xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/SROA.cpp (revision 8bcb0991864975618c09697b1aca10683346d9f0)
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
14 ///
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
18 ///
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/AssumptionCache.h"
41 #include "llvm/Analysis/GlobalsModRef.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/PtrUseVisitor.h"
44 #include "llvm/Transforms/Utils/Local.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantFolder.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DIBuilder.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DebugInfoMetadata.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GetElementPtrTypeIterator.h"
57 #include "llvm/IR/GlobalAlias.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstVisitor.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/Metadata.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PassManager.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <chrono>
87 #include <cstddef>
88 #include <cstdint>
89 #include <cstring>
90 #include <iterator>
91 #include <string>
92 #include <tuple>
93 #include <utility>
94 #include <vector>
95 
96 #ifndef NDEBUG
97 // We only use this for a debug check.
98 #include <random>
99 #endif
100 
101 using namespace llvm;
102 using namespace llvm::sroa;
103 
104 #define DEBUG_TYPE "sroa"
105 
106 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
107 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
108 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
109 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
110 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
111 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
112 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
113 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
114 STATISTIC(NumDeleted, "Number of instructions deleted");
115 STATISTIC(NumVectorized, "Number of vectorized aggregates");
116 
117 /// Hidden option to enable randomly shuffling the slices to help uncover
118 /// instability in their order.
119 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
120                                              cl::init(false), cl::Hidden);
121 
122 /// Hidden option to experiment with completely strict handling of inbounds
123 /// GEPs.
124 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
125                                         cl::Hidden);
126 
127 namespace {
128 
129 /// A custom IRBuilder inserter which prefixes all names, but only in
130 /// Assert builds.
131 class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter {
132   std::string Prefix;
133 
134   const Twine getNameWithPrefix(const Twine &Name) const {
135     return Name.isTriviallyEmpty() ? Name : Prefix + Name;
136   }
137 
138 public:
139   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
140 
141 protected:
142   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
143                     BasicBlock::iterator InsertPt) const {
144     IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
145                                            InsertPt);
146   }
147 };
148 
149 /// Provide a type for IRBuilder that drops names in release builds.
150 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
151 
152 /// A used slice of an alloca.
153 ///
154 /// This structure represents a slice of an alloca used by some instruction. It
155 /// stores both the begin and end offsets of this use, a pointer to the use
156 /// itself, and a flag indicating whether we can classify the use as splittable
157 /// or not when forming partitions of the alloca.
158 class Slice {
159   /// The beginning offset of the range.
160   uint64_t BeginOffset = 0;
161 
162   /// The ending offset, not included in the range.
163   uint64_t EndOffset = 0;
164 
165   /// Storage for both the use of this slice and whether it can be
166   /// split.
167   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
168 
169 public:
170   Slice() = default;
171 
172   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
173       : BeginOffset(BeginOffset), EndOffset(EndOffset),
174         UseAndIsSplittable(U, IsSplittable) {}
175 
176   uint64_t beginOffset() const { return BeginOffset; }
177   uint64_t endOffset() const { return EndOffset; }
178 
179   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
180   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
181 
182   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
183 
184   bool isDead() const { return getUse() == nullptr; }
185   void kill() { UseAndIsSplittable.setPointer(nullptr); }
186 
187   /// Support for ordering ranges.
188   ///
189   /// This provides an ordering over ranges such that start offsets are
190   /// always increasing, and within equal start offsets, the end offsets are
191   /// decreasing. Thus the spanning range comes first in a cluster with the
192   /// same start position.
193   bool operator<(const Slice &RHS) const {
194     if (beginOffset() < RHS.beginOffset())
195       return true;
196     if (beginOffset() > RHS.beginOffset())
197       return false;
198     if (isSplittable() != RHS.isSplittable())
199       return !isSplittable();
200     if (endOffset() > RHS.endOffset())
201       return true;
202     return false;
203   }
204 
205   /// Support comparison with a single offset to allow binary searches.
206   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
207                                               uint64_t RHSOffset) {
208     return LHS.beginOffset() < RHSOffset;
209   }
210   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
211                                               const Slice &RHS) {
212     return LHSOffset < RHS.beginOffset();
213   }
214 
215   bool operator==(const Slice &RHS) const {
216     return isSplittable() == RHS.isSplittable() &&
217            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
218   }
219   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
220 };
221 
222 } // end anonymous namespace
223 
224 /// Representation of the alloca slices.
225 ///
226 /// This class represents the slices of an alloca which are formed by its
227 /// various uses. If a pointer escapes, we can't fully build a representation
228 /// for the slices used and we reflect that in this structure. The uses are
229 /// stored, sorted by increasing beginning offset and with unsplittable slices
230 /// starting at a particular offset before splittable slices.
231 class llvm::sroa::AllocaSlices {
232 public:
233   /// Construct the slices of a particular alloca.
234   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
235 
236   /// Test whether a pointer to the allocation escapes our analysis.
237   ///
238   /// If this is true, the slices are never fully built and should be
239   /// ignored.
240   bool isEscaped() const { return PointerEscapingInstr; }
241 
242   /// Support for iterating over the slices.
243   /// @{
244   using iterator = SmallVectorImpl<Slice>::iterator;
245   using range = iterator_range<iterator>;
246 
247   iterator begin() { return Slices.begin(); }
248   iterator end() { return Slices.end(); }
249 
250   using const_iterator = SmallVectorImpl<Slice>::const_iterator;
251   using const_range = iterator_range<const_iterator>;
252 
253   const_iterator begin() const { return Slices.begin(); }
254   const_iterator end() const { return Slices.end(); }
255   /// @}
256 
257   /// Erase a range of slices.
258   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
259 
260   /// Insert new slices for this alloca.
261   ///
262   /// This moves the slices into the alloca's slices collection, and re-sorts
263   /// everything so that the usual ordering properties of the alloca's slices
264   /// hold.
265   void insert(ArrayRef<Slice> NewSlices) {
266     int OldSize = Slices.size();
267     Slices.append(NewSlices.begin(), NewSlices.end());
268     auto SliceI = Slices.begin() + OldSize;
269     llvm::sort(SliceI, Slices.end());
270     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
271   }
272 
273   // Forward declare the iterator and range accessor for walking the
274   // partitions.
275   class partition_iterator;
276   iterator_range<partition_iterator> partitions();
277 
278   /// Access the dead users for this alloca.
279   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
280 
281   /// Access the dead operands referring to this alloca.
282   ///
283   /// These are operands which have cannot actually be used to refer to the
284   /// alloca as they are outside its range and the user doesn't correct for
285   /// that. These mostly consist of PHI node inputs and the like which we just
286   /// need to replace with undef.
287   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
288 
289 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
290   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
291   void printSlice(raw_ostream &OS, const_iterator I,
292                   StringRef Indent = "  ") const;
293   void printUse(raw_ostream &OS, const_iterator I,
294                 StringRef Indent = "  ") const;
295   void print(raw_ostream &OS) const;
296   void dump(const_iterator I) const;
297   void dump() const;
298 #endif
299 
300 private:
301   template <typename DerivedT, typename RetT = void> class BuilderBase;
302   class SliceBuilder;
303 
304   friend class AllocaSlices::SliceBuilder;
305 
306 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
307   /// Handle to alloca instruction to simplify method interfaces.
308   AllocaInst &AI;
309 #endif
310 
311   /// The instruction responsible for this alloca not having a known set
312   /// of slices.
313   ///
314   /// When an instruction (potentially) escapes the pointer to the alloca, we
315   /// store a pointer to that here and abort trying to form slices of the
316   /// alloca. This will be null if the alloca slices are analyzed successfully.
317   Instruction *PointerEscapingInstr;
318 
319   /// The slices of the alloca.
320   ///
321   /// We store a vector of the slices formed by uses of the alloca here. This
322   /// vector is sorted by increasing begin offset, and then the unsplittable
323   /// slices before the splittable ones. See the Slice inner class for more
324   /// details.
325   SmallVector<Slice, 8> Slices;
326 
327   /// Instructions which will become dead if we rewrite the alloca.
328   ///
329   /// Note that these are not separated by slice. This is because we expect an
330   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
331   /// all these instructions can simply be removed and replaced with undef as
332   /// they come from outside of the allocated space.
333   SmallVector<Instruction *, 8> DeadUsers;
334 
335   /// Operands which will become dead if we rewrite the alloca.
336   ///
337   /// These are operands that in their particular use can be replaced with
338   /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
339   /// to PHI nodes and the like. They aren't entirely dead (there might be
340   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
341   /// want to swap this particular input for undef to simplify the use lists of
342   /// the alloca.
343   SmallVector<Use *, 8> DeadOperands;
344 };
345 
346 /// A partition of the slices.
347 ///
348 /// An ephemeral representation for a range of slices which can be viewed as
349 /// a partition of the alloca. This range represents a span of the alloca's
350 /// memory which cannot be split, and provides access to all of the slices
351 /// overlapping some part of the partition.
352 ///
353 /// Objects of this type are produced by traversing the alloca's slices, but
354 /// are only ephemeral and not persistent.
355 class llvm::sroa::Partition {
356 private:
357   friend class AllocaSlices;
358   friend class AllocaSlices::partition_iterator;
359 
360   using iterator = AllocaSlices::iterator;
361 
362   /// The beginning and ending offsets of the alloca for this
363   /// partition.
364   uint64_t BeginOffset, EndOffset;
365 
366   /// The start and end iterators of this partition.
367   iterator SI, SJ;
368 
369   /// A collection of split slice tails overlapping the partition.
370   SmallVector<Slice *, 4> SplitTails;
371 
372   /// Raw constructor builds an empty partition starting and ending at
373   /// the given iterator.
374   Partition(iterator SI) : SI(SI), SJ(SI) {}
375 
376 public:
377   /// The start offset of this partition.
378   ///
379   /// All of the contained slices start at or after this offset.
380   uint64_t beginOffset() const { return BeginOffset; }
381 
382   /// The end offset of this partition.
383   ///
384   /// All of the contained slices end at or before this offset.
385   uint64_t endOffset() const { return EndOffset; }
386 
387   /// The size of the partition.
388   ///
389   /// Note that this can never be zero.
390   uint64_t size() const {
391     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
392     return EndOffset - BeginOffset;
393   }
394 
395   /// Test whether this partition contains no slices, and merely spans
396   /// a region occupied by split slices.
397   bool empty() const { return SI == SJ; }
398 
399   /// \name Iterate slices that start within the partition.
400   /// These may be splittable or unsplittable. They have a begin offset >= the
401   /// partition begin offset.
402   /// @{
403   // FIXME: We should probably define a "concat_iterator" helper and use that
404   // to stitch together pointee_iterators over the split tails and the
405   // contiguous iterators of the partition. That would give a much nicer
406   // interface here. We could then additionally expose filtered iterators for
407   // split, unsplit, and unsplittable splices based on the usage patterns.
408   iterator begin() const { return SI; }
409   iterator end() const { return SJ; }
410   /// @}
411 
412   /// Get the sequence of split slice tails.
413   ///
414   /// These tails are of slices which start before this partition but are
415   /// split and overlap into the partition. We accumulate these while forming
416   /// partitions.
417   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
418 };
419 
420 /// An iterator over partitions of the alloca's slices.
421 ///
422 /// This iterator implements the core algorithm for partitioning the alloca's
423 /// slices. It is a forward iterator as we don't support backtracking for
424 /// efficiency reasons, and re-use a single storage area to maintain the
425 /// current set of split slices.
426 ///
427 /// It is templated on the slice iterator type to use so that it can operate
428 /// with either const or non-const slice iterators.
429 class AllocaSlices::partition_iterator
430     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
431                                   Partition> {
432   friend class AllocaSlices;
433 
434   /// Most of the state for walking the partitions is held in a class
435   /// with a nice interface for examining them.
436   Partition P;
437 
438   /// We need to keep the end of the slices to know when to stop.
439   AllocaSlices::iterator SE;
440 
441   /// We also need to keep track of the maximum split end offset seen.
442   /// FIXME: Do we really?
443   uint64_t MaxSplitSliceEndOffset = 0;
444 
445   /// Sets the partition to be empty at given iterator, and sets the
446   /// end iterator.
447   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
448       : P(SI), SE(SE) {
449     // If not already at the end, advance our state to form the initial
450     // partition.
451     if (SI != SE)
452       advance();
453   }
454 
455   /// Advance the iterator to the next partition.
456   ///
457   /// Requires that the iterator not be at the end of the slices.
458   void advance() {
459     assert((P.SI != SE || !P.SplitTails.empty()) &&
460            "Cannot advance past the end of the slices!");
461 
462     // Clear out any split uses which have ended.
463     if (!P.SplitTails.empty()) {
464       if (P.EndOffset >= MaxSplitSliceEndOffset) {
465         // If we've finished all splits, this is easy.
466         P.SplitTails.clear();
467         MaxSplitSliceEndOffset = 0;
468       } else {
469         // Remove the uses which have ended in the prior partition. This
470         // cannot change the max split slice end because we just checked that
471         // the prior partition ended prior to that max.
472         P.SplitTails.erase(llvm::remove_if(P.SplitTails,
473                                            [&](Slice *S) {
474                                              return S->endOffset() <=
475                                                     P.EndOffset;
476                                            }),
477                            P.SplitTails.end());
478         assert(llvm::any_of(P.SplitTails,
479                             [&](Slice *S) {
480                               return S->endOffset() == MaxSplitSliceEndOffset;
481                             }) &&
482                "Could not find the current max split slice offset!");
483         assert(llvm::all_of(P.SplitTails,
484                             [&](Slice *S) {
485                               return S->endOffset() <= MaxSplitSliceEndOffset;
486                             }) &&
487                "Max split slice end offset is not actually the max!");
488       }
489     }
490 
491     // If P.SI is already at the end, then we've cleared the split tail and
492     // now have an end iterator.
493     if (P.SI == SE) {
494       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
495       return;
496     }
497 
498     // If we had a non-empty partition previously, set up the state for
499     // subsequent partitions.
500     if (P.SI != P.SJ) {
501       // Accumulate all the splittable slices which started in the old
502       // partition into the split list.
503       for (Slice &S : P)
504         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
505           P.SplitTails.push_back(&S);
506           MaxSplitSliceEndOffset =
507               std::max(S.endOffset(), MaxSplitSliceEndOffset);
508         }
509 
510       // Start from the end of the previous partition.
511       P.SI = P.SJ;
512 
513       // If P.SI is now at the end, we at most have a tail of split slices.
514       if (P.SI == SE) {
515         P.BeginOffset = P.EndOffset;
516         P.EndOffset = MaxSplitSliceEndOffset;
517         return;
518       }
519 
520       // If the we have split slices and the next slice is after a gap and is
521       // not splittable immediately form an empty partition for the split
522       // slices up until the next slice begins.
523       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
524           !P.SI->isSplittable()) {
525         P.BeginOffset = P.EndOffset;
526         P.EndOffset = P.SI->beginOffset();
527         return;
528       }
529     }
530 
531     // OK, we need to consume new slices. Set the end offset based on the
532     // current slice, and step SJ past it. The beginning offset of the
533     // partition is the beginning offset of the next slice unless we have
534     // pre-existing split slices that are continuing, in which case we begin
535     // at the prior end offset.
536     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
537     P.EndOffset = P.SI->endOffset();
538     ++P.SJ;
539 
540     // There are two strategies to form a partition based on whether the
541     // partition starts with an unsplittable slice or a splittable slice.
542     if (!P.SI->isSplittable()) {
543       // When we're forming an unsplittable region, it must always start at
544       // the first slice and will extend through its end.
545       assert(P.BeginOffset == P.SI->beginOffset());
546 
547       // Form a partition including all of the overlapping slices with this
548       // unsplittable slice.
549       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
550         if (!P.SJ->isSplittable())
551           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
552         ++P.SJ;
553       }
554 
555       // We have a partition across a set of overlapping unsplittable
556       // partitions.
557       return;
558     }
559 
560     // If we're starting with a splittable slice, then we need to form
561     // a synthetic partition spanning it and any other overlapping splittable
562     // splices.
563     assert(P.SI->isSplittable() && "Forming a splittable partition!");
564 
565     // Collect all of the overlapping splittable slices.
566     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
567            P.SJ->isSplittable()) {
568       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
569       ++P.SJ;
570     }
571 
572     // Back upiP.EndOffset if we ended the span early when encountering an
573     // unsplittable slice. This synthesizes the early end offset of
574     // a partition spanning only splittable slices.
575     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
576       assert(!P.SJ->isSplittable());
577       P.EndOffset = P.SJ->beginOffset();
578     }
579   }
580 
581 public:
582   bool operator==(const partition_iterator &RHS) const {
583     assert(SE == RHS.SE &&
584            "End iterators don't match between compared partition iterators!");
585 
586     // The observed positions of partitions is marked by the P.SI iterator and
587     // the emptiness of the split slices. The latter is only relevant when
588     // P.SI == SE, as the end iterator will additionally have an empty split
589     // slices list, but the prior may have the same P.SI and a tail of split
590     // slices.
591     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
592       assert(P.SJ == RHS.P.SJ &&
593              "Same set of slices formed two different sized partitions!");
594       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
595              "Same slice position with differently sized non-empty split "
596              "slice tails!");
597       return true;
598     }
599     return false;
600   }
601 
602   partition_iterator &operator++() {
603     advance();
604     return *this;
605   }
606 
607   Partition &operator*() { return P; }
608 };
609 
610 /// A forward range over the partitions of the alloca's slices.
611 ///
612 /// This accesses an iterator range over the partitions of the alloca's
613 /// slices. It computes these partitions on the fly based on the overlapping
614 /// offsets of the slices and the ability to split them. It will visit "empty"
615 /// partitions to cover regions of the alloca only accessed via split
616 /// slices.
617 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
618   return make_range(partition_iterator(begin(), end()),
619                     partition_iterator(end(), end()));
620 }
621 
622 static Value *foldSelectInst(SelectInst &SI) {
623   // If the condition being selected on is a constant or the same value is
624   // being selected between, fold the select. Yes this does (rarely) happen
625   // early on.
626   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
627     return SI.getOperand(1 + CI->isZero());
628   if (SI.getOperand(1) == SI.getOperand(2))
629     return SI.getOperand(1);
630 
631   return nullptr;
632 }
633 
634 /// A helper that folds a PHI node or a select.
635 static Value *foldPHINodeOrSelectInst(Instruction &I) {
636   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
637     // If PN merges together the same value, return that value.
638     return PN->hasConstantValue();
639   }
640   return foldSelectInst(cast<SelectInst>(I));
641 }
642 
643 /// Builder for the alloca slices.
644 ///
645 /// This class builds a set of alloca slices by recursively visiting the uses
646 /// of an alloca and making a slice for each load and store at each offset.
647 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
648   friend class PtrUseVisitor<SliceBuilder>;
649   friend class InstVisitor<SliceBuilder>;
650 
651   using Base = PtrUseVisitor<SliceBuilder>;
652 
653   const uint64_t AllocSize;
654   AllocaSlices &AS;
655 
656   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
657   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
658 
659   /// Set to de-duplicate dead instructions found in the use walk.
660   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
661 
662 public:
663   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
664       : PtrUseVisitor<SliceBuilder>(DL),
665         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
666 
667 private:
668   void markAsDead(Instruction &I) {
669     if (VisitedDeadInsts.insert(&I).second)
670       AS.DeadUsers.push_back(&I);
671   }
672 
673   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
674                  bool IsSplittable = false) {
675     // Completely skip uses which have a zero size or start either before or
676     // past the end of the allocation.
677     if (Size == 0 || Offset.uge(AllocSize)) {
678       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
679                         << Offset
680                         << " which has zero size or starts outside of the "
681                         << AllocSize << " byte alloca:\n"
682                         << "    alloca: " << AS.AI << "\n"
683                         << "       use: " << I << "\n");
684       return markAsDead(I);
685     }
686 
687     uint64_t BeginOffset = Offset.getZExtValue();
688     uint64_t EndOffset = BeginOffset + Size;
689 
690     // Clamp the end offset to the end of the allocation. Note that this is
691     // formulated to handle even the case where "BeginOffset + Size" overflows.
692     // This may appear superficially to be something we could ignore entirely,
693     // but that is not so! There may be widened loads or PHI-node uses where
694     // some instructions are dead but not others. We can't completely ignore
695     // them, and so have to record at least the information here.
696     assert(AllocSize >= BeginOffset); // Established above.
697     if (Size > AllocSize - BeginOffset) {
698       LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
699                         << Offset << " to remain within the " << AllocSize
700                         << " byte alloca:\n"
701                         << "    alloca: " << AS.AI << "\n"
702                         << "       use: " << I << "\n");
703       EndOffset = AllocSize;
704     }
705 
706     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
707   }
708 
709   void visitBitCastInst(BitCastInst &BC) {
710     if (BC.use_empty())
711       return markAsDead(BC);
712 
713     return Base::visitBitCastInst(BC);
714   }
715 
716   void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
717     if (ASC.use_empty())
718       return markAsDead(ASC);
719 
720     return Base::visitAddrSpaceCastInst(ASC);
721   }
722 
723   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
724     if (GEPI.use_empty())
725       return markAsDead(GEPI);
726 
727     if (SROAStrictInbounds && GEPI.isInBounds()) {
728       // FIXME: This is a manually un-factored variant of the basic code inside
729       // of GEPs with checking of the inbounds invariant specified in the
730       // langref in a very strict sense. If we ever want to enable
731       // SROAStrictInbounds, this code should be factored cleanly into
732       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
733       // by writing out the code here where we have the underlying allocation
734       // size readily available.
735       APInt GEPOffset = Offset;
736       const DataLayout &DL = GEPI.getModule()->getDataLayout();
737       for (gep_type_iterator GTI = gep_type_begin(GEPI),
738                              GTE = gep_type_end(GEPI);
739            GTI != GTE; ++GTI) {
740         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
741         if (!OpC)
742           break;
743 
744         // Handle a struct index, which adds its field offset to the pointer.
745         if (StructType *STy = GTI.getStructTypeOrNull()) {
746           unsigned ElementIdx = OpC->getZExtValue();
747           const StructLayout *SL = DL.getStructLayout(STy);
748           GEPOffset +=
749               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
750         } else {
751           // For array or vector indices, scale the index by the size of the
752           // type.
753           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
754           GEPOffset += Index * APInt(Offset.getBitWidth(),
755                                      DL.getTypeAllocSize(GTI.getIndexedType()));
756         }
757 
758         // If this index has computed an intermediate pointer which is not
759         // inbounds, then the result of the GEP is a poison value and we can
760         // delete it and all uses.
761         if (GEPOffset.ugt(AllocSize))
762           return markAsDead(GEPI);
763       }
764     }
765 
766     return Base::visitGetElementPtrInst(GEPI);
767   }
768 
769   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
770                          uint64_t Size, bool IsVolatile) {
771     // We allow splitting of non-volatile loads and stores where the type is an
772     // integer type. These may be used to implement 'memcpy' or other "transfer
773     // of bits" patterns.
774     bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
775 
776     insertUse(I, Offset, Size, IsSplittable);
777   }
778 
779   void visitLoadInst(LoadInst &LI) {
780     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
781            "All simple FCA loads should have been pre-split");
782 
783     if (!IsOffsetKnown)
784       return PI.setAborted(&LI);
785 
786     if (LI.isVolatile() &&
787         LI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
788       return PI.setAborted(&LI);
789 
790     uint64_t Size = DL.getTypeStoreSize(LI.getType());
791     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
792   }
793 
794   void visitStoreInst(StoreInst &SI) {
795     Value *ValOp = SI.getValueOperand();
796     if (ValOp == *U)
797       return PI.setEscapedAndAborted(&SI);
798     if (!IsOffsetKnown)
799       return PI.setAborted(&SI);
800 
801     if (SI.isVolatile() &&
802         SI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
803       return PI.setAborted(&SI);
804 
805     uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
806 
807     // If this memory access can be shown to *statically* extend outside the
808     // bounds of the allocation, it's behavior is undefined, so simply
809     // ignore it. Note that this is more strict than the generic clamping
810     // behavior of insertUse. We also try to handle cases which might run the
811     // risk of overflow.
812     // FIXME: We should instead consider the pointer to have escaped if this
813     // function is being instrumented for addressing bugs or race conditions.
814     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
815       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
816                         << Offset << " which extends past the end of the "
817                         << AllocSize << " byte alloca:\n"
818                         << "    alloca: " << AS.AI << "\n"
819                         << "       use: " << SI << "\n");
820       return markAsDead(SI);
821     }
822 
823     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
824            "All simple FCA stores should have been pre-split");
825     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
826   }
827 
828   void visitMemSetInst(MemSetInst &II) {
829     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
830     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
831     if ((Length && Length->getValue() == 0) ||
832         (IsOffsetKnown && Offset.uge(AllocSize)))
833       // Zero-length mem transfer intrinsics can be ignored entirely.
834       return markAsDead(II);
835 
836     if (!IsOffsetKnown)
837       return PI.setAborted(&II);
838 
839     // Don't replace this with a store with a different address space.  TODO:
840     // Use a store with the casted new alloca?
841     if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace())
842       return PI.setAborted(&II);
843 
844     insertUse(II, Offset, Length ? Length->getLimitedValue()
845                                  : AllocSize - Offset.getLimitedValue(),
846               (bool)Length);
847   }
848 
849   void visitMemTransferInst(MemTransferInst &II) {
850     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
851     if (Length && Length->getValue() == 0)
852       // Zero-length mem transfer intrinsics can be ignored entirely.
853       return markAsDead(II);
854 
855     // Because we can visit these intrinsics twice, also check to see if the
856     // first time marked this instruction as dead. If so, skip it.
857     if (VisitedDeadInsts.count(&II))
858       return;
859 
860     if (!IsOffsetKnown)
861       return PI.setAborted(&II);
862 
863     // Don't replace this with a load/store with a different address space.
864     // TODO: Use a store with the casted new alloca?
865     if (II.isVolatile() &&
866         (II.getDestAddressSpace() != DL.getAllocaAddrSpace() ||
867          II.getSourceAddressSpace() != DL.getAllocaAddrSpace()))
868       return PI.setAborted(&II);
869 
870     // This side of the transfer is completely out-of-bounds, and so we can
871     // nuke the entire transfer. However, we also need to nuke the other side
872     // if already added to our partitions.
873     // FIXME: Yet another place we really should bypass this when
874     // instrumenting for ASan.
875     if (Offset.uge(AllocSize)) {
876       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
877           MemTransferSliceMap.find(&II);
878       if (MTPI != MemTransferSliceMap.end())
879         AS.Slices[MTPI->second].kill();
880       return markAsDead(II);
881     }
882 
883     uint64_t RawOffset = Offset.getLimitedValue();
884     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
885 
886     // Check for the special case where the same exact value is used for both
887     // source and dest.
888     if (*U == II.getRawDest() && *U == II.getRawSource()) {
889       // For non-volatile transfers this is a no-op.
890       if (!II.isVolatile())
891         return markAsDead(II);
892 
893       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
894     }
895 
896     // If we have seen both source and destination for a mem transfer, then
897     // they both point to the same alloca.
898     bool Inserted;
899     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
900     std::tie(MTPI, Inserted) =
901         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
902     unsigned PrevIdx = MTPI->second;
903     if (!Inserted) {
904       Slice &PrevP = AS.Slices[PrevIdx];
905 
906       // Check if the begin offsets match and this is a non-volatile transfer.
907       // In that case, we can completely elide the transfer.
908       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
909         PrevP.kill();
910         return markAsDead(II);
911       }
912 
913       // Otherwise we have an offset transfer within the same alloca. We can't
914       // split those.
915       PrevP.makeUnsplittable();
916     }
917 
918     // Insert the use now that we've fixed up the splittable nature.
919     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
920 
921     // Check that we ended up with a valid index in the map.
922     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
923            "Map index doesn't point back to a slice with this user.");
924   }
925 
926   // Disable SRoA for any intrinsics except for lifetime invariants.
927   // FIXME: What about debug intrinsics? This matches old behavior, but
928   // doesn't make sense.
929   void visitIntrinsicInst(IntrinsicInst &II) {
930     if (!IsOffsetKnown)
931       return PI.setAborted(&II);
932 
933     if (II.isLifetimeStartOrEnd()) {
934       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
935       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
936                                Length->getLimitedValue());
937       insertUse(II, Offset, Size, true);
938       return;
939     }
940 
941     Base::visitIntrinsicInst(II);
942   }
943 
944   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
945     // We consider any PHI or select that results in a direct load or store of
946     // the same offset to be a viable use for slicing purposes. These uses
947     // are considered unsplittable and the size is the maximum loaded or stored
948     // size.
949     SmallPtrSet<Instruction *, 4> Visited;
950     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
951     Visited.insert(Root);
952     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
953     const DataLayout &DL = Root->getModule()->getDataLayout();
954     // If there are no loads or stores, the access is dead. We mark that as
955     // a size zero access.
956     Size = 0;
957     do {
958       Instruction *I, *UsedI;
959       std::tie(UsedI, I) = Uses.pop_back_val();
960 
961       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
962         Size = std::max(Size,
963                         DL.getTypeStoreSize(LI->getType()).getFixedSize());
964         continue;
965       }
966       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
967         Value *Op = SI->getOperand(0);
968         if (Op == UsedI)
969           return SI;
970         Size = std::max(Size,
971                         DL.getTypeStoreSize(Op->getType()).getFixedSize());
972         continue;
973       }
974 
975       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
976         if (!GEP->hasAllZeroIndices())
977           return GEP;
978       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
979                  !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
980         return I;
981       }
982 
983       for (User *U : I->users())
984         if (Visited.insert(cast<Instruction>(U)).second)
985           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
986     } while (!Uses.empty());
987 
988     return nullptr;
989   }
990 
991   void visitPHINodeOrSelectInst(Instruction &I) {
992     assert(isa<PHINode>(I) || isa<SelectInst>(I));
993     if (I.use_empty())
994       return markAsDead(I);
995 
996     // TODO: We could use SimplifyInstruction here to fold PHINodes and
997     // SelectInsts. However, doing so requires to change the current
998     // dead-operand-tracking mechanism. For instance, suppose neither loading
999     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1000     // trap either.  However, if we simply replace %U with undef using the
1001     // current dead-operand-tracking mechanism, "load (select undef, undef,
1002     // %other)" may trap because the select may return the first operand
1003     // "undef".
1004     if (Value *Result = foldPHINodeOrSelectInst(I)) {
1005       if (Result == *U)
1006         // If the result of the constant fold will be the pointer, recurse
1007         // through the PHI/select as if we had RAUW'ed it.
1008         enqueueUsers(I);
1009       else
1010         // Otherwise the operand to the PHI/select is dead, and we can replace
1011         // it with undef.
1012         AS.DeadOperands.push_back(U);
1013 
1014       return;
1015     }
1016 
1017     if (!IsOffsetKnown)
1018       return PI.setAborted(&I);
1019 
1020     // See if we already have computed info on this node.
1021     uint64_t &Size = PHIOrSelectSizes[&I];
1022     if (!Size) {
1023       // This is a new PHI/Select, check for an unsafe use of it.
1024       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1025         return PI.setAborted(UnsafeI);
1026     }
1027 
1028     // For PHI and select operands outside the alloca, we can't nuke the entire
1029     // phi or select -- the other side might still be relevant, so we special
1030     // case them here and use a separate structure to track the operands
1031     // themselves which should be replaced with undef.
1032     // FIXME: This should instead be escaped in the event we're instrumenting
1033     // for address sanitization.
1034     if (Offset.uge(AllocSize)) {
1035       AS.DeadOperands.push_back(U);
1036       return;
1037     }
1038 
1039     insertUse(I, Offset, Size);
1040   }
1041 
1042   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1043 
1044   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1045 
1046   /// Disable SROA entirely if there are unhandled users of the alloca.
1047   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1048 };
1049 
1050 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1051     :
1052 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1053       AI(AI),
1054 #endif
1055       PointerEscapingInstr(nullptr) {
1056   SliceBuilder PB(DL, AI, *this);
1057   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1058   if (PtrI.isEscaped() || PtrI.isAborted()) {
1059     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1060     // possibly by just storing the PtrInfo in the AllocaSlices.
1061     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1062                                                   : PtrI.getAbortingInst();
1063     assert(PointerEscapingInstr && "Did not track a bad instruction");
1064     return;
1065   }
1066 
1067   Slices.erase(
1068       llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }),
1069       Slices.end());
1070 
1071 #ifndef NDEBUG
1072   if (SROARandomShuffleSlices) {
1073     std::mt19937 MT(static_cast<unsigned>(
1074         std::chrono::system_clock::now().time_since_epoch().count()));
1075     std::shuffle(Slices.begin(), Slices.end(), MT);
1076   }
1077 #endif
1078 
1079   // Sort the uses. This arranges for the offsets to be in ascending order,
1080   // and the sizes to be in descending order.
1081   llvm::sort(Slices);
1082 }
1083 
1084 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1085 
1086 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1087                          StringRef Indent) const {
1088   printSlice(OS, I, Indent);
1089   OS << "\n";
1090   printUse(OS, I, Indent);
1091 }
1092 
1093 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1094                               StringRef Indent) const {
1095   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1096      << " slice #" << (I - begin())
1097      << (I->isSplittable() ? " (splittable)" : "");
1098 }
1099 
1100 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1101                             StringRef Indent) const {
1102   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1103 }
1104 
1105 void AllocaSlices::print(raw_ostream &OS) const {
1106   if (PointerEscapingInstr) {
1107     OS << "Can't analyze slices for alloca: " << AI << "\n"
1108        << "  A pointer to this alloca escaped by:\n"
1109        << "  " << *PointerEscapingInstr << "\n";
1110     return;
1111   }
1112 
1113   OS << "Slices of alloca: " << AI << "\n";
1114   for (const_iterator I = begin(), E = end(); I != E; ++I)
1115     print(OS, I);
1116 }
1117 
1118 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1119   print(dbgs(), I);
1120 }
1121 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1122 
1123 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1124 
1125 /// Walk the range of a partitioning looking for a common type to cover this
1126 /// sequence of slices.
1127 static Type *findCommonType(AllocaSlices::const_iterator B,
1128                             AllocaSlices::const_iterator E,
1129                             uint64_t EndOffset) {
1130   Type *Ty = nullptr;
1131   bool TyIsCommon = true;
1132   IntegerType *ITy = nullptr;
1133 
1134   // Note that we need to look at *every* alloca slice's Use to ensure we
1135   // always get consistent results regardless of the order of slices.
1136   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1137     Use *U = I->getUse();
1138     if (isa<IntrinsicInst>(*U->getUser()))
1139       continue;
1140     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1141       continue;
1142 
1143     Type *UserTy = nullptr;
1144     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1145       UserTy = LI->getType();
1146     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1147       UserTy = SI->getValueOperand()->getType();
1148     }
1149 
1150     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1151       // If the type is larger than the partition, skip it. We only encounter
1152       // this for split integer operations where we want to use the type of the
1153       // entity causing the split. Also skip if the type is not a byte width
1154       // multiple.
1155       if (UserITy->getBitWidth() % 8 != 0 ||
1156           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1157         continue;
1158 
1159       // Track the largest bitwidth integer type used in this way in case there
1160       // is no common type.
1161       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1162         ITy = UserITy;
1163     }
1164 
1165     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1166     // depend on types skipped above.
1167     if (!UserTy || (Ty && Ty != UserTy))
1168       TyIsCommon = false; // Give up on anything but an iN type.
1169     else
1170       Ty = UserTy;
1171   }
1172 
1173   return TyIsCommon ? Ty : ITy;
1174 }
1175 
1176 /// PHI instructions that use an alloca and are subsequently loaded can be
1177 /// rewritten to load both input pointers in the pred blocks and then PHI the
1178 /// results, allowing the load of the alloca to be promoted.
1179 /// From this:
1180 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1181 ///   %V = load i32* %P2
1182 /// to:
1183 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1184 ///   ...
1185 ///   %V2 = load i32* %Other
1186 ///   ...
1187 ///   %V = phi [i32 %V1, i32 %V2]
1188 ///
1189 /// We can do this to a select if its only uses are loads and if the operands
1190 /// to the select can be loaded unconditionally.
1191 ///
1192 /// FIXME: This should be hoisted into a generic utility, likely in
1193 /// Transforms/Util/Local.h
1194 static bool isSafePHIToSpeculate(PHINode &PN) {
1195   const DataLayout &DL = PN.getModule()->getDataLayout();
1196 
1197   // For now, we can only do this promotion if the load is in the same block
1198   // as the PHI, and if there are no stores between the phi and load.
1199   // TODO: Allow recursive phi users.
1200   // TODO: Allow stores.
1201   BasicBlock *BB = PN.getParent();
1202   MaybeAlign MaxAlign;
1203   uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1204   APInt MaxSize(APWidth, 0);
1205   bool HaveLoad = false;
1206   for (User *U : PN.users()) {
1207     LoadInst *LI = dyn_cast<LoadInst>(U);
1208     if (!LI || !LI->isSimple())
1209       return false;
1210 
1211     // For now we only allow loads in the same block as the PHI.  This is
1212     // a common case that happens when instcombine merges two loads through
1213     // a PHI.
1214     if (LI->getParent() != BB)
1215       return false;
1216 
1217     // Ensure that there are no instructions between the PHI and the load that
1218     // could store.
1219     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1220       if (BBI->mayWriteToMemory())
1221         return false;
1222 
1223     uint64_t Size = DL.getTypeStoreSize(LI->getType());
1224     MaxAlign = std::max(MaxAlign, MaybeAlign(LI->getAlignment()));
1225     MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize;
1226     HaveLoad = true;
1227   }
1228 
1229   if (!HaveLoad)
1230     return false;
1231 
1232   // We can only transform this if it is safe to push the loads into the
1233   // predecessor blocks. The only thing to watch out for is that we can't put
1234   // a possibly trapping load in the predecessor if it is a critical edge.
1235   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1236     Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1237     Value *InVal = PN.getIncomingValue(Idx);
1238 
1239     // If the value is produced by the terminator of the predecessor (an
1240     // invoke) or it has side-effects, there is no valid place to put a load
1241     // in the predecessor.
1242     if (TI == InVal || TI->mayHaveSideEffects())
1243       return false;
1244 
1245     // If the predecessor has a single successor, then the edge isn't
1246     // critical.
1247     if (TI->getNumSuccessors() == 1)
1248       continue;
1249 
1250     // If this pointer is always safe to load, or if we can prove that there
1251     // is already a load in the block, then we can move the load to the pred
1252     // block.
1253     if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI))
1254       continue;
1255 
1256     return false;
1257   }
1258 
1259   return true;
1260 }
1261 
1262 static void speculatePHINodeLoads(PHINode &PN) {
1263   LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1264 
1265   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1266   Type *LoadTy = SomeLoad->getType();
1267   IRBuilderTy PHIBuilder(&PN);
1268   PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1269                                         PN.getName() + ".sroa.speculated");
1270 
1271   // Get the AA tags and alignment to use from one of the loads. It does not
1272   // matter which one we get and if any differ.
1273   AAMDNodes AATags;
1274   SomeLoad->getAAMetadata(AATags);
1275   const MaybeAlign Align = MaybeAlign(SomeLoad->getAlignment());
1276 
1277   // Rewrite all loads of the PN to use the new PHI.
1278   while (!PN.use_empty()) {
1279     LoadInst *LI = cast<LoadInst>(PN.user_back());
1280     LI->replaceAllUsesWith(NewPN);
1281     LI->eraseFromParent();
1282   }
1283 
1284   // Inject loads into all of the pred blocks.
1285   DenseMap<BasicBlock*, Value*> InjectedLoads;
1286   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1287     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1288     Value *InVal = PN.getIncomingValue(Idx);
1289 
1290     // A PHI node is allowed to have multiple (duplicated) entries for the same
1291     // basic block, as long as the value is the same. So if we already injected
1292     // a load in the predecessor, then we should reuse the same load for all
1293     // duplicated entries.
1294     if (Value* V = InjectedLoads.lookup(Pred)) {
1295       NewPN->addIncoming(V, Pred);
1296       continue;
1297     }
1298 
1299     Instruction *TI = Pred->getTerminator();
1300     IRBuilderTy PredBuilder(TI);
1301 
1302     LoadInst *Load = PredBuilder.CreateLoad(
1303         LoadTy, InVal,
1304         (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1305     ++NumLoadsSpeculated;
1306     Load->setAlignment(Align);
1307     if (AATags)
1308       Load->setAAMetadata(AATags);
1309     NewPN->addIncoming(Load, Pred);
1310     InjectedLoads[Pred] = Load;
1311   }
1312 
1313   LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1314   PN.eraseFromParent();
1315 }
1316 
1317 /// Select instructions that use an alloca and are subsequently loaded can be
1318 /// rewritten to load both input pointers and then select between the result,
1319 /// allowing the load of the alloca to be promoted.
1320 /// From this:
1321 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1322 ///   %V = load i32* %P2
1323 /// to:
1324 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1325 ///   %V2 = load i32* %Other
1326 ///   %V = select i1 %cond, i32 %V1, i32 %V2
1327 ///
1328 /// We can do this to a select if its only uses are loads and if the operand
1329 /// to the select can be loaded unconditionally.
1330 static bool isSafeSelectToSpeculate(SelectInst &SI) {
1331   Value *TValue = SI.getTrueValue();
1332   Value *FValue = SI.getFalseValue();
1333   const DataLayout &DL = SI.getModule()->getDataLayout();
1334 
1335   for (User *U : SI.users()) {
1336     LoadInst *LI = dyn_cast<LoadInst>(U);
1337     if (!LI || !LI->isSimple())
1338       return false;
1339 
1340     // Both operands to the select need to be dereferenceable, either
1341     // absolutely (e.g. allocas) or at this point because we can see other
1342     // accesses to it.
1343     if (!isSafeToLoadUnconditionally(TValue, LI->getType(),
1344                                      MaybeAlign(LI->getAlignment()), DL, LI))
1345       return false;
1346     if (!isSafeToLoadUnconditionally(FValue, LI->getType(),
1347                                      MaybeAlign(LI->getAlignment()), DL, LI))
1348       return false;
1349   }
1350 
1351   return true;
1352 }
1353 
1354 static void speculateSelectInstLoads(SelectInst &SI) {
1355   LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
1356 
1357   IRBuilderTy IRB(&SI);
1358   Value *TV = SI.getTrueValue();
1359   Value *FV = SI.getFalseValue();
1360   // Replace the loads of the select with a select of two loads.
1361   while (!SI.use_empty()) {
1362     LoadInst *LI = cast<LoadInst>(SI.user_back());
1363     assert(LI->isSimple() && "We only speculate simple loads");
1364 
1365     IRB.SetInsertPoint(LI);
1366     LoadInst *TL = IRB.CreateLoad(LI->getType(), TV,
1367                                   LI->getName() + ".sroa.speculate.load.true");
1368     LoadInst *FL = IRB.CreateLoad(LI->getType(), FV,
1369                                   LI->getName() + ".sroa.speculate.load.false");
1370     NumLoadsSpeculated += 2;
1371 
1372     // Transfer alignment and AA info if present.
1373     TL->setAlignment(MaybeAlign(LI->getAlignment()));
1374     FL->setAlignment(MaybeAlign(LI->getAlignment()));
1375 
1376     AAMDNodes Tags;
1377     LI->getAAMetadata(Tags);
1378     if (Tags) {
1379       TL->setAAMetadata(Tags);
1380       FL->setAAMetadata(Tags);
1381     }
1382 
1383     Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1384                                 LI->getName() + ".sroa.speculated");
1385 
1386     LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1387     LI->replaceAllUsesWith(V);
1388     LI->eraseFromParent();
1389   }
1390   SI.eraseFromParent();
1391 }
1392 
1393 /// Build a GEP out of a base pointer and indices.
1394 ///
1395 /// This will return the BasePtr if that is valid, or build a new GEP
1396 /// instruction using the IRBuilder if GEP-ing is needed.
1397 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1398                        SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1399   if (Indices.empty())
1400     return BasePtr;
1401 
1402   // A single zero index is a no-op, so check for this and avoid building a GEP
1403   // in that case.
1404   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1405     return BasePtr;
1406 
1407   return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(),
1408                                BasePtr, Indices, NamePrefix + "sroa_idx");
1409 }
1410 
1411 /// Get a natural GEP off of the BasePtr walking through Ty toward
1412 /// TargetTy without changing the offset of the pointer.
1413 ///
1414 /// This routine assumes we've already established a properly offset GEP with
1415 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1416 /// zero-indices down through type layers until we find one the same as
1417 /// TargetTy. If we can't find one with the same type, we at least try to use
1418 /// one with the same size. If none of that works, we just produce the GEP as
1419 /// indicated by Indices to have the correct offset.
1420 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1421                                     Value *BasePtr, Type *Ty, Type *TargetTy,
1422                                     SmallVectorImpl<Value *> &Indices,
1423                                     Twine NamePrefix) {
1424   if (Ty == TargetTy)
1425     return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1426 
1427   // Offset size to use for the indices.
1428   unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1429 
1430   // See if we can descend into a struct and locate a field with the correct
1431   // type.
1432   unsigned NumLayers = 0;
1433   Type *ElementTy = Ty;
1434   do {
1435     if (ElementTy->isPointerTy())
1436       break;
1437 
1438     if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1439       ElementTy = ArrayTy->getElementType();
1440       Indices.push_back(IRB.getIntN(OffsetSize, 0));
1441     } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1442       ElementTy = VectorTy->getElementType();
1443       Indices.push_back(IRB.getInt32(0));
1444     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1445       if (STy->element_begin() == STy->element_end())
1446         break; // Nothing left to descend into.
1447       ElementTy = *STy->element_begin();
1448       Indices.push_back(IRB.getInt32(0));
1449     } else {
1450       break;
1451     }
1452     ++NumLayers;
1453   } while (ElementTy != TargetTy);
1454   if (ElementTy != TargetTy)
1455     Indices.erase(Indices.end() - NumLayers, Indices.end());
1456 
1457   return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1458 }
1459 
1460 /// Recursively compute indices for a natural GEP.
1461 ///
1462 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1463 /// element types adding appropriate indices for the GEP.
1464 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1465                                        Value *Ptr, Type *Ty, APInt &Offset,
1466                                        Type *TargetTy,
1467                                        SmallVectorImpl<Value *> &Indices,
1468                                        Twine NamePrefix) {
1469   if (Offset == 0)
1470     return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1471                                  NamePrefix);
1472 
1473   // We can't recurse through pointer types.
1474   if (Ty->isPointerTy())
1475     return nullptr;
1476 
1477   // We try to analyze GEPs over vectors here, but note that these GEPs are
1478   // extremely poorly defined currently. The long-term goal is to remove GEPing
1479   // over a vector from the IR completely.
1480   if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1481     unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1482     if (ElementSizeInBits % 8 != 0) {
1483       // GEPs over non-multiple of 8 size vector elements are invalid.
1484       return nullptr;
1485     }
1486     APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1487     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1488     if (NumSkippedElements.ugt(VecTy->getNumElements()))
1489       return nullptr;
1490     Offset -= NumSkippedElements * ElementSize;
1491     Indices.push_back(IRB.getInt(NumSkippedElements));
1492     return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1493                                     Offset, TargetTy, Indices, NamePrefix);
1494   }
1495 
1496   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1497     Type *ElementTy = ArrTy->getElementType();
1498     APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1499     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1500     if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1501       return nullptr;
1502 
1503     Offset -= NumSkippedElements * ElementSize;
1504     Indices.push_back(IRB.getInt(NumSkippedElements));
1505     return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1506                                     Indices, NamePrefix);
1507   }
1508 
1509   StructType *STy = dyn_cast<StructType>(Ty);
1510   if (!STy)
1511     return nullptr;
1512 
1513   const StructLayout *SL = DL.getStructLayout(STy);
1514   uint64_t StructOffset = Offset.getZExtValue();
1515   if (StructOffset >= SL->getSizeInBytes())
1516     return nullptr;
1517   unsigned Index = SL->getElementContainingOffset(StructOffset);
1518   Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1519   Type *ElementTy = STy->getElementType(Index);
1520   if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1521     return nullptr; // The offset points into alignment padding.
1522 
1523   Indices.push_back(IRB.getInt32(Index));
1524   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1525                                   Indices, NamePrefix);
1526 }
1527 
1528 /// Get a natural GEP from a base pointer to a particular offset and
1529 /// resulting in a particular type.
1530 ///
1531 /// The goal is to produce a "natural" looking GEP that works with the existing
1532 /// composite types to arrive at the appropriate offset and element type for
1533 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1534 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1535 /// Indices, and setting Ty to the result subtype.
1536 ///
1537 /// If no natural GEP can be constructed, this function returns null.
1538 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1539                                       Value *Ptr, APInt Offset, Type *TargetTy,
1540                                       SmallVectorImpl<Value *> &Indices,
1541                                       Twine NamePrefix) {
1542   PointerType *Ty = cast<PointerType>(Ptr->getType());
1543 
1544   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1545   // an i8.
1546   if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1547     return nullptr;
1548 
1549   Type *ElementTy = Ty->getElementType();
1550   if (!ElementTy->isSized())
1551     return nullptr; // We can't GEP through an unsized element.
1552   APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1553   if (ElementSize == 0)
1554     return nullptr; // Zero-length arrays can't help us build a natural GEP.
1555   APInt NumSkippedElements = Offset.sdiv(ElementSize);
1556 
1557   Offset -= NumSkippedElements * ElementSize;
1558   Indices.push_back(IRB.getInt(NumSkippedElements));
1559   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1560                                   Indices, NamePrefix);
1561 }
1562 
1563 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1564 /// resulting pointer has PointerTy.
1565 ///
1566 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1567 /// and produces the pointer type desired. Where it cannot, it will try to use
1568 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1569 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1570 /// bitcast to the type.
1571 ///
1572 /// The strategy for finding the more natural GEPs is to peel off layers of the
1573 /// pointer, walking back through bit casts and GEPs, searching for a base
1574 /// pointer from which we can compute a natural GEP with the desired
1575 /// properties. The algorithm tries to fold as many constant indices into
1576 /// a single GEP as possible, thus making each GEP more independent of the
1577 /// surrounding code.
1578 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1579                              APInt Offset, Type *PointerTy, Twine NamePrefix) {
1580   // Even though we don't look through PHI nodes, we could be called on an
1581   // instruction in an unreachable block, which may be on a cycle.
1582   SmallPtrSet<Value *, 4> Visited;
1583   Visited.insert(Ptr);
1584   SmallVector<Value *, 4> Indices;
1585 
1586   // We may end up computing an offset pointer that has the wrong type. If we
1587   // never are able to compute one directly that has the correct type, we'll
1588   // fall back to it, so keep it and the base it was computed from around here.
1589   Value *OffsetPtr = nullptr;
1590   Value *OffsetBasePtr;
1591 
1592   // Remember any i8 pointer we come across to re-use if we need to do a raw
1593   // byte offset.
1594   Value *Int8Ptr = nullptr;
1595   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1596 
1597   PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1598   Type *TargetTy = TargetPtrTy->getElementType();
1599 
1600   // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1601   // address space from the expected `PointerTy` (the pointer to be used).
1602   // Adjust the pointer type based the original storage pointer.
1603   auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1604   PointerTy = TargetTy->getPointerTo(AS);
1605 
1606   do {
1607     // First fold any existing GEPs into the offset.
1608     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1609       APInt GEPOffset(Offset.getBitWidth(), 0);
1610       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1611         break;
1612       Offset += GEPOffset;
1613       Ptr = GEP->getPointerOperand();
1614       if (!Visited.insert(Ptr).second)
1615         break;
1616     }
1617 
1618     // See if we can perform a natural GEP here.
1619     Indices.clear();
1620     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1621                                            Indices, NamePrefix)) {
1622       // If we have a new natural pointer at the offset, clear out any old
1623       // offset pointer we computed. Unless it is the base pointer or
1624       // a non-instruction, we built a GEP we don't need. Zap it.
1625       if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1626         if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1627           assert(I->use_empty() && "Built a GEP with uses some how!");
1628           I->eraseFromParent();
1629         }
1630       OffsetPtr = P;
1631       OffsetBasePtr = Ptr;
1632       // If we also found a pointer of the right type, we're done.
1633       if (P->getType() == PointerTy)
1634         break;
1635     }
1636 
1637     // Stash this pointer if we've found an i8*.
1638     if (Ptr->getType()->isIntegerTy(8)) {
1639       Int8Ptr = Ptr;
1640       Int8PtrOffset = Offset;
1641     }
1642 
1643     // Peel off a layer of the pointer and update the offset appropriately.
1644     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1645       Ptr = cast<Operator>(Ptr)->getOperand(0);
1646     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1647       if (GA->isInterposable())
1648         break;
1649       Ptr = GA->getAliasee();
1650     } else {
1651       break;
1652     }
1653     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1654   } while (Visited.insert(Ptr).second);
1655 
1656   if (!OffsetPtr) {
1657     if (!Int8Ptr) {
1658       Int8Ptr = IRB.CreateBitCast(
1659           Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1660           NamePrefix + "sroa_raw_cast");
1661       Int8PtrOffset = Offset;
1662     }
1663 
1664     OffsetPtr = Int8PtrOffset == 0
1665                     ? Int8Ptr
1666                     : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1667                                             IRB.getInt(Int8PtrOffset),
1668                                             NamePrefix + "sroa_raw_idx");
1669   }
1670   Ptr = OffsetPtr;
1671 
1672   // On the off chance we were targeting i8*, guard the bitcast here.
1673   if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1674     Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1675                                                   TargetPtrTy,
1676                                                   NamePrefix + "sroa_cast");
1677   }
1678 
1679   return Ptr;
1680 }
1681 
1682 /// Compute the adjusted alignment for a load or store from an offset.
1683 static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset,
1684                                      const DataLayout &DL) {
1685   unsigned Alignment;
1686   Type *Ty;
1687   if (auto *LI = dyn_cast<LoadInst>(I)) {
1688     Alignment = LI->getAlignment();
1689     Ty = LI->getType();
1690   } else if (auto *SI = dyn_cast<StoreInst>(I)) {
1691     Alignment = SI->getAlignment();
1692     Ty = SI->getValueOperand()->getType();
1693   } else {
1694     llvm_unreachable("Only loads and stores are allowed!");
1695   }
1696 
1697   if (!Alignment)
1698     Alignment = DL.getABITypeAlignment(Ty);
1699 
1700   return MinAlign(Alignment, Offset);
1701 }
1702 
1703 /// Test whether we can convert a value from the old to the new type.
1704 ///
1705 /// This predicate should be used to guard calls to convertValue in order to
1706 /// ensure that we only try to convert viable values. The strategy is that we
1707 /// will peel off single element struct and array wrappings to get to an
1708 /// underlying value, and convert that value.
1709 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1710   if (OldTy == NewTy)
1711     return true;
1712 
1713   // For integer types, we can't handle any bit-width differences. This would
1714   // break both vector conversions with extension and introduce endianness
1715   // issues when in conjunction with loads and stores.
1716   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1717     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1718                cast<IntegerType>(NewTy)->getBitWidth() &&
1719            "We can't have the same bitwidth for different int types");
1720     return false;
1721   }
1722 
1723   if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1724     return false;
1725   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1726     return false;
1727 
1728   // We can convert pointers to integers and vice-versa. Same for vectors
1729   // of pointers and integers.
1730   OldTy = OldTy->getScalarType();
1731   NewTy = NewTy->getScalarType();
1732   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1733     if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1734       return cast<PointerType>(NewTy)->getPointerAddressSpace() ==
1735         cast<PointerType>(OldTy)->getPointerAddressSpace();
1736     }
1737 
1738     // We can convert integers to integral pointers, but not to non-integral
1739     // pointers.
1740     if (OldTy->isIntegerTy())
1741       return !DL.isNonIntegralPointerType(NewTy);
1742 
1743     // We can convert integral pointers to integers, but non-integral pointers
1744     // need to remain pointers.
1745     if (!DL.isNonIntegralPointerType(OldTy))
1746       return NewTy->isIntegerTy();
1747 
1748     return false;
1749   }
1750 
1751   return true;
1752 }
1753 
1754 /// Generic routine to convert an SSA value to a value of a different
1755 /// type.
1756 ///
1757 /// This will try various different casting techniques, such as bitcasts,
1758 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1759 /// two types for viability with this routine.
1760 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1761                            Type *NewTy) {
1762   Type *OldTy = V->getType();
1763   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1764 
1765   if (OldTy == NewTy)
1766     return V;
1767 
1768   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1769          "Integer types must be the exact same to convert.");
1770 
1771   // See if we need inttoptr for this type pair. A cast involving both scalars
1772   // and vectors requires and additional bitcast.
1773   if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1774     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1775     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1776       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1777                                 NewTy);
1778 
1779     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1780     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1781       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1782                                 NewTy);
1783 
1784     return IRB.CreateIntToPtr(V, NewTy);
1785   }
1786 
1787   // See if we need ptrtoint for this type pair. A cast involving both scalars
1788   // and vectors requires and additional bitcast.
1789   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1790     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1791     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1792       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1793                                NewTy);
1794 
1795     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1796     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1797       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1798                                NewTy);
1799 
1800     return IRB.CreatePtrToInt(V, NewTy);
1801   }
1802 
1803   return IRB.CreateBitCast(V, NewTy);
1804 }
1805 
1806 /// Test whether the given slice use can be promoted to a vector.
1807 ///
1808 /// This function is called to test each entry in a partition which is slated
1809 /// for a single slice.
1810 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1811                                             VectorType *Ty,
1812                                             uint64_t ElementSize,
1813                                             const DataLayout &DL) {
1814   // First validate the slice offsets.
1815   uint64_t BeginOffset =
1816       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1817   uint64_t BeginIndex = BeginOffset / ElementSize;
1818   if (BeginIndex * ElementSize != BeginOffset ||
1819       BeginIndex >= Ty->getNumElements())
1820     return false;
1821   uint64_t EndOffset =
1822       std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1823   uint64_t EndIndex = EndOffset / ElementSize;
1824   if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1825     return false;
1826 
1827   assert(EndIndex > BeginIndex && "Empty vector!");
1828   uint64_t NumElements = EndIndex - BeginIndex;
1829   Type *SliceTy = (NumElements == 1)
1830                       ? Ty->getElementType()
1831                       : VectorType::get(Ty->getElementType(), NumElements);
1832 
1833   Type *SplitIntTy =
1834       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1835 
1836   Use *U = S.getUse();
1837 
1838   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1839     if (MI->isVolatile())
1840       return false;
1841     if (!S.isSplittable())
1842       return false; // Skip any unsplittable intrinsics.
1843   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1844     if (!II->isLifetimeStartOrEnd())
1845       return false;
1846   } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1847     // Disable vector promotion when there are loads or stores of an FCA.
1848     return false;
1849   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1850     if (LI->isVolatile())
1851       return false;
1852     Type *LTy = LI->getType();
1853     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1854       assert(LTy->isIntegerTy());
1855       LTy = SplitIntTy;
1856     }
1857     if (!canConvertValue(DL, SliceTy, LTy))
1858       return false;
1859   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1860     if (SI->isVolatile())
1861       return false;
1862     Type *STy = SI->getValueOperand()->getType();
1863     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1864       assert(STy->isIntegerTy());
1865       STy = SplitIntTy;
1866     }
1867     if (!canConvertValue(DL, STy, SliceTy))
1868       return false;
1869   } else {
1870     return false;
1871   }
1872 
1873   return true;
1874 }
1875 
1876 /// Test whether the given alloca partitioning and range of slices can be
1877 /// promoted to a vector.
1878 ///
1879 /// This is a quick test to check whether we can rewrite a particular alloca
1880 /// partition (and its newly formed alloca) into a vector alloca with only
1881 /// whole-vector loads and stores such that it could be promoted to a vector
1882 /// SSA value. We only can ensure this for a limited set of operations, and we
1883 /// don't want to do the rewrites unless we are confident that the result will
1884 /// be promotable, so we have an early test here.
1885 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1886   // Collect the candidate types for vector-based promotion. Also track whether
1887   // we have different element types.
1888   SmallVector<VectorType *, 4> CandidateTys;
1889   Type *CommonEltTy = nullptr;
1890   bool HaveCommonEltTy = true;
1891   auto CheckCandidateType = [&](Type *Ty) {
1892     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1893       // Return if bitcast to vectors is different for total size in bits.
1894       if (!CandidateTys.empty()) {
1895         VectorType *V = CandidateTys[0];
1896         if (DL.getTypeSizeInBits(VTy) != DL.getTypeSizeInBits(V)) {
1897           CandidateTys.clear();
1898           return;
1899         }
1900       }
1901       CandidateTys.push_back(VTy);
1902       if (!CommonEltTy)
1903         CommonEltTy = VTy->getElementType();
1904       else if (CommonEltTy != VTy->getElementType())
1905         HaveCommonEltTy = false;
1906     }
1907   };
1908   // Consider any loads or stores that are the exact size of the slice.
1909   for (const Slice &S : P)
1910     if (S.beginOffset() == P.beginOffset() &&
1911         S.endOffset() == P.endOffset()) {
1912       if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1913         CheckCandidateType(LI->getType());
1914       else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1915         CheckCandidateType(SI->getValueOperand()->getType());
1916     }
1917 
1918   // If we didn't find a vector type, nothing to do here.
1919   if (CandidateTys.empty())
1920     return nullptr;
1921 
1922   // Remove non-integer vector types if we had multiple common element types.
1923   // FIXME: It'd be nice to replace them with integer vector types, but we can't
1924   // do that until all the backends are known to produce good code for all
1925   // integer vector types.
1926   if (!HaveCommonEltTy) {
1927     CandidateTys.erase(
1928         llvm::remove_if(CandidateTys,
1929                         [](VectorType *VTy) {
1930                           return !VTy->getElementType()->isIntegerTy();
1931                         }),
1932         CandidateTys.end());
1933 
1934     // If there were no integer vector types, give up.
1935     if (CandidateTys.empty())
1936       return nullptr;
1937 
1938     // Rank the remaining candidate vector types. This is easy because we know
1939     // they're all integer vectors. We sort by ascending number of elements.
1940     auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1941       (void)DL;
1942       assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
1943              "Cannot have vector types of different sizes!");
1944       assert(RHSTy->getElementType()->isIntegerTy() &&
1945              "All non-integer types eliminated!");
1946       assert(LHSTy->getElementType()->isIntegerTy() &&
1947              "All non-integer types eliminated!");
1948       return RHSTy->getNumElements() < LHSTy->getNumElements();
1949     };
1950     llvm::sort(CandidateTys, RankVectorTypes);
1951     CandidateTys.erase(
1952         std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1953         CandidateTys.end());
1954   } else {
1955 // The only way to have the same element type in every vector type is to
1956 // have the same vector type. Check that and remove all but one.
1957 #ifndef NDEBUG
1958     for (VectorType *VTy : CandidateTys) {
1959       assert(VTy->getElementType() == CommonEltTy &&
1960              "Unaccounted for element type!");
1961       assert(VTy == CandidateTys[0] &&
1962              "Different vector types with the same element type!");
1963     }
1964 #endif
1965     CandidateTys.resize(1);
1966   }
1967 
1968   // Try each vector type, and return the one which works.
1969   auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1970     uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
1971 
1972     // While the definition of LLVM vectors is bitpacked, we don't support sizes
1973     // that aren't byte sized.
1974     if (ElementSize % 8)
1975       return false;
1976     assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
1977            "vector size not a multiple of element size?");
1978     ElementSize /= 8;
1979 
1980     for (const Slice &S : P)
1981       if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1982         return false;
1983 
1984     for (const Slice *S : P.splitSliceTails())
1985       if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1986         return false;
1987 
1988     return true;
1989   };
1990   for (VectorType *VTy : CandidateTys)
1991     if (CheckVectorTypeForPromotion(VTy))
1992       return VTy;
1993 
1994   return nullptr;
1995 }
1996 
1997 /// Test whether a slice of an alloca is valid for integer widening.
1998 ///
1999 /// This implements the necessary checking for the \c isIntegerWideningViable
2000 /// test below on a single slice of the alloca.
2001 static bool isIntegerWideningViableForSlice(const Slice &S,
2002                                             uint64_t AllocBeginOffset,
2003                                             Type *AllocaTy,
2004                                             const DataLayout &DL,
2005                                             bool &WholeAllocaOp) {
2006   uint64_t Size = DL.getTypeStoreSize(AllocaTy);
2007 
2008   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2009   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2010 
2011   // We can't reasonably handle cases where the load or store extends past
2012   // the end of the alloca's type and into its padding.
2013   if (RelEnd > Size)
2014     return false;
2015 
2016   Use *U = S.getUse();
2017 
2018   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2019     if (LI->isVolatile())
2020       return false;
2021     // We can't handle loads that extend past the allocated memory.
2022     if (DL.getTypeStoreSize(LI->getType()) > Size)
2023       return false;
2024     // So far, AllocaSliceRewriter does not support widening split slice tails
2025     // in rewriteIntegerLoad.
2026     if (S.beginOffset() < AllocBeginOffset)
2027       return false;
2028     // Note that we don't count vector loads or stores as whole-alloca
2029     // operations which enable integer widening because we would prefer to use
2030     // vector widening instead.
2031     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2032       WholeAllocaOp = true;
2033     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2034       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2035         return false;
2036     } else if (RelBegin != 0 || RelEnd != Size ||
2037                !canConvertValue(DL, AllocaTy, LI->getType())) {
2038       // Non-integer loads need to be convertible from the alloca type so that
2039       // they are promotable.
2040       return false;
2041     }
2042   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2043     Type *ValueTy = SI->getValueOperand()->getType();
2044     if (SI->isVolatile())
2045       return false;
2046     // We can't handle stores that extend past the allocated memory.
2047     if (DL.getTypeStoreSize(ValueTy) > Size)
2048       return false;
2049     // So far, AllocaSliceRewriter does not support widening split slice tails
2050     // in rewriteIntegerStore.
2051     if (S.beginOffset() < AllocBeginOffset)
2052       return false;
2053     // Note that we don't count vector loads or stores as whole-alloca
2054     // operations which enable integer widening because we would prefer to use
2055     // vector widening instead.
2056     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2057       WholeAllocaOp = true;
2058     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2059       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2060         return false;
2061     } else if (RelBegin != 0 || RelEnd != Size ||
2062                !canConvertValue(DL, ValueTy, AllocaTy)) {
2063       // Non-integer stores need to be convertible to the alloca type so that
2064       // they are promotable.
2065       return false;
2066     }
2067   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2068     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2069       return false;
2070     if (!S.isSplittable())
2071       return false; // Skip any unsplittable intrinsics.
2072   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2073     if (!II->isLifetimeStartOrEnd())
2074       return false;
2075   } else {
2076     return false;
2077   }
2078 
2079   return true;
2080 }
2081 
2082 /// Test whether the given alloca partition's integer operations can be
2083 /// widened to promotable ones.
2084 ///
2085 /// This is a quick test to check whether we can rewrite the integer loads and
2086 /// stores to a particular alloca into wider loads and stores and be able to
2087 /// promote the resulting alloca.
2088 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2089                                     const DataLayout &DL) {
2090   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
2091   // Don't create integer types larger than the maximum bitwidth.
2092   if (SizeInBits > IntegerType::MAX_INT_BITS)
2093     return false;
2094 
2095   // Don't try to handle allocas with bit-padding.
2096   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
2097     return false;
2098 
2099   // We need to ensure that an integer type with the appropriate bitwidth can
2100   // be converted to the alloca type, whatever that is. We don't want to force
2101   // the alloca itself to have an integer type if there is a more suitable one.
2102   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2103   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2104       !canConvertValue(DL, IntTy, AllocaTy))
2105     return false;
2106 
2107   // While examining uses, we ensure that the alloca has a covering load or
2108   // store. We don't want to widen the integer operations only to fail to
2109   // promote due to some other unsplittable entry (which we may make splittable
2110   // later). However, if there are only splittable uses, go ahead and assume
2111   // that we cover the alloca.
2112   // FIXME: We shouldn't consider split slices that happen to start in the
2113   // partition here...
2114   bool WholeAllocaOp =
2115       P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
2116 
2117   for (const Slice &S : P)
2118     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2119                                          WholeAllocaOp))
2120       return false;
2121 
2122   for (const Slice *S : P.splitSliceTails())
2123     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2124                                          WholeAllocaOp))
2125       return false;
2126 
2127   return WholeAllocaOp;
2128 }
2129 
2130 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2131                              IntegerType *Ty, uint64_t Offset,
2132                              const Twine &Name) {
2133   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2134   IntegerType *IntTy = cast<IntegerType>(V->getType());
2135   assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2136          "Element extends past full value");
2137   uint64_t ShAmt = 8 * Offset;
2138   if (DL.isBigEndian())
2139     ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2140   if (ShAmt) {
2141     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2142     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2143   }
2144   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2145          "Cannot extract to a larger integer!");
2146   if (Ty != IntTy) {
2147     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2148     LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2149   }
2150   return V;
2151 }
2152 
2153 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2154                             Value *V, uint64_t Offset, const Twine &Name) {
2155   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2156   IntegerType *Ty = cast<IntegerType>(V->getType());
2157   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2158          "Cannot insert a larger integer!");
2159   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2160   if (Ty != IntTy) {
2161     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2162     LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2163   }
2164   assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2165          "Element store outside of alloca store");
2166   uint64_t ShAmt = 8 * Offset;
2167   if (DL.isBigEndian())
2168     ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2169   if (ShAmt) {
2170     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2171     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2172   }
2173 
2174   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2175     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2176     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2177     LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2178     V = IRB.CreateOr(Old, V, Name + ".insert");
2179     LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2180   }
2181   return V;
2182 }
2183 
2184 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2185                             unsigned EndIndex, const Twine &Name) {
2186   VectorType *VecTy = cast<VectorType>(V->getType());
2187   unsigned NumElements = EndIndex - BeginIndex;
2188   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2189 
2190   if (NumElements == VecTy->getNumElements())
2191     return V;
2192 
2193   if (NumElements == 1) {
2194     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2195                                  Name + ".extract");
2196     LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2197     return V;
2198   }
2199 
2200   SmallVector<Constant *, 8> Mask;
2201   Mask.reserve(NumElements);
2202   for (unsigned i = BeginIndex; i != EndIndex; ++i)
2203     Mask.push_back(IRB.getInt32(i));
2204   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2205                               ConstantVector::get(Mask), Name + ".extract");
2206   LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2207   return V;
2208 }
2209 
2210 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2211                            unsigned BeginIndex, const Twine &Name) {
2212   VectorType *VecTy = cast<VectorType>(Old->getType());
2213   assert(VecTy && "Can only insert a vector into a vector");
2214 
2215   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2216   if (!Ty) {
2217     // Single element to insert.
2218     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2219                                 Name + ".insert");
2220     LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2221     return V;
2222   }
2223 
2224   assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2225          "Too many elements!");
2226   if (Ty->getNumElements() == VecTy->getNumElements()) {
2227     assert(V->getType() == VecTy && "Vector type mismatch");
2228     return V;
2229   }
2230   unsigned EndIndex = BeginIndex + Ty->getNumElements();
2231 
2232   // When inserting a smaller vector into the larger to store, we first
2233   // use a shuffle vector to widen it with undef elements, and then
2234   // a second shuffle vector to select between the loaded vector and the
2235   // incoming vector.
2236   SmallVector<Constant *, 8> Mask;
2237   Mask.reserve(VecTy->getNumElements());
2238   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2239     if (i >= BeginIndex && i < EndIndex)
2240       Mask.push_back(IRB.getInt32(i - BeginIndex));
2241     else
2242       Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2243   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2244                               ConstantVector::get(Mask), Name + ".expand");
2245   LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2246 
2247   Mask.clear();
2248   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2249     Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2250 
2251   V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
2252 
2253   LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2254   return V;
2255 }
2256 
2257 /// Visitor to rewrite instructions using p particular slice of an alloca
2258 /// to use a new alloca.
2259 ///
2260 /// Also implements the rewriting to vector-based accesses when the partition
2261 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2262 /// lives here.
2263 class llvm::sroa::AllocaSliceRewriter
2264     : public InstVisitor<AllocaSliceRewriter, bool> {
2265   // Befriend the base class so it can delegate to private visit methods.
2266   friend class InstVisitor<AllocaSliceRewriter, bool>;
2267 
2268   using Base = InstVisitor<AllocaSliceRewriter, bool>;
2269 
2270   const DataLayout &DL;
2271   AllocaSlices &AS;
2272   SROA &Pass;
2273   AllocaInst &OldAI, &NewAI;
2274   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2275   Type *NewAllocaTy;
2276 
2277   // This is a convenience and flag variable that will be null unless the new
2278   // alloca's integer operations should be widened to this integer type due to
2279   // passing isIntegerWideningViable above. If it is non-null, the desired
2280   // integer type will be stored here for easy access during rewriting.
2281   IntegerType *IntTy;
2282 
2283   // If we are rewriting an alloca partition which can be written as pure
2284   // vector operations, we stash extra information here. When VecTy is
2285   // non-null, we have some strict guarantees about the rewritten alloca:
2286   //   - The new alloca is exactly the size of the vector type here.
2287   //   - The accesses all either map to the entire vector or to a single
2288   //     element.
2289   //   - The set of accessing instructions is only one of those handled above
2290   //     in isVectorPromotionViable. Generally these are the same access kinds
2291   //     which are promotable via mem2reg.
2292   VectorType *VecTy;
2293   Type *ElementTy;
2294   uint64_t ElementSize;
2295 
2296   // The original offset of the slice currently being rewritten relative to
2297   // the original alloca.
2298   uint64_t BeginOffset = 0;
2299   uint64_t EndOffset = 0;
2300 
2301   // The new offsets of the slice currently being rewritten relative to the
2302   // original alloca.
2303   uint64_t NewBeginOffset, NewEndOffset;
2304 
2305   uint64_t SliceSize;
2306   bool IsSplittable = false;
2307   bool IsSplit = false;
2308   Use *OldUse = nullptr;
2309   Instruction *OldPtr = nullptr;
2310 
2311   // Track post-rewrite users which are PHI nodes and Selects.
2312   SmallSetVector<PHINode *, 8> &PHIUsers;
2313   SmallSetVector<SelectInst *, 8> &SelectUsers;
2314 
2315   // Utility IR builder, whose name prefix is setup for each visited use, and
2316   // the insertion point is set to point to the user.
2317   IRBuilderTy IRB;
2318 
2319 public:
2320   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2321                       AllocaInst &OldAI, AllocaInst &NewAI,
2322                       uint64_t NewAllocaBeginOffset,
2323                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2324                       VectorType *PromotableVecTy,
2325                       SmallSetVector<PHINode *, 8> &PHIUsers,
2326                       SmallSetVector<SelectInst *, 8> &SelectUsers)
2327       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2328         NewAllocaBeginOffset(NewAllocaBeginOffset),
2329         NewAllocaEndOffset(NewAllocaEndOffset),
2330         NewAllocaTy(NewAI.getAllocatedType()),
2331         IntTy(IsIntegerPromotable
2332                   ? Type::getIntNTy(
2333                         NewAI.getContext(),
2334                         DL.getTypeSizeInBits(NewAI.getAllocatedType()))
2335                   : nullptr),
2336         VecTy(PromotableVecTy),
2337         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2338         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
2339         PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2340         IRB(NewAI.getContext(), ConstantFolder()) {
2341     if (VecTy) {
2342       assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
2343              "Only multiple-of-8 sized vector elements are viable");
2344       ++NumVectorized;
2345     }
2346     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2347   }
2348 
2349   bool visit(AllocaSlices::const_iterator I) {
2350     bool CanSROA = true;
2351     BeginOffset = I->beginOffset();
2352     EndOffset = I->endOffset();
2353     IsSplittable = I->isSplittable();
2354     IsSplit =
2355         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2356     LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2357     LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2358     LLVM_DEBUG(dbgs() << "\n");
2359 
2360     // Compute the intersecting offset range.
2361     assert(BeginOffset < NewAllocaEndOffset);
2362     assert(EndOffset > NewAllocaBeginOffset);
2363     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2364     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2365 
2366     SliceSize = NewEndOffset - NewBeginOffset;
2367 
2368     OldUse = I->getUse();
2369     OldPtr = cast<Instruction>(OldUse->get());
2370 
2371     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2372     IRB.SetInsertPoint(OldUserI);
2373     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2374     IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2375 
2376     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2377     if (VecTy || IntTy)
2378       assert(CanSROA);
2379     return CanSROA;
2380   }
2381 
2382 private:
2383   // Make sure the other visit overloads are visible.
2384   using Base::visit;
2385 
2386   // Every instruction which can end up as a user must have a rewrite rule.
2387   bool visitInstruction(Instruction &I) {
2388     LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2389     llvm_unreachable("No rewrite rule for this instruction!");
2390   }
2391 
2392   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2393     // Note that the offset computation can use BeginOffset or NewBeginOffset
2394     // interchangeably for unsplit slices.
2395     assert(IsSplit || BeginOffset == NewBeginOffset);
2396     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2397 
2398 #ifndef NDEBUG
2399     StringRef OldName = OldPtr->getName();
2400     // Skip through the last '.sroa.' component of the name.
2401     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2402     if (LastSROAPrefix != StringRef::npos) {
2403       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2404       // Look for an SROA slice index.
2405       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2406       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2407         // Strip the index and look for the offset.
2408         OldName = OldName.substr(IndexEnd + 1);
2409         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2410         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2411           // Strip the offset.
2412           OldName = OldName.substr(OffsetEnd + 1);
2413       }
2414     }
2415     // Strip any SROA suffixes as well.
2416     OldName = OldName.substr(0, OldName.find(".sroa_"));
2417 #endif
2418 
2419     return getAdjustedPtr(IRB, DL, &NewAI,
2420                           APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2421                           PointerTy,
2422 #ifndef NDEBUG
2423                           Twine(OldName) + "."
2424 #else
2425                           Twine()
2426 #endif
2427                           );
2428   }
2429 
2430   /// Compute suitable alignment to access this slice of the *new*
2431   /// alloca.
2432   ///
2433   /// You can optionally pass a type to this routine and if that type's ABI
2434   /// alignment is itself suitable, this will return zero.
2435   unsigned getSliceAlign(Type *Ty = nullptr) {
2436     unsigned NewAIAlign = NewAI.getAlignment();
2437     if (!NewAIAlign)
2438       NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
2439     unsigned Align =
2440         MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
2441     return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
2442   }
2443 
2444   unsigned getIndex(uint64_t Offset) {
2445     assert(VecTy && "Can only call getIndex when rewriting a vector");
2446     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2447     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2448     uint32_t Index = RelOffset / ElementSize;
2449     assert(Index * ElementSize == RelOffset);
2450     return Index;
2451   }
2452 
2453   void deleteIfTriviallyDead(Value *V) {
2454     Instruction *I = cast<Instruction>(V);
2455     if (isInstructionTriviallyDead(I))
2456       Pass.DeadInsts.insert(I);
2457   }
2458 
2459   Value *rewriteVectorizedLoadInst() {
2460     unsigned BeginIndex = getIndex(NewBeginOffset);
2461     unsigned EndIndex = getIndex(NewEndOffset);
2462     assert(EndIndex > BeginIndex && "Empty vector!");
2463 
2464     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2465                                      NewAI.getAlignment(), "load");
2466     return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2467   }
2468 
2469   Value *rewriteIntegerLoad(LoadInst &LI) {
2470     assert(IntTy && "We cannot insert an integer to the alloca");
2471     assert(!LI.isVolatile());
2472     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2473                                      NewAI.getAlignment(), "load");
2474     V = convertValue(DL, IRB, V, IntTy);
2475     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2476     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2477     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2478       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2479       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2480     }
2481     // It is possible that the extracted type is not the load type. This
2482     // happens if there is a load past the end of the alloca, and as
2483     // a consequence the slice is narrower but still a candidate for integer
2484     // lowering. To handle this case, we just zero extend the extracted
2485     // integer.
2486     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2487            "Can only handle an extract for an overly wide load");
2488     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2489       V = IRB.CreateZExt(V, LI.getType());
2490     return V;
2491   }
2492 
2493   bool visitLoadInst(LoadInst &LI) {
2494     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2495     Value *OldOp = LI.getOperand(0);
2496     assert(OldOp == OldPtr);
2497 
2498     AAMDNodes AATags;
2499     LI.getAAMetadata(AATags);
2500 
2501     unsigned AS = LI.getPointerAddressSpace();
2502 
2503     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2504                              : LI.getType();
2505     const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize;
2506     bool IsPtrAdjusted = false;
2507     Value *V;
2508     if (VecTy) {
2509       V = rewriteVectorizedLoadInst();
2510     } else if (IntTy && LI.getType()->isIntegerTy()) {
2511       V = rewriteIntegerLoad(LI);
2512     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2513                NewEndOffset == NewAllocaEndOffset &&
2514                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2515                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2516                  TargetTy->isIntegerTy()))) {
2517       LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2518                                               NewAI.getAlignment(),
2519                                               LI.isVolatile(), LI.getName());
2520       if (AATags)
2521         NewLI->setAAMetadata(AATags);
2522       if (LI.isVolatile())
2523         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2524 
2525       // Any !nonnull metadata or !range metadata on the old load is also valid
2526       // on the new load. This is even true in some cases even when the loads
2527       // are different types, for example by mapping !nonnull metadata to
2528       // !range metadata by modeling the null pointer constant converted to the
2529       // integer type.
2530       // FIXME: Add support for range metadata here. Currently the utilities
2531       // for this don't propagate range metadata in trivial cases from one
2532       // integer load to another, don't handle non-addrspace-0 null pointers
2533       // correctly, and don't have any support for mapping ranges as the
2534       // integer type becomes winder or narrower.
2535       if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2536         copyNonnullMetadata(LI, N, *NewLI);
2537 
2538       // Try to preserve nonnull metadata
2539       V = NewLI;
2540 
2541       // If this is an integer load past the end of the slice (which means the
2542       // bytes outside the slice are undef or this load is dead) just forcibly
2543       // fix the integer size with correct handling of endianness.
2544       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2545         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2546           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2547             V = IRB.CreateZExt(V, TITy, "load.ext");
2548             if (DL.isBigEndian())
2549               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2550                                 "endian_shift");
2551           }
2552     } else {
2553       Type *LTy = TargetTy->getPointerTo(AS);
2554       LoadInst *NewLI = IRB.CreateAlignedLoad(
2555           TargetTy, getNewAllocaSlicePtr(IRB, LTy), getSliceAlign(TargetTy),
2556           LI.isVolatile(), LI.getName());
2557       if (AATags)
2558         NewLI->setAAMetadata(AATags);
2559       if (LI.isVolatile())
2560         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2561 
2562       V = NewLI;
2563       IsPtrAdjusted = true;
2564     }
2565     V = convertValue(DL, IRB, V, TargetTy);
2566 
2567     if (IsSplit) {
2568       assert(!LI.isVolatile());
2569       assert(LI.getType()->isIntegerTy() &&
2570              "Only integer type loads and stores are split");
2571       assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
2572              "Split load isn't smaller than original load");
2573       assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2574              "Non-byte-multiple bit width");
2575       // Move the insertion point just past the load so that we can refer to it.
2576       IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2577       // Create a placeholder value with the same type as LI to use as the
2578       // basis for the new value. This allows us to replace the uses of LI with
2579       // the computed value, and then replace the placeholder with LI, leaving
2580       // LI only used for this computation.
2581       Value *Placeholder = new LoadInst(
2582           LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)));
2583       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2584                         "insert");
2585       LI.replaceAllUsesWith(V);
2586       Placeholder->replaceAllUsesWith(&LI);
2587       Placeholder->deleteValue();
2588     } else {
2589       LI.replaceAllUsesWith(V);
2590     }
2591 
2592     Pass.DeadInsts.insert(&LI);
2593     deleteIfTriviallyDead(OldOp);
2594     LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2595     return !LI.isVolatile() && !IsPtrAdjusted;
2596   }
2597 
2598   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2599                                   AAMDNodes AATags) {
2600     if (V->getType() != VecTy) {
2601       unsigned BeginIndex = getIndex(NewBeginOffset);
2602       unsigned EndIndex = getIndex(NewEndOffset);
2603       assert(EndIndex > BeginIndex && "Empty vector!");
2604       unsigned NumElements = EndIndex - BeginIndex;
2605       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2606       Type *SliceTy = (NumElements == 1)
2607                           ? ElementTy
2608                           : VectorType::get(ElementTy, NumElements);
2609       if (V->getType() != SliceTy)
2610         V = convertValue(DL, IRB, V, SliceTy);
2611 
2612       // Mix in the existing elements.
2613       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2614                                          NewAI.getAlignment(), "load");
2615       V = insertVector(IRB, Old, V, BeginIndex, "vec");
2616     }
2617     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2618     if (AATags)
2619       Store->setAAMetadata(AATags);
2620     Pass.DeadInsts.insert(&SI);
2621 
2622     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2623     return true;
2624   }
2625 
2626   bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2627     assert(IntTy && "We cannot extract an integer from the alloca");
2628     assert(!SI.isVolatile());
2629     if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2630       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2631                                          NewAI.getAlignment(), "oldload");
2632       Old = convertValue(DL, IRB, Old, IntTy);
2633       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2634       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2635       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2636     }
2637     V = convertValue(DL, IRB, V, NewAllocaTy);
2638     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2639     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2640                              LLVMContext::MD_access_group});
2641     if (AATags)
2642       Store->setAAMetadata(AATags);
2643     Pass.DeadInsts.insert(&SI);
2644     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2645     return true;
2646   }
2647 
2648   bool visitStoreInst(StoreInst &SI) {
2649     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2650     Value *OldOp = SI.getOperand(1);
2651     assert(OldOp == OldPtr);
2652 
2653     AAMDNodes AATags;
2654     SI.getAAMetadata(AATags);
2655 
2656     Value *V = SI.getValueOperand();
2657 
2658     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2659     // alloca that should be re-examined after promoting this alloca.
2660     if (V->getType()->isPointerTy())
2661       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2662         Pass.PostPromotionWorklist.insert(AI);
2663 
2664     if (SliceSize < DL.getTypeStoreSize(V->getType())) {
2665       assert(!SI.isVolatile());
2666       assert(V->getType()->isIntegerTy() &&
2667              "Only integer type loads and stores are split");
2668       assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2669              "Non-byte-multiple bit width");
2670       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2671       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2672                          "extract");
2673     }
2674 
2675     if (VecTy)
2676       return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2677     if (IntTy && V->getType()->isIntegerTy())
2678       return rewriteIntegerStore(V, SI, AATags);
2679 
2680     const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize;
2681     StoreInst *NewSI;
2682     if (NewBeginOffset == NewAllocaBeginOffset &&
2683         NewEndOffset == NewAllocaEndOffset &&
2684         (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2685          (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2686           V->getType()->isIntegerTy()))) {
2687       // If this is an integer store past the end of slice (and thus the bytes
2688       // past that point are irrelevant or this is unreachable), truncate the
2689       // value prior to storing.
2690       if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2691         if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2692           if (VITy->getBitWidth() > AITy->getBitWidth()) {
2693             if (DL.isBigEndian())
2694               V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2695                                  "endian_shift");
2696             V = IRB.CreateTrunc(V, AITy, "load.trunc");
2697           }
2698 
2699       V = convertValue(DL, IRB, V, NewAllocaTy);
2700       NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2701                                      SI.isVolatile());
2702     } else {
2703       unsigned AS = SI.getPointerAddressSpace();
2704       Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2705       NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
2706                                      SI.isVolatile());
2707     }
2708     NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2709                              LLVMContext::MD_access_group});
2710     if (AATags)
2711       NewSI->setAAMetadata(AATags);
2712     if (SI.isVolatile())
2713       NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2714     Pass.DeadInsts.insert(&SI);
2715     deleteIfTriviallyDead(OldOp);
2716 
2717     LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2718     return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2719   }
2720 
2721   /// Compute an integer value from splatting an i8 across the given
2722   /// number of bytes.
2723   ///
2724   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2725   /// call this routine.
2726   /// FIXME: Heed the advice above.
2727   ///
2728   /// \param V The i8 value to splat.
2729   /// \param Size The number of bytes in the output (assuming i8 is one byte)
2730   Value *getIntegerSplat(Value *V, unsigned Size) {
2731     assert(Size > 0 && "Expected a positive number of bytes.");
2732     IntegerType *VTy = cast<IntegerType>(V->getType());
2733     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2734     if (Size == 1)
2735       return V;
2736 
2737     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2738     V = IRB.CreateMul(
2739         IRB.CreateZExt(V, SplatIntTy, "zext"),
2740         ConstantExpr::getUDiv(
2741             Constant::getAllOnesValue(SplatIntTy),
2742             ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2743                                   SplatIntTy)),
2744         "isplat");
2745     return V;
2746   }
2747 
2748   /// Compute a vector splat for a given element value.
2749   Value *getVectorSplat(Value *V, unsigned NumElements) {
2750     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2751     LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
2752     return V;
2753   }
2754 
2755   bool visitMemSetInst(MemSetInst &II) {
2756     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2757     assert(II.getRawDest() == OldPtr);
2758 
2759     AAMDNodes AATags;
2760     II.getAAMetadata(AATags);
2761 
2762     // If the memset has a variable size, it cannot be split, just adjust the
2763     // pointer to the new alloca.
2764     if (!isa<Constant>(II.getLength())) {
2765       assert(!IsSplit);
2766       assert(NewBeginOffset == BeginOffset);
2767       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2768       II.setDestAlignment(getSliceAlign());
2769 
2770       deleteIfTriviallyDead(OldPtr);
2771       return false;
2772     }
2773 
2774     // Record this instruction for deletion.
2775     Pass.DeadInsts.insert(&II);
2776 
2777     Type *AllocaTy = NewAI.getAllocatedType();
2778     Type *ScalarTy = AllocaTy->getScalarType();
2779 
2780     const bool CanContinue = [&]() {
2781       if (VecTy || IntTy)
2782         return true;
2783       if (BeginOffset > NewAllocaBeginOffset ||
2784           EndOffset < NewAllocaEndOffset)
2785         return false;
2786       auto *C = cast<ConstantInt>(II.getLength());
2787       if (C->getBitWidth() > 64)
2788         return false;
2789       const auto Len = C->getZExtValue();
2790       auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
2791       auto *SrcTy = VectorType::get(Int8Ty, Len);
2792       return canConvertValue(DL, SrcTy, AllocaTy) &&
2793         DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy));
2794     }();
2795 
2796     // If this doesn't map cleanly onto the alloca type, and that type isn't
2797     // a single value type, just emit a memset.
2798     if (!CanContinue) {
2799       Type *SizeTy = II.getLength()->getType();
2800       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2801       CallInst *New = IRB.CreateMemSet(
2802           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2803           getSliceAlign(), II.isVolatile());
2804       if (AATags)
2805         New->setAAMetadata(AATags);
2806       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2807       return false;
2808     }
2809 
2810     // If we can represent this as a simple value, we have to build the actual
2811     // value to store, which requires expanding the byte present in memset to
2812     // a sensible representation for the alloca type. This is essentially
2813     // splatting the byte to a sufficiently wide integer, splatting it across
2814     // any desired vector width, and bitcasting to the final type.
2815     Value *V;
2816 
2817     if (VecTy) {
2818       // If this is a memset of a vectorized alloca, insert it.
2819       assert(ElementTy == ScalarTy);
2820 
2821       unsigned BeginIndex = getIndex(NewBeginOffset);
2822       unsigned EndIndex = getIndex(NewEndOffset);
2823       assert(EndIndex > BeginIndex && "Empty vector!");
2824       unsigned NumElements = EndIndex - BeginIndex;
2825       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2826 
2827       Value *Splat =
2828           getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2829       Splat = convertValue(DL, IRB, Splat, ElementTy);
2830       if (NumElements > 1)
2831         Splat = getVectorSplat(Splat, NumElements);
2832 
2833       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2834                                          NewAI.getAlignment(), "oldload");
2835       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2836     } else if (IntTy) {
2837       // If this is a memset on an alloca where we can widen stores, insert the
2838       // set integer.
2839       assert(!II.isVolatile());
2840 
2841       uint64_t Size = NewEndOffset - NewBeginOffset;
2842       V = getIntegerSplat(II.getValue(), Size);
2843 
2844       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2845                     EndOffset != NewAllocaBeginOffset)) {
2846         Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2847                                            NewAI.getAlignment(), "oldload");
2848         Old = convertValue(DL, IRB, Old, IntTy);
2849         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2850         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2851       } else {
2852         assert(V->getType() == IntTy &&
2853                "Wrong type for an alloca wide integer!");
2854       }
2855       V = convertValue(DL, IRB, V, AllocaTy);
2856     } else {
2857       // Established these invariants above.
2858       assert(NewBeginOffset == NewAllocaBeginOffset);
2859       assert(NewEndOffset == NewAllocaEndOffset);
2860 
2861       V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2862       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2863         V = getVectorSplat(V, AllocaVecTy->getNumElements());
2864 
2865       V = convertValue(DL, IRB, V, AllocaTy);
2866     }
2867 
2868     StoreInst *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2869                                             II.isVolatile());
2870     if (AATags)
2871       New->setAAMetadata(AATags);
2872     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2873     return !II.isVolatile();
2874   }
2875 
2876   bool visitMemTransferInst(MemTransferInst &II) {
2877     // Rewriting of memory transfer instructions can be a bit tricky. We break
2878     // them into two categories: split intrinsics and unsplit intrinsics.
2879 
2880     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2881 
2882     AAMDNodes AATags;
2883     II.getAAMetadata(AATags);
2884 
2885     bool IsDest = &II.getRawDestUse() == OldUse;
2886     assert((IsDest && II.getRawDest() == OldPtr) ||
2887            (!IsDest && II.getRawSource() == OldPtr));
2888 
2889     unsigned SliceAlign = getSliceAlign();
2890 
2891     // For unsplit intrinsics, we simply modify the source and destination
2892     // pointers in place. This isn't just an optimization, it is a matter of
2893     // correctness. With unsplit intrinsics we may be dealing with transfers
2894     // within a single alloca before SROA ran, or with transfers that have
2895     // a variable length. We may also be dealing with memmove instead of
2896     // memcpy, and so simply updating the pointers is the necessary for us to
2897     // update both source and dest of a single call.
2898     if (!IsSplittable) {
2899       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2900       if (IsDest) {
2901         II.setDest(AdjustedPtr);
2902         II.setDestAlignment(SliceAlign);
2903       }
2904       else {
2905         II.setSource(AdjustedPtr);
2906         II.setSourceAlignment(SliceAlign);
2907       }
2908 
2909       LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
2910       deleteIfTriviallyDead(OldPtr);
2911       return false;
2912     }
2913     // For split transfer intrinsics we have an incredibly useful assurance:
2914     // the source and destination do not reside within the same alloca, and at
2915     // least one of them does not escape. This means that we can replace
2916     // memmove with memcpy, and we don't need to worry about all manner of
2917     // downsides to splitting and transforming the operations.
2918 
2919     // If this doesn't map cleanly onto the alloca type, and that type isn't
2920     // a single value type, just emit a memcpy.
2921     bool EmitMemCpy =
2922         !VecTy && !IntTy &&
2923         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2924          SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
2925          !NewAI.getAllocatedType()->isSingleValueType());
2926 
2927     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2928     // size hasn't been shrunk based on analysis of the viable range, this is
2929     // a no-op.
2930     if (EmitMemCpy && &OldAI == &NewAI) {
2931       // Ensure the start lines up.
2932       assert(NewBeginOffset == BeginOffset);
2933 
2934       // Rewrite the size as needed.
2935       if (NewEndOffset != EndOffset)
2936         II.setLength(ConstantInt::get(II.getLength()->getType(),
2937                                       NewEndOffset - NewBeginOffset));
2938       return false;
2939     }
2940     // Record this instruction for deletion.
2941     Pass.DeadInsts.insert(&II);
2942 
2943     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2944     // alloca that should be re-examined after rewriting this instruction.
2945     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2946     if (AllocaInst *AI =
2947             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2948       assert(AI != &OldAI && AI != &NewAI &&
2949              "Splittable transfers cannot reach the same alloca on both ends.");
2950       Pass.Worklist.insert(AI);
2951     }
2952 
2953     Type *OtherPtrTy = OtherPtr->getType();
2954     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2955 
2956     // Compute the relative offset for the other pointer within the transfer.
2957     unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
2958     APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
2959     unsigned OtherAlign =
2960       IsDest ? II.getSourceAlignment() : II.getDestAlignment();
2961     OtherAlign =  MinAlign(OtherAlign ? OtherAlign : 1,
2962                            OtherOffset.zextOrTrunc(64).getZExtValue());
2963 
2964     if (EmitMemCpy) {
2965       // Compute the other pointer, folding as much as possible to produce
2966       // a single, simple GEP in most cases.
2967       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2968                                 OtherPtr->getName() + ".");
2969 
2970       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2971       Type *SizeTy = II.getLength()->getType();
2972       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2973 
2974       Value *DestPtr, *SrcPtr;
2975       unsigned DestAlign, SrcAlign;
2976       // Note: IsDest is true iff we're copying into the new alloca slice
2977       if (IsDest) {
2978         DestPtr = OurPtr;
2979         DestAlign = SliceAlign;
2980         SrcPtr = OtherPtr;
2981         SrcAlign = OtherAlign;
2982       } else {
2983         DestPtr = OtherPtr;
2984         DestAlign = OtherAlign;
2985         SrcPtr = OurPtr;
2986         SrcAlign = SliceAlign;
2987       }
2988       CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
2989                                        Size, II.isVolatile());
2990       if (AATags)
2991         New->setAAMetadata(AATags);
2992       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2993       return false;
2994     }
2995 
2996     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2997                          NewEndOffset == NewAllocaEndOffset;
2998     uint64_t Size = NewEndOffset - NewBeginOffset;
2999     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3000     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3001     unsigned NumElements = EndIndex - BeginIndex;
3002     IntegerType *SubIntTy =
3003         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3004 
3005     // Reset the other pointer type to match the register type we're going to
3006     // use, but using the address space of the original other pointer.
3007     Type *OtherTy;
3008     if (VecTy && !IsWholeAlloca) {
3009       if (NumElements == 1)
3010         OtherTy = VecTy->getElementType();
3011       else
3012         OtherTy = VectorType::get(VecTy->getElementType(), NumElements);
3013     } else if (IntTy && !IsWholeAlloca) {
3014       OtherTy = SubIntTy;
3015     } else {
3016       OtherTy = NewAllocaTy;
3017     }
3018     OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3019 
3020     Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3021                                    OtherPtr->getName() + ".");
3022     unsigned SrcAlign = OtherAlign;
3023     Value *DstPtr = &NewAI;
3024     unsigned DstAlign = SliceAlign;
3025     if (!IsDest) {
3026       std::swap(SrcPtr, DstPtr);
3027       std::swap(SrcAlign, DstAlign);
3028     }
3029 
3030     Value *Src;
3031     if (VecTy && !IsWholeAlloca && !IsDest) {
3032       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3033                                   NewAI.getAlignment(), "load");
3034       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3035     } else if (IntTy && !IsWholeAlloca && !IsDest) {
3036       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3037                                   NewAI.getAlignment(), "load");
3038       Src = convertValue(DL, IRB, Src, IntTy);
3039       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3040       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3041     } else {
3042       LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3043                                              II.isVolatile(), "copyload");
3044       if (AATags)
3045         Load->setAAMetadata(AATags);
3046       Src = Load;
3047     }
3048 
3049     if (VecTy && !IsWholeAlloca && IsDest) {
3050       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3051                                          NewAI.getAlignment(), "oldload");
3052       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3053     } else if (IntTy && !IsWholeAlloca && IsDest) {
3054       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3055                                          NewAI.getAlignment(), "oldload");
3056       Old = convertValue(DL, IRB, Old, IntTy);
3057       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3058       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3059       Src = convertValue(DL, IRB, Src, NewAllocaTy);
3060     }
3061 
3062     StoreInst *Store = cast<StoreInst>(
3063         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3064     if (AATags)
3065       Store->setAAMetadata(AATags);
3066     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3067     return !II.isVolatile();
3068   }
3069 
3070   bool visitIntrinsicInst(IntrinsicInst &II) {
3071     assert(II.isLifetimeStartOrEnd());
3072     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3073     assert(II.getArgOperand(1) == OldPtr);
3074 
3075     // Record this instruction for deletion.
3076     Pass.DeadInsts.insert(&II);
3077 
3078     // Lifetime intrinsics are only promotable if they cover the whole alloca.
3079     // Therefore, we drop lifetime intrinsics which don't cover the whole
3080     // alloca.
3081     // (In theory, intrinsics which partially cover an alloca could be
3082     // promoted, but PromoteMemToReg doesn't handle that case.)
3083     // FIXME: Check whether the alloca is promotable before dropping the
3084     // lifetime intrinsics?
3085     if (NewBeginOffset != NewAllocaBeginOffset ||
3086         NewEndOffset != NewAllocaEndOffset)
3087       return true;
3088 
3089     ConstantInt *Size =
3090         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3091                          NewEndOffset - NewBeginOffset);
3092     // Lifetime intrinsics always expect an i8* so directly get such a pointer
3093     // for the new alloca slice.
3094     Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3095     Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3096     Value *New;
3097     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3098       New = IRB.CreateLifetimeStart(Ptr, Size);
3099     else
3100       New = IRB.CreateLifetimeEnd(Ptr, Size);
3101 
3102     (void)New;
3103     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3104 
3105     return true;
3106   }
3107 
3108   void fixLoadStoreAlign(Instruction &Root) {
3109     // This algorithm implements the same visitor loop as
3110     // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3111     // or store found.
3112     SmallPtrSet<Instruction *, 4> Visited;
3113     SmallVector<Instruction *, 4> Uses;
3114     Visited.insert(&Root);
3115     Uses.push_back(&Root);
3116     do {
3117       Instruction *I = Uses.pop_back_val();
3118 
3119       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3120         unsigned LoadAlign = LI->getAlignment();
3121         if (!LoadAlign)
3122           LoadAlign = DL.getABITypeAlignment(LI->getType());
3123         LI->setAlignment(MaybeAlign(std::min(LoadAlign, getSliceAlign())));
3124         continue;
3125       }
3126       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3127         unsigned StoreAlign = SI->getAlignment();
3128         if (!StoreAlign) {
3129           Value *Op = SI->getOperand(0);
3130           StoreAlign = DL.getABITypeAlignment(Op->getType());
3131         }
3132         SI->setAlignment(MaybeAlign(std::min(StoreAlign, getSliceAlign())));
3133         continue;
3134       }
3135 
3136       assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3137              isa<PHINode>(I) || isa<SelectInst>(I) ||
3138              isa<GetElementPtrInst>(I));
3139       for (User *U : I->users())
3140         if (Visited.insert(cast<Instruction>(U)).second)
3141           Uses.push_back(cast<Instruction>(U));
3142     } while (!Uses.empty());
3143   }
3144 
3145   bool visitPHINode(PHINode &PN) {
3146     LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3147     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3148     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3149 
3150     // We would like to compute a new pointer in only one place, but have it be
3151     // as local as possible to the PHI. To do that, we re-use the location of
3152     // the old pointer, which necessarily must be in the right position to
3153     // dominate the PHI.
3154     IRBuilderTy PtrBuilder(IRB);
3155     if (isa<PHINode>(OldPtr))
3156       PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3157     else
3158       PtrBuilder.SetInsertPoint(OldPtr);
3159     PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3160 
3161     Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
3162     // Replace the operands which were using the old pointer.
3163     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3164 
3165     LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3166     deleteIfTriviallyDead(OldPtr);
3167 
3168     // Fix the alignment of any loads or stores using this PHI node.
3169     fixLoadStoreAlign(PN);
3170 
3171     // PHIs can't be promoted on their own, but often can be speculated. We
3172     // check the speculation outside of the rewriter so that we see the
3173     // fully-rewritten alloca.
3174     PHIUsers.insert(&PN);
3175     return true;
3176   }
3177 
3178   bool visitSelectInst(SelectInst &SI) {
3179     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3180     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3181            "Pointer isn't an operand!");
3182     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3183     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3184 
3185     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3186     // Replace the operands which were using the old pointer.
3187     if (SI.getOperand(1) == OldPtr)
3188       SI.setOperand(1, NewPtr);
3189     if (SI.getOperand(2) == OldPtr)
3190       SI.setOperand(2, NewPtr);
3191 
3192     LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3193     deleteIfTriviallyDead(OldPtr);
3194 
3195     // Fix the alignment of any loads or stores using this select.
3196     fixLoadStoreAlign(SI);
3197 
3198     // Selects can't be promoted on their own, but often can be speculated. We
3199     // check the speculation outside of the rewriter so that we see the
3200     // fully-rewritten alloca.
3201     SelectUsers.insert(&SI);
3202     return true;
3203   }
3204 };
3205 
3206 namespace {
3207 
3208 /// Visitor to rewrite aggregate loads and stores as scalar.
3209 ///
3210 /// This pass aggressively rewrites all aggregate loads and stores on
3211 /// a particular pointer (or any pointer derived from it which we can identify)
3212 /// with scalar loads and stores.
3213 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3214   // Befriend the base class so it can delegate to private visit methods.
3215   friend class InstVisitor<AggLoadStoreRewriter, bool>;
3216 
3217   /// Queue of pointer uses to analyze and potentially rewrite.
3218   SmallVector<Use *, 8> Queue;
3219 
3220   /// Set to prevent us from cycling with phi nodes and loops.
3221   SmallPtrSet<User *, 8> Visited;
3222 
3223   /// The current pointer use being rewritten. This is used to dig up the used
3224   /// value (as opposed to the user).
3225   Use *U;
3226 
3227   /// Used to calculate offsets, and hence alignment, of subobjects.
3228   const DataLayout &DL;
3229 
3230 public:
3231   AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
3232 
3233   /// Rewrite loads and stores through a pointer and all pointers derived from
3234   /// it.
3235   bool rewrite(Instruction &I) {
3236     LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3237     enqueueUsers(I);
3238     bool Changed = false;
3239     while (!Queue.empty()) {
3240       U = Queue.pop_back_val();
3241       Changed |= visit(cast<Instruction>(U->getUser()));
3242     }
3243     return Changed;
3244   }
3245 
3246 private:
3247   /// Enqueue all the users of the given instruction for further processing.
3248   /// This uses a set to de-duplicate users.
3249   void enqueueUsers(Instruction &I) {
3250     for (Use &U : I.uses())
3251       if (Visited.insert(U.getUser()).second)
3252         Queue.push_back(&U);
3253   }
3254 
3255   // Conservative default is to not rewrite anything.
3256   bool visitInstruction(Instruction &I) { return false; }
3257 
3258   /// Generic recursive split emission class.
3259   template <typename Derived> class OpSplitter {
3260   protected:
3261     /// The builder used to form new instructions.
3262     IRBuilderTy IRB;
3263 
3264     /// The indices which to be used with insert- or extractvalue to select the
3265     /// appropriate value within the aggregate.
3266     SmallVector<unsigned, 4> Indices;
3267 
3268     /// The indices to a GEP instruction which will move Ptr to the correct slot
3269     /// within the aggregate.
3270     SmallVector<Value *, 4> GEPIndices;
3271 
3272     /// The base pointer of the original op, used as a base for GEPing the
3273     /// split operations.
3274     Value *Ptr;
3275 
3276     /// The base pointee type being GEPed into.
3277     Type *BaseTy;
3278 
3279     /// Known alignment of the base pointer.
3280     unsigned BaseAlign;
3281 
3282     /// To calculate offset of each component so we can correctly deduce
3283     /// alignments.
3284     const DataLayout &DL;
3285 
3286     /// Initialize the splitter with an insertion point, Ptr and start with a
3287     /// single zero GEP index.
3288     OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3289                unsigned BaseAlign, const DataLayout &DL)
3290         : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr),
3291           BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {}
3292 
3293   public:
3294     /// Generic recursive split emission routine.
3295     ///
3296     /// This method recursively splits an aggregate op (load or store) into
3297     /// scalar or vector ops. It splits recursively until it hits a single value
3298     /// and emits that single value operation via the template argument.
3299     ///
3300     /// The logic of this routine relies on GEPs and insertvalue and
3301     /// extractvalue all operating with the same fundamental index list, merely
3302     /// formatted differently (GEPs need actual values).
3303     ///
3304     /// \param Ty  The type being split recursively into smaller ops.
3305     /// \param Agg The aggregate value being built up or stored, depending on
3306     /// whether this is splitting a load or a store respectively.
3307     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3308       if (Ty->isSingleValueType()) {
3309         unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3310         return static_cast<Derived *>(this)->emitFunc(
3311             Ty, Agg, MinAlign(BaseAlign, Offset), Name);
3312       }
3313 
3314       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3315         unsigned OldSize = Indices.size();
3316         (void)OldSize;
3317         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3318              ++Idx) {
3319           assert(Indices.size() == OldSize && "Did not return to the old size");
3320           Indices.push_back(Idx);
3321           GEPIndices.push_back(IRB.getInt32(Idx));
3322           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3323           GEPIndices.pop_back();
3324           Indices.pop_back();
3325         }
3326         return;
3327       }
3328 
3329       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3330         unsigned OldSize = Indices.size();
3331         (void)OldSize;
3332         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3333              ++Idx) {
3334           assert(Indices.size() == OldSize && "Did not return to the old size");
3335           Indices.push_back(Idx);
3336           GEPIndices.push_back(IRB.getInt32(Idx));
3337           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3338           GEPIndices.pop_back();
3339           Indices.pop_back();
3340         }
3341         return;
3342       }
3343 
3344       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3345     }
3346   };
3347 
3348   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3349     AAMDNodes AATags;
3350 
3351     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3352                    AAMDNodes AATags, unsigned BaseAlign, const DataLayout &DL)
3353         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3354                                      DL), AATags(AATags) {}
3355 
3356     /// Emit a leaf load of a single value. This is called at the leaves of the
3357     /// recursive emission to actually load values.
3358     void emitFunc(Type *Ty, Value *&Agg, unsigned Align, const Twine &Name) {
3359       assert(Ty->isSingleValueType());
3360       // Load the single value and insert it using the indices.
3361       Value *GEP =
3362           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3363       LoadInst *Load = IRB.CreateAlignedLoad(Ty, GEP, Align, Name + ".load");
3364       if (AATags)
3365         Load->setAAMetadata(AATags);
3366       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3367       LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3368     }
3369   };
3370 
3371   bool visitLoadInst(LoadInst &LI) {
3372     assert(LI.getPointerOperand() == *U);
3373     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3374       return false;
3375 
3376     // We have an aggregate being loaded, split it apart.
3377     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3378     AAMDNodes AATags;
3379     LI.getAAMetadata(AATags);
3380     LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags,
3381                             getAdjustedAlignment(&LI, 0, DL), DL);
3382     Value *V = UndefValue::get(LI.getType());
3383     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3384     LI.replaceAllUsesWith(V);
3385     LI.eraseFromParent();
3386     return true;
3387   }
3388 
3389   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3390     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3391                     AAMDNodes AATags, unsigned BaseAlign, const DataLayout &DL)
3392         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3393                                       DL),
3394           AATags(AATags) {}
3395     AAMDNodes AATags;
3396     /// Emit a leaf store of a single value. This is called at the leaves of the
3397     /// recursive emission to actually produce stores.
3398     void emitFunc(Type *Ty, Value *&Agg, unsigned Align, const Twine &Name) {
3399       assert(Ty->isSingleValueType());
3400       // Extract the single value and store it using the indices.
3401       //
3402       // The gep and extractvalue values are factored out of the CreateStore
3403       // call to make the output independent of the argument evaluation order.
3404       Value *ExtractValue =
3405           IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3406       Value *InBoundsGEP =
3407           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3408       StoreInst *Store =
3409           IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Align);
3410       if (AATags)
3411         Store->setAAMetadata(AATags);
3412       LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3413     }
3414   };
3415 
3416   bool visitStoreInst(StoreInst &SI) {
3417     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3418       return false;
3419     Value *V = SI.getValueOperand();
3420     if (V->getType()->isSingleValueType())
3421       return false;
3422 
3423     // We have an aggregate being stored, split it apart.
3424     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3425     AAMDNodes AATags;
3426     SI.getAAMetadata(AATags);
3427     StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags,
3428                              getAdjustedAlignment(&SI, 0, DL), DL);
3429     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3430     SI.eraseFromParent();
3431     return true;
3432   }
3433 
3434   bool visitBitCastInst(BitCastInst &BC) {
3435     enqueueUsers(BC);
3436     return false;
3437   }
3438 
3439   bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3440     enqueueUsers(ASC);
3441     return false;
3442   }
3443 
3444   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3445     enqueueUsers(GEPI);
3446     return false;
3447   }
3448 
3449   bool visitPHINode(PHINode &PN) {
3450     enqueueUsers(PN);
3451     return false;
3452   }
3453 
3454   bool visitSelectInst(SelectInst &SI) {
3455     enqueueUsers(SI);
3456     return false;
3457   }
3458 };
3459 
3460 } // end anonymous namespace
3461 
3462 /// Strip aggregate type wrapping.
3463 ///
3464 /// This removes no-op aggregate types wrapping an underlying type. It will
3465 /// strip as many layers of types as it can without changing either the type
3466 /// size or the allocated size.
3467 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3468   if (Ty->isSingleValueType())
3469     return Ty;
3470 
3471   uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3472   uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3473 
3474   Type *InnerTy;
3475   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3476     InnerTy = ArrTy->getElementType();
3477   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3478     const StructLayout *SL = DL.getStructLayout(STy);
3479     unsigned Index = SL->getElementContainingOffset(0);
3480     InnerTy = STy->getElementType(Index);
3481   } else {
3482     return Ty;
3483   }
3484 
3485   if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3486       TypeSize > DL.getTypeSizeInBits(InnerTy))
3487     return Ty;
3488 
3489   return stripAggregateTypeWrapping(DL, InnerTy);
3490 }
3491 
3492 /// Try to find a partition of the aggregate type passed in for a given
3493 /// offset and size.
3494 ///
3495 /// This recurses through the aggregate type and tries to compute a subtype
3496 /// based on the offset and size. When the offset and size span a sub-section
3497 /// of an array, it will even compute a new array type for that sub-section,
3498 /// and the same for structs.
3499 ///
3500 /// Note that this routine is very strict and tries to find a partition of the
3501 /// type which produces the *exact* right offset and size. It is not forgiving
3502 /// when the size or offset cause either end of type-based partition to be off.
3503 /// Also, this is a best-effort routine. It is reasonable to give up and not
3504 /// return a type if necessary.
3505 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3506                               uint64_t Size) {
3507   if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
3508     return stripAggregateTypeWrapping(DL, Ty);
3509   if (Offset > DL.getTypeAllocSize(Ty) ||
3510       (DL.getTypeAllocSize(Ty) - Offset) < Size)
3511     return nullptr;
3512 
3513   if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3514     Type *ElementTy = SeqTy->getElementType();
3515     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3516     uint64_t NumSkippedElements = Offset / ElementSize;
3517     if (NumSkippedElements >= SeqTy->getNumElements())
3518       return nullptr;
3519     Offset -= NumSkippedElements * ElementSize;
3520 
3521     // First check if we need to recurse.
3522     if (Offset > 0 || Size < ElementSize) {
3523       // Bail if the partition ends in a different array element.
3524       if ((Offset + Size) > ElementSize)
3525         return nullptr;
3526       // Recurse through the element type trying to peel off offset bytes.
3527       return getTypePartition(DL, ElementTy, Offset, Size);
3528     }
3529     assert(Offset == 0);
3530 
3531     if (Size == ElementSize)
3532       return stripAggregateTypeWrapping(DL, ElementTy);
3533     assert(Size > ElementSize);
3534     uint64_t NumElements = Size / ElementSize;
3535     if (NumElements * ElementSize != Size)
3536       return nullptr;
3537     return ArrayType::get(ElementTy, NumElements);
3538   }
3539 
3540   StructType *STy = dyn_cast<StructType>(Ty);
3541   if (!STy)
3542     return nullptr;
3543 
3544   const StructLayout *SL = DL.getStructLayout(STy);
3545   if (Offset >= SL->getSizeInBytes())
3546     return nullptr;
3547   uint64_t EndOffset = Offset + Size;
3548   if (EndOffset > SL->getSizeInBytes())
3549     return nullptr;
3550 
3551   unsigned Index = SL->getElementContainingOffset(Offset);
3552   Offset -= SL->getElementOffset(Index);
3553 
3554   Type *ElementTy = STy->getElementType(Index);
3555   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3556   if (Offset >= ElementSize)
3557     return nullptr; // The offset points into alignment padding.
3558 
3559   // See if any partition must be contained by the element.
3560   if (Offset > 0 || Size < ElementSize) {
3561     if ((Offset + Size) > ElementSize)
3562       return nullptr;
3563     return getTypePartition(DL, ElementTy, Offset, Size);
3564   }
3565   assert(Offset == 0);
3566 
3567   if (Size == ElementSize)
3568     return stripAggregateTypeWrapping(DL, ElementTy);
3569 
3570   StructType::element_iterator EI = STy->element_begin() + Index,
3571                                EE = STy->element_end();
3572   if (EndOffset < SL->getSizeInBytes()) {
3573     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3574     if (Index == EndIndex)
3575       return nullptr; // Within a single element and its padding.
3576 
3577     // Don't try to form "natural" types if the elements don't line up with the
3578     // expected size.
3579     // FIXME: We could potentially recurse down through the last element in the
3580     // sub-struct to find a natural end point.
3581     if (SL->getElementOffset(EndIndex) != EndOffset)
3582       return nullptr;
3583 
3584     assert(Index < EndIndex);
3585     EE = STy->element_begin() + EndIndex;
3586   }
3587 
3588   // Try to build up a sub-structure.
3589   StructType *SubTy =
3590       StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3591   const StructLayout *SubSL = DL.getStructLayout(SubTy);
3592   if (Size != SubSL->getSizeInBytes())
3593     return nullptr; // The sub-struct doesn't have quite the size needed.
3594 
3595   return SubTy;
3596 }
3597 
3598 /// Pre-split loads and stores to simplify rewriting.
3599 ///
3600 /// We want to break up the splittable load+store pairs as much as
3601 /// possible. This is important to do as a preprocessing step, as once we
3602 /// start rewriting the accesses to partitions of the alloca we lose the
3603 /// necessary information to correctly split apart paired loads and stores
3604 /// which both point into this alloca. The case to consider is something like
3605 /// the following:
3606 ///
3607 ///   %a = alloca [12 x i8]
3608 ///   %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3609 ///   %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3610 ///   %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3611 ///   %iptr1 = bitcast i8* %gep1 to i64*
3612 ///   %iptr2 = bitcast i8* %gep2 to i64*
3613 ///   %fptr1 = bitcast i8* %gep1 to float*
3614 ///   %fptr2 = bitcast i8* %gep2 to float*
3615 ///   %fptr3 = bitcast i8* %gep3 to float*
3616 ///   store float 0.0, float* %fptr1
3617 ///   store float 1.0, float* %fptr2
3618 ///   %v = load i64* %iptr1
3619 ///   store i64 %v, i64* %iptr2
3620 ///   %f1 = load float* %fptr2
3621 ///   %f2 = load float* %fptr3
3622 ///
3623 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3624 /// promote everything so we recover the 2 SSA values that should have been
3625 /// there all along.
3626 ///
3627 /// \returns true if any changes are made.
3628 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3629   LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3630 
3631   // Track the loads and stores which are candidates for pre-splitting here, in
3632   // the order they first appear during the partition scan. These give stable
3633   // iteration order and a basis for tracking which loads and stores we
3634   // actually split.
3635   SmallVector<LoadInst *, 4> Loads;
3636   SmallVector<StoreInst *, 4> Stores;
3637 
3638   // We need to accumulate the splits required of each load or store where we
3639   // can find them via a direct lookup. This is important to cross-check loads
3640   // and stores against each other. We also track the slice so that we can kill
3641   // all the slices that end up split.
3642   struct SplitOffsets {
3643     Slice *S;
3644     std::vector<uint64_t> Splits;
3645   };
3646   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3647 
3648   // Track loads out of this alloca which cannot, for any reason, be pre-split.
3649   // This is important as we also cannot pre-split stores of those loads!
3650   // FIXME: This is all pretty gross. It means that we can be more aggressive
3651   // in pre-splitting when the load feeding the store happens to come from
3652   // a separate alloca. Put another way, the effectiveness of SROA would be
3653   // decreased by a frontend which just concatenated all of its local allocas
3654   // into one big flat alloca. But defeating such patterns is exactly the job
3655   // SROA is tasked with! Sadly, to not have this discrepancy we would have
3656   // change store pre-splitting to actually force pre-splitting of the load
3657   // that feeds it *and all stores*. That makes pre-splitting much harder, but
3658   // maybe it would make it more principled?
3659   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3660 
3661   LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
3662   for (auto &P : AS.partitions()) {
3663     for (Slice &S : P) {
3664       Instruction *I = cast<Instruction>(S.getUse()->getUser());
3665       if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3666         // If this is a load we have to track that it can't participate in any
3667         // pre-splitting. If this is a store of a load we have to track that
3668         // that load also can't participate in any pre-splitting.
3669         if (auto *LI = dyn_cast<LoadInst>(I))
3670           UnsplittableLoads.insert(LI);
3671         else if (auto *SI = dyn_cast<StoreInst>(I))
3672           if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3673             UnsplittableLoads.insert(LI);
3674         continue;
3675       }
3676       assert(P.endOffset() > S.beginOffset() &&
3677              "Empty or backwards partition!");
3678 
3679       // Determine if this is a pre-splittable slice.
3680       if (auto *LI = dyn_cast<LoadInst>(I)) {
3681         assert(!LI->isVolatile() && "Cannot split volatile loads!");
3682 
3683         // The load must be used exclusively to store into other pointers for
3684         // us to be able to arbitrarily pre-split it. The stores must also be
3685         // simple to avoid changing semantics.
3686         auto IsLoadSimplyStored = [](LoadInst *LI) {
3687           for (User *LU : LI->users()) {
3688             auto *SI = dyn_cast<StoreInst>(LU);
3689             if (!SI || !SI->isSimple())
3690               return false;
3691           }
3692           return true;
3693         };
3694         if (!IsLoadSimplyStored(LI)) {
3695           UnsplittableLoads.insert(LI);
3696           continue;
3697         }
3698 
3699         Loads.push_back(LI);
3700       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3701         if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3702           // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3703           continue;
3704         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3705         if (!StoredLoad || !StoredLoad->isSimple())
3706           continue;
3707         assert(!SI->isVolatile() && "Cannot split volatile stores!");
3708 
3709         Stores.push_back(SI);
3710       } else {
3711         // Other uses cannot be pre-split.
3712         continue;
3713       }
3714 
3715       // Record the initial split.
3716       LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
3717       auto &Offsets = SplitOffsetsMap[I];
3718       assert(Offsets.Splits.empty() &&
3719              "Should not have splits the first time we see an instruction!");
3720       Offsets.S = &S;
3721       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3722     }
3723 
3724     // Now scan the already split slices, and add a split for any of them which
3725     // we're going to pre-split.
3726     for (Slice *S : P.splitSliceTails()) {
3727       auto SplitOffsetsMapI =
3728           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3729       if (SplitOffsetsMapI == SplitOffsetsMap.end())
3730         continue;
3731       auto &Offsets = SplitOffsetsMapI->second;
3732 
3733       assert(Offsets.S == S && "Found a mismatched slice!");
3734       assert(!Offsets.Splits.empty() &&
3735              "Cannot have an empty set of splits on the second partition!");
3736       assert(Offsets.Splits.back() ==
3737                  P.beginOffset() - Offsets.S->beginOffset() &&
3738              "Previous split does not end where this one begins!");
3739 
3740       // Record each split. The last partition's end isn't needed as the size
3741       // of the slice dictates that.
3742       if (S->endOffset() > P.endOffset())
3743         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3744     }
3745   }
3746 
3747   // We may have split loads where some of their stores are split stores. For
3748   // such loads and stores, we can only pre-split them if their splits exactly
3749   // match relative to their starting offset. We have to verify this prior to
3750   // any rewriting.
3751   Stores.erase(
3752       llvm::remove_if(Stores,
3753                       [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3754                         // Lookup the load we are storing in our map of split
3755                         // offsets.
3756                         auto *LI = cast<LoadInst>(SI->getValueOperand());
3757                         // If it was completely unsplittable, then we're done,
3758                         // and this store can't be pre-split.
3759                         if (UnsplittableLoads.count(LI))
3760                           return true;
3761 
3762                         auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3763                         if (LoadOffsetsI == SplitOffsetsMap.end())
3764                           return false; // Unrelated loads are definitely safe.
3765                         auto &LoadOffsets = LoadOffsetsI->second;
3766 
3767                         // Now lookup the store's offsets.
3768                         auto &StoreOffsets = SplitOffsetsMap[SI];
3769 
3770                         // If the relative offsets of each split in the load and
3771                         // store match exactly, then we can split them and we
3772                         // don't need to remove them here.
3773                         if (LoadOffsets.Splits == StoreOffsets.Splits)
3774                           return false;
3775 
3776                         LLVM_DEBUG(
3777                             dbgs()
3778                             << "    Mismatched splits for load and store:\n"
3779                             << "      " << *LI << "\n"
3780                             << "      " << *SI << "\n");
3781 
3782                         // We've found a store and load that we need to split
3783                         // with mismatched relative splits. Just give up on them
3784                         // and remove both instructions from our list of
3785                         // candidates.
3786                         UnsplittableLoads.insert(LI);
3787                         return true;
3788                       }),
3789       Stores.end());
3790   // Now we have to go *back* through all the stores, because a later store may
3791   // have caused an earlier store's load to become unsplittable and if it is
3792   // unsplittable for the later store, then we can't rely on it being split in
3793   // the earlier store either.
3794   Stores.erase(llvm::remove_if(Stores,
3795                                [&UnsplittableLoads](StoreInst *SI) {
3796                                  auto *LI =
3797                                      cast<LoadInst>(SI->getValueOperand());
3798                                  return UnsplittableLoads.count(LI);
3799                                }),
3800                Stores.end());
3801   // Once we've established all the loads that can't be split for some reason,
3802   // filter any that made it into our list out.
3803   Loads.erase(llvm::remove_if(Loads,
3804                               [&UnsplittableLoads](LoadInst *LI) {
3805                                 return UnsplittableLoads.count(LI);
3806                               }),
3807               Loads.end());
3808 
3809   // If no loads or stores are left, there is no pre-splitting to be done for
3810   // this alloca.
3811   if (Loads.empty() && Stores.empty())
3812     return false;
3813 
3814   // From here on, we can't fail and will be building new accesses, so rig up
3815   // an IR builder.
3816   IRBuilderTy IRB(&AI);
3817 
3818   // Collect the new slices which we will merge into the alloca slices.
3819   SmallVector<Slice, 4> NewSlices;
3820 
3821   // Track any allocas we end up splitting loads and stores for so we iterate
3822   // on them.
3823   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3824 
3825   // At this point, we have collected all of the loads and stores we can
3826   // pre-split, and the specific splits needed for them. We actually do the
3827   // splitting in a specific order in order to handle when one of the loads in
3828   // the value operand to one of the stores.
3829   //
3830   // First, we rewrite all of the split loads, and just accumulate each split
3831   // load in a parallel structure. We also build the slices for them and append
3832   // them to the alloca slices.
3833   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3834   std::vector<LoadInst *> SplitLoads;
3835   const DataLayout &DL = AI.getModule()->getDataLayout();
3836   for (LoadInst *LI : Loads) {
3837     SplitLoads.clear();
3838 
3839     IntegerType *Ty = cast<IntegerType>(LI->getType());
3840     uint64_t LoadSize = Ty->getBitWidth() / 8;
3841     assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3842 
3843     auto &Offsets = SplitOffsetsMap[LI];
3844     assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3845            "Slice size should always match load size exactly!");
3846     uint64_t BaseOffset = Offsets.S->beginOffset();
3847     assert(BaseOffset + LoadSize > BaseOffset &&
3848            "Cannot represent alloca access size using 64-bit integers!");
3849 
3850     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3851     IRB.SetInsertPoint(LI);
3852 
3853     LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
3854 
3855     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3856     int Idx = 0, Size = Offsets.Splits.size();
3857     for (;;) {
3858       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3859       auto AS = LI->getPointerAddressSpace();
3860       auto *PartPtrTy = PartTy->getPointerTo(AS);
3861       LoadInst *PLoad = IRB.CreateAlignedLoad(
3862           PartTy,
3863           getAdjustedPtr(IRB, DL, BasePtr,
3864                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
3865                          PartPtrTy, BasePtr->getName() + "."),
3866           getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3867           LI->getName());
3868       PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
3869                                 LLVMContext::MD_access_group});
3870 
3871       // Append this load onto the list of split loads so we can find it later
3872       // to rewrite the stores.
3873       SplitLoads.push_back(PLoad);
3874 
3875       // Now build a new slice for the alloca.
3876       NewSlices.push_back(
3877           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3878                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
3879                 /*IsSplittable*/ false));
3880       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
3881                         << ", " << NewSlices.back().endOffset()
3882                         << "): " << *PLoad << "\n");
3883 
3884       // See if we've handled all the splits.
3885       if (Idx >= Size)
3886         break;
3887 
3888       // Setup the next partition.
3889       PartOffset = Offsets.Splits[Idx];
3890       ++Idx;
3891       PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
3892     }
3893 
3894     // Now that we have the split loads, do the slow walk over all uses of the
3895     // load and rewrite them as split stores, or save the split loads to use
3896     // below if the store is going to be split there anyways.
3897     bool DeferredStores = false;
3898     for (User *LU : LI->users()) {
3899       StoreInst *SI = cast<StoreInst>(LU);
3900       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
3901         DeferredStores = true;
3902         LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
3903                           << "\n");
3904         continue;
3905       }
3906 
3907       Value *StoreBasePtr = SI->getPointerOperand();
3908       IRB.SetInsertPoint(SI);
3909 
3910       LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
3911 
3912       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
3913         LoadInst *PLoad = SplitLoads[Idx];
3914         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
3915         auto *PartPtrTy =
3916             PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
3917 
3918         auto AS = SI->getPointerAddressSpace();
3919         StoreInst *PStore = IRB.CreateAlignedStore(
3920             PLoad,
3921             getAdjustedPtr(IRB, DL, StoreBasePtr,
3922                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
3923                            PartPtrTy, StoreBasePtr->getName() + "."),
3924             getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
3925         PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
3926                                    LLVMContext::MD_access_group});
3927         LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
3928       }
3929 
3930       // We want to immediately iterate on any allocas impacted by splitting
3931       // this store, and we have to track any promotable alloca (indicated by
3932       // a direct store) as needing to be resplit because it is no longer
3933       // promotable.
3934       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
3935         ResplitPromotableAllocas.insert(OtherAI);
3936         Worklist.insert(OtherAI);
3937       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3938                      StoreBasePtr->stripInBoundsOffsets())) {
3939         Worklist.insert(OtherAI);
3940       }
3941 
3942       // Mark the original store as dead.
3943       DeadInsts.insert(SI);
3944     }
3945 
3946     // Save the split loads if there are deferred stores among the users.
3947     if (DeferredStores)
3948       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
3949 
3950     // Mark the original load as dead and kill the original slice.
3951     DeadInsts.insert(LI);
3952     Offsets.S->kill();
3953   }
3954 
3955   // Second, we rewrite all of the split stores. At this point, we know that
3956   // all loads from this alloca have been split already. For stores of such
3957   // loads, we can simply look up the pre-existing split loads. For stores of
3958   // other loads, we split those loads first and then write split stores of
3959   // them.
3960   for (StoreInst *SI : Stores) {
3961     auto *LI = cast<LoadInst>(SI->getValueOperand());
3962     IntegerType *Ty = cast<IntegerType>(LI->getType());
3963     uint64_t StoreSize = Ty->getBitWidth() / 8;
3964     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
3965 
3966     auto &Offsets = SplitOffsetsMap[SI];
3967     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3968            "Slice size should always match load size exactly!");
3969     uint64_t BaseOffset = Offsets.S->beginOffset();
3970     assert(BaseOffset + StoreSize > BaseOffset &&
3971            "Cannot represent alloca access size using 64-bit integers!");
3972 
3973     Value *LoadBasePtr = LI->getPointerOperand();
3974     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
3975 
3976     LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
3977 
3978     // Check whether we have an already split load.
3979     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
3980     std::vector<LoadInst *> *SplitLoads = nullptr;
3981     if (SplitLoadsMapI != SplitLoadsMap.end()) {
3982       SplitLoads = &SplitLoadsMapI->second;
3983       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
3984              "Too few split loads for the number of splits in the store!");
3985     } else {
3986       LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
3987     }
3988 
3989     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3990     int Idx = 0, Size = Offsets.Splits.size();
3991     for (;;) {
3992       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3993       auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
3994       auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
3995 
3996       // Either lookup a split load or create one.
3997       LoadInst *PLoad;
3998       if (SplitLoads) {
3999         PLoad = (*SplitLoads)[Idx];
4000       } else {
4001         IRB.SetInsertPoint(LI);
4002         auto AS = LI->getPointerAddressSpace();
4003         PLoad = IRB.CreateAlignedLoad(
4004             PartTy,
4005             getAdjustedPtr(IRB, DL, LoadBasePtr,
4006                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4007                            LoadPartPtrTy, LoadBasePtr->getName() + "."),
4008             getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
4009             LI->getName());
4010       }
4011 
4012       // And store this partition.
4013       IRB.SetInsertPoint(SI);
4014       auto AS = SI->getPointerAddressSpace();
4015       StoreInst *PStore = IRB.CreateAlignedStore(
4016           PLoad,
4017           getAdjustedPtr(IRB, DL, StoreBasePtr,
4018                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4019                          StorePartPtrTy, StoreBasePtr->getName() + "."),
4020           getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
4021 
4022       // Now build a new slice for the alloca.
4023       NewSlices.push_back(
4024           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4025                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4026                 /*IsSplittable*/ false));
4027       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4028                         << ", " << NewSlices.back().endOffset()
4029                         << "): " << *PStore << "\n");
4030       if (!SplitLoads) {
4031         LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4032       }
4033 
4034       // See if we've finished all the splits.
4035       if (Idx >= Size)
4036         break;
4037 
4038       // Setup the next partition.
4039       PartOffset = Offsets.Splits[Idx];
4040       ++Idx;
4041       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4042     }
4043 
4044     // We want to immediately iterate on any allocas impacted by splitting
4045     // this load, which is only relevant if it isn't a load of this alloca and
4046     // thus we didn't already split the loads above. We also have to keep track
4047     // of any promotable allocas we split loads on as they can no longer be
4048     // promoted.
4049     if (!SplitLoads) {
4050       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4051         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4052         ResplitPromotableAllocas.insert(OtherAI);
4053         Worklist.insert(OtherAI);
4054       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4055                      LoadBasePtr->stripInBoundsOffsets())) {
4056         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4057         Worklist.insert(OtherAI);
4058       }
4059     }
4060 
4061     // Mark the original store as dead now that we've split it up and kill its
4062     // slice. Note that we leave the original load in place unless this store
4063     // was its only use. It may in turn be split up if it is an alloca load
4064     // for some other alloca, but it may be a normal load. This may introduce
4065     // redundant loads, but where those can be merged the rest of the optimizer
4066     // should handle the merging, and this uncovers SSA splits which is more
4067     // important. In practice, the original loads will almost always be fully
4068     // split and removed eventually, and the splits will be merged by any
4069     // trivial CSE, including instcombine.
4070     if (LI->hasOneUse()) {
4071       assert(*LI->user_begin() == SI && "Single use isn't this store!");
4072       DeadInsts.insert(LI);
4073     }
4074     DeadInsts.insert(SI);
4075     Offsets.S->kill();
4076   }
4077 
4078   // Remove the killed slices that have ben pre-split.
4079   AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }),
4080            AS.end());
4081 
4082   // Insert our new slices. This will sort and merge them into the sorted
4083   // sequence.
4084   AS.insert(NewSlices);
4085 
4086   LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4087 #ifndef NDEBUG
4088   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4089     LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4090 #endif
4091 
4092   // Finally, don't try to promote any allocas that new require re-splitting.
4093   // They have already been added to the worklist above.
4094   PromotableAllocas.erase(
4095       llvm::remove_if(
4096           PromotableAllocas,
4097           [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
4098       PromotableAllocas.end());
4099 
4100   return true;
4101 }
4102 
4103 /// Rewrite an alloca partition's users.
4104 ///
4105 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4106 /// to rewrite uses of an alloca partition to be conducive for SSA value
4107 /// promotion. If the partition needs a new, more refined alloca, this will
4108 /// build that new alloca, preserving as much type information as possible, and
4109 /// rewrite the uses of the old alloca to point at the new one and have the
4110 /// appropriate new offsets. It also evaluates how successful the rewrite was
4111 /// at enabling promotion and if it was successful queues the alloca to be
4112 /// promoted.
4113 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4114                                    Partition &P) {
4115   // Try to compute a friendly type for this partition of the alloca. This
4116   // won't always succeed, in which case we fall back to a legal integer type
4117   // or an i8 array of an appropriate size.
4118   Type *SliceTy = nullptr;
4119   const DataLayout &DL = AI.getModule()->getDataLayout();
4120   if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
4121     if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
4122       SliceTy = CommonUseTy;
4123   if (!SliceTy)
4124     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4125                                                  P.beginOffset(), P.size()))
4126       SliceTy = TypePartitionTy;
4127   if ((!SliceTy || (SliceTy->isArrayTy() &&
4128                     SliceTy->getArrayElementType()->isIntegerTy())) &&
4129       DL.isLegalInteger(P.size() * 8))
4130     SliceTy = Type::getIntNTy(*C, P.size() * 8);
4131   if (!SliceTy)
4132     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4133   assert(DL.getTypeAllocSize(SliceTy) >= P.size());
4134 
4135   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4136 
4137   VectorType *VecTy =
4138       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4139   if (VecTy)
4140     SliceTy = VecTy;
4141 
4142   // Check for the case where we're going to rewrite to a new alloca of the
4143   // exact same type as the original, and with the same access offsets. In that
4144   // case, re-use the existing alloca, but still run through the rewriter to
4145   // perform phi and select speculation.
4146   // P.beginOffset() can be non-zero even with the same type in a case with
4147   // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4148   AllocaInst *NewAI;
4149   if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4150     NewAI = &AI;
4151     // FIXME: We should be able to bail at this point with "nothing changed".
4152     // FIXME: We might want to defer PHI speculation until after here.
4153     // FIXME: return nullptr;
4154   } else {
4155     unsigned Alignment = AI.getAlignment();
4156     if (!Alignment) {
4157       // The minimum alignment which users can rely on when the explicit
4158       // alignment is omitted or zero is that required by the ABI for this
4159       // type.
4160       Alignment = DL.getABITypeAlignment(AI.getAllocatedType());
4161     }
4162     Alignment = MinAlign(Alignment, P.beginOffset());
4163     // If we will get at least this much alignment from the type alone, leave
4164     // the alloca's alignment unconstrained.
4165     if (Alignment <= DL.getABITypeAlignment(SliceTy))
4166       Alignment = 0;
4167     NewAI = new AllocaInst(
4168       SliceTy, AI.getType()->getAddressSpace(), nullptr, Alignment,
4169         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4170     // Copy the old AI debug location over to the new one.
4171     NewAI->setDebugLoc(AI.getDebugLoc());
4172     ++NumNewAllocas;
4173   }
4174 
4175   LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4176                     << "[" << P.beginOffset() << "," << P.endOffset()
4177                     << ") to: " << *NewAI << "\n");
4178 
4179   // Track the high watermark on the worklist as it is only relevant for
4180   // promoted allocas. We will reset it to this point if the alloca is not in
4181   // fact scheduled for promotion.
4182   unsigned PPWOldSize = PostPromotionWorklist.size();
4183   unsigned NumUses = 0;
4184   SmallSetVector<PHINode *, 8> PHIUsers;
4185   SmallSetVector<SelectInst *, 8> SelectUsers;
4186 
4187   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4188                                P.endOffset(), IsIntegerPromotable, VecTy,
4189                                PHIUsers, SelectUsers);
4190   bool Promotable = true;
4191   for (Slice *S : P.splitSliceTails()) {
4192     Promotable &= Rewriter.visit(S);
4193     ++NumUses;
4194   }
4195   for (Slice &S : P) {
4196     Promotable &= Rewriter.visit(&S);
4197     ++NumUses;
4198   }
4199 
4200   NumAllocaPartitionUses += NumUses;
4201   MaxUsesPerAllocaPartition.updateMax(NumUses);
4202 
4203   // Now that we've processed all the slices in the new partition, check if any
4204   // PHIs or Selects would block promotion.
4205   for (PHINode *PHI : PHIUsers)
4206     if (!isSafePHIToSpeculate(*PHI)) {
4207       Promotable = false;
4208       PHIUsers.clear();
4209       SelectUsers.clear();
4210       break;
4211     }
4212 
4213   for (SelectInst *Sel : SelectUsers)
4214     if (!isSafeSelectToSpeculate(*Sel)) {
4215       Promotable = false;
4216       PHIUsers.clear();
4217       SelectUsers.clear();
4218       break;
4219     }
4220 
4221   if (Promotable) {
4222     if (PHIUsers.empty() && SelectUsers.empty()) {
4223       // Promote the alloca.
4224       PromotableAllocas.push_back(NewAI);
4225     } else {
4226       // If we have either PHIs or Selects to speculate, add them to those
4227       // worklists and re-queue the new alloca so that we promote in on the
4228       // next iteration.
4229       for (PHINode *PHIUser : PHIUsers)
4230         SpeculatablePHIs.insert(PHIUser);
4231       for (SelectInst *SelectUser : SelectUsers)
4232         SpeculatableSelects.insert(SelectUser);
4233       Worklist.insert(NewAI);
4234     }
4235   } else {
4236     // Drop any post-promotion work items if promotion didn't happen.
4237     while (PostPromotionWorklist.size() > PPWOldSize)
4238       PostPromotionWorklist.pop_back();
4239 
4240     // We couldn't promote and we didn't create a new partition, nothing
4241     // happened.
4242     if (NewAI == &AI)
4243       return nullptr;
4244 
4245     // If we can't promote the alloca, iterate on it to check for new
4246     // refinements exposed by splitting the current alloca. Don't iterate on an
4247     // alloca which didn't actually change and didn't get promoted.
4248     Worklist.insert(NewAI);
4249   }
4250 
4251   return NewAI;
4252 }
4253 
4254 /// Walks the slices of an alloca and form partitions based on them,
4255 /// rewriting each of their uses.
4256 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4257   if (AS.begin() == AS.end())
4258     return false;
4259 
4260   unsigned NumPartitions = 0;
4261   bool Changed = false;
4262   const DataLayout &DL = AI.getModule()->getDataLayout();
4263 
4264   // First try to pre-split loads and stores.
4265   Changed |= presplitLoadsAndStores(AI, AS);
4266 
4267   // Now that we have identified any pre-splitting opportunities,
4268   // mark loads and stores unsplittable except for the following case.
4269   // We leave a slice splittable if all other slices are disjoint or fully
4270   // included in the slice, such as whole-alloca loads and stores.
4271   // If we fail to split these during pre-splitting, we want to force them
4272   // to be rewritten into a partition.
4273   bool IsSorted = true;
4274 
4275   uint64_t AllocaSize = DL.getTypeAllocSize(AI.getAllocatedType());
4276   const uint64_t MaxBitVectorSize = 1024;
4277   if (AllocaSize <= MaxBitVectorSize) {
4278     // If a byte boundary is included in any load or store, a slice starting or
4279     // ending at the boundary is not splittable.
4280     SmallBitVector SplittableOffset(AllocaSize + 1, true);
4281     for (Slice &S : AS)
4282       for (unsigned O = S.beginOffset() + 1;
4283            O < S.endOffset() && O < AllocaSize; O++)
4284         SplittableOffset.reset(O);
4285 
4286     for (Slice &S : AS) {
4287       if (!S.isSplittable())
4288         continue;
4289 
4290       if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4291           (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4292         continue;
4293 
4294       if (isa<LoadInst>(S.getUse()->getUser()) ||
4295           isa<StoreInst>(S.getUse()->getUser())) {
4296         S.makeUnsplittable();
4297         IsSorted = false;
4298       }
4299     }
4300   }
4301   else {
4302     // We only allow whole-alloca splittable loads and stores
4303     // for a large alloca to avoid creating too large BitVector.
4304     for (Slice &S : AS) {
4305       if (!S.isSplittable())
4306         continue;
4307 
4308       if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4309         continue;
4310 
4311       if (isa<LoadInst>(S.getUse()->getUser()) ||
4312           isa<StoreInst>(S.getUse()->getUser())) {
4313         S.makeUnsplittable();
4314         IsSorted = false;
4315       }
4316     }
4317   }
4318 
4319   if (!IsSorted)
4320     llvm::sort(AS);
4321 
4322   /// Describes the allocas introduced by rewritePartition in order to migrate
4323   /// the debug info.
4324   struct Fragment {
4325     AllocaInst *Alloca;
4326     uint64_t Offset;
4327     uint64_t Size;
4328     Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4329       : Alloca(AI), Offset(O), Size(S) {}
4330   };
4331   SmallVector<Fragment, 4> Fragments;
4332 
4333   // Rewrite each partition.
4334   for (auto &P : AS.partitions()) {
4335     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4336       Changed = true;
4337       if (NewAI != &AI) {
4338         uint64_t SizeOfByte = 8;
4339         uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
4340         // Don't include any padding.
4341         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4342         Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4343       }
4344     }
4345     ++NumPartitions;
4346   }
4347 
4348   NumAllocaPartitions += NumPartitions;
4349   MaxPartitionsPerAlloca.updateMax(NumPartitions);
4350 
4351   // Migrate debug information from the old alloca to the new alloca(s)
4352   // and the individual partitions.
4353   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4354   if (!DbgDeclares.empty()) {
4355     auto *Var = DbgDeclares.front()->getVariable();
4356     auto *Expr = DbgDeclares.front()->getExpression();
4357     auto VarSize = Var->getSizeInBits();
4358     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4359     uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType());
4360     for (auto Fragment : Fragments) {
4361       // Create a fragment expression describing the new partition or reuse AI's
4362       // expression if there is only one partition.
4363       auto *FragmentExpr = Expr;
4364       if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4365         // If this alloca is already a scalar replacement of a larger aggregate,
4366         // Fragment.Offset describes the offset inside the scalar.
4367         auto ExprFragment = Expr->getFragmentInfo();
4368         uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4369         uint64_t Start = Offset + Fragment.Offset;
4370         uint64_t Size = Fragment.Size;
4371         if (ExprFragment) {
4372           uint64_t AbsEnd =
4373               ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4374           if (Start >= AbsEnd)
4375             // No need to describe a SROAed padding.
4376             continue;
4377           Size = std::min(Size, AbsEnd - Start);
4378         }
4379         // The new, smaller fragment is stenciled out from the old fragment.
4380         if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4381           assert(Start >= OrigFragment->OffsetInBits &&
4382                  "new fragment is outside of original fragment");
4383           Start -= OrigFragment->OffsetInBits;
4384         }
4385 
4386         // The alloca may be larger than the variable.
4387         if (VarSize) {
4388           if (Size > *VarSize)
4389             Size = *VarSize;
4390           if (Size == 0 || Start + Size > *VarSize)
4391             continue;
4392         }
4393 
4394         // Avoid creating a fragment expression that covers the entire variable.
4395         if (!VarSize || *VarSize != Size) {
4396           if (auto E =
4397                   DIExpression::createFragmentExpression(Expr, Start, Size))
4398             FragmentExpr = *E;
4399           else
4400             continue;
4401         }
4402       }
4403 
4404       // Remove any existing intrinsics describing the same alloca.
4405       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca))
4406         OldDII->eraseFromParent();
4407 
4408       DIB.insertDeclare(Fragment.Alloca, Var, FragmentExpr,
4409                         DbgDeclares.front()->getDebugLoc(), &AI);
4410     }
4411   }
4412   return Changed;
4413 }
4414 
4415 /// Clobber a use with undef, deleting the used value if it becomes dead.
4416 void SROA::clobberUse(Use &U) {
4417   Value *OldV = U;
4418   // Replace the use with an undef value.
4419   U = UndefValue::get(OldV->getType());
4420 
4421   // Check for this making an instruction dead. We have to garbage collect
4422   // all the dead instructions to ensure the uses of any alloca end up being
4423   // minimal.
4424   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4425     if (isInstructionTriviallyDead(OldI)) {
4426       DeadInsts.insert(OldI);
4427     }
4428 }
4429 
4430 /// Analyze an alloca for SROA.
4431 ///
4432 /// This analyzes the alloca to ensure we can reason about it, builds
4433 /// the slices of the alloca, and then hands it off to be split and
4434 /// rewritten as needed.
4435 bool SROA::runOnAlloca(AllocaInst &AI) {
4436   LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4437   ++NumAllocasAnalyzed;
4438 
4439   // Special case dead allocas, as they're trivial.
4440   if (AI.use_empty()) {
4441     AI.eraseFromParent();
4442     return true;
4443   }
4444   const DataLayout &DL = AI.getModule()->getDataLayout();
4445 
4446   // Skip alloca forms that this analysis can't handle.
4447   if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
4448       DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
4449     return false;
4450 
4451   bool Changed = false;
4452 
4453   // First, split any FCA loads and stores touching this alloca to promote
4454   // better splitting and promotion opportunities.
4455   AggLoadStoreRewriter AggRewriter(DL);
4456   Changed |= AggRewriter.rewrite(AI);
4457 
4458   // Build the slices using a recursive instruction-visiting builder.
4459   AllocaSlices AS(DL, AI);
4460   LLVM_DEBUG(AS.print(dbgs()));
4461   if (AS.isEscaped())
4462     return Changed;
4463 
4464   // Delete all the dead users of this alloca before splitting and rewriting it.
4465   for (Instruction *DeadUser : AS.getDeadUsers()) {
4466     // Free up everything used by this instruction.
4467     for (Use &DeadOp : DeadUser->operands())
4468       clobberUse(DeadOp);
4469 
4470     // Now replace the uses of this instruction.
4471     DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4472 
4473     // And mark it for deletion.
4474     DeadInsts.insert(DeadUser);
4475     Changed = true;
4476   }
4477   for (Use *DeadOp : AS.getDeadOperands()) {
4478     clobberUse(*DeadOp);
4479     Changed = true;
4480   }
4481 
4482   // No slices to split. Leave the dead alloca for a later pass to clean up.
4483   if (AS.begin() == AS.end())
4484     return Changed;
4485 
4486   Changed |= splitAlloca(AI, AS);
4487 
4488   LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
4489   while (!SpeculatablePHIs.empty())
4490     speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4491 
4492   LLVM_DEBUG(dbgs() << "  Speculating Selects\n");
4493   while (!SpeculatableSelects.empty())
4494     speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4495 
4496   return Changed;
4497 }
4498 
4499 /// Delete the dead instructions accumulated in this run.
4500 ///
4501 /// Recursively deletes the dead instructions we've accumulated. This is done
4502 /// at the very end to maximize locality of the recursive delete and to
4503 /// minimize the problems of invalidated instruction pointers as such pointers
4504 /// are used heavily in the intermediate stages of the algorithm.
4505 ///
4506 /// We also record the alloca instructions deleted here so that they aren't
4507 /// subsequently handed to mem2reg to promote.
4508 bool SROA::deleteDeadInstructions(
4509     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4510   bool Changed = false;
4511   while (!DeadInsts.empty()) {
4512     Instruction *I = DeadInsts.pop_back_val();
4513     LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4514 
4515     // If the instruction is an alloca, find the possible dbg.declare connected
4516     // to it, and remove it too. We must do this before calling RAUW or we will
4517     // not be able to find it.
4518     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4519       DeletedAllocas.insert(AI);
4520       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
4521         OldDII->eraseFromParent();
4522     }
4523 
4524     I->replaceAllUsesWith(UndefValue::get(I->getType()));
4525 
4526     for (Use &Operand : I->operands())
4527       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4528         // Zero out the operand and see if it becomes trivially dead.
4529         Operand = nullptr;
4530         if (isInstructionTriviallyDead(U))
4531           DeadInsts.insert(U);
4532       }
4533 
4534     ++NumDeleted;
4535     I->eraseFromParent();
4536     Changed = true;
4537   }
4538   return Changed;
4539 }
4540 
4541 /// Promote the allocas, using the best available technique.
4542 ///
4543 /// This attempts to promote whatever allocas have been identified as viable in
4544 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4545 /// This function returns whether any promotion occurred.
4546 bool SROA::promoteAllocas(Function &F) {
4547   if (PromotableAllocas.empty())
4548     return false;
4549 
4550   NumPromoted += PromotableAllocas.size();
4551 
4552   LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4553   PromoteMemToReg(PromotableAllocas, *DT, AC);
4554   PromotableAllocas.clear();
4555   return true;
4556 }
4557 
4558 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4559                                 AssumptionCache &RunAC) {
4560   LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4561   C = &F.getContext();
4562   DT = &RunDT;
4563   AC = &RunAC;
4564 
4565   BasicBlock &EntryBB = F.getEntryBlock();
4566   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4567        I != E; ++I) {
4568     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
4569       Worklist.insert(AI);
4570   }
4571 
4572   bool Changed = false;
4573   // A set of deleted alloca instruction pointers which should be removed from
4574   // the list of promotable allocas.
4575   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4576 
4577   do {
4578     while (!Worklist.empty()) {
4579       Changed |= runOnAlloca(*Worklist.pop_back_val());
4580       Changed |= deleteDeadInstructions(DeletedAllocas);
4581 
4582       // Remove the deleted allocas from various lists so that we don't try to
4583       // continue processing them.
4584       if (!DeletedAllocas.empty()) {
4585         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4586         Worklist.remove_if(IsInSet);
4587         PostPromotionWorklist.remove_if(IsInSet);
4588         PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet),
4589                                 PromotableAllocas.end());
4590         DeletedAllocas.clear();
4591       }
4592     }
4593 
4594     Changed |= promoteAllocas(F);
4595 
4596     Worklist = PostPromotionWorklist;
4597     PostPromotionWorklist.clear();
4598   } while (!Worklist.empty());
4599 
4600   if (!Changed)
4601     return PreservedAnalyses::all();
4602 
4603   PreservedAnalyses PA;
4604   PA.preserveSet<CFGAnalyses>();
4605   PA.preserve<GlobalsAA>();
4606   return PA;
4607 }
4608 
4609 PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) {
4610   return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4611                  AM.getResult<AssumptionAnalysis>(F));
4612 }
4613 
4614 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4615 ///
4616 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4617 /// SROA pass.
4618 class llvm::sroa::SROALegacyPass : public FunctionPass {
4619   /// The SROA implementation.
4620   SROA Impl;
4621 
4622 public:
4623   static char ID;
4624 
4625   SROALegacyPass() : FunctionPass(ID) {
4626     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4627   }
4628 
4629   bool runOnFunction(Function &F) override {
4630     if (skipFunction(F))
4631       return false;
4632 
4633     auto PA = Impl.runImpl(
4634         F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4635         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4636     return !PA.areAllPreserved();
4637   }
4638 
4639   void getAnalysisUsage(AnalysisUsage &AU) const override {
4640     AU.addRequired<AssumptionCacheTracker>();
4641     AU.addRequired<DominatorTreeWrapperPass>();
4642     AU.addPreserved<GlobalsAAWrapperPass>();
4643     AU.setPreservesCFG();
4644   }
4645 
4646   StringRef getPassName() const override { return "SROA"; }
4647 };
4648 
4649 char SROALegacyPass::ID = 0;
4650 
4651 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4652 
4653 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4654                       "Scalar Replacement Of Aggregates", false, false)
4655 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4656 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4657 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4658                     false, false)
4659