1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This transformation implements the well known scalar replacement of 10 /// aggregates transformation. It tries to identify promotable elements of an 11 /// aggregate alloca, and promote them to registers. It will also try to 12 /// convert uses of an element (or set of elements) of an alloca into a vector 13 /// or bitfield-style integer scalar if appropriate. 14 /// 15 /// It works to do this with minimal slicing of the alloca so that regions 16 /// which are merely transferred in and out of external memory remain unchanged 17 /// and are not decomposed to scalar code. 18 /// 19 /// Because this also performs alloca promotion, it can be thought of as also 20 /// serving the purpose of SSA formation. The algorithm iterates on the 21 /// function until all opportunities for promotion have been realized. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/SROA.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/PointerIntPair.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/ADT/iterator.h" 39 #include "llvm/ADT/iterator_range.h" 40 #include "llvm/Analysis/AssumptionCache.h" 41 #include "llvm/Analysis/GlobalsModRef.h" 42 #include "llvm/Analysis/Loads.h" 43 #include "llvm/Analysis/PtrUseVisitor.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/ConstantFolder.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DIBuilder.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalAlias.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstVisitor.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 85 #include <algorithm> 86 #include <cassert> 87 #include <chrono> 88 #include <cstddef> 89 #include <cstdint> 90 #include <cstring> 91 #include <iterator> 92 #include <string> 93 #include <tuple> 94 #include <utility> 95 #include <vector> 96 97 using namespace llvm; 98 using namespace llvm::sroa; 99 100 #define DEBUG_TYPE "sroa" 101 102 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 103 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 104 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 105 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 106 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 107 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 108 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 109 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 110 STATISTIC(NumDeleted, "Number of instructions deleted"); 111 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 112 113 /// Hidden option to experiment with completely strict handling of inbounds 114 /// GEPs. 115 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), 116 cl::Hidden); 117 118 namespace { 119 120 /// A custom IRBuilder inserter which prefixes all names, but only in 121 /// Assert builds. 122 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { 123 std::string Prefix; 124 125 const Twine getNameWithPrefix(const Twine &Name) const { 126 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 127 } 128 129 public: 130 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 131 132 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 133 BasicBlock::iterator InsertPt) const override { 134 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, 135 InsertPt); 136 } 137 }; 138 139 /// Provide a type for IRBuilder that drops names in release builds. 140 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 141 142 /// A used slice of an alloca. 143 /// 144 /// This structure represents a slice of an alloca used by some instruction. It 145 /// stores both the begin and end offsets of this use, a pointer to the use 146 /// itself, and a flag indicating whether we can classify the use as splittable 147 /// or not when forming partitions of the alloca. 148 class Slice { 149 /// The beginning offset of the range. 150 uint64_t BeginOffset = 0; 151 152 /// The ending offset, not included in the range. 153 uint64_t EndOffset = 0; 154 155 /// Storage for both the use of this slice and whether it can be 156 /// split. 157 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 158 159 public: 160 Slice() = default; 161 162 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 163 : BeginOffset(BeginOffset), EndOffset(EndOffset), 164 UseAndIsSplittable(U, IsSplittable) {} 165 166 uint64_t beginOffset() const { return BeginOffset; } 167 uint64_t endOffset() const { return EndOffset; } 168 169 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 170 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 171 172 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 173 174 bool isDead() const { return getUse() == nullptr; } 175 void kill() { UseAndIsSplittable.setPointer(nullptr); } 176 177 /// Support for ordering ranges. 178 /// 179 /// This provides an ordering over ranges such that start offsets are 180 /// always increasing, and within equal start offsets, the end offsets are 181 /// decreasing. Thus the spanning range comes first in a cluster with the 182 /// same start position. 183 bool operator<(const Slice &RHS) const { 184 if (beginOffset() < RHS.beginOffset()) 185 return true; 186 if (beginOffset() > RHS.beginOffset()) 187 return false; 188 if (isSplittable() != RHS.isSplittable()) 189 return !isSplittable(); 190 if (endOffset() > RHS.endOffset()) 191 return true; 192 return false; 193 } 194 195 /// Support comparison with a single offset to allow binary searches. 196 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 197 uint64_t RHSOffset) { 198 return LHS.beginOffset() < RHSOffset; 199 } 200 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 201 const Slice &RHS) { 202 return LHSOffset < RHS.beginOffset(); 203 } 204 205 bool operator==(const Slice &RHS) const { 206 return isSplittable() == RHS.isSplittable() && 207 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 208 } 209 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 210 }; 211 212 } // end anonymous namespace 213 214 /// Representation of the alloca slices. 215 /// 216 /// This class represents the slices of an alloca which are formed by its 217 /// various uses. If a pointer escapes, we can't fully build a representation 218 /// for the slices used and we reflect that in this structure. The uses are 219 /// stored, sorted by increasing beginning offset and with unsplittable slices 220 /// starting at a particular offset before splittable slices. 221 class llvm::sroa::AllocaSlices { 222 public: 223 /// Construct the slices of a particular alloca. 224 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 225 226 /// Test whether a pointer to the allocation escapes our analysis. 227 /// 228 /// If this is true, the slices are never fully built and should be 229 /// ignored. 230 bool isEscaped() const { return PointerEscapingInstr; } 231 232 /// Support for iterating over the slices. 233 /// @{ 234 using iterator = SmallVectorImpl<Slice>::iterator; 235 using range = iterator_range<iterator>; 236 237 iterator begin() { return Slices.begin(); } 238 iterator end() { return Slices.end(); } 239 240 using const_iterator = SmallVectorImpl<Slice>::const_iterator; 241 using const_range = iterator_range<const_iterator>; 242 243 const_iterator begin() const { return Slices.begin(); } 244 const_iterator end() const { return Slices.end(); } 245 /// @} 246 247 /// Erase a range of slices. 248 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 249 250 /// Insert new slices for this alloca. 251 /// 252 /// This moves the slices into the alloca's slices collection, and re-sorts 253 /// everything so that the usual ordering properties of the alloca's slices 254 /// hold. 255 void insert(ArrayRef<Slice> NewSlices) { 256 int OldSize = Slices.size(); 257 Slices.append(NewSlices.begin(), NewSlices.end()); 258 auto SliceI = Slices.begin() + OldSize; 259 llvm::sort(SliceI, Slices.end()); 260 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 261 } 262 263 // Forward declare the iterator and range accessor for walking the 264 // partitions. 265 class partition_iterator; 266 iterator_range<partition_iterator> partitions(); 267 268 /// Access the dead users for this alloca. 269 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 270 271 /// Access Uses that should be dropped if the alloca is promotable. 272 ArrayRef<Use *> getDeadUsesIfPromotable() const { 273 return DeadUseIfPromotable; 274 } 275 276 /// Access the dead operands referring to this alloca. 277 /// 278 /// These are operands which have cannot actually be used to refer to the 279 /// alloca as they are outside its range and the user doesn't correct for 280 /// that. These mostly consist of PHI node inputs and the like which we just 281 /// need to replace with undef. 282 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 283 284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 285 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 286 void printSlice(raw_ostream &OS, const_iterator I, 287 StringRef Indent = " ") const; 288 void printUse(raw_ostream &OS, const_iterator I, 289 StringRef Indent = " ") const; 290 void print(raw_ostream &OS) const; 291 void dump(const_iterator I) const; 292 void dump() const; 293 #endif 294 295 private: 296 template <typename DerivedT, typename RetT = void> class BuilderBase; 297 class SliceBuilder; 298 299 friend class AllocaSlices::SliceBuilder; 300 301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 302 /// Handle to alloca instruction to simplify method interfaces. 303 AllocaInst &AI; 304 #endif 305 306 /// The instruction responsible for this alloca not having a known set 307 /// of slices. 308 /// 309 /// When an instruction (potentially) escapes the pointer to the alloca, we 310 /// store a pointer to that here and abort trying to form slices of the 311 /// alloca. This will be null if the alloca slices are analyzed successfully. 312 Instruction *PointerEscapingInstr; 313 314 /// The slices of the alloca. 315 /// 316 /// We store a vector of the slices formed by uses of the alloca here. This 317 /// vector is sorted by increasing begin offset, and then the unsplittable 318 /// slices before the splittable ones. See the Slice inner class for more 319 /// details. 320 SmallVector<Slice, 8> Slices; 321 322 /// Instructions which will become dead if we rewrite the alloca. 323 /// 324 /// Note that these are not separated by slice. This is because we expect an 325 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 326 /// all these instructions can simply be removed and replaced with undef as 327 /// they come from outside of the allocated space. 328 SmallVector<Instruction *, 8> DeadUsers; 329 330 /// Uses which will become dead if can promote the alloca. 331 SmallVector<Use *, 8> DeadUseIfPromotable; 332 333 /// Operands which will become dead if we rewrite the alloca. 334 /// 335 /// These are operands that in their particular use can be replaced with 336 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs 337 /// to PHI nodes and the like. They aren't entirely dead (there might be 338 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 339 /// want to swap this particular input for undef to simplify the use lists of 340 /// the alloca. 341 SmallVector<Use *, 8> DeadOperands; 342 }; 343 344 /// A partition of the slices. 345 /// 346 /// An ephemeral representation for a range of slices which can be viewed as 347 /// a partition of the alloca. This range represents a span of the alloca's 348 /// memory which cannot be split, and provides access to all of the slices 349 /// overlapping some part of the partition. 350 /// 351 /// Objects of this type are produced by traversing the alloca's slices, but 352 /// are only ephemeral and not persistent. 353 class llvm::sroa::Partition { 354 private: 355 friend class AllocaSlices; 356 friend class AllocaSlices::partition_iterator; 357 358 using iterator = AllocaSlices::iterator; 359 360 /// The beginning and ending offsets of the alloca for this 361 /// partition. 362 uint64_t BeginOffset = 0, EndOffset = 0; 363 364 /// The start and end iterators of this partition. 365 iterator SI, SJ; 366 367 /// A collection of split slice tails overlapping the partition. 368 SmallVector<Slice *, 4> SplitTails; 369 370 /// Raw constructor builds an empty partition starting and ending at 371 /// the given iterator. 372 Partition(iterator SI) : SI(SI), SJ(SI) {} 373 374 public: 375 /// The start offset of this partition. 376 /// 377 /// All of the contained slices start at or after this offset. 378 uint64_t beginOffset() const { return BeginOffset; } 379 380 /// The end offset of this partition. 381 /// 382 /// All of the contained slices end at or before this offset. 383 uint64_t endOffset() const { return EndOffset; } 384 385 /// The size of the partition. 386 /// 387 /// Note that this can never be zero. 388 uint64_t size() const { 389 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 390 return EndOffset - BeginOffset; 391 } 392 393 /// Test whether this partition contains no slices, and merely spans 394 /// a region occupied by split slices. 395 bool empty() const { return SI == SJ; } 396 397 /// \name Iterate slices that start within the partition. 398 /// These may be splittable or unsplittable. They have a begin offset >= the 399 /// partition begin offset. 400 /// @{ 401 // FIXME: We should probably define a "concat_iterator" helper and use that 402 // to stitch together pointee_iterators over the split tails and the 403 // contiguous iterators of the partition. That would give a much nicer 404 // interface here. We could then additionally expose filtered iterators for 405 // split, unsplit, and unsplittable splices based on the usage patterns. 406 iterator begin() const { return SI; } 407 iterator end() const { return SJ; } 408 /// @} 409 410 /// Get the sequence of split slice tails. 411 /// 412 /// These tails are of slices which start before this partition but are 413 /// split and overlap into the partition. We accumulate these while forming 414 /// partitions. 415 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 416 }; 417 418 /// An iterator over partitions of the alloca's slices. 419 /// 420 /// This iterator implements the core algorithm for partitioning the alloca's 421 /// slices. It is a forward iterator as we don't support backtracking for 422 /// efficiency reasons, and re-use a single storage area to maintain the 423 /// current set of split slices. 424 /// 425 /// It is templated on the slice iterator type to use so that it can operate 426 /// with either const or non-const slice iterators. 427 class AllocaSlices::partition_iterator 428 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 429 Partition> { 430 friend class AllocaSlices; 431 432 /// Most of the state for walking the partitions is held in a class 433 /// with a nice interface for examining them. 434 Partition P; 435 436 /// We need to keep the end of the slices to know when to stop. 437 AllocaSlices::iterator SE; 438 439 /// We also need to keep track of the maximum split end offset seen. 440 /// FIXME: Do we really? 441 uint64_t MaxSplitSliceEndOffset = 0; 442 443 /// Sets the partition to be empty at given iterator, and sets the 444 /// end iterator. 445 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 446 : P(SI), SE(SE) { 447 // If not already at the end, advance our state to form the initial 448 // partition. 449 if (SI != SE) 450 advance(); 451 } 452 453 /// Advance the iterator to the next partition. 454 /// 455 /// Requires that the iterator not be at the end of the slices. 456 void advance() { 457 assert((P.SI != SE || !P.SplitTails.empty()) && 458 "Cannot advance past the end of the slices!"); 459 460 // Clear out any split uses which have ended. 461 if (!P.SplitTails.empty()) { 462 if (P.EndOffset >= MaxSplitSliceEndOffset) { 463 // If we've finished all splits, this is easy. 464 P.SplitTails.clear(); 465 MaxSplitSliceEndOffset = 0; 466 } else { 467 // Remove the uses which have ended in the prior partition. This 468 // cannot change the max split slice end because we just checked that 469 // the prior partition ended prior to that max. 470 llvm::erase_if(P.SplitTails, 471 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }); 472 assert(llvm::any_of(P.SplitTails, 473 [&](Slice *S) { 474 return S->endOffset() == MaxSplitSliceEndOffset; 475 }) && 476 "Could not find the current max split slice offset!"); 477 assert(llvm::all_of(P.SplitTails, 478 [&](Slice *S) { 479 return S->endOffset() <= MaxSplitSliceEndOffset; 480 }) && 481 "Max split slice end offset is not actually the max!"); 482 } 483 } 484 485 // If P.SI is already at the end, then we've cleared the split tail and 486 // now have an end iterator. 487 if (P.SI == SE) { 488 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 489 return; 490 } 491 492 // If we had a non-empty partition previously, set up the state for 493 // subsequent partitions. 494 if (P.SI != P.SJ) { 495 // Accumulate all the splittable slices which started in the old 496 // partition into the split list. 497 for (Slice &S : P) 498 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 499 P.SplitTails.push_back(&S); 500 MaxSplitSliceEndOffset = 501 std::max(S.endOffset(), MaxSplitSliceEndOffset); 502 } 503 504 // Start from the end of the previous partition. 505 P.SI = P.SJ; 506 507 // If P.SI is now at the end, we at most have a tail of split slices. 508 if (P.SI == SE) { 509 P.BeginOffset = P.EndOffset; 510 P.EndOffset = MaxSplitSliceEndOffset; 511 return; 512 } 513 514 // If the we have split slices and the next slice is after a gap and is 515 // not splittable immediately form an empty partition for the split 516 // slices up until the next slice begins. 517 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 518 !P.SI->isSplittable()) { 519 P.BeginOffset = P.EndOffset; 520 P.EndOffset = P.SI->beginOffset(); 521 return; 522 } 523 } 524 525 // OK, we need to consume new slices. Set the end offset based on the 526 // current slice, and step SJ past it. The beginning offset of the 527 // partition is the beginning offset of the next slice unless we have 528 // pre-existing split slices that are continuing, in which case we begin 529 // at the prior end offset. 530 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 531 P.EndOffset = P.SI->endOffset(); 532 ++P.SJ; 533 534 // There are two strategies to form a partition based on whether the 535 // partition starts with an unsplittable slice or a splittable slice. 536 if (!P.SI->isSplittable()) { 537 // When we're forming an unsplittable region, it must always start at 538 // the first slice and will extend through its end. 539 assert(P.BeginOffset == P.SI->beginOffset()); 540 541 // Form a partition including all of the overlapping slices with this 542 // unsplittable slice. 543 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 544 if (!P.SJ->isSplittable()) 545 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 546 ++P.SJ; 547 } 548 549 // We have a partition across a set of overlapping unsplittable 550 // partitions. 551 return; 552 } 553 554 // If we're starting with a splittable slice, then we need to form 555 // a synthetic partition spanning it and any other overlapping splittable 556 // splices. 557 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 558 559 // Collect all of the overlapping splittable slices. 560 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 561 P.SJ->isSplittable()) { 562 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 563 ++P.SJ; 564 } 565 566 // Back upiP.EndOffset if we ended the span early when encountering an 567 // unsplittable slice. This synthesizes the early end offset of 568 // a partition spanning only splittable slices. 569 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 570 assert(!P.SJ->isSplittable()); 571 P.EndOffset = P.SJ->beginOffset(); 572 } 573 } 574 575 public: 576 bool operator==(const partition_iterator &RHS) const { 577 assert(SE == RHS.SE && 578 "End iterators don't match between compared partition iterators!"); 579 580 // The observed positions of partitions is marked by the P.SI iterator and 581 // the emptiness of the split slices. The latter is only relevant when 582 // P.SI == SE, as the end iterator will additionally have an empty split 583 // slices list, but the prior may have the same P.SI and a tail of split 584 // slices. 585 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 586 assert(P.SJ == RHS.P.SJ && 587 "Same set of slices formed two different sized partitions!"); 588 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 589 "Same slice position with differently sized non-empty split " 590 "slice tails!"); 591 return true; 592 } 593 return false; 594 } 595 596 partition_iterator &operator++() { 597 advance(); 598 return *this; 599 } 600 601 Partition &operator*() { return P; } 602 }; 603 604 /// A forward range over the partitions of the alloca's slices. 605 /// 606 /// This accesses an iterator range over the partitions of the alloca's 607 /// slices. It computes these partitions on the fly based on the overlapping 608 /// offsets of the slices and the ability to split them. It will visit "empty" 609 /// partitions to cover regions of the alloca only accessed via split 610 /// slices. 611 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 612 return make_range(partition_iterator(begin(), end()), 613 partition_iterator(end(), end())); 614 } 615 616 static Value *foldSelectInst(SelectInst &SI) { 617 // If the condition being selected on is a constant or the same value is 618 // being selected between, fold the select. Yes this does (rarely) happen 619 // early on. 620 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 621 return SI.getOperand(1 + CI->isZero()); 622 if (SI.getOperand(1) == SI.getOperand(2)) 623 return SI.getOperand(1); 624 625 return nullptr; 626 } 627 628 /// A helper that folds a PHI node or a select. 629 static Value *foldPHINodeOrSelectInst(Instruction &I) { 630 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 631 // If PN merges together the same value, return that value. 632 return PN->hasConstantValue(); 633 } 634 return foldSelectInst(cast<SelectInst>(I)); 635 } 636 637 /// Builder for the alloca slices. 638 /// 639 /// This class builds a set of alloca slices by recursively visiting the uses 640 /// of an alloca and making a slice for each load and store at each offset. 641 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 642 friend class PtrUseVisitor<SliceBuilder>; 643 friend class InstVisitor<SliceBuilder>; 644 645 using Base = PtrUseVisitor<SliceBuilder>; 646 647 const uint64_t AllocSize; 648 AllocaSlices &AS; 649 650 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 651 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 652 653 /// Set to de-duplicate dead instructions found in the use walk. 654 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 655 656 public: 657 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 658 : PtrUseVisitor<SliceBuilder>(DL), 659 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()), 660 AS(AS) {} 661 662 private: 663 void markAsDead(Instruction &I) { 664 if (VisitedDeadInsts.insert(&I).second) 665 AS.DeadUsers.push_back(&I); 666 } 667 668 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 669 bool IsSplittable = false) { 670 // Completely skip uses which have a zero size or start either before or 671 // past the end of the allocation. 672 if (Size == 0 || Offset.uge(AllocSize)) { 673 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" 674 << Offset 675 << " which has zero size or starts outside of the " 676 << AllocSize << " byte alloca:\n" 677 << " alloca: " << AS.AI << "\n" 678 << " use: " << I << "\n"); 679 return markAsDead(I); 680 } 681 682 uint64_t BeginOffset = Offset.getZExtValue(); 683 uint64_t EndOffset = BeginOffset + Size; 684 685 // Clamp the end offset to the end of the allocation. Note that this is 686 // formulated to handle even the case where "BeginOffset + Size" overflows. 687 // This may appear superficially to be something we could ignore entirely, 688 // but that is not so! There may be widened loads or PHI-node uses where 689 // some instructions are dead but not others. We can't completely ignore 690 // them, and so have to record at least the information here. 691 assert(AllocSize >= BeginOffset); // Established above. 692 if (Size > AllocSize - BeginOffset) { 693 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" 694 << Offset << " to remain within the " << AllocSize 695 << " byte alloca:\n" 696 << " alloca: " << AS.AI << "\n" 697 << " use: " << I << "\n"); 698 EndOffset = AllocSize; 699 } 700 701 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 702 } 703 704 void visitBitCastInst(BitCastInst &BC) { 705 if (BC.use_empty()) 706 return markAsDead(BC); 707 708 return Base::visitBitCastInst(BC); 709 } 710 711 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 712 if (ASC.use_empty()) 713 return markAsDead(ASC); 714 715 return Base::visitAddrSpaceCastInst(ASC); 716 } 717 718 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 719 if (GEPI.use_empty()) 720 return markAsDead(GEPI); 721 722 if (SROAStrictInbounds && GEPI.isInBounds()) { 723 // FIXME: This is a manually un-factored variant of the basic code inside 724 // of GEPs with checking of the inbounds invariant specified in the 725 // langref in a very strict sense. If we ever want to enable 726 // SROAStrictInbounds, this code should be factored cleanly into 727 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 728 // by writing out the code here where we have the underlying allocation 729 // size readily available. 730 APInt GEPOffset = Offset; 731 const DataLayout &DL = GEPI.getModule()->getDataLayout(); 732 for (gep_type_iterator GTI = gep_type_begin(GEPI), 733 GTE = gep_type_end(GEPI); 734 GTI != GTE; ++GTI) { 735 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 736 if (!OpC) 737 break; 738 739 // Handle a struct index, which adds its field offset to the pointer. 740 if (StructType *STy = GTI.getStructTypeOrNull()) { 741 unsigned ElementIdx = OpC->getZExtValue(); 742 const StructLayout *SL = DL.getStructLayout(STy); 743 GEPOffset += 744 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 745 } else { 746 // For array or vector indices, scale the index by the size of the 747 // type. 748 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 749 GEPOffset += 750 Index * 751 APInt(Offset.getBitWidth(), 752 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 753 } 754 755 // If this index has computed an intermediate pointer which is not 756 // inbounds, then the result of the GEP is a poison value and we can 757 // delete it and all uses. 758 if (GEPOffset.ugt(AllocSize)) 759 return markAsDead(GEPI); 760 } 761 } 762 763 return Base::visitGetElementPtrInst(GEPI); 764 } 765 766 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 767 uint64_t Size, bool IsVolatile) { 768 // We allow splitting of non-volatile loads and stores where the type is an 769 // integer type. These may be used to implement 'memcpy' or other "transfer 770 // of bits" patterns. 771 bool IsSplittable = 772 Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty); 773 774 insertUse(I, Offset, Size, IsSplittable); 775 } 776 777 void visitLoadInst(LoadInst &LI) { 778 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 779 "All simple FCA loads should have been pre-split"); 780 781 if (!IsOffsetKnown) 782 return PI.setAborted(&LI); 783 784 if (LI.isVolatile() && 785 LI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 786 return PI.setAborted(&LI); 787 788 if (isa<ScalableVectorType>(LI.getType())) 789 return PI.setAborted(&LI); 790 791 uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize(); 792 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 793 } 794 795 void visitStoreInst(StoreInst &SI) { 796 Value *ValOp = SI.getValueOperand(); 797 if (ValOp == *U) 798 return PI.setEscapedAndAborted(&SI); 799 if (!IsOffsetKnown) 800 return PI.setAborted(&SI); 801 802 if (SI.isVolatile() && 803 SI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 804 return PI.setAborted(&SI); 805 806 if (isa<ScalableVectorType>(ValOp->getType())) 807 return PI.setAborted(&SI); 808 809 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize(); 810 811 // If this memory access can be shown to *statically* extend outside the 812 // bounds of the allocation, it's behavior is undefined, so simply 813 // ignore it. Note that this is more strict than the generic clamping 814 // behavior of insertUse. We also try to handle cases which might run the 815 // risk of overflow. 816 // FIXME: We should instead consider the pointer to have escaped if this 817 // function is being instrumented for addressing bugs or race conditions. 818 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 819 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" 820 << Offset << " which extends past the end of the " 821 << AllocSize << " byte alloca:\n" 822 << " alloca: " << AS.AI << "\n" 823 << " use: " << SI << "\n"); 824 return markAsDead(SI); 825 } 826 827 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 828 "All simple FCA stores should have been pre-split"); 829 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 830 } 831 832 void visitMemSetInst(MemSetInst &II) { 833 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 834 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 835 if ((Length && Length->getValue() == 0) || 836 (IsOffsetKnown && Offset.uge(AllocSize))) 837 // Zero-length mem transfer intrinsics can be ignored entirely. 838 return markAsDead(II); 839 840 if (!IsOffsetKnown) 841 return PI.setAborted(&II); 842 843 // Don't replace this with a store with a different address space. TODO: 844 // Use a store with the casted new alloca? 845 if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace()) 846 return PI.setAborted(&II); 847 848 insertUse(II, Offset, Length ? Length->getLimitedValue() 849 : AllocSize - Offset.getLimitedValue(), 850 (bool)Length); 851 } 852 853 void visitMemTransferInst(MemTransferInst &II) { 854 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 855 if (Length && Length->getValue() == 0) 856 // Zero-length mem transfer intrinsics can be ignored entirely. 857 return markAsDead(II); 858 859 // Because we can visit these intrinsics twice, also check to see if the 860 // first time marked this instruction as dead. If so, skip it. 861 if (VisitedDeadInsts.count(&II)) 862 return; 863 864 if (!IsOffsetKnown) 865 return PI.setAborted(&II); 866 867 // Don't replace this with a load/store with a different address space. 868 // TODO: Use a store with the casted new alloca? 869 if (II.isVolatile() && 870 (II.getDestAddressSpace() != DL.getAllocaAddrSpace() || 871 II.getSourceAddressSpace() != DL.getAllocaAddrSpace())) 872 return PI.setAborted(&II); 873 874 // This side of the transfer is completely out-of-bounds, and so we can 875 // nuke the entire transfer. However, we also need to nuke the other side 876 // if already added to our partitions. 877 // FIXME: Yet another place we really should bypass this when 878 // instrumenting for ASan. 879 if (Offset.uge(AllocSize)) { 880 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 881 MemTransferSliceMap.find(&II); 882 if (MTPI != MemTransferSliceMap.end()) 883 AS.Slices[MTPI->second].kill(); 884 return markAsDead(II); 885 } 886 887 uint64_t RawOffset = Offset.getLimitedValue(); 888 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 889 890 // Check for the special case where the same exact value is used for both 891 // source and dest. 892 if (*U == II.getRawDest() && *U == II.getRawSource()) { 893 // For non-volatile transfers this is a no-op. 894 if (!II.isVolatile()) 895 return markAsDead(II); 896 897 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 898 } 899 900 // If we have seen both source and destination for a mem transfer, then 901 // they both point to the same alloca. 902 bool Inserted; 903 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 904 std::tie(MTPI, Inserted) = 905 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 906 unsigned PrevIdx = MTPI->second; 907 if (!Inserted) { 908 Slice &PrevP = AS.Slices[PrevIdx]; 909 910 // Check if the begin offsets match and this is a non-volatile transfer. 911 // In that case, we can completely elide the transfer. 912 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 913 PrevP.kill(); 914 return markAsDead(II); 915 } 916 917 // Otherwise we have an offset transfer within the same alloca. We can't 918 // split those. 919 PrevP.makeUnsplittable(); 920 } 921 922 // Insert the use now that we've fixed up the splittable nature. 923 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 924 925 // Check that we ended up with a valid index in the map. 926 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 927 "Map index doesn't point back to a slice with this user."); 928 } 929 930 // Disable SRoA for any intrinsics except for lifetime invariants and 931 // invariant group. 932 // FIXME: What about debug intrinsics? This matches old behavior, but 933 // doesn't make sense. 934 void visitIntrinsicInst(IntrinsicInst &II) { 935 if (II.isDroppable()) { 936 AS.DeadUseIfPromotable.push_back(U); 937 return; 938 } 939 940 if (!IsOffsetKnown) 941 return PI.setAborted(&II); 942 943 if (II.isLifetimeStartOrEnd()) { 944 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 945 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 946 Length->getLimitedValue()); 947 insertUse(II, Offset, Size, true); 948 return; 949 } 950 951 if (II.isLaunderOrStripInvariantGroup()) { 952 enqueueUsers(II); 953 return; 954 } 955 956 Base::visitIntrinsicInst(II); 957 } 958 959 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 960 // We consider any PHI or select that results in a direct load or store of 961 // the same offset to be a viable use for slicing purposes. These uses 962 // are considered unsplittable and the size is the maximum loaded or stored 963 // size. 964 SmallPtrSet<Instruction *, 4> Visited; 965 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 966 Visited.insert(Root); 967 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 968 const DataLayout &DL = Root->getModule()->getDataLayout(); 969 // If there are no loads or stores, the access is dead. We mark that as 970 // a size zero access. 971 Size = 0; 972 do { 973 Instruction *I, *UsedI; 974 std::tie(UsedI, I) = Uses.pop_back_val(); 975 976 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 977 Size = std::max(Size, 978 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 979 continue; 980 } 981 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 982 Value *Op = SI->getOperand(0); 983 if (Op == UsedI) 984 return SI; 985 Size = std::max(Size, 986 DL.getTypeStoreSize(Op->getType()).getFixedSize()); 987 continue; 988 } 989 990 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 991 if (!GEP->hasAllZeroIndices()) 992 return GEP; 993 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 994 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) { 995 return I; 996 } 997 998 for (User *U : I->users()) 999 if (Visited.insert(cast<Instruction>(U)).second) 1000 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 1001 } while (!Uses.empty()); 1002 1003 return nullptr; 1004 } 1005 1006 void visitPHINodeOrSelectInst(Instruction &I) { 1007 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 1008 if (I.use_empty()) 1009 return markAsDead(I); 1010 1011 // TODO: We could use SimplifyInstruction here to fold PHINodes and 1012 // SelectInsts. However, doing so requires to change the current 1013 // dead-operand-tracking mechanism. For instance, suppose neither loading 1014 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 1015 // trap either. However, if we simply replace %U with undef using the 1016 // current dead-operand-tracking mechanism, "load (select undef, undef, 1017 // %other)" may trap because the select may return the first operand 1018 // "undef". 1019 if (Value *Result = foldPHINodeOrSelectInst(I)) { 1020 if (Result == *U) 1021 // If the result of the constant fold will be the pointer, recurse 1022 // through the PHI/select as if we had RAUW'ed it. 1023 enqueueUsers(I); 1024 else 1025 // Otherwise the operand to the PHI/select is dead, and we can replace 1026 // it with undef. 1027 AS.DeadOperands.push_back(U); 1028 1029 return; 1030 } 1031 1032 if (!IsOffsetKnown) 1033 return PI.setAborted(&I); 1034 1035 // See if we already have computed info on this node. 1036 uint64_t &Size = PHIOrSelectSizes[&I]; 1037 if (!Size) { 1038 // This is a new PHI/Select, check for an unsafe use of it. 1039 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 1040 return PI.setAborted(UnsafeI); 1041 } 1042 1043 // For PHI and select operands outside the alloca, we can't nuke the entire 1044 // phi or select -- the other side might still be relevant, so we special 1045 // case them here and use a separate structure to track the operands 1046 // themselves which should be replaced with undef. 1047 // FIXME: This should instead be escaped in the event we're instrumenting 1048 // for address sanitization. 1049 if (Offset.uge(AllocSize)) { 1050 AS.DeadOperands.push_back(U); 1051 return; 1052 } 1053 1054 insertUse(I, Offset, Size); 1055 } 1056 1057 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 1058 1059 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 1060 1061 /// Disable SROA entirely if there are unhandled users of the alloca. 1062 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 1063 }; 1064 1065 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 1066 : 1067 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1068 AI(AI), 1069 #endif 1070 PointerEscapingInstr(nullptr) { 1071 SliceBuilder PB(DL, AI, *this); 1072 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 1073 if (PtrI.isEscaped() || PtrI.isAborted()) { 1074 // FIXME: We should sink the escape vs. abort info into the caller nicely, 1075 // possibly by just storing the PtrInfo in the AllocaSlices. 1076 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 1077 : PtrI.getAbortingInst(); 1078 assert(PointerEscapingInstr && "Did not track a bad instruction"); 1079 return; 1080 } 1081 1082 llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); }); 1083 1084 // Sort the uses. This arranges for the offsets to be in ascending order, 1085 // and the sizes to be in descending order. 1086 llvm::stable_sort(Slices); 1087 } 1088 1089 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1090 1091 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1092 StringRef Indent) const { 1093 printSlice(OS, I, Indent); 1094 OS << "\n"; 1095 printUse(OS, I, Indent); 1096 } 1097 1098 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1099 StringRef Indent) const { 1100 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1101 << " slice #" << (I - begin()) 1102 << (I->isSplittable() ? " (splittable)" : ""); 1103 } 1104 1105 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1106 StringRef Indent) const { 1107 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1108 } 1109 1110 void AllocaSlices::print(raw_ostream &OS) const { 1111 if (PointerEscapingInstr) { 1112 OS << "Can't analyze slices for alloca: " << AI << "\n" 1113 << " A pointer to this alloca escaped by:\n" 1114 << " " << *PointerEscapingInstr << "\n"; 1115 return; 1116 } 1117 1118 OS << "Slices of alloca: " << AI << "\n"; 1119 for (const_iterator I = begin(), E = end(); I != E; ++I) 1120 print(OS, I); 1121 } 1122 1123 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1124 print(dbgs(), I); 1125 } 1126 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1127 1128 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1129 1130 /// Walk the range of a partitioning looking for a common type to cover this 1131 /// sequence of slices. 1132 static std::pair<Type *, IntegerType *> 1133 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, 1134 uint64_t EndOffset) { 1135 Type *Ty = nullptr; 1136 bool TyIsCommon = true; 1137 IntegerType *ITy = nullptr; 1138 1139 // Note that we need to look at *every* alloca slice's Use to ensure we 1140 // always get consistent results regardless of the order of slices. 1141 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1142 Use *U = I->getUse(); 1143 if (isa<IntrinsicInst>(*U->getUser())) 1144 continue; 1145 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1146 continue; 1147 1148 Type *UserTy = nullptr; 1149 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1150 UserTy = LI->getType(); 1151 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1152 UserTy = SI->getValueOperand()->getType(); 1153 } 1154 1155 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1156 // If the type is larger than the partition, skip it. We only encounter 1157 // this for split integer operations where we want to use the type of the 1158 // entity causing the split. Also skip if the type is not a byte width 1159 // multiple. 1160 if (UserITy->getBitWidth() % 8 != 0 || 1161 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1162 continue; 1163 1164 // Track the largest bitwidth integer type used in this way in case there 1165 // is no common type. 1166 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1167 ITy = UserITy; 1168 } 1169 1170 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1171 // depend on types skipped above. 1172 if (!UserTy || (Ty && Ty != UserTy)) 1173 TyIsCommon = false; // Give up on anything but an iN type. 1174 else 1175 Ty = UserTy; 1176 } 1177 1178 return {TyIsCommon ? Ty : nullptr, ITy}; 1179 } 1180 1181 /// PHI instructions that use an alloca and are subsequently loaded can be 1182 /// rewritten to load both input pointers in the pred blocks and then PHI the 1183 /// results, allowing the load of the alloca to be promoted. 1184 /// From this: 1185 /// %P2 = phi [i32* %Alloca, i32* %Other] 1186 /// %V = load i32* %P2 1187 /// to: 1188 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1189 /// ... 1190 /// %V2 = load i32* %Other 1191 /// ... 1192 /// %V = phi [i32 %V1, i32 %V2] 1193 /// 1194 /// We can do this to a select if its only uses are loads and if the operands 1195 /// to the select can be loaded unconditionally. 1196 /// 1197 /// FIXME: This should be hoisted into a generic utility, likely in 1198 /// Transforms/Util/Local.h 1199 static bool isSafePHIToSpeculate(PHINode &PN) { 1200 const DataLayout &DL = PN.getModule()->getDataLayout(); 1201 1202 // For now, we can only do this promotion if the load is in the same block 1203 // as the PHI, and if there are no stores between the phi and load. 1204 // TODO: Allow recursive phi users. 1205 // TODO: Allow stores. 1206 BasicBlock *BB = PN.getParent(); 1207 Align MaxAlign; 1208 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); 1209 APInt MaxSize(APWidth, 0); 1210 bool HaveLoad = false; 1211 for (User *U : PN.users()) { 1212 LoadInst *LI = dyn_cast<LoadInst>(U); 1213 if (!LI || !LI->isSimple()) 1214 return false; 1215 1216 // For now we only allow loads in the same block as the PHI. This is 1217 // a common case that happens when instcombine merges two loads through 1218 // a PHI. 1219 if (LI->getParent() != BB) 1220 return false; 1221 1222 // Ensure that there are no instructions between the PHI and the load that 1223 // could store. 1224 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1225 if (BBI->mayWriteToMemory()) 1226 return false; 1227 1228 uint64_t Size = DL.getTypeStoreSize(LI->getType()).getFixedSize(); 1229 MaxAlign = std::max(MaxAlign, LI->getAlign()); 1230 MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize; 1231 HaveLoad = true; 1232 } 1233 1234 if (!HaveLoad) 1235 return false; 1236 1237 // We can only transform this if it is safe to push the loads into the 1238 // predecessor blocks. The only thing to watch out for is that we can't put 1239 // a possibly trapping load in the predecessor if it is a critical edge. 1240 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1241 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1242 Value *InVal = PN.getIncomingValue(Idx); 1243 1244 // If the value is produced by the terminator of the predecessor (an 1245 // invoke) or it has side-effects, there is no valid place to put a load 1246 // in the predecessor. 1247 if (TI == InVal || TI->mayHaveSideEffects()) 1248 return false; 1249 1250 // If the predecessor has a single successor, then the edge isn't 1251 // critical. 1252 if (TI->getNumSuccessors() == 1) 1253 continue; 1254 1255 // If this pointer is always safe to load, or if we can prove that there 1256 // is already a load in the block, then we can move the load to the pred 1257 // block. 1258 if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI)) 1259 continue; 1260 1261 return false; 1262 } 1263 1264 return true; 1265 } 1266 1267 static void speculatePHINodeLoads(PHINode &PN) { 1268 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 1269 1270 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1271 Type *LoadTy = SomeLoad->getType(); 1272 IRBuilderTy PHIBuilder(&PN); 1273 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1274 PN.getName() + ".sroa.speculated"); 1275 1276 // Get the AA tags and alignment to use from one of the loads. It does not 1277 // matter which one we get and if any differ. 1278 AAMDNodes AATags; 1279 SomeLoad->getAAMetadata(AATags); 1280 Align Alignment = SomeLoad->getAlign(); 1281 1282 // Rewrite all loads of the PN to use the new PHI. 1283 while (!PN.use_empty()) { 1284 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1285 LI->replaceAllUsesWith(NewPN); 1286 LI->eraseFromParent(); 1287 } 1288 1289 // Inject loads into all of the pred blocks. 1290 DenseMap<BasicBlock*, Value*> InjectedLoads; 1291 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1292 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1293 Value *InVal = PN.getIncomingValue(Idx); 1294 1295 // A PHI node is allowed to have multiple (duplicated) entries for the same 1296 // basic block, as long as the value is the same. So if we already injected 1297 // a load in the predecessor, then we should reuse the same load for all 1298 // duplicated entries. 1299 if (Value* V = InjectedLoads.lookup(Pred)) { 1300 NewPN->addIncoming(V, Pred); 1301 continue; 1302 } 1303 1304 Instruction *TI = Pred->getTerminator(); 1305 IRBuilderTy PredBuilder(TI); 1306 1307 LoadInst *Load = PredBuilder.CreateAlignedLoad( 1308 LoadTy, InVal, Alignment, 1309 (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1310 ++NumLoadsSpeculated; 1311 if (AATags) 1312 Load->setAAMetadata(AATags); 1313 NewPN->addIncoming(Load, Pred); 1314 InjectedLoads[Pred] = Load; 1315 } 1316 1317 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1318 PN.eraseFromParent(); 1319 } 1320 1321 /// Select instructions that use an alloca and are subsequently loaded can be 1322 /// rewritten to load both input pointers and then select between the result, 1323 /// allowing the load of the alloca to be promoted. 1324 /// From this: 1325 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 1326 /// %V = load i32* %P2 1327 /// to: 1328 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1329 /// %V2 = load i32* %Other 1330 /// %V = select i1 %cond, i32 %V1, i32 %V2 1331 /// 1332 /// We can do this to a select if its only uses are loads and if the operand 1333 /// to the select can be loaded unconditionally. 1334 static bool isSafeSelectToSpeculate(SelectInst &SI) { 1335 Value *TValue = SI.getTrueValue(); 1336 Value *FValue = SI.getFalseValue(); 1337 const DataLayout &DL = SI.getModule()->getDataLayout(); 1338 1339 for (User *U : SI.users()) { 1340 LoadInst *LI = dyn_cast<LoadInst>(U); 1341 if (!LI || !LI->isSimple()) 1342 return false; 1343 1344 // Both operands to the select need to be dereferenceable, either 1345 // absolutely (e.g. allocas) or at this point because we can see other 1346 // accesses to it. 1347 if (!isSafeToLoadUnconditionally(TValue, LI->getType(), 1348 LI->getAlign(), DL, LI)) 1349 return false; 1350 if (!isSafeToLoadUnconditionally(FValue, LI->getType(), 1351 LI->getAlign(), DL, LI)) 1352 return false; 1353 } 1354 1355 return true; 1356 } 1357 1358 static void speculateSelectInstLoads(SelectInst &SI) { 1359 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 1360 1361 IRBuilderTy IRB(&SI); 1362 Value *TV = SI.getTrueValue(); 1363 Value *FV = SI.getFalseValue(); 1364 // Replace the loads of the select with a select of two loads. 1365 while (!SI.use_empty()) { 1366 LoadInst *LI = cast<LoadInst>(SI.user_back()); 1367 assert(LI->isSimple() && "We only speculate simple loads"); 1368 1369 IRB.SetInsertPoint(LI); 1370 LoadInst *TL = IRB.CreateLoad(LI->getType(), TV, 1371 LI->getName() + ".sroa.speculate.load.true"); 1372 LoadInst *FL = IRB.CreateLoad(LI->getType(), FV, 1373 LI->getName() + ".sroa.speculate.load.false"); 1374 NumLoadsSpeculated += 2; 1375 1376 // Transfer alignment and AA info if present. 1377 TL->setAlignment(LI->getAlign()); 1378 FL->setAlignment(LI->getAlign()); 1379 1380 AAMDNodes Tags; 1381 LI->getAAMetadata(Tags); 1382 if (Tags) { 1383 TL->setAAMetadata(Tags); 1384 FL->setAAMetadata(Tags); 1385 } 1386 1387 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1388 LI->getName() + ".sroa.speculated"); 1389 1390 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1391 LI->replaceAllUsesWith(V); 1392 LI->eraseFromParent(); 1393 } 1394 SI.eraseFromParent(); 1395 } 1396 1397 /// Build a GEP out of a base pointer and indices. 1398 /// 1399 /// This will return the BasePtr if that is valid, or build a new GEP 1400 /// instruction using the IRBuilder if GEP-ing is needed. 1401 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1402 SmallVectorImpl<Value *> &Indices, 1403 const Twine &NamePrefix) { 1404 if (Indices.empty()) 1405 return BasePtr; 1406 1407 // A single zero index is a no-op, so check for this and avoid building a GEP 1408 // in that case. 1409 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1410 return BasePtr; 1411 1412 return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(), 1413 BasePtr, Indices, NamePrefix + "sroa_idx"); 1414 } 1415 1416 /// Get a natural GEP off of the BasePtr walking through Ty toward 1417 /// TargetTy without changing the offset of the pointer. 1418 /// 1419 /// This routine assumes we've already established a properly offset GEP with 1420 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1421 /// zero-indices down through type layers until we find one the same as 1422 /// TargetTy. If we can't find one with the same type, we at least try to use 1423 /// one with the same size. If none of that works, we just produce the GEP as 1424 /// indicated by Indices to have the correct offset. 1425 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1426 Value *BasePtr, Type *Ty, Type *TargetTy, 1427 SmallVectorImpl<Value *> &Indices, 1428 const Twine &NamePrefix) { 1429 if (Ty == TargetTy) 1430 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1431 1432 // Offset size to use for the indices. 1433 unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType()); 1434 1435 // See if we can descend into a struct and locate a field with the correct 1436 // type. 1437 unsigned NumLayers = 0; 1438 Type *ElementTy = Ty; 1439 do { 1440 if (ElementTy->isPointerTy()) 1441 break; 1442 1443 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { 1444 ElementTy = ArrayTy->getElementType(); 1445 Indices.push_back(IRB.getIntN(OffsetSize, 0)); 1446 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { 1447 ElementTy = VectorTy->getElementType(); 1448 Indices.push_back(IRB.getInt32(0)); 1449 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1450 if (STy->element_begin() == STy->element_end()) 1451 break; // Nothing left to descend into. 1452 ElementTy = *STy->element_begin(); 1453 Indices.push_back(IRB.getInt32(0)); 1454 } else { 1455 break; 1456 } 1457 ++NumLayers; 1458 } while (ElementTy != TargetTy); 1459 if (ElementTy != TargetTy) 1460 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1461 1462 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1463 } 1464 1465 /// Recursively compute indices for a natural GEP. 1466 /// 1467 /// This is the recursive step for getNaturalGEPWithOffset that walks down the 1468 /// element types adding appropriate indices for the GEP. 1469 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, 1470 Value *Ptr, Type *Ty, APInt &Offset, 1471 Type *TargetTy, 1472 SmallVectorImpl<Value *> &Indices, 1473 const Twine &NamePrefix) { 1474 if (Offset == 0) 1475 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, 1476 NamePrefix); 1477 1478 // We can't recurse through pointer types. 1479 if (Ty->isPointerTy()) 1480 return nullptr; 1481 1482 // We try to analyze GEPs over vectors here, but note that these GEPs are 1483 // extremely poorly defined currently. The long-term goal is to remove GEPing 1484 // over a vector from the IR completely. 1485 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { 1486 unsigned ElementSizeInBits = 1487 DL.getTypeSizeInBits(VecTy->getScalarType()).getFixedSize(); 1488 if (ElementSizeInBits % 8 != 0) { 1489 // GEPs over non-multiple of 8 size vector elements are invalid. 1490 return nullptr; 1491 } 1492 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); 1493 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1494 if (NumSkippedElements.ugt(cast<FixedVectorType>(VecTy)->getNumElements())) 1495 return nullptr; 1496 Offset -= NumSkippedElements * ElementSize; 1497 Indices.push_back(IRB.getInt(NumSkippedElements)); 1498 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), 1499 Offset, TargetTy, Indices, NamePrefix); 1500 } 1501 1502 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 1503 Type *ElementTy = ArrTy->getElementType(); 1504 APInt ElementSize(Offset.getBitWidth(), 1505 DL.getTypeAllocSize(ElementTy).getFixedSize()); 1506 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1507 if (NumSkippedElements.ugt(ArrTy->getNumElements())) 1508 return nullptr; 1509 1510 Offset -= NumSkippedElements * ElementSize; 1511 Indices.push_back(IRB.getInt(NumSkippedElements)); 1512 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1513 Indices, NamePrefix); 1514 } 1515 1516 StructType *STy = dyn_cast<StructType>(Ty); 1517 if (!STy) 1518 return nullptr; 1519 1520 const StructLayout *SL = DL.getStructLayout(STy); 1521 uint64_t StructOffset = Offset.getZExtValue(); 1522 if (StructOffset >= SL->getSizeInBytes()) 1523 return nullptr; 1524 unsigned Index = SL->getElementContainingOffset(StructOffset); 1525 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); 1526 Type *ElementTy = STy->getElementType(Index); 1527 if (Offset.uge(DL.getTypeAllocSize(ElementTy).getFixedSize())) 1528 return nullptr; // The offset points into alignment padding. 1529 1530 Indices.push_back(IRB.getInt32(Index)); 1531 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1532 Indices, NamePrefix); 1533 } 1534 1535 /// Get a natural GEP from a base pointer to a particular offset and 1536 /// resulting in a particular type. 1537 /// 1538 /// The goal is to produce a "natural" looking GEP that works with the existing 1539 /// composite types to arrive at the appropriate offset and element type for 1540 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1541 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1542 /// Indices, and setting Ty to the result subtype. 1543 /// 1544 /// If no natural GEP can be constructed, this function returns null. 1545 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1546 Value *Ptr, APInt Offset, Type *TargetTy, 1547 SmallVectorImpl<Value *> &Indices, 1548 const Twine &NamePrefix) { 1549 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1550 1551 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1552 // an i8. 1553 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) 1554 return nullptr; 1555 1556 Type *ElementTy = Ty->getElementType(); 1557 if (!ElementTy->isSized()) 1558 return nullptr; // We can't GEP through an unsized element. 1559 if (isa<ScalableVectorType>(ElementTy)) 1560 return nullptr; 1561 APInt ElementSize(Offset.getBitWidth(), 1562 DL.getTypeAllocSize(ElementTy).getFixedSize()); 1563 if (ElementSize == 0) 1564 return nullptr; // Zero-length arrays can't help us build a natural GEP. 1565 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1566 1567 Offset -= NumSkippedElements * ElementSize; 1568 Indices.push_back(IRB.getInt(NumSkippedElements)); 1569 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1570 Indices, NamePrefix); 1571 } 1572 1573 /// Compute an adjusted pointer from Ptr by Offset bytes where the 1574 /// resulting pointer has PointerTy. 1575 /// 1576 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1577 /// and produces the pointer type desired. Where it cannot, it will try to use 1578 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1579 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1580 /// bitcast to the type. 1581 /// 1582 /// The strategy for finding the more natural GEPs is to peel off layers of the 1583 /// pointer, walking back through bit casts and GEPs, searching for a base 1584 /// pointer from which we can compute a natural GEP with the desired 1585 /// properties. The algorithm tries to fold as many constant indices into 1586 /// a single GEP as possible, thus making each GEP more independent of the 1587 /// surrounding code. 1588 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1589 APInt Offset, Type *PointerTy, 1590 const Twine &NamePrefix) { 1591 // Even though we don't look through PHI nodes, we could be called on an 1592 // instruction in an unreachable block, which may be on a cycle. 1593 SmallPtrSet<Value *, 4> Visited; 1594 Visited.insert(Ptr); 1595 SmallVector<Value *, 4> Indices; 1596 1597 // We may end up computing an offset pointer that has the wrong type. If we 1598 // never are able to compute one directly that has the correct type, we'll 1599 // fall back to it, so keep it and the base it was computed from around here. 1600 Value *OffsetPtr = nullptr; 1601 Value *OffsetBasePtr; 1602 1603 // Remember any i8 pointer we come across to re-use if we need to do a raw 1604 // byte offset. 1605 Value *Int8Ptr = nullptr; 1606 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1607 1608 PointerType *TargetPtrTy = cast<PointerType>(PointerTy); 1609 Type *TargetTy = TargetPtrTy->getElementType(); 1610 1611 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different 1612 // address space from the expected `PointerTy` (the pointer to be used). 1613 // Adjust the pointer type based the original storage pointer. 1614 auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace(); 1615 PointerTy = TargetTy->getPointerTo(AS); 1616 1617 do { 1618 // First fold any existing GEPs into the offset. 1619 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1620 APInt GEPOffset(Offset.getBitWidth(), 0); 1621 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1622 break; 1623 Offset += GEPOffset; 1624 Ptr = GEP->getPointerOperand(); 1625 if (!Visited.insert(Ptr).second) 1626 break; 1627 } 1628 1629 // See if we can perform a natural GEP here. 1630 Indices.clear(); 1631 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1632 Indices, NamePrefix)) { 1633 // If we have a new natural pointer at the offset, clear out any old 1634 // offset pointer we computed. Unless it is the base pointer or 1635 // a non-instruction, we built a GEP we don't need. Zap it. 1636 if (OffsetPtr && OffsetPtr != OffsetBasePtr) 1637 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { 1638 assert(I->use_empty() && "Built a GEP with uses some how!"); 1639 I->eraseFromParent(); 1640 } 1641 OffsetPtr = P; 1642 OffsetBasePtr = Ptr; 1643 // If we also found a pointer of the right type, we're done. 1644 if (P->getType() == PointerTy) 1645 break; 1646 } 1647 1648 // Stash this pointer if we've found an i8*. 1649 if (Ptr->getType()->isIntegerTy(8)) { 1650 Int8Ptr = Ptr; 1651 Int8PtrOffset = Offset; 1652 } 1653 1654 // Peel off a layer of the pointer and update the offset appropriately. 1655 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1656 Ptr = cast<Operator>(Ptr)->getOperand(0); 1657 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1658 if (GA->isInterposable()) 1659 break; 1660 Ptr = GA->getAliasee(); 1661 } else { 1662 break; 1663 } 1664 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1665 } while (Visited.insert(Ptr).second); 1666 1667 if (!OffsetPtr) { 1668 if (!Int8Ptr) { 1669 Int8Ptr = IRB.CreateBitCast( 1670 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), 1671 NamePrefix + "sroa_raw_cast"); 1672 Int8PtrOffset = Offset; 1673 } 1674 1675 OffsetPtr = Int8PtrOffset == 0 1676 ? Int8Ptr 1677 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, 1678 IRB.getInt(Int8PtrOffset), 1679 NamePrefix + "sroa_raw_idx"); 1680 } 1681 Ptr = OffsetPtr; 1682 1683 // On the off chance we were targeting i8*, guard the bitcast here. 1684 if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) { 1685 Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, 1686 TargetPtrTy, 1687 NamePrefix + "sroa_cast"); 1688 } 1689 1690 return Ptr; 1691 } 1692 1693 /// Compute the adjusted alignment for a load or store from an offset. 1694 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { 1695 return commonAlignment(getLoadStoreAlignment(I), Offset); 1696 } 1697 1698 /// Test whether we can convert a value from the old to the new type. 1699 /// 1700 /// This predicate should be used to guard calls to convertValue in order to 1701 /// ensure that we only try to convert viable values. The strategy is that we 1702 /// will peel off single element struct and array wrappings to get to an 1703 /// underlying value, and convert that value. 1704 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1705 if (OldTy == NewTy) 1706 return true; 1707 1708 // For integer types, we can't handle any bit-width differences. This would 1709 // break both vector conversions with extension and introduce endianness 1710 // issues when in conjunction with loads and stores. 1711 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1712 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1713 cast<IntegerType>(NewTy)->getBitWidth() && 1714 "We can't have the same bitwidth for different int types"); 1715 return false; 1716 } 1717 1718 if (DL.getTypeSizeInBits(NewTy).getFixedSize() != 1719 DL.getTypeSizeInBits(OldTy).getFixedSize()) 1720 return false; 1721 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1722 return false; 1723 1724 // We can convert pointers to integers and vice-versa. Same for vectors 1725 // of pointers and integers. 1726 OldTy = OldTy->getScalarType(); 1727 NewTy = NewTy->getScalarType(); 1728 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1729 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1730 unsigned OldAS = OldTy->getPointerAddressSpace(); 1731 unsigned NewAS = NewTy->getPointerAddressSpace(); 1732 // Convert pointers if they are pointers from the same address space or 1733 // different integral (not non-integral) address spaces with the same 1734 // pointer size. 1735 return OldAS == NewAS || 1736 (!DL.isNonIntegralAddressSpace(OldAS) && 1737 !DL.isNonIntegralAddressSpace(NewAS) && 1738 DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1739 } 1740 1741 // We can convert integers to integral pointers, but not to non-integral 1742 // pointers. 1743 if (OldTy->isIntegerTy()) 1744 return !DL.isNonIntegralPointerType(NewTy); 1745 1746 // We can convert integral pointers to integers, but non-integral pointers 1747 // need to remain pointers. 1748 if (!DL.isNonIntegralPointerType(OldTy)) 1749 return NewTy->isIntegerTy(); 1750 1751 return false; 1752 } 1753 1754 return true; 1755 } 1756 1757 /// Generic routine to convert an SSA value to a value of a different 1758 /// type. 1759 /// 1760 /// This will try various different casting techniques, such as bitcasts, 1761 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1762 /// two types for viability with this routine. 1763 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1764 Type *NewTy) { 1765 Type *OldTy = V->getType(); 1766 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1767 1768 if (OldTy == NewTy) 1769 return V; 1770 1771 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1772 "Integer types must be the exact same to convert."); 1773 1774 // See if we need inttoptr for this type pair. May require additional bitcast. 1775 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1776 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1777 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1778 // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*> 1779 // Directly handle i64 to i8* 1780 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1781 NewTy); 1782 } 1783 1784 // See if we need ptrtoint for this type pair. May require additional bitcast. 1785 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { 1786 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1787 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1788 // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32> 1789 // Expand i8* to i64 --> i8* to i64 to i64 1790 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1791 NewTy); 1792 } 1793 1794 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1795 unsigned OldAS = OldTy->getPointerAddressSpace(); 1796 unsigned NewAS = NewTy->getPointerAddressSpace(); 1797 // To convert pointers with different address spaces (they are already 1798 // checked convertible, i.e. they have the same pointer size), so far we 1799 // cannot use `bitcast` (which has restrict on the same address space) or 1800 // `addrspacecast` (which is not always no-op casting). Instead, use a pair 1801 // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit 1802 // size. 1803 if (OldAS != NewAS) { 1804 assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1805 return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1806 NewTy); 1807 } 1808 } 1809 1810 return IRB.CreateBitCast(V, NewTy); 1811 } 1812 1813 /// Test whether the given slice use can be promoted to a vector. 1814 /// 1815 /// This function is called to test each entry in a partition which is slated 1816 /// for a single slice. 1817 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 1818 VectorType *Ty, 1819 uint64_t ElementSize, 1820 const DataLayout &DL) { 1821 // First validate the slice offsets. 1822 uint64_t BeginOffset = 1823 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 1824 uint64_t BeginIndex = BeginOffset / ElementSize; 1825 if (BeginIndex * ElementSize != BeginOffset || 1826 BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements()) 1827 return false; 1828 uint64_t EndOffset = 1829 std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 1830 uint64_t EndIndex = EndOffset / ElementSize; 1831 if (EndIndex * ElementSize != EndOffset || 1832 EndIndex > cast<FixedVectorType>(Ty)->getNumElements()) 1833 return false; 1834 1835 assert(EndIndex > BeginIndex && "Empty vector!"); 1836 uint64_t NumElements = EndIndex - BeginIndex; 1837 Type *SliceTy = (NumElements == 1) 1838 ? Ty->getElementType() 1839 : FixedVectorType::get(Ty->getElementType(), NumElements); 1840 1841 Type *SplitIntTy = 1842 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1843 1844 Use *U = S.getUse(); 1845 1846 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1847 if (MI->isVolatile()) 1848 return false; 1849 if (!S.isSplittable()) 1850 return false; // Skip any unsplittable intrinsics. 1851 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1852 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 1853 return false; 1854 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { 1855 // Disable vector promotion when there are loads or stores of an FCA. 1856 return false; 1857 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1858 if (LI->isVolatile()) 1859 return false; 1860 Type *LTy = LI->getType(); 1861 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1862 assert(LTy->isIntegerTy()); 1863 LTy = SplitIntTy; 1864 } 1865 if (!canConvertValue(DL, SliceTy, LTy)) 1866 return false; 1867 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1868 if (SI->isVolatile()) 1869 return false; 1870 Type *STy = SI->getValueOperand()->getType(); 1871 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1872 assert(STy->isIntegerTy()); 1873 STy = SplitIntTy; 1874 } 1875 if (!canConvertValue(DL, STy, SliceTy)) 1876 return false; 1877 } else { 1878 return false; 1879 } 1880 1881 return true; 1882 } 1883 1884 /// Test whether the given alloca partitioning and range of slices can be 1885 /// promoted to a vector. 1886 /// 1887 /// This is a quick test to check whether we can rewrite a particular alloca 1888 /// partition (and its newly formed alloca) into a vector alloca with only 1889 /// whole-vector loads and stores such that it could be promoted to a vector 1890 /// SSA value. We only can ensure this for a limited set of operations, and we 1891 /// don't want to do the rewrites unless we are confident that the result will 1892 /// be promotable, so we have an early test here. 1893 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 1894 // Collect the candidate types for vector-based promotion. Also track whether 1895 // we have different element types. 1896 SmallVector<VectorType *, 4> CandidateTys; 1897 Type *CommonEltTy = nullptr; 1898 bool HaveCommonEltTy = true; 1899 auto CheckCandidateType = [&](Type *Ty) { 1900 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 1901 // Return if bitcast to vectors is different for total size in bits. 1902 if (!CandidateTys.empty()) { 1903 VectorType *V = CandidateTys[0]; 1904 if (DL.getTypeSizeInBits(VTy).getFixedSize() != 1905 DL.getTypeSizeInBits(V).getFixedSize()) { 1906 CandidateTys.clear(); 1907 return; 1908 } 1909 } 1910 CandidateTys.push_back(VTy); 1911 if (!CommonEltTy) 1912 CommonEltTy = VTy->getElementType(); 1913 else if (CommonEltTy != VTy->getElementType()) 1914 HaveCommonEltTy = false; 1915 } 1916 }; 1917 // Consider any loads or stores that are the exact size of the slice. 1918 for (const Slice &S : P) 1919 if (S.beginOffset() == P.beginOffset() && 1920 S.endOffset() == P.endOffset()) { 1921 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 1922 CheckCandidateType(LI->getType()); 1923 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 1924 CheckCandidateType(SI->getValueOperand()->getType()); 1925 } 1926 1927 // If we didn't find a vector type, nothing to do here. 1928 if (CandidateTys.empty()) 1929 return nullptr; 1930 1931 // Remove non-integer vector types if we had multiple common element types. 1932 // FIXME: It'd be nice to replace them with integer vector types, but we can't 1933 // do that until all the backends are known to produce good code for all 1934 // integer vector types. 1935 if (!HaveCommonEltTy) { 1936 llvm::erase_if(CandidateTys, [](VectorType *VTy) { 1937 return !VTy->getElementType()->isIntegerTy(); 1938 }); 1939 1940 // If there were no integer vector types, give up. 1941 if (CandidateTys.empty()) 1942 return nullptr; 1943 1944 // Rank the remaining candidate vector types. This is easy because we know 1945 // they're all integer vectors. We sort by ascending number of elements. 1946 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 1947 (void)DL; 1948 assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() == 1949 DL.getTypeSizeInBits(LHSTy).getFixedSize() && 1950 "Cannot have vector types of different sizes!"); 1951 assert(RHSTy->getElementType()->isIntegerTy() && 1952 "All non-integer types eliminated!"); 1953 assert(LHSTy->getElementType()->isIntegerTy() && 1954 "All non-integer types eliminated!"); 1955 return cast<FixedVectorType>(RHSTy)->getNumElements() < 1956 cast<FixedVectorType>(LHSTy)->getNumElements(); 1957 }; 1958 llvm::sort(CandidateTys, RankVectorTypes); 1959 CandidateTys.erase( 1960 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), 1961 CandidateTys.end()); 1962 } else { 1963 // The only way to have the same element type in every vector type is to 1964 // have the same vector type. Check that and remove all but one. 1965 #ifndef NDEBUG 1966 for (VectorType *VTy : CandidateTys) { 1967 assert(VTy->getElementType() == CommonEltTy && 1968 "Unaccounted for element type!"); 1969 assert(VTy == CandidateTys[0] && 1970 "Different vector types with the same element type!"); 1971 } 1972 #endif 1973 CandidateTys.resize(1); 1974 } 1975 1976 // Try each vector type, and return the one which works. 1977 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { 1978 uint64_t ElementSize = 1979 DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize(); 1980 1981 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1982 // that aren't byte sized. 1983 if (ElementSize % 8) 1984 return false; 1985 assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 && 1986 "vector size not a multiple of element size?"); 1987 ElementSize /= 8; 1988 1989 for (const Slice &S : P) 1990 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 1991 return false; 1992 1993 for (const Slice *S : P.splitSliceTails()) 1994 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 1995 return false; 1996 1997 return true; 1998 }; 1999 for (VectorType *VTy : CandidateTys) 2000 if (CheckVectorTypeForPromotion(VTy)) 2001 return VTy; 2002 2003 return nullptr; 2004 } 2005 2006 /// Test whether a slice of an alloca is valid for integer widening. 2007 /// 2008 /// This implements the necessary checking for the \c isIntegerWideningViable 2009 /// test below on a single slice of the alloca. 2010 static bool isIntegerWideningViableForSlice(const Slice &S, 2011 uint64_t AllocBeginOffset, 2012 Type *AllocaTy, 2013 const DataLayout &DL, 2014 bool &WholeAllocaOp) { 2015 uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize(); 2016 2017 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 2018 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 2019 2020 // We can't reasonably handle cases where the load or store extends past 2021 // the end of the alloca's type and into its padding. 2022 if (RelEnd > Size) 2023 return false; 2024 2025 Use *U = S.getUse(); 2026 2027 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 2028 if (LI->isVolatile()) 2029 return false; 2030 // We can't handle loads that extend past the allocated memory. 2031 if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size) 2032 return false; 2033 // So far, AllocaSliceRewriter does not support widening split slice tails 2034 // in rewriteIntegerLoad. 2035 if (S.beginOffset() < AllocBeginOffset) 2036 return false; 2037 // Note that we don't count vector loads or stores as whole-alloca 2038 // operations which enable integer widening because we would prefer to use 2039 // vector widening instead. 2040 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 2041 WholeAllocaOp = true; 2042 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 2043 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2044 return false; 2045 } else if (RelBegin != 0 || RelEnd != Size || 2046 !canConvertValue(DL, AllocaTy, LI->getType())) { 2047 // Non-integer loads need to be convertible from the alloca type so that 2048 // they are promotable. 2049 return false; 2050 } 2051 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2052 Type *ValueTy = SI->getValueOperand()->getType(); 2053 if (SI->isVolatile()) 2054 return false; 2055 // We can't handle stores that extend past the allocated memory. 2056 if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size) 2057 return false; 2058 // So far, AllocaSliceRewriter does not support widening split slice tails 2059 // in rewriteIntegerStore. 2060 if (S.beginOffset() < AllocBeginOffset) 2061 return false; 2062 // Note that we don't count vector loads or stores as whole-alloca 2063 // operations which enable integer widening because we would prefer to use 2064 // vector widening instead. 2065 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 2066 WholeAllocaOp = true; 2067 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 2068 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2069 return false; 2070 } else if (RelBegin != 0 || RelEnd != Size || 2071 !canConvertValue(DL, ValueTy, AllocaTy)) { 2072 // Non-integer stores need to be convertible to the alloca type so that 2073 // they are promotable. 2074 return false; 2075 } 2076 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2077 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 2078 return false; 2079 if (!S.isSplittable()) 2080 return false; // Skip any unsplittable intrinsics. 2081 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 2082 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 2083 return false; 2084 } else { 2085 return false; 2086 } 2087 2088 return true; 2089 } 2090 2091 /// Test whether the given alloca partition's integer operations can be 2092 /// widened to promotable ones. 2093 /// 2094 /// This is a quick test to check whether we can rewrite the integer loads and 2095 /// stores to a particular alloca into wider loads and stores and be able to 2096 /// promote the resulting alloca. 2097 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 2098 const DataLayout &DL) { 2099 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize(); 2100 // Don't create integer types larger than the maximum bitwidth. 2101 if (SizeInBits > IntegerType::MAX_INT_BITS) 2102 return false; 2103 2104 // Don't try to handle allocas with bit-padding. 2105 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize()) 2106 return false; 2107 2108 // We need to ensure that an integer type with the appropriate bitwidth can 2109 // be converted to the alloca type, whatever that is. We don't want to force 2110 // the alloca itself to have an integer type if there is a more suitable one. 2111 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 2112 if (!canConvertValue(DL, AllocaTy, IntTy) || 2113 !canConvertValue(DL, IntTy, AllocaTy)) 2114 return false; 2115 2116 // While examining uses, we ensure that the alloca has a covering load or 2117 // store. We don't want to widen the integer operations only to fail to 2118 // promote due to some other unsplittable entry (which we may make splittable 2119 // later). However, if there are only splittable uses, go ahead and assume 2120 // that we cover the alloca. 2121 // FIXME: We shouldn't consider split slices that happen to start in the 2122 // partition here... 2123 bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits); 2124 2125 for (const Slice &S : P) 2126 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 2127 WholeAllocaOp)) 2128 return false; 2129 2130 for (const Slice *S : P.splitSliceTails()) 2131 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2132 WholeAllocaOp)) 2133 return false; 2134 2135 return WholeAllocaOp; 2136 } 2137 2138 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2139 IntegerType *Ty, uint64_t Offset, 2140 const Twine &Name) { 2141 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2142 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2143 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2144 DL.getTypeStoreSize(IntTy).getFixedSize() && 2145 "Element extends past full value"); 2146 uint64_t ShAmt = 8 * Offset; 2147 if (DL.isBigEndian()) 2148 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2149 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2150 if (ShAmt) { 2151 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2152 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2153 } 2154 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2155 "Cannot extract to a larger integer!"); 2156 if (Ty != IntTy) { 2157 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2158 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); 2159 } 2160 return V; 2161 } 2162 2163 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2164 Value *V, uint64_t Offset, const Twine &Name) { 2165 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2166 IntegerType *Ty = cast<IntegerType>(V->getType()); 2167 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2168 "Cannot insert a larger integer!"); 2169 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2170 if (Ty != IntTy) { 2171 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2172 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); 2173 } 2174 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2175 DL.getTypeStoreSize(IntTy).getFixedSize() && 2176 "Element store outside of alloca store"); 2177 uint64_t ShAmt = 8 * Offset; 2178 if (DL.isBigEndian()) 2179 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2180 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2181 if (ShAmt) { 2182 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2183 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2184 } 2185 2186 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2187 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2188 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2189 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); 2190 V = IRB.CreateOr(Old, V, Name + ".insert"); 2191 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); 2192 } 2193 return V; 2194 } 2195 2196 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2197 unsigned EndIndex, const Twine &Name) { 2198 auto *VecTy = cast<FixedVectorType>(V->getType()); 2199 unsigned NumElements = EndIndex - BeginIndex; 2200 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2201 2202 if (NumElements == VecTy->getNumElements()) 2203 return V; 2204 2205 if (NumElements == 1) { 2206 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2207 Name + ".extract"); 2208 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); 2209 return V; 2210 } 2211 2212 SmallVector<int, 8> Mask; 2213 Mask.reserve(NumElements); 2214 for (unsigned i = BeginIndex; i != EndIndex; ++i) 2215 Mask.push_back(i); 2216 V = IRB.CreateShuffleVector(V, Mask, Name + ".extract"); 2217 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2218 return V; 2219 } 2220 2221 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2222 unsigned BeginIndex, const Twine &Name) { 2223 VectorType *VecTy = cast<VectorType>(Old->getType()); 2224 assert(VecTy && "Can only insert a vector into a vector"); 2225 2226 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2227 if (!Ty) { 2228 // Single element to insert. 2229 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2230 Name + ".insert"); 2231 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); 2232 return V; 2233 } 2234 2235 assert(cast<FixedVectorType>(Ty)->getNumElements() <= 2236 cast<FixedVectorType>(VecTy)->getNumElements() && 2237 "Too many elements!"); 2238 if (cast<FixedVectorType>(Ty)->getNumElements() == 2239 cast<FixedVectorType>(VecTy)->getNumElements()) { 2240 assert(V->getType() == VecTy && "Vector type mismatch"); 2241 return V; 2242 } 2243 unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements(); 2244 2245 // When inserting a smaller vector into the larger to store, we first 2246 // use a shuffle vector to widen it with undef elements, and then 2247 // a second shuffle vector to select between the loaded vector and the 2248 // incoming vector. 2249 SmallVector<int, 8> Mask; 2250 Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2251 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2252 if (i >= BeginIndex && i < EndIndex) 2253 Mask.push_back(i - BeginIndex); 2254 else 2255 Mask.push_back(-1); 2256 V = IRB.CreateShuffleVector(V, Mask, Name + ".expand"); 2257 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2258 2259 SmallVector<Constant *, 8> Mask2; 2260 Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2261 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2262 Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2263 2264 V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend"); 2265 2266 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); 2267 return V; 2268 } 2269 2270 /// Visitor to rewrite instructions using p particular slice of an alloca 2271 /// to use a new alloca. 2272 /// 2273 /// Also implements the rewriting to vector-based accesses when the partition 2274 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2275 /// lives here. 2276 class llvm::sroa::AllocaSliceRewriter 2277 : public InstVisitor<AllocaSliceRewriter, bool> { 2278 // Befriend the base class so it can delegate to private visit methods. 2279 friend class InstVisitor<AllocaSliceRewriter, bool>; 2280 2281 using Base = InstVisitor<AllocaSliceRewriter, bool>; 2282 2283 const DataLayout &DL; 2284 AllocaSlices &AS; 2285 SROA &Pass; 2286 AllocaInst &OldAI, &NewAI; 2287 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2288 Type *NewAllocaTy; 2289 2290 // This is a convenience and flag variable that will be null unless the new 2291 // alloca's integer operations should be widened to this integer type due to 2292 // passing isIntegerWideningViable above. If it is non-null, the desired 2293 // integer type will be stored here for easy access during rewriting. 2294 IntegerType *IntTy; 2295 2296 // If we are rewriting an alloca partition which can be written as pure 2297 // vector operations, we stash extra information here. When VecTy is 2298 // non-null, we have some strict guarantees about the rewritten alloca: 2299 // - The new alloca is exactly the size of the vector type here. 2300 // - The accesses all either map to the entire vector or to a single 2301 // element. 2302 // - The set of accessing instructions is only one of those handled above 2303 // in isVectorPromotionViable. Generally these are the same access kinds 2304 // which are promotable via mem2reg. 2305 VectorType *VecTy; 2306 Type *ElementTy; 2307 uint64_t ElementSize; 2308 2309 // The original offset of the slice currently being rewritten relative to 2310 // the original alloca. 2311 uint64_t BeginOffset = 0; 2312 uint64_t EndOffset = 0; 2313 2314 // The new offsets of the slice currently being rewritten relative to the 2315 // original alloca. 2316 uint64_t NewBeginOffset = 0, NewEndOffset = 0; 2317 2318 uint64_t SliceSize = 0; 2319 bool IsSplittable = false; 2320 bool IsSplit = false; 2321 Use *OldUse = nullptr; 2322 Instruction *OldPtr = nullptr; 2323 2324 // Track post-rewrite users which are PHI nodes and Selects. 2325 SmallSetVector<PHINode *, 8> &PHIUsers; 2326 SmallSetVector<SelectInst *, 8> &SelectUsers; 2327 2328 // Utility IR builder, whose name prefix is setup for each visited use, and 2329 // the insertion point is set to point to the user. 2330 IRBuilderTy IRB; 2331 2332 public: 2333 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass, 2334 AllocaInst &OldAI, AllocaInst &NewAI, 2335 uint64_t NewAllocaBeginOffset, 2336 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2337 VectorType *PromotableVecTy, 2338 SmallSetVector<PHINode *, 8> &PHIUsers, 2339 SmallSetVector<SelectInst *, 8> &SelectUsers) 2340 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2341 NewAllocaBeginOffset(NewAllocaBeginOffset), 2342 NewAllocaEndOffset(NewAllocaEndOffset), 2343 NewAllocaTy(NewAI.getAllocatedType()), 2344 IntTy( 2345 IsIntegerPromotable 2346 ? Type::getIntNTy(NewAI.getContext(), 2347 DL.getTypeSizeInBits(NewAI.getAllocatedType()) 2348 .getFixedSize()) 2349 : nullptr), 2350 VecTy(PromotableVecTy), 2351 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2352 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8 2353 : 0), 2354 PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2355 IRB(NewAI.getContext(), ConstantFolder()) { 2356 if (VecTy) { 2357 assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 && 2358 "Only multiple-of-8 sized vector elements are viable"); 2359 ++NumVectorized; 2360 } 2361 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2362 } 2363 2364 bool visit(AllocaSlices::const_iterator I) { 2365 bool CanSROA = true; 2366 BeginOffset = I->beginOffset(); 2367 EndOffset = I->endOffset(); 2368 IsSplittable = I->isSplittable(); 2369 IsSplit = 2370 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2371 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2372 LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); 2373 LLVM_DEBUG(dbgs() << "\n"); 2374 2375 // Compute the intersecting offset range. 2376 assert(BeginOffset < NewAllocaEndOffset); 2377 assert(EndOffset > NewAllocaBeginOffset); 2378 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2379 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2380 2381 SliceSize = NewEndOffset - NewBeginOffset; 2382 2383 OldUse = I->getUse(); 2384 OldPtr = cast<Instruction>(OldUse->get()); 2385 2386 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2387 IRB.SetInsertPoint(OldUserI); 2388 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2389 IRB.getInserter().SetNamePrefix( 2390 Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2391 2392 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2393 if (VecTy || IntTy) 2394 assert(CanSROA); 2395 return CanSROA; 2396 } 2397 2398 private: 2399 // Make sure the other visit overloads are visible. 2400 using Base::visit; 2401 2402 // Every instruction which can end up as a user must have a rewrite rule. 2403 bool visitInstruction(Instruction &I) { 2404 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2405 llvm_unreachable("No rewrite rule for this instruction!"); 2406 } 2407 2408 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2409 // Note that the offset computation can use BeginOffset or NewBeginOffset 2410 // interchangeably for unsplit slices. 2411 assert(IsSplit || BeginOffset == NewBeginOffset); 2412 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2413 2414 #ifndef NDEBUG 2415 StringRef OldName = OldPtr->getName(); 2416 // Skip through the last '.sroa.' component of the name. 2417 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2418 if (LastSROAPrefix != StringRef::npos) { 2419 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2420 // Look for an SROA slice index. 2421 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2422 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2423 // Strip the index and look for the offset. 2424 OldName = OldName.substr(IndexEnd + 1); 2425 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2426 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2427 // Strip the offset. 2428 OldName = OldName.substr(OffsetEnd + 1); 2429 } 2430 } 2431 // Strip any SROA suffixes as well. 2432 OldName = OldName.substr(0, OldName.find(".sroa_")); 2433 #endif 2434 2435 return getAdjustedPtr(IRB, DL, &NewAI, 2436 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), 2437 PointerTy, 2438 #ifndef NDEBUG 2439 Twine(OldName) + "." 2440 #else 2441 Twine() 2442 #endif 2443 ); 2444 } 2445 2446 /// Compute suitable alignment to access this slice of the *new* 2447 /// alloca. 2448 /// 2449 /// You can optionally pass a type to this routine and if that type's ABI 2450 /// alignment is itself suitable, this will return zero. 2451 Align getSliceAlign() { 2452 return commonAlignment(NewAI.getAlign(), 2453 NewBeginOffset - NewAllocaBeginOffset); 2454 } 2455 2456 unsigned getIndex(uint64_t Offset) { 2457 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2458 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2459 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2460 uint32_t Index = RelOffset / ElementSize; 2461 assert(Index * ElementSize == RelOffset); 2462 return Index; 2463 } 2464 2465 void deleteIfTriviallyDead(Value *V) { 2466 Instruction *I = cast<Instruction>(V); 2467 if (isInstructionTriviallyDead(I)) 2468 Pass.DeadInsts.push_back(I); 2469 } 2470 2471 Value *rewriteVectorizedLoadInst(LoadInst &LI) { 2472 unsigned BeginIndex = getIndex(NewBeginOffset); 2473 unsigned EndIndex = getIndex(NewEndOffset); 2474 assert(EndIndex > BeginIndex && "Empty vector!"); 2475 2476 LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2477 NewAI.getAlign(), "load"); 2478 2479 Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2480 LLVMContext::MD_access_group}); 2481 return extractVector(IRB, Load, BeginIndex, EndIndex, "vec"); 2482 } 2483 2484 Value *rewriteIntegerLoad(LoadInst &LI) { 2485 assert(IntTy && "We cannot insert an integer to the alloca"); 2486 assert(!LI.isVolatile()); 2487 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2488 NewAI.getAlign(), "load"); 2489 V = convertValue(DL, IRB, V, IntTy); 2490 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2491 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2492 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2493 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2494 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2495 } 2496 // It is possible that the extracted type is not the load type. This 2497 // happens if there is a load past the end of the alloca, and as 2498 // a consequence the slice is narrower but still a candidate for integer 2499 // lowering. To handle this case, we just zero extend the extracted 2500 // integer. 2501 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2502 "Can only handle an extract for an overly wide load"); 2503 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2504 V = IRB.CreateZExt(V, LI.getType()); 2505 return V; 2506 } 2507 2508 bool visitLoadInst(LoadInst &LI) { 2509 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 2510 Value *OldOp = LI.getOperand(0); 2511 assert(OldOp == OldPtr); 2512 2513 AAMDNodes AATags; 2514 LI.getAAMetadata(AATags); 2515 2516 unsigned AS = LI.getPointerAddressSpace(); 2517 2518 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2519 : LI.getType(); 2520 const bool IsLoadPastEnd = 2521 DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize; 2522 bool IsPtrAdjusted = false; 2523 Value *V; 2524 if (VecTy) { 2525 V = rewriteVectorizedLoadInst(LI); 2526 } else if (IntTy && LI.getType()->isIntegerTy()) { 2527 V = rewriteIntegerLoad(LI); 2528 } else if (NewBeginOffset == NewAllocaBeginOffset && 2529 NewEndOffset == NewAllocaEndOffset && 2530 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2531 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2532 TargetTy->isIntegerTy()))) { 2533 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2534 NewAI.getAlign(), LI.isVolatile(), 2535 LI.getName()); 2536 if (AATags) 2537 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2538 if (LI.isVolatile()) 2539 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2540 if (NewLI->isAtomic()) 2541 NewLI->setAlignment(LI.getAlign()); 2542 2543 // Any !nonnull metadata or !range metadata on the old load is also valid 2544 // on the new load. This is even true in some cases even when the loads 2545 // are different types, for example by mapping !nonnull metadata to 2546 // !range metadata by modeling the null pointer constant converted to the 2547 // integer type. 2548 // FIXME: Add support for range metadata here. Currently the utilities 2549 // for this don't propagate range metadata in trivial cases from one 2550 // integer load to another, don't handle non-addrspace-0 null pointers 2551 // correctly, and don't have any support for mapping ranges as the 2552 // integer type becomes winder or narrower. 2553 if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull)) 2554 copyNonnullMetadata(LI, N, *NewLI); 2555 2556 // Try to preserve nonnull metadata 2557 V = NewLI; 2558 2559 // If this is an integer load past the end of the slice (which means the 2560 // bytes outside the slice are undef or this load is dead) just forcibly 2561 // fix the integer size with correct handling of endianness. 2562 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2563 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2564 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2565 V = IRB.CreateZExt(V, TITy, "load.ext"); 2566 if (DL.isBigEndian()) 2567 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2568 "endian_shift"); 2569 } 2570 } else { 2571 Type *LTy = TargetTy->getPointerTo(AS); 2572 LoadInst *NewLI = 2573 IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy), 2574 getSliceAlign(), LI.isVolatile(), LI.getName()); 2575 if (AATags) 2576 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2577 if (LI.isVolatile()) 2578 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2579 NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2580 LLVMContext::MD_access_group}); 2581 2582 V = NewLI; 2583 IsPtrAdjusted = true; 2584 } 2585 V = convertValue(DL, IRB, V, TargetTy); 2586 2587 if (IsSplit) { 2588 assert(!LI.isVolatile()); 2589 assert(LI.getType()->isIntegerTy() && 2590 "Only integer type loads and stores are split"); 2591 assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() && 2592 "Split load isn't smaller than original load"); 2593 assert(DL.typeSizeEqualsStoreSize(LI.getType()) && 2594 "Non-byte-multiple bit width"); 2595 // Move the insertion point just past the load so that we can refer to it. 2596 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); 2597 // Create a placeholder value with the same type as LI to use as the 2598 // basis for the new value. This allows us to replace the uses of LI with 2599 // the computed value, and then replace the placeholder with LI, leaving 2600 // LI only used for this computation. 2601 Value *Placeholder = new LoadInst( 2602 LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)), "", 2603 false, Align(1)); 2604 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2605 "insert"); 2606 LI.replaceAllUsesWith(V); 2607 Placeholder->replaceAllUsesWith(&LI); 2608 Placeholder->deleteValue(); 2609 } else { 2610 LI.replaceAllUsesWith(V); 2611 } 2612 2613 Pass.DeadInsts.push_back(&LI); 2614 deleteIfTriviallyDead(OldOp); 2615 LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); 2616 return !LI.isVolatile() && !IsPtrAdjusted; 2617 } 2618 2619 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, 2620 AAMDNodes AATags) { 2621 if (V->getType() != VecTy) { 2622 unsigned BeginIndex = getIndex(NewBeginOffset); 2623 unsigned EndIndex = getIndex(NewEndOffset); 2624 assert(EndIndex > BeginIndex && "Empty vector!"); 2625 unsigned NumElements = EndIndex - BeginIndex; 2626 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2627 "Too many elements!"); 2628 Type *SliceTy = (NumElements == 1) 2629 ? ElementTy 2630 : FixedVectorType::get(ElementTy, NumElements); 2631 if (V->getType() != SliceTy) 2632 V = convertValue(DL, IRB, V, SliceTy); 2633 2634 // Mix in the existing elements. 2635 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2636 NewAI.getAlign(), "load"); 2637 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2638 } 2639 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2640 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2641 LLVMContext::MD_access_group}); 2642 if (AATags) 2643 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2644 Pass.DeadInsts.push_back(&SI); 2645 2646 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2647 return true; 2648 } 2649 2650 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { 2651 assert(IntTy && "We cannot extract an integer from the alloca"); 2652 assert(!SI.isVolatile()); 2653 if (DL.getTypeSizeInBits(V->getType()).getFixedSize() != 2654 IntTy->getBitWidth()) { 2655 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2656 NewAI.getAlign(), "oldload"); 2657 Old = convertValue(DL, IRB, Old, IntTy); 2658 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2659 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2660 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 2661 } 2662 V = convertValue(DL, IRB, V, NewAllocaTy); 2663 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2664 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2665 LLVMContext::MD_access_group}); 2666 if (AATags) 2667 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2668 Pass.DeadInsts.push_back(&SI); 2669 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2670 return true; 2671 } 2672 2673 bool visitStoreInst(StoreInst &SI) { 2674 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 2675 Value *OldOp = SI.getOperand(1); 2676 assert(OldOp == OldPtr); 2677 2678 AAMDNodes AATags; 2679 SI.getAAMetadata(AATags); 2680 2681 Value *V = SI.getValueOperand(); 2682 2683 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2684 // alloca that should be re-examined after promoting this alloca. 2685 if (V->getType()->isPointerTy()) 2686 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2687 Pass.PostPromotionWorklist.insert(AI); 2688 2689 if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) { 2690 assert(!SI.isVolatile()); 2691 assert(V->getType()->isIntegerTy() && 2692 "Only integer type loads and stores are split"); 2693 assert(DL.typeSizeEqualsStoreSize(V->getType()) && 2694 "Non-byte-multiple bit width"); 2695 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2696 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 2697 "extract"); 2698 } 2699 2700 if (VecTy) 2701 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); 2702 if (IntTy && V->getType()->isIntegerTy()) 2703 return rewriteIntegerStore(V, SI, AATags); 2704 2705 const bool IsStorePastEnd = 2706 DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize; 2707 StoreInst *NewSI; 2708 if (NewBeginOffset == NewAllocaBeginOffset && 2709 NewEndOffset == NewAllocaEndOffset && 2710 (canConvertValue(DL, V->getType(), NewAllocaTy) || 2711 (IsStorePastEnd && NewAllocaTy->isIntegerTy() && 2712 V->getType()->isIntegerTy()))) { 2713 // If this is an integer store past the end of slice (and thus the bytes 2714 // past that point are irrelevant or this is unreachable), truncate the 2715 // value prior to storing. 2716 if (auto *VITy = dyn_cast<IntegerType>(V->getType())) 2717 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2718 if (VITy->getBitWidth() > AITy->getBitWidth()) { 2719 if (DL.isBigEndian()) 2720 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), 2721 "endian_shift"); 2722 V = IRB.CreateTrunc(V, AITy, "load.trunc"); 2723 } 2724 2725 V = convertValue(DL, IRB, V, NewAllocaTy); 2726 NewSI = 2727 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile()); 2728 } else { 2729 unsigned AS = SI.getPointerAddressSpace(); 2730 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS)); 2731 NewSI = 2732 IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile()); 2733 } 2734 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2735 LLVMContext::MD_access_group}); 2736 if (AATags) 2737 NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2738 if (SI.isVolatile()) 2739 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 2740 if (NewSI->isAtomic()) 2741 NewSI->setAlignment(SI.getAlign()); 2742 Pass.DeadInsts.push_back(&SI); 2743 deleteIfTriviallyDead(OldOp); 2744 2745 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2746 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); 2747 } 2748 2749 /// Compute an integer value from splatting an i8 across the given 2750 /// number of bytes. 2751 /// 2752 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2753 /// call this routine. 2754 /// FIXME: Heed the advice above. 2755 /// 2756 /// \param V The i8 value to splat. 2757 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2758 Value *getIntegerSplat(Value *V, unsigned Size) { 2759 assert(Size > 0 && "Expected a positive number of bytes."); 2760 IntegerType *VTy = cast<IntegerType>(V->getType()); 2761 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2762 if (Size == 1) 2763 return V; 2764 2765 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 2766 V = IRB.CreateMul( 2767 IRB.CreateZExt(V, SplatIntTy, "zext"), 2768 ConstantExpr::getUDiv( 2769 Constant::getAllOnesValue(SplatIntTy), 2770 ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()), 2771 SplatIntTy)), 2772 "isplat"); 2773 return V; 2774 } 2775 2776 /// Compute a vector splat for a given element value. 2777 Value *getVectorSplat(Value *V, unsigned NumElements) { 2778 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2779 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); 2780 return V; 2781 } 2782 2783 bool visitMemSetInst(MemSetInst &II) { 2784 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2785 assert(II.getRawDest() == OldPtr); 2786 2787 AAMDNodes AATags; 2788 II.getAAMetadata(AATags); 2789 2790 // If the memset has a variable size, it cannot be split, just adjust the 2791 // pointer to the new alloca. 2792 if (!isa<ConstantInt>(II.getLength())) { 2793 assert(!IsSplit); 2794 assert(NewBeginOffset == BeginOffset); 2795 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 2796 II.setDestAlignment(getSliceAlign()); 2797 2798 deleteIfTriviallyDead(OldPtr); 2799 return false; 2800 } 2801 2802 // Record this instruction for deletion. 2803 Pass.DeadInsts.push_back(&II); 2804 2805 Type *AllocaTy = NewAI.getAllocatedType(); 2806 Type *ScalarTy = AllocaTy->getScalarType(); 2807 2808 const bool CanContinue = [&]() { 2809 if (VecTy || IntTy) 2810 return true; 2811 if (BeginOffset > NewAllocaBeginOffset || 2812 EndOffset < NewAllocaEndOffset) 2813 return false; 2814 // Length must be in range for FixedVectorType. 2815 auto *C = cast<ConstantInt>(II.getLength()); 2816 const uint64_t Len = C->getLimitedValue(); 2817 if (Len > std::numeric_limits<unsigned>::max()) 2818 return false; 2819 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); 2820 auto *SrcTy = FixedVectorType::get(Int8Ty, Len); 2821 return canConvertValue(DL, SrcTy, AllocaTy) && 2822 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize()); 2823 }(); 2824 2825 // If this doesn't map cleanly onto the alloca type, and that type isn't 2826 // a single value type, just emit a memset. 2827 if (!CanContinue) { 2828 Type *SizeTy = II.getLength()->getType(); 2829 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2830 CallInst *New = IRB.CreateMemSet( 2831 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 2832 MaybeAlign(getSliceAlign()), II.isVolatile()); 2833 if (AATags) 2834 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2835 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2836 return false; 2837 } 2838 2839 // If we can represent this as a simple value, we have to build the actual 2840 // value to store, which requires expanding the byte present in memset to 2841 // a sensible representation for the alloca type. This is essentially 2842 // splatting the byte to a sufficiently wide integer, splatting it across 2843 // any desired vector width, and bitcasting to the final type. 2844 Value *V; 2845 2846 if (VecTy) { 2847 // If this is a memset of a vectorized alloca, insert it. 2848 assert(ElementTy == ScalarTy); 2849 2850 unsigned BeginIndex = getIndex(NewBeginOffset); 2851 unsigned EndIndex = getIndex(NewEndOffset); 2852 assert(EndIndex > BeginIndex && "Empty vector!"); 2853 unsigned NumElements = EndIndex - BeginIndex; 2854 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2855 "Too many elements!"); 2856 2857 Value *Splat = getIntegerSplat( 2858 II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8); 2859 Splat = convertValue(DL, IRB, Splat, ElementTy); 2860 if (NumElements > 1) 2861 Splat = getVectorSplat(Splat, NumElements); 2862 2863 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2864 NewAI.getAlign(), "oldload"); 2865 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 2866 } else if (IntTy) { 2867 // If this is a memset on an alloca where we can widen stores, insert the 2868 // set integer. 2869 assert(!II.isVolatile()); 2870 2871 uint64_t Size = NewEndOffset - NewBeginOffset; 2872 V = getIntegerSplat(II.getValue(), Size); 2873 2874 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 2875 EndOffset != NewAllocaBeginOffset)) { 2876 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2877 NewAI.getAlign(), "oldload"); 2878 Old = convertValue(DL, IRB, Old, IntTy); 2879 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2880 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 2881 } else { 2882 assert(V->getType() == IntTy && 2883 "Wrong type for an alloca wide integer!"); 2884 } 2885 V = convertValue(DL, IRB, V, AllocaTy); 2886 } else { 2887 // Established these invariants above. 2888 assert(NewBeginOffset == NewAllocaBeginOffset); 2889 assert(NewEndOffset == NewAllocaEndOffset); 2890 2891 V = getIntegerSplat(II.getValue(), 2892 DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8); 2893 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 2894 V = getVectorSplat( 2895 V, cast<FixedVectorType>(AllocaVecTy)->getNumElements()); 2896 2897 V = convertValue(DL, IRB, V, AllocaTy); 2898 } 2899 2900 StoreInst *New = 2901 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile()); 2902 New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 2903 LLVMContext::MD_access_group}); 2904 if (AATags) 2905 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2906 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2907 return !II.isVolatile(); 2908 } 2909 2910 bool visitMemTransferInst(MemTransferInst &II) { 2911 // Rewriting of memory transfer instructions can be a bit tricky. We break 2912 // them into two categories: split intrinsics and unsplit intrinsics. 2913 2914 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2915 2916 AAMDNodes AATags; 2917 II.getAAMetadata(AATags); 2918 2919 bool IsDest = &II.getRawDestUse() == OldUse; 2920 assert((IsDest && II.getRawDest() == OldPtr) || 2921 (!IsDest && II.getRawSource() == OldPtr)); 2922 2923 MaybeAlign SliceAlign = getSliceAlign(); 2924 2925 // For unsplit intrinsics, we simply modify the source and destination 2926 // pointers in place. This isn't just an optimization, it is a matter of 2927 // correctness. With unsplit intrinsics we may be dealing with transfers 2928 // within a single alloca before SROA ran, or with transfers that have 2929 // a variable length. We may also be dealing with memmove instead of 2930 // memcpy, and so simply updating the pointers is the necessary for us to 2931 // update both source and dest of a single call. 2932 if (!IsSplittable) { 2933 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2934 if (IsDest) { 2935 II.setDest(AdjustedPtr); 2936 II.setDestAlignment(SliceAlign); 2937 } 2938 else { 2939 II.setSource(AdjustedPtr); 2940 II.setSourceAlignment(SliceAlign); 2941 } 2942 2943 LLVM_DEBUG(dbgs() << " to: " << II << "\n"); 2944 deleteIfTriviallyDead(OldPtr); 2945 return false; 2946 } 2947 // For split transfer intrinsics we have an incredibly useful assurance: 2948 // the source and destination do not reside within the same alloca, and at 2949 // least one of them does not escape. This means that we can replace 2950 // memmove with memcpy, and we don't need to worry about all manner of 2951 // downsides to splitting and transforming the operations. 2952 2953 // If this doesn't map cleanly onto the alloca type, and that type isn't 2954 // a single value type, just emit a memcpy. 2955 bool EmitMemCpy = 2956 !VecTy && !IntTy && 2957 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 2958 SliceSize != 2959 DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() || 2960 !NewAI.getAllocatedType()->isSingleValueType()); 2961 2962 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 2963 // size hasn't been shrunk based on analysis of the viable range, this is 2964 // a no-op. 2965 if (EmitMemCpy && &OldAI == &NewAI) { 2966 // Ensure the start lines up. 2967 assert(NewBeginOffset == BeginOffset); 2968 2969 // Rewrite the size as needed. 2970 if (NewEndOffset != EndOffset) 2971 II.setLength(ConstantInt::get(II.getLength()->getType(), 2972 NewEndOffset - NewBeginOffset)); 2973 return false; 2974 } 2975 // Record this instruction for deletion. 2976 Pass.DeadInsts.push_back(&II); 2977 2978 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2979 // alloca that should be re-examined after rewriting this instruction. 2980 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 2981 if (AllocaInst *AI = 2982 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 2983 assert(AI != &OldAI && AI != &NewAI && 2984 "Splittable transfers cannot reach the same alloca on both ends."); 2985 Pass.Worklist.insert(AI); 2986 } 2987 2988 Type *OtherPtrTy = OtherPtr->getType(); 2989 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 2990 2991 // Compute the relative offset for the other pointer within the transfer. 2992 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); 2993 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); 2994 Align OtherAlign = 2995 (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); 2996 OtherAlign = 2997 commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue()); 2998 2999 if (EmitMemCpy) { 3000 // Compute the other pointer, folding as much as possible to produce 3001 // a single, simple GEP in most cases. 3002 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3003 OtherPtr->getName() + "."); 3004 3005 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3006 Type *SizeTy = II.getLength()->getType(); 3007 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 3008 3009 Value *DestPtr, *SrcPtr; 3010 MaybeAlign DestAlign, SrcAlign; 3011 // Note: IsDest is true iff we're copying into the new alloca slice 3012 if (IsDest) { 3013 DestPtr = OurPtr; 3014 DestAlign = SliceAlign; 3015 SrcPtr = OtherPtr; 3016 SrcAlign = OtherAlign; 3017 } else { 3018 DestPtr = OtherPtr; 3019 DestAlign = OtherAlign; 3020 SrcPtr = OurPtr; 3021 SrcAlign = SliceAlign; 3022 } 3023 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, 3024 Size, II.isVolatile()); 3025 if (AATags) 3026 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3027 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3028 return false; 3029 } 3030 3031 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 3032 NewEndOffset == NewAllocaEndOffset; 3033 uint64_t Size = NewEndOffset - NewBeginOffset; 3034 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 3035 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 3036 unsigned NumElements = EndIndex - BeginIndex; 3037 IntegerType *SubIntTy = 3038 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 3039 3040 // Reset the other pointer type to match the register type we're going to 3041 // use, but using the address space of the original other pointer. 3042 Type *OtherTy; 3043 if (VecTy && !IsWholeAlloca) { 3044 if (NumElements == 1) 3045 OtherTy = VecTy->getElementType(); 3046 else 3047 OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements); 3048 } else if (IntTy && !IsWholeAlloca) { 3049 OtherTy = SubIntTy; 3050 } else { 3051 OtherTy = NewAllocaTy; 3052 } 3053 OtherPtrTy = OtherTy->getPointerTo(OtherAS); 3054 3055 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3056 OtherPtr->getName() + "."); 3057 MaybeAlign SrcAlign = OtherAlign; 3058 Value *DstPtr = &NewAI; 3059 MaybeAlign DstAlign = SliceAlign; 3060 if (!IsDest) { 3061 std::swap(SrcPtr, DstPtr); 3062 std::swap(SrcAlign, DstAlign); 3063 } 3064 3065 Value *Src; 3066 if (VecTy && !IsWholeAlloca && !IsDest) { 3067 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3068 NewAI.getAlign(), "load"); 3069 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 3070 } else if (IntTy && !IsWholeAlloca && !IsDest) { 3071 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3072 NewAI.getAlign(), "load"); 3073 Src = convertValue(DL, IRB, Src, IntTy); 3074 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3075 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 3076 } else { 3077 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, 3078 II.isVolatile(), "copyload"); 3079 Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3080 LLVMContext::MD_access_group}); 3081 if (AATags) 3082 Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3083 Src = Load; 3084 } 3085 3086 if (VecTy && !IsWholeAlloca && IsDest) { 3087 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3088 NewAI.getAlign(), "oldload"); 3089 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 3090 } else if (IntTy && !IsWholeAlloca && IsDest) { 3091 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3092 NewAI.getAlign(), "oldload"); 3093 Old = convertValue(DL, IRB, Old, IntTy); 3094 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3095 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 3096 Src = convertValue(DL, IRB, Src, NewAllocaTy); 3097 } 3098 3099 StoreInst *Store = cast<StoreInst>( 3100 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 3101 Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3102 LLVMContext::MD_access_group}); 3103 if (AATags) 3104 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3105 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3106 return !II.isVolatile(); 3107 } 3108 3109 bool visitIntrinsicInst(IntrinsicInst &II) { 3110 assert((II.isLifetimeStartOrEnd() || II.isDroppable()) && 3111 "Unexpected intrinsic!"); 3112 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3113 3114 // Record this instruction for deletion. 3115 Pass.DeadInsts.push_back(&II); 3116 3117 if (II.isDroppable()) { 3118 assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume"); 3119 // TODO For now we forget assumed information, this can be improved. 3120 OldPtr->dropDroppableUsesIn(II); 3121 return true; 3122 } 3123 3124 assert(II.getArgOperand(1) == OldPtr); 3125 // Lifetime intrinsics are only promotable if they cover the whole alloca. 3126 // Therefore, we drop lifetime intrinsics which don't cover the whole 3127 // alloca. 3128 // (In theory, intrinsics which partially cover an alloca could be 3129 // promoted, but PromoteMemToReg doesn't handle that case.) 3130 // FIXME: Check whether the alloca is promotable before dropping the 3131 // lifetime intrinsics? 3132 if (NewBeginOffset != NewAllocaBeginOffset || 3133 NewEndOffset != NewAllocaEndOffset) 3134 return true; 3135 3136 ConstantInt *Size = 3137 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 3138 NewEndOffset - NewBeginOffset); 3139 // Lifetime intrinsics always expect an i8* so directly get such a pointer 3140 // for the new alloca slice. 3141 Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace()); 3142 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); 3143 Value *New; 3144 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 3145 New = IRB.CreateLifetimeStart(Ptr, Size); 3146 else 3147 New = IRB.CreateLifetimeEnd(Ptr, Size); 3148 3149 (void)New; 3150 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3151 3152 return true; 3153 } 3154 3155 void fixLoadStoreAlign(Instruction &Root) { 3156 // This algorithm implements the same visitor loop as 3157 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load 3158 // or store found. 3159 SmallPtrSet<Instruction *, 4> Visited; 3160 SmallVector<Instruction *, 4> Uses; 3161 Visited.insert(&Root); 3162 Uses.push_back(&Root); 3163 do { 3164 Instruction *I = Uses.pop_back_val(); 3165 3166 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3167 LI->setAlignment(std::min(LI->getAlign(), getSliceAlign())); 3168 continue; 3169 } 3170 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3171 SI->setAlignment(std::min(SI->getAlign(), getSliceAlign())); 3172 continue; 3173 } 3174 3175 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || 3176 isa<PHINode>(I) || isa<SelectInst>(I) || 3177 isa<GetElementPtrInst>(I)); 3178 for (User *U : I->users()) 3179 if (Visited.insert(cast<Instruction>(U)).second) 3180 Uses.push_back(cast<Instruction>(U)); 3181 } while (!Uses.empty()); 3182 } 3183 3184 bool visitPHINode(PHINode &PN) { 3185 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 3186 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 3187 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 3188 3189 // We would like to compute a new pointer in only one place, but have it be 3190 // as local as possible to the PHI. To do that, we re-use the location of 3191 // the old pointer, which necessarily must be in the right position to 3192 // dominate the PHI. 3193 IRBuilderBase::InsertPointGuard Guard(IRB); 3194 if (isa<PHINode>(OldPtr)) 3195 IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); 3196 else 3197 IRB.SetInsertPoint(OldPtr); 3198 IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 3199 3200 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3201 // Replace the operands which were using the old pointer. 3202 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 3203 3204 LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); 3205 deleteIfTriviallyDead(OldPtr); 3206 3207 // Fix the alignment of any loads or stores using this PHI node. 3208 fixLoadStoreAlign(PN); 3209 3210 // PHIs can't be promoted on their own, but often can be speculated. We 3211 // check the speculation outside of the rewriter so that we see the 3212 // fully-rewritten alloca. 3213 PHIUsers.insert(&PN); 3214 return true; 3215 } 3216 3217 bool visitSelectInst(SelectInst &SI) { 3218 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3219 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 3220 "Pointer isn't an operand!"); 3221 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 3222 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 3223 3224 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3225 // Replace the operands which were using the old pointer. 3226 if (SI.getOperand(1) == OldPtr) 3227 SI.setOperand(1, NewPtr); 3228 if (SI.getOperand(2) == OldPtr) 3229 SI.setOperand(2, NewPtr); 3230 3231 LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); 3232 deleteIfTriviallyDead(OldPtr); 3233 3234 // Fix the alignment of any loads or stores using this select. 3235 fixLoadStoreAlign(SI); 3236 3237 // Selects can't be promoted on their own, but often can be speculated. We 3238 // check the speculation outside of the rewriter so that we see the 3239 // fully-rewritten alloca. 3240 SelectUsers.insert(&SI); 3241 return true; 3242 } 3243 }; 3244 3245 namespace { 3246 3247 /// Visitor to rewrite aggregate loads and stores as scalar. 3248 /// 3249 /// This pass aggressively rewrites all aggregate loads and stores on 3250 /// a particular pointer (or any pointer derived from it which we can identify) 3251 /// with scalar loads and stores. 3252 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 3253 // Befriend the base class so it can delegate to private visit methods. 3254 friend class InstVisitor<AggLoadStoreRewriter, bool>; 3255 3256 /// Queue of pointer uses to analyze and potentially rewrite. 3257 SmallVector<Use *, 8> Queue; 3258 3259 /// Set to prevent us from cycling with phi nodes and loops. 3260 SmallPtrSet<User *, 8> Visited; 3261 3262 /// The current pointer use being rewritten. This is used to dig up the used 3263 /// value (as opposed to the user). 3264 Use *U = nullptr; 3265 3266 /// Used to calculate offsets, and hence alignment, of subobjects. 3267 const DataLayout &DL; 3268 3269 public: 3270 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} 3271 3272 /// Rewrite loads and stores through a pointer and all pointers derived from 3273 /// it. 3274 bool rewrite(Instruction &I) { 3275 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 3276 enqueueUsers(I); 3277 bool Changed = false; 3278 while (!Queue.empty()) { 3279 U = Queue.pop_back_val(); 3280 Changed |= visit(cast<Instruction>(U->getUser())); 3281 } 3282 return Changed; 3283 } 3284 3285 private: 3286 /// Enqueue all the users of the given instruction for further processing. 3287 /// This uses a set to de-duplicate users. 3288 void enqueueUsers(Instruction &I) { 3289 for (Use &U : I.uses()) 3290 if (Visited.insert(U.getUser()).second) 3291 Queue.push_back(&U); 3292 } 3293 3294 // Conservative default is to not rewrite anything. 3295 bool visitInstruction(Instruction &I) { return false; } 3296 3297 /// Generic recursive split emission class. 3298 template <typename Derived> class OpSplitter { 3299 protected: 3300 /// The builder used to form new instructions. 3301 IRBuilderTy IRB; 3302 3303 /// The indices which to be used with insert- or extractvalue to select the 3304 /// appropriate value within the aggregate. 3305 SmallVector<unsigned, 4> Indices; 3306 3307 /// The indices to a GEP instruction which will move Ptr to the correct slot 3308 /// within the aggregate. 3309 SmallVector<Value *, 4> GEPIndices; 3310 3311 /// The base pointer of the original op, used as a base for GEPing the 3312 /// split operations. 3313 Value *Ptr; 3314 3315 /// The base pointee type being GEPed into. 3316 Type *BaseTy; 3317 3318 /// Known alignment of the base pointer. 3319 Align BaseAlign; 3320 3321 /// To calculate offset of each component so we can correctly deduce 3322 /// alignments. 3323 const DataLayout &DL; 3324 3325 /// Initialize the splitter with an insertion point, Ptr and start with a 3326 /// single zero GEP index. 3327 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3328 Align BaseAlign, const DataLayout &DL) 3329 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), 3330 BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {} 3331 3332 public: 3333 /// Generic recursive split emission routine. 3334 /// 3335 /// This method recursively splits an aggregate op (load or store) into 3336 /// scalar or vector ops. It splits recursively until it hits a single value 3337 /// and emits that single value operation via the template argument. 3338 /// 3339 /// The logic of this routine relies on GEPs and insertvalue and 3340 /// extractvalue all operating with the same fundamental index list, merely 3341 /// formatted differently (GEPs need actual values). 3342 /// 3343 /// \param Ty The type being split recursively into smaller ops. 3344 /// \param Agg The aggregate value being built up or stored, depending on 3345 /// whether this is splitting a load or a store respectively. 3346 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3347 if (Ty->isSingleValueType()) { 3348 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); 3349 return static_cast<Derived *>(this)->emitFunc( 3350 Ty, Agg, commonAlignment(BaseAlign, Offset), Name); 3351 } 3352 3353 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3354 unsigned OldSize = Indices.size(); 3355 (void)OldSize; 3356 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3357 ++Idx) { 3358 assert(Indices.size() == OldSize && "Did not return to the old size"); 3359 Indices.push_back(Idx); 3360 GEPIndices.push_back(IRB.getInt32(Idx)); 3361 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3362 GEPIndices.pop_back(); 3363 Indices.pop_back(); 3364 } 3365 return; 3366 } 3367 3368 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3369 unsigned OldSize = Indices.size(); 3370 (void)OldSize; 3371 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3372 ++Idx) { 3373 assert(Indices.size() == OldSize && "Did not return to the old size"); 3374 Indices.push_back(Idx); 3375 GEPIndices.push_back(IRB.getInt32(Idx)); 3376 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3377 GEPIndices.pop_back(); 3378 Indices.pop_back(); 3379 } 3380 return; 3381 } 3382 3383 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3384 } 3385 }; 3386 3387 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3388 AAMDNodes AATags; 3389 3390 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3391 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL) 3392 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3393 DL), 3394 AATags(AATags) {} 3395 3396 /// Emit a leaf load of a single value. This is called at the leaves of the 3397 /// recursive emission to actually load values. 3398 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3399 assert(Ty->isSingleValueType()); 3400 // Load the single value and insert it using the indices. 3401 Value *GEP = 3402 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3403 LoadInst *Load = 3404 IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load"); 3405 3406 APInt Offset( 3407 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3408 if (AATags && 3409 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3410 Load->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3411 3412 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3413 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); 3414 } 3415 }; 3416 3417 bool visitLoadInst(LoadInst &LI) { 3418 assert(LI.getPointerOperand() == *U); 3419 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3420 return false; 3421 3422 // We have an aggregate being loaded, split it apart. 3423 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 3424 AAMDNodes AATags; 3425 LI.getAAMetadata(AATags); 3426 LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags, 3427 getAdjustedAlignment(&LI, 0), DL); 3428 Value *V = UndefValue::get(LI.getType()); 3429 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3430 Visited.erase(&LI); 3431 LI.replaceAllUsesWith(V); 3432 LI.eraseFromParent(); 3433 return true; 3434 } 3435 3436 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3437 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3438 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL) 3439 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3440 DL), 3441 AATags(AATags) {} 3442 AAMDNodes AATags; 3443 /// Emit a leaf store of a single value. This is called at the leaves of the 3444 /// recursive emission to actually produce stores. 3445 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3446 assert(Ty->isSingleValueType()); 3447 // Extract the single value and store it using the indices. 3448 // 3449 // The gep and extractvalue values are factored out of the CreateStore 3450 // call to make the output independent of the argument evaluation order. 3451 Value *ExtractValue = 3452 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3453 Value *InBoundsGEP = 3454 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3455 StoreInst *Store = 3456 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment); 3457 3458 APInt Offset( 3459 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3460 if (AATags && 3461 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3462 Store->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3463 3464 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3465 } 3466 }; 3467 3468 bool visitStoreInst(StoreInst &SI) { 3469 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3470 return false; 3471 Value *V = SI.getValueOperand(); 3472 if (V->getType()->isSingleValueType()) 3473 return false; 3474 3475 // We have an aggregate being stored, split it apart. 3476 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3477 AAMDNodes AATags; 3478 SI.getAAMetadata(AATags); 3479 StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags, 3480 getAdjustedAlignment(&SI, 0), DL); 3481 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3482 Visited.erase(&SI); 3483 SI.eraseFromParent(); 3484 return true; 3485 } 3486 3487 bool visitBitCastInst(BitCastInst &BC) { 3488 enqueueUsers(BC); 3489 return false; 3490 } 3491 3492 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 3493 enqueueUsers(ASC); 3494 return false; 3495 } 3496 3497 // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2) 3498 bool foldGEPSelect(GetElementPtrInst &GEPI) { 3499 if (!GEPI.hasAllConstantIndices()) 3500 return false; 3501 3502 SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand()); 3503 3504 LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):" 3505 << "\n original: " << *Sel 3506 << "\n " << GEPI); 3507 3508 IRBuilderTy Builder(&GEPI); 3509 SmallVector<Value *, 4> Index(GEPI.indices()); 3510 bool IsInBounds = GEPI.isInBounds(); 3511 3512 Type *Ty = GEPI.getSourceElementType(); 3513 Value *True = Sel->getTrueValue(); 3514 Value *NTrue = 3515 IsInBounds 3516 ? Builder.CreateInBoundsGEP(Ty, True, Index, 3517 True->getName() + ".sroa.gep") 3518 : Builder.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep"); 3519 3520 Value *False = Sel->getFalseValue(); 3521 3522 Value *NFalse = 3523 IsInBounds 3524 ? Builder.CreateInBoundsGEP(Ty, False, Index, 3525 False->getName() + ".sroa.gep") 3526 : Builder.CreateGEP(Ty, False, Index, 3527 False->getName() + ".sroa.gep"); 3528 3529 Value *NSel = Builder.CreateSelect(Sel->getCondition(), NTrue, NFalse, 3530 Sel->getName() + ".sroa.sel"); 3531 Visited.erase(&GEPI); 3532 GEPI.replaceAllUsesWith(NSel); 3533 GEPI.eraseFromParent(); 3534 Instruction *NSelI = cast<Instruction>(NSel); 3535 Visited.insert(NSelI); 3536 enqueueUsers(*NSelI); 3537 3538 LLVM_DEBUG(dbgs() << "\n to: " << *NTrue 3539 << "\n " << *NFalse 3540 << "\n " << *NSel << '\n'); 3541 3542 return true; 3543 } 3544 3545 // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2) 3546 bool foldGEPPhi(GetElementPtrInst &GEPI) { 3547 if (!GEPI.hasAllConstantIndices()) 3548 return false; 3549 3550 PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand()); 3551 if (GEPI.getParent() != PHI->getParent() || 3552 llvm::any_of(PHI->incoming_values(), [](Value *In) 3553 { Instruction *I = dyn_cast<Instruction>(In); 3554 return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) || 3555 succ_empty(I->getParent()) || 3556 !I->getParent()->isLegalToHoistInto(); 3557 })) 3558 return false; 3559 3560 LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):" 3561 << "\n original: " << *PHI 3562 << "\n " << GEPI 3563 << "\n to: "); 3564 3565 SmallVector<Value *, 4> Index(GEPI.indices()); 3566 bool IsInBounds = GEPI.isInBounds(); 3567 IRBuilderTy PHIBuilder(GEPI.getParent()->getFirstNonPHI()); 3568 PHINode *NewPN = PHIBuilder.CreatePHI(GEPI.getType(), 3569 PHI->getNumIncomingValues(), 3570 PHI->getName() + ".sroa.phi"); 3571 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) { 3572 BasicBlock *B = PHI->getIncomingBlock(I); 3573 Value *NewVal = nullptr; 3574 int Idx = NewPN->getBasicBlockIndex(B); 3575 if (Idx >= 0) { 3576 NewVal = NewPN->getIncomingValue(Idx); 3577 } else { 3578 Instruction *In = cast<Instruction>(PHI->getIncomingValue(I)); 3579 3580 IRBuilderTy B(In->getParent(), std::next(In->getIterator())); 3581 Type *Ty = GEPI.getSourceElementType(); 3582 NewVal = IsInBounds 3583 ? B.CreateInBoundsGEP(Ty, In, Index, In->getName() + ".sroa.gep") 3584 : B.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep"); 3585 } 3586 NewPN->addIncoming(NewVal, B); 3587 } 3588 3589 Visited.erase(&GEPI); 3590 GEPI.replaceAllUsesWith(NewPN); 3591 GEPI.eraseFromParent(); 3592 Visited.insert(NewPN); 3593 enqueueUsers(*NewPN); 3594 3595 LLVM_DEBUG(for (Value *In : NewPN->incoming_values()) 3596 dbgs() << "\n " << *In; 3597 dbgs() << "\n " << *NewPN << '\n'); 3598 3599 return true; 3600 } 3601 3602 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 3603 if (isa<SelectInst>(GEPI.getPointerOperand()) && 3604 foldGEPSelect(GEPI)) 3605 return true; 3606 3607 if (isa<PHINode>(GEPI.getPointerOperand()) && 3608 foldGEPPhi(GEPI)) 3609 return true; 3610 3611 enqueueUsers(GEPI); 3612 return false; 3613 } 3614 3615 bool visitPHINode(PHINode &PN) { 3616 enqueueUsers(PN); 3617 return false; 3618 } 3619 3620 bool visitSelectInst(SelectInst &SI) { 3621 enqueueUsers(SI); 3622 return false; 3623 } 3624 }; 3625 3626 } // end anonymous namespace 3627 3628 /// Strip aggregate type wrapping. 3629 /// 3630 /// This removes no-op aggregate types wrapping an underlying type. It will 3631 /// strip as many layers of types as it can without changing either the type 3632 /// size or the allocated size. 3633 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 3634 if (Ty->isSingleValueType()) 3635 return Ty; 3636 3637 uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize(); 3638 uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize(); 3639 3640 Type *InnerTy; 3641 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 3642 InnerTy = ArrTy->getElementType(); 3643 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 3644 const StructLayout *SL = DL.getStructLayout(STy); 3645 unsigned Index = SL->getElementContainingOffset(0); 3646 InnerTy = STy->getElementType(Index); 3647 } else { 3648 return Ty; 3649 } 3650 3651 if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() || 3652 TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize()) 3653 return Ty; 3654 3655 return stripAggregateTypeWrapping(DL, InnerTy); 3656 } 3657 3658 /// Try to find a partition of the aggregate type passed in for a given 3659 /// offset and size. 3660 /// 3661 /// This recurses through the aggregate type and tries to compute a subtype 3662 /// based on the offset and size. When the offset and size span a sub-section 3663 /// of an array, it will even compute a new array type for that sub-section, 3664 /// and the same for structs. 3665 /// 3666 /// Note that this routine is very strict and tries to find a partition of the 3667 /// type which produces the *exact* right offset and size. It is not forgiving 3668 /// when the size or offset cause either end of type-based partition to be off. 3669 /// Also, this is a best-effort routine. It is reasonable to give up and not 3670 /// return a type if necessary. 3671 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 3672 uint64_t Size) { 3673 if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size) 3674 return stripAggregateTypeWrapping(DL, Ty); 3675 if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() || 3676 (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size) 3677 return nullptr; 3678 3679 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 3680 Type *ElementTy; 3681 uint64_t TyNumElements; 3682 if (auto *AT = dyn_cast<ArrayType>(Ty)) { 3683 ElementTy = AT->getElementType(); 3684 TyNumElements = AT->getNumElements(); 3685 } else { 3686 // FIXME: This isn't right for vectors with non-byte-sized or 3687 // non-power-of-two sized elements. 3688 auto *VT = cast<FixedVectorType>(Ty); 3689 ElementTy = VT->getElementType(); 3690 TyNumElements = VT->getNumElements(); 3691 } 3692 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3693 uint64_t NumSkippedElements = Offset / ElementSize; 3694 if (NumSkippedElements >= TyNumElements) 3695 return nullptr; 3696 Offset -= NumSkippedElements * ElementSize; 3697 3698 // First check if we need to recurse. 3699 if (Offset > 0 || Size < ElementSize) { 3700 // Bail if the partition ends in a different array element. 3701 if ((Offset + Size) > ElementSize) 3702 return nullptr; 3703 // Recurse through the element type trying to peel off offset bytes. 3704 return getTypePartition(DL, ElementTy, Offset, Size); 3705 } 3706 assert(Offset == 0); 3707 3708 if (Size == ElementSize) 3709 return stripAggregateTypeWrapping(DL, ElementTy); 3710 assert(Size > ElementSize); 3711 uint64_t NumElements = Size / ElementSize; 3712 if (NumElements * ElementSize != Size) 3713 return nullptr; 3714 return ArrayType::get(ElementTy, NumElements); 3715 } 3716 3717 StructType *STy = dyn_cast<StructType>(Ty); 3718 if (!STy) 3719 return nullptr; 3720 3721 const StructLayout *SL = DL.getStructLayout(STy); 3722 if (Offset >= SL->getSizeInBytes()) 3723 return nullptr; 3724 uint64_t EndOffset = Offset + Size; 3725 if (EndOffset > SL->getSizeInBytes()) 3726 return nullptr; 3727 3728 unsigned Index = SL->getElementContainingOffset(Offset); 3729 Offset -= SL->getElementOffset(Index); 3730 3731 Type *ElementTy = STy->getElementType(Index); 3732 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3733 if (Offset >= ElementSize) 3734 return nullptr; // The offset points into alignment padding. 3735 3736 // See if any partition must be contained by the element. 3737 if (Offset > 0 || Size < ElementSize) { 3738 if ((Offset + Size) > ElementSize) 3739 return nullptr; 3740 return getTypePartition(DL, ElementTy, Offset, Size); 3741 } 3742 assert(Offset == 0); 3743 3744 if (Size == ElementSize) 3745 return stripAggregateTypeWrapping(DL, ElementTy); 3746 3747 StructType::element_iterator EI = STy->element_begin() + Index, 3748 EE = STy->element_end(); 3749 if (EndOffset < SL->getSizeInBytes()) { 3750 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 3751 if (Index == EndIndex) 3752 return nullptr; // Within a single element and its padding. 3753 3754 // Don't try to form "natural" types if the elements don't line up with the 3755 // expected size. 3756 // FIXME: We could potentially recurse down through the last element in the 3757 // sub-struct to find a natural end point. 3758 if (SL->getElementOffset(EndIndex) != EndOffset) 3759 return nullptr; 3760 3761 assert(Index < EndIndex); 3762 EE = STy->element_begin() + EndIndex; 3763 } 3764 3765 // Try to build up a sub-structure. 3766 StructType *SubTy = 3767 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); 3768 const StructLayout *SubSL = DL.getStructLayout(SubTy); 3769 if (Size != SubSL->getSizeInBytes()) 3770 return nullptr; // The sub-struct doesn't have quite the size needed. 3771 3772 return SubTy; 3773 } 3774 3775 /// Pre-split loads and stores to simplify rewriting. 3776 /// 3777 /// We want to break up the splittable load+store pairs as much as 3778 /// possible. This is important to do as a preprocessing step, as once we 3779 /// start rewriting the accesses to partitions of the alloca we lose the 3780 /// necessary information to correctly split apart paired loads and stores 3781 /// which both point into this alloca. The case to consider is something like 3782 /// the following: 3783 /// 3784 /// %a = alloca [12 x i8] 3785 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 3786 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 3787 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 3788 /// %iptr1 = bitcast i8* %gep1 to i64* 3789 /// %iptr2 = bitcast i8* %gep2 to i64* 3790 /// %fptr1 = bitcast i8* %gep1 to float* 3791 /// %fptr2 = bitcast i8* %gep2 to float* 3792 /// %fptr3 = bitcast i8* %gep3 to float* 3793 /// store float 0.0, float* %fptr1 3794 /// store float 1.0, float* %fptr2 3795 /// %v = load i64* %iptr1 3796 /// store i64 %v, i64* %iptr2 3797 /// %f1 = load float* %fptr2 3798 /// %f2 = load float* %fptr3 3799 /// 3800 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 3801 /// promote everything so we recover the 2 SSA values that should have been 3802 /// there all along. 3803 /// 3804 /// \returns true if any changes are made. 3805 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 3806 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 3807 3808 // Track the loads and stores which are candidates for pre-splitting here, in 3809 // the order they first appear during the partition scan. These give stable 3810 // iteration order and a basis for tracking which loads and stores we 3811 // actually split. 3812 SmallVector<LoadInst *, 4> Loads; 3813 SmallVector<StoreInst *, 4> Stores; 3814 3815 // We need to accumulate the splits required of each load or store where we 3816 // can find them via a direct lookup. This is important to cross-check loads 3817 // and stores against each other. We also track the slice so that we can kill 3818 // all the slices that end up split. 3819 struct SplitOffsets { 3820 Slice *S; 3821 std::vector<uint64_t> Splits; 3822 }; 3823 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 3824 3825 // Track loads out of this alloca which cannot, for any reason, be pre-split. 3826 // This is important as we also cannot pre-split stores of those loads! 3827 // FIXME: This is all pretty gross. It means that we can be more aggressive 3828 // in pre-splitting when the load feeding the store happens to come from 3829 // a separate alloca. Put another way, the effectiveness of SROA would be 3830 // decreased by a frontend which just concatenated all of its local allocas 3831 // into one big flat alloca. But defeating such patterns is exactly the job 3832 // SROA is tasked with! Sadly, to not have this discrepancy we would have 3833 // change store pre-splitting to actually force pre-splitting of the load 3834 // that feeds it *and all stores*. That makes pre-splitting much harder, but 3835 // maybe it would make it more principled? 3836 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 3837 3838 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 3839 for (auto &P : AS.partitions()) { 3840 for (Slice &S : P) { 3841 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 3842 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 3843 // If this is a load we have to track that it can't participate in any 3844 // pre-splitting. If this is a store of a load we have to track that 3845 // that load also can't participate in any pre-splitting. 3846 if (auto *LI = dyn_cast<LoadInst>(I)) 3847 UnsplittableLoads.insert(LI); 3848 else if (auto *SI = dyn_cast<StoreInst>(I)) 3849 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 3850 UnsplittableLoads.insert(LI); 3851 continue; 3852 } 3853 assert(P.endOffset() > S.beginOffset() && 3854 "Empty or backwards partition!"); 3855 3856 // Determine if this is a pre-splittable slice. 3857 if (auto *LI = dyn_cast<LoadInst>(I)) { 3858 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 3859 3860 // The load must be used exclusively to store into other pointers for 3861 // us to be able to arbitrarily pre-split it. The stores must also be 3862 // simple to avoid changing semantics. 3863 auto IsLoadSimplyStored = [](LoadInst *LI) { 3864 for (User *LU : LI->users()) { 3865 auto *SI = dyn_cast<StoreInst>(LU); 3866 if (!SI || !SI->isSimple()) 3867 return false; 3868 } 3869 return true; 3870 }; 3871 if (!IsLoadSimplyStored(LI)) { 3872 UnsplittableLoads.insert(LI); 3873 continue; 3874 } 3875 3876 Loads.push_back(LI); 3877 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3878 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 3879 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 3880 continue; 3881 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 3882 if (!StoredLoad || !StoredLoad->isSimple()) 3883 continue; 3884 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 3885 3886 Stores.push_back(SI); 3887 } else { 3888 // Other uses cannot be pre-split. 3889 continue; 3890 } 3891 3892 // Record the initial split. 3893 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); 3894 auto &Offsets = SplitOffsetsMap[I]; 3895 assert(Offsets.Splits.empty() && 3896 "Should not have splits the first time we see an instruction!"); 3897 Offsets.S = &S; 3898 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 3899 } 3900 3901 // Now scan the already split slices, and add a split for any of them which 3902 // we're going to pre-split. 3903 for (Slice *S : P.splitSliceTails()) { 3904 auto SplitOffsetsMapI = 3905 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 3906 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 3907 continue; 3908 auto &Offsets = SplitOffsetsMapI->second; 3909 3910 assert(Offsets.S == S && "Found a mismatched slice!"); 3911 assert(!Offsets.Splits.empty() && 3912 "Cannot have an empty set of splits on the second partition!"); 3913 assert(Offsets.Splits.back() == 3914 P.beginOffset() - Offsets.S->beginOffset() && 3915 "Previous split does not end where this one begins!"); 3916 3917 // Record each split. The last partition's end isn't needed as the size 3918 // of the slice dictates that. 3919 if (S->endOffset() > P.endOffset()) 3920 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 3921 } 3922 } 3923 3924 // We may have split loads where some of their stores are split stores. For 3925 // such loads and stores, we can only pre-split them if their splits exactly 3926 // match relative to their starting offset. We have to verify this prior to 3927 // any rewriting. 3928 llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 3929 // Lookup the load we are storing in our map of split 3930 // offsets. 3931 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3932 // If it was completely unsplittable, then we're done, 3933 // and this store can't be pre-split. 3934 if (UnsplittableLoads.count(LI)) 3935 return true; 3936 3937 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 3938 if (LoadOffsetsI == SplitOffsetsMap.end()) 3939 return false; // Unrelated loads are definitely safe. 3940 auto &LoadOffsets = LoadOffsetsI->second; 3941 3942 // Now lookup the store's offsets. 3943 auto &StoreOffsets = SplitOffsetsMap[SI]; 3944 3945 // If the relative offsets of each split in the load and 3946 // store match exactly, then we can split them and we 3947 // don't need to remove them here. 3948 if (LoadOffsets.Splits == StoreOffsets.Splits) 3949 return false; 3950 3951 LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n" 3952 << " " << *LI << "\n" 3953 << " " << *SI << "\n"); 3954 3955 // We've found a store and load that we need to split 3956 // with mismatched relative splits. Just give up on them 3957 // and remove both instructions from our list of 3958 // candidates. 3959 UnsplittableLoads.insert(LI); 3960 return true; 3961 }); 3962 // Now we have to go *back* through all the stores, because a later store may 3963 // have caused an earlier store's load to become unsplittable and if it is 3964 // unsplittable for the later store, then we can't rely on it being split in 3965 // the earlier store either. 3966 llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) { 3967 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3968 return UnsplittableLoads.count(LI); 3969 }); 3970 // Once we've established all the loads that can't be split for some reason, 3971 // filter any that made it into our list out. 3972 llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) { 3973 return UnsplittableLoads.count(LI); 3974 }); 3975 3976 // If no loads or stores are left, there is no pre-splitting to be done for 3977 // this alloca. 3978 if (Loads.empty() && Stores.empty()) 3979 return false; 3980 3981 // From here on, we can't fail and will be building new accesses, so rig up 3982 // an IR builder. 3983 IRBuilderTy IRB(&AI); 3984 3985 // Collect the new slices which we will merge into the alloca slices. 3986 SmallVector<Slice, 4> NewSlices; 3987 3988 // Track any allocas we end up splitting loads and stores for so we iterate 3989 // on them. 3990 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 3991 3992 // At this point, we have collected all of the loads and stores we can 3993 // pre-split, and the specific splits needed for them. We actually do the 3994 // splitting in a specific order in order to handle when one of the loads in 3995 // the value operand to one of the stores. 3996 // 3997 // First, we rewrite all of the split loads, and just accumulate each split 3998 // load in a parallel structure. We also build the slices for them and append 3999 // them to the alloca slices. 4000 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 4001 std::vector<LoadInst *> SplitLoads; 4002 const DataLayout &DL = AI.getModule()->getDataLayout(); 4003 for (LoadInst *LI : Loads) { 4004 SplitLoads.clear(); 4005 4006 IntegerType *Ty = cast<IntegerType>(LI->getType()); 4007 assert(Ty->getBitWidth() % 8 == 0); 4008 uint64_t LoadSize = Ty->getBitWidth() / 8; 4009 assert(LoadSize > 0 && "Cannot have a zero-sized integer load!"); 4010 4011 auto &Offsets = SplitOffsetsMap[LI]; 4012 assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 4013 "Slice size should always match load size exactly!"); 4014 uint64_t BaseOffset = Offsets.S->beginOffset(); 4015 assert(BaseOffset + LoadSize > BaseOffset && 4016 "Cannot represent alloca access size using 64-bit integers!"); 4017 4018 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 4019 IRB.SetInsertPoint(LI); 4020 4021 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 4022 4023 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4024 int Idx = 0, Size = Offsets.Splits.size(); 4025 for (;;) { 4026 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 4027 auto AS = LI->getPointerAddressSpace(); 4028 auto *PartPtrTy = PartTy->getPointerTo(AS); 4029 LoadInst *PLoad = IRB.CreateAlignedLoad( 4030 PartTy, 4031 getAdjustedPtr(IRB, DL, BasePtr, 4032 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4033 PartPtrTy, BasePtr->getName() + "."), 4034 getAdjustedAlignment(LI, PartOffset), 4035 /*IsVolatile*/ false, LI->getName()); 4036 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4037 LLVMContext::MD_access_group}); 4038 4039 // Append this load onto the list of split loads so we can find it later 4040 // to rewrite the stores. 4041 SplitLoads.push_back(PLoad); 4042 4043 // Now build a new slice for the alloca. 4044 NewSlices.push_back( 4045 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4046 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 4047 /*IsSplittable*/ false)); 4048 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4049 << ", " << NewSlices.back().endOffset() 4050 << "): " << *PLoad << "\n"); 4051 4052 // See if we've handled all the splits. 4053 if (Idx >= Size) 4054 break; 4055 4056 // Setup the next partition. 4057 PartOffset = Offsets.Splits[Idx]; 4058 ++Idx; 4059 PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset; 4060 } 4061 4062 // Now that we have the split loads, do the slow walk over all uses of the 4063 // load and rewrite them as split stores, or save the split loads to use 4064 // below if the store is going to be split there anyways. 4065 bool DeferredStores = false; 4066 for (User *LU : LI->users()) { 4067 StoreInst *SI = cast<StoreInst>(LU); 4068 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 4069 DeferredStores = true; 4070 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI 4071 << "\n"); 4072 continue; 4073 } 4074 4075 Value *StoreBasePtr = SI->getPointerOperand(); 4076 IRB.SetInsertPoint(SI); 4077 4078 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 4079 4080 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 4081 LoadInst *PLoad = SplitLoads[Idx]; 4082 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 4083 auto *PartPtrTy = 4084 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); 4085 4086 auto AS = SI->getPointerAddressSpace(); 4087 StoreInst *PStore = IRB.CreateAlignedStore( 4088 PLoad, 4089 getAdjustedPtr(IRB, DL, StoreBasePtr, 4090 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4091 PartPtrTy, StoreBasePtr->getName() + "."), 4092 getAdjustedAlignment(SI, PartOffset), 4093 /*IsVolatile*/ false); 4094 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4095 LLVMContext::MD_access_group}); 4096 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 4097 } 4098 4099 // We want to immediately iterate on any allocas impacted by splitting 4100 // this store, and we have to track any promotable alloca (indicated by 4101 // a direct store) as needing to be resplit because it is no longer 4102 // promotable. 4103 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 4104 ResplitPromotableAllocas.insert(OtherAI); 4105 Worklist.insert(OtherAI); 4106 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4107 StoreBasePtr->stripInBoundsOffsets())) { 4108 Worklist.insert(OtherAI); 4109 } 4110 4111 // Mark the original store as dead. 4112 DeadInsts.push_back(SI); 4113 } 4114 4115 // Save the split loads if there are deferred stores among the users. 4116 if (DeferredStores) 4117 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 4118 4119 // Mark the original load as dead and kill the original slice. 4120 DeadInsts.push_back(LI); 4121 Offsets.S->kill(); 4122 } 4123 4124 // Second, we rewrite all of the split stores. At this point, we know that 4125 // all loads from this alloca have been split already. For stores of such 4126 // loads, we can simply look up the pre-existing split loads. For stores of 4127 // other loads, we split those loads first and then write split stores of 4128 // them. 4129 for (StoreInst *SI : Stores) { 4130 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4131 IntegerType *Ty = cast<IntegerType>(LI->getType()); 4132 assert(Ty->getBitWidth() % 8 == 0); 4133 uint64_t StoreSize = Ty->getBitWidth() / 8; 4134 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 4135 4136 auto &Offsets = SplitOffsetsMap[SI]; 4137 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 4138 "Slice size should always match load size exactly!"); 4139 uint64_t BaseOffset = Offsets.S->beginOffset(); 4140 assert(BaseOffset + StoreSize > BaseOffset && 4141 "Cannot represent alloca access size using 64-bit integers!"); 4142 4143 Value *LoadBasePtr = LI->getPointerOperand(); 4144 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 4145 4146 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 4147 4148 // Check whether we have an already split load. 4149 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 4150 std::vector<LoadInst *> *SplitLoads = nullptr; 4151 if (SplitLoadsMapI != SplitLoadsMap.end()) { 4152 SplitLoads = &SplitLoadsMapI->second; 4153 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 4154 "Too few split loads for the number of splits in the store!"); 4155 } else { 4156 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); 4157 } 4158 4159 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4160 int Idx = 0, Size = Offsets.Splits.size(); 4161 for (;;) { 4162 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 4163 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); 4164 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); 4165 4166 // Either lookup a split load or create one. 4167 LoadInst *PLoad; 4168 if (SplitLoads) { 4169 PLoad = (*SplitLoads)[Idx]; 4170 } else { 4171 IRB.SetInsertPoint(LI); 4172 auto AS = LI->getPointerAddressSpace(); 4173 PLoad = IRB.CreateAlignedLoad( 4174 PartTy, 4175 getAdjustedPtr(IRB, DL, LoadBasePtr, 4176 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4177 LoadPartPtrTy, LoadBasePtr->getName() + "."), 4178 getAdjustedAlignment(LI, PartOffset), 4179 /*IsVolatile*/ false, LI->getName()); 4180 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4181 LLVMContext::MD_access_group}); 4182 } 4183 4184 // And store this partition. 4185 IRB.SetInsertPoint(SI); 4186 auto AS = SI->getPointerAddressSpace(); 4187 StoreInst *PStore = IRB.CreateAlignedStore( 4188 PLoad, 4189 getAdjustedPtr(IRB, DL, StoreBasePtr, 4190 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4191 StorePartPtrTy, StoreBasePtr->getName() + "."), 4192 getAdjustedAlignment(SI, PartOffset), 4193 /*IsVolatile*/ false); 4194 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4195 LLVMContext::MD_access_group}); 4196 4197 // Now build a new slice for the alloca. 4198 NewSlices.push_back( 4199 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4200 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 4201 /*IsSplittable*/ false)); 4202 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4203 << ", " << NewSlices.back().endOffset() 4204 << "): " << *PStore << "\n"); 4205 if (!SplitLoads) { 4206 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 4207 } 4208 4209 // See if we've finished all the splits. 4210 if (Idx >= Size) 4211 break; 4212 4213 // Setup the next partition. 4214 PartOffset = Offsets.Splits[Idx]; 4215 ++Idx; 4216 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 4217 } 4218 4219 // We want to immediately iterate on any allocas impacted by splitting 4220 // this load, which is only relevant if it isn't a load of this alloca and 4221 // thus we didn't already split the loads above. We also have to keep track 4222 // of any promotable allocas we split loads on as they can no longer be 4223 // promoted. 4224 if (!SplitLoads) { 4225 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 4226 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4227 ResplitPromotableAllocas.insert(OtherAI); 4228 Worklist.insert(OtherAI); 4229 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4230 LoadBasePtr->stripInBoundsOffsets())) { 4231 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4232 Worklist.insert(OtherAI); 4233 } 4234 } 4235 4236 // Mark the original store as dead now that we've split it up and kill its 4237 // slice. Note that we leave the original load in place unless this store 4238 // was its only use. It may in turn be split up if it is an alloca load 4239 // for some other alloca, but it may be a normal load. This may introduce 4240 // redundant loads, but where those can be merged the rest of the optimizer 4241 // should handle the merging, and this uncovers SSA splits which is more 4242 // important. In practice, the original loads will almost always be fully 4243 // split and removed eventually, and the splits will be merged by any 4244 // trivial CSE, including instcombine. 4245 if (LI->hasOneUse()) { 4246 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 4247 DeadInsts.push_back(LI); 4248 } 4249 DeadInsts.push_back(SI); 4250 Offsets.S->kill(); 4251 } 4252 4253 // Remove the killed slices that have ben pre-split. 4254 llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); }); 4255 4256 // Insert our new slices. This will sort and merge them into the sorted 4257 // sequence. 4258 AS.insert(NewSlices); 4259 4260 LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); 4261 #ifndef NDEBUG 4262 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 4263 LLVM_DEBUG(AS.print(dbgs(), I, " ")); 4264 #endif 4265 4266 // Finally, don't try to promote any allocas that new require re-splitting. 4267 // They have already been added to the worklist above. 4268 llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) { 4269 return ResplitPromotableAllocas.count(AI); 4270 }); 4271 4272 return true; 4273 } 4274 4275 /// Rewrite an alloca partition's users. 4276 /// 4277 /// This routine drives both of the rewriting goals of the SROA pass. It tries 4278 /// to rewrite uses of an alloca partition to be conducive for SSA value 4279 /// promotion. If the partition needs a new, more refined alloca, this will 4280 /// build that new alloca, preserving as much type information as possible, and 4281 /// rewrite the uses of the old alloca to point at the new one and have the 4282 /// appropriate new offsets. It also evaluates how successful the rewrite was 4283 /// at enabling promotion and if it was successful queues the alloca to be 4284 /// promoted. 4285 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 4286 Partition &P) { 4287 // Try to compute a friendly type for this partition of the alloca. This 4288 // won't always succeed, in which case we fall back to a legal integer type 4289 // or an i8 array of an appropriate size. 4290 Type *SliceTy = nullptr; 4291 const DataLayout &DL = AI.getModule()->getDataLayout(); 4292 std::pair<Type *, IntegerType *> CommonUseTy = 4293 findCommonType(P.begin(), P.end(), P.endOffset()); 4294 // Do all uses operate on the same type? 4295 if (CommonUseTy.first) 4296 if (DL.getTypeAllocSize(CommonUseTy.first).getFixedSize() >= P.size()) 4297 SliceTy = CommonUseTy.first; 4298 // If not, can we find an appropriate subtype in the original allocated type? 4299 if (!SliceTy) 4300 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4301 P.beginOffset(), P.size())) 4302 SliceTy = TypePartitionTy; 4303 // If still not, can we use the largest bitwidth integer type used? 4304 if (!SliceTy && CommonUseTy.second) 4305 if (DL.getTypeAllocSize(CommonUseTy.second).getFixedSize() >= P.size()) 4306 SliceTy = CommonUseTy.second; 4307 if ((!SliceTy || (SliceTy->isArrayTy() && 4308 SliceTy->getArrayElementType()->isIntegerTy())) && 4309 DL.isLegalInteger(P.size() * 8)) 4310 SliceTy = Type::getIntNTy(*C, P.size() * 8); 4311 if (!SliceTy) 4312 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 4313 assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size()); 4314 4315 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 4316 4317 VectorType *VecTy = 4318 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 4319 if (VecTy) 4320 SliceTy = VecTy; 4321 4322 // Check for the case where we're going to rewrite to a new alloca of the 4323 // exact same type as the original, and with the same access offsets. In that 4324 // case, re-use the existing alloca, but still run through the rewriter to 4325 // perform phi and select speculation. 4326 // P.beginOffset() can be non-zero even with the same type in a case with 4327 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). 4328 AllocaInst *NewAI; 4329 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { 4330 NewAI = &AI; 4331 // FIXME: We should be able to bail at this point with "nothing changed". 4332 // FIXME: We might want to defer PHI speculation until after here. 4333 // FIXME: return nullptr; 4334 } else { 4335 // Make sure the alignment is compatible with P.beginOffset(). 4336 const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset()); 4337 // If we will get at least this much alignment from the type alone, leave 4338 // the alloca's alignment unconstrained. 4339 const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy); 4340 NewAI = new AllocaInst( 4341 SliceTy, AI.getType()->getAddressSpace(), nullptr, 4342 IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment, 4343 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); 4344 // Copy the old AI debug location over to the new one. 4345 NewAI->setDebugLoc(AI.getDebugLoc()); 4346 ++NumNewAllocas; 4347 } 4348 4349 LLVM_DEBUG(dbgs() << "Rewriting alloca partition " 4350 << "[" << P.beginOffset() << "," << P.endOffset() 4351 << ") to: " << *NewAI << "\n"); 4352 4353 // Track the high watermark on the worklist as it is only relevant for 4354 // promoted allocas. We will reset it to this point if the alloca is not in 4355 // fact scheduled for promotion. 4356 unsigned PPWOldSize = PostPromotionWorklist.size(); 4357 unsigned NumUses = 0; 4358 SmallSetVector<PHINode *, 8> PHIUsers; 4359 SmallSetVector<SelectInst *, 8> SelectUsers; 4360 4361 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 4362 P.endOffset(), IsIntegerPromotable, VecTy, 4363 PHIUsers, SelectUsers); 4364 bool Promotable = true; 4365 for (Slice *S : P.splitSliceTails()) { 4366 Promotable &= Rewriter.visit(S); 4367 ++NumUses; 4368 } 4369 for (Slice &S : P) { 4370 Promotable &= Rewriter.visit(&S); 4371 ++NumUses; 4372 } 4373 4374 NumAllocaPartitionUses += NumUses; 4375 MaxUsesPerAllocaPartition.updateMax(NumUses); 4376 4377 // Now that we've processed all the slices in the new partition, check if any 4378 // PHIs or Selects would block promotion. 4379 for (PHINode *PHI : PHIUsers) 4380 if (!isSafePHIToSpeculate(*PHI)) { 4381 Promotable = false; 4382 PHIUsers.clear(); 4383 SelectUsers.clear(); 4384 break; 4385 } 4386 4387 for (SelectInst *Sel : SelectUsers) 4388 if (!isSafeSelectToSpeculate(*Sel)) { 4389 Promotable = false; 4390 PHIUsers.clear(); 4391 SelectUsers.clear(); 4392 break; 4393 } 4394 4395 if (Promotable) { 4396 for (Use *U : AS.getDeadUsesIfPromotable()) { 4397 auto *OldInst = dyn_cast<Instruction>(U->get()); 4398 Value::dropDroppableUse(*U); 4399 if (OldInst) 4400 if (isInstructionTriviallyDead(OldInst)) 4401 DeadInsts.push_back(OldInst); 4402 } 4403 if (PHIUsers.empty() && SelectUsers.empty()) { 4404 // Promote the alloca. 4405 PromotableAllocas.push_back(NewAI); 4406 } else { 4407 // If we have either PHIs or Selects to speculate, add them to those 4408 // worklists and re-queue the new alloca so that we promote in on the 4409 // next iteration. 4410 for (PHINode *PHIUser : PHIUsers) 4411 SpeculatablePHIs.insert(PHIUser); 4412 for (SelectInst *SelectUser : SelectUsers) 4413 SpeculatableSelects.insert(SelectUser); 4414 Worklist.insert(NewAI); 4415 } 4416 } else { 4417 // Drop any post-promotion work items if promotion didn't happen. 4418 while (PostPromotionWorklist.size() > PPWOldSize) 4419 PostPromotionWorklist.pop_back(); 4420 4421 // We couldn't promote and we didn't create a new partition, nothing 4422 // happened. 4423 if (NewAI == &AI) 4424 return nullptr; 4425 4426 // If we can't promote the alloca, iterate on it to check for new 4427 // refinements exposed by splitting the current alloca. Don't iterate on an 4428 // alloca which didn't actually change and didn't get promoted. 4429 Worklist.insert(NewAI); 4430 } 4431 4432 return NewAI; 4433 } 4434 4435 /// Walks the slices of an alloca and form partitions based on them, 4436 /// rewriting each of their uses. 4437 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 4438 if (AS.begin() == AS.end()) 4439 return false; 4440 4441 unsigned NumPartitions = 0; 4442 bool Changed = false; 4443 const DataLayout &DL = AI.getModule()->getDataLayout(); 4444 4445 // First try to pre-split loads and stores. 4446 Changed |= presplitLoadsAndStores(AI, AS); 4447 4448 // Now that we have identified any pre-splitting opportunities, 4449 // mark loads and stores unsplittable except for the following case. 4450 // We leave a slice splittable if all other slices are disjoint or fully 4451 // included in the slice, such as whole-alloca loads and stores. 4452 // If we fail to split these during pre-splitting, we want to force them 4453 // to be rewritten into a partition. 4454 bool IsSorted = true; 4455 4456 uint64_t AllocaSize = 4457 DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize(); 4458 const uint64_t MaxBitVectorSize = 1024; 4459 if (AllocaSize <= MaxBitVectorSize) { 4460 // If a byte boundary is included in any load or store, a slice starting or 4461 // ending at the boundary is not splittable. 4462 SmallBitVector SplittableOffset(AllocaSize + 1, true); 4463 for (Slice &S : AS) 4464 for (unsigned O = S.beginOffset() + 1; 4465 O < S.endOffset() && O < AllocaSize; O++) 4466 SplittableOffset.reset(O); 4467 4468 for (Slice &S : AS) { 4469 if (!S.isSplittable()) 4470 continue; 4471 4472 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && 4473 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) 4474 continue; 4475 4476 if (isa<LoadInst>(S.getUse()->getUser()) || 4477 isa<StoreInst>(S.getUse()->getUser())) { 4478 S.makeUnsplittable(); 4479 IsSorted = false; 4480 } 4481 } 4482 } 4483 else { 4484 // We only allow whole-alloca splittable loads and stores 4485 // for a large alloca to avoid creating too large BitVector. 4486 for (Slice &S : AS) { 4487 if (!S.isSplittable()) 4488 continue; 4489 4490 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) 4491 continue; 4492 4493 if (isa<LoadInst>(S.getUse()->getUser()) || 4494 isa<StoreInst>(S.getUse()->getUser())) { 4495 S.makeUnsplittable(); 4496 IsSorted = false; 4497 } 4498 } 4499 } 4500 4501 if (!IsSorted) 4502 llvm::sort(AS); 4503 4504 /// Describes the allocas introduced by rewritePartition in order to migrate 4505 /// the debug info. 4506 struct Fragment { 4507 AllocaInst *Alloca; 4508 uint64_t Offset; 4509 uint64_t Size; 4510 Fragment(AllocaInst *AI, uint64_t O, uint64_t S) 4511 : Alloca(AI), Offset(O), Size(S) {} 4512 }; 4513 SmallVector<Fragment, 4> Fragments; 4514 4515 // Rewrite each partition. 4516 for (auto &P : AS.partitions()) { 4517 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 4518 Changed = true; 4519 if (NewAI != &AI) { 4520 uint64_t SizeOfByte = 8; 4521 uint64_t AllocaSize = 4522 DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize(); 4523 // Don't include any padding. 4524 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 4525 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); 4526 } 4527 } 4528 ++NumPartitions; 4529 } 4530 4531 NumAllocaPartitions += NumPartitions; 4532 MaxPartitionsPerAlloca.updateMax(NumPartitions); 4533 4534 // Migrate debug information from the old alloca to the new alloca(s) 4535 // and the individual partitions. 4536 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI); 4537 for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) { 4538 auto *Expr = DbgDeclare->getExpression(); 4539 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 4540 uint64_t AllocaSize = 4541 DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize(); 4542 for (auto Fragment : Fragments) { 4543 // Create a fragment expression describing the new partition or reuse AI's 4544 // expression if there is only one partition. 4545 auto *FragmentExpr = Expr; 4546 if (Fragment.Size < AllocaSize || Expr->isFragment()) { 4547 // If this alloca is already a scalar replacement of a larger aggregate, 4548 // Fragment.Offset describes the offset inside the scalar. 4549 auto ExprFragment = Expr->getFragmentInfo(); 4550 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0; 4551 uint64_t Start = Offset + Fragment.Offset; 4552 uint64_t Size = Fragment.Size; 4553 if (ExprFragment) { 4554 uint64_t AbsEnd = 4555 ExprFragment->OffsetInBits + ExprFragment->SizeInBits; 4556 if (Start >= AbsEnd) 4557 // No need to describe a SROAed padding. 4558 continue; 4559 Size = std::min(Size, AbsEnd - Start); 4560 } 4561 // The new, smaller fragment is stenciled out from the old fragment. 4562 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) { 4563 assert(Start >= OrigFragment->OffsetInBits && 4564 "new fragment is outside of original fragment"); 4565 Start -= OrigFragment->OffsetInBits; 4566 } 4567 4568 // The alloca may be larger than the variable. 4569 auto VarSize = DbgDeclare->getVariable()->getSizeInBits(); 4570 if (VarSize) { 4571 if (Size > *VarSize) 4572 Size = *VarSize; 4573 if (Size == 0 || Start + Size > *VarSize) 4574 continue; 4575 } 4576 4577 // Avoid creating a fragment expression that covers the entire variable. 4578 if (!VarSize || *VarSize != Size) { 4579 if (auto E = 4580 DIExpression::createFragmentExpression(Expr, Start, Size)) 4581 FragmentExpr = *E; 4582 else 4583 continue; 4584 } 4585 } 4586 4587 // Remove any existing intrinsics on the new alloca describing 4588 // the variable fragment. 4589 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) { 4590 auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS, 4591 const DbgVariableIntrinsic *RHS) { 4592 return LHS->getVariable() == RHS->getVariable() && 4593 LHS->getDebugLoc()->getInlinedAt() == 4594 RHS->getDebugLoc()->getInlinedAt(); 4595 }; 4596 if (SameVariableFragment(OldDII, DbgDeclare)) 4597 OldDII->eraseFromParent(); 4598 } 4599 4600 DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), FragmentExpr, 4601 DbgDeclare->getDebugLoc(), &AI); 4602 } 4603 } 4604 return Changed; 4605 } 4606 4607 /// Clobber a use with undef, deleting the used value if it becomes dead. 4608 void SROA::clobberUse(Use &U) { 4609 Value *OldV = U; 4610 // Replace the use with an undef value. 4611 U = UndefValue::get(OldV->getType()); 4612 4613 // Check for this making an instruction dead. We have to garbage collect 4614 // all the dead instructions to ensure the uses of any alloca end up being 4615 // minimal. 4616 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 4617 if (isInstructionTriviallyDead(OldI)) { 4618 DeadInsts.push_back(OldI); 4619 } 4620 } 4621 4622 /// Analyze an alloca for SROA. 4623 /// 4624 /// This analyzes the alloca to ensure we can reason about it, builds 4625 /// the slices of the alloca, and then hands it off to be split and 4626 /// rewritten as needed. 4627 bool SROA::runOnAlloca(AllocaInst &AI) { 4628 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 4629 ++NumAllocasAnalyzed; 4630 4631 // Special case dead allocas, as they're trivial. 4632 if (AI.use_empty()) { 4633 AI.eraseFromParent(); 4634 return true; 4635 } 4636 const DataLayout &DL = AI.getModule()->getDataLayout(); 4637 4638 // Skip alloca forms that this analysis can't handle. 4639 auto *AT = AI.getAllocatedType(); 4640 if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) || 4641 DL.getTypeAllocSize(AT).getFixedSize() == 0) 4642 return false; 4643 4644 bool Changed = false; 4645 4646 // First, split any FCA loads and stores touching this alloca to promote 4647 // better splitting and promotion opportunities. 4648 AggLoadStoreRewriter AggRewriter(DL); 4649 Changed |= AggRewriter.rewrite(AI); 4650 4651 // Build the slices using a recursive instruction-visiting builder. 4652 AllocaSlices AS(DL, AI); 4653 LLVM_DEBUG(AS.print(dbgs())); 4654 if (AS.isEscaped()) 4655 return Changed; 4656 4657 // Delete all the dead users of this alloca before splitting and rewriting it. 4658 for (Instruction *DeadUser : AS.getDeadUsers()) { 4659 // Free up everything used by this instruction. 4660 for (Use &DeadOp : DeadUser->operands()) 4661 clobberUse(DeadOp); 4662 4663 // Now replace the uses of this instruction. 4664 DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType())); 4665 4666 // And mark it for deletion. 4667 DeadInsts.push_back(DeadUser); 4668 Changed = true; 4669 } 4670 for (Use *DeadOp : AS.getDeadOperands()) { 4671 clobberUse(*DeadOp); 4672 Changed = true; 4673 } 4674 4675 // No slices to split. Leave the dead alloca for a later pass to clean up. 4676 if (AS.begin() == AS.end()) 4677 return Changed; 4678 4679 Changed |= splitAlloca(AI, AS); 4680 4681 LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); 4682 while (!SpeculatablePHIs.empty()) 4683 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); 4684 4685 LLVM_DEBUG(dbgs() << " Speculating Selects\n"); 4686 while (!SpeculatableSelects.empty()) 4687 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); 4688 4689 return Changed; 4690 } 4691 4692 /// Delete the dead instructions accumulated in this run. 4693 /// 4694 /// Recursively deletes the dead instructions we've accumulated. This is done 4695 /// at the very end to maximize locality of the recursive delete and to 4696 /// minimize the problems of invalidated instruction pointers as such pointers 4697 /// are used heavily in the intermediate stages of the algorithm. 4698 /// 4699 /// We also record the alloca instructions deleted here so that they aren't 4700 /// subsequently handed to mem2reg to promote. 4701 bool SROA::deleteDeadInstructions( 4702 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 4703 bool Changed = false; 4704 while (!DeadInsts.empty()) { 4705 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()); 4706 if (!I) continue; 4707 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 4708 4709 // If the instruction is an alloca, find the possible dbg.declare connected 4710 // to it, and remove it too. We must do this before calling RAUW or we will 4711 // not be able to find it. 4712 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4713 DeletedAllocas.insert(AI); 4714 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI)) 4715 OldDII->eraseFromParent(); 4716 } 4717 4718 I->replaceAllUsesWith(UndefValue::get(I->getType())); 4719 4720 for (Use &Operand : I->operands()) 4721 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 4722 // Zero out the operand and see if it becomes trivially dead. 4723 Operand = nullptr; 4724 if (isInstructionTriviallyDead(U)) 4725 DeadInsts.push_back(U); 4726 } 4727 4728 ++NumDeleted; 4729 I->eraseFromParent(); 4730 Changed = true; 4731 } 4732 return Changed; 4733 } 4734 4735 /// Promote the allocas, using the best available technique. 4736 /// 4737 /// This attempts to promote whatever allocas have been identified as viable in 4738 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 4739 /// This function returns whether any promotion occurred. 4740 bool SROA::promoteAllocas(Function &F) { 4741 if (PromotableAllocas.empty()) 4742 return false; 4743 4744 NumPromoted += PromotableAllocas.size(); 4745 4746 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 4747 PromoteMemToReg(PromotableAllocas, *DT, AC); 4748 PromotableAllocas.clear(); 4749 return true; 4750 } 4751 4752 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT, 4753 AssumptionCache &RunAC) { 4754 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 4755 C = &F.getContext(); 4756 DT = &RunDT; 4757 AC = &RunAC; 4758 4759 BasicBlock &EntryBB = F.getEntryBlock(); 4760 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 4761 I != E; ++I) { 4762 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4763 if (isa<ScalableVectorType>(AI->getAllocatedType())) { 4764 if (isAllocaPromotable(AI)) 4765 PromotableAllocas.push_back(AI); 4766 } else { 4767 Worklist.insert(AI); 4768 } 4769 } 4770 } 4771 4772 bool Changed = false; 4773 // A set of deleted alloca instruction pointers which should be removed from 4774 // the list of promotable allocas. 4775 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 4776 4777 do { 4778 while (!Worklist.empty()) { 4779 Changed |= runOnAlloca(*Worklist.pop_back_val()); 4780 Changed |= deleteDeadInstructions(DeletedAllocas); 4781 4782 // Remove the deleted allocas from various lists so that we don't try to 4783 // continue processing them. 4784 if (!DeletedAllocas.empty()) { 4785 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; 4786 Worklist.remove_if(IsInSet); 4787 PostPromotionWorklist.remove_if(IsInSet); 4788 llvm::erase_if(PromotableAllocas, IsInSet); 4789 DeletedAllocas.clear(); 4790 } 4791 } 4792 4793 Changed |= promoteAllocas(F); 4794 4795 Worklist = PostPromotionWorklist; 4796 PostPromotionWorklist.clear(); 4797 } while (!Worklist.empty()); 4798 4799 if (!Changed) 4800 return PreservedAnalyses::all(); 4801 4802 PreservedAnalyses PA; 4803 PA.preserveSet<CFGAnalyses>(); 4804 return PA; 4805 } 4806 4807 PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) { 4808 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F), 4809 AM.getResult<AssumptionAnalysis>(F)); 4810 } 4811 4812 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 4813 /// 4814 /// This is in the llvm namespace purely to allow it to be a friend of the \c 4815 /// SROA pass. 4816 class llvm::sroa::SROALegacyPass : public FunctionPass { 4817 /// The SROA implementation. 4818 SROA Impl; 4819 4820 public: 4821 static char ID; 4822 4823 SROALegacyPass() : FunctionPass(ID) { 4824 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 4825 } 4826 4827 bool runOnFunction(Function &F) override { 4828 if (skipFunction(F)) 4829 return false; 4830 4831 auto PA = Impl.runImpl( 4832 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4833 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 4834 return !PA.areAllPreserved(); 4835 } 4836 4837 void getAnalysisUsage(AnalysisUsage &AU) const override { 4838 AU.addRequired<AssumptionCacheTracker>(); 4839 AU.addRequired<DominatorTreeWrapperPass>(); 4840 AU.addPreserved<GlobalsAAWrapperPass>(); 4841 AU.setPreservesCFG(); 4842 } 4843 4844 StringRef getPassName() const override { return "SROA"; } 4845 }; 4846 4847 char SROALegacyPass::ID = 0; 4848 4849 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); } 4850 4851 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 4852 "Scalar Replacement Of Aggregates", false, false) 4853 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4854 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4855 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 4856 false, false) 4857