1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This transformation implements the well known scalar replacement of 10 /// aggregates transformation. It tries to identify promotable elements of an 11 /// aggregate alloca, and promote them to registers. It will also try to 12 /// convert uses of an element (or set of elements) of an alloca into a vector 13 /// or bitfield-style integer scalar if appropriate. 14 /// 15 /// It works to do this with minimal slicing of the alloca so that regions 16 /// which are merely transferred in and out of external memory remain unchanged 17 /// and are not decomposed to scalar code. 18 /// 19 /// Because this also performs alloca promotion, it can be thought of as also 20 /// serving the purpose of SSA formation. The algorithm iterates on the 21 /// function until all opportunities for promotion have been realized. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/SROA.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/PointerIntPair.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/ADT/iterator.h" 39 #include "llvm/ADT/iterator_range.h" 40 #include "llvm/Analysis/AssumptionCache.h" 41 #include "llvm/Analysis/DomTreeUpdater.h" 42 #include "llvm/Analysis/GlobalsModRef.h" 43 #include "llvm/Analysis/Loads.h" 44 #include "llvm/Analysis/PtrUseVisitor.h" 45 #include "llvm/Config/llvm-config.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/ConstantFolder.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DIBuilder.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DebugInfo.h" 53 #include "llvm/IR/DebugInfoMetadata.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Dominators.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/GlobalAlias.h" 59 #include "llvm/IR/IRBuilder.h" 60 #include "llvm/IR/InstVisitor.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/Transforms/Scalar.h" 82 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 85 #include <algorithm> 86 #include <cassert> 87 #include <cstddef> 88 #include <cstdint> 89 #include <cstring> 90 #include <iterator> 91 #include <string> 92 #include <tuple> 93 #include <utility> 94 #include <vector> 95 96 using namespace llvm; 97 using namespace llvm::sroa; 98 99 #define DEBUG_TYPE "sroa" 100 101 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 102 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 103 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 104 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 105 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 106 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 107 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 108 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 109 STATISTIC(NumLoadsPredicated, 110 "Number of loads rewritten into predicated loads to allow promotion"); 111 STATISTIC( 112 NumStoresPredicated, 113 "Number of stores rewritten into predicated loads to allow promotion"); 114 STATISTIC(NumDeleted, "Number of instructions deleted"); 115 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 116 117 /// Hidden option to experiment with completely strict handling of inbounds 118 /// GEPs. 119 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), 120 cl::Hidden); 121 /// Disable running mem2reg during SROA in order to test or debug SROA. 122 static cl::opt<bool> SROASkipMem2Reg("sroa-skip-mem2reg", cl::init(false), 123 cl::Hidden); 124 namespace { 125 126 /// Calculate the fragment of a variable to use when slicing a store 127 /// based on the slice dimensions, existing fragment, and base storage 128 /// fragment. 129 /// Results: 130 /// UseFrag - Use Target as the new fragment. 131 /// UseNoFrag - The new slice already covers the whole variable. 132 /// Skip - The new alloca slice doesn't include this variable. 133 /// FIXME: Can we use calculateFragmentIntersect instead? 134 enum FragCalcResult { UseFrag, UseNoFrag, Skip }; 135 static FragCalcResult 136 calculateFragment(DILocalVariable *Variable, 137 uint64_t NewStorageSliceOffsetInBits, 138 uint64_t NewStorageSliceSizeInBits, 139 std::optional<DIExpression::FragmentInfo> StorageFragment, 140 std::optional<DIExpression::FragmentInfo> CurrentFragment, 141 DIExpression::FragmentInfo &Target) { 142 // If the base storage describes part of the variable apply the offset and 143 // the size constraint. 144 if (StorageFragment) { 145 Target.SizeInBits = 146 std::min(NewStorageSliceSizeInBits, StorageFragment->SizeInBits); 147 Target.OffsetInBits = 148 NewStorageSliceOffsetInBits + StorageFragment->OffsetInBits; 149 } else { 150 Target.SizeInBits = NewStorageSliceSizeInBits; 151 Target.OffsetInBits = NewStorageSliceOffsetInBits; 152 } 153 154 // If this slice extracts the entirety of an independent variable from a 155 // larger alloca, do not produce a fragment expression, as the variable is 156 // not fragmented. 157 if (!CurrentFragment) { 158 if (auto Size = Variable->getSizeInBits()) { 159 // Treat the current fragment as covering the whole variable. 160 CurrentFragment = DIExpression::FragmentInfo(*Size, 0); 161 if (Target == CurrentFragment) 162 return UseNoFrag; 163 } 164 } 165 166 // No additional work to do if there isn't a fragment already, or there is 167 // but it already exactly describes the new assignment. 168 if (!CurrentFragment || *CurrentFragment == Target) 169 return UseFrag; 170 171 // Reject the target fragment if it doesn't fit wholly within the current 172 // fragment. TODO: We could instead chop up the target to fit in the case of 173 // a partial overlap. 174 if (Target.startInBits() < CurrentFragment->startInBits() || 175 Target.endInBits() > CurrentFragment->endInBits()) 176 return Skip; 177 178 // Target fits within the current fragment, return it. 179 return UseFrag; 180 } 181 182 static DebugVariable getAggregateVariable(DbgVariableIntrinsic *DVI) { 183 return DebugVariable(DVI->getVariable(), std::nullopt, 184 DVI->getDebugLoc().getInlinedAt()); 185 } 186 187 /// Find linked dbg.assign and generate a new one with the correct 188 /// FragmentInfo. Link Inst to the new dbg.assign. If Value is nullptr the 189 /// value component is copied from the old dbg.assign to the new. 190 /// \param OldAlloca Alloca for the variable before splitting. 191 /// \param IsSplit True if the store (not necessarily alloca) 192 /// is being split. 193 /// \param OldAllocaOffsetInBits Offset of the slice taken from OldAlloca. 194 /// \param SliceSizeInBits New number of bits being written to. 195 /// \param OldInst Instruction that is being split. 196 /// \param Inst New instruction performing this part of the 197 /// split store. 198 /// \param Dest Store destination. 199 /// \param Value Stored value. 200 /// \param DL Datalayout. 201 static void migrateDebugInfo(AllocaInst *OldAlloca, bool IsSplit, 202 uint64_t OldAllocaOffsetInBits, 203 uint64_t SliceSizeInBits, Instruction *OldInst, 204 Instruction *Inst, Value *Dest, Value *Value, 205 const DataLayout &DL) { 206 auto MarkerRange = at::getAssignmentMarkers(OldInst); 207 // Nothing to do if OldInst has no linked dbg.assign intrinsics. 208 if (MarkerRange.empty()) 209 return; 210 211 LLVM_DEBUG(dbgs() << " migrateDebugInfo\n"); 212 LLVM_DEBUG(dbgs() << " OldAlloca: " << *OldAlloca << "\n"); 213 LLVM_DEBUG(dbgs() << " IsSplit: " << IsSplit << "\n"); 214 LLVM_DEBUG(dbgs() << " OldAllocaOffsetInBits: " << OldAllocaOffsetInBits 215 << "\n"); 216 LLVM_DEBUG(dbgs() << " SliceSizeInBits: " << SliceSizeInBits << "\n"); 217 LLVM_DEBUG(dbgs() << " OldInst: " << *OldInst << "\n"); 218 LLVM_DEBUG(dbgs() << " Inst: " << *Inst << "\n"); 219 LLVM_DEBUG(dbgs() << " Dest: " << *Dest << "\n"); 220 if (Value) 221 LLVM_DEBUG(dbgs() << " Value: " << *Value << "\n"); 222 223 /// Map of aggregate variables to their fragment associated with OldAlloca. 224 DenseMap<DebugVariable, std::optional<DIExpression::FragmentInfo>> 225 BaseFragments; 226 for (auto *DAI : at::getAssignmentMarkers(OldAlloca)) 227 BaseFragments[getAggregateVariable(DAI)] = 228 DAI->getExpression()->getFragmentInfo(); 229 230 // The new inst needs a DIAssignID unique metadata tag (if OldInst has 231 // one). It shouldn't already have one: assert this assumption. 232 assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID)); 233 DIAssignID *NewID = nullptr; 234 auto &Ctx = Inst->getContext(); 235 DIBuilder DIB(*OldInst->getModule(), /*AllowUnresolved*/ false); 236 assert(OldAlloca->isStaticAlloca()); 237 238 for (DbgAssignIntrinsic *DbgAssign : MarkerRange) { 239 LLVM_DEBUG(dbgs() << " existing dbg.assign is: " << *DbgAssign 240 << "\n"); 241 auto *Expr = DbgAssign->getExpression(); 242 bool SetKillLocation = false; 243 244 if (IsSplit) { 245 std::optional<DIExpression::FragmentInfo> BaseFragment; 246 { 247 auto R = BaseFragments.find(getAggregateVariable(DbgAssign)); 248 if (R == BaseFragments.end()) 249 continue; 250 BaseFragment = R->second; 251 } 252 std::optional<DIExpression::FragmentInfo> CurrentFragment = 253 Expr->getFragmentInfo(); 254 DIExpression::FragmentInfo NewFragment; 255 FragCalcResult Result = calculateFragment( 256 DbgAssign->getVariable(), OldAllocaOffsetInBits, SliceSizeInBits, 257 BaseFragment, CurrentFragment, NewFragment); 258 259 if (Result == Skip) 260 continue; 261 if (Result == UseFrag && !(NewFragment == CurrentFragment)) { 262 if (CurrentFragment) { 263 // Rewrite NewFragment to be relative to the existing one (this is 264 // what createFragmentExpression wants). CalculateFragment has 265 // already resolved the size for us. FIXME: Should it return the 266 // relative fragment too? 267 NewFragment.OffsetInBits -= CurrentFragment->OffsetInBits; 268 } 269 // Add the new fragment info to the existing expression if possible. 270 if (auto E = DIExpression::createFragmentExpression( 271 Expr, NewFragment.OffsetInBits, NewFragment.SizeInBits)) { 272 Expr = *E; 273 } else { 274 // Otherwise, add the new fragment info to an empty expression and 275 // discard the value component of this dbg.assign as the value cannot 276 // be computed with the new fragment. 277 Expr = *DIExpression::createFragmentExpression( 278 DIExpression::get(Expr->getContext(), std::nullopt), 279 NewFragment.OffsetInBits, NewFragment.SizeInBits); 280 SetKillLocation = true; 281 } 282 } 283 } 284 285 // If we haven't created a DIAssignID ID do that now and attach it to Inst. 286 if (!NewID) { 287 NewID = DIAssignID::getDistinct(Ctx); 288 Inst->setMetadata(LLVMContext::MD_DIAssignID, NewID); 289 } 290 291 ::Value *NewValue = Value ? Value : DbgAssign->getValue(); 292 auto *NewAssign = DIB.insertDbgAssign( 293 Inst, NewValue, DbgAssign->getVariable(), Expr, Dest, 294 DIExpression::get(Ctx, std::nullopt), DbgAssign->getDebugLoc()); 295 296 // If we've updated the value but the original dbg.assign has an arglist 297 // then kill it now - we can't use the requested new value. 298 // We can't replace the DIArgList with the new value as it'd leave 299 // the DIExpression in an invalid state (DW_OP_LLVM_arg operands without 300 // an arglist). And we can't keep the DIArgList in case the linked store 301 // is being split - in which case the DIArgList + expression may no longer 302 // be computing the correct value. 303 // This should be a very rare situation as it requires the value being 304 // stored to differ from the dbg.assign (i.e., the value has been 305 // represented differently in the debug intrinsic for some reason). 306 SetKillLocation |= 307 Value && (DbgAssign->hasArgList() || 308 !DbgAssign->getExpression()->isSingleLocationExpression()); 309 if (SetKillLocation) 310 NewAssign->setKillLocation(); 311 312 // We could use more precision here at the cost of some additional (code) 313 // complexity - if the original dbg.assign was adjacent to its store, we 314 // could position this new dbg.assign adjacent to its store rather than the 315 // old dbg.assgn. That would result in interleaved dbg.assigns rather than 316 // what we get now: 317 // split store !1 318 // split store !2 319 // dbg.assign !1 320 // dbg.assign !2 321 // This (current behaviour) results results in debug assignments being 322 // noted as slightly offset (in code) from the store. In practice this 323 // should have little effect on the debugging experience due to the fact 324 // that all the split stores should get the same line number. 325 NewAssign->moveBefore(DbgAssign); 326 327 NewAssign->setDebugLoc(DbgAssign->getDebugLoc()); 328 LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign 329 << "\n"); 330 } 331 } 332 333 /// A custom IRBuilder inserter which prefixes all names, but only in 334 /// Assert builds. 335 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { 336 std::string Prefix; 337 338 Twine getNameWithPrefix(const Twine &Name) const { 339 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 340 } 341 342 public: 343 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 344 345 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 346 BasicBlock::iterator InsertPt) const override { 347 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, 348 InsertPt); 349 } 350 }; 351 352 /// Provide a type for IRBuilder that drops names in release builds. 353 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 354 355 /// A used slice of an alloca. 356 /// 357 /// This structure represents a slice of an alloca used by some instruction. It 358 /// stores both the begin and end offsets of this use, a pointer to the use 359 /// itself, and a flag indicating whether we can classify the use as splittable 360 /// or not when forming partitions of the alloca. 361 class Slice { 362 /// The beginning offset of the range. 363 uint64_t BeginOffset = 0; 364 365 /// The ending offset, not included in the range. 366 uint64_t EndOffset = 0; 367 368 /// Storage for both the use of this slice and whether it can be 369 /// split. 370 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 371 372 public: 373 Slice() = default; 374 375 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 376 : BeginOffset(BeginOffset), EndOffset(EndOffset), 377 UseAndIsSplittable(U, IsSplittable) {} 378 379 uint64_t beginOffset() const { return BeginOffset; } 380 uint64_t endOffset() const { return EndOffset; } 381 382 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 383 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 384 385 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 386 387 bool isDead() const { return getUse() == nullptr; } 388 void kill() { UseAndIsSplittable.setPointer(nullptr); } 389 390 /// Support for ordering ranges. 391 /// 392 /// This provides an ordering over ranges such that start offsets are 393 /// always increasing, and within equal start offsets, the end offsets are 394 /// decreasing. Thus the spanning range comes first in a cluster with the 395 /// same start position. 396 bool operator<(const Slice &RHS) const { 397 if (beginOffset() < RHS.beginOffset()) 398 return true; 399 if (beginOffset() > RHS.beginOffset()) 400 return false; 401 if (isSplittable() != RHS.isSplittable()) 402 return !isSplittable(); 403 if (endOffset() > RHS.endOffset()) 404 return true; 405 return false; 406 } 407 408 /// Support comparison with a single offset to allow binary searches. 409 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 410 uint64_t RHSOffset) { 411 return LHS.beginOffset() < RHSOffset; 412 } 413 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 414 const Slice &RHS) { 415 return LHSOffset < RHS.beginOffset(); 416 } 417 418 bool operator==(const Slice &RHS) const { 419 return isSplittable() == RHS.isSplittable() && 420 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 421 } 422 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 423 }; 424 425 } // end anonymous namespace 426 427 /// Representation of the alloca slices. 428 /// 429 /// This class represents the slices of an alloca which are formed by its 430 /// various uses. If a pointer escapes, we can't fully build a representation 431 /// for the slices used and we reflect that in this structure. The uses are 432 /// stored, sorted by increasing beginning offset and with unsplittable slices 433 /// starting at a particular offset before splittable slices. 434 class llvm::sroa::AllocaSlices { 435 public: 436 /// Construct the slices of a particular alloca. 437 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 438 439 /// Test whether a pointer to the allocation escapes our analysis. 440 /// 441 /// If this is true, the slices are never fully built and should be 442 /// ignored. 443 bool isEscaped() const { return PointerEscapingInstr; } 444 445 /// Support for iterating over the slices. 446 /// @{ 447 using iterator = SmallVectorImpl<Slice>::iterator; 448 using range = iterator_range<iterator>; 449 450 iterator begin() { return Slices.begin(); } 451 iterator end() { return Slices.end(); } 452 453 using const_iterator = SmallVectorImpl<Slice>::const_iterator; 454 using const_range = iterator_range<const_iterator>; 455 456 const_iterator begin() const { return Slices.begin(); } 457 const_iterator end() const { return Slices.end(); } 458 /// @} 459 460 /// Erase a range of slices. 461 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 462 463 /// Insert new slices for this alloca. 464 /// 465 /// This moves the slices into the alloca's slices collection, and re-sorts 466 /// everything so that the usual ordering properties of the alloca's slices 467 /// hold. 468 void insert(ArrayRef<Slice> NewSlices) { 469 int OldSize = Slices.size(); 470 Slices.append(NewSlices.begin(), NewSlices.end()); 471 auto SliceI = Slices.begin() + OldSize; 472 llvm::sort(SliceI, Slices.end()); 473 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 474 } 475 476 // Forward declare the iterator and range accessor for walking the 477 // partitions. 478 class partition_iterator; 479 iterator_range<partition_iterator> partitions(); 480 481 /// Access the dead users for this alloca. 482 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 483 484 /// Access Uses that should be dropped if the alloca is promotable. 485 ArrayRef<Use *> getDeadUsesIfPromotable() const { 486 return DeadUseIfPromotable; 487 } 488 489 /// Access the dead operands referring to this alloca. 490 /// 491 /// These are operands which have cannot actually be used to refer to the 492 /// alloca as they are outside its range and the user doesn't correct for 493 /// that. These mostly consist of PHI node inputs and the like which we just 494 /// need to replace with undef. 495 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 496 497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 498 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 499 void printSlice(raw_ostream &OS, const_iterator I, 500 StringRef Indent = " ") const; 501 void printUse(raw_ostream &OS, const_iterator I, 502 StringRef Indent = " ") const; 503 void print(raw_ostream &OS) const; 504 void dump(const_iterator I) const; 505 void dump() const; 506 #endif 507 508 private: 509 template <typename DerivedT, typename RetT = void> class BuilderBase; 510 class SliceBuilder; 511 512 friend class AllocaSlices::SliceBuilder; 513 514 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 515 /// Handle to alloca instruction to simplify method interfaces. 516 AllocaInst &AI; 517 #endif 518 519 /// The instruction responsible for this alloca not having a known set 520 /// of slices. 521 /// 522 /// When an instruction (potentially) escapes the pointer to the alloca, we 523 /// store a pointer to that here and abort trying to form slices of the 524 /// alloca. This will be null if the alloca slices are analyzed successfully. 525 Instruction *PointerEscapingInstr; 526 527 /// The slices of the alloca. 528 /// 529 /// We store a vector of the slices formed by uses of the alloca here. This 530 /// vector is sorted by increasing begin offset, and then the unsplittable 531 /// slices before the splittable ones. See the Slice inner class for more 532 /// details. 533 SmallVector<Slice, 8> Slices; 534 535 /// Instructions which will become dead if we rewrite the alloca. 536 /// 537 /// Note that these are not separated by slice. This is because we expect an 538 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 539 /// all these instructions can simply be removed and replaced with poison as 540 /// they come from outside of the allocated space. 541 SmallVector<Instruction *, 8> DeadUsers; 542 543 /// Uses which will become dead if can promote the alloca. 544 SmallVector<Use *, 8> DeadUseIfPromotable; 545 546 /// Operands which will become dead if we rewrite the alloca. 547 /// 548 /// These are operands that in their particular use can be replaced with 549 /// poison when we rewrite the alloca. These show up in out-of-bounds inputs 550 /// to PHI nodes and the like. They aren't entirely dead (there might be 551 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 552 /// want to swap this particular input for poison to simplify the use lists of 553 /// the alloca. 554 SmallVector<Use *, 8> DeadOperands; 555 }; 556 557 /// A partition of the slices. 558 /// 559 /// An ephemeral representation for a range of slices which can be viewed as 560 /// a partition of the alloca. This range represents a span of the alloca's 561 /// memory which cannot be split, and provides access to all of the slices 562 /// overlapping some part of the partition. 563 /// 564 /// Objects of this type are produced by traversing the alloca's slices, but 565 /// are only ephemeral and not persistent. 566 class llvm::sroa::Partition { 567 private: 568 friend class AllocaSlices; 569 friend class AllocaSlices::partition_iterator; 570 571 using iterator = AllocaSlices::iterator; 572 573 /// The beginning and ending offsets of the alloca for this 574 /// partition. 575 uint64_t BeginOffset = 0, EndOffset = 0; 576 577 /// The start and end iterators of this partition. 578 iterator SI, SJ; 579 580 /// A collection of split slice tails overlapping the partition. 581 SmallVector<Slice *, 4> SplitTails; 582 583 /// Raw constructor builds an empty partition starting and ending at 584 /// the given iterator. 585 Partition(iterator SI) : SI(SI), SJ(SI) {} 586 587 public: 588 /// The start offset of this partition. 589 /// 590 /// All of the contained slices start at or after this offset. 591 uint64_t beginOffset() const { return BeginOffset; } 592 593 /// The end offset of this partition. 594 /// 595 /// All of the contained slices end at or before this offset. 596 uint64_t endOffset() const { return EndOffset; } 597 598 /// The size of the partition. 599 /// 600 /// Note that this can never be zero. 601 uint64_t size() const { 602 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 603 return EndOffset - BeginOffset; 604 } 605 606 /// Test whether this partition contains no slices, and merely spans 607 /// a region occupied by split slices. 608 bool empty() const { return SI == SJ; } 609 610 /// \name Iterate slices that start within the partition. 611 /// These may be splittable or unsplittable. They have a begin offset >= the 612 /// partition begin offset. 613 /// @{ 614 // FIXME: We should probably define a "concat_iterator" helper and use that 615 // to stitch together pointee_iterators over the split tails and the 616 // contiguous iterators of the partition. That would give a much nicer 617 // interface here. We could then additionally expose filtered iterators for 618 // split, unsplit, and unsplittable splices based on the usage patterns. 619 iterator begin() const { return SI; } 620 iterator end() const { return SJ; } 621 /// @} 622 623 /// Get the sequence of split slice tails. 624 /// 625 /// These tails are of slices which start before this partition but are 626 /// split and overlap into the partition. We accumulate these while forming 627 /// partitions. 628 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 629 }; 630 631 /// An iterator over partitions of the alloca's slices. 632 /// 633 /// This iterator implements the core algorithm for partitioning the alloca's 634 /// slices. It is a forward iterator as we don't support backtracking for 635 /// efficiency reasons, and re-use a single storage area to maintain the 636 /// current set of split slices. 637 /// 638 /// It is templated on the slice iterator type to use so that it can operate 639 /// with either const or non-const slice iterators. 640 class AllocaSlices::partition_iterator 641 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 642 Partition> { 643 friend class AllocaSlices; 644 645 /// Most of the state for walking the partitions is held in a class 646 /// with a nice interface for examining them. 647 Partition P; 648 649 /// We need to keep the end of the slices to know when to stop. 650 AllocaSlices::iterator SE; 651 652 /// We also need to keep track of the maximum split end offset seen. 653 /// FIXME: Do we really? 654 uint64_t MaxSplitSliceEndOffset = 0; 655 656 /// Sets the partition to be empty at given iterator, and sets the 657 /// end iterator. 658 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 659 : P(SI), SE(SE) { 660 // If not already at the end, advance our state to form the initial 661 // partition. 662 if (SI != SE) 663 advance(); 664 } 665 666 /// Advance the iterator to the next partition. 667 /// 668 /// Requires that the iterator not be at the end of the slices. 669 void advance() { 670 assert((P.SI != SE || !P.SplitTails.empty()) && 671 "Cannot advance past the end of the slices!"); 672 673 // Clear out any split uses which have ended. 674 if (!P.SplitTails.empty()) { 675 if (P.EndOffset >= MaxSplitSliceEndOffset) { 676 // If we've finished all splits, this is easy. 677 P.SplitTails.clear(); 678 MaxSplitSliceEndOffset = 0; 679 } else { 680 // Remove the uses which have ended in the prior partition. This 681 // cannot change the max split slice end because we just checked that 682 // the prior partition ended prior to that max. 683 llvm::erase_if(P.SplitTails, 684 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }); 685 assert(llvm::any_of(P.SplitTails, 686 [&](Slice *S) { 687 return S->endOffset() == MaxSplitSliceEndOffset; 688 }) && 689 "Could not find the current max split slice offset!"); 690 assert(llvm::all_of(P.SplitTails, 691 [&](Slice *S) { 692 return S->endOffset() <= MaxSplitSliceEndOffset; 693 }) && 694 "Max split slice end offset is not actually the max!"); 695 } 696 } 697 698 // If P.SI is already at the end, then we've cleared the split tail and 699 // now have an end iterator. 700 if (P.SI == SE) { 701 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 702 return; 703 } 704 705 // If we had a non-empty partition previously, set up the state for 706 // subsequent partitions. 707 if (P.SI != P.SJ) { 708 // Accumulate all the splittable slices which started in the old 709 // partition into the split list. 710 for (Slice &S : P) 711 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 712 P.SplitTails.push_back(&S); 713 MaxSplitSliceEndOffset = 714 std::max(S.endOffset(), MaxSplitSliceEndOffset); 715 } 716 717 // Start from the end of the previous partition. 718 P.SI = P.SJ; 719 720 // If P.SI is now at the end, we at most have a tail of split slices. 721 if (P.SI == SE) { 722 P.BeginOffset = P.EndOffset; 723 P.EndOffset = MaxSplitSliceEndOffset; 724 return; 725 } 726 727 // If the we have split slices and the next slice is after a gap and is 728 // not splittable immediately form an empty partition for the split 729 // slices up until the next slice begins. 730 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 731 !P.SI->isSplittable()) { 732 P.BeginOffset = P.EndOffset; 733 P.EndOffset = P.SI->beginOffset(); 734 return; 735 } 736 } 737 738 // OK, we need to consume new slices. Set the end offset based on the 739 // current slice, and step SJ past it. The beginning offset of the 740 // partition is the beginning offset of the next slice unless we have 741 // pre-existing split slices that are continuing, in which case we begin 742 // at the prior end offset. 743 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 744 P.EndOffset = P.SI->endOffset(); 745 ++P.SJ; 746 747 // There are two strategies to form a partition based on whether the 748 // partition starts with an unsplittable slice or a splittable slice. 749 if (!P.SI->isSplittable()) { 750 // When we're forming an unsplittable region, it must always start at 751 // the first slice and will extend through its end. 752 assert(P.BeginOffset == P.SI->beginOffset()); 753 754 // Form a partition including all of the overlapping slices with this 755 // unsplittable slice. 756 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 757 if (!P.SJ->isSplittable()) 758 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 759 ++P.SJ; 760 } 761 762 // We have a partition across a set of overlapping unsplittable 763 // partitions. 764 return; 765 } 766 767 // If we're starting with a splittable slice, then we need to form 768 // a synthetic partition spanning it and any other overlapping splittable 769 // splices. 770 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 771 772 // Collect all of the overlapping splittable slices. 773 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 774 P.SJ->isSplittable()) { 775 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 776 ++P.SJ; 777 } 778 779 // Back upiP.EndOffset if we ended the span early when encountering an 780 // unsplittable slice. This synthesizes the early end offset of 781 // a partition spanning only splittable slices. 782 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 783 assert(!P.SJ->isSplittable()); 784 P.EndOffset = P.SJ->beginOffset(); 785 } 786 } 787 788 public: 789 bool operator==(const partition_iterator &RHS) const { 790 assert(SE == RHS.SE && 791 "End iterators don't match between compared partition iterators!"); 792 793 // The observed positions of partitions is marked by the P.SI iterator and 794 // the emptiness of the split slices. The latter is only relevant when 795 // P.SI == SE, as the end iterator will additionally have an empty split 796 // slices list, but the prior may have the same P.SI and a tail of split 797 // slices. 798 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 799 assert(P.SJ == RHS.P.SJ && 800 "Same set of slices formed two different sized partitions!"); 801 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 802 "Same slice position with differently sized non-empty split " 803 "slice tails!"); 804 return true; 805 } 806 return false; 807 } 808 809 partition_iterator &operator++() { 810 advance(); 811 return *this; 812 } 813 814 Partition &operator*() { return P; } 815 }; 816 817 /// A forward range over the partitions of the alloca's slices. 818 /// 819 /// This accesses an iterator range over the partitions of the alloca's 820 /// slices. It computes these partitions on the fly based on the overlapping 821 /// offsets of the slices and the ability to split them. It will visit "empty" 822 /// partitions to cover regions of the alloca only accessed via split 823 /// slices. 824 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 825 return make_range(partition_iterator(begin(), end()), 826 partition_iterator(end(), end())); 827 } 828 829 static Value *foldSelectInst(SelectInst &SI) { 830 // If the condition being selected on is a constant or the same value is 831 // being selected between, fold the select. Yes this does (rarely) happen 832 // early on. 833 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 834 return SI.getOperand(1 + CI->isZero()); 835 if (SI.getOperand(1) == SI.getOperand(2)) 836 return SI.getOperand(1); 837 838 return nullptr; 839 } 840 841 /// A helper that folds a PHI node or a select. 842 static Value *foldPHINodeOrSelectInst(Instruction &I) { 843 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 844 // If PN merges together the same value, return that value. 845 return PN->hasConstantValue(); 846 } 847 return foldSelectInst(cast<SelectInst>(I)); 848 } 849 850 /// Builder for the alloca slices. 851 /// 852 /// This class builds a set of alloca slices by recursively visiting the uses 853 /// of an alloca and making a slice for each load and store at each offset. 854 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 855 friend class PtrUseVisitor<SliceBuilder>; 856 friend class InstVisitor<SliceBuilder>; 857 858 using Base = PtrUseVisitor<SliceBuilder>; 859 860 const uint64_t AllocSize; 861 AllocaSlices &AS; 862 863 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 864 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 865 866 /// Set to de-duplicate dead instructions found in the use walk. 867 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 868 869 public: 870 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 871 : PtrUseVisitor<SliceBuilder>(DL), 872 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue()), 873 AS(AS) {} 874 875 private: 876 void markAsDead(Instruction &I) { 877 if (VisitedDeadInsts.insert(&I).second) 878 AS.DeadUsers.push_back(&I); 879 } 880 881 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 882 bool IsSplittable = false) { 883 // Completely skip uses which have a zero size or start either before or 884 // past the end of the allocation. 885 if (Size == 0 || Offset.uge(AllocSize)) { 886 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" 887 << Offset 888 << " which has zero size or starts outside of the " 889 << AllocSize << " byte alloca:\n" 890 << " alloca: " << AS.AI << "\n" 891 << " use: " << I << "\n"); 892 return markAsDead(I); 893 } 894 895 uint64_t BeginOffset = Offset.getZExtValue(); 896 uint64_t EndOffset = BeginOffset + Size; 897 898 // Clamp the end offset to the end of the allocation. Note that this is 899 // formulated to handle even the case where "BeginOffset + Size" overflows. 900 // This may appear superficially to be something we could ignore entirely, 901 // but that is not so! There may be widened loads or PHI-node uses where 902 // some instructions are dead but not others. We can't completely ignore 903 // them, and so have to record at least the information here. 904 assert(AllocSize >= BeginOffset); // Established above. 905 if (Size > AllocSize - BeginOffset) { 906 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" 907 << Offset << " to remain within the " << AllocSize 908 << " byte alloca:\n" 909 << " alloca: " << AS.AI << "\n" 910 << " use: " << I << "\n"); 911 EndOffset = AllocSize; 912 } 913 914 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 915 } 916 917 void visitBitCastInst(BitCastInst &BC) { 918 if (BC.use_empty()) 919 return markAsDead(BC); 920 921 return Base::visitBitCastInst(BC); 922 } 923 924 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 925 if (ASC.use_empty()) 926 return markAsDead(ASC); 927 928 return Base::visitAddrSpaceCastInst(ASC); 929 } 930 931 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 932 if (GEPI.use_empty()) 933 return markAsDead(GEPI); 934 935 if (SROAStrictInbounds && GEPI.isInBounds()) { 936 // FIXME: This is a manually un-factored variant of the basic code inside 937 // of GEPs with checking of the inbounds invariant specified in the 938 // langref in a very strict sense. If we ever want to enable 939 // SROAStrictInbounds, this code should be factored cleanly into 940 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 941 // by writing out the code here where we have the underlying allocation 942 // size readily available. 943 APInt GEPOffset = Offset; 944 const DataLayout &DL = GEPI.getModule()->getDataLayout(); 945 for (gep_type_iterator GTI = gep_type_begin(GEPI), 946 GTE = gep_type_end(GEPI); 947 GTI != GTE; ++GTI) { 948 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 949 if (!OpC) 950 break; 951 952 // Handle a struct index, which adds its field offset to the pointer. 953 if (StructType *STy = GTI.getStructTypeOrNull()) { 954 unsigned ElementIdx = OpC->getZExtValue(); 955 const StructLayout *SL = DL.getStructLayout(STy); 956 GEPOffset += 957 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 958 } else { 959 // For array or vector indices, scale the index by the size of the 960 // type. 961 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 962 GEPOffset += 963 Index * 964 APInt(Offset.getBitWidth(), 965 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedValue()); 966 } 967 968 // If this index has computed an intermediate pointer which is not 969 // inbounds, then the result of the GEP is a poison value and we can 970 // delete it and all uses. 971 if (GEPOffset.ugt(AllocSize)) 972 return markAsDead(GEPI); 973 } 974 } 975 976 return Base::visitGetElementPtrInst(GEPI); 977 } 978 979 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 980 uint64_t Size, bool IsVolatile) { 981 // We allow splitting of non-volatile loads and stores where the type is an 982 // integer type. These may be used to implement 'memcpy' or other "transfer 983 // of bits" patterns. 984 bool IsSplittable = 985 Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty); 986 987 insertUse(I, Offset, Size, IsSplittable); 988 } 989 990 void visitLoadInst(LoadInst &LI) { 991 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 992 "All simple FCA loads should have been pre-split"); 993 994 if (!IsOffsetKnown) 995 return PI.setAborted(&LI); 996 997 TypeSize Size = DL.getTypeStoreSize(LI.getType()); 998 if (Size.isScalable()) 999 return PI.setAborted(&LI); 1000 1001 return handleLoadOrStore(LI.getType(), LI, Offset, Size.getFixedValue(), 1002 LI.isVolatile()); 1003 } 1004 1005 void visitStoreInst(StoreInst &SI) { 1006 Value *ValOp = SI.getValueOperand(); 1007 if (ValOp == *U) 1008 return PI.setEscapedAndAborted(&SI); 1009 if (!IsOffsetKnown) 1010 return PI.setAborted(&SI); 1011 1012 TypeSize StoreSize = DL.getTypeStoreSize(ValOp->getType()); 1013 if (StoreSize.isScalable()) 1014 return PI.setAborted(&SI); 1015 1016 uint64_t Size = StoreSize.getFixedValue(); 1017 1018 // If this memory access can be shown to *statically* extend outside the 1019 // bounds of the allocation, it's behavior is undefined, so simply 1020 // ignore it. Note that this is more strict than the generic clamping 1021 // behavior of insertUse. We also try to handle cases which might run the 1022 // risk of overflow. 1023 // FIXME: We should instead consider the pointer to have escaped if this 1024 // function is being instrumented for addressing bugs or race conditions. 1025 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 1026 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" 1027 << Offset << " which extends past the end of the " 1028 << AllocSize << " byte alloca:\n" 1029 << " alloca: " << AS.AI << "\n" 1030 << " use: " << SI << "\n"); 1031 return markAsDead(SI); 1032 } 1033 1034 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 1035 "All simple FCA stores should have been pre-split"); 1036 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 1037 } 1038 1039 void visitMemSetInst(MemSetInst &II) { 1040 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 1041 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 1042 if ((Length && Length->getValue() == 0) || 1043 (IsOffsetKnown && Offset.uge(AllocSize))) 1044 // Zero-length mem transfer intrinsics can be ignored entirely. 1045 return markAsDead(II); 1046 1047 if (!IsOffsetKnown) 1048 return PI.setAborted(&II); 1049 1050 insertUse(II, Offset, Length ? Length->getLimitedValue() 1051 : AllocSize - Offset.getLimitedValue(), 1052 (bool)Length); 1053 } 1054 1055 void visitMemTransferInst(MemTransferInst &II) { 1056 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 1057 if (Length && Length->getValue() == 0) 1058 // Zero-length mem transfer intrinsics can be ignored entirely. 1059 return markAsDead(II); 1060 1061 // Because we can visit these intrinsics twice, also check to see if the 1062 // first time marked this instruction as dead. If so, skip it. 1063 if (VisitedDeadInsts.count(&II)) 1064 return; 1065 1066 if (!IsOffsetKnown) 1067 return PI.setAborted(&II); 1068 1069 // This side of the transfer is completely out-of-bounds, and so we can 1070 // nuke the entire transfer. However, we also need to nuke the other side 1071 // if already added to our partitions. 1072 // FIXME: Yet another place we really should bypass this when 1073 // instrumenting for ASan. 1074 if (Offset.uge(AllocSize)) { 1075 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 1076 MemTransferSliceMap.find(&II); 1077 if (MTPI != MemTransferSliceMap.end()) 1078 AS.Slices[MTPI->second].kill(); 1079 return markAsDead(II); 1080 } 1081 1082 uint64_t RawOffset = Offset.getLimitedValue(); 1083 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 1084 1085 // Check for the special case where the same exact value is used for both 1086 // source and dest. 1087 if (*U == II.getRawDest() && *U == II.getRawSource()) { 1088 // For non-volatile transfers this is a no-op. 1089 if (!II.isVolatile()) 1090 return markAsDead(II); 1091 1092 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 1093 } 1094 1095 // If we have seen both source and destination for a mem transfer, then 1096 // they both point to the same alloca. 1097 bool Inserted; 1098 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 1099 std::tie(MTPI, Inserted) = 1100 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 1101 unsigned PrevIdx = MTPI->second; 1102 if (!Inserted) { 1103 Slice &PrevP = AS.Slices[PrevIdx]; 1104 1105 // Check if the begin offsets match and this is a non-volatile transfer. 1106 // In that case, we can completely elide the transfer. 1107 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 1108 PrevP.kill(); 1109 return markAsDead(II); 1110 } 1111 1112 // Otherwise we have an offset transfer within the same alloca. We can't 1113 // split those. 1114 PrevP.makeUnsplittable(); 1115 } 1116 1117 // Insert the use now that we've fixed up the splittable nature. 1118 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 1119 1120 // Check that we ended up with a valid index in the map. 1121 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 1122 "Map index doesn't point back to a slice with this user."); 1123 } 1124 1125 // Disable SRoA for any intrinsics except for lifetime invariants and 1126 // invariant group. 1127 // FIXME: What about debug intrinsics? This matches old behavior, but 1128 // doesn't make sense. 1129 void visitIntrinsicInst(IntrinsicInst &II) { 1130 if (II.isDroppable()) { 1131 AS.DeadUseIfPromotable.push_back(U); 1132 return; 1133 } 1134 1135 if (!IsOffsetKnown) 1136 return PI.setAborted(&II); 1137 1138 if (II.isLifetimeStartOrEnd()) { 1139 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 1140 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 1141 Length->getLimitedValue()); 1142 insertUse(II, Offset, Size, true); 1143 return; 1144 } 1145 1146 if (II.isLaunderOrStripInvariantGroup()) { 1147 enqueueUsers(II); 1148 return; 1149 } 1150 1151 Base::visitIntrinsicInst(II); 1152 } 1153 1154 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 1155 // We consider any PHI or select that results in a direct load or store of 1156 // the same offset to be a viable use for slicing purposes. These uses 1157 // are considered unsplittable and the size is the maximum loaded or stored 1158 // size. 1159 SmallPtrSet<Instruction *, 4> Visited; 1160 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 1161 Visited.insert(Root); 1162 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 1163 const DataLayout &DL = Root->getModule()->getDataLayout(); 1164 // If there are no loads or stores, the access is dead. We mark that as 1165 // a size zero access. 1166 Size = 0; 1167 do { 1168 Instruction *I, *UsedI; 1169 std::tie(UsedI, I) = Uses.pop_back_val(); 1170 1171 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1172 Size = 1173 std::max(Size, DL.getTypeStoreSize(LI->getType()).getFixedValue()); 1174 continue; 1175 } 1176 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1177 Value *Op = SI->getOperand(0); 1178 if (Op == UsedI) 1179 return SI; 1180 Size = 1181 std::max(Size, DL.getTypeStoreSize(Op->getType()).getFixedValue()); 1182 continue; 1183 } 1184 1185 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 1186 if (!GEP->hasAllZeroIndices()) 1187 return GEP; 1188 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 1189 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) { 1190 return I; 1191 } 1192 1193 for (User *U : I->users()) 1194 if (Visited.insert(cast<Instruction>(U)).second) 1195 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 1196 } while (!Uses.empty()); 1197 1198 return nullptr; 1199 } 1200 1201 void visitPHINodeOrSelectInst(Instruction &I) { 1202 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 1203 if (I.use_empty()) 1204 return markAsDead(I); 1205 1206 // If this is a PHI node before a catchswitch, we cannot insert any non-PHI 1207 // instructions in this BB, which may be required during rewriting. Bail out 1208 // on these cases. 1209 if (isa<PHINode>(I) && 1210 I.getParent()->getFirstInsertionPt() == I.getParent()->end()) 1211 return PI.setAborted(&I); 1212 1213 // TODO: We could use simplifyInstruction here to fold PHINodes and 1214 // SelectInsts. However, doing so requires to change the current 1215 // dead-operand-tracking mechanism. For instance, suppose neither loading 1216 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 1217 // trap either. However, if we simply replace %U with undef using the 1218 // current dead-operand-tracking mechanism, "load (select undef, undef, 1219 // %other)" may trap because the select may return the first operand 1220 // "undef". 1221 if (Value *Result = foldPHINodeOrSelectInst(I)) { 1222 if (Result == *U) 1223 // If the result of the constant fold will be the pointer, recurse 1224 // through the PHI/select as if we had RAUW'ed it. 1225 enqueueUsers(I); 1226 else 1227 // Otherwise the operand to the PHI/select is dead, and we can replace 1228 // it with poison. 1229 AS.DeadOperands.push_back(U); 1230 1231 return; 1232 } 1233 1234 if (!IsOffsetKnown) 1235 return PI.setAborted(&I); 1236 1237 // See if we already have computed info on this node. 1238 uint64_t &Size = PHIOrSelectSizes[&I]; 1239 if (!Size) { 1240 // This is a new PHI/Select, check for an unsafe use of it. 1241 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 1242 return PI.setAborted(UnsafeI); 1243 } 1244 1245 // For PHI and select operands outside the alloca, we can't nuke the entire 1246 // phi or select -- the other side might still be relevant, so we special 1247 // case them here and use a separate structure to track the operands 1248 // themselves which should be replaced with poison. 1249 // FIXME: This should instead be escaped in the event we're instrumenting 1250 // for address sanitization. 1251 if (Offset.uge(AllocSize)) { 1252 AS.DeadOperands.push_back(U); 1253 return; 1254 } 1255 1256 insertUse(I, Offset, Size); 1257 } 1258 1259 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 1260 1261 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 1262 1263 /// Disable SROA entirely if there are unhandled users of the alloca. 1264 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 1265 }; 1266 1267 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 1268 : 1269 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1270 AI(AI), 1271 #endif 1272 PointerEscapingInstr(nullptr) { 1273 SliceBuilder PB(DL, AI, *this); 1274 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 1275 if (PtrI.isEscaped() || PtrI.isAborted()) { 1276 // FIXME: We should sink the escape vs. abort info into the caller nicely, 1277 // possibly by just storing the PtrInfo in the AllocaSlices. 1278 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 1279 : PtrI.getAbortingInst(); 1280 assert(PointerEscapingInstr && "Did not track a bad instruction"); 1281 return; 1282 } 1283 1284 llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); }); 1285 1286 // Sort the uses. This arranges for the offsets to be in ascending order, 1287 // and the sizes to be in descending order. 1288 llvm::stable_sort(Slices); 1289 } 1290 1291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1292 1293 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1294 StringRef Indent) const { 1295 printSlice(OS, I, Indent); 1296 OS << "\n"; 1297 printUse(OS, I, Indent); 1298 } 1299 1300 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1301 StringRef Indent) const { 1302 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1303 << " slice #" << (I - begin()) 1304 << (I->isSplittable() ? " (splittable)" : ""); 1305 } 1306 1307 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1308 StringRef Indent) const { 1309 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1310 } 1311 1312 void AllocaSlices::print(raw_ostream &OS) const { 1313 if (PointerEscapingInstr) { 1314 OS << "Can't analyze slices for alloca: " << AI << "\n" 1315 << " A pointer to this alloca escaped by:\n" 1316 << " " << *PointerEscapingInstr << "\n"; 1317 return; 1318 } 1319 1320 OS << "Slices of alloca: " << AI << "\n"; 1321 for (const_iterator I = begin(), E = end(); I != E; ++I) 1322 print(OS, I); 1323 } 1324 1325 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1326 print(dbgs(), I); 1327 } 1328 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1329 1330 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1331 1332 /// Walk the range of a partitioning looking for a common type to cover this 1333 /// sequence of slices. 1334 static std::pair<Type *, IntegerType *> 1335 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, 1336 uint64_t EndOffset) { 1337 Type *Ty = nullptr; 1338 bool TyIsCommon = true; 1339 IntegerType *ITy = nullptr; 1340 1341 // Note that we need to look at *every* alloca slice's Use to ensure we 1342 // always get consistent results regardless of the order of slices. 1343 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1344 Use *U = I->getUse(); 1345 if (isa<IntrinsicInst>(*U->getUser())) 1346 continue; 1347 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1348 continue; 1349 1350 Type *UserTy = nullptr; 1351 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1352 UserTy = LI->getType(); 1353 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1354 UserTy = SI->getValueOperand()->getType(); 1355 } 1356 1357 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1358 // If the type is larger than the partition, skip it. We only encounter 1359 // this for split integer operations where we want to use the type of the 1360 // entity causing the split. Also skip if the type is not a byte width 1361 // multiple. 1362 if (UserITy->getBitWidth() % 8 != 0 || 1363 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1364 continue; 1365 1366 // Track the largest bitwidth integer type used in this way in case there 1367 // is no common type. 1368 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1369 ITy = UserITy; 1370 } 1371 1372 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1373 // depend on types skipped above. 1374 if (!UserTy || (Ty && Ty != UserTy)) 1375 TyIsCommon = false; // Give up on anything but an iN type. 1376 else 1377 Ty = UserTy; 1378 } 1379 1380 return {TyIsCommon ? Ty : nullptr, ITy}; 1381 } 1382 1383 /// PHI instructions that use an alloca and are subsequently loaded can be 1384 /// rewritten to load both input pointers in the pred blocks and then PHI the 1385 /// results, allowing the load of the alloca to be promoted. 1386 /// From this: 1387 /// %P2 = phi [i32* %Alloca, i32* %Other] 1388 /// %V = load i32* %P2 1389 /// to: 1390 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1391 /// ... 1392 /// %V2 = load i32* %Other 1393 /// ... 1394 /// %V = phi [i32 %V1, i32 %V2] 1395 /// 1396 /// We can do this to a select if its only uses are loads and if the operands 1397 /// to the select can be loaded unconditionally. 1398 /// 1399 /// FIXME: This should be hoisted into a generic utility, likely in 1400 /// Transforms/Util/Local.h 1401 static bool isSafePHIToSpeculate(PHINode &PN) { 1402 const DataLayout &DL = PN.getModule()->getDataLayout(); 1403 1404 // For now, we can only do this promotion if the load is in the same block 1405 // as the PHI, and if there are no stores between the phi and load. 1406 // TODO: Allow recursive phi users. 1407 // TODO: Allow stores. 1408 BasicBlock *BB = PN.getParent(); 1409 Align MaxAlign; 1410 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); 1411 Type *LoadType = nullptr; 1412 for (User *U : PN.users()) { 1413 LoadInst *LI = dyn_cast<LoadInst>(U); 1414 if (!LI || !LI->isSimple()) 1415 return false; 1416 1417 // For now we only allow loads in the same block as the PHI. This is 1418 // a common case that happens when instcombine merges two loads through 1419 // a PHI. 1420 if (LI->getParent() != BB) 1421 return false; 1422 1423 if (LoadType) { 1424 if (LoadType != LI->getType()) 1425 return false; 1426 } else { 1427 LoadType = LI->getType(); 1428 } 1429 1430 // Ensure that there are no instructions between the PHI and the load that 1431 // could store. 1432 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1433 if (BBI->mayWriteToMemory()) 1434 return false; 1435 1436 MaxAlign = std::max(MaxAlign, LI->getAlign()); 1437 } 1438 1439 if (!LoadType) 1440 return false; 1441 1442 APInt LoadSize = 1443 APInt(APWidth, DL.getTypeStoreSize(LoadType).getFixedValue()); 1444 1445 // We can only transform this if it is safe to push the loads into the 1446 // predecessor blocks. The only thing to watch out for is that we can't put 1447 // a possibly trapping load in the predecessor if it is a critical edge. 1448 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1449 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1450 Value *InVal = PN.getIncomingValue(Idx); 1451 1452 // If the value is produced by the terminator of the predecessor (an 1453 // invoke) or it has side-effects, there is no valid place to put a load 1454 // in the predecessor. 1455 if (TI == InVal || TI->mayHaveSideEffects()) 1456 return false; 1457 1458 // If the predecessor has a single successor, then the edge isn't 1459 // critical. 1460 if (TI->getNumSuccessors() == 1) 1461 continue; 1462 1463 // If this pointer is always safe to load, or if we can prove that there 1464 // is already a load in the block, then we can move the load to the pred 1465 // block. 1466 if (isSafeToLoadUnconditionally(InVal, MaxAlign, LoadSize, DL, TI)) 1467 continue; 1468 1469 return false; 1470 } 1471 1472 return true; 1473 } 1474 1475 static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) { 1476 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 1477 1478 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1479 Type *LoadTy = SomeLoad->getType(); 1480 IRB.SetInsertPoint(&PN); 1481 PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1482 PN.getName() + ".sroa.speculated"); 1483 1484 // Get the AA tags and alignment to use from one of the loads. It does not 1485 // matter which one we get and if any differ. 1486 AAMDNodes AATags = SomeLoad->getAAMetadata(); 1487 Align Alignment = SomeLoad->getAlign(); 1488 1489 // Rewrite all loads of the PN to use the new PHI. 1490 while (!PN.use_empty()) { 1491 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1492 LI->replaceAllUsesWith(NewPN); 1493 LI->eraseFromParent(); 1494 } 1495 1496 // Inject loads into all of the pred blocks. 1497 DenseMap<BasicBlock*, Value*> InjectedLoads; 1498 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1499 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1500 Value *InVal = PN.getIncomingValue(Idx); 1501 1502 // A PHI node is allowed to have multiple (duplicated) entries for the same 1503 // basic block, as long as the value is the same. So if we already injected 1504 // a load in the predecessor, then we should reuse the same load for all 1505 // duplicated entries. 1506 if (Value* V = InjectedLoads.lookup(Pred)) { 1507 NewPN->addIncoming(V, Pred); 1508 continue; 1509 } 1510 1511 Instruction *TI = Pred->getTerminator(); 1512 IRB.SetInsertPoint(TI); 1513 1514 LoadInst *Load = IRB.CreateAlignedLoad( 1515 LoadTy, InVal, Alignment, 1516 (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1517 ++NumLoadsSpeculated; 1518 if (AATags) 1519 Load->setAAMetadata(AATags); 1520 NewPN->addIncoming(Load, Pred); 1521 InjectedLoads[Pred] = Load; 1522 } 1523 1524 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1525 PN.eraseFromParent(); 1526 } 1527 1528 sroa::SelectHandSpeculativity & 1529 sroa::SelectHandSpeculativity::setAsSpeculatable(bool isTrueVal) { 1530 if (isTrueVal) 1531 Bitfield::set<sroa::SelectHandSpeculativity::TrueVal>(Storage, true); 1532 else 1533 Bitfield::set<sroa::SelectHandSpeculativity::FalseVal>(Storage, true); 1534 return *this; 1535 } 1536 1537 bool sroa::SelectHandSpeculativity::isSpeculatable(bool isTrueVal) const { 1538 return isTrueVal 1539 ? Bitfield::get<sroa::SelectHandSpeculativity::TrueVal>(Storage) 1540 : Bitfield::get<sroa::SelectHandSpeculativity::FalseVal>(Storage); 1541 } 1542 1543 bool sroa::SelectHandSpeculativity::areAllSpeculatable() const { 1544 return isSpeculatable(/*isTrueVal=*/true) && 1545 isSpeculatable(/*isTrueVal=*/false); 1546 } 1547 1548 bool sroa::SelectHandSpeculativity::areAnySpeculatable() const { 1549 return isSpeculatable(/*isTrueVal=*/true) || 1550 isSpeculatable(/*isTrueVal=*/false); 1551 } 1552 bool sroa::SelectHandSpeculativity::areNoneSpeculatable() const { 1553 return !areAnySpeculatable(); 1554 } 1555 1556 static sroa::SelectHandSpeculativity 1557 isSafeLoadOfSelectToSpeculate(LoadInst &LI, SelectInst &SI, bool PreserveCFG) { 1558 assert(LI.isSimple() && "Only for simple loads"); 1559 sroa::SelectHandSpeculativity Spec; 1560 1561 const DataLayout &DL = SI.getModule()->getDataLayout(); 1562 for (Value *Value : {SI.getTrueValue(), SI.getFalseValue()}) 1563 if (isSafeToLoadUnconditionally(Value, LI.getType(), LI.getAlign(), DL, 1564 &LI)) 1565 Spec.setAsSpeculatable(/*isTrueVal=*/Value == SI.getTrueValue()); 1566 else if (PreserveCFG) 1567 return Spec; 1568 1569 return Spec; 1570 } 1571 1572 std::optional<sroa::RewriteableMemOps> 1573 SROAPass::isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG) { 1574 RewriteableMemOps Ops; 1575 1576 for (User *U : SI.users()) { 1577 if (auto *BC = dyn_cast<BitCastInst>(U); BC && BC->hasOneUse()) 1578 U = *BC->user_begin(); 1579 1580 if (auto *Store = dyn_cast<StoreInst>(U)) { 1581 // Note that atomic stores can be transformed; atomic semantics do not 1582 // have any meaning for a local alloca. Stores are not speculatable, 1583 // however, so if we can't turn it into a predicated store, we are done. 1584 if (Store->isVolatile() || PreserveCFG) 1585 return {}; // Give up on this `select`. 1586 Ops.emplace_back(Store); 1587 continue; 1588 } 1589 1590 auto *LI = dyn_cast<LoadInst>(U); 1591 1592 // Note that atomic loads can be transformed; 1593 // atomic semantics do not have any meaning for a local alloca. 1594 if (!LI || LI->isVolatile()) 1595 return {}; // Give up on this `select`. 1596 1597 PossiblySpeculatableLoad Load(LI); 1598 if (!LI->isSimple()) { 1599 // If the `load` is not simple, we can't speculatively execute it, 1600 // but we could handle this via a CFG modification. But can we? 1601 if (PreserveCFG) 1602 return {}; // Give up on this `select`. 1603 Ops.emplace_back(Load); 1604 continue; 1605 } 1606 1607 sroa::SelectHandSpeculativity Spec = 1608 isSafeLoadOfSelectToSpeculate(*LI, SI, PreserveCFG); 1609 if (PreserveCFG && !Spec.areAllSpeculatable()) 1610 return {}; // Give up on this `select`. 1611 1612 Load.setInt(Spec); 1613 Ops.emplace_back(Load); 1614 } 1615 1616 return Ops; 1617 } 1618 1619 static void speculateSelectInstLoads(SelectInst &SI, LoadInst &LI, 1620 IRBuilderTy &IRB) { 1621 LLVM_DEBUG(dbgs() << " original load: " << SI << "\n"); 1622 1623 Value *TV = SI.getTrueValue(); 1624 Value *FV = SI.getFalseValue(); 1625 // Replace the given load of the select with a select of two loads. 1626 1627 assert(LI.isSimple() && "We only speculate simple loads"); 1628 1629 IRB.SetInsertPoint(&LI); 1630 1631 LoadInst *TL = 1632 IRB.CreateAlignedLoad(LI.getType(), TV, LI.getAlign(), 1633 LI.getName() + ".sroa.speculate.load.true"); 1634 LoadInst *FL = 1635 IRB.CreateAlignedLoad(LI.getType(), FV, LI.getAlign(), 1636 LI.getName() + ".sroa.speculate.load.false"); 1637 NumLoadsSpeculated += 2; 1638 1639 // Transfer alignment and AA info if present. 1640 TL->setAlignment(LI.getAlign()); 1641 FL->setAlignment(LI.getAlign()); 1642 1643 AAMDNodes Tags = LI.getAAMetadata(); 1644 if (Tags) { 1645 TL->setAAMetadata(Tags); 1646 FL->setAAMetadata(Tags); 1647 } 1648 1649 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1650 LI.getName() + ".sroa.speculated"); 1651 1652 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1653 LI.replaceAllUsesWith(V); 1654 } 1655 1656 template <typename T> 1657 static void rewriteMemOpOfSelect(SelectInst &SI, T &I, 1658 sroa::SelectHandSpeculativity Spec, 1659 DomTreeUpdater &DTU) { 1660 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Only for load and store!"); 1661 LLVM_DEBUG(dbgs() << " original mem op: " << I << "\n"); 1662 BasicBlock *Head = I.getParent(); 1663 Instruction *ThenTerm = nullptr; 1664 Instruction *ElseTerm = nullptr; 1665 if (Spec.areNoneSpeculatable()) 1666 SplitBlockAndInsertIfThenElse(SI.getCondition(), &I, &ThenTerm, &ElseTerm, 1667 SI.getMetadata(LLVMContext::MD_prof), &DTU); 1668 else { 1669 SplitBlockAndInsertIfThen(SI.getCondition(), &I, /*Unreachable=*/false, 1670 SI.getMetadata(LLVMContext::MD_prof), &DTU, 1671 /*LI=*/nullptr, /*ThenBlock=*/nullptr); 1672 if (Spec.isSpeculatable(/*isTrueVal=*/true)) 1673 cast<BranchInst>(Head->getTerminator())->swapSuccessors(); 1674 } 1675 auto *HeadBI = cast<BranchInst>(Head->getTerminator()); 1676 Spec = {}; // Do not use `Spec` beyond this point. 1677 BasicBlock *Tail = I.getParent(); 1678 Tail->setName(Head->getName() + ".cont"); 1679 PHINode *PN; 1680 if (isa<LoadInst>(I)) 1681 PN = PHINode::Create(I.getType(), 2, "", &I); 1682 for (BasicBlock *SuccBB : successors(Head)) { 1683 bool IsThen = SuccBB == HeadBI->getSuccessor(0); 1684 int SuccIdx = IsThen ? 0 : 1; 1685 auto *NewMemOpBB = SuccBB == Tail ? Head : SuccBB; 1686 auto &CondMemOp = cast<T>(*I.clone()); 1687 if (NewMemOpBB != Head) { 1688 NewMemOpBB->setName(Head->getName() + (IsThen ? ".then" : ".else")); 1689 if (isa<LoadInst>(I)) 1690 ++NumLoadsPredicated; 1691 else 1692 ++NumStoresPredicated; 1693 } else { 1694 CondMemOp.dropUBImplyingAttrsAndMetadata(); 1695 ++NumLoadsSpeculated; 1696 } 1697 CondMemOp.insertBefore(NewMemOpBB->getTerminator()); 1698 Value *Ptr = SI.getOperand(1 + SuccIdx); 1699 CondMemOp.setOperand(I.getPointerOperandIndex(), Ptr); 1700 if (isa<LoadInst>(I)) { 1701 CondMemOp.setName(I.getName() + (IsThen ? ".then" : ".else") + ".val"); 1702 PN->addIncoming(&CondMemOp, NewMemOpBB); 1703 } else 1704 LLVM_DEBUG(dbgs() << " to: " << CondMemOp << "\n"); 1705 } 1706 if (isa<LoadInst>(I)) { 1707 PN->takeName(&I); 1708 LLVM_DEBUG(dbgs() << " to: " << *PN << "\n"); 1709 I.replaceAllUsesWith(PN); 1710 } 1711 } 1712 1713 static void rewriteMemOpOfSelect(SelectInst &SelInst, Instruction &I, 1714 sroa::SelectHandSpeculativity Spec, 1715 DomTreeUpdater &DTU) { 1716 if (auto *LI = dyn_cast<LoadInst>(&I)) 1717 rewriteMemOpOfSelect(SelInst, *LI, Spec, DTU); 1718 else if (auto *SI = dyn_cast<StoreInst>(&I)) 1719 rewriteMemOpOfSelect(SelInst, *SI, Spec, DTU); 1720 else 1721 llvm_unreachable_internal("Only for load and store."); 1722 } 1723 1724 static bool rewriteSelectInstMemOps(SelectInst &SI, 1725 const sroa::RewriteableMemOps &Ops, 1726 IRBuilderTy &IRB, DomTreeUpdater *DTU) { 1727 bool CFGChanged = false; 1728 LLVM_DEBUG(dbgs() << " original select: " << SI << "\n"); 1729 1730 for (const RewriteableMemOp &Op : Ops) { 1731 sroa::SelectHandSpeculativity Spec; 1732 Instruction *I; 1733 if (auto *const *US = std::get_if<UnspeculatableStore>(&Op)) { 1734 I = *US; 1735 } else { 1736 auto PSL = std::get<PossiblySpeculatableLoad>(Op); 1737 I = PSL.getPointer(); 1738 Spec = PSL.getInt(); 1739 } 1740 if (Spec.areAllSpeculatable()) { 1741 speculateSelectInstLoads(SI, cast<LoadInst>(*I), IRB); 1742 } else { 1743 assert(DTU && "Should not get here when not allowed to modify the CFG!"); 1744 rewriteMemOpOfSelect(SI, *I, Spec, *DTU); 1745 CFGChanged = true; 1746 } 1747 I->eraseFromParent(); 1748 } 1749 1750 for (User *U : make_early_inc_range(SI.users())) 1751 cast<BitCastInst>(U)->eraseFromParent(); 1752 SI.eraseFromParent(); 1753 return CFGChanged; 1754 } 1755 1756 /// Compute an adjusted pointer from Ptr by Offset bytes where the 1757 /// resulting pointer has PointerTy. 1758 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1759 APInt Offset, Type *PointerTy, 1760 const Twine &NamePrefix) { 1761 if (Offset != 0) 1762 Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset), 1763 NamePrefix + "sroa_idx"); 1764 return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy, 1765 NamePrefix + "sroa_cast"); 1766 } 1767 1768 /// Compute the adjusted alignment for a load or store from an offset. 1769 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { 1770 return commonAlignment(getLoadStoreAlignment(I), Offset); 1771 } 1772 1773 /// Test whether we can convert a value from the old to the new type. 1774 /// 1775 /// This predicate should be used to guard calls to convertValue in order to 1776 /// ensure that we only try to convert viable values. The strategy is that we 1777 /// will peel off single element struct and array wrappings to get to an 1778 /// underlying value, and convert that value. 1779 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1780 if (OldTy == NewTy) 1781 return true; 1782 1783 // For integer types, we can't handle any bit-width differences. This would 1784 // break both vector conversions with extension and introduce endianness 1785 // issues when in conjunction with loads and stores. 1786 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1787 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1788 cast<IntegerType>(NewTy)->getBitWidth() && 1789 "We can't have the same bitwidth for different int types"); 1790 return false; 1791 } 1792 1793 if (DL.getTypeSizeInBits(NewTy).getFixedValue() != 1794 DL.getTypeSizeInBits(OldTy).getFixedValue()) 1795 return false; 1796 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1797 return false; 1798 1799 // We can convert pointers to integers and vice-versa. Same for vectors 1800 // of pointers and integers. 1801 OldTy = OldTy->getScalarType(); 1802 NewTy = NewTy->getScalarType(); 1803 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1804 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1805 unsigned OldAS = OldTy->getPointerAddressSpace(); 1806 unsigned NewAS = NewTy->getPointerAddressSpace(); 1807 // Convert pointers if they are pointers from the same address space or 1808 // different integral (not non-integral) address spaces with the same 1809 // pointer size. 1810 return OldAS == NewAS || 1811 (!DL.isNonIntegralAddressSpace(OldAS) && 1812 !DL.isNonIntegralAddressSpace(NewAS) && 1813 DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1814 } 1815 1816 // We can convert integers to integral pointers, but not to non-integral 1817 // pointers. 1818 if (OldTy->isIntegerTy()) 1819 return !DL.isNonIntegralPointerType(NewTy); 1820 1821 // We can convert integral pointers to integers, but non-integral pointers 1822 // need to remain pointers. 1823 if (!DL.isNonIntegralPointerType(OldTy)) 1824 return NewTy->isIntegerTy(); 1825 1826 return false; 1827 } 1828 1829 if (OldTy->isTargetExtTy() || NewTy->isTargetExtTy()) 1830 return false; 1831 1832 return true; 1833 } 1834 1835 /// Generic routine to convert an SSA value to a value of a different 1836 /// type. 1837 /// 1838 /// This will try various different casting techniques, such as bitcasts, 1839 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1840 /// two types for viability with this routine. 1841 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1842 Type *NewTy) { 1843 Type *OldTy = V->getType(); 1844 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1845 1846 if (OldTy == NewTy) 1847 return V; 1848 1849 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1850 "Integer types must be the exact same to convert."); 1851 1852 // See if we need inttoptr for this type pair. May require additional bitcast. 1853 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1854 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1855 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1856 // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*> 1857 // Directly handle i64 to i8* 1858 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1859 NewTy); 1860 } 1861 1862 // See if we need ptrtoint for this type pair. May require additional bitcast. 1863 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { 1864 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1865 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1866 // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32> 1867 // Expand i8* to i64 --> i8* to i64 to i64 1868 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1869 NewTy); 1870 } 1871 1872 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1873 unsigned OldAS = OldTy->getPointerAddressSpace(); 1874 unsigned NewAS = NewTy->getPointerAddressSpace(); 1875 // To convert pointers with different address spaces (they are already 1876 // checked convertible, i.e. they have the same pointer size), so far we 1877 // cannot use `bitcast` (which has restrict on the same address space) or 1878 // `addrspacecast` (which is not always no-op casting). Instead, use a pair 1879 // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit 1880 // size. 1881 if (OldAS != NewAS) { 1882 assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1883 return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1884 NewTy); 1885 } 1886 } 1887 1888 return IRB.CreateBitCast(V, NewTy); 1889 } 1890 1891 /// Test whether the given slice use can be promoted to a vector. 1892 /// 1893 /// This function is called to test each entry in a partition which is slated 1894 /// for a single slice. 1895 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 1896 VectorType *Ty, 1897 uint64_t ElementSize, 1898 const DataLayout &DL) { 1899 // First validate the slice offsets. 1900 uint64_t BeginOffset = 1901 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 1902 uint64_t BeginIndex = BeginOffset / ElementSize; 1903 if (BeginIndex * ElementSize != BeginOffset || 1904 BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements()) 1905 return false; 1906 uint64_t EndOffset = 1907 std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 1908 uint64_t EndIndex = EndOffset / ElementSize; 1909 if (EndIndex * ElementSize != EndOffset || 1910 EndIndex > cast<FixedVectorType>(Ty)->getNumElements()) 1911 return false; 1912 1913 assert(EndIndex > BeginIndex && "Empty vector!"); 1914 uint64_t NumElements = EndIndex - BeginIndex; 1915 Type *SliceTy = (NumElements == 1) 1916 ? Ty->getElementType() 1917 : FixedVectorType::get(Ty->getElementType(), NumElements); 1918 1919 Type *SplitIntTy = 1920 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1921 1922 Use *U = S.getUse(); 1923 1924 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1925 if (MI->isVolatile()) 1926 return false; 1927 if (!S.isSplittable()) 1928 return false; // Skip any unsplittable intrinsics. 1929 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1930 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 1931 return false; 1932 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1933 if (LI->isVolatile()) 1934 return false; 1935 Type *LTy = LI->getType(); 1936 // Disable vector promotion when there are loads or stores of an FCA. 1937 if (LTy->isStructTy()) 1938 return false; 1939 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1940 assert(LTy->isIntegerTy()); 1941 LTy = SplitIntTy; 1942 } 1943 if (!canConvertValue(DL, SliceTy, LTy)) 1944 return false; 1945 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1946 if (SI->isVolatile()) 1947 return false; 1948 Type *STy = SI->getValueOperand()->getType(); 1949 // Disable vector promotion when there are loads or stores of an FCA. 1950 if (STy->isStructTy()) 1951 return false; 1952 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1953 assert(STy->isIntegerTy()); 1954 STy = SplitIntTy; 1955 } 1956 if (!canConvertValue(DL, STy, SliceTy)) 1957 return false; 1958 } else { 1959 return false; 1960 } 1961 1962 return true; 1963 } 1964 1965 /// Test whether a vector type is viable for promotion. 1966 /// 1967 /// This implements the necessary checking for \c isVectorPromotionViable over 1968 /// all slices of the alloca for the given VectorType. 1969 static bool checkVectorTypeForPromotion(Partition &P, VectorType *VTy, 1970 const DataLayout &DL) { 1971 uint64_t ElementSize = 1972 DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue(); 1973 1974 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1975 // that aren't byte sized. 1976 if (ElementSize % 8) 1977 return false; 1978 assert((DL.getTypeSizeInBits(VTy).getFixedValue() % 8) == 0 && 1979 "vector size not a multiple of element size?"); 1980 ElementSize /= 8; 1981 1982 for (const Slice &S : P) 1983 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 1984 return false; 1985 1986 for (const Slice *S : P.splitSliceTails()) 1987 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 1988 return false; 1989 1990 return true; 1991 } 1992 1993 /// Test whether the given alloca partitioning and range of slices can be 1994 /// promoted to a vector. 1995 /// 1996 /// This is a quick test to check whether we can rewrite a particular alloca 1997 /// partition (and its newly formed alloca) into a vector alloca with only 1998 /// whole-vector loads and stores such that it could be promoted to a vector 1999 /// SSA value. We only can ensure this for a limited set of operations, and we 2000 /// don't want to do the rewrites unless we are confident that the result will 2001 /// be promotable, so we have an early test here. 2002 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 2003 // Collect the candidate types for vector-based promotion. Also track whether 2004 // we have different element types. 2005 SmallVector<VectorType *, 4> CandidateTys; 2006 SetVector<Type *> LoadStoreTys; 2007 Type *CommonEltTy = nullptr; 2008 VectorType *CommonVecPtrTy = nullptr; 2009 bool HaveVecPtrTy = false; 2010 bool HaveCommonEltTy = true; 2011 bool HaveCommonVecPtrTy = true; 2012 auto CheckCandidateType = [&](Type *Ty) { 2013 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2014 // Return if bitcast to vectors is different for total size in bits. 2015 if (!CandidateTys.empty()) { 2016 VectorType *V = CandidateTys[0]; 2017 if (DL.getTypeSizeInBits(VTy).getFixedValue() != 2018 DL.getTypeSizeInBits(V).getFixedValue()) { 2019 CandidateTys.clear(); 2020 return; 2021 } 2022 } 2023 CandidateTys.push_back(VTy); 2024 Type *EltTy = VTy->getElementType(); 2025 2026 if (!CommonEltTy) 2027 CommonEltTy = EltTy; 2028 else if (CommonEltTy != EltTy) 2029 HaveCommonEltTy = false; 2030 2031 if (EltTy->isPointerTy()) { 2032 HaveVecPtrTy = true; 2033 if (!CommonVecPtrTy) 2034 CommonVecPtrTy = VTy; 2035 else if (CommonVecPtrTy != VTy) 2036 HaveCommonVecPtrTy = false; 2037 } 2038 } 2039 }; 2040 // Put load and store types into a set for de-duplication. 2041 for (const Slice &S : P) { 2042 Type *Ty; 2043 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 2044 Ty = LI->getType(); 2045 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 2046 Ty = SI->getValueOperand()->getType(); 2047 else 2048 continue; 2049 LoadStoreTys.insert(Ty); 2050 // Consider any loads or stores that are the exact size of the slice. 2051 if (S.beginOffset() == P.beginOffset() && S.endOffset() == P.endOffset()) 2052 CheckCandidateType(Ty); 2053 } 2054 // Consider additional vector types where the element type size is a 2055 // multiple of load/store element size. 2056 for (Type *Ty : LoadStoreTys) { 2057 if (!VectorType::isValidElementType(Ty)) 2058 continue; 2059 unsigned TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue(); 2060 // Make a copy of CandidateTys and iterate through it, because we might 2061 // append to CandidateTys in the loop. 2062 SmallVector<VectorType *, 4> CandidateTysCopy = CandidateTys; 2063 for (VectorType *&VTy : CandidateTysCopy) { 2064 unsigned VectorSize = DL.getTypeSizeInBits(VTy).getFixedValue(); 2065 unsigned ElementSize = 2066 DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue(); 2067 if (TypeSize != VectorSize && TypeSize != ElementSize && 2068 VectorSize % TypeSize == 0) { 2069 VectorType *NewVTy = VectorType::get(Ty, VectorSize / TypeSize, false); 2070 CheckCandidateType(NewVTy); 2071 } 2072 } 2073 } 2074 2075 // If we didn't find a vector type, nothing to do here. 2076 if (CandidateTys.empty()) 2077 return nullptr; 2078 2079 // Pointer-ness is sticky, if we had a vector-of-pointers candidate type, 2080 // then we should choose it, not some other alternative. 2081 // But, we can't perform a no-op pointer address space change via bitcast, 2082 // so if we didn't have a common pointer element type, bail. 2083 if (HaveVecPtrTy && !HaveCommonVecPtrTy) 2084 return nullptr; 2085 2086 // Try to pick the "best" element type out of the choices. 2087 if (!HaveCommonEltTy && HaveVecPtrTy) { 2088 // If there was a pointer element type, there's really only one choice. 2089 CandidateTys.clear(); 2090 CandidateTys.push_back(CommonVecPtrTy); 2091 } else if (!HaveCommonEltTy && !HaveVecPtrTy) { 2092 // Integer-ify vector types. 2093 for (VectorType *&VTy : CandidateTys) { 2094 if (!VTy->getElementType()->isIntegerTy()) 2095 VTy = cast<VectorType>(VTy->getWithNewType(IntegerType::getIntNTy( 2096 VTy->getContext(), VTy->getScalarSizeInBits()))); 2097 } 2098 2099 // Rank the remaining candidate vector types. This is easy because we know 2100 // they're all integer vectors. We sort by ascending number of elements. 2101 auto RankVectorTypesComp = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 2102 (void)DL; 2103 assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() == 2104 DL.getTypeSizeInBits(LHSTy).getFixedValue() && 2105 "Cannot have vector types of different sizes!"); 2106 assert(RHSTy->getElementType()->isIntegerTy() && 2107 "All non-integer types eliminated!"); 2108 assert(LHSTy->getElementType()->isIntegerTy() && 2109 "All non-integer types eliminated!"); 2110 return cast<FixedVectorType>(RHSTy)->getNumElements() < 2111 cast<FixedVectorType>(LHSTy)->getNumElements(); 2112 }; 2113 auto RankVectorTypesEq = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 2114 (void)DL; 2115 assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() == 2116 DL.getTypeSizeInBits(LHSTy).getFixedValue() && 2117 "Cannot have vector types of different sizes!"); 2118 assert(RHSTy->getElementType()->isIntegerTy() && 2119 "All non-integer types eliminated!"); 2120 assert(LHSTy->getElementType()->isIntegerTy() && 2121 "All non-integer types eliminated!"); 2122 return cast<FixedVectorType>(RHSTy)->getNumElements() == 2123 cast<FixedVectorType>(LHSTy)->getNumElements(); 2124 }; 2125 llvm::sort(CandidateTys, RankVectorTypesComp); 2126 CandidateTys.erase(std::unique(CandidateTys.begin(), CandidateTys.end(), 2127 RankVectorTypesEq), 2128 CandidateTys.end()); 2129 } else { 2130 // The only way to have the same element type in every vector type is to 2131 // have the same vector type. Check that and remove all but one. 2132 #ifndef NDEBUG 2133 for (VectorType *VTy : CandidateTys) { 2134 assert(VTy->getElementType() == CommonEltTy && 2135 "Unaccounted for element type!"); 2136 assert(VTy == CandidateTys[0] && 2137 "Different vector types with the same element type!"); 2138 } 2139 #endif 2140 CandidateTys.resize(1); 2141 } 2142 2143 // FIXME: hack. Do we have a named constant for this? 2144 // SDAG SDNode can't have more than 65535 operands. 2145 llvm::erase_if(CandidateTys, [](VectorType *VTy) { 2146 return cast<FixedVectorType>(VTy)->getNumElements() > 2147 std::numeric_limits<unsigned short>::max(); 2148 }); 2149 2150 for (VectorType *VTy : CandidateTys) 2151 if (checkVectorTypeForPromotion(P, VTy, DL)) 2152 return VTy; 2153 2154 return nullptr; 2155 } 2156 2157 /// Test whether a slice of an alloca is valid for integer widening. 2158 /// 2159 /// This implements the necessary checking for the \c isIntegerWideningViable 2160 /// test below on a single slice of the alloca. 2161 static bool isIntegerWideningViableForSlice(const Slice &S, 2162 uint64_t AllocBeginOffset, 2163 Type *AllocaTy, 2164 const DataLayout &DL, 2165 bool &WholeAllocaOp) { 2166 uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedValue(); 2167 2168 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 2169 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 2170 2171 Use *U = S.getUse(); 2172 2173 // Lifetime intrinsics operate over the whole alloca whose sizes are usually 2174 // larger than other load/store slices (RelEnd > Size). But lifetime are 2175 // always promotable and should not impact other slices' promotability of the 2176 // partition. 2177 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 2178 if (II->isLifetimeStartOrEnd() || II->isDroppable()) 2179 return true; 2180 } 2181 2182 // We can't reasonably handle cases where the load or store extends past 2183 // the end of the alloca's type and into its padding. 2184 if (RelEnd > Size) 2185 return false; 2186 2187 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 2188 if (LI->isVolatile()) 2189 return false; 2190 // We can't handle loads that extend past the allocated memory. 2191 if (DL.getTypeStoreSize(LI->getType()).getFixedValue() > Size) 2192 return false; 2193 // So far, AllocaSliceRewriter does not support widening split slice tails 2194 // in rewriteIntegerLoad. 2195 if (S.beginOffset() < AllocBeginOffset) 2196 return false; 2197 // Note that we don't count vector loads or stores as whole-alloca 2198 // operations which enable integer widening because we would prefer to use 2199 // vector widening instead. 2200 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 2201 WholeAllocaOp = true; 2202 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 2203 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue()) 2204 return false; 2205 } else if (RelBegin != 0 || RelEnd != Size || 2206 !canConvertValue(DL, AllocaTy, LI->getType())) { 2207 // Non-integer loads need to be convertible from the alloca type so that 2208 // they are promotable. 2209 return false; 2210 } 2211 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2212 Type *ValueTy = SI->getValueOperand()->getType(); 2213 if (SI->isVolatile()) 2214 return false; 2215 // We can't handle stores that extend past the allocated memory. 2216 if (DL.getTypeStoreSize(ValueTy).getFixedValue() > Size) 2217 return false; 2218 // So far, AllocaSliceRewriter does not support widening split slice tails 2219 // in rewriteIntegerStore. 2220 if (S.beginOffset() < AllocBeginOffset) 2221 return false; 2222 // Note that we don't count vector loads or stores as whole-alloca 2223 // operations which enable integer widening because we would prefer to use 2224 // vector widening instead. 2225 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 2226 WholeAllocaOp = true; 2227 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 2228 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue()) 2229 return false; 2230 } else if (RelBegin != 0 || RelEnd != Size || 2231 !canConvertValue(DL, ValueTy, AllocaTy)) { 2232 // Non-integer stores need to be convertible to the alloca type so that 2233 // they are promotable. 2234 return false; 2235 } 2236 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2237 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 2238 return false; 2239 if (!S.isSplittable()) 2240 return false; // Skip any unsplittable intrinsics. 2241 } else { 2242 return false; 2243 } 2244 2245 return true; 2246 } 2247 2248 /// Test whether the given alloca partition's integer operations can be 2249 /// widened to promotable ones. 2250 /// 2251 /// This is a quick test to check whether we can rewrite the integer loads and 2252 /// stores to a particular alloca into wider loads and stores and be able to 2253 /// promote the resulting alloca. 2254 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 2255 const DataLayout &DL) { 2256 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedValue(); 2257 // Don't create integer types larger than the maximum bitwidth. 2258 if (SizeInBits > IntegerType::MAX_INT_BITS) 2259 return false; 2260 2261 // Don't try to handle allocas with bit-padding. 2262 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedValue()) 2263 return false; 2264 2265 // We need to ensure that an integer type with the appropriate bitwidth can 2266 // be converted to the alloca type, whatever that is. We don't want to force 2267 // the alloca itself to have an integer type if there is a more suitable one. 2268 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 2269 if (!canConvertValue(DL, AllocaTy, IntTy) || 2270 !canConvertValue(DL, IntTy, AllocaTy)) 2271 return false; 2272 2273 // While examining uses, we ensure that the alloca has a covering load or 2274 // store. We don't want to widen the integer operations only to fail to 2275 // promote due to some other unsplittable entry (which we may make splittable 2276 // later). However, if there are only splittable uses, go ahead and assume 2277 // that we cover the alloca. 2278 // FIXME: We shouldn't consider split slices that happen to start in the 2279 // partition here... 2280 bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits); 2281 2282 for (const Slice &S : P) 2283 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 2284 WholeAllocaOp)) 2285 return false; 2286 2287 for (const Slice *S : P.splitSliceTails()) 2288 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2289 WholeAllocaOp)) 2290 return false; 2291 2292 return WholeAllocaOp; 2293 } 2294 2295 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2296 IntegerType *Ty, uint64_t Offset, 2297 const Twine &Name) { 2298 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2299 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2300 assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <= 2301 DL.getTypeStoreSize(IntTy).getFixedValue() && 2302 "Element extends past full value"); 2303 uint64_t ShAmt = 8 * Offset; 2304 if (DL.isBigEndian()) 2305 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() - 2306 DL.getTypeStoreSize(Ty).getFixedValue() - Offset); 2307 if (ShAmt) { 2308 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2309 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2310 } 2311 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2312 "Cannot extract to a larger integer!"); 2313 if (Ty != IntTy) { 2314 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2315 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); 2316 } 2317 return V; 2318 } 2319 2320 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2321 Value *V, uint64_t Offset, const Twine &Name) { 2322 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2323 IntegerType *Ty = cast<IntegerType>(V->getType()); 2324 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2325 "Cannot insert a larger integer!"); 2326 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2327 if (Ty != IntTy) { 2328 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2329 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); 2330 } 2331 assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <= 2332 DL.getTypeStoreSize(IntTy).getFixedValue() && 2333 "Element store outside of alloca store"); 2334 uint64_t ShAmt = 8 * Offset; 2335 if (DL.isBigEndian()) 2336 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() - 2337 DL.getTypeStoreSize(Ty).getFixedValue() - Offset); 2338 if (ShAmt) { 2339 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2340 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2341 } 2342 2343 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2344 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2345 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2346 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); 2347 V = IRB.CreateOr(Old, V, Name + ".insert"); 2348 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); 2349 } 2350 return V; 2351 } 2352 2353 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2354 unsigned EndIndex, const Twine &Name) { 2355 auto *VecTy = cast<FixedVectorType>(V->getType()); 2356 unsigned NumElements = EndIndex - BeginIndex; 2357 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2358 2359 if (NumElements == VecTy->getNumElements()) 2360 return V; 2361 2362 if (NumElements == 1) { 2363 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2364 Name + ".extract"); 2365 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); 2366 return V; 2367 } 2368 2369 auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex)); 2370 V = IRB.CreateShuffleVector(V, Mask, Name + ".extract"); 2371 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2372 return V; 2373 } 2374 2375 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2376 unsigned BeginIndex, const Twine &Name) { 2377 VectorType *VecTy = cast<VectorType>(Old->getType()); 2378 assert(VecTy && "Can only insert a vector into a vector"); 2379 2380 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2381 if (!Ty) { 2382 // Single element to insert. 2383 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2384 Name + ".insert"); 2385 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); 2386 return V; 2387 } 2388 2389 assert(cast<FixedVectorType>(Ty)->getNumElements() <= 2390 cast<FixedVectorType>(VecTy)->getNumElements() && 2391 "Too many elements!"); 2392 if (cast<FixedVectorType>(Ty)->getNumElements() == 2393 cast<FixedVectorType>(VecTy)->getNumElements()) { 2394 assert(V->getType() == VecTy && "Vector type mismatch"); 2395 return V; 2396 } 2397 unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements(); 2398 2399 // When inserting a smaller vector into the larger to store, we first 2400 // use a shuffle vector to widen it with undef elements, and then 2401 // a second shuffle vector to select between the loaded vector and the 2402 // incoming vector. 2403 SmallVector<int, 8> Mask; 2404 Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2405 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2406 if (i >= BeginIndex && i < EndIndex) 2407 Mask.push_back(i - BeginIndex); 2408 else 2409 Mask.push_back(-1); 2410 V = IRB.CreateShuffleVector(V, Mask, Name + ".expand"); 2411 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2412 2413 SmallVector<Constant *, 8> Mask2; 2414 Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2415 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2416 Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2417 2418 V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend"); 2419 2420 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); 2421 return V; 2422 } 2423 2424 /// Visitor to rewrite instructions using p particular slice of an alloca 2425 /// to use a new alloca. 2426 /// 2427 /// Also implements the rewriting to vector-based accesses when the partition 2428 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2429 /// lives here. 2430 class llvm::sroa::AllocaSliceRewriter 2431 : public InstVisitor<AllocaSliceRewriter, bool> { 2432 // Befriend the base class so it can delegate to private visit methods. 2433 friend class InstVisitor<AllocaSliceRewriter, bool>; 2434 2435 using Base = InstVisitor<AllocaSliceRewriter, bool>; 2436 2437 const DataLayout &DL; 2438 AllocaSlices &AS; 2439 SROAPass &Pass; 2440 AllocaInst &OldAI, &NewAI; 2441 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2442 Type *NewAllocaTy; 2443 2444 // This is a convenience and flag variable that will be null unless the new 2445 // alloca's integer operations should be widened to this integer type due to 2446 // passing isIntegerWideningViable above. If it is non-null, the desired 2447 // integer type will be stored here for easy access during rewriting. 2448 IntegerType *IntTy; 2449 2450 // If we are rewriting an alloca partition which can be written as pure 2451 // vector operations, we stash extra information here. When VecTy is 2452 // non-null, we have some strict guarantees about the rewritten alloca: 2453 // - The new alloca is exactly the size of the vector type here. 2454 // - The accesses all either map to the entire vector or to a single 2455 // element. 2456 // - The set of accessing instructions is only one of those handled above 2457 // in isVectorPromotionViable. Generally these are the same access kinds 2458 // which are promotable via mem2reg. 2459 VectorType *VecTy; 2460 Type *ElementTy; 2461 uint64_t ElementSize; 2462 2463 // The original offset of the slice currently being rewritten relative to 2464 // the original alloca. 2465 uint64_t BeginOffset = 0; 2466 uint64_t EndOffset = 0; 2467 2468 // The new offsets of the slice currently being rewritten relative to the 2469 // original alloca. 2470 uint64_t NewBeginOffset = 0, NewEndOffset = 0; 2471 2472 uint64_t SliceSize = 0; 2473 bool IsSplittable = false; 2474 bool IsSplit = false; 2475 Use *OldUse = nullptr; 2476 Instruction *OldPtr = nullptr; 2477 2478 // Track post-rewrite users which are PHI nodes and Selects. 2479 SmallSetVector<PHINode *, 8> &PHIUsers; 2480 SmallSetVector<SelectInst *, 8> &SelectUsers; 2481 2482 // Utility IR builder, whose name prefix is setup for each visited use, and 2483 // the insertion point is set to point to the user. 2484 IRBuilderTy IRB; 2485 2486 // Return the new alloca, addrspacecasted if required to avoid changing the 2487 // addrspace of a volatile access. 2488 Value *getPtrToNewAI(unsigned AddrSpace, bool IsVolatile) { 2489 if (!IsVolatile || AddrSpace == NewAI.getType()->getPointerAddressSpace()) 2490 return &NewAI; 2491 2492 Type *AccessTy = NewAI.getAllocatedType()->getPointerTo(AddrSpace); 2493 return IRB.CreateAddrSpaceCast(&NewAI, AccessTy); 2494 } 2495 2496 public: 2497 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass, 2498 AllocaInst &OldAI, AllocaInst &NewAI, 2499 uint64_t NewAllocaBeginOffset, 2500 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2501 VectorType *PromotableVecTy, 2502 SmallSetVector<PHINode *, 8> &PHIUsers, 2503 SmallSetVector<SelectInst *, 8> &SelectUsers) 2504 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2505 NewAllocaBeginOffset(NewAllocaBeginOffset), 2506 NewAllocaEndOffset(NewAllocaEndOffset), 2507 NewAllocaTy(NewAI.getAllocatedType()), 2508 IntTy( 2509 IsIntegerPromotable 2510 ? Type::getIntNTy(NewAI.getContext(), 2511 DL.getTypeSizeInBits(NewAI.getAllocatedType()) 2512 .getFixedValue()) 2513 : nullptr), 2514 VecTy(PromotableVecTy), 2515 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2516 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8 2517 : 0), 2518 PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2519 IRB(NewAI.getContext(), ConstantFolder()) { 2520 if (VecTy) { 2521 assert((DL.getTypeSizeInBits(ElementTy).getFixedValue() % 8) == 0 && 2522 "Only multiple-of-8 sized vector elements are viable"); 2523 ++NumVectorized; 2524 } 2525 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2526 } 2527 2528 bool visit(AllocaSlices::const_iterator I) { 2529 bool CanSROA = true; 2530 BeginOffset = I->beginOffset(); 2531 EndOffset = I->endOffset(); 2532 IsSplittable = I->isSplittable(); 2533 IsSplit = 2534 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2535 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2536 LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); 2537 LLVM_DEBUG(dbgs() << "\n"); 2538 2539 // Compute the intersecting offset range. 2540 assert(BeginOffset < NewAllocaEndOffset); 2541 assert(EndOffset > NewAllocaBeginOffset); 2542 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2543 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2544 2545 SliceSize = NewEndOffset - NewBeginOffset; 2546 LLVM_DEBUG(dbgs() << " Begin:(" << BeginOffset << ", " << EndOffset 2547 << ") NewBegin:(" << NewBeginOffset << ", " 2548 << NewEndOffset << ") NewAllocaBegin:(" 2549 << NewAllocaBeginOffset << ", " << NewAllocaEndOffset 2550 << ")\n"); 2551 assert(IsSplit || NewBeginOffset == BeginOffset); 2552 OldUse = I->getUse(); 2553 OldPtr = cast<Instruction>(OldUse->get()); 2554 2555 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2556 IRB.SetInsertPoint(OldUserI); 2557 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2558 IRB.getInserter().SetNamePrefix( 2559 Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2560 2561 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2562 if (VecTy || IntTy) 2563 assert(CanSROA); 2564 return CanSROA; 2565 } 2566 2567 private: 2568 // Make sure the other visit overloads are visible. 2569 using Base::visit; 2570 2571 // Every instruction which can end up as a user must have a rewrite rule. 2572 bool visitInstruction(Instruction &I) { 2573 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2574 llvm_unreachable("No rewrite rule for this instruction!"); 2575 } 2576 2577 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2578 // Note that the offset computation can use BeginOffset or NewBeginOffset 2579 // interchangeably for unsplit slices. 2580 assert(IsSplit || BeginOffset == NewBeginOffset); 2581 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2582 2583 #ifndef NDEBUG 2584 StringRef OldName = OldPtr->getName(); 2585 // Skip through the last '.sroa.' component of the name. 2586 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2587 if (LastSROAPrefix != StringRef::npos) { 2588 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2589 // Look for an SROA slice index. 2590 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2591 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2592 // Strip the index and look for the offset. 2593 OldName = OldName.substr(IndexEnd + 1); 2594 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2595 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2596 // Strip the offset. 2597 OldName = OldName.substr(OffsetEnd + 1); 2598 } 2599 } 2600 // Strip any SROA suffixes as well. 2601 OldName = OldName.substr(0, OldName.find(".sroa_")); 2602 #endif 2603 2604 return getAdjustedPtr(IRB, DL, &NewAI, 2605 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), 2606 PointerTy, 2607 #ifndef NDEBUG 2608 Twine(OldName) + "." 2609 #else 2610 Twine() 2611 #endif 2612 ); 2613 } 2614 2615 /// Compute suitable alignment to access this slice of the *new* 2616 /// alloca. 2617 /// 2618 /// You can optionally pass a type to this routine and if that type's ABI 2619 /// alignment is itself suitable, this will return zero. 2620 Align getSliceAlign() { 2621 return commonAlignment(NewAI.getAlign(), 2622 NewBeginOffset - NewAllocaBeginOffset); 2623 } 2624 2625 unsigned getIndex(uint64_t Offset) { 2626 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2627 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2628 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2629 uint32_t Index = RelOffset / ElementSize; 2630 assert(Index * ElementSize == RelOffset); 2631 return Index; 2632 } 2633 2634 void deleteIfTriviallyDead(Value *V) { 2635 Instruction *I = cast<Instruction>(V); 2636 if (isInstructionTriviallyDead(I)) 2637 Pass.DeadInsts.push_back(I); 2638 } 2639 2640 Value *rewriteVectorizedLoadInst(LoadInst &LI) { 2641 unsigned BeginIndex = getIndex(NewBeginOffset); 2642 unsigned EndIndex = getIndex(NewEndOffset); 2643 assert(EndIndex > BeginIndex && "Empty vector!"); 2644 2645 LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2646 NewAI.getAlign(), "load"); 2647 2648 Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2649 LLVMContext::MD_access_group}); 2650 return extractVector(IRB, Load, BeginIndex, EndIndex, "vec"); 2651 } 2652 2653 Value *rewriteIntegerLoad(LoadInst &LI) { 2654 assert(IntTy && "We cannot insert an integer to the alloca"); 2655 assert(!LI.isVolatile()); 2656 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2657 NewAI.getAlign(), "load"); 2658 V = convertValue(DL, IRB, V, IntTy); 2659 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2660 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2661 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2662 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2663 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2664 } 2665 // It is possible that the extracted type is not the load type. This 2666 // happens if there is a load past the end of the alloca, and as 2667 // a consequence the slice is narrower but still a candidate for integer 2668 // lowering. To handle this case, we just zero extend the extracted 2669 // integer. 2670 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2671 "Can only handle an extract for an overly wide load"); 2672 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2673 V = IRB.CreateZExt(V, LI.getType()); 2674 return V; 2675 } 2676 2677 bool visitLoadInst(LoadInst &LI) { 2678 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 2679 Value *OldOp = LI.getOperand(0); 2680 assert(OldOp == OldPtr); 2681 2682 AAMDNodes AATags = LI.getAAMetadata(); 2683 2684 unsigned AS = LI.getPointerAddressSpace(); 2685 2686 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2687 : LI.getType(); 2688 const bool IsLoadPastEnd = 2689 DL.getTypeStoreSize(TargetTy).getFixedValue() > SliceSize; 2690 bool IsPtrAdjusted = false; 2691 Value *V; 2692 if (VecTy) { 2693 V = rewriteVectorizedLoadInst(LI); 2694 } else if (IntTy && LI.getType()->isIntegerTy()) { 2695 V = rewriteIntegerLoad(LI); 2696 } else if (NewBeginOffset == NewAllocaBeginOffset && 2697 NewEndOffset == NewAllocaEndOffset && 2698 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2699 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2700 TargetTy->isIntegerTy()))) { 2701 Value *NewPtr = 2702 getPtrToNewAI(LI.getPointerAddressSpace(), LI.isVolatile()); 2703 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), NewPtr, 2704 NewAI.getAlign(), LI.isVolatile(), 2705 LI.getName()); 2706 if (LI.isVolatile()) 2707 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2708 if (NewLI->isAtomic()) 2709 NewLI->setAlignment(LI.getAlign()); 2710 2711 // Copy any metadata that is valid for the new load. This may require 2712 // conversion to a different kind of metadata, e.g. !nonnull might change 2713 // to !range or vice versa. 2714 copyMetadataForLoad(*NewLI, LI); 2715 2716 // Do this after copyMetadataForLoad() to preserve the TBAA shift. 2717 if (AATags) 2718 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2719 2720 // Try to preserve nonnull metadata 2721 V = NewLI; 2722 2723 // If this is an integer load past the end of the slice (which means the 2724 // bytes outside the slice are undef or this load is dead) just forcibly 2725 // fix the integer size with correct handling of endianness. 2726 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2727 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2728 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2729 V = IRB.CreateZExt(V, TITy, "load.ext"); 2730 if (DL.isBigEndian()) 2731 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2732 "endian_shift"); 2733 } 2734 } else { 2735 Type *LTy = TargetTy->getPointerTo(AS); 2736 LoadInst *NewLI = 2737 IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy), 2738 getSliceAlign(), LI.isVolatile(), LI.getName()); 2739 if (AATags) 2740 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2741 if (LI.isVolatile()) 2742 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2743 NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2744 LLVMContext::MD_access_group}); 2745 2746 V = NewLI; 2747 IsPtrAdjusted = true; 2748 } 2749 V = convertValue(DL, IRB, V, TargetTy); 2750 2751 if (IsSplit) { 2752 assert(!LI.isVolatile()); 2753 assert(LI.getType()->isIntegerTy() && 2754 "Only integer type loads and stores are split"); 2755 assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedValue() && 2756 "Split load isn't smaller than original load"); 2757 assert(DL.typeSizeEqualsStoreSize(LI.getType()) && 2758 "Non-byte-multiple bit width"); 2759 // Move the insertion point just past the load so that we can refer to it. 2760 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); 2761 // Create a placeholder value with the same type as LI to use as the 2762 // basis for the new value. This allows us to replace the uses of LI with 2763 // the computed value, and then replace the placeholder with LI, leaving 2764 // LI only used for this computation. 2765 Value *Placeholder = new LoadInst( 2766 LI.getType(), PoisonValue::get(LI.getType()->getPointerTo(AS)), "", 2767 false, Align(1)); 2768 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2769 "insert"); 2770 LI.replaceAllUsesWith(V); 2771 Placeholder->replaceAllUsesWith(&LI); 2772 Placeholder->deleteValue(); 2773 } else { 2774 LI.replaceAllUsesWith(V); 2775 } 2776 2777 Pass.DeadInsts.push_back(&LI); 2778 deleteIfTriviallyDead(OldOp); 2779 LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); 2780 return !LI.isVolatile() && !IsPtrAdjusted; 2781 } 2782 2783 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, 2784 AAMDNodes AATags) { 2785 // Capture V for the purpose of debug-info accounting once it's converted 2786 // to a vector store. 2787 Value *OrigV = V; 2788 if (V->getType() != VecTy) { 2789 unsigned BeginIndex = getIndex(NewBeginOffset); 2790 unsigned EndIndex = getIndex(NewEndOffset); 2791 assert(EndIndex > BeginIndex && "Empty vector!"); 2792 unsigned NumElements = EndIndex - BeginIndex; 2793 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2794 "Too many elements!"); 2795 Type *SliceTy = (NumElements == 1) 2796 ? ElementTy 2797 : FixedVectorType::get(ElementTy, NumElements); 2798 if (V->getType() != SliceTy) 2799 V = convertValue(DL, IRB, V, SliceTy); 2800 2801 // Mix in the existing elements. 2802 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2803 NewAI.getAlign(), "load"); 2804 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2805 } 2806 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2807 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2808 LLVMContext::MD_access_group}); 2809 if (AATags) 2810 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2811 Pass.DeadInsts.push_back(&SI); 2812 2813 // NOTE: Careful to use OrigV rather than V. 2814 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI, 2815 Store, Store->getPointerOperand(), OrigV, DL); 2816 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2817 return true; 2818 } 2819 2820 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { 2821 assert(IntTy && "We cannot extract an integer from the alloca"); 2822 assert(!SI.isVolatile()); 2823 if (DL.getTypeSizeInBits(V->getType()).getFixedValue() != 2824 IntTy->getBitWidth()) { 2825 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2826 NewAI.getAlign(), "oldload"); 2827 Old = convertValue(DL, IRB, Old, IntTy); 2828 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2829 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2830 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 2831 } 2832 V = convertValue(DL, IRB, V, NewAllocaTy); 2833 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2834 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2835 LLVMContext::MD_access_group}); 2836 if (AATags) 2837 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2838 2839 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI, 2840 Store, Store->getPointerOperand(), 2841 Store->getValueOperand(), DL); 2842 2843 Pass.DeadInsts.push_back(&SI); 2844 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2845 return true; 2846 } 2847 2848 bool visitStoreInst(StoreInst &SI) { 2849 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 2850 Value *OldOp = SI.getOperand(1); 2851 assert(OldOp == OldPtr); 2852 2853 AAMDNodes AATags = SI.getAAMetadata(); 2854 Value *V = SI.getValueOperand(); 2855 2856 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2857 // alloca that should be re-examined after promoting this alloca. 2858 if (V->getType()->isPointerTy()) 2859 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2860 Pass.PostPromotionWorklist.insert(AI); 2861 2862 if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedValue()) { 2863 assert(!SI.isVolatile()); 2864 assert(V->getType()->isIntegerTy() && 2865 "Only integer type loads and stores are split"); 2866 assert(DL.typeSizeEqualsStoreSize(V->getType()) && 2867 "Non-byte-multiple bit width"); 2868 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2869 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 2870 "extract"); 2871 } 2872 2873 if (VecTy) 2874 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); 2875 if (IntTy && V->getType()->isIntegerTy()) 2876 return rewriteIntegerStore(V, SI, AATags); 2877 2878 const bool IsStorePastEnd = 2879 DL.getTypeStoreSize(V->getType()).getFixedValue() > SliceSize; 2880 StoreInst *NewSI; 2881 if (NewBeginOffset == NewAllocaBeginOffset && 2882 NewEndOffset == NewAllocaEndOffset && 2883 (canConvertValue(DL, V->getType(), NewAllocaTy) || 2884 (IsStorePastEnd && NewAllocaTy->isIntegerTy() && 2885 V->getType()->isIntegerTy()))) { 2886 // If this is an integer store past the end of slice (and thus the bytes 2887 // past that point are irrelevant or this is unreachable), truncate the 2888 // value prior to storing. 2889 if (auto *VITy = dyn_cast<IntegerType>(V->getType())) 2890 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2891 if (VITy->getBitWidth() > AITy->getBitWidth()) { 2892 if (DL.isBigEndian()) 2893 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), 2894 "endian_shift"); 2895 V = IRB.CreateTrunc(V, AITy, "load.trunc"); 2896 } 2897 2898 V = convertValue(DL, IRB, V, NewAllocaTy); 2899 Value *NewPtr = 2900 getPtrToNewAI(SI.getPointerAddressSpace(), SI.isVolatile()); 2901 2902 NewSI = 2903 IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), SI.isVolatile()); 2904 } else { 2905 unsigned AS = SI.getPointerAddressSpace(); 2906 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS)); 2907 NewSI = 2908 IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile()); 2909 } 2910 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2911 LLVMContext::MD_access_group}); 2912 if (AATags) 2913 NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2914 if (SI.isVolatile()) 2915 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 2916 if (NewSI->isAtomic()) 2917 NewSI->setAlignment(SI.getAlign()); 2918 2919 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI, 2920 NewSI, NewSI->getPointerOperand(), 2921 NewSI->getValueOperand(), DL); 2922 2923 Pass.DeadInsts.push_back(&SI); 2924 deleteIfTriviallyDead(OldOp); 2925 2926 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2927 return NewSI->getPointerOperand() == &NewAI && 2928 NewSI->getValueOperand()->getType() == NewAllocaTy && 2929 !SI.isVolatile(); 2930 } 2931 2932 /// Compute an integer value from splatting an i8 across the given 2933 /// number of bytes. 2934 /// 2935 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2936 /// call this routine. 2937 /// FIXME: Heed the advice above. 2938 /// 2939 /// \param V The i8 value to splat. 2940 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2941 Value *getIntegerSplat(Value *V, unsigned Size) { 2942 assert(Size > 0 && "Expected a positive number of bytes."); 2943 IntegerType *VTy = cast<IntegerType>(V->getType()); 2944 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2945 if (Size == 1) 2946 return V; 2947 2948 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 2949 V = IRB.CreateMul( 2950 IRB.CreateZExt(V, SplatIntTy, "zext"), 2951 IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy), 2952 IRB.CreateZExt(Constant::getAllOnesValue(V->getType()), 2953 SplatIntTy)), 2954 "isplat"); 2955 return V; 2956 } 2957 2958 /// Compute a vector splat for a given element value. 2959 Value *getVectorSplat(Value *V, unsigned NumElements) { 2960 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2961 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); 2962 return V; 2963 } 2964 2965 bool visitMemSetInst(MemSetInst &II) { 2966 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2967 assert(II.getRawDest() == OldPtr); 2968 2969 AAMDNodes AATags = II.getAAMetadata(); 2970 2971 // If the memset has a variable size, it cannot be split, just adjust the 2972 // pointer to the new alloca. 2973 if (!isa<ConstantInt>(II.getLength())) { 2974 assert(!IsSplit); 2975 assert(NewBeginOffset == BeginOffset); 2976 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 2977 II.setDestAlignment(getSliceAlign()); 2978 // In theory we should call migrateDebugInfo here. However, we do not 2979 // emit dbg.assign intrinsics for mem intrinsics storing through non- 2980 // constant geps, or storing a variable number of bytes. 2981 assert(at::getAssignmentMarkers(&II).empty() && 2982 "AT: Unexpected link to non-const GEP"); 2983 deleteIfTriviallyDead(OldPtr); 2984 return false; 2985 } 2986 2987 // Record this instruction for deletion. 2988 Pass.DeadInsts.push_back(&II); 2989 2990 Type *AllocaTy = NewAI.getAllocatedType(); 2991 Type *ScalarTy = AllocaTy->getScalarType(); 2992 2993 const bool CanContinue = [&]() { 2994 if (VecTy || IntTy) 2995 return true; 2996 if (BeginOffset > NewAllocaBeginOffset || 2997 EndOffset < NewAllocaEndOffset) 2998 return false; 2999 // Length must be in range for FixedVectorType. 3000 auto *C = cast<ConstantInt>(II.getLength()); 3001 const uint64_t Len = C->getLimitedValue(); 3002 if (Len > std::numeric_limits<unsigned>::max()) 3003 return false; 3004 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); 3005 auto *SrcTy = FixedVectorType::get(Int8Ty, Len); 3006 return canConvertValue(DL, SrcTy, AllocaTy) && 3007 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedValue()); 3008 }(); 3009 3010 // If this doesn't map cleanly onto the alloca type, and that type isn't 3011 // a single value type, just emit a memset. 3012 if (!CanContinue) { 3013 Type *SizeTy = II.getLength()->getType(); 3014 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 3015 MemIntrinsic *New = cast<MemIntrinsic>(IRB.CreateMemSet( 3016 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 3017 MaybeAlign(getSliceAlign()), II.isVolatile())); 3018 if (AATags) 3019 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3020 3021 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II, 3022 New, New->getRawDest(), nullptr, DL); 3023 3024 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3025 return false; 3026 } 3027 3028 // If we can represent this as a simple value, we have to build the actual 3029 // value to store, which requires expanding the byte present in memset to 3030 // a sensible representation for the alloca type. This is essentially 3031 // splatting the byte to a sufficiently wide integer, splatting it across 3032 // any desired vector width, and bitcasting to the final type. 3033 Value *V; 3034 3035 if (VecTy) { 3036 // If this is a memset of a vectorized alloca, insert it. 3037 assert(ElementTy == ScalarTy); 3038 3039 unsigned BeginIndex = getIndex(NewBeginOffset); 3040 unsigned EndIndex = getIndex(NewEndOffset); 3041 assert(EndIndex > BeginIndex && "Empty vector!"); 3042 unsigned NumElements = EndIndex - BeginIndex; 3043 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 3044 "Too many elements!"); 3045 3046 Value *Splat = getIntegerSplat( 3047 II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8); 3048 Splat = convertValue(DL, IRB, Splat, ElementTy); 3049 if (NumElements > 1) 3050 Splat = getVectorSplat(Splat, NumElements); 3051 3052 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3053 NewAI.getAlign(), "oldload"); 3054 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 3055 } else if (IntTy) { 3056 // If this is a memset on an alloca where we can widen stores, insert the 3057 // set integer. 3058 assert(!II.isVolatile()); 3059 3060 uint64_t Size = NewEndOffset - NewBeginOffset; 3061 V = getIntegerSplat(II.getValue(), Size); 3062 3063 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 3064 EndOffset != NewAllocaBeginOffset)) { 3065 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3066 NewAI.getAlign(), "oldload"); 3067 Old = convertValue(DL, IRB, Old, IntTy); 3068 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3069 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 3070 } else { 3071 assert(V->getType() == IntTy && 3072 "Wrong type for an alloca wide integer!"); 3073 } 3074 V = convertValue(DL, IRB, V, AllocaTy); 3075 } else { 3076 // Established these invariants above. 3077 assert(NewBeginOffset == NewAllocaBeginOffset); 3078 assert(NewEndOffset == NewAllocaEndOffset); 3079 3080 V = getIntegerSplat(II.getValue(), 3081 DL.getTypeSizeInBits(ScalarTy).getFixedValue() / 8); 3082 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 3083 V = getVectorSplat( 3084 V, cast<FixedVectorType>(AllocaVecTy)->getNumElements()); 3085 3086 V = convertValue(DL, IRB, V, AllocaTy); 3087 } 3088 3089 Value *NewPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile()); 3090 StoreInst *New = 3091 IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), II.isVolatile()); 3092 New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3093 LLVMContext::MD_access_group}); 3094 if (AATags) 3095 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3096 3097 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II, 3098 New, New->getPointerOperand(), V, DL); 3099 3100 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3101 return !II.isVolatile(); 3102 } 3103 3104 bool visitMemTransferInst(MemTransferInst &II) { 3105 // Rewriting of memory transfer instructions can be a bit tricky. We break 3106 // them into two categories: split intrinsics and unsplit intrinsics. 3107 3108 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3109 3110 AAMDNodes AATags = II.getAAMetadata(); 3111 3112 bool IsDest = &II.getRawDestUse() == OldUse; 3113 assert((IsDest && II.getRawDest() == OldPtr) || 3114 (!IsDest && II.getRawSource() == OldPtr)); 3115 3116 Align SliceAlign = getSliceAlign(); 3117 // For unsplit intrinsics, we simply modify the source and destination 3118 // pointers in place. This isn't just an optimization, it is a matter of 3119 // correctness. With unsplit intrinsics we may be dealing with transfers 3120 // within a single alloca before SROA ran, or with transfers that have 3121 // a variable length. We may also be dealing with memmove instead of 3122 // memcpy, and so simply updating the pointers is the necessary for us to 3123 // update both source and dest of a single call. 3124 if (!IsSplittable) { 3125 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3126 if (IsDest) { 3127 // Update the address component of linked dbg.assigns. 3128 for (auto *DAI : at::getAssignmentMarkers(&II)) { 3129 if (any_of(DAI->location_ops(), 3130 [&](Value *V) { return V == II.getDest(); }) || 3131 DAI->getAddress() == II.getDest()) 3132 DAI->replaceVariableLocationOp(II.getDest(), AdjustedPtr); 3133 } 3134 II.setDest(AdjustedPtr); 3135 II.setDestAlignment(SliceAlign); 3136 } else { 3137 II.setSource(AdjustedPtr); 3138 II.setSourceAlignment(SliceAlign); 3139 } 3140 3141 LLVM_DEBUG(dbgs() << " to: " << II << "\n"); 3142 deleteIfTriviallyDead(OldPtr); 3143 return false; 3144 } 3145 // For split transfer intrinsics we have an incredibly useful assurance: 3146 // the source and destination do not reside within the same alloca, and at 3147 // least one of them does not escape. This means that we can replace 3148 // memmove with memcpy, and we don't need to worry about all manner of 3149 // downsides to splitting and transforming the operations. 3150 3151 // If this doesn't map cleanly onto the alloca type, and that type isn't 3152 // a single value type, just emit a memcpy. 3153 bool EmitMemCpy = 3154 !VecTy && !IntTy && 3155 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 3156 SliceSize != 3157 DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedValue() || 3158 !NewAI.getAllocatedType()->isSingleValueType()); 3159 3160 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 3161 // size hasn't been shrunk based on analysis of the viable range, this is 3162 // a no-op. 3163 if (EmitMemCpy && &OldAI == &NewAI) { 3164 // Ensure the start lines up. 3165 assert(NewBeginOffset == BeginOffset); 3166 3167 // Rewrite the size as needed. 3168 if (NewEndOffset != EndOffset) 3169 II.setLength(ConstantInt::get(II.getLength()->getType(), 3170 NewEndOffset - NewBeginOffset)); 3171 return false; 3172 } 3173 // Record this instruction for deletion. 3174 Pass.DeadInsts.push_back(&II); 3175 3176 // Strip all inbounds GEPs and pointer casts to try to dig out any root 3177 // alloca that should be re-examined after rewriting this instruction. 3178 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 3179 if (AllocaInst *AI = 3180 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 3181 assert(AI != &OldAI && AI != &NewAI && 3182 "Splittable transfers cannot reach the same alloca on both ends."); 3183 Pass.Worklist.insert(AI); 3184 } 3185 3186 Type *OtherPtrTy = OtherPtr->getType(); 3187 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 3188 3189 // Compute the relative offset for the other pointer within the transfer. 3190 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); 3191 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); 3192 Align OtherAlign = 3193 (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); 3194 OtherAlign = 3195 commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue()); 3196 3197 if (EmitMemCpy) { 3198 // Compute the other pointer, folding as much as possible to produce 3199 // a single, simple GEP in most cases. 3200 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3201 OtherPtr->getName() + "."); 3202 3203 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3204 Type *SizeTy = II.getLength()->getType(); 3205 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 3206 3207 Value *DestPtr, *SrcPtr; 3208 MaybeAlign DestAlign, SrcAlign; 3209 // Note: IsDest is true iff we're copying into the new alloca slice 3210 if (IsDest) { 3211 DestPtr = OurPtr; 3212 DestAlign = SliceAlign; 3213 SrcPtr = OtherPtr; 3214 SrcAlign = OtherAlign; 3215 } else { 3216 DestPtr = OtherPtr; 3217 DestAlign = OtherAlign; 3218 SrcPtr = OurPtr; 3219 SrcAlign = SliceAlign; 3220 } 3221 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, 3222 Size, II.isVolatile()); 3223 if (AATags) 3224 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3225 3226 APInt Offset(DL.getIndexTypeSizeInBits(DestPtr->getType()), 0); 3227 if (IsDest) { 3228 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, 3229 &II, New, DestPtr, nullptr, DL); 3230 } else if (AllocaInst *Base = dyn_cast<AllocaInst>( 3231 DestPtr->stripAndAccumulateConstantOffsets( 3232 DL, Offset, /*AllowNonInbounds*/ true))) { 3233 migrateDebugInfo(Base, IsSplit, Offset.getZExtValue() * 8, 3234 SliceSize * 8, &II, New, DestPtr, nullptr, DL); 3235 } 3236 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3237 return false; 3238 } 3239 3240 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 3241 NewEndOffset == NewAllocaEndOffset; 3242 uint64_t Size = NewEndOffset - NewBeginOffset; 3243 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 3244 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 3245 unsigned NumElements = EndIndex - BeginIndex; 3246 IntegerType *SubIntTy = 3247 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 3248 3249 // Reset the other pointer type to match the register type we're going to 3250 // use, but using the address space of the original other pointer. 3251 Type *OtherTy; 3252 if (VecTy && !IsWholeAlloca) { 3253 if (NumElements == 1) 3254 OtherTy = VecTy->getElementType(); 3255 else 3256 OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements); 3257 } else if (IntTy && !IsWholeAlloca) { 3258 OtherTy = SubIntTy; 3259 } else { 3260 OtherTy = NewAllocaTy; 3261 } 3262 OtherPtrTy = OtherTy->getPointerTo(OtherAS); 3263 3264 Value *AdjPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3265 OtherPtr->getName() + "."); 3266 MaybeAlign SrcAlign = OtherAlign; 3267 MaybeAlign DstAlign = SliceAlign; 3268 if (!IsDest) 3269 std::swap(SrcAlign, DstAlign); 3270 3271 Value *SrcPtr; 3272 Value *DstPtr; 3273 3274 if (IsDest) { 3275 DstPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile()); 3276 SrcPtr = AdjPtr; 3277 } else { 3278 DstPtr = AdjPtr; 3279 SrcPtr = getPtrToNewAI(II.getSourceAddressSpace(), II.isVolatile()); 3280 } 3281 3282 Value *Src; 3283 if (VecTy && !IsWholeAlloca && !IsDest) { 3284 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3285 NewAI.getAlign(), "load"); 3286 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 3287 } else if (IntTy && !IsWholeAlloca && !IsDest) { 3288 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3289 NewAI.getAlign(), "load"); 3290 Src = convertValue(DL, IRB, Src, IntTy); 3291 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3292 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 3293 } else { 3294 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, 3295 II.isVolatile(), "copyload"); 3296 Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3297 LLVMContext::MD_access_group}); 3298 if (AATags) 3299 Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3300 Src = Load; 3301 } 3302 3303 if (VecTy && !IsWholeAlloca && IsDest) { 3304 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3305 NewAI.getAlign(), "oldload"); 3306 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 3307 } else if (IntTy && !IsWholeAlloca && IsDest) { 3308 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3309 NewAI.getAlign(), "oldload"); 3310 Old = convertValue(DL, IRB, Old, IntTy); 3311 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3312 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 3313 Src = convertValue(DL, IRB, Src, NewAllocaTy); 3314 } 3315 3316 StoreInst *Store = cast<StoreInst>( 3317 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 3318 Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3319 LLVMContext::MD_access_group}); 3320 if (AATags) 3321 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3322 3323 APInt Offset(DL.getIndexTypeSizeInBits(DstPtr->getType()), 0); 3324 if (IsDest) { 3325 3326 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II, 3327 Store, DstPtr, Src, DL); 3328 } else if (AllocaInst *Base = dyn_cast<AllocaInst>( 3329 DstPtr->stripAndAccumulateConstantOffsets( 3330 DL, Offset, /*AllowNonInbounds*/ true))) { 3331 migrateDebugInfo(Base, IsSplit, Offset.getZExtValue() * 8, SliceSize * 8, 3332 &II, Store, DstPtr, Src, DL); 3333 } 3334 3335 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3336 return !II.isVolatile(); 3337 } 3338 3339 bool visitIntrinsicInst(IntrinsicInst &II) { 3340 assert((II.isLifetimeStartOrEnd() || II.isDroppable()) && 3341 "Unexpected intrinsic!"); 3342 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3343 3344 // Record this instruction for deletion. 3345 Pass.DeadInsts.push_back(&II); 3346 3347 if (II.isDroppable()) { 3348 assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume"); 3349 // TODO For now we forget assumed information, this can be improved. 3350 OldPtr->dropDroppableUsesIn(II); 3351 return true; 3352 } 3353 3354 assert(II.getArgOperand(1) == OldPtr); 3355 // Lifetime intrinsics are only promotable if they cover the whole alloca. 3356 // Therefore, we drop lifetime intrinsics which don't cover the whole 3357 // alloca. 3358 // (In theory, intrinsics which partially cover an alloca could be 3359 // promoted, but PromoteMemToReg doesn't handle that case.) 3360 // FIXME: Check whether the alloca is promotable before dropping the 3361 // lifetime intrinsics? 3362 if (NewBeginOffset != NewAllocaBeginOffset || 3363 NewEndOffset != NewAllocaEndOffset) 3364 return true; 3365 3366 ConstantInt *Size = 3367 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 3368 NewEndOffset - NewBeginOffset); 3369 // Lifetime intrinsics always expect an i8* so directly get such a pointer 3370 // for the new alloca slice. 3371 Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace()); 3372 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); 3373 Value *New; 3374 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 3375 New = IRB.CreateLifetimeStart(Ptr, Size); 3376 else 3377 New = IRB.CreateLifetimeEnd(Ptr, Size); 3378 3379 (void)New; 3380 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3381 3382 return true; 3383 } 3384 3385 void fixLoadStoreAlign(Instruction &Root) { 3386 // This algorithm implements the same visitor loop as 3387 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load 3388 // or store found. 3389 SmallPtrSet<Instruction *, 4> Visited; 3390 SmallVector<Instruction *, 4> Uses; 3391 Visited.insert(&Root); 3392 Uses.push_back(&Root); 3393 do { 3394 Instruction *I = Uses.pop_back_val(); 3395 3396 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3397 LI->setAlignment(std::min(LI->getAlign(), getSliceAlign())); 3398 continue; 3399 } 3400 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3401 SI->setAlignment(std::min(SI->getAlign(), getSliceAlign())); 3402 continue; 3403 } 3404 3405 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || 3406 isa<PHINode>(I) || isa<SelectInst>(I) || 3407 isa<GetElementPtrInst>(I)); 3408 for (User *U : I->users()) 3409 if (Visited.insert(cast<Instruction>(U)).second) 3410 Uses.push_back(cast<Instruction>(U)); 3411 } while (!Uses.empty()); 3412 } 3413 3414 bool visitPHINode(PHINode &PN) { 3415 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 3416 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 3417 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 3418 3419 // We would like to compute a new pointer in only one place, but have it be 3420 // as local as possible to the PHI. To do that, we re-use the location of 3421 // the old pointer, which necessarily must be in the right position to 3422 // dominate the PHI. 3423 IRBuilderBase::InsertPointGuard Guard(IRB); 3424 if (isa<PHINode>(OldPtr)) 3425 IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); 3426 else 3427 IRB.SetInsertPoint(OldPtr); 3428 IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 3429 3430 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3431 // Replace the operands which were using the old pointer. 3432 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 3433 3434 LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); 3435 deleteIfTriviallyDead(OldPtr); 3436 3437 // Fix the alignment of any loads or stores using this PHI node. 3438 fixLoadStoreAlign(PN); 3439 3440 // PHIs can't be promoted on their own, but often can be speculated. We 3441 // check the speculation outside of the rewriter so that we see the 3442 // fully-rewritten alloca. 3443 PHIUsers.insert(&PN); 3444 return true; 3445 } 3446 3447 bool visitSelectInst(SelectInst &SI) { 3448 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3449 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 3450 "Pointer isn't an operand!"); 3451 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 3452 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 3453 3454 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3455 // Replace the operands which were using the old pointer. 3456 if (SI.getOperand(1) == OldPtr) 3457 SI.setOperand(1, NewPtr); 3458 if (SI.getOperand(2) == OldPtr) 3459 SI.setOperand(2, NewPtr); 3460 3461 LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); 3462 deleteIfTriviallyDead(OldPtr); 3463 3464 // Fix the alignment of any loads or stores using this select. 3465 fixLoadStoreAlign(SI); 3466 3467 // Selects can't be promoted on their own, but often can be speculated. We 3468 // check the speculation outside of the rewriter so that we see the 3469 // fully-rewritten alloca. 3470 SelectUsers.insert(&SI); 3471 return true; 3472 } 3473 }; 3474 3475 namespace { 3476 3477 /// Visitor to rewrite aggregate loads and stores as scalar. 3478 /// 3479 /// This pass aggressively rewrites all aggregate loads and stores on 3480 /// a particular pointer (or any pointer derived from it which we can identify) 3481 /// with scalar loads and stores. 3482 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 3483 // Befriend the base class so it can delegate to private visit methods. 3484 friend class InstVisitor<AggLoadStoreRewriter, bool>; 3485 3486 /// Queue of pointer uses to analyze and potentially rewrite. 3487 SmallVector<Use *, 8> Queue; 3488 3489 /// Set to prevent us from cycling with phi nodes and loops. 3490 SmallPtrSet<User *, 8> Visited; 3491 3492 /// The current pointer use being rewritten. This is used to dig up the used 3493 /// value (as opposed to the user). 3494 Use *U = nullptr; 3495 3496 /// Used to calculate offsets, and hence alignment, of subobjects. 3497 const DataLayout &DL; 3498 3499 IRBuilderTy &IRB; 3500 3501 public: 3502 AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB) 3503 : DL(DL), IRB(IRB) {} 3504 3505 /// Rewrite loads and stores through a pointer and all pointers derived from 3506 /// it. 3507 bool rewrite(Instruction &I) { 3508 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 3509 enqueueUsers(I); 3510 bool Changed = false; 3511 while (!Queue.empty()) { 3512 U = Queue.pop_back_val(); 3513 Changed |= visit(cast<Instruction>(U->getUser())); 3514 } 3515 return Changed; 3516 } 3517 3518 private: 3519 /// Enqueue all the users of the given instruction for further processing. 3520 /// This uses a set to de-duplicate users. 3521 void enqueueUsers(Instruction &I) { 3522 for (Use &U : I.uses()) 3523 if (Visited.insert(U.getUser()).second) 3524 Queue.push_back(&U); 3525 } 3526 3527 // Conservative default is to not rewrite anything. 3528 bool visitInstruction(Instruction &I) { return false; } 3529 3530 /// Generic recursive split emission class. 3531 template <typename Derived> class OpSplitter { 3532 protected: 3533 /// The builder used to form new instructions. 3534 IRBuilderTy &IRB; 3535 3536 /// The indices which to be used with insert- or extractvalue to select the 3537 /// appropriate value within the aggregate. 3538 SmallVector<unsigned, 4> Indices; 3539 3540 /// The indices to a GEP instruction which will move Ptr to the correct slot 3541 /// within the aggregate. 3542 SmallVector<Value *, 4> GEPIndices; 3543 3544 /// The base pointer of the original op, used as a base for GEPing the 3545 /// split operations. 3546 Value *Ptr; 3547 3548 /// The base pointee type being GEPed into. 3549 Type *BaseTy; 3550 3551 /// Known alignment of the base pointer. 3552 Align BaseAlign; 3553 3554 /// To calculate offset of each component so we can correctly deduce 3555 /// alignments. 3556 const DataLayout &DL; 3557 3558 /// Initialize the splitter with an insertion point, Ptr and start with a 3559 /// single zero GEP index. 3560 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3561 Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB) 3562 : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy), 3563 BaseAlign(BaseAlign), DL(DL) { 3564 IRB.SetInsertPoint(InsertionPoint); 3565 } 3566 3567 public: 3568 /// Generic recursive split emission routine. 3569 /// 3570 /// This method recursively splits an aggregate op (load or store) into 3571 /// scalar or vector ops. It splits recursively until it hits a single value 3572 /// and emits that single value operation via the template argument. 3573 /// 3574 /// The logic of this routine relies on GEPs and insertvalue and 3575 /// extractvalue all operating with the same fundamental index list, merely 3576 /// formatted differently (GEPs need actual values). 3577 /// 3578 /// \param Ty The type being split recursively into smaller ops. 3579 /// \param Agg The aggregate value being built up or stored, depending on 3580 /// whether this is splitting a load or a store respectively. 3581 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3582 if (Ty->isSingleValueType()) { 3583 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); 3584 return static_cast<Derived *>(this)->emitFunc( 3585 Ty, Agg, commonAlignment(BaseAlign, Offset), Name); 3586 } 3587 3588 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3589 unsigned OldSize = Indices.size(); 3590 (void)OldSize; 3591 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3592 ++Idx) { 3593 assert(Indices.size() == OldSize && "Did not return to the old size"); 3594 Indices.push_back(Idx); 3595 GEPIndices.push_back(IRB.getInt32(Idx)); 3596 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3597 GEPIndices.pop_back(); 3598 Indices.pop_back(); 3599 } 3600 return; 3601 } 3602 3603 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3604 unsigned OldSize = Indices.size(); 3605 (void)OldSize; 3606 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3607 ++Idx) { 3608 assert(Indices.size() == OldSize && "Did not return to the old size"); 3609 Indices.push_back(Idx); 3610 GEPIndices.push_back(IRB.getInt32(Idx)); 3611 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3612 GEPIndices.pop_back(); 3613 Indices.pop_back(); 3614 } 3615 return; 3616 } 3617 3618 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3619 } 3620 }; 3621 3622 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3623 AAMDNodes AATags; 3624 3625 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3626 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL, 3627 IRBuilderTy &IRB) 3628 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL, 3629 IRB), 3630 AATags(AATags) {} 3631 3632 /// Emit a leaf load of a single value. This is called at the leaves of the 3633 /// recursive emission to actually load values. 3634 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3635 assert(Ty->isSingleValueType()); 3636 // Load the single value and insert it using the indices. 3637 Value *GEP = 3638 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3639 LoadInst *Load = 3640 IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load"); 3641 3642 APInt Offset( 3643 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3644 if (AATags && 3645 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3646 Load->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3647 3648 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3649 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); 3650 } 3651 }; 3652 3653 bool visitLoadInst(LoadInst &LI) { 3654 assert(LI.getPointerOperand() == *U); 3655 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3656 return false; 3657 3658 // We have an aggregate being loaded, split it apart. 3659 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 3660 LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(), 3661 getAdjustedAlignment(&LI, 0), DL, IRB); 3662 Value *V = PoisonValue::get(LI.getType()); 3663 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3664 Visited.erase(&LI); 3665 LI.replaceAllUsesWith(V); 3666 LI.eraseFromParent(); 3667 return true; 3668 } 3669 3670 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3671 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3672 AAMDNodes AATags, StoreInst *AggStore, Align BaseAlign, 3673 const DataLayout &DL, IRBuilderTy &IRB) 3674 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3675 DL, IRB), 3676 AATags(AATags), AggStore(AggStore) {} 3677 AAMDNodes AATags; 3678 StoreInst *AggStore; 3679 /// Emit a leaf store of a single value. This is called at the leaves of the 3680 /// recursive emission to actually produce stores. 3681 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3682 assert(Ty->isSingleValueType()); 3683 // Extract the single value and store it using the indices. 3684 // 3685 // The gep and extractvalue values are factored out of the CreateStore 3686 // call to make the output independent of the argument evaluation order. 3687 Value *ExtractValue = 3688 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3689 Value *InBoundsGEP = 3690 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3691 StoreInst *Store = 3692 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment); 3693 3694 APInt Offset( 3695 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3696 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset); 3697 if (AATags) 3698 Store->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3699 3700 // migrateDebugInfo requires the base Alloca. Walk to it from this gep. 3701 // If we cannot (because there's an intervening non-const or unbounded 3702 // gep) then we wouldn't expect to see dbg.assign intrinsics linked to 3703 // this instruction. 3704 Value *Base = AggStore->getPointerOperand()->stripInBoundsOffsets(); 3705 if (auto *OldAI = dyn_cast<AllocaInst>(Base)) { 3706 uint64_t SizeInBits = 3707 DL.getTypeSizeInBits(Store->getValueOperand()->getType()); 3708 migrateDebugInfo(OldAI, /*IsSplit*/ true, Offset.getZExtValue() * 8, 3709 SizeInBits, AggStore, Store, 3710 Store->getPointerOperand(), Store->getValueOperand(), 3711 DL); 3712 } else { 3713 assert(at::getAssignmentMarkers(Store).empty() && 3714 "AT: unexpected debug.assign linked to store through " 3715 "unbounded GEP"); 3716 } 3717 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3718 } 3719 }; 3720 3721 bool visitStoreInst(StoreInst &SI) { 3722 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3723 return false; 3724 Value *V = SI.getValueOperand(); 3725 if (V->getType()->isSingleValueType()) 3726 return false; 3727 3728 // We have an aggregate being stored, split it apart. 3729 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3730 StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), &SI, 3731 getAdjustedAlignment(&SI, 0), DL, IRB); 3732 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3733 Visited.erase(&SI); 3734 // The stores replacing SI each have markers describing fragments of the 3735 // assignment so delete the assignment markers linked to SI. 3736 at::deleteAssignmentMarkers(&SI); 3737 SI.eraseFromParent(); 3738 return true; 3739 } 3740 3741 bool visitBitCastInst(BitCastInst &BC) { 3742 enqueueUsers(BC); 3743 return false; 3744 } 3745 3746 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 3747 enqueueUsers(ASC); 3748 return false; 3749 } 3750 3751 // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2) 3752 bool foldGEPSelect(GetElementPtrInst &GEPI) { 3753 if (!GEPI.hasAllConstantIndices()) 3754 return false; 3755 3756 SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand()); 3757 3758 LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):" 3759 << "\n original: " << *Sel 3760 << "\n " << GEPI); 3761 3762 IRB.SetInsertPoint(&GEPI); 3763 SmallVector<Value *, 4> Index(GEPI.indices()); 3764 bool IsInBounds = GEPI.isInBounds(); 3765 3766 Type *Ty = GEPI.getSourceElementType(); 3767 Value *True = Sel->getTrueValue(); 3768 Value *NTrue = IRB.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep", 3769 IsInBounds); 3770 3771 Value *False = Sel->getFalseValue(); 3772 3773 Value *NFalse = IRB.CreateGEP(Ty, False, Index, 3774 False->getName() + ".sroa.gep", IsInBounds); 3775 3776 Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse, 3777 Sel->getName() + ".sroa.sel"); 3778 Visited.erase(&GEPI); 3779 GEPI.replaceAllUsesWith(NSel); 3780 GEPI.eraseFromParent(); 3781 Instruction *NSelI = cast<Instruction>(NSel); 3782 Visited.insert(NSelI); 3783 enqueueUsers(*NSelI); 3784 3785 LLVM_DEBUG(dbgs() << "\n to: " << *NTrue 3786 << "\n " << *NFalse 3787 << "\n " << *NSel << '\n'); 3788 3789 return true; 3790 } 3791 3792 // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2) 3793 bool foldGEPPhi(GetElementPtrInst &GEPI) { 3794 if (!GEPI.hasAllConstantIndices()) 3795 return false; 3796 3797 PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand()); 3798 if (GEPI.getParent() != PHI->getParent() || 3799 llvm::any_of(PHI->incoming_values(), [](Value *In) 3800 { Instruction *I = dyn_cast<Instruction>(In); 3801 return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) || 3802 succ_empty(I->getParent()) || 3803 !I->getParent()->isLegalToHoistInto(); 3804 })) 3805 return false; 3806 3807 LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):" 3808 << "\n original: " << *PHI 3809 << "\n " << GEPI 3810 << "\n to: "); 3811 3812 SmallVector<Value *, 4> Index(GEPI.indices()); 3813 bool IsInBounds = GEPI.isInBounds(); 3814 IRB.SetInsertPoint(GEPI.getParent()->getFirstNonPHI()); 3815 PHINode *NewPN = IRB.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(), 3816 PHI->getName() + ".sroa.phi"); 3817 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) { 3818 BasicBlock *B = PHI->getIncomingBlock(I); 3819 Value *NewVal = nullptr; 3820 int Idx = NewPN->getBasicBlockIndex(B); 3821 if (Idx >= 0) { 3822 NewVal = NewPN->getIncomingValue(Idx); 3823 } else { 3824 Instruction *In = cast<Instruction>(PHI->getIncomingValue(I)); 3825 3826 IRB.SetInsertPoint(In->getParent(), std::next(In->getIterator())); 3827 Type *Ty = GEPI.getSourceElementType(); 3828 NewVal = IRB.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep", 3829 IsInBounds); 3830 } 3831 NewPN->addIncoming(NewVal, B); 3832 } 3833 3834 Visited.erase(&GEPI); 3835 GEPI.replaceAllUsesWith(NewPN); 3836 GEPI.eraseFromParent(); 3837 Visited.insert(NewPN); 3838 enqueueUsers(*NewPN); 3839 3840 LLVM_DEBUG(for (Value *In : NewPN->incoming_values()) 3841 dbgs() << "\n " << *In; 3842 dbgs() << "\n " << *NewPN << '\n'); 3843 3844 return true; 3845 } 3846 3847 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 3848 if (isa<SelectInst>(GEPI.getPointerOperand()) && 3849 foldGEPSelect(GEPI)) 3850 return true; 3851 3852 if (isa<PHINode>(GEPI.getPointerOperand()) && 3853 foldGEPPhi(GEPI)) 3854 return true; 3855 3856 enqueueUsers(GEPI); 3857 return false; 3858 } 3859 3860 bool visitPHINode(PHINode &PN) { 3861 enqueueUsers(PN); 3862 return false; 3863 } 3864 3865 bool visitSelectInst(SelectInst &SI) { 3866 enqueueUsers(SI); 3867 return false; 3868 } 3869 }; 3870 3871 } // end anonymous namespace 3872 3873 /// Strip aggregate type wrapping. 3874 /// 3875 /// This removes no-op aggregate types wrapping an underlying type. It will 3876 /// strip as many layers of types as it can without changing either the type 3877 /// size or the allocated size. 3878 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 3879 if (Ty->isSingleValueType()) 3880 return Ty; 3881 3882 uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedValue(); 3883 uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue(); 3884 3885 Type *InnerTy; 3886 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 3887 InnerTy = ArrTy->getElementType(); 3888 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 3889 const StructLayout *SL = DL.getStructLayout(STy); 3890 unsigned Index = SL->getElementContainingOffset(0); 3891 InnerTy = STy->getElementType(Index); 3892 } else { 3893 return Ty; 3894 } 3895 3896 if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedValue() || 3897 TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedValue()) 3898 return Ty; 3899 3900 return stripAggregateTypeWrapping(DL, InnerTy); 3901 } 3902 3903 /// Try to find a partition of the aggregate type passed in for a given 3904 /// offset and size. 3905 /// 3906 /// This recurses through the aggregate type and tries to compute a subtype 3907 /// based on the offset and size. When the offset and size span a sub-section 3908 /// of an array, it will even compute a new array type for that sub-section, 3909 /// and the same for structs. 3910 /// 3911 /// Note that this routine is very strict and tries to find a partition of the 3912 /// type which produces the *exact* right offset and size. It is not forgiving 3913 /// when the size or offset cause either end of type-based partition to be off. 3914 /// Also, this is a best-effort routine. It is reasonable to give up and not 3915 /// return a type if necessary. 3916 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 3917 uint64_t Size) { 3918 if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedValue() == Size) 3919 return stripAggregateTypeWrapping(DL, Ty); 3920 if (Offset > DL.getTypeAllocSize(Ty).getFixedValue() || 3921 (DL.getTypeAllocSize(Ty).getFixedValue() - Offset) < Size) 3922 return nullptr; 3923 3924 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 3925 Type *ElementTy; 3926 uint64_t TyNumElements; 3927 if (auto *AT = dyn_cast<ArrayType>(Ty)) { 3928 ElementTy = AT->getElementType(); 3929 TyNumElements = AT->getNumElements(); 3930 } else { 3931 // FIXME: This isn't right for vectors with non-byte-sized or 3932 // non-power-of-two sized elements. 3933 auto *VT = cast<FixedVectorType>(Ty); 3934 ElementTy = VT->getElementType(); 3935 TyNumElements = VT->getNumElements(); 3936 } 3937 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue(); 3938 uint64_t NumSkippedElements = Offset / ElementSize; 3939 if (NumSkippedElements >= TyNumElements) 3940 return nullptr; 3941 Offset -= NumSkippedElements * ElementSize; 3942 3943 // First check if we need to recurse. 3944 if (Offset > 0 || Size < ElementSize) { 3945 // Bail if the partition ends in a different array element. 3946 if ((Offset + Size) > ElementSize) 3947 return nullptr; 3948 // Recurse through the element type trying to peel off offset bytes. 3949 return getTypePartition(DL, ElementTy, Offset, Size); 3950 } 3951 assert(Offset == 0); 3952 3953 if (Size == ElementSize) 3954 return stripAggregateTypeWrapping(DL, ElementTy); 3955 assert(Size > ElementSize); 3956 uint64_t NumElements = Size / ElementSize; 3957 if (NumElements * ElementSize != Size) 3958 return nullptr; 3959 return ArrayType::get(ElementTy, NumElements); 3960 } 3961 3962 StructType *STy = dyn_cast<StructType>(Ty); 3963 if (!STy) 3964 return nullptr; 3965 3966 const StructLayout *SL = DL.getStructLayout(STy); 3967 3968 if (SL->getSizeInBits().isScalable()) 3969 return nullptr; 3970 3971 if (Offset >= SL->getSizeInBytes()) 3972 return nullptr; 3973 uint64_t EndOffset = Offset + Size; 3974 if (EndOffset > SL->getSizeInBytes()) 3975 return nullptr; 3976 3977 unsigned Index = SL->getElementContainingOffset(Offset); 3978 Offset -= SL->getElementOffset(Index); 3979 3980 Type *ElementTy = STy->getElementType(Index); 3981 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue(); 3982 if (Offset >= ElementSize) 3983 return nullptr; // The offset points into alignment padding. 3984 3985 // See if any partition must be contained by the element. 3986 if (Offset > 0 || Size < ElementSize) { 3987 if ((Offset + Size) > ElementSize) 3988 return nullptr; 3989 return getTypePartition(DL, ElementTy, Offset, Size); 3990 } 3991 assert(Offset == 0); 3992 3993 if (Size == ElementSize) 3994 return stripAggregateTypeWrapping(DL, ElementTy); 3995 3996 StructType::element_iterator EI = STy->element_begin() + Index, 3997 EE = STy->element_end(); 3998 if (EndOffset < SL->getSizeInBytes()) { 3999 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 4000 if (Index == EndIndex) 4001 return nullptr; // Within a single element and its padding. 4002 4003 // Don't try to form "natural" types if the elements don't line up with the 4004 // expected size. 4005 // FIXME: We could potentially recurse down through the last element in the 4006 // sub-struct to find a natural end point. 4007 if (SL->getElementOffset(EndIndex) != EndOffset) 4008 return nullptr; 4009 4010 assert(Index < EndIndex); 4011 EE = STy->element_begin() + EndIndex; 4012 } 4013 4014 // Try to build up a sub-structure. 4015 StructType *SubTy = 4016 StructType::get(STy->getContext(), ArrayRef(EI, EE), STy->isPacked()); 4017 const StructLayout *SubSL = DL.getStructLayout(SubTy); 4018 if (Size != SubSL->getSizeInBytes()) 4019 return nullptr; // The sub-struct doesn't have quite the size needed. 4020 4021 return SubTy; 4022 } 4023 4024 /// Pre-split loads and stores to simplify rewriting. 4025 /// 4026 /// We want to break up the splittable load+store pairs as much as 4027 /// possible. This is important to do as a preprocessing step, as once we 4028 /// start rewriting the accesses to partitions of the alloca we lose the 4029 /// necessary information to correctly split apart paired loads and stores 4030 /// which both point into this alloca. The case to consider is something like 4031 /// the following: 4032 /// 4033 /// %a = alloca [12 x i8] 4034 /// %gep1 = getelementptr i8, ptr %a, i32 0 4035 /// %gep2 = getelementptr i8, ptr %a, i32 4 4036 /// %gep3 = getelementptr i8, ptr %a, i32 8 4037 /// store float 0.0, ptr %gep1 4038 /// store float 1.0, ptr %gep2 4039 /// %v = load i64, ptr %gep1 4040 /// store i64 %v, ptr %gep2 4041 /// %f1 = load float, ptr %gep2 4042 /// %f2 = load float, ptr %gep3 4043 /// 4044 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 4045 /// promote everything so we recover the 2 SSA values that should have been 4046 /// there all along. 4047 /// 4048 /// \returns true if any changes are made. 4049 bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 4050 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 4051 4052 // Track the loads and stores which are candidates for pre-splitting here, in 4053 // the order they first appear during the partition scan. These give stable 4054 // iteration order and a basis for tracking which loads and stores we 4055 // actually split. 4056 SmallVector<LoadInst *, 4> Loads; 4057 SmallVector<StoreInst *, 4> Stores; 4058 4059 // We need to accumulate the splits required of each load or store where we 4060 // can find them via a direct lookup. This is important to cross-check loads 4061 // and stores against each other. We also track the slice so that we can kill 4062 // all the slices that end up split. 4063 struct SplitOffsets { 4064 Slice *S; 4065 std::vector<uint64_t> Splits; 4066 }; 4067 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 4068 4069 // Track loads out of this alloca which cannot, for any reason, be pre-split. 4070 // This is important as we also cannot pre-split stores of those loads! 4071 // FIXME: This is all pretty gross. It means that we can be more aggressive 4072 // in pre-splitting when the load feeding the store happens to come from 4073 // a separate alloca. Put another way, the effectiveness of SROA would be 4074 // decreased by a frontend which just concatenated all of its local allocas 4075 // into one big flat alloca. But defeating such patterns is exactly the job 4076 // SROA is tasked with! Sadly, to not have this discrepancy we would have 4077 // change store pre-splitting to actually force pre-splitting of the load 4078 // that feeds it *and all stores*. That makes pre-splitting much harder, but 4079 // maybe it would make it more principled? 4080 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 4081 4082 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 4083 for (auto &P : AS.partitions()) { 4084 for (Slice &S : P) { 4085 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 4086 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 4087 // If this is a load we have to track that it can't participate in any 4088 // pre-splitting. If this is a store of a load we have to track that 4089 // that load also can't participate in any pre-splitting. 4090 if (auto *LI = dyn_cast<LoadInst>(I)) 4091 UnsplittableLoads.insert(LI); 4092 else if (auto *SI = dyn_cast<StoreInst>(I)) 4093 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 4094 UnsplittableLoads.insert(LI); 4095 continue; 4096 } 4097 assert(P.endOffset() > S.beginOffset() && 4098 "Empty or backwards partition!"); 4099 4100 // Determine if this is a pre-splittable slice. 4101 if (auto *LI = dyn_cast<LoadInst>(I)) { 4102 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 4103 4104 // The load must be used exclusively to store into other pointers for 4105 // us to be able to arbitrarily pre-split it. The stores must also be 4106 // simple to avoid changing semantics. 4107 auto IsLoadSimplyStored = [](LoadInst *LI) { 4108 for (User *LU : LI->users()) { 4109 auto *SI = dyn_cast<StoreInst>(LU); 4110 if (!SI || !SI->isSimple()) 4111 return false; 4112 } 4113 return true; 4114 }; 4115 if (!IsLoadSimplyStored(LI)) { 4116 UnsplittableLoads.insert(LI); 4117 continue; 4118 } 4119 4120 Loads.push_back(LI); 4121 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 4122 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 4123 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 4124 continue; 4125 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 4126 if (!StoredLoad || !StoredLoad->isSimple()) 4127 continue; 4128 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 4129 4130 Stores.push_back(SI); 4131 } else { 4132 // Other uses cannot be pre-split. 4133 continue; 4134 } 4135 4136 // Record the initial split. 4137 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); 4138 auto &Offsets = SplitOffsetsMap[I]; 4139 assert(Offsets.Splits.empty() && 4140 "Should not have splits the first time we see an instruction!"); 4141 Offsets.S = &S; 4142 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 4143 } 4144 4145 // Now scan the already split slices, and add a split for any of them which 4146 // we're going to pre-split. 4147 for (Slice *S : P.splitSliceTails()) { 4148 auto SplitOffsetsMapI = 4149 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 4150 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 4151 continue; 4152 auto &Offsets = SplitOffsetsMapI->second; 4153 4154 assert(Offsets.S == S && "Found a mismatched slice!"); 4155 assert(!Offsets.Splits.empty() && 4156 "Cannot have an empty set of splits on the second partition!"); 4157 assert(Offsets.Splits.back() == 4158 P.beginOffset() - Offsets.S->beginOffset() && 4159 "Previous split does not end where this one begins!"); 4160 4161 // Record each split. The last partition's end isn't needed as the size 4162 // of the slice dictates that. 4163 if (S->endOffset() > P.endOffset()) 4164 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 4165 } 4166 } 4167 4168 // We may have split loads where some of their stores are split stores. For 4169 // such loads and stores, we can only pre-split them if their splits exactly 4170 // match relative to their starting offset. We have to verify this prior to 4171 // any rewriting. 4172 llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 4173 // Lookup the load we are storing in our map of split 4174 // offsets. 4175 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4176 // If it was completely unsplittable, then we're done, 4177 // and this store can't be pre-split. 4178 if (UnsplittableLoads.count(LI)) 4179 return true; 4180 4181 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 4182 if (LoadOffsetsI == SplitOffsetsMap.end()) 4183 return false; // Unrelated loads are definitely safe. 4184 auto &LoadOffsets = LoadOffsetsI->second; 4185 4186 // Now lookup the store's offsets. 4187 auto &StoreOffsets = SplitOffsetsMap[SI]; 4188 4189 // If the relative offsets of each split in the load and 4190 // store match exactly, then we can split them and we 4191 // don't need to remove them here. 4192 if (LoadOffsets.Splits == StoreOffsets.Splits) 4193 return false; 4194 4195 LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n" 4196 << " " << *LI << "\n" 4197 << " " << *SI << "\n"); 4198 4199 // We've found a store and load that we need to split 4200 // with mismatched relative splits. Just give up on them 4201 // and remove both instructions from our list of 4202 // candidates. 4203 UnsplittableLoads.insert(LI); 4204 return true; 4205 }); 4206 // Now we have to go *back* through all the stores, because a later store may 4207 // have caused an earlier store's load to become unsplittable and if it is 4208 // unsplittable for the later store, then we can't rely on it being split in 4209 // the earlier store either. 4210 llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) { 4211 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4212 return UnsplittableLoads.count(LI); 4213 }); 4214 // Once we've established all the loads that can't be split for some reason, 4215 // filter any that made it into our list out. 4216 llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) { 4217 return UnsplittableLoads.count(LI); 4218 }); 4219 4220 // If no loads or stores are left, there is no pre-splitting to be done for 4221 // this alloca. 4222 if (Loads.empty() && Stores.empty()) 4223 return false; 4224 4225 // From here on, we can't fail and will be building new accesses, so rig up 4226 // an IR builder. 4227 IRBuilderTy IRB(&AI); 4228 4229 // Collect the new slices which we will merge into the alloca slices. 4230 SmallVector<Slice, 4> NewSlices; 4231 4232 // Track any allocas we end up splitting loads and stores for so we iterate 4233 // on them. 4234 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 4235 4236 // At this point, we have collected all of the loads and stores we can 4237 // pre-split, and the specific splits needed for them. We actually do the 4238 // splitting in a specific order in order to handle when one of the loads in 4239 // the value operand to one of the stores. 4240 // 4241 // First, we rewrite all of the split loads, and just accumulate each split 4242 // load in a parallel structure. We also build the slices for them and append 4243 // them to the alloca slices. 4244 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 4245 std::vector<LoadInst *> SplitLoads; 4246 const DataLayout &DL = AI.getModule()->getDataLayout(); 4247 for (LoadInst *LI : Loads) { 4248 SplitLoads.clear(); 4249 4250 auto &Offsets = SplitOffsetsMap[LI]; 4251 unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset(); 4252 assert(LI->getType()->getIntegerBitWidth() % 8 == 0 && 4253 "Load must have type size equal to store size"); 4254 assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize && 4255 "Load must be >= slice size"); 4256 4257 uint64_t BaseOffset = Offsets.S->beginOffset(); 4258 assert(BaseOffset + SliceSize > BaseOffset && 4259 "Cannot represent alloca access size using 64-bit integers!"); 4260 4261 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 4262 IRB.SetInsertPoint(LI); 4263 4264 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 4265 4266 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4267 int Idx = 0, Size = Offsets.Splits.size(); 4268 for (;;) { 4269 auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8); 4270 auto AS = LI->getPointerAddressSpace(); 4271 auto *PartPtrTy = PartTy->getPointerTo(AS); 4272 LoadInst *PLoad = IRB.CreateAlignedLoad( 4273 PartTy, 4274 getAdjustedPtr(IRB, DL, BasePtr, 4275 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4276 PartPtrTy, BasePtr->getName() + "."), 4277 getAdjustedAlignment(LI, PartOffset), 4278 /*IsVolatile*/ false, LI->getName()); 4279 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4280 LLVMContext::MD_access_group}); 4281 4282 // Append this load onto the list of split loads so we can find it later 4283 // to rewrite the stores. 4284 SplitLoads.push_back(PLoad); 4285 4286 // Now build a new slice for the alloca. 4287 NewSlices.push_back( 4288 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4289 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 4290 /*IsSplittable*/ false)); 4291 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4292 << ", " << NewSlices.back().endOffset() 4293 << "): " << *PLoad << "\n"); 4294 4295 // See if we've handled all the splits. 4296 if (Idx >= Size) 4297 break; 4298 4299 // Setup the next partition. 4300 PartOffset = Offsets.Splits[Idx]; 4301 ++Idx; 4302 PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset; 4303 } 4304 4305 // Now that we have the split loads, do the slow walk over all uses of the 4306 // load and rewrite them as split stores, or save the split loads to use 4307 // below if the store is going to be split there anyways. 4308 bool DeferredStores = false; 4309 for (User *LU : LI->users()) { 4310 StoreInst *SI = cast<StoreInst>(LU); 4311 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 4312 DeferredStores = true; 4313 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI 4314 << "\n"); 4315 continue; 4316 } 4317 4318 Value *StoreBasePtr = SI->getPointerOperand(); 4319 IRB.SetInsertPoint(SI); 4320 4321 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 4322 4323 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 4324 LoadInst *PLoad = SplitLoads[Idx]; 4325 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 4326 auto *PartPtrTy = 4327 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); 4328 4329 auto AS = SI->getPointerAddressSpace(); 4330 StoreInst *PStore = IRB.CreateAlignedStore( 4331 PLoad, 4332 getAdjustedPtr(IRB, DL, StoreBasePtr, 4333 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4334 PartPtrTy, StoreBasePtr->getName() + "."), 4335 getAdjustedAlignment(SI, PartOffset), 4336 /*IsVolatile*/ false); 4337 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4338 LLVMContext::MD_access_group, 4339 LLVMContext::MD_DIAssignID}); 4340 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 4341 } 4342 4343 // We want to immediately iterate on any allocas impacted by splitting 4344 // this store, and we have to track any promotable alloca (indicated by 4345 // a direct store) as needing to be resplit because it is no longer 4346 // promotable. 4347 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 4348 ResplitPromotableAllocas.insert(OtherAI); 4349 Worklist.insert(OtherAI); 4350 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4351 StoreBasePtr->stripInBoundsOffsets())) { 4352 Worklist.insert(OtherAI); 4353 } 4354 4355 // Mark the original store as dead. 4356 DeadInsts.push_back(SI); 4357 } 4358 4359 // Save the split loads if there are deferred stores among the users. 4360 if (DeferredStores) 4361 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 4362 4363 // Mark the original load as dead and kill the original slice. 4364 DeadInsts.push_back(LI); 4365 Offsets.S->kill(); 4366 } 4367 4368 // Second, we rewrite all of the split stores. At this point, we know that 4369 // all loads from this alloca have been split already. For stores of such 4370 // loads, we can simply look up the pre-existing split loads. For stores of 4371 // other loads, we split those loads first and then write split stores of 4372 // them. 4373 for (StoreInst *SI : Stores) { 4374 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4375 IntegerType *Ty = cast<IntegerType>(LI->getType()); 4376 assert(Ty->getBitWidth() % 8 == 0); 4377 uint64_t StoreSize = Ty->getBitWidth() / 8; 4378 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 4379 4380 auto &Offsets = SplitOffsetsMap[SI]; 4381 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 4382 "Slice size should always match load size exactly!"); 4383 uint64_t BaseOffset = Offsets.S->beginOffset(); 4384 assert(BaseOffset + StoreSize > BaseOffset && 4385 "Cannot represent alloca access size using 64-bit integers!"); 4386 4387 Value *LoadBasePtr = LI->getPointerOperand(); 4388 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 4389 4390 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 4391 4392 // Check whether we have an already split load. 4393 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 4394 std::vector<LoadInst *> *SplitLoads = nullptr; 4395 if (SplitLoadsMapI != SplitLoadsMap.end()) { 4396 SplitLoads = &SplitLoadsMapI->second; 4397 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 4398 "Too few split loads for the number of splits in the store!"); 4399 } else { 4400 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); 4401 } 4402 4403 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4404 int Idx = 0, Size = Offsets.Splits.size(); 4405 for (;;) { 4406 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 4407 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); 4408 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); 4409 4410 // Either lookup a split load or create one. 4411 LoadInst *PLoad; 4412 if (SplitLoads) { 4413 PLoad = (*SplitLoads)[Idx]; 4414 } else { 4415 IRB.SetInsertPoint(LI); 4416 auto AS = LI->getPointerAddressSpace(); 4417 PLoad = IRB.CreateAlignedLoad( 4418 PartTy, 4419 getAdjustedPtr(IRB, DL, LoadBasePtr, 4420 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4421 LoadPartPtrTy, LoadBasePtr->getName() + "."), 4422 getAdjustedAlignment(LI, PartOffset), 4423 /*IsVolatile*/ false, LI->getName()); 4424 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4425 LLVMContext::MD_access_group}); 4426 } 4427 4428 // And store this partition. 4429 IRB.SetInsertPoint(SI); 4430 auto AS = SI->getPointerAddressSpace(); 4431 StoreInst *PStore = IRB.CreateAlignedStore( 4432 PLoad, 4433 getAdjustedPtr(IRB, DL, StoreBasePtr, 4434 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4435 StorePartPtrTy, StoreBasePtr->getName() + "."), 4436 getAdjustedAlignment(SI, PartOffset), 4437 /*IsVolatile*/ false); 4438 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4439 LLVMContext::MD_access_group}); 4440 4441 // Now build a new slice for the alloca. 4442 NewSlices.push_back( 4443 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4444 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 4445 /*IsSplittable*/ false)); 4446 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4447 << ", " << NewSlices.back().endOffset() 4448 << "): " << *PStore << "\n"); 4449 if (!SplitLoads) { 4450 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 4451 } 4452 4453 // See if we've finished all the splits. 4454 if (Idx >= Size) 4455 break; 4456 4457 // Setup the next partition. 4458 PartOffset = Offsets.Splits[Idx]; 4459 ++Idx; 4460 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 4461 } 4462 4463 // We want to immediately iterate on any allocas impacted by splitting 4464 // this load, which is only relevant if it isn't a load of this alloca and 4465 // thus we didn't already split the loads above. We also have to keep track 4466 // of any promotable allocas we split loads on as they can no longer be 4467 // promoted. 4468 if (!SplitLoads) { 4469 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 4470 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4471 ResplitPromotableAllocas.insert(OtherAI); 4472 Worklist.insert(OtherAI); 4473 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4474 LoadBasePtr->stripInBoundsOffsets())) { 4475 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4476 Worklist.insert(OtherAI); 4477 } 4478 } 4479 4480 // Mark the original store as dead now that we've split it up and kill its 4481 // slice. Note that we leave the original load in place unless this store 4482 // was its only use. It may in turn be split up if it is an alloca load 4483 // for some other alloca, but it may be a normal load. This may introduce 4484 // redundant loads, but where those can be merged the rest of the optimizer 4485 // should handle the merging, and this uncovers SSA splits which is more 4486 // important. In practice, the original loads will almost always be fully 4487 // split and removed eventually, and the splits will be merged by any 4488 // trivial CSE, including instcombine. 4489 if (LI->hasOneUse()) { 4490 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 4491 DeadInsts.push_back(LI); 4492 } 4493 DeadInsts.push_back(SI); 4494 Offsets.S->kill(); 4495 } 4496 4497 // Remove the killed slices that have ben pre-split. 4498 llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); }); 4499 4500 // Insert our new slices. This will sort and merge them into the sorted 4501 // sequence. 4502 AS.insert(NewSlices); 4503 4504 LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); 4505 #ifndef NDEBUG 4506 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 4507 LLVM_DEBUG(AS.print(dbgs(), I, " ")); 4508 #endif 4509 4510 // Finally, don't try to promote any allocas that new require re-splitting. 4511 // They have already been added to the worklist above. 4512 llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) { 4513 return ResplitPromotableAllocas.count(AI); 4514 }); 4515 4516 return true; 4517 } 4518 4519 /// Rewrite an alloca partition's users. 4520 /// 4521 /// This routine drives both of the rewriting goals of the SROA pass. It tries 4522 /// to rewrite uses of an alloca partition to be conducive for SSA value 4523 /// promotion. If the partition needs a new, more refined alloca, this will 4524 /// build that new alloca, preserving as much type information as possible, and 4525 /// rewrite the uses of the old alloca to point at the new one and have the 4526 /// appropriate new offsets. It also evaluates how successful the rewrite was 4527 /// at enabling promotion and if it was successful queues the alloca to be 4528 /// promoted. 4529 AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 4530 Partition &P) { 4531 // Try to compute a friendly type for this partition of the alloca. This 4532 // won't always succeed, in which case we fall back to a legal integer type 4533 // or an i8 array of an appropriate size. 4534 Type *SliceTy = nullptr; 4535 VectorType *SliceVecTy = nullptr; 4536 const DataLayout &DL = AI.getModule()->getDataLayout(); 4537 std::pair<Type *, IntegerType *> CommonUseTy = 4538 findCommonType(P.begin(), P.end(), P.endOffset()); 4539 // Do all uses operate on the same type? 4540 if (CommonUseTy.first) 4541 if (DL.getTypeAllocSize(CommonUseTy.first).getFixedValue() >= P.size()) { 4542 SliceTy = CommonUseTy.first; 4543 SliceVecTy = dyn_cast<VectorType>(SliceTy); 4544 } 4545 // If not, can we find an appropriate subtype in the original allocated type? 4546 if (!SliceTy) 4547 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4548 P.beginOffset(), P.size())) 4549 SliceTy = TypePartitionTy; 4550 4551 // If still not, can we use the largest bitwidth integer type used? 4552 if (!SliceTy && CommonUseTy.second) 4553 if (DL.getTypeAllocSize(CommonUseTy.second).getFixedValue() >= P.size()) { 4554 SliceTy = CommonUseTy.second; 4555 SliceVecTy = dyn_cast<VectorType>(SliceTy); 4556 } 4557 if ((!SliceTy || (SliceTy->isArrayTy() && 4558 SliceTy->getArrayElementType()->isIntegerTy())) && 4559 DL.isLegalInteger(P.size() * 8)) { 4560 SliceTy = Type::getIntNTy(*C, P.size() * 8); 4561 } 4562 4563 // If the common use types are not viable for promotion then attempt to find 4564 // another type that is viable. 4565 if (SliceVecTy && !checkVectorTypeForPromotion(P, SliceVecTy, DL)) 4566 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4567 P.beginOffset(), P.size())) { 4568 VectorType *TypePartitionVecTy = dyn_cast<VectorType>(TypePartitionTy); 4569 if (TypePartitionVecTy && 4570 checkVectorTypeForPromotion(P, TypePartitionVecTy, DL)) 4571 SliceTy = TypePartitionTy; 4572 } 4573 4574 if (!SliceTy) 4575 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 4576 assert(DL.getTypeAllocSize(SliceTy).getFixedValue() >= P.size()); 4577 4578 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 4579 4580 VectorType *VecTy = 4581 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 4582 if (VecTy) 4583 SliceTy = VecTy; 4584 4585 // Check for the case where we're going to rewrite to a new alloca of the 4586 // exact same type as the original, and with the same access offsets. In that 4587 // case, re-use the existing alloca, but still run through the rewriter to 4588 // perform phi and select speculation. 4589 // P.beginOffset() can be non-zero even with the same type in a case with 4590 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). 4591 AllocaInst *NewAI; 4592 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { 4593 NewAI = &AI; 4594 // FIXME: We should be able to bail at this point with "nothing changed". 4595 // FIXME: We might want to defer PHI speculation until after here. 4596 // FIXME: return nullptr; 4597 } else { 4598 // Make sure the alignment is compatible with P.beginOffset(). 4599 const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset()); 4600 // If we will get at least this much alignment from the type alone, leave 4601 // the alloca's alignment unconstrained. 4602 const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy); 4603 NewAI = new AllocaInst( 4604 SliceTy, AI.getAddressSpace(), nullptr, 4605 IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment, 4606 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); 4607 // Copy the old AI debug location over to the new one. 4608 NewAI->setDebugLoc(AI.getDebugLoc()); 4609 ++NumNewAllocas; 4610 } 4611 4612 LLVM_DEBUG(dbgs() << "Rewriting alloca partition " 4613 << "[" << P.beginOffset() << "," << P.endOffset() 4614 << ") to: " << *NewAI << "\n"); 4615 4616 // Track the high watermark on the worklist as it is only relevant for 4617 // promoted allocas. We will reset it to this point if the alloca is not in 4618 // fact scheduled for promotion. 4619 unsigned PPWOldSize = PostPromotionWorklist.size(); 4620 unsigned NumUses = 0; 4621 SmallSetVector<PHINode *, 8> PHIUsers; 4622 SmallSetVector<SelectInst *, 8> SelectUsers; 4623 4624 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 4625 P.endOffset(), IsIntegerPromotable, VecTy, 4626 PHIUsers, SelectUsers); 4627 bool Promotable = true; 4628 for (Slice *S : P.splitSliceTails()) { 4629 Promotable &= Rewriter.visit(S); 4630 ++NumUses; 4631 } 4632 for (Slice &S : P) { 4633 Promotable &= Rewriter.visit(&S); 4634 ++NumUses; 4635 } 4636 4637 NumAllocaPartitionUses += NumUses; 4638 MaxUsesPerAllocaPartition.updateMax(NumUses); 4639 4640 // Now that we've processed all the slices in the new partition, check if any 4641 // PHIs or Selects would block promotion. 4642 for (PHINode *PHI : PHIUsers) 4643 if (!isSafePHIToSpeculate(*PHI)) { 4644 Promotable = false; 4645 PHIUsers.clear(); 4646 SelectUsers.clear(); 4647 break; 4648 } 4649 4650 SmallVector<std::pair<SelectInst *, RewriteableMemOps>, 2> 4651 NewSelectsToRewrite; 4652 NewSelectsToRewrite.reserve(SelectUsers.size()); 4653 for (SelectInst *Sel : SelectUsers) { 4654 std::optional<RewriteableMemOps> Ops = 4655 isSafeSelectToSpeculate(*Sel, PreserveCFG); 4656 if (!Ops) { 4657 Promotable = false; 4658 PHIUsers.clear(); 4659 SelectUsers.clear(); 4660 NewSelectsToRewrite.clear(); 4661 break; 4662 } 4663 NewSelectsToRewrite.emplace_back(std::make_pair(Sel, *Ops)); 4664 } 4665 4666 if (Promotable) { 4667 for (Use *U : AS.getDeadUsesIfPromotable()) { 4668 auto *OldInst = dyn_cast<Instruction>(U->get()); 4669 Value::dropDroppableUse(*U); 4670 if (OldInst) 4671 if (isInstructionTriviallyDead(OldInst)) 4672 DeadInsts.push_back(OldInst); 4673 } 4674 if (PHIUsers.empty() && SelectUsers.empty()) { 4675 // Promote the alloca. 4676 PromotableAllocas.push_back(NewAI); 4677 } else { 4678 // If we have either PHIs or Selects to speculate, add them to those 4679 // worklists and re-queue the new alloca so that we promote in on the 4680 // next iteration. 4681 for (PHINode *PHIUser : PHIUsers) 4682 SpeculatablePHIs.insert(PHIUser); 4683 SelectsToRewrite.reserve(SelectsToRewrite.size() + 4684 NewSelectsToRewrite.size()); 4685 for (auto &&KV : llvm::make_range( 4686 std::make_move_iterator(NewSelectsToRewrite.begin()), 4687 std::make_move_iterator(NewSelectsToRewrite.end()))) 4688 SelectsToRewrite.insert(std::move(KV)); 4689 Worklist.insert(NewAI); 4690 } 4691 } else { 4692 // Drop any post-promotion work items if promotion didn't happen. 4693 while (PostPromotionWorklist.size() > PPWOldSize) 4694 PostPromotionWorklist.pop_back(); 4695 4696 // We couldn't promote and we didn't create a new partition, nothing 4697 // happened. 4698 if (NewAI == &AI) 4699 return nullptr; 4700 4701 // If we can't promote the alloca, iterate on it to check for new 4702 // refinements exposed by splitting the current alloca. Don't iterate on an 4703 // alloca which didn't actually change and didn't get promoted. 4704 Worklist.insert(NewAI); 4705 } 4706 4707 return NewAI; 4708 } 4709 4710 /// Walks the slices of an alloca and form partitions based on them, 4711 /// rewriting each of their uses. 4712 bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 4713 if (AS.begin() == AS.end()) 4714 return false; 4715 4716 unsigned NumPartitions = 0; 4717 bool Changed = false; 4718 const DataLayout &DL = AI.getModule()->getDataLayout(); 4719 4720 // First try to pre-split loads and stores. 4721 Changed |= presplitLoadsAndStores(AI, AS); 4722 4723 // Now that we have identified any pre-splitting opportunities, 4724 // mark loads and stores unsplittable except for the following case. 4725 // We leave a slice splittable if all other slices are disjoint or fully 4726 // included in the slice, such as whole-alloca loads and stores. 4727 // If we fail to split these during pre-splitting, we want to force them 4728 // to be rewritten into a partition. 4729 bool IsSorted = true; 4730 4731 uint64_t AllocaSize = 4732 DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue(); 4733 const uint64_t MaxBitVectorSize = 1024; 4734 if (AllocaSize <= MaxBitVectorSize) { 4735 // If a byte boundary is included in any load or store, a slice starting or 4736 // ending at the boundary is not splittable. 4737 SmallBitVector SplittableOffset(AllocaSize + 1, true); 4738 for (Slice &S : AS) 4739 for (unsigned O = S.beginOffset() + 1; 4740 O < S.endOffset() && O < AllocaSize; O++) 4741 SplittableOffset.reset(O); 4742 4743 for (Slice &S : AS) { 4744 if (!S.isSplittable()) 4745 continue; 4746 4747 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && 4748 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) 4749 continue; 4750 4751 if (isa<LoadInst>(S.getUse()->getUser()) || 4752 isa<StoreInst>(S.getUse()->getUser())) { 4753 S.makeUnsplittable(); 4754 IsSorted = false; 4755 } 4756 } 4757 } 4758 else { 4759 // We only allow whole-alloca splittable loads and stores 4760 // for a large alloca to avoid creating too large BitVector. 4761 for (Slice &S : AS) { 4762 if (!S.isSplittable()) 4763 continue; 4764 4765 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) 4766 continue; 4767 4768 if (isa<LoadInst>(S.getUse()->getUser()) || 4769 isa<StoreInst>(S.getUse()->getUser())) { 4770 S.makeUnsplittable(); 4771 IsSorted = false; 4772 } 4773 } 4774 } 4775 4776 if (!IsSorted) 4777 llvm::sort(AS); 4778 4779 /// Describes the allocas introduced by rewritePartition in order to migrate 4780 /// the debug info. 4781 struct Fragment { 4782 AllocaInst *Alloca; 4783 uint64_t Offset; 4784 uint64_t Size; 4785 Fragment(AllocaInst *AI, uint64_t O, uint64_t S) 4786 : Alloca(AI), Offset(O), Size(S) {} 4787 }; 4788 SmallVector<Fragment, 4> Fragments; 4789 4790 // Rewrite each partition. 4791 for (auto &P : AS.partitions()) { 4792 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 4793 Changed = true; 4794 if (NewAI != &AI) { 4795 uint64_t SizeOfByte = 8; 4796 uint64_t AllocaSize = 4797 DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedValue(); 4798 // Don't include any padding. 4799 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 4800 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); 4801 } 4802 } 4803 ++NumPartitions; 4804 } 4805 4806 NumAllocaPartitions += NumPartitions; 4807 MaxPartitionsPerAlloca.updateMax(NumPartitions); 4808 4809 // Migrate debug information from the old alloca to the new alloca(s) 4810 // and the individual partitions. 4811 TinyPtrVector<DbgVariableIntrinsic *> DbgVariables; 4812 for (auto *DbgDeclare : FindDbgDeclareUses(&AI)) 4813 DbgVariables.push_back(DbgDeclare); 4814 for (auto *DbgAssign : at::getAssignmentMarkers(&AI)) 4815 DbgVariables.push_back(DbgAssign); 4816 for (DbgVariableIntrinsic *DbgVariable : DbgVariables) { 4817 auto *Expr = DbgVariable->getExpression(); 4818 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 4819 uint64_t AllocaSize = 4820 DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedValue(); 4821 for (auto Fragment : Fragments) { 4822 // Create a fragment expression describing the new partition or reuse AI's 4823 // expression if there is only one partition. 4824 auto *FragmentExpr = Expr; 4825 if (Fragment.Size < AllocaSize || Expr->isFragment()) { 4826 // If this alloca is already a scalar replacement of a larger aggregate, 4827 // Fragment.Offset describes the offset inside the scalar. 4828 auto ExprFragment = Expr->getFragmentInfo(); 4829 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0; 4830 uint64_t Start = Offset + Fragment.Offset; 4831 uint64_t Size = Fragment.Size; 4832 if (ExprFragment) { 4833 uint64_t AbsEnd = 4834 ExprFragment->OffsetInBits + ExprFragment->SizeInBits; 4835 if (Start >= AbsEnd) { 4836 // No need to describe a SROAed padding. 4837 continue; 4838 } 4839 Size = std::min(Size, AbsEnd - Start); 4840 } 4841 // The new, smaller fragment is stenciled out from the old fragment. 4842 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) { 4843 assert(Start >= OrigFragment->OffsetInBits && 4844 "new fragment is outside of original fragment"); 4845 Start -= OrigFragment->OffsetInBits; 4846 } 4847 4848 // The alloca may be larger than the variable. 4849 auto VarSize = DbgVariable->getVariable()->getSizeInBits(); 4850 if (VarSize) { 4851 if (Size > *VarSize) 4852 Size = *VarSize; 4853 if (Size == 0 || Start + Size > *VarSize) 4854 continue; 4855 } 4856 4857 // Avoid creating a fragment expression that covers the entire variable. 4858 if (!VarSize || *VarSize != Size) { 4859 if (auto E = 4860 DIExpression::createFragmentExpression(Expr, Start, Size)) 4861 FragmentExpr = *E; 4862 else 4863 continue; 4864 } 4865 } 4866 4867 // Remove any existing intrinsics on the new alloca describing 4868 // the variable fragment. 4869 for (DbgDeclareInst *OldDII : FindDbgDeclareUses(Fragment.Alloca)) { 4870 auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS, 4871 const DbgVariableIntrinsic *RHS) { 4872 return LHS->getVariable() == RHS->getVariable() && 4873 LHS->getDebugLoc()->getInlinedAt() == 4874 RHS->getDebugLoc()->getInlinedAt(); 4875 }; 4876 if (SameVariableFragment(OldDII, DbgVariable)) 4877 OldDII->eraseFromParent(); 4878 } 4879 4880 if (auto *DbgAssign = dyn_cast<DbgAssignIntrinsic>(DbgVariable)) { 4881 if (!Fragment.Alloca->hasMetadata(LLVMContext::MD_DIAssignID)) { 4882 Fragment.Alloca->setMetadata( 4883 LLVMContext::MD_DIAssignID, 4884 DIAssignID::getDistinct(AI.getContext())); 4885 } 4886 auto *NewAssign = DIB.insertDbgAssign( 4887 Fragment.Alloca, DbgAssign->getValue(), DbgAssign->getVariable(), 4888 FragmentExpr, Fragment.Alloca, DbgAssign->getAddressExpression(), 4889 DbgAssign->getDebugLoc()); 4890 NewAssign->setDebugLoc(DbgAssign->getDebugLoc()); 4891 LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign 4892 << "\n"); 4893 } else { 4894 DIB.insertDeclare(Fragment.Alloca, DbgVariable->getVariable(), 4895 FragmentExpr, DbgVariable->getDebugLoc(), &AI); 4896 } 4897 } 4898 } 4899 return Changed; 4900 } 4901 4902 /// Clobber a use with poison, deleting the used value if it becomes dead. 4903 void SROAPass::clobberUse(Use &U) { 4904 Value *OldV = U; 4905 // Replace the use with an poison value. 4906 U = PoisonValue::get(OldV->getType()); 4907 4908 // Check for this making an instruction dead. We have to garbage collect 4909 // all the dead instructions to ensure the uses of any alloca end up being 4910 // minimal. 4911 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 4912 if (isInstructionTriviallyDead(OldI)) { 4913 DeadInsts.push_back(OldI); 4914 } 4915 } 4916 4917 /// Analyze an alloca for SROA. 4918 /// 4919 /// This analyzes the alloca to ensure we can reason about it, builds 4920 /// the slices of the alloca, and then hands it off to be split and 4921 /// rewritten as needed. 4922 std::pair<bool /*Changed*/, bool /*CFGChanged*/> 4923 SROAPass::runOnAlloca(AllocaInst &AI) { 4924 bool Changed = false; 4925 bool CFGChanged = false; 4926 4927 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 4928 ++NumAllocasAnalyzed; 4929 4930 // Special case dead allocas, as they're trivial. 4931 if (AI.use_empty()) { 4932 AI.eraseFromParent(); 4933 Changed = true; 4934 return {Changed, CFGChanged}; 4935 } 4936 const DataLayout &DL = AI.getModule()->getDataLayout(); 4937 4938 // Skip alloca forms that this analysis can't handle. 4939 auto *AT = AI.getAllocatedType(); 4940 TypeSize Size = DL.getTypeAllocSize(AT); 4941 if (AI.isArrayAllocation() || !AT->isSized() || Size.isScalable() || 4942 Size.getFixedValue() == 0) 4943 return {Changed, CFGChanged}; 4944 4945 // First, split any FCA loads and stores touching this alloca to promote 4946 // better splitting and promotion opportunities. 4947 IRBuilderTy IRB(&AI); 4948 AggLoadStoreRewriter AggRewriter(DL, IRB); 4949 Changed |= AggRewriter.rewrite(AI); 4950 4951 // Build the slices using a recursive instruction-visiting builder. 4952 AllocaSlices AS(DL, AI); 4953 LLVM_DEBUG(AS.print(dbgs())); 4954 if (AS.isEscaped()) 4955 return {Changed, CFGChanged}; 4956 4957 // Delete all the dead users of this alloca before splitting and rewriting it. 4958 for (Instruction *DeadUser : AS.getDeadUsers()) { 4959 // Free up everything used by this instruction. 4960 for (Use &DeadOp : DeadUser->operands()) 4961 clobberUse(DeadOp); 4962 4963 // Now replace the uses of this instruction. 4964 DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType())); 4965 4966 // And mark it for deletion. 4967 DeadInsts.push_back(DeadUser); 4968 Changed = true; 4969 } 4970 for (Use *DeadOp : AS.getDeadOperands()) { 4971 clobberUse(*DeadOp); 4972 Changed = true; 4973 } 4974 4975 // No slices to split. Leave the dead alloca for a later pass to clean up. 4976 if (AS.begin() == AS.end()) 4977 return {Changed, CFGChanged}; 4978 4979 Changed |= splitAlloca(AI, AS); 4980 4981 LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); 4982 while (!SpeculatablePHIs.empty()) 4983 speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val()); 4984 4985 LLVM_DEBUG(dbgs() << " Rewriting Selects\n"); 4986 auto RemainingSelectsToRewrite = SelectsToRewrite.takeVector(); 4987 while (!RemainingSelectsToRewrite.empty()) { 4988 const auto [K, V] = RemainingSelectsToRewrite.pop_back_val(); 4989 CFGChanged |= 4990 rewriteSelectInstMemOps(*K, V, IRB, PreserveCFG ? nullptr : DTU); 4991 } 4992 4993 return {Changed, CFGChanged}; 4994 } 4995 4996 /// Delete the dead instructions accumulated in this run. 4997 /// 4998 /// Recursively deletes the dead instructions we've accumulated. This is done 4999 /// at the very end to maximize locality of the recursive delete and to 5000 /// minimize the problems of invalidated instruction pointers as such pointers 5001 /// are used heavily in the intermediate stages of the algorithm. 5002 /// 5003 /// We also record the alloca instructions deleted here so that they aren't 5004 /// subsequently handed to mem2reg to promote. 5005 bool SROAPass::deleteDeadInstructions( 5006 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 5007 bool Changed = false; 5008 while (!DeadInsts.empty()) { 5009 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()); 5010 if (!I) 5011 continue; 5012 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 5013 5014 // If the instruction is an alloca, find the possible dbg.declare connected 5015 // to it, and remove it too. We must do this before calling RAUW or we will 5016 // not be able to find it. 5017 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 5018 DeletedAllocas.insert(AI); 5019 for (DbgDeclareInst *OldDII : FindDbgDeclareUses(AI)) 5020 OldDII->eraseFromParent(); 5021 } 5022 5023 at::deleteAssignmentMarkers(I); 5024 I->replaceAllUsesWith(UndefValue::get(I->getType())); 5025 5026 for (Use &Operand : I->operands()) 5027 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 5028 // Zero out the operand and see if it becomes trivially dead. 5029 Operand = nullptr; 5030 if (isInstructionTriviallyDead(U)) 5031 DeadInsts.push_back(U); 5032 } 5033 5034 ++NumDeleted; 5035 I->eraseFromParent(); 5036 Changed = true; 5037 } 5038 return Changed; 5039 } 5040 5041 /// Promote the allocas, using the best available technique. 5042 /// 5043 /// This attempts to promote whatever allocas have been identified as viable in 5044 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 5045 /// This function returns whether any promotion occurred. 5046 bool SROAPass::promoteAllocas(Function &F) { 5047 if (PromotableAllocas.empty()) 5048 return false; 5049 5050 NumPromoted += PromotableAllocas.size(); 5051 5052 if (SROASkipMem2Reg) { 5053 LLVM_DEBUG(dbgs() << "Not promoting allocas with mem2reg!\n"); 5054 } else { 5055 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 5056 PromoteMemToReg(PromotableAllocas, DTU->getDomTree(), AC); 5057 } 5058 5059 PromotableAllocas.clear(); 5060 return true; 5061 } 5062 5063 PreservedAnalyses SROAPass::runImpl(Function &F, DomTreeUpdater &RunDTU, 5064 AssumptionCache &RunAC) { 5065 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 5066 C = &F.getContext(); 5067 DTU = &RunDTU; 5068 AC = &RunAC; 5069 5070 const DataLayout &DL = F.getParent()->getDataLayout(); 5071 BasicBlock &EntryBB = F.getEntryBlock(); 5072 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 5073 I != E; ++I) { 5074 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 5075 if (DL.getTypeAllocSize(AI->getAllocatedType()).isScalable() && 5076 isAllocaPromotable(AI)) 5077 PromotableAllocas.push_back(AI); 5078 else 5079 Worklist.insert(AI); 5080 } 5081 } 5082 5083 bool Changed = false; 5084 bool CFGChanged = false; 5085 // A set of deleted alloca instruction pointers which should be removed from 5086 // the list of promotable allocas. 5087 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 5088 5089 do { 5090 while (!Worklist.empty()) { 5091 auto [IterationChanged, IterationCFGChanged] = 5092 runOnAlloca(*Worklist.pop_back_val()); 5093 Changed |= IterationChanged; 5094 CFGChanged |= IterationCFGChanged; 5095 5096 Changed |= deleteDeadInstructions(DeletedAllocas); 5097 5098 // Remove the deleted allocas from various lists so that we don't try to 5099 // continue processing them. 5100 if (!DeletedAllocas.empty()) { 5101 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; 5102 Worklist.remove_if(IsInSet); 5103 PostPromotionWorklist.remove_if(IsInSet); 5104 llvm::erase_if(PromotableAllocas, IsInSet); 5105 DeletedAllocas.clear(); 5106 } 5107 } 5108 5109 Changed |= promoteAllocas(F); 5110 5111 Worklist = PostPromotionWorklist; 5112 PostPromotionWorklist.clear(); 5113 } while (!Worklist.empty()); 5114 5115 assert((!CFGChanged || Changed) && "Can not only modify the CFG."); 5116 assert((!CFGChanged || !PreserveCFG) && 5117 "Should not have modified the CFG when told to preserve it."); 5118 5119 if (!Changed) 5120 return PreservedAnalyses::all(); 5121 5122 if (isAssignmentTrackingEnabled(*F.getParent())) { 5123 for (auto &BB : F) 5124 RemoveRedundantDbgInstrs(&BB); 5125 } 5126 5127 PreservedAnalyses PA; 5128 if (!CFGChanged) 5129 PA.preserveSet<CFGAnalyses>(); 5130 PA.preserve<DominatorTreeAnalysis>(); 5131 return PA; 5132 } 5133 5134 PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT, 5135 AssumptionCache &RunAC) { 5136 DomTreeUpdater DTU(RunDT, DomTreeUpdater::UpdateStrategy::Lazy); 5137 return runImpl(F, DTU, RunAC); 5138 } 5139 5140 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) { 5141 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 5142 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 5143 return runImpl(F, DT, AC); 5144 } 5145 5146 void SROAPass::printPipeline( 5147 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 5148 static_cast<PassInfoMixin<SROAPass> *>(this)->printPipeline( 5149 OS, MapClassName2PassName); 5150 OS << (PreserveCFG ? "<preserve-cfg>" : "<modify-cfg>"); 5151 } 5152 5153 SROAPass::SROAPass(SROAOptions PreserveCFG_) 5154 : PreserveCFG(PreserveCFG_ == SROAOptions::PreserveCFG) {} 5155 5156 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 5157 /// 5158 /// This is in the llvm namespace purely to allow it to be a friend of the \c 5159 /// SROA pass. 5160 class llvm::sroa::SROALegacyPass : public FunctionPass { 5161 /// The SROA implementation. 5162 SROAPass Impl; 5163 5164 public: 5165 static char ID; 5166 5167 SROALegacyPass(SROAOptions PreserveCFG = SROAOptions::PreserveCFG) 5168 : FunctionPass(ID), Impl(PreserveCFG) { 5169 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 5170 } 5171 5172 bool runOnFunction(Function &F) override { 5173 if (skipFunction(F)) 5174 return false; 5175 5176 auto PA = Impl.runImpl( 5177 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 5178 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 5179 return !PA.areAllPreserved(); 5180 } 5181 5182 void getAnalysisUsage(AnalysisUsage &AU) const override { 5183 AU.addRequired<AssumptionCacheTracker>(); 5184 AU.addRequired<DominatorTreeWrapperPass>(); 5185 AU.addPreserved<GlobalsAAWrapperPass>(); 5186 AU.addPreserved<DominatorTreeWrapperPass>(); 5187 } 5188 5189 StringRef getPassName() const override { return "SROA"; } 5190 }; 5191 5192 char SROALegacyPass::ID = 0; 5193 5194 FunctionPass *llvm::createSROAPass(bool PreserveCFG) { 5195 return new SROALegacyPass(PreserveCFG ? SROAOptions::PreserveCFG 5196 : SROAOptions::ModifyCFG); 5197 } 5198 5199 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 5200 "Scalar Replacement Of Aggregates", false, false) 5201 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5202 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5203 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 5204 false, false) 5205