to *statically* extend outside the 809 // bounds of the allocation, it's behavior is undefined, so simply 810 // ignore it. Note that this is more strict than the generic clamping 811 // behavior of insertUse. We also try to handle cases which might run the 812 // risk of overflow. 813 // FIXME: We should instead consider the pointer to have escaped if this 814 // function is being instrumented for addressing bugs or race conditions. 815 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 816 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" 817 << Offset << " which extends past the end of the " 818 << AllocSize << " byte alloca:\n" 819 << " alloca: " << AS.AI << "\n" 820 << " use: " << SI << "\n"); 821 return markAsDead(SI); 822 } 823 824 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 825 "All simple FCA stores should have been pre-split"); 826 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 827 } 828 829 void visitMemSetInst(MemSetInst &II) { 830 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 831 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 832 if ((Length && Length->getValue() == 0) || 833 (IsOffsetKnown && Offset.uge(AllocSize))) 834 // Zero-length mem transfer intrinsics can be ignored entirely. 835 return markAsDead(II); 836 837 if (!IsOffsetKnown) 838 return PI.setAborted(&II); 839 840 // Don't replace this with a store with a different address space. TODO: 841 // Use a store with the casted new alloca? 842 if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace()) 843 return PI.setAborted(&II); 844 845 insertUse(II, Offset, Length ? Length->getLimitedValue() 846 : AllocSize - Offset.getLimitedValue(), 847 (bool)Length); 848 } 849 850 void visitMemTransferInst(MemTransferInst &II) { 851 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 852 if (Length && Length->getValue() == 0) 853 // Zero-length mem transfer intrinsics can be ignored entirely. 854 return markAsDead(II); 855 856 // Because we can visit these intrinsics twice, also check to see if the 857 // first time marked this instruction as dead. If so, skip it. 858 if (VisitedDeadInsts.count(&II)) 859 return; 860 861 if (!IsOffsetKnown) 862 return PI.setAborted(&II); 863 864 // Don't replace this with a load/store with a different address space. 865 // TODO: Use a store with the casted new alloca? 866 if (II.isVolatile() && 867 (II.getDestAddressSpace() != DL.getAllocaAddrSpace() || 868 II.getSourceAddressSpace() != DL.getAllocaAddrSpace())) 869 return PI.setAborted(&II); 870 871 // This side of the transfer is completely out-of-bounds, and so we can 872 // nuke the entire transfer. However, we also need to nuke the other side 873 // if already added to our partitions. 874 // FIXME: Yet another place we really should bypass this when 875 // instrumenting for ASan. 876 if (Offset.uge(AllocSize)) { 877 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 878 MemTransferSliceMap.find(&II); 879 if (MTPI != MemTransferSliceMap.end()) 880 AS.Slices[MTPI->second].kill(); 881 return markAsDead(II); 882 } 883 884 uint64_t RawOffset = Offset.getLimitedValue(); 885 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 886 887 // Check for the special case where the same exact value is used for both 888 // source and dest. 889 if (*U == II.getRawDest() && *U == II.getRawSource()) { 890 // For non-volatile transfers this is a no-op. 891 if (!II.isVolatile()) 892 return markAsDead(II); 893 894 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 895 } 896 897 // If we have seen both source and destination for a mem transfer, then 898 // they both point to the same alloca. 899 bool Inserted; 900 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 901 std::tie(MTPI, Inserted) = 902 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 903 unsigned PrevIdx = MTPI->second; 904 if (!Inserted) { 905 Slice &PrevP = AS.Slices[PrevIdx]; 906 907 // Check if the begin offsets match and this is a non-volatile transfer. 908 // In that case, we can completely elide the transfer. 909 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 910 PrevP.kill(); 911 return markAsDead(II); 912 } 913 914 // Otherwise we have an offset transfer within the same alloca. We can't 915 // split those. 916 PrevP.makeUnsplittable(); 917 } 918 919 // Insert the use now that we've fixed up the splittable nature. 920 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 921 922 // Check that we ended up with a valid index in the map. 923 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 924 "Map index doesn't point back to a slice with this user."); 925 } 926 927 // Disable SRoA for any intrinsics except for lifetime invariants and 928 // invariant group. 929 // FIXME: What about debug intrinsics? This matches old behavior, but 930 // doesn't make sense. 931 void visitIntrinsicInst(IntrinsicInst &II) { 932 if (II.isDroppable()) { 933 AS.DeadUseIfPromotable.push_back(U); 934 return; 935 } 936 937 if (!IsOffsetKnown) 938 return PI.setAborted(&II); 939 940 if (II.isLifetimeStartOrEnd()) { 941 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 942 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 943 Length->getLimitedValue()); 944 insertUse(II, Offset, Size, true); 945 return; 946 } 947 948 if (II.isLaunderOrStripInvariantGroup()) { 949 enqueueUsers(II); 950 return; 951 } 952 953 Base::visitIntrinsicInst(II); 954 } 955 956 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 957 // We consider any PHI or select that results in a direct load or store of 958 // the same offset to be a viable use for slicing purposes. These uses 959 // are considered unsplittable and the size is the maximum loaded or stored 960 // size. 961 SmallPtrSet<Instruction *, 4> Visited; 962 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 963 Visited.insert(Root); 964 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 965 const DataLayout &DL = Root->getModule()->getDataLayout(); 966 // If there are no loads or stores, the access is dead. We mark that as 967 // a size zero access. 968 Size = 0; 969 do { 970 Instruction *I, *UsedI; 971 std::tie(UsedI, I) = Uses.pop_back_val(); 972 973 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 974 Size = std::max(Size, 975 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 976 continue; 977 } 978 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 979 Value *Op = SI->getOperand(0); 980 if (Op == UsedI) 981 return SI; 982 Size = std::max(Size, 983 DL.getTypeStoreSize(Op->getType()).getFixedSize()); 984 continue; 985 } 986 987 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 988 if (!GEP->hasAllZeroIndices()) 989 return GEP; 990 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 991 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) { 992 return I; 993 } 994 995 for (User *U : I->users()) 996 if (Visited.insert(cast<Instruction>(U)).second) 997 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 998 } while (!Uses.empty()); 999 1000 return nullptr; 1001 } 1002 1003 void visitPHINodeOrSelectInst(Instruction &I) { 1004 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 1005 if (I.use_empty()) 1006 return markAsDead(I); 1007 1008 // If this is a PHI node before a catchswitch, we cannot insert any non-PHI 1009 // instructions in this BB, which may be required during rewriting. Bail out 1010 // on these cases. 1011 if (isa<PHINode>(I) && 1012 I.getParent()->getFirstInsertionPt() == I.getParent()->end()) 1013 return PI.setAborted(&I); 1014 1015 // TODO: We could use simplifyInstruction here to fold PHINodes and 1016 // SelectInsts. However, doing so requires to change the current 1017 // dead-operand-tracking mechanism. For instance, suppose neither loading 1018 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 1019 // trap either. However, if we simply replace %U with undef using the 1020 // current dead-operand-tracking mechanism, "load (select undef, undef, 1021 // %other)" may trap because the select may return the first operand 1022 // "undef". 1023 if (Value *Result = foldPHINodeOrSelectInst(I)) { 1024 if (Result == *U) 1025 // If the result of the constant fold will be the pointer, recurse 1026 // through the PHI/select as if we had RAUW'ed it. 1027 enqueueUsers(I); 1028 else 1029 // Otherwise the operand to the PHI/select is dead, and we can replace 1030 // it with poison. 1031 AS.DeadOperands.push_back(U); 1032 1033 return; 1034 } 1035 1036 if (!IsOffsetKnown) 1037 return PI.setAborted(&I); 1038 1039 // See if we already have computed info on this node. 1040 uint64_t &Size = PHIOrSelectSizes[&I]; 1041 if (!Size) { 1042 // This is a new PHI/Select, check for an unsafe use of it. 1043 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 1044 return PI.setAborted(UnsafeI); 1045 } 1046 1047 // For PHI and select operands outside the alloca, we can't nuke the entire 1048 // phi or select -- the other side might still be relevant, so we special 1049 // case them here and use a separate structure to track the operands 1050 // themselves which should be replaced with poison. 1051 // FIXME: This should instead be escaped in the event we're instrumenting 1052 // for address sanitization. 1053 if (Offset.uge(AllocSize)) { 1054 AS.DeadOperands.push_back(U); 1055 return; 1056 } 1057 1058 insertUse(I, Offset, Size); 1059 } 1060 1061 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 1062 1063 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 1064 1065 /// Disable SROA entirely if there are unhandled users of the alloca. 1066 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 1067 }; 1068 1069 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 1070 : 1071 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1072 AI(AI), 1073 #endif 1074 PointerEscapingInstr(nullptr) { 1075 SliceBuilder PB(DL, AI, *this); 1076 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 1077 if (PtrI.isEscaped() || PtrI.isAborted()) { 1078 // FIXME: We should sink the escape vs. abort info into the caller nicely, 1079 // possibly by just storing the PtrInfo in the AllocaSlices. 1080 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 1081 : PtrI.getAbortingInst(); 1082 assert(PointerEscapingInstr && "Did not track a bad instruction"); 1083 return; 1084 } 1085 1086 llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); }); 1087 1088 // Sort the uses. This arranges for the offsets to be in ascending order, 1089 // and the sizes to be in descending order. 1090 llvm::stable_sort(Slices); 1091 } 1092 1093 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1094 1095 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1096 StringRef Indent) const { 1097 printSlice(OS, I, Indent); 1098 OS << "\n"; 1099 printUse(OS, I, Indent); 1100 } 1101 1102 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1103 StringRef Indent) const { 1104 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1105 << " slice #" << (I - begin()) 1106 << (I->isSplittable() ? " (splittable)" : ""); 1107 } 1108 1109 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1110 StringRef Indent) const { 1111 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1112 } 1113 1114 void AllocaSlices::print(raw_ostream &OS) const { 1115 if (PointerEscapingInstr) { 1116 OS << "Can't analyze slices for alloca: " << AI << "\n" 1117 << " A pointer to this alloca escaped by:\n" 1118 << " " << *PointerEscapingInstr << "\n"; 1119 return; 1120 } 1121 1122 OS << "Slices of alloca: " << AI << "\n"; 1123 for (const_iterator I = begin(), E = end(); I != E; ++I) 1124 print(OS, I); 1125 } 1126 1127 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1128 print(dbgs(), I); 1129 } 1130 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1131 1132 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1133 1134 /// Walk the range of a partitioning looking for a common type to cover this 1135 /// sequence of slices. 1136 static std::pair<Type *, IntegerType *> 1137 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, 1138 uint64_t EndOffset) { 1139 Type *Ty = nullptr; 1140 bool TyIsCommon = true; 1141 IntegerType *ITy = nullptr; 1142 1143 // Note that we need to look at *every* alloca slice's Use to ensure we 1144 // always get consistent results regardless of the order of slices. 1145 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1146 Use *U = I->getUse(); 1147 if (isa<IntrinsicInst>(*U->getUser())) 1148 continue; 1149 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1150 continue; 1151 1152 Type *UserTy = nullptr; 1153 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1154 UserTy = LI->getType(); 1155 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1156 UserTy = SI->getValueOperand()->getType(); 1157 } 1158 1159 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1160 // If the type is larger than the partition, skip it. We only encounter 1161 // this for split integer operations where we want to use the type of the 1162 // entity causing the split. Also skip if the type is not a byte width 1163 // multiple. 1164 if (UserITy->getBitWidth() % 8 != 0 || 1165 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1166 continue; 1167 1168 // Track the largest bitwidth integer type used in this way in case there 1169 // is no common type. 1170 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1171 ITy = UserITy; 1172 } 1173 1174 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1175 // depend on types skipped above. 1176 if (!UserTy || (Ty && Ty != UserTy)) 1177 TyIsCommon = false; // Give up on anything but an iN type. 1178 else 1179 Ty = UserTy; 1180 } 1181 1182 return {TyIsCommon ? Ty : nullptr, ITy}; 1183 } 1184 1185 /// PHI instructions that use an alloca and are subsequently loaded can be 1186 /// rewritten to load both input pointers in the pred blocks and then PHI the 1187 /// results, allowing the load of the alloca to be promoted. 1188 /// From this: 1189 /// %P2 = phi [i32* %Alloca, i32* %Other] 1190 /// %V = load i32* %P2 1191 /// to: 1192 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1193 /// ... 1194 /// %V2 = load i32* %Other 1195 /// ... 1196 /// %V = phi [i32 %V1, i32 %V2] 1197 /// 1198 /// We can do this to a select if its only uses are loads and if the operands 1199 /// to the select can be loaded unconditionally. 1200 /// 1201 /// FIXME: This should be hoisted into a generic utility, likely in 1202 /// Transforms/Util/Local.h 1203 static bool isSafePHIToSpeculate(PHINode &PN) { 1204 const DataLayout &DL = PN.getModule()->getDataLayout(); 1205 1206 // For now, we can only do this promotion if the load is in the same block 1207 // as the PHI, and if there are no stores between the phi and load. 1208 // TODO: Allow recursive phi users. 1209 // TODO: Allow stores. 1210 BasicBlock *BB = PN.getParent(); 1211 Align MaxAlign; 1212 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); 1213 APInt MaxSize(APWidth, 0); 1214 bool HaveLoad = false; 1215 for (User *U : PN.users()) { 1216 LoadInst *LI = dyn_cast<LoadInst>(U); 1217 if (!LI || !LI->isSimple()) 1218 return false; 1219 1220 // For now we only allow loads in the same block as the PHI. This is 1221 // a common case that happens when instcombine merges two loads through 1222 // a PHI. 1223 if (LI->getParent() != BB) 1224 return false; 1225 1226 // Ensure that there are no instructions between the PHI and the load that 1227 // could store. 1228 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1229 if (BBI->mayWriteToMemory()) 1230 return false; 1231 1232 uint64_t Size = DL.getTypeStoreSize(LI->getType()).getFixedSize(); 1233 MaxAlign = std::max(MaxAlign, LI->getAlign()); 1234 MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize; 1235 HaveLoad = true; 1236 } 1237 1238 if (!HaveLoad) 1239 return false; 1240 1241 // We can only transform this if it is safe to push the loads into the 1242 // predecessor blocks. The only thing to watch out for is that we can't put 1243 // a possibly trapping load in the predecessor if it is a critical edge. 1244 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1245 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1246 Value *InVal = PN.getIncomingValue(Idx); 1247 1248 // If the value is produced by the terminator of the predecessor (an 1249 // invoke) or it has side-effects, there is no valid place to put a load 1250 // in the predecessor. 1251 if (TI == InVal || TI->mayHaveSideEffects()) 1252 return false; 1253 1254 // If the predecessor has a single successor, then the edge isn't 1255 // critical. 1256 if (TI->getNumSuccessors() == 1) 1257 continue; 1258 1259 // If this pointer is always safe to load, or if we can prove that there 1260 // is already a load in the block, then we can move the load to the pred 1261 // block. 1262 if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI)) 1263 continue; 1264 1265 return false; 1266 } 1267 1268 return true; 1269 } 1270 1271 static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) { 1272 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 1273 1274 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1275 Type *LoadTy = SomeLoad->getType(); 1276 IRB.SetInsertPoint(&PN); 1277 PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1278 PN.getName() + ".sroa.speculated"); 1279 1280 // Get the AA tags and alignment to use from one of the loads. It does not 1281 // matter which one we get and if any differ. 1282 AAMDNodes AATags = SomeLoad->getAAMetadata(); 1283 Align Alignment = SomeLoad->getAlign(); 1284 1285 // Rewrite all loads of the PN to use the new PHI. 1286 while (!PN.use_empty()) { 1287 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1288 LI->replaceAllUsesWith(NewPN); 1289 LI->eraseFromParent(); 1290 } 1291 1292 // Inject loads into all of the pred blocks. 1293 DenseMap<BasicBlock*, Value*> InjectedLoads; 1294 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1295 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1296 Value *InVal = PN.getIncomingValue(Idx); 1297 1298 // A PHI node is allowed to have multiple (duplicated) entries for the same 1299 // basic block, as long as the value is the same. So if we already injected 1300 // a load in the predecessor, then we should reuse the same load for all 1301 // duplicated entries. 1302 if (Value* V = InjectedLoads.lookup(Pred)) { 1303 NewPN->addIncoming(V, Pred); 1304 continue; 1305 } 1306 1307 Instruction *TI = Pred->getTerminator(); 1308 IRB.SetInsertPoint(TI); 1309 1310 LoadInst *Load = IRB.CreateAlignedLoad( 1311 LoadTy, InVal, Alignment, 1312 (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1313 ++NumLoadsSpeculated; 1314 if (AATags) 1315 Load->setAAMetadata(AATags); 1316 NewPN->addIncoming(Load, Pred); 1317 InjectedLoads[Pred] = Load; 1318 } 1319 1320 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1321 PN.eraseFromParent(); 1322 } 1323 1324 /// Select instructions that use an alloca and are subsequently loaded can be 1325 /// rewritten to load both input pointers and then select between the result, 1326 /// allowing the load of the alloca to be promoted. 1327 /// From this: 1328 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 1329 /// %V = load i32* %P2 1330 /// to: 1331 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1332 /// %V2 = load i32* %Other 1333 /// %V = select i1 %cond, i32 %V1, i32 %V2 1334 /// 1335 /// We can do this to a select if its only uses are loads and if the operand 1336 /// to the select can be loaded unconditionally. If found an intervening bitcast 1337 /// with a single use of the load, allow the promotion. 1338 static bool isSafeSelectToSpeculate(SelectInst &SI) { 1339 Value *TValue = SI.getTrueValue(); 1340 Value *FValue = SI.getFalseValue(); 1341 const DataLayout &DL = SI.getModule()->getDataLayout(); 1342 1343 for (User *U : SI.users()) { 1344 LoadInst *LI; 1345 BitCastInst *BC = dyn_cast<BitCastInst>(U); 1346 if (BC && BC->hasOneUse()) 1347 LI = dyn_cast<LoadInst>(*BC->user_begin()); 1348 else 1349 LI = dyn_cast<LoadInst>(U); 1350 1351 if (!LI || !LI->isSimple()) 1352 return false; 1353 1354 // Both operands to the select need to be dereferenceable, either 1355 // absolutely (e.g. allocas) or at this point because we can see other 1356 // accesses to it. 1357 if (!isSafeToLoadUnconditionally(TValue, LI->getType(), 1358 LI->getAlign(), DL, LI)) 1359 return false; 1360 if (!isSafeToLoadUnconditionally(FValue, LI->getType(), 1361 LI->getAlign(), DL, LI)) 1362 return false; 1363 } 1364 1365 return true; 1366 } 1367 1368 static void speculateSelectInstLoads(IRBuilderTy &IRB, SelectInst &SI) { 1369 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 1370 1371 IRB.SetInsertPoint(&SI); 1372 Value *TV = SI.getTrueValue(); 1373 Value *FV = SI.getFalseValue(); 1374 // Replace the loads of the select with a select of two loads. 1375 while (!SI.use_empty()) { 1376 LoadInst *LI; 1377 BitCastInst *BC = dyn_cast<BitCastInst>(SI.user_back()); 1378 if (BC) { 1379 assert(BC->hasOneUse() && "Bitcast should have a single use."); 1380 LI = cast<LoadInst>(BC->user_back()); 1381 } else { 1382 LI = cast<LoadInst>(SI.user_back()); 1383 } 1384 1385 assert(LI->isSimple() && "We only speculate simple loads"); 1386 1387 IRB.SetInsertPoint(LI); 1388 Value *NewTV = 1389 BC ? IRB.CreateBitCast(TV, BC->getType(), TV->getName() + ".sroa.cast") 1390 : TV; 1391 Value *NewFV = 1392 BC ? IRB.CreateBitCast(FV, BC->getType(), FV->getName() + ".sroa.cast") 1393 : FV; 1394 LoadInst *TL = IRB.CreateLoad(LI->getType(), NewTV, 1395 LI->getName() + ".sroa.speculate.load.true"); 1396 LoadInst *FL = IRB.CreateLoad(LI->getType(), NewFV, 1397 LI->getName() + ".sroa.speculate.load.false"); 1398 NumLoadsSpeculated += 2; 1399 1400 // Transfer alignment and AA info if present. 1401 TL->setAlignment(LI->getAlign()); 1402 FL->setAlignment(LI->getAlign()); 1403 1404 AAMDNodes Tags = LI->getAAMetadata(); 1405 if (Tags) { 1406 TL->setAAMetadata(Tags); 1407 FL->setAAMetadata(Tags); 1408 } 1409 1410 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1411 LI->getName() + ".sroa.speculated"); 1412 1413 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1414 LI->replaceAllUsesWith(V); 1415 LI->eraseFromParent(); 1416 if (BC) 1417 BC->eraseFromParent(); 1418 } 1419 SI.eraseFromParent(); 1420 } 1421 1422 /// Build a GEP out of a base pointer and indices. 1423 /// 1424 /// This will return the BasePtr if that is valid, or build a new GEP 1425 /// instruction using the IRBuilder if GEP-ing is needed. 1426 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1427 SmallVectorImpl<Value *> &Indices, 1428 const Twine &NamePrefix) { 1429 if (Indices.empty()) 1430 return BasePtr; 1431 1432 // A single zero index is a no-op, so check for this and avoid building a GEP 1433 // in that case. 1434 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1435 return BasePtr; 1436 1437 // buildGEP() is only called for non-opaque pointers. 1438 return IRB.CreateInBoundsGEP( 1439 BasePtr->getType()->getNonOpaquePointerElementType(), BasePtr, Indices, 1440 NamePrefix + "sroa_idx"); 1441 } 1442 1443 /// Get a natural GEP off of the BasePtr walking through Ty toward 1444 /// TargetTy without changing the offset of the pointer. 1445 /// 1446 /// This routine assumes we've already established a properly offset GEP with 1447 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1448 /// zero-indices down through type layers until we find one the same as 1449 /// TargetTy. If we can't find one with the same type, we at least try to use 1450 /// one with the same size. If none of that works, we just produce the GEP as 1451 /// indicated by Indices to have the correct offset. 1452 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1453 Value *BasePtr, Type *Ty, Type *TargetTy, 1454 SmallVectorImpl<Value *> &Indices, 1455 const Twine &NamePrefix) { 1456 if (Ty == TargetTy) 1457 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1458 1459 // Offset size to use for the indices. 1460 unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType()); 1461 1462 // See if we can descend into a struct and locate a field with the correct 1463 // type. 1464 unsigned NumLayers = 0; 1465 Type *ElementTy = Ty; 1466 do { 1467 if (ElementTy->isPointerTy()) 1468 break; 1469 1470 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { 1471 ElementTy = ArrayTy->getElementType(); 1472 Indices.push_back(IRB.getIntN(OffsetSize, 0)); 1473 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { 1474 ElementTy = VectorTy->getElementType(); 1475 Indices.push_back(IRB.getInt32(0)); 1476 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1477 if (STy->element_begin() == STy->element_end()) 1478 break; // Nothing left to descend into. 1479 ElementTy = *STy->element_begin(); 1480 Indices.push_back(IRB.getInt32(0)); 1481 } else { 1482 break; 1483 } 1484 ++NumLayers; 1485 } while (ElementTy != TargetTy); 1486 if (ElementTy != TargetTy) 1487 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1488 1489 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1490 } 1491 1492 /// Get a natural GEP from a base pointer to a particular offset and 1493 /// resulting in a particular type. 1494 /// 1495 /// The goal is to produce a "natural" looking GEP that works with the existing 1496 /// composite types to arrive at the appropriate offset and element type for 1497 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1498 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1499 /// Indices, and setting Ty to the result subtype. 1500 /// 1501 /// If no natural GEP can be constructed, this function returns null. 1502 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1503 Value *Ptr, APInt Offset, Type *TargetTy, 1504 SmallVectorImpl<Value *> &Indices, 1505 const Twine &NamePrefix) { 1506 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1507 1508 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1509 // an i8. 1510 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) 1511 return nullptr; 1512 1513 Type *ElementTy = Ty->getNonOpaquePointerElementType(); 1514 if (!ElementTy->isSized()) 1515 return nullptr; // We can't GEP through an unsized element. 1516 1517 SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(ElementTy, Offset); 1518 if (Offset != 0) 1519 return nullptr; 1520 1521 for (const APInt &Index : IntIndices) 1522 Indices.push_back(IRB.getInt(Index)); 1523 return getNaturalGEPWithType(IRB, DL, Ptr, ElementTy, TargetTy, Indices, 1524 NamePrefix); 1525 } 1526 1527 /// Compute an adjusted pointer from Ptr by Offset bytes where the 1528 /// resulting pointer has PointerTy. 1529 /// 1530 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1531 /// and produces the pointer type desired. Where it cannot, it will try to use 1532 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1533 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1534 /// bitcast to the type. 1535 /// 1536 /// The strategy for finding the more natural GEPs is to peel off layers of the 1537 /// pointer, walking back through bit casts and GEPs, searching for a base 1538 /// pointer from which we can compute a natural GEP with the desired 1539 /// properties. The algorithm tries to fold as many constant indices into 1540 /// a single GEP as possible, thus making each GEP more independent of the 1541 /// surrounding code. 1542 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1543 APInt Offset, Type *PointerTy, 1544 const Twine &NamePrefix) { 1545 // Create i8 GEP for opaque pointers. 1546 if (Ptr->getType()->isOpaquePointerTy()) { 1547 if (Offset != 0) 1548 Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset), 1549 NamePrefix + "sroa_idx"); 1550 return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy, 1551 NamePrefix + "sroa_cast"); 1552 } 1553 1554 // Even though we don't look through PHI nodes, we could be called on an 1555 // instruction in an unreachable block, which may be on a cycle. 1556 SmallPtrSet<Value *, 4> Visited; 1557 Visited.insert(Ptr); 1558 SmallVector<Value *, 4> Indices; 1559 1560 // We may end up computing an offset pointer that has the wrong type. If we 1561 // never are able to compute one directly that has the correct type, we'll 1562 // fall back to it, so keep it and the base it was computed from around here. 1563 Value *OffsetPtr = nullptr; 1564 Value *OffsetBasePtr; 1565 1566 // Remember any i8 pointer we come across to re-use if we need to do a raw 1567 // byte offset. 1568 Value *Int8Ptr = nullptr; 1569 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1570 1571 PointerType *TargetPtrTy = cast<PointerType>(PointerTy); 1572 Type *TargetTy = TargetPtrTy->getNonOpaquePointerElementType(); 1573 1574 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different 1575 // address space from the expected `PointerTy` (the pointer to be used). 1576 // Adjust the pointer type based the original storage pointer. 1577 auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace(); 1578 PointerTy = TargetTy->getPointerTo(AS); 1579 1580 do { 1581 // First fold any existing GEPs into the offset. 1582 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1583 APInt GEPOffset(Offset.getBitWidth(), 0); 1584 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1585 break; 1586 Offset += GEPOffset; 1587 Ptr = GEP->getPointerOperand(); 1588 if (!Visited.insert(Ptr).second) 1589 break; 1590 } 1591 1592 // See if we can perform a natural GEP here. 1593 Indices.clear(); 1594 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1595 Indices, NamePrefix)) { 1596 // If we have a new natural pointer at the offset, clear out any old 1597 // offset pointer we computed. Unless it is the base pointer or 1598 // a non-instruction, we built a GEP we don't need. Zap it. 1599 if (OffsetPtr && OffsetPtr != OffsetBasePtr) 1600 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { 1601 assert(I->use_empty() && "Built a GEP with uses some how!"); 1602 I->eraseFromParent(); 1603 } 1604 OffsetPtr = P; 1605 OffsetBasePtr = Ptr; 1606 // If we also found a pointer of the right type, we're done. 1607 if (P->getType() == PointerTy) 1608 break; 1609 } 1610 1611 // Stash this pointer if we've found an i8*. 1612 if (Ptr->getType()->isIntegerTy(8)) { 1613 Int8Ptr = Ptr; 1614 Int8PtrOffset = Offset; 1615 } 1616 1617 // Peel off a layer of the pointer and update the offset appropriately. 1618 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1619 Ptr = cast<Operator>(Ptr)->getOperand(0); 1620 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1621 if (GA->isInterposable()) 1622 break; 1623 Ptr = GA->getAliasee(); 1624 } else { 1625 break; 1626 } 1627 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1628 } while (Visited.insert(Ptr).second); 1629 1630 if (!OffsetPtr) { 1631 if (!Int8Ptr) { 1632 Int8Ptr = IRB.CreateBitCast( 1633 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), 1634 NamePrefix + "sroa_raw_cast"); 1635 Int8PtrOffset = Offset; 1636 } 1637 1638 OffsetPtr = Int8PtrOffset == 0 1639 ? Int8Ptr 1640 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, 1641 IRB.getInt(Int8PtrOffset), 1642 NamePrefix + "sroa_raw_idx"); 1643 } 1644 Ptr = OffsetPtr; 1645 1646 // On the off chance we were targeting i8*, guard the bitcast here. 1647 if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) { 1648 Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, 1649 TargetPtrTy, 1650 NamePrefix + "sroa_cast"); 1651 } 1652 1653 return Ptr; 1654 } 1655 1656 /// Compute the adjusted alignment for a load or store from an offset. 1657 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { 1658 return commonAlignment(getLoadStoreAlignment(I), Offset); 1659 } 1660 1661 /// Test whether we can convert a value from the old to the new type. 1662 /// 1663 /// This predicate should be used to guard calls to convertValue in order to 1664 /// ensure that we only try to convert viable values. The strategy is that we 1665 /// will peel off single element struct and array wrappings to get to an 1666 /// underlying value, and convert that value. 1667 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1668 if (OldTy == NewTy) 1669 return true; 1670 1671 // For integer types, we can't handle any bit-width differences. This would 1672 // break both vector conversions with extension and introduce endianness 1673 // issues when in conjunction with loads and stores. 1674 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1675 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1676 cast<IntegerType>(NewTy)->getBitWidth() && 1677 "We can't have the same bitwidth for different int types"); 1678 return false; 1679 } 1680 1681 if (DL.getTypeSizeInBits(NewTy).getFixedSize() != 1682 DL.getTypeSizeInBits(OldTy).getFixedSize()) 1683 return false; 1684 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1685 return false; 1686 1687 // We can convert pointers to integers and vice-versa. Same for vectors 1688 // of pointers and integers. 1689 OldTy = OldTy->getScalarType(); 1690 NewTy = NewTy->getScalarType(); 1691 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1692 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1693 unsigned OldAS = OldTy->getPointerAddressSpace(); 1694 unsigned NewAS = NewTy->getPointerAddressSpace(); 1695 // Convert pointers if they are pointers from the same address space or 1696 // different integral (not non-integral) address spaces with the same 1697 // pointer size. 1698 return OldAS == NewAS || 1699 (!DL.isNonIntegralAddressSpace(OldAS) && 1700 !DL.isNonIntegralAddressSpace(NewAS) && 1701 DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1702 } 1703 1704 // We can convert integers to integral pointers, but not to non-integral 1705 // pointers. 1706 if (OldTy->isIntegerTy()) 1707 return !DL.isNonIntegralPointerType(NewTy); 1708 1709 // We can convert integral pointers to integers, but non-integral pointers 1710 // need to remain pointers. 1711 if (!DL.isNonIntegralPointerType(OldTy)) 1712 return NewTy->isIntegerTy(); 1713 1714 return false; 1715 } 1716 1717 return true; 1718 } 1719 1720 /// Generic routine to convert an SSA value to a value of a different 1721 /// type. 1722 /// 1723 /// This will try various different casting techniques, such as bitcasts, 1724 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1725 /// two types for viability with this routine. 1726 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1727 Type *NewTy) { 1728 Type *OldTy = V->getType(); 1729 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1730 1731 if (OldTy == NewTy) 1732 return V; 1733 1734 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1735 "Integer types must be the exact same to convert."); 1736 1737 // See if we need inttoptr for this type pair. May require additional bitcast. 1738 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1739 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1740 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1741 // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*> 1742 // Directly handle i64 to i8* 1743 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1744 NewTy); 1745 } 1746 1747 // See if we need ptrtoint for this type pair. May require additional bitcast. 1748 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { 1749 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1750 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1751 // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32> 1752 // Expand i8* to i64 --> i8* to i64 to i64 1753 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1754 NewTy); 1755 } 1756 1757 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1758 unsigned OldAS = OldTy->getPointerAddressSpace(); 1759 unsigned NewAS = NewTy->getPointerAddressSpace(); 1760 // To convert pointers with different address spaces (they are already 1761 // checked convertible, i.e. they have the same pointer size), so far we 1762 // cannot use `bitcast` (which has restrict on the same address space) or 1763 // `addrspacecast` (which is not always no-op casting). Instead, use a pair 1764 // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit 1765 // size. 1766 if (OldAS != NewAS) { 1767 assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1768 return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1769 NewTy); 1770 } 1771 } 1772 1773 return IRB.CreateBitCast(V, NewTy); 1774 } 1775 1776 /// Test whether the given slice use can be promoted to a vector. 1777 /// 1778 /// This function is called to test each entry in a partition which is slated 1779 /// for a single slice. 1780 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 1781 VectorType *Ty, 1782 uint64_t ElementSize, 1783 const DataLayout &DL) { 1784 // First validate the slice offsets. 1785 uint64_t BeginOffset = 1786 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 1787 uint64_t BeginIndex = BeginOffset / ElementSize; 1788 if (BeginIndex * ElementSize != BeginOffset || 1789 BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements()) 1790 return false; 1791 uint64_t EndOffset = 1792 std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 1793 uint64_t EndIndex = EndOffset / ElementSize; 1794 if (EndIndex * ElementSize != EndOffset || 1795 EndIndex > cast<FixedVectorType>(Ty)->getNumElements()) 1796 return false; 1797 1798 assert(EndIndex > BeginIndex && "Empty vector!"); 1799 uint64_t NumElements = EndIndex - BeginIndex; 1800 Type *SliceTy = (NumElements == 1) 1801 ? Ty->getElementType() 1802 : FixedVectorType::get(Ty->getElementType(), NumElements); 1803 1804 Type *SplitIntTy = 1805 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1806 1807 Use *U = S.getUse(); 1808 1809 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1810 if (MI->isVolatile()) 1811 return false; 1812 if (!S.isSplittable()) 1813 return false; // Skip any unsplittable intrinsics. 1814 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1815 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 1816 return false; 1817 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1818 if (LI->isVolatile()) 1819 return false; 1820 Type *LTy = LI->getType(); 1821 // Disable vector promotion when there are loads or stores of an FCA. 1822 if (LTy->isStructTy()) 1823 return false; 1824 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1825 assert(LTy->isIntegerTy()); 1826 LTy = SplitIntTy; 1827 } 1828 if (!canConvertValue(DL, SliceTy, LTy)) 1829 return false; 1830 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1831 if (SI->isVolatile()) 1832 return false; 1833 Type *STy = SI->getValueOperand()->getType(); 1834 // Disable vector promotion when there are loads or stores of an FCA. 1835 if (STy->isStructTy()) 1836 return false; 1837 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1838 assert(STy->isIntegerTy()); 1839 STy = SplitIntTy; 1840 } 1841 if (!canConvertValue(DL, STy, SliceTy)) 1842 return false; 1843 } else { 1844 return false; 1845 } 1846 1847 return true; 1848 } 1849 1850 /// Test whether the given alloca partitioning and range of slices can be 1851 /// promoted to a vector. 1852 /// 1853 /// This is a quick test to check whether we can rewrite a particular alloca 1854 /// partition (and its newly formed alloca) into a vector alloca with only 1855 /// whole-vector loads and stores such that it could be promoted to a vector 1856 /// SSA value. We only can ensure this for a limited set of operations, and we 1857 /// don't want to do the rewrites unless we are confident that the result will 1858 /// be promotable, so we have an early test here. 1859 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 1860 // Collect the candidate types for vector-based promotion. Also track whether 1861 // we have different element types. 1862 SmallVector<VectorType *, 4> CandidateTys; 1863 Type *CommonEltTy = nullptr; 1864 bool HaveCommonEltTy = true; 1865 auto CheckCandidateType = [&](Type *Ty) { 1866 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 1867 // Return if bitcast to vectors is different for total size in bits. 1868 if (!CandidateTys.empty()) { 1869 VectorType *V = CandidateTys[0]; 1870 if (DL.getTypeSizeInBits(VTy).getFixedSize() != 1871 DL.getTypeSizeInBits(V).getFixedSize()) { 1872 CandidateTys.clear(); 1873 return; 1874 } 1875 } 1876 CandidateTys.push_back(VTy); 1877 if (!CommonEltTy) 1878 CommonEltTy = VTy->getElementType(); 1879 else if (CommonEltTy != VTy->getElementType()) 1880 HaveCommonEltTy = false; 1881 } 1882 }; 1883 // Consider any loads or stores that are the exact size of the slice. 1884 for (const Slice &S : P) 1885 if (S.beginOffset() == P.beginOffset() && 1886 S.endOffset() == P.endOffset()) { 1887 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 1888 CheckCandidateType(LI->getType()); 1889 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 1890 CheckCandidateType(SI->getValueOperand()->getType()); 1891 } 1892 1893 // If we didn't find a vector type, nothing to do here. 1894 if (CandidateTys.empty()) 1895 return nullptr; 1896 1897 // Remove non-integer vector types if we had multiple common element types. 1898 // FIXME: It'd be nice to replace them with integer vector types, but we can't 1899 // do that until all the backends are known to produce good code for all 1900 // integer vector types. 1901 if (!HaveCommonEltTy) { 1902 llvm::erase_if(CandidateTys, [](VectorType *VTy) { 1903 return !VTy->getElementType()->isIntegerTy(); 1904 }); 1905 1906 // If there were no integer vector types, give up. 1907 if (CandidateTys.empty()) 1908 return nullptr; 1909 1910 // Rank the remaining candidate vector types. This is easy because we know 1911 // they're all integer vectors. We sort by ascending number of elements. 1912 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 1913 (void)DL; 1914 assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() == 1915 DL.getTypeSizeInBits(LHSTy).getFixedSize() && 1916 "Cannot have vector types of different sizes!"); 1917 assert(RHSTy->getElementType()->isIntegerTy() && 1918 "All non-integer types eliminated!"); 1919 assert(LHSTy->getElementType()->isIntegerTy() && 1920 "All non-integer types eliminated!"); 1921 return cast<FixedVectorType>(RHSTy)->getNumElements() < 1922 cast<FixedVectorType>(LHSTy)->getNumElements(); 1923 }; 1924 llvm::sort(CandidateTys, RankVectorTypes); 1925 CandidateTys.erase( 1926 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), 1927 CandidateTys.end()); 1928 } else { 1929 // The only way to have the same element type in every vector type is to 1930 // have the same vector type. Check that and remove all but one. 1931 #ifndef NDEBUG 1932 for (VectorType *VTy : CandidateTys) { 1933 assert(VTy->getElementType() == CommonEltTy && 1934 "Unaccounted for element type!"); 1935 assert(VTy == CandidateTys[0] && 1936 "Different vector types with the same element type!"); 1937 } 1938 #endif 1939 CandidateTys.resize(1); 1940 } 1941 1942 // Try each vector type, and return the one which works. 1943 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { 1944 uint64_t ElementSize = 1945 DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize(); 1946 1947 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1948 // that aren't byte sized. 1949 if (ElementSize % 8) 1950 return false; 1951 assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 && 1952 "vector size not a multiple of element size?"); 1953 ElementSize /= 8; 1954 1955 for (const Slice &S : P) 1956 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 1957 return false; 1958 1959 for (const Slice *S : P.splitSliceTails()) 1960 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 1961 return false; 1962 1963 return true; 1964 }; 1965 for (VectorType *VTy : CandidateTys) 1966 if (CheckVectorTypeForPromotion(VTy)) 1967 return VTy; 1968 1969 return nullptr; 1970 } 1971 1972 /// Test whether a slice of an alloca is valid for integer widening. 1973 /// 1974 /// This implements the necessary checking for the \c isIntegerWideningViable 1975 /// test below on a single slice of the alloca. 1976 static bool isIntegerWideningViableForSlice(const Slice &S, 1977 uint64_t AllocBeginOffset, 1978 Type *AllocaTy, 1979 const DataLayout &DL, 1980 bool &WholeAllocaOp) { 1981 uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize(); 1982 1983 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 1984 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 1985 1986 Use *U = S.getUse(); 1987 1988 // Lifetime intrinsics operate over the whole alloca whose sizes are usually 1989 // larger than other load/store slices (RelEnd > Size). But lifetime are 1990 // always promotable and should not impact other slices' promotability of the 1991 // partition. 1992 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1993 if (II->isLifetimeStartOrEnd() || II->isDroppable()) 1994 return true; 1995 } 1996 1997 // We can't reasonably handle cases where the load or store extends past 1998 // the end of the alloca's type and into its padding. 1999 if (RelEnd > Size) 2000 return false; 2001 2002 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 2003 if (LI->isVolatile()) 2004 return false; 2005 // We can't handle loads that extend past the allocated memory. 2006 if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size) 2007 return false; 2008 // So far, AllocaSliceRewriter does not support widening split slice tails 2009 // in rewriteIntegerLoad. 2010 if (S.beginOffset() < AllocBeginOffset) 2011 return false; 2012 // Note that we don't count vector loads or stores as whole-alloca 2013 // operations which enable integer widening because we would prefer to use 2014 // vector widening instead. 2015 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 2016 WholeAllocaOp = true; 2017 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 2018 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2019 return false; 2020 } else if (RelBegin != 0 || RelEnd != Size || 2021 !canConvertValue(DL, AllocaTy, LI->getType())) { 2022 // Non-integer loads need to be convertible from the alloca type so that 2023 // they are promotable. 2024 return false; 2025 } 2026 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2027 Type *ValueTy = SI->getValueOperand()->getType(); 2028 if (SI->isVolatile()) 2029 return false; 2030 // We can't handle stores that extend past the allocated memory. 2031 if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size) 2032 return false; 2033 // So far, AllocaSliceRewriter does not support widening split slice tails 2034 // in rewriteIntegerStore. 2035 if (S.beginOffset() < AllocBeginOffset) 2036 return false; 2037 // Note that we don't count vector loads or stores as whole-alloca 2038 // operations which enable integer widening because we would prefer to use 2039 // vector widening instead. 2040 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 2041 WholeAllocaOp = true; 2042 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 2043 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2044 return false; 2045 } else if (RelBegin != 0 || RelEnd != Size || 2046 !canConvertValue(DL, ValueTy, AllocaTy)) { 2047 // Non-integer stores need to be convertible to the alloca type so that 2048 // they are promotable. 2049 return false; 2050 } 2051 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2052 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 2053 return false; 2054 if (!S.isSplittable()) 2055 return false; // Skip any unsplittable intrinsics. 2056 } else { 2057 return false; 2058 } 2059 2060 return true; 2061 } 2062 2063 /// Test whether the given alloca partition's integer operations can be 2064 /// widened to promotable ones. 2065 /// 2066 /// This is a quick test to check whether we can rewrite the integer loads and 2067 /// stores to a particular alloca into wider loads and stores and be able to 2068 /// promote the resulting alloca. 2069 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 2070 const DataLayout &DL) { 2071 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize(); 2072 // Don't create integer types larger than the maximum bitwidth. 2073 if (SizeInBits > IntegerType::MAX_INT_BITS) 2074 return false; 2075 2076 // Don't try to handle allocas with bit-padding. 2077 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize()) 2078 return false; 2079 2080 // We need to ensure that an integer type with the appropriate bitwidth can 2081 // be converted to the alloca type, whatever that is. We don't want to force 2082 // the alloca itself to have an integer type if there is a more suitable one. 2083 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 2084 if (!canConvertValue(DL, AllocaTy, IntTy) || 2085 !canConvertValue(DL, IntTy, AllocaTy)) 2086 return false; 2087 2088 // While examining uses, we ensure that the alloca has a covering load or 2089 // store. We don't want to widen the integer operations only to fail to 2090 // promote due to some other unsplittable entry (which we may make splittable 2091 // later). However, if there are only splittable uses, go ahead and assume 2092 // that we cover the alloca. 2093 // FIXME: We shouldn't consider split slices that happen to start in the 2094 // partition here... 2095 bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits); 2096 2097 for (const Slice &S : P) 2098 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 2099 WholeAllocaOp)) 2100 return false; 2101 2102 for (const Slice *S : P.splitSliceTails()) 2103 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2104 WholeAllocaOp)) 2105 return false; 2106 2107 return WholeAllocaOp; 2108 } 2109 2110 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2111 IntegerType *Ty, uint64_t Offset, 2112 const Twine &Name) { 2113 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2114 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2115 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2116 DL.getTypeStoreSize(IntTy).getFixedSize() && 2117 "Element extends past full value"); 2118 uint64_t ShAmt = 8 * Offset; 2119 if (DL.isBigEndian()) 2120 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2121 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2122 if (ShAmt) { 2123 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2124 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2125 } 2126 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2127 "Cannot extract to a larger integer!"); 2128 if (Ty != IntTy) { 2129 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2130 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); 2131 } 2132 return V; 2133 } 2134 2135 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2136 Value *V, uint64_t Offset, const Twine &Name) { 2137 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2138 IntegerType *Ty = cast<IntegerType>(V->getType()); 2139 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2140 "Cannot insert a larger integer!"); 2141 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2142 if (Ty != IntTy) { 2143 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2144 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); 2145 } 2146 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2147 DL.getTypeStoreSize(IntTy).getFixedSize() && 2148 "Element store outside of alloca store"); 2149 uint64_t ShAmt = 8 * Offset; 2150 if (DL.isBigEndian()) 2151 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2152 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2153 if (ShAmt) { 2154 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2155 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2156 } 2157 2158 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2159 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2160 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2161 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); 2162 V = IRB.CreateOr(Old, V, Name + ".insert"); 2163 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); 2164 } 2165 return V; 2166 } 2167 2168 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2169 unsigned EndIndex, const Twine &Name) { 2170 auto *VecTy = cast<FixedVectorType>(V->getType()); 2171 unsigned NumElements = EndIndex - BeginIndex; 2172 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2173 2174 if (NumElements == VecTy->getNumElements()) 2175 return V; 2176 2177 if (NumElements == 1) { 2178 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2179 Name + ".extract"); 2180 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); 2181 return V; 2182 } 2183 2184 auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex)); 2185 V = IRB.CreateShuffleVector(V, Mask, Name + ".extract"); 2186 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2187 return V; 2188 } 2189 2190 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2191 unsigned BeginIndex, const Twine &Name) { 2192 VectorType *VecTy = cast<VectorType>(Old->getType()); 2193 assert(VecTy && "Can only insert a vector into a vector"); 2194 2195 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2196 if (!Ty) { 2197 // Single element to insert. 2198 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2199 Name + ".insert"); 2200 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); 2201 return V; 2202 } 2203 2204 assert(cast<FixedVectorType>(Ty)->getNumElements() <= 2205 cast<FixedVectorType>(VecTy)->getNumElements() && 2206 "Too many elements!"); 2207 if (cast<FixedVectorType>(Ty)->getNumElements() == 2208 cast<FixedVectorType>(VecTy)->getNumElements()) { 2209 assert(V->getType() == VecTy && "Vector type mismatch"); 2210 return V; 2211 } 2212 unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements(); 2213 2214 // When inserting a smaller vector into the larger to store, we first 2215 // use a shuffle vector to widen it with undef elements, and then 2216 // a second shuffle vector to select between the loaded vector and the 2217 // incoming vector. 2218 SmallVector<int, 8> Mask; 2219 Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2220 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2221 if (i >= BeginIndex && i < EndIndex) 2222 Mask.push_back(i - BeginIndex); 2223 else 2224 Mask.push_back(-1); 2225 V = IRB.CreateShuffleVector(V, Mask, Name + ".expand"); 2226 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2227 2228 SmallVector<Constant *, 8> Mask2; 2229 Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2230 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2231 Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2232 2233 V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend"); 2234 2235 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); 2236 return V; 2237 } 2238 2239 /// Visitor to rewrite instructions using p particular slice of an alloca 2240 /// to use a new alloca. 2241 /// 2242 /// Also implements the rewriting to vector-based accesses when the partition 2243 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2244 /// lives here. 2245 class llvm::sroa::AllocaSliceRewriter 2246 : public InstVisitor<AllocaSliceRewriter, bool> { 2247 // Befriend the base class so it can delegate to private visit methods. 2248 friend class InstVisitor<AllocaSliceRewriter, bool>; 2249 2250 using Base = InstVisitor<AllocaSliceRewriter, bool>; 2251 2252 const DataLayout &DL; 2253 AllocaSlices &AS; 2254 SROAPass &Pass; 2255 AllocaInst &OldAI, &NewAI; 2256 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2257 Type *NewAllocaTy; 2258 2259 // This is a convenience and flag variable that will be null unless the new 2260 // alloca's integer operations should be widened to this integer type due to 2261 // passing isIntegerWideningViable above. If it is non-null, the desired 2262 // integer type will be stored here for easy access during rewriting. 2263 IntegerType *IntTy; 2264 2265 // If we are rewriting an alloca partition which can be written as pure 2266 // vector operations, we stash extra information here. When VecTy is 2267 // non-null, we have some strict guarantees about the rewritten alloca: 2268 // - The new alloca is exactly the size of the vector type here. 2269 // - The accesses all either map to the entire vector or to a single 2270 // element. 2271 // - The set of accessing instructions is only one of those handled above 2272 // in isVectorPromotionViable. Generally these are the same access kinds 2273 // which are promotable via mem2reg. 2274 VectorType *VecTy; 2275 Type *ElementTy; 2276 uint64_t ElementSize; 2277 2278 // The original offset of the slice currently being rewritten relative to 2279 // the original alloca. 2280 uint64_t BeginOffset = 0; 2281 uint64_t EndOffset = 0; 2282 2283 // The new offsets of the slice currently being rewritten relative to the 2284 // original alloca. 2285 uint64_t NewBeginOffset = 0, NewEndOffset = 0; 2286 2287 uint64_t SliceSize = 0; 2288 bool IsSplittable = false; 2289 bool IsSplit = false; 2290 Use *OldUse = nullptr; 2291 Instruction *OldPtr = nullptr; 2292 2293 // Track post-rewrite users which are PHI nodes and Selects. 2294 SmallSetVector<PHINode *, 8> &PHIUsers; 2295 SmallSetVector<SelectInst *, 8> &SelectUsers; 2296 2297 // Utility IR builder, whose name prefix is setup for each visited use, and 2298 // the insertion point is set to point to the user. 2299 IRBuilderTy IRB; 2300 2301 public: 2302 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass, 2303 AllocaInst &OldAI, AllocaInst &NewAI, 2304 uint64_t NewAllocaBeginOffset, 2305 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2306 VectorType *PromotableVecTy, 2307 SmallSetVector<PHINode *, 8> &PHIUsers, 2308 SmallSetVector<SelectInst *, 8> &SelectUsers) 2309 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2310 NewAllocaBeginOffset(NewAllocaBeginOffset), 2311 NewAllocaEndOffset(NewAllocaEndOffset), 2312 NewAllocaTy(NewAI.getAllocatedType()), 2313 IntTy( 2314 IsIntegerPromotable 2315 ? Type::getIntNTy(NewAI.getContext(), 2316 DL.getTypeSizeInBits(NewAI.getAllocatedType()) 2317 .getFixedSize()) 2318 : nullptr), 2319 VecTy(PromotableVecTy), 2320 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2321 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8 2322 : 0), 2323 PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2324 IRB(NewAI.getContext(), ConstantFolder()) { 2325 if (VecTy) { 2326 assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 && 2327 "Only multiple-of-8 sized vector elements are viable"); 2328 ++NumVectorized; 2329 } 2330 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2331 } 2332 2333 bool visit(AllocaSlices::const_iterator I) { 2334 bool CanSROA = true; 2335 BeginOffset = I->beginOffset(); 2336 EndOffset = I->endOffset(); 2337 IsSplittable = I->isSplittable(); 2338 IsSplit = 2339 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2340 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2341 LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); 2342 LLVM_DEBUG(dbgs() << "\n"); 2343 2344 // Compute the intersecting offset range. 2345 assert(BeginOffset < NewAllocaEndOffset); 2346 assert(EndOffset > NewAllocaBeginOffset); 2347 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2348 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2349 2350 SliceSize = NewEndOffset - NewBeginOffset; 2351 2352 OldUse = I->getUse(); 2353 OldPtr = cast<Instruction>(OldUse->get()); 2354 2355 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2356 IRB.SetInsertPoint(OldUserI); 2357 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2358 IRB.getInserter().SetNamePrefix( 2359 Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2360 2361 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2362 if (VecTy || IntTy) 2363 assert(CanSROA); 2364 return CanSROA; 2365 } 2366 2367 private: 2368 // Make sure the other visit overloads are visible. 2369 using Base::visit; 2370 2371 // Every instruction which can end up as a user must have a rewrite rule. 2372 bool visitInstruction(Instruction &I) { 2373 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2374 llvm_unreachable("No rewrite rule for this instruction!"); 2375 } 2376 2377 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2378 // Note that the offset computation can use BeginOffset or NewBeginOffset 2379 // interchangeably for unsplit slices. 2380 assert(IsSplit || BeginOffset == NewBeginOffset); 2381 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2382 2383 #ifndef NDEBUG 2384 StringRef OldName = OldPtr->getName(); 2385 // Skip through the last '.sroa.' component of the name. 2386 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2387 if (LastSROAPrefix != StringRef::npos) { 2388 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2389 // Look for an SROA slice index. 2390 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2391 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2392 // Strip the index and look for the offset. 2393 OldName = OldName.substr(IndexEnd + 1); 2394 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2395 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2396 // Strip the offset. 2397 OldName = OldName.substr(OffsetEnd + 1); 2398 } 2399 } 2400 // Strip any SROA suffixes as well. 2401 OldName = OldName.substr(0, OldName.find(".sroa_")); 2402 #endif 2403 2404 return getAdjustedPtr(IRB, DL, &NewAI, 2405 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), 2406 PointerTy, 2407 #ifndef NDEBUG 2408 Twine(OldName) + "." 2409 #else 2410 Twine() 2411 #endif 2412 ); 2413 } 2414 2415 /// Compute suitable alignment to access this slice of the *new* 2416 /// alloca. 2417 /// 2418 /// You can optionally pass a type to this routine and if that type's ABI 2419 /// alignment is itself suitable, this will return zero. 2420 Align getSliceAlign() { 2421 return commonAlignment(NewAI.getAlign(), 2422 NewBeginOffset - NewAllocaBeginOffset); 2423 } 2424 2425 unsigned getIndex(uint64_t Offset) { 2426 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2427 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2428 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2429 uint32_t Index = RelOffset / ElementSize; 2430 assert(Index * ElementSize == RelOffset); 2431 return Index; 2432 } 2433 2434 void deleteIfTriviallyDead(Value *V) { 2435 Instruction *I = cast<Instruction>(V); 2436 if (isInstructionTriviallyDead(I)) 2437 Pass.DeadInsts.push_back(I); 2438 } 2439 2440 Value *rewriteVectorizedLoadInst(LoadInst &LI) { 2441 unsigned BeginIndex = getIndex(NewBeginOffset); 2442 unsigned EndIndex = getIndex(NewEndOffset); 2443 assert(EndIndex > BeginIndex && "Empty vector!"); 2444 2445 LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2446 NewAI.getAlign(), "load"); 2447 2448 Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2449 LLVMContext::MD_access_group}); 2450 return extractVector(IRB, Load, BeginIndex, EndIndex, "vec"); 2451 } 2452 2453 Value *rewriteIntegerLoad(LoadInst &LI) { 2454 assert(IntTy && "We cannot insert an integer to the alloca"); 2455 assert(!LI.isVolatile()); 2456 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2457 NewAI.getAlign(), "load"); 2458 V = convertValue(DL, IRB, V, IntTy); 2459 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2460 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2461 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2462 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2463 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2464 } 2465 // It is possible that the extracted type is not the load type. This 2466 // happens if there is a load past the end of the alloca, and as 2467 // a consequence the slice is narrower but still a candidate for integer 2468 // lowering. To handle this case, we just zero extend the extracted 2469 // integer. 2470 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2471 "Can only handle an extract for an overly wide load"); 2472 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2473 V = IRB.CreateZExt(V, LI.getType()); 2474 return V; 2475 } 2476 2477 bool visitLoadInst(LoadInst &LI) { 2478 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 2479 Value *OldOp = LI.getOperand(0); 2480 assert(OldOp == OldPtr); 2481 2482 AAMDNodes AATags = LI.getAAMetadata(); 2483 2484 unsigned AS = LI.getPointerAddressSpace(); 2485 2486 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2487 : LI.getType(); 2488 const bool IsLoadPastEnd = 2489 DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize; 2490 bool IsPtrAdjusted = false; 2491 Value *V; 2492 if (VecTy) { 2493 V = rewriteVectorizedLoadInst(LI); 2494 } else if (IntTy && LI.getType()->isIntegerTy()) { 2495 V = rewriteIntegerLoad(LI); 2496 } else if (NewBeginOffset == NewAllocaBeginOffset && 2497 NewEndOffset == NewAllocaEndOffset && 2498 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2499 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2500 TargetTy->isIntegerTy()))) { 2501 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2502 NewAI.getAlign(), LI.isVolatile(), 2503 LI.getName()); 2504 if (AATags) 2505 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2506 if (LI.isVolatile()) 2507 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2508 if (NewLI->isAtomic()) 2509 NewLI->setAlignment(LI.getAlign()); 2510 2511 // Any !nonnull metadata or !range metadata on the old load is also valid 2512 // on the new load. This is even true in some cases even when the loads 2513 // are different types, for example by mapping !nonnull metadata to 2514 // !range metadata by modeling the null pointer constant converted to the 2515 // integer type. 2516 // FIXME: Add support for range metadata here. Currently the utilities 2517 // for this don't propagate range metadata in trivial cases from one 2518 // integer load to another, don't handle non-addrspace-0 null pointers 2519 // correctly, and don't have any support for mapping ranges as the 2520 // integer type becomes winder or narrower. 2521 if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull)) 2522 copyNonnullMetadata(LI, N, *NewLI); 2523 2524 // Try to preserve nonnull metadata 2525 V = NewLI; 2526 2527 // If this is an integer load past the end of the slice (which means the 2528 // bytes outside the slice are undef or this load is dead) just forcibly 2529 // fix the integer size with correct handling of endianness. 2530 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2531 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2532 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2533 V = IRB.CreateZExt(V, TITy, "load.ext"); 2534 if (DL.isBigEndian()) 2535 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2536 "endian_shift"); 2537 } 2538 } else { 2539 Type *LTy = TargetTy->getPointerTo(AS); 2540 LoadInst *NewLI = 2541 IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy), 2542 getSliceAlign(), LI.isVolatile(), LI.getName()); 2543 if (AATags) 2544 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2545 if (LI.isVolatile()) 2546 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2547 NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2548 LLVMContext::MD_access_group}); 2549 2550 V = NewLI; 2551 IsPtrAdjusted = true; 2552 } 2553 V = convertValue(DL, IRB, V, TargetTy); 2554 2555 if (IsSplit) { 2556 assert(!LI.isVolatile()); 2557 assert(LI.getType()->isIntegerTy() && 2558 "Only integer type loads and stores are split"); 2559 assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() && 2560 "Split load isn't smaller than original load"); 2561 assert(DL.typeSizeEqualsStoreSize(LI.getType()) && 2562 "Non-byte-multiple bit width"); 2563 // Move the insertion point just past the load so that we can refer to it. 2564 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); 2565 // Create a placeholder value with the same type as LI to use as the 2566 // basis for the new value. This allows us to replace the uses of LI with 2567 // the computed value, and then replace the placeholder with LI, leaving 2568 // LI only used for this computation. 2569 Value *Placeholder = new LoadInst( 2570 LI.getType(), PoisonValue::get(LI.getType()->getPointerTo(AS)), "", 2571 false, Align(1)); 2572 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2573 "insert"); 2574 LI.replaceAllUsesWith(V); 2575 Placeholder->replaceAllUsesWith(&LI); 2576 Placeholder->deleteValue(); 2577 } else { 2578 LI.replaceAllUsesWith(V); 2579 } 2580 2581 Pass.DeadInsts.push_back(&LI); 2582 deleteIfTriviallyDead(OldOp); 2583 LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); 2584 return !LI.isVolatile() && !IsPtrAdjusted; 2585 } 2586 2587 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, 2588 AAMDNodes AATags) { 2589 if (V->getType() != VecTy) { 2590 unsigned BeginIndex = getIndex(NewBeginOffset); 2591 unsigned EndIndex = getIndex(NewEndOffset); 2592 assert(EndIndex > BeginIndex && "Empty vector!"); 2593 unsigned NumElements = EndIndex - BeginIndex; 2594 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2595 "Too many elements!"); 2596 Type *SliceTy = (NumElements == 1) 2597 ? ElementTy 2598 : FixedVectorType::get(ElementTy, NumElements); 2599 if (V->getType() != SliceTy) 2600 V = convertValue(DL, IRB, V, SliceTy); 2601 2602 // Mix in the existing elements. 2603 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2604 NewAI.getAlign(), "load"); 2605 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2606 } 2607 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2608 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2609 LLVMContext::MD_access_group}); 2610 if (AATags) 2611 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2612 Pass.DeadInsts.push_back(&SI); 2613 2614 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2615 return true; 2616 } 2617 2618 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { 2619 assert(IntTy && "We cannot extract an integer from the alloca"); 2620 assert(!SI.isVolatile()); 2621 if (DL.getTypeSizeInBits(V->getType()).getFixedSize() != 2622 IntTy->getBitWidth()) { 2623 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2624 NewAI.getAlign(), "oldload"); 2625 Old = convertValue(DL, IRB, Old, IntTy); 2626 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2627 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2628 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 2629 } 2630 V = convertValue(DL, IRB, V, NewAllocaTy); 2631 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2632 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2633 LLVMContext::MD_access_group}); 2634 if (AATags) 2635 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2636 Pass.DeadInsts.push_back(&SI); 2637 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2638 return true; 2639 } 2640 2641 bool visitStoreInst(StoreInst &SI) { 2642 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 2643 Value *OldOp = SI.getOperand(1); 2644 assert(OldOp == OldPtr); 2645 2646 AAMDNodes AATags = SI.getAAMetadata(); 2647 Value *V = SI.getValueOperand(); 2648 2649 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2650 // alloca that should be re-examined after promoting this alloca. 2651 if (V->getType()->isPointerTy()) 2652 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2653 Pass.PostPromotionWorklist.insert(AI); 2654 2655 if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) { 2656 assert(!SI.isVolatile()); 2657 assert(V->getType()->isIntegerTy() && 2658 "Only integer type loads and stores are split"); 2659 assert(DL.typeSizeEqualsStoreSize(V->getType()) && 2660 "Non-byte-multiple bit width"); 2661 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2662 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 2663 "extract"); 2664 } 2665 2666 if (VecTy) 2667 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); 2668 if (IntTy && V->getType()->isIntegerTy()) 2669 return rewriteIntegerStore(V, SI, AATags); 2670 2671 const bool IsStorePastEnd = 2672 DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize; 2673 StoreInst *NewSI; 2674 if (NewBeginOffset == NewAllocaBeginOffset && 2675 NewEndOffset == NewAllocaEndOffset && 2676 (canConvertValue(DL, V->getType(), NewAllocaTy) || 2677 (IsStorePastEnd && NewAllocaTy->isIntegerTy() && 2678 V->getType()->isIntegerTy()))) { 2679 // If this is an integer store past the end of slice (and thus the bytes 2680 // past that point are irrelevant or this is unreachable), truncate the 2681 // value prior to storing. 2682 if (auto *VITy = dyn_cast<IntegerType>(V->getType())) 2683 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2684 if (VITy->getBitWidth() > AITy->getBitWidth()) { 2685 if (DL.isBigEndian()) 2686 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), 2687 "endian_shift"); 2688 V = IRB.CreateTrunc(V, AITy, "load.trunc"); 2689 } 2690 2691 V = convertValue(DL, IRB, V, NewAllocaTy); 2692 NewSI = 2693 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile()); 2694 } else { 2695 unsigned AS = SI.getPointerAddressSpace(); 2696 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS)); 2697 NewSI = 2698 IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile()); 2699 } 2700 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2701 LLVMContext::MD_access_group}); 2702 if (AATags) 2703 NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2704 if (SI.isVolatile()) 2705 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 2706 if (NewSI->isAtomic()) 2707 NewSI->setAlignment(SI.getAlign()); 2708 Pass.DeadInsts.push_back(&SI); 2709 deleteIfTriviallyDead(OldOp); 2710 2711 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2712 return NewSI->getPointerOperand() == &NewAI && 2713 NewSI->getValueOperand()->getType() == NewAllocaTy && 2714 !SI.isVolatile(); 2715 } 2716 2717 /// Compute an integer value from splatting an i8 across the given 2718 /// number of bytes. 2719 /// 2720 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2721 /// call this routine. 2722 /// FIXME: Heed the advice above. 2723 /// 2724 /// \param V The i8 value to splat. 2725 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2726 Value *getIntegerSplat(Value *V, unsigned Size) { 2727 assert(Size > 0 && "Expected a positive number of bytes."); 2728 IntegerType *VTy = cast<IntegerType>(V->getType()); 2729 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2730 if (Size == 1) 2731 return V; 2732 2733 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 2734 V = IRB.CreateMul( 2735 IRB.CreateZExt(V, SplatIntTy, "zext"), 2736 IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy), 2737 IRB.CreateZExt(Constant::getAllOnesValue(V->getType()), 2738 SplatIntTy)), 2739 "isplat"); 2740 return V; 2741 } 2742 2743 /// Compute a vector splat for a given element value. 2744 Value *getVectorSplat(Value *V, unsigned NumElements) { 2745 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2746 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); 2747 return V; 2748 } 2749 2750 bool visitMemSetInst(MemSetInst &II) { 2751 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2752 assert(II.getRawDest() == OldPtr); 2753 2754 AAMDNodes AATags = II.getAAMetadata(); 2755 2756 // If the memset has a variable size, it cannot be split, just adjust the 2757 // pointer to the new alloca. 2758 if (!isa<ConstantInt>(II.getLength())) { 2759 assert(!IsSplit); 2760 assert(NewBeginOffset == BeginOffset); 2761 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 2762 II.setDestAlignment(getSliceAlign()); 2763 2764 deleteIfTriviallyDead(OldPtr); 2765 return false; 2766 } 2767 2768 // Record this instruction for deletion. 2769 Pass.DeadInsts.push_back(&II); 2770 2771 Type *AllocaTy = NewAI.getAllocatedType(); 2772 Type *ScalarTy = AllocaTy->getScalarType(); 2773 2774 const bool CanContinue = [&]() { 2775 if (VecTy || IntTy) 2776 return true; 2777 if (BeginOffset > NewAllocaBeginOffset || 2778 EndOffset < NewAllocaEndOffset) 2779 return false; 2780 // Length must be in range for FixedVectorType. 2781 auto *C = cast<ConstantInt>(II.getLength()); 2782 const uint64_t Len = C->getLimitedValue(); 2783 if (Len > std::numeric_limits<unsigned>::max()) 2784 return false; 2785 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); 2786 auto *SrcTy = FixedVectorType::get(Int8Ty, Len); 2787 return canConvertValue(DL, SrcTy, AllocaTy) && 2788 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize()); 2789 }(); 2790 2791 // If this doesn't map cleanly onto the alloca type, and that type isn't 2792 // a single value type, just emit a memset. 2793 if (!CanContinue) { 2794 Type *SizeTy = II.getLength()->getType(); 2795 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2796 CallInst *New = IRB.CreateMemSet( 2797 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 2798 MaybeAlign(getSliceAlign()), II.isVolatile()); 2799 if (AATags) 2800 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2801 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2802 return false; 2803 } 2804 2805 // If we can represent this as a simple value, we have to build the actual 2806 // value to store, which requires expanding the byte present in memset to 2807 // a sensible representation for the alloca type. This is essentially 2808 // splatting the byte to a sufficiently wide integer, splatting it across 2809 // any desired vector width, and bitcasting to the final type. 2810 Value *V; 2811 2812 if (VecTy) { 2813 // If this is a memset of a vectorized alloca, insert it. 2814 assert(ElementTy == ScalarTy); 2815 2816 unsigned BeginIndex = getIndex(NewBeginOffset); 2817 unsigned EndIndex = getIndex(NewEndOffset); 2818 assert(EndIndex > BeginIndex && "Empty vector!"); 2819 unsigned NumElements = EndIndex - BeginIndex; 2820 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2821 "Too many elements!"); 2822 2823 Value *Splat = getIntegerSplat( 2824 II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8); 2825 Splat = convertValue(DL, IRB, Splat, ElementTy); 2826 if (NumElements > 1) 2827 Splat = getVectorSplat(Splat, NumElements); 2828 2829 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2830 NewAI.getAlign(), "oldload"); 2831 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 2832 } else if (IntTy) { 2833 // If this is a memset on an alloca where we can widen stores, insert the 2834 // set integer. 2835 assert(!II.isVolatile()); 2836 2837 uint64_t Size = NewEndOffset - NewBeginOffset; 2838 V = getIntegerSplat(II.getValue(), Size); 2839 2840 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 2841 EndOffset != NewAllocaBeginOffset)) { 2842 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2843 NewAI.getAlign(), "oldload"); 2844 Old = convertValue(DL, IRB, Old, IntTy); 2845 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2846 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 2847 } else { 2848 assert(V->getType() == IntTy && 2849 "Wrong type for an alloca wide integer!"); 2850 } 2851 V = convertValue(DL, IRB, V, AllocaTy); 2852 } else { 2853 // Established these invariants above. 2854 assert(NewBeginOffset == NewAllocaBeginOffset); 2855 assert(NewEndOffset == NewAllocaEndOffset); 2856 2857 V = getIntegerSplat(II.getValue(), 2858 DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8); 2859 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 2860 V = getVectorSplat( 2861 V, cast<FixedVectorType>(AllocaVecTy)->getNumElements()); 2862 2863 V = convertValue(DL, IRB, V, AllocaTy); 2864 } 2865 2866 StoreInst *New = 2867 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile()); 2868 New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 2869 LLVMContext::MD_access_group}); 2870 if (AATags) 2871 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2872 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2873 return !II.isVolatile(); 2874 } 2875 2876 bool visitMemTransferInst(MemTransferInst &II) { 2877 // Rewriting of memory transfer instructions can be a bit tricky. We break 2878 // them into two categories: split intrinsics and unsplit intrinsics. 2879 2880 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2881 2882 AAMDNodes AATags = II.getAAMetadata(); 2883 2884 bool IsDest = &II.getRawDestUse() == OldUse; 2885 assert((IsDest && II.getRawDest() == OldPtr) || 2886 (!IsDest && II.getRawSource() == OldPtr)); 2887 2888 Align SliceAlign = getSliceAlign(); 2889 2890 // For unsplit intrinsics, we simply modify the source and destination 2891 // pointers in place. This isn't just an optimization, it is a matter of 2892 // correctness. With unsplit intrinsics we may be dealing with transfers 2893 // within a single alloca before SROA ran, or with transfers that have 2894 // a variable length. We may also be dealing with memmove instead of 2895 // memcpy, and so simply updating the pointers is the necessary for us to 2896 // update both source and dest of a single call. 2897 if (!IsSplittable) { 2898 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2899 if (IsDest) { 2900 II.setDest(AdjustedPtr); 2901 II.setDestAlignment(SliceAlign); 2902 } 2903 else { 2904 II.setSource(AdjustedPtr); 2905 II.setSourceAlignment(SliceAlign); 2906 } 2907 2908 LLVM_DEBUG(dbgs() << " to: " << II << "\n"); 2909 deleteIfTriviallyDead(OldPtr); 2910 return false; 2911 } 2912 // For split transfer intrinsics we have an incredibly useful assurance: 2913 // the source and destination do not reside within the same alloca, and at 2914 // least one of them does not escape. This means that we can replace 2915 // memmove with memcpy, and we don't need to worry about all manner of 2916 // downsides to splitting and transforming the operations. 2917 2918 // If this doesn't map cleanly onto the alloca type, and that type isn't 2919 // a single value type, just emit a memcpy. 2920 bool EmitMemCpy = 2921 !VecTy && !IntTy && 2922 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 2923 SliceSize != 2924 DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() || 2925 !NewAI.getAllocatedType()->isSingleValueType()); 2926 2927 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 2928 // size hasn't been shrunk based on analysis of the viable range, this is 2929 // a no-op. 2930 if (EmitMemCpy && &OldAI == &NewAI) { 2931 // Ensure the start lines up. 2932 assert(NewBeginOffset == BeginOffset); 2933 2934 // Rewrite the size as needed. 2935 if (NewEndOffset != EndOffset) 2936 II.setLength(ConstantInt::get(II.getLength()->getType(), 2937 NewEndOffset - NewBeginOffset)); 2938 return false; 2939 } 2940 // Record this instruction for deletion. 2941 Pass.DeadInsts.push_back(&II); 2942 2943 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2944 // alloca that should be re-examined after rewriting this instruction. 2945 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 2946 if (AllocaInst *AI = 2947 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 2948 assert(AI != &OldAI && AI != &NewAI && 2949 "Splittable transfers cannot reach the same alloca on both ends."); 2950 Pass.Worklist.insert(AI); 2951 } 2952 2953 Type *OtherPtrTy = OtherPtr->getType(); 2954 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 2955 2956 // Compute the relative offset for the other pointer within the transfer. 2957 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); 2958 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); 2959 Align OtherAlign = 2960 (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); 2961 OtherAlign = 2962 commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue()); 2963 2964 if (EmitMemCpy) { 2965 // Compute the other pointer, folding as much as possible to produce 2966 // a single, simple GEP in most cases. 2967 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2968 OtherPtr->getName() + "."); 2969 2970 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2971 Type *SizeTy = II.getLength()->getType(); 2972 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2973 2974 Value *DestPtr, *SrcPtr; 2975 MaybeAlign DestAlign, SrcAlign; 2976 // Note: IsDest is true iff we're copying into the new alloca slice 2977 if (IsDest) { 2978 DestPtr = OurPtr; 2979 DestAlign = SliceAlign; 2980 SrcPtr = OtherPtr; 2981 SrcAlign = OtherAlign; 2982 } else { 2983 DestPtr = OtherPtr; 2984 DestAlign = OtherAlign; 2985 SrcPtr = OurPtr; 2986 SrcAlign = SliceAlign; 2987 } 2988 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, 2989 Size, II.isVolatile()); 2990 if (AATags) 2991 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2992 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2993 return false; 2994 } 2995 2996 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 2997 NewEndOffset == NewAllocaEndOffset; 2998 uint64_t Size = NewEndOffset - NewBeginOffset; 2999 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 3000 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 3001 unsigned NumElements = EndIndex - BeginIndex; 3002 IntegerType *SubIntTy = 3003 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 3004 3005 // Reset the other pointer type to match the register type we're going to 3006 // use, but using the address space of the original other pointer. 3007 Type *OtherTy; 3008 if (VecTy && !IsWholeAlloca) { 3009 if (NumElements == 1) 3010 OtherTy = VecTy->getElementType(); 3011 else 3012 OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements); 3013 } else if (IntTy && !IsWholeAlloca) { 3014 OtherTy = SubIntTy; 3015 } else { 3016 OtherTy = NewAllocaTy; 3017 } 3018 OtherPtrTy = OtherTy->getPointerTo(OtherAS); 3019 3020 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3021 OtherPtr->getName() + "."); 3022 MaybeAlign SrcAlign = OtherAlign; 3023 Value *DstPtr = &NewAI; 3024 MaybeAlign DstAlign = SliceAlign; 3025 if (!IsDest) { 3026 std::swap(SrcPtr, DstPtr); 3027 std::swap(SrcAlign, DstAlign); 3028 } 3029 3030 Value *Src; 3031 if (VecTy && !IsWholeAlloca && !IsDest) { 3032 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3033 NewAI.getAlign(), "load"); 3034 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 3035 } else if (IntTy && !IsWholeAlloca && !IsDest) { 3036 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3037 NewAI.getAlign(), "load"); 3038 Src = convertValue(DL, IRB, Src, IntTy); 3039 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3040 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 3041 } else { 3042 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, 3043 II.isVolatile(), "copyload"); 3044 Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3045 LLVMContext::MD_access_group}); 3046 if (AATags) 3047 Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3048 Src = Load; 3049 } 3050 3051 if (VecTy && !IsWholeAlloca && IsDest) { 3052 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3053 NewAI.getAlign(), "oldload"); 3054 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 3055 } else if (IntTy && !IsWholeAlloca && IsDest) { 3056 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3057 NewAI.getAlign(), "oldload"); 3058 Old = convertValue(DL, IRB, Old, IntTy); 3059 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3060 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 3061 Src = convertValue(DL, IRB, Src, NewAllocaTy); 3062 } 3063 3064 StoreInst *Store = cast<StoreInst>( 3065 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 3066 Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3067 LLVMContext::MD_access_group}); 3068 if (AATags) 3069 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3070 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3071 return !II.isVolatile(); 3072 } 3073 3074 bool visitIntrinsicInst(IntrinsicInst &II) { 3075 assert((II.isLifetimeStartOrEnd() || II.isDroppable()) && 3076 "Unexpected intrinsic!"); 3077 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3078 3079 // Record this instruction for deletion. 3080 Pass.DeadInsts.push_back(&II); 3081 3082 if (II.isDroppable()) { 3083 assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume"); 3084 // TODO For now we forget assumed information, this can be improved. 3085 OldPtr->dropDroppableUsesIn(II); 3086 return true; 3087 } 3088 3089 assert(II.getArgOperand(1) == OldPtr); 3090 // Lifetime intrinsics are only promotable if they cover the whole alloca. 3091 // Therefore, we drop lifetime intrinsics which don't cover the whole 3092 // alloca. 3093 // (In theory, intrinsics which partially cover an alloca could be 3094 // promoted, but PromoteMemToReg doesn't handle that case.) 3095 // FIXME: Check whether the alloca is promotable before dropping the 3096 // lifetime intrinsics? 3097 if (NewBeginOffset != NewAllocaBeginOffset || 3098 NewEndOffset != NewAllocaEndOffset) 3099 return true; 3100 3101 ConstantInt *Size = 3102 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 3103 NewEndOffset - NewBeginOffset); 3104 // Lifetime intrinsics always expect an i8* so directly get such a pointer 3105 // for the new alloca slice. 3106 Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace()); 3107 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); 3108 Value *New; 3109 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 3110 New = IRB.CreateLifetimeStart(Ptr, Size); 3111 else 3112 New = IRB.CreateLifetimeEnd(Ptr, Size); 3113 3114 (void)New; 3115 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3116 3117 return true; 3118 } 3119 3120 void fixLoadStoreAlign(Instruction &Root) { 3121 // This algorithm implements the same visitor loop as 3122 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load 3123 // or store found. 3124 SmallPtrSet<Instruction *, 4> Visited; 3125 SmallVector<Instruction *, 4> Uses; 3126 Visited.insert(&Root); 3127 Uses.push_back(&Root); 3128 do { 3129 Instruction *I = Uses.pop_back_val(); 3130 3131 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3132 LI->setAlignment(std::min(LI->getAlign(), getSliceAlign())); 3133 continue; 3134 } 3135 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3136 SI->setAlignment(std::min(SI->getAlign(), getSliceAlign())); 3137 continue; 3138 } 3139 3140 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || 3141 isa<PHINode>(I) || isa<SelectInst>(I) || 3142 isa<GetElementPtrInst>(I)); 3143 for (User *U : I->users()) 3144 if (Visited.insert(cast<Instruction>(U)).second) 3145 Uses.push_back(cast<Instruction>(U)); 3146 } while (!Uses.empty()); 3147 } 3148 3149 bool visitPHINode(PHINode &PN) { 3150 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 3151 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 3152 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 3153 3154 // We would like to compute a new pointer in only one place, but have it be 3155 // as local as possible to the PHI. To do that, we re-use the location of 3156 // the old pointer, which necessarily must be in the right position to 3157 // dominate the PHI. 3158 IRBuilderBase::InsertPointGuard Guard(IRB); 3159 if (isa<PHINode>(OldPtr)) 3160 IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); 3161 else 3162 IRB.SetInsertPoint(OldPtr); 3163 IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 3164 3165 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3166 // Replace the operands which were using the old pointer. 3167 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 3168 3169 LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); 3170 deleteIfTriviallyDead(OldPtr); 3171 3172 // Fix the alignment of any loads or stores using this PHI node. 3173 fixLoadStoreAlign(PN); 3174 3175 // PHIs can't be promoted on their own, but often can be speculated. We 3176 // check the speculation outside of the rewriter so that we see the 3177 // fully-rewritten alloca. 3178 PHIUsers.insert(&PN); 3179 return true; 3180 } 3181 3182 bool visitSelectInst(SelectInst &SI) { 3183 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3184 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 3185 "Pointer isn't an operand!"); 3186 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 3187 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 3188 3189 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3190 // Replace the operands which were using the old pointer. 3191 if (SI.getOperand(1) == OldPtr) 3192 SI.setOperand(1, NewPtr); 3193 if (SI.getOperand(2) == OldPtr) 3194 SI.setOperand(2, NewPtr); 3195 3196 LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); 3197 deleteIfTriviallyDead(OldPtr); 3198 3199 // Fix the alignment of any loads or stores using this select. 3200 fixLoadStoreAlign(SI); 3201 3202 // Selects can't be promoted on their own, but often can be speculated. We 3203 // check the speculation outside of the rewriter so that we see the 3204 // fully-rewritten alloca. 3205 SelectUsers.insert(&SI); 3206 return true; 3207 } 3208 }; 3209 3210 namespace { 3211 3212 /// Visitor to rewrite aggregate loads and stores as scalar. 3213 /// 3214 /// This pass aggressively rewrites all aggregate loads and stores on 3215 /// a particular pointer (or any pointer derived from it which we can identify) 3216 /// with scalar loads and stores. 3217 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 3218 // Befriend the base class so it can delegate to private visit methods. 3219 friend class InstVisitor<AggLoadStoreRewriter, bool>; 3220 3221 /// Queue of pointer uses to analyze and potentially rewrite. 3222 SmallVector<Use *, 8> Queue; 3223 3224 /// Set to prevent us from cycling with phi nodes and loops. 3225 SmallPtrSet<User *, 8> Visited; 3226 3227 /// The current pointer use being rewritten. This is used to dig up the used 3228 /// value (as opposed to the user). 3229 Use *U = nullptr; 3230 3231 /// Used to calculate offsets, and hence alignment, of subobjects. 3232 const DataLayout &DL; 3233 3234 IRBuilderTy &IRB; 3235 3236 public: 3237 AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB) 3238 : DL(DL), IRB(IRB) {} 3239 3240 /// Rewrite loads and stores through a pointer and all pointers derived from 3241 /// it. 3242 bool rewrite(Instruction &I) { 3243 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 3244 enqueueUsers(I); 3245 bool Changed = false; 3246 while (!Queue.empty()) { 3247 U = Queue.pop_back_val(); 3248 Changed |= visit(cast<Instruction>(U->getUser())); 3249 } 3250 return Changed; 3251 } 3252 3253 private: 3254 /// Enqueue all the users of the given instruction for further processing. 3255 /// This uses a set to de-duplicate users. 3256 void enqueueUsers(Instruction &I) { 3257 for (Use &U : I.uses()) 3258 if (Visited.insert(U.getUser()).second) 3259 Queue.push_back(&U); 3260 } 3261 3262 // Conservative default is to not rewrite anything. 3263 bool visitInstruction(Instruction &I) { return false; } 3264 3265 /// Generic recursive split emission class. 3266 template <typename Derived> class OpSplitter { 3267 protected: 3268 /// The builder used to form new instructions. 3269 IRBuilderTy &IRB; 3270 3271 /// The indices which to be used with insert- or extractvalue to select the 3272 /// appropriate value within the aggregate. 3273 SmallVector<unsigned, 4> Indices; 3274 3275 /// The indices to a GEP instruction which will move Ptr to the correct slot 3276 /// within the aggregate. 3277 SmallVector<Value *, 4> GEPIndices; 3278 3279 /// The base pointer of the original op, used as a base for GEPing the 3280 /// split operations. 3281 Value *Ptr; 3282 3283 /// The base pointee type being GEPed into. 3284 Type *BaseTy; 3285 3286 /// Known alignment of the base pointer. 3287 Align BaseAlign; 3288 3289 /// To calculate offset of each component so we can correctly deduce 3290 /// alignments. 3291 const DataLayout &DL; 3292 3293 /// Initialize the splitter with an insertion point, Ptr and start with a 3294 /// single zero GEP index. 3295 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3296 Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB) 3297 : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy), 3298 BaseAlign(BaseAlign), DL(DL) { 3299 IRB.SetInsertPoint(InsertionPoint); 3300 } 3301 3302 public: 3303 /// Generic recursive split emission routine. 3304 /// 3305 /// This method recursively splits an aggregate op (load or store) into 3306 /// scalar or vector ops. It splits recursively until it hits a single value 3307 /// and emits that single value operation via the template argument. 3308 /// 3309 /// The logic of this routine relies on GEPs and insertvalue and 3310 /// extractvalue all operating with the same fundamental index list, merely 3311 /// formatted differently (GEPs need actual values). 3312 /// 3313 /// \param Ty The type being split recursively into smaller ops. 3314 /// \param Agg The aggregate value being built up or stored, depending on 3315 /// whether this is splitting a load or a store respectively. 3316 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3317 if (Ty->isSingleValueType()) { 3318 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); 3319 return static_cast<Derived *>(this)->emitFunc( 3320 Ty, Agg, commonAlignment(BaseAlign, Offset), Name); 3321 } 3322 3323 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3324 unsigned OldSize = Indices.size(); 3325 (void)OldSize; 3326 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3327 ++Idx) { 3328 assert(Indices.size() == OldSize && "Did not return to the old size"); 3329 Indices.push_back(Idx); 3330 GEPIndices.push_back(IRB.getInt32(Idx)); 3331 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3332 GEPIndices.pop_back(); 3333 Indices.pop_back(); 3334 } 3335 return; 3336 } 3337 3338 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3339 unsigned OldSize = Indices.size(); 3340 (void)OldSize; 3341 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3342 ++Idx) { 3343 assert(Indices.size() == OldSize && "Did not return to the old size"); 3344 Indices.push_back(Idx); 3345 GEPIndices.push_back(IRB.getInt32(Idx)); 3346 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3347 GEPIndices.pop_back(); 3348 Indices.pop_back(); 3349 } 3350 return; 3351 } 3352 3353 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3354 } 3355 }; 3356 3357 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3358 AAMDNodes AATags; 3359 3360 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3361 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL, 3362 IRBuilderTy &IRB) 3363 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL, 3364 IRB), 3365 AATags(AATags) {} 3366 3367 /// Emit a leaf load of a single value. This is called at the leaves of the 3368 /// recursive emission to actually load values. 3369 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3370 assert(Ty->isSingleValueType()); 3371 // Load the single value and insert it using the indices. 3372 Value *GEP = 3373 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3374 LoadInst *Load = 3375 IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load"); 3376 3377 APInt Offset( 3378 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3379 if (AATags && 3380 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3381 Load->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3382 3383 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3384 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); 3385 } 3386 }; 3387 3388 bool visitLoadInst(LoadInst &LI) { 3389 assert(LI.getPointerOperand() == *U); 3390 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3391 return false; 3392 3393 // We have an aggregate being loaded, split it apart. 3394 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 3395 LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(), 3396 getAdjustedAlignment(&LI, 0), DL, IRB); 3397 Value *V = PoisonValue::get(LI.getType()); 3398 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3399 Visited.erase(&LI); 3400 LI.replaceAllUsesWith(V); 3401 LI.eraseFromParent(); 3402 return true; 3403 } 3404 3405 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3406 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3407 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL, 3408 IRBuilderTy &IRB) 3409 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3410 DL, IRB), 3411 AATags(AATags) {} 3412 AAMDNodes AATags; 3413 /// Emit a leaf store of a single value. This is called at the leaves of the 3414 /// recursive emission to actually produce stores. 3415 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3416 assert(Ty->isSingleValueType()); 3417 // Extract the single value and store it using the indices. 3418 // 3419 // The gep and extractvalue values are factored out of the CreateStore 3420 // call to make the output independent of the argument evaluation order. 3421 Value *ExtractValue = 3422 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3423 Value *InBoundsGEP = 3424 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3425 StoreInst *Store = 3426 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment); 3427 3428 APInt Offset( 3429 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3430 if (AATags && 3431 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3432 Store->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3433 3434 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3435 } 3436 }; 3437 3438 bool visitStoreInst(StoreInst &SI) { 3439 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3440 return false; 3441 Value *V = SI.getValueOperand(); 3442 if (V->getType()->isSingleValueType()) 3443 return false; 3444 3445 // We have an aggregate being stored, split it apart. 3446 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3447 StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), 3448 getAdjustedAlignment(&SI, 0), DL, IRB); 3449 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3450 Visited.erase(&SI); 3451 SI.eraseFromParent(); 3452 return true; 3453 } 3454 3455 bool visitBitCastInst(BitCastInst &BC) { 3456 enqueueUsers(BC); 3457 return false; 3458 } 3459 3460 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 3461 enqueueUsers(ASC); 3462 return false; 3463 } 3464 3465 // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2) 3466 bool foldGEPSelect(GetElementPtrInst &GEPI) { 3467 if (!GEPI.hasAllConstantIndices()) 3468 return false; 3469 3470 SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand()); 3471 3472 LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):" 3473 << "\n original: " << *Sel 3474 << "\n " << GEPI); 3475 3476 IRB.SetInsertPoint(&GEPI); 3477 SmallVector<Value *, 4> Index(GEPI.indices()); 3478 bool IsInBounds = GEPI.isInBounds(); 3479 3480 Type *Ty = GEPI.getSourceElementType(); 3481 Value *True = Sel->getTrueValue(); 3482 Value *NTrue = IRB.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep", 3483 IsInBounds); 3484 3485 Value *False = Sel->getFalseValue(); 3486 3487 Value *NFalse = IRB.CreateGEP(Ty, False, Index, 3488 False->getName() + ".sroa.gep", IsInBounds); 3489 3490 Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse, 3491 Sel->getName() + ".sroa.sel"); 3492 Visited.erase(&GEPI); 3493 GEPI.replaceAllUsesWith(NSel); 3494 GEPI.eraseFromParent(); 3495 Instruction *NSelI = cast<Instruction>(NSel); 3496 Visited.insert(NSelI); 3497 enqueueUsers(*NSelI); 3498 3499 LLVM_DEBUG(dbgs() << "\n to: " << *NTrue 3500 << "\n " << *NFalse 3501 << "\n " << *NSel << '\n'); 3502 3503 return true; 3504 } 3505 3506 // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2) 3507 bool foldGEPPhi(GetElementPtrInst &GEPI) { 3508 if (!GEPI.hasAllConstantIndices()) 3509 return false; 3510 3511 PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand()); 3512 if (GEPI.getParent() != PHI->getParent() || 3513 llvm::any_of(PHI->incoming_values(), [](Value *In) 3514 { Instruction *I = dyn_cast<Instruction>(In); 3515 return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) || 3516 succ_empty(I->getParent()) || 3517 !I->getParent()->isLegalToHoistInto(); 3518 })) 3519 return false; 3520 3521 LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):" 3522 << "\n original: " << *PHI 3523 << "\n " << GEPI 3524 << "\n to: "); 3525 3526 SmallVector<Value *, 4> Index(GEPI.indices()); 3527 bool IsInBounds = GEPI.isInBounds(); 3528 IRB.SetInsertPoint(GEPI.getParent()->getFirstNonPHI()); 3529 PHINode *NewPN = IRB.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(), 3530 PHI->getName() + ".sroa.phi"); 3531 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) { 3532 BasicBlock *B = PHI->getIncomingBlock(I); 3533 Value *NewVal = nullptr; 3534 int Idx = NewPN->getBasicBlockIndex(B); 3535 if (Idx >= 0) { 3536 NewVal = NewPN->getIncomingValue(Idx); 3537 } else { 3538 Instruction *In = cast<Instruction>(PHI->getIncomingValue(I)); 3539 3540 IRB.SetInsertPoint(In->getParent(), std::next(In->getIterator())); 3541 Type *Ty = GEPI.getSourceElementType(); 3542 NewVal = IRB.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep", 3543 IsInBounds); 3544 } 3545 NewPN->addIncoming(NewVal, B); 3546 } 3547 3548 Visited.erase(&GEPI); 3549 GEPI.replaceAllUsesWith(NewPN); 3550 GEPI.eraseFromParent(); 3551 Visited.insert(NewPN); 3552 enqueueUsers(*NewPN); 3553 3554 LLVM_DEBUG(for (Value *In : NewPN->incoming_values()) 3555 dbgs() << "\n " << *In; 3556 dbgs() << "\n " << *NewPN << '\n'); 3557 3558 return true; 3559 } 3560 3561 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 3562 if (isa<SelectInst>(GEPI.getPointerOperand()) && 3563 foldGEPSelect(GEPI)) 3564 return true; 3565 3566 if (isa<PHINode>(GEPI.getPointerOperand()) && 3567 foldGEPPhi(GEPI)) 3568 return true; 3569 3570 enqueueUsers(GEPI); 3571 return false; 3572 } 3573 3574 bool visitPHINode(PHINode &PN) { 3575 enqueueUsers(PN); 3576 return false; 3577 } 3578 3579 bool visitSelectInst(SelectInst &SI) { 3580 enqueueUsers(SI); 3581 return false; 3582 } 3583 }; 3584 3585 } // end anonymous namespace 3586 3587 /// Strip aggregate type wrapping. 3588 /// 3589 /// This removes no-op aggregate types wrapping an underlying type. It will 3590 /// strip as many layers of types as it can without changing either the type 3591 /// size or the allocated size. 3592 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 3593 if (Ty->isSingleValueType()) 3594 return Ty; 3595 3596 uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize(); 3597 uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize(); 3598 3599 Type *InnerTy; 3600 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 3601 InnerTy = ArrTy->getElementType(); 3602 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 3603 const StructLayout *SL = DL.getStructLayout(STy); 3604 unsigned Index = SL->getElementContainingOffset(0); 3605 InnerTy = STy->getElementType(Index); 3606 } else { 3607 return Ty; 3608 } 3609 3610 if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() || 3611 TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize()) 3612 return Ty; 3613 3614 return stripAggregateTypeWrapping(DL, InnerTy); 3615 } 3616 3617 /// Try to find a partition of the aggregate type passed in for a given 3618 /// offset and size. 3619 /// 3620 /// This recurses through the aggregate type and tries to compute a subtype 3621 /// based on the offset and size. When the offset and size span a sub-section 3622 /// of an array, it will even compute a new array type for that sub-section, 3623 /// and the same for structs. 3624 /// 3625 /// Note that this routine is very strict and tries to find a partition of the 3626 /// type which produces the *exact* right offset and size. It is not forgiving 3627 /// when the size or offset cause either end of type-based partition to be off. 3628 /// Also, this is a best-effort routine. It is reasonable to give up and not 3629 /// return a type if necessary. 3630 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 3631 uint64_t Size) { 3632 if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size) 3633 return stripAggregateTypeWrapping(DL, Ty); 3634 if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() || 3635 (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size) 3636 return nullptr; 3637 3638 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 3639 Type *ElementTy; 3640 uint64_t TyNumElements; 3641 if (auto *AT = dyn_cast<ArrayType>(Ty)) { 3642 ElementTy = AT->getElementType(); 3643 TyNumElements = AT->getNumElements(); 3644 } else { 3645 // FIXME: This isn't right for vectors with non-byte-sized or 3646 // non-power-of-two sized elements. 3647 auto *VT = cast<FixedVectorType>(Ty); 3648 ElementTy = VT->getElementType(); 3649 TyNumElements = VT->getNumElements(); 3650 } 3651 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3652 uint64_t NumSkippedElements = Offset / ElementSize; 3653 if (NumSkippedElements >= TyNumElements) 3654 return nullptr; 3655 Offset -= NumSkippedElements * ElementSize; 3656 3657 // First check if we need to recurse. 3658 if (Offset > 0 || Size < ElementSize) { 3659 // Bail if the partition ends in a different array element. 3660 if ((Offset + Size) > ElementSize) 3661 return nullptr; 3662 // Recurse through the element type trying to peel off offset bytes. 3663 return getTypePartition(DL, ElementTy, Offset, Size); 3664 } 3665 assert(Offset == 0); 3666 3667 if (Size == ElementSize) 3668 return stripAggregateTypeWrapping(DL, ElementTy); 3669 assert(Size > ElementSize); 3670 uint64_t NumElements = Size / ElementSize; 3671 if (NumElements * ElementSize != Size) 3672 return nullptr; 3673 return ArrayType::get(ElementTy, NumElements); 3674 } 3675 3676 StructType *STy = dyn_cast<StructType>(Ty); 3677 if (!STy) 3678 return nullptr; 3679 3680 const StructLayout *SL = DL.getStructLayout(STy); 3681 if (Offset >= SL->getSizeInBytes()) 3682 return nullptr; 3683 uint64_t EndOffset = Offset + Size; 3684 if (EndOffset > SL->getSizeInBytes()) 3685 return nullptr; 3686 3687 unsigned Index = SL->getElementContainingOffset(Offset); 3688 Offset -= SL->getElementOffset(Index); 3689 3690 Type *ElementTy = STy->getElementType(Index); 3691 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3692 if (Offset >= ElementSize) 3693 return nullptr; // The offset points into alignment padding. 3694 3695 // See if any partition must be contained by the element. 3696 if (Offset > 0 || Size < ElementSize) { 3697 if ((Offset + Size) > ElementSize) 3698 return nullptr; 3699 return getTypePartition(DL, ElementTy, Offset, Size); 3700 } 3701 assert(Offset == 0); 3702 3703 if (Size == ElementSize) 3704 return stripAggregateTypeWrapping(DL, ElementTy); 3705 3706 StructType::element_iterator EI = STy->element_begin() + Index, 3707 EE = STy->element_end(); 3708 if (EndOffset < SL->getSizeInBytes()) { 3709 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 3710 if (Index == EndIndex) 3711 return nullptr; // Within a single element and its padding. 3712 3713 // Don't try to form "natural" types if the elements don't line up with the 3714 // expected size. 3715 // FIXME: We could potentially recurse down through the last element in the 3716 // sub-struct to find a natural end point. 3717 if (SL->getElementOffset(EndIndex) != EndOffset) 3718 return nullptr; 3719 3720 assert(Index < EndIndex); 3721 EE = STy->element_begin() + EndIndex; 3722 } 3723 3724 // Try to build up a sub-structure. 3725 StructType *SubTy = 3726 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); 3727 const StructLayout *SubSL = DL.getStructLayout(SubTy); 3728 if (Size != SubSL->getSizeInBytes()) 3729 return nullptr; // The sub-struct doesn't have quite the size needed. 3730 3731 return SubTy; 3732 } 3733 3734 /// Pre-split loads and stores to simplify rewriting. 3735 /// 3736 /// We want to break up the splittable load+store pairs as much as 3737 /// possible. This is important to do as a preprocessing step, as once we 3738 /// start rewriting the accesses to partitions of the alloca we lose the 3739 /// necessary information to correctly split apart paired loads and stores 3740 /// which both point into this alloca. The case to consider is something like 3741 /// the following: 3742 /// 3743 /// %a = alloca [12 x i8] 3744 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 3745 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 3746 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 3747 /// %iptr1 = bitcast i8* %gep1 to i64* 3748 /// %iptr2 = bitcast i8* %gep2 to i64* 3749 /// %fptr1 = bitcast i8* %gep1 to float* 3750 /// %fptr2 = bitcast i8* %gep2 to float* 3751 /// %fptr3 = bitcast i8* %gep3 to float* 3752 /// store float 0.0, float* %fptr1 3753 /// store float 1.0, float* %fptr2 3754 /// %v = load i64* %iptr1 3755 /// store i64 %v, i64* %iptr2 3756 /// %f1 = load float* %fptr2 3757 /// %f2 = load float* %fptr3 3758 /// 3759 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 3760 /// promote everything so we recover the 2 SSA values that should have been 3761 /// there all along. 3762 /// 3763 /// \returns true if any changes are made. 3764 bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 3765 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 3766 3767 // Track the loads and stores which are candidates for pre-splitting here, in 3768 // the order they first appear during the partition scan. These give stable 3769 // iteration order and a basis for tracking which loads and stores we 3770 // actually split. 3771 SmallVector<LoadInst *, 4> Loads; 3772 SmallVector<StoreInst *, 4> Stores; 3773 3774 // We need to accumulate the splits required of each load or store where we 3775 // can find them via a direct lookup. This is important to cross-check loads 3776 // and stores against each other. We also track the slice so that we can kill 3777 // all the slices that end up split. 3778 struct SplitOffsets { 3779 Slice *S; 3780 std::vector<uint64_t> Splits; 3781 }; 3782 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 3783 3784 // Track loads out of this alloca which cannot, for any reason, be pre-split. 3785 // This is important as we also cannot pre-split stores of those loads! 3786 // FIXME: This is all pretty gross. It means that we can be more aggressive 3787 // in pre-splitting when the load feeding the store happens to come from 3788 // a separate alloca. Put another way, the effectiveness of SROA would be 3789 // decreased by a frontend which just concatenated all of its local allocas 3790 // into one big flat alloca. But defeating such patterns is exactly the job 3791 // SROA is tasked with! Sadly, to not have this discrepancy we would have 3792 // change store pre-splitting to actually force pre-splitting of the load 3793 // that feeds it *and all stores*. That makes pre-splitting much harder, but 3794 // maybe it would make it more principled? 3795 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 3796 3797 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 3798 for (auto &P : AS.partitions()) { 3799 for (Slice &S : P) { 3800 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 3801 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 3802 // If this is a load we have to track that it can't participate in any 3803 // pre-splitting. If this is a store of a load we have to track that 3804 // that load also can't participate in any pre-splitting. 3805 if (auto *LI = dyn_cast<LoadInst>(I)) 3806 UnsplittableLoads.insert(LI); 3807 else if (auto *SI = dyn_cast<StoreInst>(I)) 3808 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 3809 UnsplittableLoads.insert(LI); 3810 continue; 3811 } 3812 assert(P.endOffset() > S.beginOffset() && 3813 "Empty or backwards partition!"); 3814 3815 // Determine if this is a pre-splittable slice. 3816 if (auto *LI = dyn_cast<LoadInst>(I)) { 3817 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 3818 3819 // The load must be used exclusively to store into other pointers for 3820 // us to be able to arbitrarily pre-split it. The stores must also be 3821 // simple to avoid changing semantics. 3822 auto IsLoadSimplyStored = [](LoadInst *LI) { 3823 for (User *LU : LI->users()) { 3824 auto *SI = dyn_cast<StoreInst>(LU); 3825 if (!SI || !SI->isSimple()) 3826 return false; 3827 } 3828 return true; 3829 }; 3830 if (!IsLoadSimplyStored(LI)) { 3831 UnsplittableLoads.insert(LI); 3832 continue; 3833 } 3834 3835 Loads.push_back(LI); 3836 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3837 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 3838 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 3839 continue; 3840 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 3841 if (!StoredLoad || !StoredLoad->isSimple()) 3842 continue; 3843 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 3844 3845 Stores.push_back(SI); 3846 } else { 3847 // Other uses cannot be pre-split. 3848 continue; 3849 } 3850 3851 // Record the initial split. 3852 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); 3853 auto &Offsets = SplitOffsetsMap[I]; 3854 assert(Offsets.Splits.empty() && 3855 "Should not have splits the first time we see an instruction!"); 3856 Offsets.S = &S; 3857 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 3858 } 3859 3860 // Now scan the already split slices, and add a split for any of them which 3861 // we're going to pre-split. 3862 for (Slice *S : P.splitSliceTails()) { 3863 auto SplitOffsetsMapI = 3864 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 3865 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 3866 continue; 3867 auto &Offsets = SplitOffsetsMapI->second; 3868 3869 assert(Offsets.S == S && "Found a mismatched slice!"); 3870 assert(!Offsets.Splits.empty() && 3871 "Cannot have an empty set of splits on the second partition!"); 3872 assert(Offsets.Splits.back() == 3873 P.beginOffset() - Offsets.S->beginOffset() && 3874 "Previous split does not end where this one begins!"); 3875 3876 // Record each split. The last partition's end isn't needed as the size 3877 // of the slice dictates that. 3878 if (S->endOffset() > P.endOffset()) 3879 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 3880 } 3881 } 3882 3883 // We may have split loads where some of their stores are split stores. For 3884 // such loads and stores, we can only pre-split them if their splits exactly 3885 // match relative to their starting offset. We have to verify this prior to 3886 // any rewriting. 3887 llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 3888 // Lookup the load we are storing in our map of split 3889 // offsets. 3890 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3891 // If it was completely unsplittable, then we're done, 3892 // and this store can't be pre-split. 3893 if (UnsplittableLoads.count(LI)) 3894 return true; 3895 3896 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 3897 if (LoadOffsetsI == SplitOffsetsMap.end()) 3898 return false; // Unrelated loads are definitely safe. 3899 auto &LoadOffsets = LoadOffsetsI->second; 3900 3901 // Now lookup the store's offsets. 3902 auto &StoreOffsets = SplitOffsetsMap[SI]; 3903 3904 // If the relative offsets of each split in the load and 3905 // store match exactly, then we can split them and we 3906 // don't need to remove them here. 3907 if (LoadOffsets.Splits == StoreOffsets.Splits) 3908 return false; 3909 3910 LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n" 3911 << " " << *LI << "\n" 3912 << " " << *SI << "\n"); 3913 3914 // We've found a store and load that we need to split 3915 // with mismatched relative splits. Just give up on them 3916 // and remove both instructions from our list of 3917 // candidates. 3918 UnsplittableLoads.insert(LI); 3919 return true; 3920 }); 3921 // Now we have to go *back* through all the stores, because a later store may 3922 // have caused an earlier store's load to become unsplittable and if it is 3923 // unsplittable for the later store, then we can't rely on it being split in 3924 // the earlier store either. 3925 llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) { 3926 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3927 return UnsplittableLoads.count(LI); 3928 }); 3929 // Once we've established all the loads that can't be split for some reason, 3930 // filter any that made it into our list out. 3931 llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) { 3932 return UnsplittableLoads.count(LI); 3933 }); 3934 3935 // If no loads or stores are left, there is no pre-splitting to be done for 3936 // this alloca. 3937 if (Loads.empty() && Stores.empty()) 3938 return false; 3939 3940 // From here on, we can't fail and will be building new accesses, so rig up 3941 // an IR builder. 3942 IRBuilderTy IRB(&AI); 3943 3944 // Collect the new slices which we will merge into the alloca slices. 3945 SmallVector<Slice, 4> NewSlices; 3946 3947 // Track any allocas we end up splitting loads and stores for so we iterate 3948 // on them. 3949 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 3950 3951 // At this point, we have collected all of the loads and stores we can 3952 // pre-split, and the specific splits needed for them. We actually do the 3953 // splitting in a specific order in order to handle when one of the loads in 3954 // the value operand to one of the stores. 3955 // 3956 // First, we rewrite all of the split loads, and just accumulate each split 3957 // load in a parallel structure. We also build the slices for them and append 3958 // them to the alloca slices. 3959 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 3960 std::vector<LoadInst *> SplitLoads; 3961 const DataLayout &DL = AI.getModule()->getDataLayout(); 3962 for (LoadInst *LI : Loads) { 3963 SplitLoads.clear(); 3964 3965 auto &Offsets = SplitOffsetsMap[LI]; 3966 unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset(); 3967 assert(LI->getType()->getIntegerBitWidth() % 8 == 0 && 3968 "Load must have type size equal to store size"); 3969 assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize && 3970 "Load must be >= slice size"); 3971 3972 uint64_t BaseOffset = Offsets.S->beginOffset(); 3973 assert(BaseOffset + SliceSize > BaseOffset && 3974 "Cannot represent alloca access size using 64-bit integers!"); 3975 3976 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 3977 IRB.SetInsertPoint(LI); 3978 3979 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 3980 3981 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 3982 int Idx = 0, Size = Offsets.Splits.size(); 3983 for (;;) { 3984 auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8); 3985 auto AS = LI->getPointerAddressSpace(); 3986 auto *PartPtrTy = PartTy->getPointerTo(AS); 3987 LoadInst *PLoad = IRB.CreateAlignedLoad( 3988 PartTy, 3989 getAdjustedPtr(IRB, DL, BasePtr, 3990 APInt(DL.getIndexSizeInBits(AS), PartOffset), 3991 PartPtrTy, BasePtr->getName() + "."), 3992 getAdjustedAlignment(LI, PartOffset), 3993 /*IsVolatile*/ false, LI->getName()); 3994 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 3995 LLVMContext::MD_access_group}); 3996 3997 // Append this load onto the list of split loads so we can find it later 3998 // to rewrite the stores. 3999 SplitLoads.push_back(PLoad); 4000 4001 // Now build a new slice for the alloca. 4002 NewSlices.push_back( 4003 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4004 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 4005 /*IsSplittable*/ false)); 4006 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4007 << ", " << NewSlices.back().endOffset() 4008 << "): " << *PLoad << "\n"); 4009 4010 // See if we've handled all the splits. 4011 if (Idx >= Size) 4012 break; 4013 4014 // Setup the next partition. 4015 PartOffset = Offsets.Splits[Idx]; 4016 ++Idx; 4017 PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset; 4018 } 4019 4020 // Now that we have the split loads, do the slow walk over all uses of the 4021 // load and rewrite them as split stores, or save the split loads to use 4022 // below if the store is going to be split there anyways. 4023 bool DeferredStores = false; 4024 for (User *LU : LI->users()) { 4025 StoreInst *SI = cast<StoreInst>(LU); 4026 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 4027 DeferredStores = true; 4028 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI 4029 << "\n"); 4030 continue; 4031 } 4032 4033 Value *StoreBasePtr = SI->getPointerOperand(); 4034 IRB.SetInsertPoint(SI); 4035 4036 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 4037 4038 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 4039 LoadInst *PLoad = SplitLoads[Idx]; 4040 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 4041 auto *PartPtrTy = 4042 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); 4043 4044 auto AS = SI->getPointerAddressSpace(); 4045 StoreInst *PStore = IRB.CreateAlignedStore( 4046 PLoad, 4047 getAdjustedPtr(IRB, DL, StoreBasePtr, 4048 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4049 PartPtrTy, StoreBasePtr->getName() + "."), 4050 getAdjustedAlignment(SI, PartOffset), 4051 /*IsVolatile*/ false); 4052 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4053 LLVMContext::MD_access_group}); 4054 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 4055 } 4056 4057 // We want to immediately iterate on any allocas impacted by splitting 4058 // this store, and we have to track any promotable alloca (indicated by 4059 // a direct store) as needing to be resplit because it is no longer 4060 // promotable. 4061 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 4062 ResplitPromotableAllocas.insert(OtherAI); 4063 Worklist.insert(OtherAI); 4064 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4065 StoreBasePtr->stripInBoundsOffsets())) { 4066 Worklist.insert(OtherAI); 4067 } 4068 4069 // Mark the original store as dead. 4070 DeadInsts.push_back(SI); 4071 } 4072 4073 // Save the split loads if there are deferred stores among the users. 4074 if (DeferredStores) 4075 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 4076 4077 // Mark the original load as dead and kill the original slice. 4078 DeadInsts.push_back(LI); 4079 Offsets.S->kill(); 4080 } 4081 4082 // Second, we rewrite all of the split stores. At this point, we know that 4083 // all loads from this alloca have been split already. For stores of such 4084 // loads, we can simply look up the pre-existing split loads. For stores of 4085 // other loads, we split those loads first and then write split stores of 4086 // them. 4087 for (StoreInst *SI : Stores) { 4088 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4089 IntegerType *Ty = cast<IntegerType>(LI->getType()); 4090 assert(Ty->getBitWidth() % 8 == 0); 4091 uint64_t StoreSize = Ty->getBitWidth() / 8; 4092 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 4093 4094 auto &Offsets = SplitOffsetsMap[SI]; 4095 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 4096 "Slice size should always match load size exactly!"); 4097 uint64_t BaseOffset = Offsets.S->beginOffset(); 4098 assert(BaseOffset + StoreSize > BaseOffset && 4099 "Cannot represent alloca access size using 64-bit integers!"); 4100 4101 Value *LoadBasePtr = LI->getPointerOperand(); 4102 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 4103 4104 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 4105 4106 // Check whether we have an already split load. 4107 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 4108 std::vector<LoadInst *> *SplitLoads = nullptr; 4109 if (SplitLoadsMapI != SplitLoadsMap.end()) { 4110 SplitLoads = &SplitLoadsMapI->second; 4111 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 4112 "Too few split loads for the number of splits in the store!"); 4113 } else { 4114 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); 4115 } 4116 4117 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4118 int Idx = 0, Size = Offsets.Splits.size(); 4119 for (;;) { 4120 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 4121 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); 4122 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); 4123 4124 // Either lookup a split load or create one. 4125 LoadInst *PLoad; 4126 if (SplitLoads) { 4127 PLoad = (*SplitLoads)[Idx]; 4128 } else { 4129 IRB.SetInsertPoint(LI); 4130 auto AS = LI->getPointerAddressSpace(); 4131 PLoad = IRB.CreateAlignedLoad( 4132 PartTy, 4133 getAdjustedPtr(IRB, DL, LoadBasePtr, 4134 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4135 LoadPartPtrTy, LoadBasePtr->getName() + "."), 4136 getAdjustedAlignment(LI, PartOffset), 4137 /*IsVolatile*/ false, LI->getName()); 4138 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4139 LLVMContext::MD_access_group}); 4140 } 4141 4142 // And store this partition. 4143 IRB.SetInsertPoint(SI); 4144 auto AS = SI->getPointerAddressSpace(); 4145 StoreInst *PStore = IRB.CreateAlignedStore( 4146 PLoad, 4147 getAdjustedPtr(IRB, DL, StoreBasePtr, 4148 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4149 StorePartPtrTy, StoreBasePtr->getName() + "."), 4150 getAdjustedAlignment(SI, PartOffset), 4151 /*IsVolatile*/ false); 4152 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4153 LLVMContext::MD_access_group}); 4154 4155 // Now build a new slice for the alloca. 4156 NewSlices.push_back( 4157 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4158 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 4159 /*IsSplittable*/ false)); 4160 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4161 << ", " << NewSlices.back().endOffset() 4162 << "): " << *PStore << "\n"); 4163 if (!SplitLoads) { 4164 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 4165 } 4166 4167 // See if we've finished all the splits. 4168 if (Idx >= Size) 4169 break; 4170 4171 // Setup the next partition. 4172 PartOffset = Offsets.Splits[Idx]; 4173 ++Idx; 4174 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 4175 } 4176 4177 // We want to immediately iterate on any allocas impacted by splitting 4178 // this load, which is only relevant if it isn't a load of this alloca and 4179 // thus we didn't already split the loads above. We also have to keep track 4180 // of any promotable allocas we split loads on as they can no longer be 4181 // promoted. 4182 if (!SplitLoads) { 4183 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 4184 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4185 ResplitPromotableAllocas.insert(OtherAI); 4186 Worklist.insert(OtherAI); 4187 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4188 LoadBasePtr->stripInBoundsOffsets())) { 4189 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4190 Worklist.insert(OtherAI); 4191 } 4192 } 4193 4194 // Mark the original store as dead now that we've split it up and kill its 4195 // slice. Note that we leave the original load in place unless this store 4196 // was its only use. It may in turn be split up if it is an alloca load 4197 // for some other alloca, but it may be a normal load. This may introduce 4198 // redundant loads, but where those can be merged the rest of the optimizer 4199 // should handle the merging, and this uncovers SSA splits which is more 4200 // important. In practice, the original loads will almost always be fully 4201 // split and removed eventually, and the splits will be merged by any 4202 // trivial CSE, including instcombine. 4203 if (LI->hasOneUse()) { 4204 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 4205 DeadInsts.push_back(LI); 4206 } 4207 DeadInsts.push_back(SI); 4208 Offsets.S->kill(); 4209 } 4210 4211 // Remove the killed slices that have ben pre-split. 4212 llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); }); 4213 4214 // Insert our new slices. This will sort and merge them into the sorted 4215 // sequence. 4216 AS.insert(NewSlices); 4217 4218 LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); 4219 #ifndef NDEBUG 4220 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 4221 LLVM_DEBUG(AS.print(dbgs(), I, " ")); 4222 #endif 4223 4224 // Finally, don't try to promote any allocas that new require re-splitting. 4225 // They have already been added to the worklist above. 4226 llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) { 4227 return ResplitPromotableAllocas.count(AI); 4228 }); 4229 4230 return true; 4231 } 4232 4233 /// Rewrite an alloca partition's users. 4234 /// 4235 /// This routine drives both of the rewriting goals of the SROA pass. It tries 4236 /// to rewrite uses of an alloca partition to be conducive for SSA value 4237 /// promotion. If the partition needs a new, more refined alloca, this will 4238 /// build that new alloca, preserving as much type information as possible, and 4239 /// rewrite the uses of the old alloca to point at the new one and have the 4240 /// appropriate new offsets. It also evaluates how successful the rewrite was 4241 /// at enabling promotion and if it was successful queues the alloca to be 4242 /// promoted. 4243 AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 4244 Partition &P) { 4245 // Try to compute a friendly type for this partition of the alloca. This 4246 // won't always succeed, in which case we fall back to a legal integer type 4247 // or an i8 array of an appropriate size. 4248 Type *SliceTy = nullptr; 4249 const DataLayout &DL = AI.getModule()->getDataLayout(); 4250 std::pair<Type *, IntegerType *> CommonUseTy = 4251 findCommonType(P.begin(), P.end(), P.endOffset()); 4252 // Do all uses operate on the same type? 4253 if (CommonUseTy.first) 4254 if (DL.getTypeAllocSize(CommonUseTy.first).getFixedSize() >= P.size()) 4255 SliceTy = CommonUseTy.first; 4256 // If not, can we find an appropriate subtype in the original allocated type? 4257 if (!SliceTy) 4258 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4259 P.beginOffset(), P.size())) 4260 SliceTy = TypePartitionTy; 4261 // If still not, can we use the largest bitwidth integer type used? 4262 if (!SliceTy && CommonUseTy.second) 4263 if (DL.getTypeAllocSize(CommonUseTy.second).getFixedSize() >= P.size()) 4264 SliceTy = CommonUseTy.second; 4265 if ((!SliceTy || (SliceTy->isArrayTy() && 4266 SliceTy->getArrayElementType()->isIntegerTy())) && 4267 DL.isLegalInteger(P.size() * 8)) 4268 SliceTy = Type::getIntNTy(*C, P.size() * 8); 4269 if (!SliceTy) 4270 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 4271 assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size()); 4272 4273 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 4274 4275 VectorType *VecTy = 4276 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 4277 if (VecTy) 4278 SliceTy = VecTy; 4279 4280 // Check for the case where we're going to rewrite to a new alloca of the 4281 // exact same type as the original, and with the same access offsets. In that 4282 // case, re-use the existing alloca, but still run through the rewriter to 4283 // perform phi and select speculation. 4284 // P.beginOffset() can be non-zero even with the same type in a case with 4285 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). 4286 AllocaInst *NewAI; 4287 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { 4288 NewAI = &AI; 4289 // FIXME: We should be able to bail at this point with "nothing changed". 4290 // FIXME: We might want to defer PHI speculation until after here. 4291 // FIXME: return nullptr; 4292 } else { 4293 // Make sure the alignment is compatible with P.beginOffset(). 4294 const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset()); 4295 // If we will get at least this much alignment from the type alone, leave 4296 // the alloca's alignment unconstrained. 4297 const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy); 4298 NewAI = new AllocaInst( 4299 SliceTy, AI.getType()->getAddressSpace(), nullptr, 4300 IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment, 4301 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); 4302 // Copy the old AI debug location over to the new one. 4303 NewAI->setDebugLoc(AI.getDebugLoc()); 4304 ++NumNewAllocas; 4305 } 4306 4307 LLVM_DEBUG(dbgs() << "Rewriting alloca partition " 4308 << "[" << P.beginOffset() << "," << P.endOffset() 4309 << ") to: " << *NewAI << "\n"); 4310 4311 // Track the high watermark on the worklist as it is only relevant for 4312 // promoted allocas. We will reset it to this point if the alloca is not in 4313 // fact scheduled for promotion. 4314 unsigned PPWOldSize = PostPromotionWorklist.size(); 4315 unsigned NumUses = 0; 4316 SmallSetVector<PHINode *, 8> PHIUsers; 4317 SmallSetVector<SelectInst *, 8> SelectUsers; 4318 4319 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 4320 P.endOffset(), IsIntegerPromotable, VecTy, 4321 PHIUsers, SelectUsers); 4322 bool Promotable = true; 4323 for (Slice *S : P.splitSliceTails()) { 4324 Promotable &= Rewriter.visit(S); 4325 ++NumUses; 4326 } 4327 for (Slice &S : P) { 4328 Promotable &= Rewriter.visit(&S); 4329 ++NumUses; 4330 } 4331 4332 NumAllocaPartitionUses += NumUses; 4333 MaxUsesPerAllocaPartition.updateMax(NumUses); 4334 4335 // Now that we've processed all the slices in the new partition, check if any 4336 // PHIs or Selects would block promotion. 4337 for (PHINode *PHI : PHIUsers) 4338 if (!isSafePHIToSpeculate(*PHI)) { 4339 Promotable = false; 4340 PHIUsers.clear(); 4341 SelectUsers.clear(); 4342 break; 4343 } 4344 4345 for (SelectInst *Sel : SelectUsers) 4346 if (!isSafeSelectToSpeculate(*Sel)) { 4347 Promotable = false; 4348 PHIUsers.clear(); 4349 SelectUsers.clear(); 4350 break; 4351 } 4352 4353 if (Promotable) { 4354 for (Use *U : AS.getDeadUsesIfPromotable()) { 4355 auto *OldInst = dyn_cast<Instruction>(U->get()); 4356 Value::dropDroppableUse(*U); 4357 if (OldInst) 4358 if (isInstructionTriviallyDead(OldInst)) 4359 DeadInsts.push_back(OldInst); 4360 } 4361 if (PHIUsers.empty() && SelectUsers.empty()) { 4362 // Promote the alloca. 4363 PromotableAllocas.push_back(NewAI); 4364 } else { 4365 // If we have either PHIs or Selects to speculate, add them to those 4366 // worklists and re-queue the new alloca so that we promote in on the 4367 // next iteration. 4368 for (PHINode *PHIUser : PHIUsers) 4369 SpeculatablePHIs.insert(PHIUser); 4370 for (SelectInst *SelectUser : SelectUsers) 4371 SpeculatableSelects.insert(SelectUser); 4372 Worklist.insert(NewAI); 4373 } 4374 } else { 4375 // Drop any post-promotion work items if promotion didn't happen. 4376 while (PostPromotionWorklist.size() > PPWOldSize) 4377 PostPromotionWorklist.pop_back(); 4378 4379 // We couldn't promote and we didn't create a new partition, nothing 4380 // happened. 4381 if (NewAI == &AI) 4382 return nullptr; 4383 4384 // If we can't promote the alloca, iterate on it to check for new 4385 // refinements exposed by splitting the current alloca. Don't iterate on an 4386 // alloca which didn't actually change and didn't get promoted. 4387 Worklist.insert(NewAI); 4388 } 4389 4390 return NewAI; 4391 } 4392 4393 /// Walks the slices of an alloca and form partitions based on them, 4394 /// rewriting each of their uses. 4395 bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 4396 if (AS.begin() == AS.end()) 4397 return false; 4398 4399 unsigned NumPartitions = 0; 4400 bool Changed = false; 4401 const DataLayout &DL = AI.getModule()->getDataLayout(); 4402 4403 // First try to pre-split loads and stores. 4404 Changed |= presplitLoadsAndStores(AI, AS); 4405 4406 // Now that we have identified any pre-splitting opportunities, 4407 // mark loads and stores unsplittable except for the following case. 4408 // We leave a slice splittable if all other slices are disjoint or fully 4409 // included in the slice, such as whole-alloca loads and stores. 4410 // If we fail to split these during pre-splitting, we want to force them 4411 // to be rewritten into a partition. 4412 bool IsSorted = true; 4413 4414 uint64_t AllocaSize = 4415 DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize(); 4416 const uint64_t MaxBitVectorSize = 1024; 4417 if (AllocaSize <= MaxBitVectorSize) { 4418 // If a byte boundary is included in any load or store, a slice starting or 4419 // ending at the boundary is not splittable. 4420 SmallBitVector SplittableOffset(AllocaSize + 1, true); 4421 for (Slice &S : AS) 4422 for (unsigned O = S.beginOffset() + 1; 4423 O < S.endOffset() && O < AllocaSize; O++) 4424 SplittableOffset.reset(O); 4425 4426 for (Slice &S : AS) { 4427 if (!S.isSplittable()) 4428 continue; 4429 4430 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && 4431 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) 4432 continue; 4433 4434 if (isa<LoadInst>(S.getUse()->getUser()) || 4435 isa<StoreInst>(S.getUse()->getUser())) { 4436 S.makeUnsplittable(); 4437 IsSorted = false; 4438 } 4439 } 4440 } 4441 else { 4442 // We only allow whole-alloca splittable loads and stores 4443 // for a large alloca to avoid creating too large BitVector. 4444 for (Slice &S : AS) { 4445 if (!S.isSplittable()) 4446 continue; 4447 4448 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) 4449 continue; 4450 4451 if (isa<LoadInst>(S.getUse()->getUser()) || 4452 isa<StoreInst>(S.getUse()->getUser())) { 4453 S.makeUnsplittable(); 4454 IsSorted = false; 4455 } 4456 } 4457 } 4458 4459 if (!IsSorted) 4460 llvm::sort(AS); 4461 4462 /// Describes the allocas introduced by rewritePartition in order to migrate 4463 /// the debug info. 4464 struct Fragment { 4465 AllocaInst *Alloca; 4466 uint64_t Offset; 4467 uint64_t Size; 4468 Fragment(AllocaInst *AI, uint64_t O, uint64_t S) 4469 : Alloca(AI), Offset(O), Size(S) {} 4470 }; 4471 SmallVector<Fragment, 4> Fragments; 4472 4473 // Rewrite each partition. 4474 for (auto &P : AS.partitions()) { 4475 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 4476 Changed = true; 4477 if (NewAI != &AI) { 4478 uint64_t SizeOfByte = 8; 4479 uint64_t AllocaSize = 4480 DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize(); 4481 // Don't include any padding. 4482 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 4483 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); 4484 } 4485 } 4486 ++NumPartitions; 4487 } 4488 4489 NumAllocaPartitions += NumPartitions; 4490 MaxPartitionsPerAlloca.updateMax(NumPartitions); 4491 4492 // Migrate debug information from the old alloca to the new alloca(s) 4493 // and the individual partitions. 4494 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI); 4495 for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) { 4496 auto *Expr = DbgDeclare->getExpression(); 4497 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 4498 uint64_t AllocaSize = 4499 DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize(); 4500 for (auto Fragment : Fragments) { 4501 // Create a fragment expression describing the new partition or reuse AI's 4502 // expression if there is only one partition. 4503 auto *FragmentExpr = Expr; 4504 if (Fragment.Size < AllocaSize || Expr->isFragment()) { 4505 // If this alloca is already a scalar replacement of a larger aggregate, 4506 // Fragment.Offset describes the offset inside the scalar. 4507 auto ExprFragment = Expr->getFragmentInfo(); 4508 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0; 4509 uint64_t Start = Offset + Fragment.Offset; 4510 uint64_t Size = Fragment.Size; 4511 if (ExprFragment) { 4512 uint64_t AbsEnd = 4513 ExprFragment->OffsetInBits + ExprFragment->SizeInBits; 4514 if (Start >= AbsEnd) 4515 // No need to describe a SROAed padding. 4516 continue; 4517 Size = std::min(Size, AbsEnd - Start); 4518 } 4519 // The new, smaller fragment is stenciled out from the old fragment. 4520 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) { 4521 assert(Start >= OrigFragment->OffsetInBits && 4522 "new fragment is outside of original fragment"); 4523 Start -= OrigFragment->OffsetInBits; 4524 } 4525 4526 // The alloca may be larger than the variable. 4527 auto VarSize = DbgDeclare->getVariable()->getSizeInBits(); 4528 if (VarSize) { 4529 if (Size > *VarSize) 4530 Size = *VarSize; 4531 if (Size == 0 || Start + Size > *VarSize) 4532 continue; 4533 } 4534 4535 // Avoid creating a fragment expression that covers the entire variable. 4536 if (!VarSize || *VarSize != Size) { 4537 if (auto E = 4538 DIExpression::createFragmentExpression(Expr, Start, Size)) 4539 FragmentExpr = *E; 4540 else 4541 continue; 4542 } 4543 } 4544 4545 // Remove any existing intrinsics on the new alloca describing 4546 // the variable fragment. 4547 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) { 4548 auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS, 4549 const DbgVariableIntrinsic *RHS) { 4550 return LHS->getVariable() == RHS->getVariable() && 4551 LHS->getDebugLoc()->getInlinedAt() == 4552 RHS->getDebugLoc()->getInlinedAt(); 4553 }; 4554 if (SameVariableFragment(OldDII, DbgDeclare)) 4555 OldDII->eraseFromParent(); 4556 } 4557 4558 DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), FragmentExpr, 4559 DbgDeclare->getDebugLoc(), &AI); 4560 } 4561 } 4562 return Changed; 4563 } 4564 4565 /// Clobber a use with poison, deleting the used value if it becomes dead. 4566 void SROAPass::clobberUse(Use &U) { 4567 Value *OldV = U; 4568 // Replace the use with an poison value. 4569 U = PoisonValue::get(OldV->getType()); 4570 4571 // Check for this making an instruction dead. We have to garbage collect 4572 // all the dead instructions to ensure the uses of any alloca end up being 4573 // minimal. 4574 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 4575 if (isInstructionTriviallyDead(OldI)) { 4576 DeadInsts.push_back(OldI); 4577 } 4578 } 4579 4580 /// Analyze an alloca for SROA. 4581 /// 4582 /// This analyzes the alloca to ensure we can reason about it, builds 4583 /// the slices of the alloca, and then hands it off to be split and 4584 /// rewritten as needed. 4585 bool SROAPass::runOnAlloca(AllocaInst &AI) { 4586 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 4587 ++NumAllocasAnalyzed; 4588 4589 // Special case dead allocas, as they're trivial. 4590 if (AI.use_empty()) { 4591 AI.eraseFromParent(); 4592 return true; 4593 } 4594 const DataLayout &DL = AI.getModule()->getDataLayout(); 4595 4596 // Skip alloca forms that this analysis can't handle. 4597 auto *AT = AI.getAllocatedType(); 4598 if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) || 4599 DL.getTypeAllocSize(AT).getFixedSize() == 0) 4600 return false; 4601 4602 bool Changed = false; 4603 4604 // First, split any FCA loads and stores touching this alloca to promote 4605 // better splitting and promotion opportunities. 4606 IRBuilderTy IRB(&AI); 4607 AggLoadStoreRewriter AggRewriter(DL, IRB); 4608 Changed |= AggRewriter.rewrite(AI); 4609 4610 // Build the slices using a recursive instruction-visiting builder. 4611 AllocaSlices AS(DL, AI); 4612 LLVM_DEBUG(AS.print(dbgs())); 4613 if (AS.isEscaped()) 4614 return Changed; 4615 4616 // Delete all the dead users of this alloca before splitting and rewriting it. 4617 for (Instruction *DeadUser : AS.getDeadUsers()) { 4618 // Free up everything used by this instruction. 4619 for (Use &DeadOp : DeadUser->operands()) 4620 clobberUse(DeadOp); 4621 4622 // Now replace the uses of this instruction. 4623 DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType())); 4624 4625 // And mark it for deletion. 4626 DeadInsts.push_back(DeadUser); 4627 Changed = true; 4628 } 4629 for (Use *DeadOp : AS.getDeadOperands()) { 4630 clobberUse(*DeadOp); 4631 Changed = true; 4632 } 4633 4634 // No slices to split. Leave the dead alloca for a later pass to clean up. 4635 if (AS.begin() == AS.end()) 4636 return Changed; 4637 4638 Changed |= splitAlloca(AI, AS); 4639 4640 LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); 4641 while (!SpeculatablePHIs.empty()) 4642 speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val()); 4643 4644 LLVM_DEBUG(dbgs() << " Speculating Selects\n"); 4645 while (!SpeculatableSelects.empty()) 4646 speculateSelectInstLoads(IRB, *SpeculatableSelects.pop_back_val()); 4647 4648 return Changed; 4649 } 4650 4651 /// Delete the dead instructions accumulated in this run. 4652 /// 4653 /// Recursively deletes the dead instructions we've accumulated. This is done 4654 /// at the very end to maximize locality of the recursive delete and to 4655 /// minimize the problems of invalidated instruction pointers as such pointers 4656 /// are used heavily in the intermediate stages of the algorithm. 4657 /// 4658 /// We also record the alloca instructions deleted here so that they aren't 4659 /// subsequently handed to mem2reg to promote. 4660 bool SROAPass::deleteDeadInstructions( 4661 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 4662 bool Changed = false; 4663 while (!DeadInsts.empty()) { 4664 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()); 4665 if (!I) continue; 4666 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 4667 4668 // If the instruction is an alloca, find the possible dbg.declare connected 4669 // to it, and remove it too. We must do this before calling RAUW or we will 4670 // not be able to find it. 4671 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4672 DeletedAllocas.insert(AI); 4673 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI)) 4674 OldDII->eraseFromParent(); 4675 } 4676 4677 I->replaceAllUsesWith(UndefValue::get(I->getType())); 4678 4679 for (Use &Operand : I->operands()) 4680 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 4681 // Zero out the operand and see if it becomes trivially dead. 4682 Operand = nullptr; 4683 if (isInstructionTriviallyDead(U)) 4684 DeadInsts.push_back(U); 4685 } 4686 4687 ++NumDeleted; 4688 I->eraseFromParent(); 4689 Changed = true; 4690 } 4691 return Changed; 4692 } 4693 4694 /// Promote the allocas, using the best available technique. 4695 /// 4696 /// This attempts to promote whatever allocas have been identified as viable in 4697 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 4698 /// This function returns whether any promotion occurred. 4699 bool SROAPass::promoteAllocas(Function &F) { 4700 if (PromotableAllocas.empty()) 4701 return false; 4702 4703 NumPromoted += PromotableAllocas.size(); 4704 4705 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 4706 PromoteMemToReg(PromotableAllocas, *DT, AC); 4707 PromotableAllocas.clear(); 4708 return true; 4709 } 4710 4711 PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT, 4712 AssumptionCache &RunAC) { 4713 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 4714 C = &F.getContext(); 4715 DT = &RunDT; 4716 AC = &RunAC; 4717 4718 BasicBlock &EntryBB = F.getEntryBlock(); 4719 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 4720 I != E; ++I) { 4721 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4722 if (isa<ScalableVectorType>(AI->getAllocatedType())) { 4723 if (isAllocaPromotable(AI)) 4724 PromotableAllocas.push_back(AI); 4725 } else { 4726 Worklist.insert(AI); 4727 } 4728 } 4729 } 4730 4731 bool Changed = false; 4732 // A set of deleted alloca instruction pointers which should be removed from 4733 // the list of promotable allocas. 4734 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 4735 4736 do { 4737 while (!Worklist.empty()) { 4738 Changed |= runOnAlloca(*Worklist.pop_back_val()); 4739 Changed |= deleteDeadInstructions(DeletedAllocas); 4740 4741 // Remove the deleted allocas from various lists so that we don't try to 4742 // continue processing them. 4743 if (!DeletedAllocas.empty()) { 4744 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; 4745 Worklist.remove_if(IsInSet); 4746 PostPromotionWorklist.remove_if(IsInSet); 4747 llvm::erase_if(PromotableAllocas, IsInSet); 4748 DeletedAllocas.clear(); 4749 } 4750 } 4751 4752 Changed |= promoteAllocas(F); 4753 4754 Worklist = PostPromotionWorklist; 4755 PostPromotionWorklist.clear(); 4756 } while (!Worklist.empty()); 4757 4758 if (!Changed) 4759 return PreservedAnalyses::all(); 4760 4761 PreservedAnalyses PA; 4762 PA.preserveSet<CFGAnalyses>(); 4763 return PA; 4764 } 4765 4766 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) { 4767 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F), 4768 AM.getResult<AssumptionAnalysis>(F)); 4769 } 4770 4771 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 4772 /// 4773 /// This is in the llvm namespace purely to allow it to be a friend of the \c 4774 /// SROA pass. 4775 class llvm::sroa::SROALegacyPass : public FunctionPass { 4776 /// The SROA implementation. 4777 SROAPass Impl; 4778 4779 public: 4780 static char ID; 4781 4782 SROALegacyPass() : FunctionPass(ID) { 4783 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 4784 } 4785 4786 bool runOnFunction(Function &F) override { 4787 if (skipFunction(F)) 4788 return false; 4789 4790 auto PA = Impl.runImpl( 4791 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4792 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 4793 return !PA.areAllPreserved(); 4794 } 4795 4796 void getAnalysisUsage(AnalysisUsage &AU) const override { 4797 AU.addRequired<AssumptionCacheTracker>(); 4798 AU.addRequired<DominatorTreeWrapperPass>(); 4799 AU.addPreserved<GlobalsAAWrapperPass>(); 4800 AU.setPreservesCFG(); 4801 } 4802 4803 StringRef getPassName() const override { return "SROA"; } 4804 }; 4805 4806 char SROALegacyPass::ID = 0; 4807 4808 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); } 4809 4810 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 4811 "Scalar Replacement Of Aggregates", false, false) 4812 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4813 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4814 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 4815 false, false) 4816