xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/SROA.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
14 ///
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
18 ///
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/AssumptionCache.h"
41 #include "llvm/Analysis/DomTreeUpdater.h"
42 #include "llvm/Analysis/GlobalsModRef.h"
43 #include "llvm/Analysis/Loads.h"
44 #include "llvm/Analysis/PtrUseVisitor.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantFolder.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DIBuilder.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DebugInfo.h"
53 #include "llvm/IR/DebugInfoMetadata.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/GlobalAlias.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstVisitor.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Transforms/Scalar.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <cstddef>
88 #include <cstdint>
89 #include <cstring>
90 #include <iterator>
91 #include <string>
92 #include <tuple>
93 #include <utility>
94 #include <vector>
95 
96 using namespace llvm;
97 using namespace llvm::sroa;
98 
99 #define DEBUG_TYPE "sroa"
100 
101 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
102 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
103 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
104 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
105 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
106 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
107 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
108 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
109 STATISTIC(NumLoadsPredicated,
110           "Number of loads rewritten into predicated loads to allow promotion");
111 STATISTIC(
112     NumStoresPredicated,
113     "Number of stores rewritten into predicated loads to allow promotion");
114 STATISTIC(NumDeleted, "Number of instructions deleted");
115 STATISTIC(NumVectorized, "Number of vectorized aggregates");
116 
117 /// Hidden option to experiment with completely strict handling of inbounds
118 /// GEPs.
119 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
120                                         cl::Hidden);
121 namespace {
122 /// Find linked dbg.assign and generate a new one with the correct
123 /// FragmentInfo. Link Inst to the new dbg.assign.  If Value is nullptr the
124 /// value component is copied from the old dbg.assign to the new.
125 /// \param OldAlloca             Alloca for the variable before splitting.
126 /// \param RelativeOffsetInBits  Offset into \p OldAlloca relative to the
127 ///                              offset prior to splitting (change in offset).
128 /// \param SliceSizeInBits       New number of bits being written to.
129 /// \param OldInst               Instruction that is being split.
130 /// \param Inst                  New instruction performing this part of the
131 ///                              split store.
132 /// \param Dest                  Store destination.
133 /// \param Value                 Stored value.
134 /// \param DL                    Datalayout.
135 static void migrateDebugInfo(AllocaInst *OldAlloca,
136                              uint64_t RelativeOffsetInBits,
137                              uint64_t SliceSizeInBits, Instruction *OldInst,
138                              Instruction *Inst, Value *Dest, Value *Value,
139                              const DataLayout &DL) {
140   auto MarkerRange = at::getAssignmentMarkers(OldInst);
141   // Nothing to do if OldInst has no linked dbg.assign intrinsics.
142   if (MarkerRange.empty())
143     return;
144 
145   LLVM_DEBUG(dbgs() << "  migrateDebugInfo\n");
146   LLVM_DEBUG(dbgs() << "    OldAlloca: " << *OldAlloca << "\n");
147   LLVM_DEBUG(dbgs() << "    RelativeOffset: " << RelativeOffsetInBits << "\n");
148   LLVM_DEBUG(dbgs() << "    SliceSizeInBits: " << SliceSizeInBits << "\n");
149   LLVM_DEBUG(dbgs() << "    OldInst: " << *OldInst << "\n");
150   LLVM_DEBUG(dbgs() << "    Inst: " << *Inst << "\n");
151   LLVM_DEBUG(dbgs() << "    Dest: " << *Dest << "\n");
152   if (Value)
153     LLVM_DEBUG(dbgs() << "    Value: " << *Value << "\n");
154 
155   // The new inst needs a DIAssignID unique metadata tag (if OldInst has
156   // one). It shouldn't already have one: assert this assumption.
157   assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID));
158   DIAssignID *NewID = nullptr;
159   auto &Ctx = Inst->getContext();
160   DIBuilder DIB(*OldInst->getModule(), /*AllowUnresolved*/ false);
161   uint64_t AllocaSizeInBits = *OldAlloca->getAllocationSizeInBits(DL);
162   assert(OldAlloca->isStaticAlloca());
163 
164   for (DbgAssignIntrinsic *DbgAssign : MarkerRange) {
165     LLVM_DEBUG(dbgs() << "      existing dbg.assign is: " << *DbgAssign
166                       << "\n");
167     auto *Expr = DbgAssign->getExpression();
168 
169     // Check if the dbg.assign already describes a fragment.
170     auto GetCurrentFragSize = [AllocaSizeInBits, DbgAssign,
171                                Expr]() -> uint64_t {
172       if (auto FI = Expr->getFragmentInfo())
173         return FI->SizeInBits;
174       if (auto VarSize = DbgAssign->getVariable()->getSizeInBits())
175         return *VarSize;
176       // The variable type has an unspecified size. This can happen in the
177       // case of DW_TAG_unspecified_type types, e.g.  std::nullptr_t. Because
178       // there is no fragment and we do not know the size of the variable type,
179       // we'll guess by looking at the alloca.
180       return AllocaSizeInBits;
181     };
182     uint64_t CurrentFragSize = GetCurrentFragSize();
183     bool MakeNewFragment = CurrentFragSize != SliceSizeInBits;
184     assert(MakeNewFragment || RelativeOffsetInBits == 0);
185 
186     assert(SliceSizeInBits <= AllocaSizeInBits);
187     if (MakeNewFragment) {
188       assert(RelativeOffsetInBits + SliceSizeInBits <= CurrentFragSize);
189       auto E = DIExpression::createFragmentExpression(
190           Expr, RelativeOffsetInBits, SliceSizeInBits);
191       assert(E && "Failed to create fragment expr!");
192       Expr = *E;
193     }
194 
195     // If we haven't created a DIAssignID ID do that now and attach it to Inst.
196     if (!NewID) {
197       NewID = DIAssignID::getDistinct(Ctx);
198       Inst->setMetadata(LLVMContext::MD_DIAssignID, NewID);
199     }
200 
201     Value = Value ? Value : DbgAssign->getValue();
202     auto *NewAssign = DIB.insertDbgAssign(
203         Inst, Value, DbgAssign->getVariable(), Expr, Dest,
204         DIExpression::get(Ctx, std::nullopt), DbgAssign->getDebugLoc());
205 
206     // We could use more precision here at the cost of some additional (code)
207     // complexity - if the original dbg.assign was adjacent to its store, we
208     // could position this new dbg.assign adjacent to its store rather than the
209     // old dbg.assgn. That would result in interleaved dbg.assigns rather than
210     // what we get now:
211     //    split store !1
212     //    split store !2
213     //    dbg.assign !1
214     //    dbg.assign !2
215     // This (current behaviour) results results in debug assignments being
216     // noted as slightly offset (in code) from the store. In practice this
217     // should have little effect on the debugging experience due to the fact
218     // that all the split stores should get the same line number.
219     NewAssign->moveBefore(DbgAssign);
220 
221     NewAssign->setDebugLoc(DbgAssign->getDebugLoc());
222     LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign
223                       << "\n");
224   }
225 }
226 
227 /// A custom IRBuilder inserter which prefixes all names, but only in
228 /// Assert builds.
229 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
230   std::string Prefix;
231 
232   Twine getNameWithPrefix(const Twine &Name) const {
233     return Name.isTriviallyEmpty() ? Name : Prefix + Name;
234   }
235 
236 public:
237   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
238 
239   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
240                     BasicBlock::iterator InsertPt) const override {
241     IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
242                                            InsertPt);
243   }
244 };
245 
246 /// Provide a type for IRBuilder that drops names in release builds.
247 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
248 
249 /// A used slice of an alloca.
250 ///
251 /// This structure represents a slice of an alloca used by some instruction. It
252 /// stores both the begin and end offsets of this use, a pointer to the use
253 /// itself, and a flag indicating whether we can classify the use as splittable
254 /// or not when forming partitions of the alloca.
255 class Slice {
256   /// The beginning offset of the range.
257   uint64_t BeginOffset = 0;
258 
259   /// The ending offset, not included in the range.
260   uint64_t EndOffset = 0;
261 
262   /// Storage for both the use of this slice and whether it can be
263   /// split.
264   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
265 
266 public:
267   Slice() = default;
268 
269   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
270       : BeginOffset(BeginOffset), EndOffset(EndOffset),
271         UseAndIsSplittable(U, IsSplittable) {}
272 
273   uint64_t beginOffset() const { return BeginOffset; }
274   uint64_t endOffset() const { return EndOffset; }
275 
276   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
277   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
278 
279   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
280 
281   bool isDead() const { return getUse() == nullptr; }
282   void kill() { UseAndIsSplittable.setPointer(nullptr); }
283 
284   /// Support for ordering ranges.
285   ///
286   /// This provides an ordering over ranges such that start offsets are
287   /// always increasing, and within equal start offsets, the end offsets are
288   /// decreasing. Thus the spanning range comes first in a cluster with the
289   /// same start position.
290   bool operator<(const Slice &RHS) const {
291     if (beginOffset() < RHS.beginOffset())
292       return true;
293     if (beginOffset() > RHS.beginOffset())
294       return false;
295     if (isSplittable() != RHS.isSplittable())
296       return !isSplittable();
297     if (endOffset() > RHS.endOffset())
298       return true;
299     return false;
300   }
301 
302   /// Support comparison with a single offset to allow binary searches.
303   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
304                                               uint64_t RHSOffset) {
305     return LHS.beginOffset() < RHSOffset;
306   }
307   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
308                                               const Slice &RHS) {
309     return LHSOffset < RHS.beginOffset();
310   }
311 
312   bool operator==(const Slice &RHS) const {
313     return isSplittable() == RHS.isSplittable() &&
314            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
315   }
316   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
317 };
318 
319 } // end anonymous namespace
320 
321 /// Representation of the alloca slices.
322 ///
323 /// This class represents the slices of an alloca which are formed by its
324 /// various uses. If a pointer escapes, we can't fully build a representation
325 /// for the slices used and we reflect that in this structure. The uses are
326 /// stored, sorted by increasing beginning offset and with unsplittable slices
327 /// starting at a particular offset before splittable slices.
328 class llvm::sroa::AllocaSlices {
329 public:
330   /// Construct the slices of a particular alloca.
331   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
332 
333   /// Test whether a pointer to the allocation escapes our analysis.
334   ///
335   /// If this is true, the slices are never fully built and should be
336   /// ignored.
337   bool isEscaped() const { return PointerEscapingInstr; }
338 
339   /// Support for iterating over the slices.
340   /// @{
341   using iterator = SmallVectorImpl<Slice>::iterator;
342   using range = iterator_range<iterator>;
343 
344   iterator begin() { return Slices.begin(); }
345   iterator end() { return Slices.end(); }
346 
347   using const_iterator = SmallVectorImpl<Slice>::const_iterator;
348   using const_range = iterator_range<const_iterator>;
349 
350   const_iterator begin() const { return Slices.begin(); }
351   const_iterator end() const { return Slices.end(); }
352   /// @}
353 
354   /// Erase a range of slices.
355   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
356 
357   /// Insert new slices for this alloca.
358   ///
359   /// This moves the slices into the alloca's slices collection, and re-sorts
360   /// everything so that the usual ordering properties of the alloca's slices
361   /// hold.
362   void insert(ArrayRef<Slice> NewSlices) {
363     int OldSize = Slices.size();
364     Slices.append(NewSlices.begin(), NewSlices.end());
365     auto SliceI = Slices.begin() + OldSize;
366     llvm::sort(SliceI, Slices.end());
367     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
368   }
369 
370   // Forward declare the iterator and range accessor for walking the
371   // partitions.
372   class partition_iterator;
373   iterator_range<partition_iterator> partitions();
374 
375   /// Access the dead users for this alloca.
376   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
377 
378   /// Access Uses that should be dropped if the alloca is promotable.
379   ArrayRef<Use *> getDeadUsesIfPromotable() const {
380     return DeadUseIfPromotable;
381   }
382 
383   /// Access the dead operands referring to this alloca.
384   ///
385   /// These are operands which have cannot actually be used to refer to the
386   /// alloca as they are outside its range and the user doesn't correct for
387   /// that. These mostly consist of PHI node inputs and the like which we just
388   /// need to replace with undef.
389   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
390 
391 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
392   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
393   void printSlice(raw_ostream &OS, const_iterator I,
394                   StringRef Indent = "  ") const;
395   void printUse(raw_ostream &OS, const_iterator I,
396                 StringRef Indent = "  ") const;
397   void print(raw_ostream &OS) const;
398   void dump(const_iterator I) const;
399   void dump() const;
400 #endif
401 
402 private:
403   template <typename DerivedT, typename RetT = void> class BuilderBase;
404   class SliceBuilder;
405 
406   friend class AllocaSlices::SliceBuilder;
407 
408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
409   /// Handle to alloca instruction to simplify method interfaces.
410   AllocaInst &AI;
411 #endif
412 
413   /// The instruction responsible for this alloca not having a known set
414   /// of slices.
415   ///
416   /// When an instruction (potentially) escapes the pointer to the alloca, we
417   /// store a pointer to that here and abort trying to form slices of the
418   /// alloca. This will be null if the alloca slices are analyzed successfully.
419   Instruction *PointerEscapingInstr;
420 
421   /// The slices of the alloca.
422   ///
423   /// We store a vector of the slices formed by uses of the alloca here. This
424   /// vector is sorted by increasing begin offset, and then the unsplittable
425   /// slices before the splittable ones. See the Slice inner class for more
426   /// details.
427   SmallVector<Slice, 8> Slices;
428 
429   /// Instructions which will become dead if we rewrite the alloca.
430   ///
431   /// Note that these are not separated by slice. This is because we expect an
432   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
433   /// all these instructions can simply be removed and replaced with poison as
434   /// they come from outside of the allocated space.
435   SmallVector<Instruction *, 8> DeadUsers;
436 
437   /// Uses which will become dead if can promote the alloca.
438   SmallVector<Use *, 8> DeadUseIfPromotable;
439 
440   /// Operands which will become dead if we rewrite the alloca.
441   ///
442   /// These are operands that in their particular use can be replaced with
443   /// poison when we rewrite the alloca. These show up in out-of-bounds inputs
444   /// to PHI nodes and the like. They aren't entirely dead (there might be
445   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
446   /// want to swap this particular input for poison to simplify the use lists of
447   /// the alloca.
448   SmallVector<Use *, 8> DeadOperands;
449 };
450 
451 /// A partition of the slices.
452 ///
453 /// An ephemeral representation for a range of slices which can be viewed as
454 /// a partition of the alloca. This range represents a span of the alloca's
455 /// memory which cannot be split, and provides access to all of the slices
456 /// overlapping some part of the partition.
457 ///
458 /// Objects of this type are produced by traversing the alloca's slices, but
459 /// are only ephemeral and not persistent.
460 class llvm::sroa::Partition {
461 private:
462   friend class AllocaSlices;
463   friend class AllocaSlices::partition_iterator;
464 
465   using iterator = AllocaSlices::iterator;
466 
467   /// The beginning and ending offsets of the alloca for this
468   /// partition.
469   uint64_t BeginOffset = 0, EndOffset = 0;
470 
471   /// The start and end iterators of this partition.
472   iterator SI, SJ;
473 
474   /// A collection of split slice tails overlapping the partition.
475   SmallVector<Slice *, 4> SplitTails;
476 
477   /// Raw constructor builds an empty partition starting and ending at
478   /// the given iterator.
479   Partition(iterator SI) : SI(SI), SJ(SI) {}
480 
481 public:
482   /// The start offset of this partition.
483   ///
484   /// All of the contained slices start at or after this offset.
485   uint64_t beginOffset() const { return BeginOffset; }
486 
487   /// The end offset of this partition.
488   ///
489   /// All of the contained slices end at or before this offset.
490   uint64_t endOffset() const { return EndOffset; }
491 
492   /// The size of the partition.
493   ///
494   /// Note that this can never be zero.
495   uint64_t size() const {
496     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
497     return EndOffset - BeginOffset;
498   }
499 
500   /// Test whether this partition contains no slices, and merely spans
501   /// a region occupied by split slices.
502   bool empty() const { return SI == SJ; }
503 
504   /// \name Iterate slices that start within the partition.
505   /// These may be splittable or unsplittable. They have a begin offset >= the
506   /// partition begin offset.
507   /// @{
508   // FIXME: We should probably define a "concat_iterator" helper and use that
509   // to stitch together pointee_iterators over the split tails and the
510   // contiguous iterators of the partition. That would give a much nicer
511   // interface here. We could then additionally expose filtered iterators for
512   // split, unsplit, and unsplittable splices based on the usage patterns.
513   iterator begin() const { return SI; }
514   iterator end() const { return SJ; }
515   /// @}
516 
517   /// Get the sequence of split slice tails.
518   ///
519   /// These tails are of slices which start before this partition but are
520   /// split and overlap into the partition. We accumulate these while forming
521   /// partitions.
522   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
523 };
524 
525 /// An iterator over partitions of the alloca's slices.
526 ///
527 /// This iterator implements the core algorithm for partitioning the alloca's
528 /// slices. It is a forward iterator as we don't support backtracking for
529 /// efficiency reasons, and re-use a single storage area to maintain the
530 /// current set of split slices.
531 ///
532 /// It is templated on the slice iterator type to use so that it can operate
533 /// with either const or non-const slice iterators.
534 class AllocaSlices::partition_iterator
535     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
536                                   Partition> {
537   friend class AllocaSlices;
538 
539   /// Most of the state for walking the partitions is held in a class
540   /// with a nice interface for examining them.
541   Partition P;
542 
543   /// We need to keep the end of the slices to know when to stop.
544   AllocaSlices::iterator SE;
545 
546   /// We also need to keep track of the maximum split end offset seen.
547   /// FIXME: Do we really?
548   uint64_t MaxSplitSliceEndOffset = 0;
549 
550   /// Sets the partition to be empty at given iterator, and sets the
551   /// end iterator.
552   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
553       : P(SI), SE(SE) {
554     // If not already at the end, advance our state to form the initial
555     // partition.
556     if (SI != SE)
557       advance();
558   }
559 
560   /// Advance the iterator to the next partition.
561   ///
562   /// Requires that the iterator not be at the end of the slices.
563   void advance() {
564     assert((P.SI != SE || !P.SplitTails.empty()) &&
565            "Cannot advance past the end of the slices!");
566 
567     // Clear out any split uses which have ended.
568     if (!P.SplitTails.empty()) {
569       if (P.EndOffset >= MaxSplitSliceEndOffset) {
570         // If we've finished all splits, this is easy.
571         P.SplitTails.clear();
572         MaxSplitSliceEndOffset = 0;
573       } else {
574         // Remove the uses which have ended in the prior partition. This
575         // cannot change the max split slice end because we just checked that
576         // the prior partition ended prior to that max.
577         llvm::erase_if(P.SplitTails,
578                        [&](Slice *S) { return S->endOffset() <= P.EndOffset; });
579         assert(llvm::any_of(P.SplitTails,
580                             [&](Slice *S) {
581                               return S->endOffset() == MaxSplitSliceEndOffset;
582                             }) &&
583                "Could not find the current max split slice offset!");
584         assert(llvm::all_of(P.SplitTails,
585                             [&](Slice *S) {
586                               return S->endOffset() <= MaxSplitSliceEndOffset;
587                             }) &&
588                "Max split slice end offset is not actually the max!");
589       }
590     }
591 
592     // If P.SI is already at the end, then we've cleared the split tail and
593     // now have an end iterator.
594     if (P.SI == SE) {
595       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
596       return;
597     }
598 
599     // If we had a non-empty partition previously, set up the state for
600     // subsequent partitions.
601     if (P.SI != P.SJ) {
602       // Accumulate all the splittable slices which started in the old
603       // partition into the split list.
604       for (Slice &S : P)
605         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
606           P.SplitTails.push_back(&S);
607           MaxSplitSliceEndOffset =
608               std::max(S.endOffset(), MaxSplitSliceEndOffset);
609         }
610 
611       // Start from the end of the previous partition.
612       P.SI = P.SJ;
613 
614       // If P.SI is now at the end, we at most have a tail of split slices.
615       if (P.SI == SE) {
616         P.BeginOffset = P.EndOffset;
617         P.EndOffset = MaxSplitSliceEndOffset;
618         return;
619       }
620 
621       // If the we have split slices and the next slice is after a gap and is
622       // not splittable immediately form an empty partition for the split
623       // slices up until the next slice begins.
624       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
625           !P.SI->isSplittable()) {
626         P.BeginOffset = P.EndOffset;
627         P.EndOffset = P.SI->beginOffset();
628         return;
629       }
630     }
631 
632     // OK, we need to consume new slices. Set the end offset based on the
633     // current slice, and step SJ past it. The beginning offset of the
634     // partition is the beginning offset of the next slice unless we have
635     // pre-existing split slices that are continuing, in which case we begin
636     // at the prior end offset.
637     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
638     P.EndOffset = P.SI->endOffset();
639     ++P.SJ;
640 
641     // There are two strategies to form a partition based on whether the
642     // partition starts with an unsplittable slice or a splittable slice.
643     if (!P.SI->isSplittable()) {
644       // When we're forming an unsplittable region, it must always start at
645       // the first slice and will extend through its end.
646       assert(P.BeginOffset == P.SI->beginOffset());
647 
648       // Form a partition including all of the overlapping slices with this
649       // unsplittable slice.
650       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
651         if (!P.SJ->isSplittable())
652           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
653         ++P.SJ;
654       }
655 
656       // We have a partition across a set of overlapping unsplittable
657       // partitions.
658       return;
659     }
660 
661     // If we're starting with a splittable slice, then we need to form
662     // a synthetic partition spanning it and any other overlapping splittable
663     // splices.
664     assert(P.SI->isSplittable() && "Forming a splittable partition!");
665 
666     // Collect all of the overlapping splittable slices.
667     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
668            P.SJ->isSplittable()) {
669       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
670       ++P.SJ;
671     }
672 
673     // Back upiP.EndOffset if we ended the span early when encountering an
674     // unsplittable slice. This synthesizes the early end offset of
675     // a partition spanning only splittable slices.
676     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
677       assert(!P.SJ->isSplittable());
678       P.EndOffset = P.SJ->beginOffset();
679     }
680   }
681 
682 public:
683   bool operator==(const partition_iterator &RHS) const {
684     assert(SE == RHS.SE &&
685            "End iterators don't match between compared partition iterators!");
686 
687     // The observed positions of partitions is marked by the P.SI iterator and
688     // the emptiness of the split slices. The latter is only relevant when
689     // P.SI == SE, as the end iterator will additionally have an empty split
690     // slices list, but the prior may have the same P.SI and a tail of split
691     // slices.
692     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
693       assert(P.SJ == RHS.P.SJ &&
694              "Same set of slices formed two different sized partitions!");
695       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
696              "Same slice position with differently sized non-empty split "
697              "slice tails!");
698       return true;
699     }
700     return false;
701   }
702 
703   partition_iterator &operator++() {
704     advance();
705     return *this;
706   }
707 
708   Partition &operator*() { return P; }
709 };
710 
711 /// A forward range over the partitions of the alloca's slices.
712 ///
713 /// This accesses an iterator range over the partitions of the alloca's
714 /// slices. It computes these partitions on the fly based on the overlapping
715 /// offsets of the slices and the ability to split them. It will visit "empty"
716 /// partitions to cover regions of the alloca only accessed via split
717 /// slices.
718 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
719   return make_range(partition_iterator(begin(), end()),
720                     partition_iterator(end(), end()));
721 }
722 
723 static Value *foldSelectInst(SelectInst &SI) {
724   // If the condition being selected on is a constant or the same value is
725   // being selected between, fold the select. Yes this does (rarely) happen
726   // early on.
727   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
728     return SI.getOperand(1 + CI->isZero());
729   if (SI.getOperand(1) == SI.getOperand(2))
730     return SI.getOperand(1);
731 
732   return nullptr;
733 }
734 
735 /// A helper that folds a PHI node or a select.
736 static Value *foldPHINodeOrSelectInst(Instruction &I) {
737   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
738     // If PN merges together the same value, return that value.
739     return PN->hasConstantValue();
740   }
741   return foldSelectInst(cast<SelectInst>(I));
742 }
743 
744 /// Builder for the alloca slices.
745 ///
746 /// This class builds a set of alloca slices by recursively visiting the uses
747 /// of an alloca and making a slice for each load and store at each offset.
748 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
749   friend class PtrUseVisitor<SliceBuilder>;
750   friend class InstVisitor<SliceBuilder>;
751 
752   using Base = PtrUseVisitor<SliceBuilder>;
753 
754   const uint64_t AllocSize;
755   AllocaSlices &AS;
756 
757   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
758   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
759 
760   /// Set to de-duplicate dead instructions found in the use walk.
761   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
762 
763 public:
764   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
765       : PtrUseVisitor<SliceBuilder>(DL),
766         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue()),
767         AS(AS) {}
768 
769 private:
770   void markAsDead(Instruction &I) {
771     if (VisitedDeadInsts.insert(&I).second)
772       AS.DeadUsers.push_back(&I);
773   }
774 
775   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
776                  bool IsSplittable = false) {
777     // Completely skip uses which have a zero size or start either before or
778     // past the end of the allocation.
779     if (Size == 0 || Offset.uge(AllocSize)) {
780       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
781                         << Offset
782                         << " which has zero size or starts outside of the "
783                         << AllocSize << " byte alloca:\n"
784                         << "    alloca: " << AS.AI << "\n"
785                         << "       use: " << I << "\n");
786       return markAsDead(I);
787     }
788 
789     uint64_t BeginOffset = Offset.getZExtValue();
790     uint64_t EndOffset = BeginOffset + Size;
791 
792     // Clamp the end offset to the end of the allocation. Note that this is
793     // formulated to handle even the case where "BeginOffset + Size" overflows.
794     // This may appear superficially to be something we could ignore entirely,
795     // but that is not so! There may be widened loads or PHI-node uses where
796     // some instructions are dead but not others. We can't completely ignore
797     // them, and so have to record at least the information here.
798     assert(AllocSize >= BeginOffset); // Established above.
799     if (Size > AllocSize - BeginOffset) {
800       LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
801                         << Offset << " to remain within the " << AllocSize
802                         << " byte alloca:\n"
803                         << "    alloca: " << AS.AI << "\n"
804                         << "       use: " << I << "\n");
805       EndOffset = AllocSize;
806     }
807 
808     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
809   }
810 
811   void visitBitCastInst(BitCastInst &BC) {
812     if (BC.use_empty())
813       return markAsDead(BC);
814 
815     return Base::visitBitCastInst(BC);
816   }
817 
818   void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
819     if (ASC.use_empty())
820       return markAsDead(ASC);
821 
822     return Base::visitAddrSpaceCastInst(ASC);
823   }
824 
825   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
826     if (GEPI.use_empty())
827       return markAsDead(GEPI);
828 
829     if (SROAStrictInbounds && GEPI.isInBounds()) {
830       // FIXME: This is a manually un-factored variant of the basic code inside
831       // of GEPs with checking of the inbounds invariant specified in the
832       // langref in a very strict sense. If we ever want to enable
833       // SROAStrictInbounds, this code should be factored cleanly into
834       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
835       // by writing out the code here where we have the underlying allocation
836       // size readily available.
837       APInt GEPOffset = Offset;
838       const DataLayout &DL = GEPI.getModule()->getDataLayout();
839       for (gep_type_iterator GTI = gep_type_begin(GEPI),
840                              GTE = gep_type_end(GEPI);
841            GTI != GTE; ++GTI) {
842         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
843         if (!OpC)
844           break;
845 
846         // Handle a struct index, which adds its field offset to the pointer.
847         if (StructType *STy = GTI.getStructTypeOrNull()) {
848           unsigned ElementIdx = OpC->getZExtValue();
849           const StructLayout *SL = DL.getStructLayout(STy);
850           GEPOffset +=
851               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
852         } else {
853           // For array or vector indices, scale the index by the size of the
854           // type.
855           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
856           GEPOffset +=
857               Index *
858               APInt(Offset.getBitWidth(),
859                     DL.getTypeAllocSize(GTI.getIndexedType()).getFixedValue());
860         }
861 
862         // If this index has computed an intermediate pointer which is not
863         // inbounds, then the result of the GEP is a poison value and we can
864         // delete it and all uses.
865         if (GEPOffset.ugt(AllocSize))
866           return markAsDead(GEPI);
867       }
868     }
869 
870     return Base::visitGetElementPtrInst(GEPI);
871   }
872 
873   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
874                          uint64_t Size, bool IsVolatile) {
875     // We allow splitting of non-volatile loads and stores where the type is an
876     // integer type. These may be used to implement 'memcpy' or other "transfer
877     // of bits" patterns.
878     bool IsSplittable =
879         Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty);
880 
881     insertUse(I, Offset, Size, IsSplittable);
882   }
883 
884   void visitLoadInst(LoadInst &LI) {
885     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
886            "All simple FCA loads should have been pre-split");
887 
888     if (!IsOffsetKnown)
889       return PI.setAborted(&LI);
890 
891     if (isa<ScalableVectorType>(LI.getType()))
892       return PI.setAborted(&LI);
893 
894     uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedValue();
895     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
896   }
897 
898   void visitStoreInst(StoreInst &SI) {
899     Value *ValOp = SI.getValueOperand();
900     if (ValOp == *U)
901       return PI.setEscapedAndAborted(&SI);
902     if (!IsOffsetKnown)
903       return PI.setAborted(&SI);
904 
905     if (isa<ScalableVectorType>(ValOp->getType()))
906       return PI.setAborted(&SI);
907 
908     uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedValue();
909 
910     // If this memory access can be shown to *statically* extend outside the
911     // bounds of the allocation, it's behavior is undefined, so simply
912     // ignore it. Note that this is more strict than the generic clamping
913     // behavior of insertUse. We also try to handle cases which might run the
914     // risk of overflow.
915     // FIXME: We should instead consider the pointer to have escaped if this
916     // function is being instrumented for addressing bugs or race conditions.
917     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
918       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
919                         << Offset << " which extends past the end of the "
920                         << AllocSize << " byte alloca:\n"
921                         << "    alloca: " << AS.AI << "\n"
922                         << "       use: " << SI << "\n");
923       return markAsDead(SI);
924     }
925 
926     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
927            "All simple FCA stores should have been pre-split");
928     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
929   }
930 
931   void visitMemSetInst(MemSetInst &II) {
932     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
933     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
934     if ((Length && Length->getValue() == 0) ||
935         (IsOffsetKnown && Offset.uge(AllocSize)))
936       // Zero-length mem transfer intrinsics can be ignored entirely.
937       return markAsDead(II);
938 
939     if (!IsOffsetKnown)
940       return PI.setAborted(&II);
941 
942     insertUse(II, Offset, Length ? Length->getLimitedValue()
943                                  : AllocSize - Offset.getLimitedValue(),
944               (bool)Length);
945   }
946 
947   void visitMemTransferInst(MemTransferInst &II) {
948     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
949     if (Length && Length->getValue() == 0)
950       // Zero-length mem transfer intrinsics can be ignored entirely.
951       return markAsDead(II);
952 
953     // Because we can visit these intrinsics twice, also check to see if the
954     // first time marked this instruction as dead. If so, skip it.
955     if (VisitedDeadInsts.count(&II))
956       return;
957 
958     if (!IsOffsetKnown)
959       return PI.setAborted(&II);
960 
961     // This side of the transfer is completely out-of-bounds, and so we can
962     // nuke the entire transfer. However, we also need to nuke the other side
963     // if already added to our partitions.
964     // FIXME: Yet another place we really should bypass this when
965     // instrumenting for ASan.
966     if (Offset.uge(AllocSize)) {
967       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
968           MemTransferSliceMap.find(&II);
969       if (MTPI != MemTransferSliceMap.end())
970         AS.Slices[MTPI->second].kill();
971       return markAsDead(II);
972     }
973 
974     uint64_t RawOffset = Offset.getLimitedValue();
975     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
976 
977     // Check for the special case where the same exact value is used for both
978     // source and dest.
979     if (*U == II.getRawDest() && *U == II.getRawSource()) {
980       // For non-volatile transfers this is a no-op.
981       if (!II.isVolatile())
982         return markAsDead(II);
983 
984       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
985     }
986 
987     // If we have seen both source and destination for a mem transfer, then
988     // they both point to the same alloca.
989     bool Inserted;
990     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
991     std::tie(MTPI, Inserted) =
992         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
993     unsigned PrevIdx = MTPI->second;
994     if (!Inserted) {
995       Slice &PrevP = AS.Slices[PrevIdx];
996 
997       // Check if the begin offsets match and this is a non-volatile transfer.
998       // In that case, we can completely elide the transfer.
999       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
1000         PrevP.kill();
1001         return markAsDead(II);
1002       }
1003 
1004       // Otherwise we have an offset transfer within the same alloca. We can't
1005       // split those.
1006       PrevP.makeUnsplittable();
1007     }
1008 
1009     // Insert the use now that we've fixed up the splittable nature.
1010     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
1011 
1012     // Check that we ended up with a valid index in the map.
1013     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
1014            "Map index doesn't point back to a slice with this user.");
1015   }
1016 
1017   // Disable SRoA for any intrinsics except for lifetime invariants and
1018   // invariant group.
1019   // FIXME: What about debug intrinsics? This matches old behavior, but
1020   // doesn't make sense.
1021   void visitIntrinsicInst(IntrinsicInst &II) {
1022     if (II.isDroppable()) {
1023       AS.DeadUseIfPromotable.push_back(U);
1024       return;
1025     }
1026 
1027     if (!IsOffsetKnown)
1028       return PI.setAborted(&II);
1029 
1030     if (II.isLifetimeStartOrEnd()) {
1031       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
1032       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
1033                                Length->getLimitedValue());
1034       insertUse(II, Offset, Size, true);
1035       return;
1036     }
1037 
1038     if (II.isLaunderOrStripInvariantGroup()) {
1039       enqueueUsers(II);
1040       return;
1041     }
1042 
1043     Base::visitIntrinsicInst(II);
1044   }
1045 
1046   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
1047     // We consider any PHI or select that results in a direct load or store of
1048     // the same offset to be a viable use for slicing purposes. These uses
1049     // are considered unsplittable and the size is the maximum loaded or stored
1050     // size.
1051     SmallPtrSet<Instruction *, 4> Visited;
1052     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
1053     Visited.insert(Root);
1054     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
1055     const DataLayout &DL = Root->getModule()->getDataLayout();
1056     // If there are no loads or stores, the access is dead. We mark that as
1057     // a size zero access.
1058     Size = 0;
1059     do {
1060       Instruction *I, *UsedI;
1061       std::tie(UsedI, I) = Uses.pop_back_val();
1062 
1063       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1064         Size =
1065             std::max(Size, DL.getTypeStoreSize(LI->getType()).getFixedValue());
1066         continue;
1067       }
1068       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1069         Value *Op = SI->getOperand(0);
1070         if (Op == UsedI)
1071           return SI;
1072         Size =
1073             std::max(Size, DL.getTypeStoreSize(Op->getType()).getFixedValue());
1074         continue;
1075       }
1076 
1077       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
1078         if (!GEP->hasAllZeroIndices())
1079           return GEP;
1080       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
1081                  !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
1082         return I;
1083       }
1084 
1085       for (User *U : I->users())
1086         if (Visited.insert(cast<Instruction>(U)).second)
1087           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
1088     } while (!Uses.empty());
1089 
1090     return nullptr;
1091   }
1092 
1093   void visitPHINodeOrSelectInst(Instruction &I) {
1094     assert(isa<PHINode>(I) || isa<SelectInst>(I));
1095     if (I.use_empty())
1096       return markAsDead(I);
1097 
1098     // If this is a PHI node before a catchswitch, we cannot insert any non-PHI
1099     // instructions in this BB, which may be required during rewriting. Bail out
1100     // on these cases.
1101     if (isa<PHINode>(I) &&
1102         I.getParent()->getFirstInsertionPt() == I.getParent()->end())
1103       return PI.setAborted(&I);
1104 
1105     // TODO: We could use simplifyInstruction here to fold PHINodes and
1106     // SelectInsts. However, doing so requires to change the current
1107     // dead-operand-tracking mechanism. For instance, suppose neither loading
1108     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1109     // trap either.  However, if we simply replace %U with undef using the
1110     // current dead-operand-tracking mechanism, "load (select undef, undef,
1111     // %other)" may trap because the select may return the first operand
1112     // "undef".
1113     if (Value *Result = foldPHINodeOrSelectInst(I)) {
1114       if (Result == *U)
1115         // If the result of the constant fold will be the pointer, recurse
1116         // through the PHI/select as if we had RAUW'ed it.
1117         enqueueUsers(I);
1118       else
1119         // Otherwise the operand to the PHI/select is dead, and we can replace
1120         // it with poison.
1121         AS.DeadOperands.push_back(U);
1122 
1123       return;
1124     }
1125 
1126     if (!IsOffsetKnown)
1127       return PI.setAborted(&I);
1128 
1129     // See if we already have computed info on this node.
1130     uint64_t &Size = PHIOrSelectSizes[&I];
1131     if (!Size) {
1132       // This is a new PHI/Select, check for an unsafe use of it.
1133       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1134         return PI.setAborted(UnsafeI);
1135     }
1136 
1137     // For PHI and select operands outside the alloca, we can't nuke the entire
1138     // phi or select -- the other side might still be relevant, so we special
1139     // case them here and use a separate structure to track the operands
1140     // themselves which should be replaced with poison.
1141     // FIXME: This should instead be escaped in the event we're instrumenting
1142     // for address sanitization.
1143     if (Offset.uge(AllocSize)) {
1144       AS.DeadOperands.push_back(U);
1145       return;
1146     }
1147 
1148     insertUse(I, Offset, Size);
1149   }
1150 
1151   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1152 
1153   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1154 
1155   /// Disable SROA entirely if there are unhandled users of the alloca.
1156   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1157 };
1158 
1159 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1160     :
1161 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1162       AI(AI),
1163 #endif
1164       PointerEscapingInstr(nullptr) {
1165   SliceBuilder PB(DL, AI, *this);
1166   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1167   if (PtrI.isEscaped() || PtrI.isAborted()) {
1168     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1169     // possibly by just storing the PtrInfo in the AllocaSlices.
1170     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1171                                                   : PtrI.getAbortingInst();
1172     assert(PointerEscapingInstr && "Did not track a bad instruction");
1173     return;
1174   }
1175 
1176   llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); });
1177 
1178   // Sort the uses. This arranges for the offsets to be in ascending order,
1179   // and the sizes to be in descending order.
1180   llvm::stable_sort(Slices);
1181 }
1182 
1183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1184 
1185 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1186                          StringRef Indent) const {
1187   printSlice(OS, I, Indent);
1188   OS << "\n";
1189   printUse(OS, I, Indent);
1190 }
1191 
1192 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1193                               StringRef Indent) const {
1194   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1195      << " slice #" << (I - begin())
1196      << (I->isSplittable() ? " (splittable)" : "");
1197 }
1198 
1199 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1200                             StringRef Indent) const {
1201   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1202 }
1203 
1204 void AllocaSlices::print(raw_ostream &OS) const {
1205   if (PointerEscapingInstr) {
1206     OS << "Can't analyze slices for alloca: " << AI << "\n"
1207        << "  A pointer to this alloca escaped by:\n"
1208        << "  " << *PointerEscapingInstr << "\n";
1209     return;
1210   }
1211 
1212   OS << "Slices of alloca: " << AI << "\n";
1213   for (const_iterator I = begin(), E = end(); I != E; ++I)
1214     print(OS, I);
1215 }
1216 
1217 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1218   print(dbgs(), I);
1219 }
1220 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1221 
1222 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1223 
1224 /// Walk the range of a partitioning looking for a common type to cover this
1225 /// sequence of slices.
1226 static std::pair<Type *, IntegerType *>
1227 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E,
1228                uint64_t EndOffset) {
1229   Type *Ty = nullptr;
1230   bool TyIsCommon = true;
1231   IntegerType *ITy = nullptr;
1232 
1233   // Note that we need to look at *every* alloca slice's Use to ensure we
1234   // always get consistent results regardless of the order of slices.
1235   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1236     Use *U = I->getUse();
1237     if (isa<IntrinsicInst>(*U->getUser()))
1238       continue;
1239     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1240       continue;
1241 
1242     Type *UserTy = nullptr;
1243     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1244       UserTy = LI->getType();
1245     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1246       UserTy = SI->getValueOperand()->getType();
1247     }
1248 
1249     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1250       // If the type is larger than the partition, skip it. We only encounter
1251       // this for split integer operations where we want to use the type of the
1252       // entity causing the split. Also skip if the type is not a byte width
1253       // multiple.
1254       if (UserITy->getBitWidth() % 8 != 0 ||
1255           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1256         continue;
1257 
1258       // Track the largest bitwidth integer type used in this way in case there
1259       // is no common type.
1260       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1261         ITy = UserITy;
1262     }
1263 
1264     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1265     // depend on types skipped above.
1266     if (!UserTy || (Ty && Ty != UserTy))
1267       TyIsCommon = false; // Give up on anything but an iN type.
1268     else
1269       Ty = UserTy;
1270   }
1271 
1272   return {TyIsCommon ? Ty : nullptr, ITy};
1273 }
1274 
1275 /// PHI instructions that use an alloca and are subsequently loaded can be
1276 /// rewritten to load both input pointers in the pred blocks and then PHI the
1277 /// results, allowing the load of the alloca to be promoted.
1278 /// From this:
1279 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1280 ///   %V = load i32* %P2
1281 /// to:
1282 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1283 ///   ...
1284 ///   %V2 = load i32* %Other
1285 ///   ...
1286 ///   %V = phi [i32 %V1, i32 %V2]
1287 ///
1288 /// We can do this to a select if its only uses are loads and if the operands
1289 /// to the select can be loaded unconditionally.
1290 ///
1291 /// FIXME: This should be hoisted into a generic utility, likely in
1292 /// Transforms/Util/Local.h
1293 static bool isSafePHIToSpeculate(PHINode &PN) {
1294   const DataLayout &DL = PN.getModule()->getDataLayout();
1295 
1296   // For now, we can only do this promotion if the load is in the same block
1297   // as the PHI, and if there are no stores between the phi and load.
1298   // TODO: Allow recursive phi users.
1299   // TODO: Allow stores.
1300   BasicBlock *BB = PN.getParent();
1301   Align MaxAlign;
1302   uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1303   Type *LoadType = nullptr;
1304   for (User *U : PN.users()) {
1305     LoadInst *LI = dyn_cast<LoadInst>(U);
1306     if (!LI || !LI->isSimple())
1307       return false;
1308 
1309     // For now we only allow loads in the same block as the PHI.  This is
1310     // a common case that happens when instcombine merges two loads through
1311     // a PHI.
1312     if (LI->getParent() != BB)
1313       return false;
1314 
1315     if (LoadType) {
1316       if (LoadType != LI->getType())
1317         return false;
1318     } else {
1319       LoadType = LI->getType();
1320     }
1321 
1322     // Ensure that there are no instructions between the PHI and the load that
1323     // could store.
1324     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1325       if (BBI->mayWriteToMemory())
1326         return false;
1327 
1328     MaxAlign = std::max(MaxAlign, LI->getAlign());
1329   }
1330 
1331   if (!LoadType)
1332     return false;
1333 
1334   APInt LoadSize =
1335       APInt(APWidth, DL.getTypeStoreSize(LoadType).getFixedValue());
1336 
1337   // We can only transform this if it is safe to push the loads into the
1338   // predecessor blocks. The only thing to watch out for is that we can't put
1339   // a possibly trapping load in the predecessor if it is a critical edge.
1340   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1341     Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1342     Value *InVal = PN.getIncomingValue(Idx);
1343 
1344     // If the value is produced by the terminator of the predecessor (an
1345     // invoke) or it has side-effects, there is no valid place to put a load
1346     // in the predecessor.
1347     if (TI == InVal || TI->mayHaveSideEffects())
1348       return false;
1349 
1350     // If the predecessor has a single successor, then the edge isn't
1351     // critical.
1352     if (TI->getNumSuccessors() == 1)
1353       continue;
1354 
1355     // If this pointer is always safe to load, or if we can prove that there
1356     // is already a load in the block, then we can move the load to the pred
1357     // block.
1358     if (isSafeToLoadUnconditionally(InVal, MaxAlign, LoadSize, DL, TI))
1359       continue;
1360 
1361     return false;
1362   }
1363 
1364   return true;
1365 }
1366 
1367 static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) {
1368   LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1369 
1370   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1371   Type *LoadTy = SomeLoad->getType();
1372   IRB.SetInsertPoint(&PN);
1373   PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1374                                  PN.getName() + ".sroa.speculated");
1375 
1376   // Get the AA tags and alignment to use from one of the loads. It does not
1377   // matter which one we get and if any differ.
1378   AAMDNodes AATags = SomeLoad->getAAMetadata();
1379   Align Alignment = SomeLoad->getAlign();
1380 
1381   // Rewrite all loads of the PN to use the new PHI.
1382   while (!PN.use_empty()) {
1383     LoadInst *LI = cast<LoadInst>(PN.user_back());
1384     LI->replaceAllUsesWith(NewPN);
1385     LI->eraseFromParent();
1386   }
1387 
1388   // Inject loads into all of the pred blocks.
1389   DenseMap<BasicBlock*, Value*> InjectedLoads;
1390   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1391     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1392     Value *InVal = PN.getIncomingValue(Idx);
1393 
1394     // A PHI node is allowed to have multiple (duplicated) entries for the same
1395     // basic block, as long as the value is the same. So if we already injected
1396     // a load in the predecessor, then we should reuse the same load for all
1397     // duplicated entries.
1398     if (Value* V = InjectedLoads.lookup(Pred)) {
1399       NewPN->addIncoming(V, Pred);
1400       continue;
1401     }
1402 
1403     Instruction *TI = Pred->getTerminator();
1404     IRB.SetInsertPoint(TI);
1405 
1406     LoadInst *Load = IRB.CreateAlignedLoad(
1407         LoadTy, InVal, Alignment,
1408         (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1409     ++NumLoadsSpeculated;
1410     if (AATags)
1411       Load->setAAMetadata(AATags);
1412     NewPN->addIncoming(Load, Pred);
1413     InjectedLoads[Pred] = Load;
1414   }
1415 
1416   LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1417   PN.eraseFromParent();
1418 }
1419 
1420 sroa::SelectHandSpeculativity &
1421 sroa::SelectHandSpeculativity::setAsSpeculatable(bool isTrueVal) {
1422   if (isTrueVal)
1423     Bitfield::set<sroa::SelectHandSpeculativity::TrueVal>(Storage, true);
1424   else
1425     Bitfield::set<sroa::SelectHandSpeculativity::FalseVal>(Storage, true);
1426   return *this;
1427 }
1428 
1429 bool sroa::SelectHandSpeculativity::isSpeculatable(bool isTrueVal) const {
1430   return isTrueVal
1431              ? Bitfield::get<sroa::SelectHandSpeculativity::TrueVal>(Storage)
1432              : Bitfield::get<sroa::SelectHandSpeculativity::FalseVal>(Storage);
1433 }
1434 
1435 bool sroa::SelectHandSpeculativity::areAllSpeculatable() const {
1436   return isSpeculatable(/*isTrueVal=*/true) &&
1437          isSpeculatable(/*isTrueVal=*/false);
1438 }
1439 
1440 bool sroa::SelectHandSpeculativity::areAnySpeculatable() const {
1441   return isSpeculatable(/*isTrueVal=*/true) ||
1442          isSpeculatable(/*isTrueVal=*/false);
1443 }
1444 bool sroa::SelectHandSpeculativity::areNoneSpeculatable() const {
1445   return !areAnySpeculatable();
1446 }
1447 
1448 static sroa::SelectHandSpeculativity
1449 isSafeLoadOfSelectToSpeculate(LoadInst &LI, SelectInst &SI, bool PreserveCFG) {
1450   assert(LI.isSimple() && "Only for simple loads");
1451   sroa::SelectHandSpeculativity Spec;
1452 
1453   const DataLayout &DL = SI.getModule()->getDataLayout();
1454   for (Value *Value : {SI.getTrueValue(), SI.getFalseValue()})
1455     if (isSafeToLoadUnconditionally(Value, LI.getType(), LI.getAlign(), DL,
1456                                     &LI))
1457       Spec.setAsSpeculatable(/*isTrueVal=*/Value == SI.getTrueValue());
1458     else if (PreserveCFG)
1459       return Spec;
1460 
1461   return Spec;
1462 }
1463 
1464 std::optional<sroa::RewriteableMemOps>
1465 SROAPass::isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG) {
1466   RewriteableMemOps Ops;
1467 
1468   for (User *U : SI.users()) {
1469     if (auto *BC = dyn_cast<BitCastInst>(U); BC && BC->hasOneUse())
1470       U = *BC->user_begin();
1471 
1472     if (auto *Store = dyn_cast<StoreInst>(U)) {
1473       // Note that atomic stores can be transformed; atomic semantics do not
1474       // have any meaning for a local alloca. Stores are not speculatable,
1475       // however, so if we can't turn it into a predicated store, we are done.
1476       if (Store->isVolatile() || PreserveCFG)
1477         return {}; // Give up on this `select`.
1478       Ops.emplace_back(Store);
1479       continue;
1480     }
1481 
1482     auto *LI = dyn_cast<LoadInst>(U);
1483 
1484     // Note that atomic loads can be transformed;
1485     // atomic semantics do not have any meaning for a local alloca.
1486     if (!LI || LI->isVolatile())
1487       return {}; // Give up on this `select`.
1488 
1489     PossiblySpeculatableLoad Load(LI);
1490     if (!LI->isSimple()) {
1491       // If the `load` is not simple, we can't speculatively execute it,
1492       // but we could handle this via a CFG modification. But can we?
1493       if (PreserveCFG)
1494         return {}; // Give up on this `select`.
1495       Ops.emplace_back(Load);
1496       continue;
1497     }
1498 
1499     sroa::SelectHandSpeculativity Spec =
1500         isSafeLoadOfSelectToSpeculate(*LI, SI, PreserveCFG);
1501     if (PreserveCFG && !Spec.areAllSpeculatable())
1502       return {}; // Give up on this `select`.
1503 
1504     Load.setInt(Spec);
1505     Ops.emplace_back(Load);
1506   }
1507 
1508   return Ops;
1509 }
1510 
1511 static void speculateSelectInstLoads(SelectInst &SI, LoadInst &LI,
1512                                      IRBuilderTy &IRB) {
1513   LLVM_DEBUG(dbgs() << "    original load: " << SI << "\n");
1514 
1515   Value *TV = SI.getTrueValue();
1516   Value *FV = SI.getFalseValue();
1517   // Replace the given load of the select with a select of two loads.
1518 
1519   assert(LI.isSimple() && "We only speculate simple loads");
1520 
1521   IRB.SetInsertPoint(&LI);
1522 
1523   if (auto *TypedPtrTy = LI.getPointerOperandType();
1524       !TypedPtrTy->isOpaquePointerTy() && SI.getType() != TypedPtrTy) {
1525     TV = IRB.CreateBitOrPointerCast(TV, TypedPtrTy, "");
1526     FV = IRB.CreateBitOrPointerCast(FV, TypedPtrTy, "");
1527   }
1528 
1529   LoadInst *TL =
1530       IRB.CreateAlignedLoad(LI.getType(), TV, LI.getAlign(),
1531                             LI.getName() + ".sroa.speculate.load.true");
1532   LoadInst *FL =
1533       IRB.CreateAlignedLoad(LI.getType(), FV, LI.getAlign(),
1534                             LI.getName() + ".sroa.speculate.load.false");
1535   NumLoadsSpeculated += 2;
1536 
1537   // Transfer alignment and AA info if present.
1538   TL->setAlignment(LI.getAlign());
1539   FL->setAlignment(LI.getAlign());
1540 
1541   AAMDNodes Tags = LI.getAAMetadata();
1542   if (Tags) {
1543     TL->setAAMetadata(Tags);
1544     FL->setAAMetadata(Tags);
1545   }
1546 
1547   Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1548                               LI.getName() + ".sroa.speculated");
1549 
1550   LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1551   LI.replaceAllUsesWith(V);
1552 }
1553 
1554 template <typename T>
1555 static void rewriteMemOpOfSelect(SelectInst &SI, T &I,
1556                                  sroa::SelectHandSpeculativity Spec,
1557                                  DomTreeUpdater &DTU) {
1558   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Only for load and store!");
1559   LLVM_DEBUG(dbgs() << "    original mem op: " << I << "\n");
1560   BasicBlock *Head = I.getParent();
1561   Instruction *ThenTerm = nullptr;
1562   Instruction *ElseTerm = nullptr;
1563   if (Spec.areNoneSpeculatable())
1564     SplitBlockAndInsertIfThenElse(SI.getCondition(), &I, &ThenTerm, &ElseTerm,
1565                                   SI.getMetadata(LLVMContext::MD_prof), &DTU);
1566   else {
1567     SplitBlockAndInsertIfThen(SI.getCondition(), &I, /*Unreachable=*/false,
1568                               SI.getMetadata(LLVMContext::MD_prof), &DTU,
1569                               /*LI=*/nullptr, /*ThenBlock=*/nullptr);
1570     if (Spec.isSpeculatable(/*isTrueVal=*/true))
1571       cast<BranchInst>(Head->getTerminator())->swapSuccessors();
1572   }
1573   auto *HeadBI = cast<BranchInst>(Head->getTerminator());
1574   Spec = {}; // Do not use `Spec` beyond this point.
1575   BasicBlock *Tail = I.getParent();
1576   Tail->setName(Head->getName() + ".cont");
1577   PHINode *PN;
1578   if (isa<LoadInst>(I))
1579     PN = PHINode::Create(I.getType(), 2, "", &I);
1580   for (BasicBlock *SuccBB : successors(Head)) {
1581     bool IsThen = SuccBB == HeadBI->getSuccessor(0);
1582     int SuccIdx = IsThen ? 0 : 1;
1583     auto *NewMemOpBB = SuccBB == Tail ? Head : SuccBB;
1584     auto &CondMemOp = cast<T>(*I.clone());
1585     if (NewMemOpBB != Head) {
1586       NewMemOpBB->setName(Head->getName() + (IsThen ? ".then" : ".else"));
1587       if (isa<LoadInst>(I))
1588         ++NumLoadsPredicated;
1589       else
1590         ++NumStoresPredicated;
1591     } else {
1592       CondMemOp.dropUndefImplyingAttrsAndUnknownMetadata();
1593       ++NumLoadsSpeculated;
1594     }
1595     CondMemOp.insertBefore(NewMemOpBB->getTerminator());
1596     Value *Ptr = SI.getOperand(1 + SuccIdx);
1597     if (auto *PtrTy = Ptr->getType();
1598         !PtrTy->isOpaquePointerTy() &&
1599         PtrTy != CondMemOp.getPointerOperandType())
1600       Ptr = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
1601           Ptr, CondMemOp.getPointerOperandType(), "", &CondMemOp);
1602     CondMemOp.setOperand(I.getPointerOperandIndex(), Ptr);
1603     if (isa<LoadInst>(I)) {
1604       CondMemOp.setName(I.getName() + (IsThen ? ".then" : ".else") + ".val");
1605       PN->addIncoming(&CondMemOp, NewMemOpBB);
1606     } else
1607       LLVM_DEBUG(dbgs() << "                 to: " << CondMemOp << "\n");
1608   }
1609   if (isa<LoadInst>(I)) {
1610     PN->takeName(&I);
1611     LLVM_DEBUG(dbgs() << "          to: " << *PN << "\n");
1612     I.replaceAllUsesWith(PN);
1613   }
1614 }
1615 
1616 static void rewriteMemOpOfSelect(SelectInst &SelInst, Instruction &I,
1617                                  sroa::SelectHandSpeculativity Spec,
1618                                  DomTreeUpdater &DTU) {
1619   if (auto *LI = dyn_cast<LoadInst>(&I))
1620     rewriteMemOpOfSelect(SelInst, *LI, Spec, DTU);
1621   else if (auto *SI = dyn_cast<StoreInst>(&I))
1622     rewriteMemOpOfSelect(SelInst, *SI, Spec, DTU);
1623   else
1624     llvm_unreachable_internal("Only for load and store.");
1625 }
1626 
1627 static bool rewriteSelectInstMemOps(SelectInst &SI,
1628                                     const sroa::RewriteableMemOps &Ops,
1629                                     IRBuilderTy &IRB, DomTreeUpdater *DTU) {
1630   bool CFGChanged = false;
1631   LLVM_DEBUG(dbgs() << "    original select: " << SI << "\n");
1632 
1633   for (const RewriteableMemOp &Op : Ops) {
1634     sroa::SelectHandSpeculativity Spec;
1635     Instruction *I;
1636     if (auto *const *US = std::get_if<UnspeculatableStore>(&Op)) {
1637       I = *US;
1638     } else {
1639       auto PSL = std::get<PossiblySpeculatableLoad>(Op);
1640       I = PSL.getPointer();
1641       Spec = PSL.getInt();
1642     }
1643     if (Spec.areAllSpeculatable()) {
1644       speculateSelectInstLoads(SI, cast<LoadInst>(*I), IRB);
1645     } else {
1646       assert(DTU && "Should not get here when not allowed to modify the CFG!");
1647       rewriteMemOpOfSelect(SI, *I, Spec, *DTU);
1648       CFGChanged = true;
1649     }
1650     I->eraseFromParent();
1651   }
1652 
1653   for (User *U : make_early_inc_range(SI.users()))
1654     cast<BitCastInst>(U)->eraseFromParent();
1655   SI.eraseFromParent();
1656   return CFGChanged;
1657 }
1658 
1659 /// Build a GEP out of a base pointer and indices.
1660 ///
1661 /// This will return the BasePtr if that is valid, or build a new GEP
1662 /// instruction using the IRBuilder if GEP-ing is needed.
1663 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1664                        SmallVectorImpl<Value *> &Indices,
1665                        const Twine &NamePrefix) {
1666   if (Indices.empty())
1667     return BasePtr;
1668 
1669   // A single zero index is a no-op, so check for this and avoid building a GEP
1670   // in that case.
1671   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1672     return BasePtr;
1673 
1674   // buildGEP() is only called for non-opaque pointers.
1675   return IRB.CreateInBoundsGEP(
1676       BasePtr->getType()->getNonOpaquePointerElementType(), BasePtr, Indices,
1677       NamePrefix + "sroa_idx");
1678 }
1679 
1680 /// Get a natural GEP off of the BasePtr walking through Ty toward
1681 /// TargetTy without changing the offset of the pointer.
1682 ///
1683 /// This routine assumes we've already established a properly offset GEP with
1684 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1685 /// zero-indices down through type layers until we find one the same as
1686 /// TargetTy. If we can't find one with the same type, we at least try to use
1687 /// one with the same size. If none of that works, we just produce the GEP as
1688 /// indicated by Indices to have the correct offset.
1689 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1690                                     Value *BasePtr, Type *Ty, Type *TargetTy,
1691                                     SmallVectorImpl<Value *> &Indices,
1692                                     const Twine &NamePrefix) {
1693   if (Ty == TargetTy)
1694     return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1695 
1696   // Offset size to use for the indices.
1697   unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1698 
1699   // See if we can descend into a struct and locate a field with the correct
1700   // type.
1701   unsigned NumLayers = 0;
1702   Type *ElementTy = Ty;
1703   do {
1704     if (ElementTy->isPointerTy())
1705       break;
1706 
1707     if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1708       ElementTy = ArrayTy->getElementType();
1709       Indices.push_back(IRB.getIntN(OffsetSize, 0));
1710     } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1711       ElementTy = VectorTy->getElementType();
1712       Indices.push_back(IRB.getInt32(0));
1713     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1714       if (STy->element_begin() == STy->element_end())
1715         break; // Nothing left to descend into.
1716       ElementTy = *STy->element_begin();
1717       Indices.push_back(IRB.getInt32(0));
1718     } else {
1719       break;
1720     }
1721     ++NumLayers;
1722   } while (ElementTy != TargetTy);
1723   if (ElementTy != TargetTy)
1724     Indices.erase(Indices.end() - NumLayers, Indices.end());
1725 
1726   return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1727 }
1728 
1729 /// Get a natural GEP from a base pointer to a particular offset and
1730 /// resulting in a particular type.
1731 ///
1732 /// The goal is to produce a "natural" looking GEP that works with the existing
1733 /// composite types to arrive at the appropriate offset and element type for
1734 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1735 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1736 /// Indices, and setting Ty to the result subtype.
1737 ///
1738 /// If no natural GEP can be constructed, this function returns null.
1739 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1740                                       Value *Ptr, APInt Offset, Type *TargetTy,
1741                                       SmallVectorImpl<Value *> &Indices,
1742                                       const Twine &NamePrefix) {
1743   PointerType *Ty = cast<PointerType>(Ptr->getType());
1744 
1745   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1746   // an i8.
1747   if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1748     return nullptr;
1749 
1750   Type *ElementTy = Ty->getNonOpaquePointerElementType();
1751   if (!ElementTy->isSized())
1752     return nullptr; // We can't GEP through an unsized element.
1753 
1754   SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(ElementTy, Offset);
1755   if (Offset != 0)
1756     return nullptr;
1757 
1758   for (const APInt &Index : IntIndices)
1759     Indices.push_back(IRB.getInt(Index));
1760   return getNaturalGEPWithType(IRB, DL, Ptr, ElementTy, TargetTy, Indices,
1761                                NamePrefix);
1762 }
1763 
1764 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1765 /// resulting pointer has PointerTy.
1766 ///
1767 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1768 /// and produces the pointer type desired. Where it cannot, it will try to use
1769 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1770 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1771 /// bitcast to the type.
1772 ///
1773 /// The strategy for finding the more natural GEPs is to peel off layers of the
1774 /// pointer, walking back through bit casts and GEPs, searching for a base
1775 /// pointer from which we can compute a natural GEP with the desired
1776 /// properties. The algorithm tries to fold as many constant indices into
1777 /// a single GEP as possible, thus making each GEP more independent of the
1778 /// surrounding code.
1779 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1780                              APInt Offset, Type *PointerTy,
1781                              const Twine &NamePrefix) {
1782   // Create i8 GEP for opaque pointers.
1783   if (Ptr->getType()->isOpaquePointerTy()) {
1784     if (Offset != 0)
1785       Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset),
1786                                   NamePrefix + "sroa_idx");
1787     return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy,
1788                                                    NamePrefix + "sroa_cast");
1789   }
1790 
1791   // Even though we don't look through PHI nodes, we could be called on an
1792   // instruction in an unreachable block, which may be on a cycle.
1793   SmallPtrSet<Value *, 4> Visited;
1794   Visited.insert(Ptr);
1795   SmallVector<Value *, 4> Indices;
1796 
1797   // We may end up computing an offset pointer that has the wrong type. If we
1798   // never are able to compute one directly that has the correct type, we'll
1799   // fall back to it, so keep it and the base it was computed from around here.
1800   Value *OffsetPtr = nullptr;
1801   Value *OffsetBasePtr;
1802 
1803   // Remember any i8 pointer we come across to re-use if we need to do a raw
1804   // byte offset.
1805   Value *Int8Ptr = nullptr;
1806   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1807 
1808   PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1809   Type *TargetTy = TargetPtrTy->getNonOpaquePointerElementType();
1810 
1811   // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1812   // address space from the expected `PointerTy` (the pointer to be used).
1813   // Adjust the pointer type based the original storage pointer.
1814   auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1815   PointerTy = TargetTy->getPointerTo(AS);
1816 
1817   do {
1818     // First fold any existing GEPs into the offset.
1819     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1820       APInt GEPOffset(Offset.getBitWidth(), 0);
1821       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1822         break;
1823       Offset += GEPOffset;
1824       Ptr = GEP->getPointerOperand();
1825       if (!Visited.insert(Ptr).second)
1826         break;
1827     }
1828 
1829     // See if we can perform a natural GEP here.
1830     Indices.clear();
1831     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1832                                            Indices, NamePrefix)) {
1833       // If we have a new natural pointer at the offset, clear out any old
1834       // offset pointer we computed. Unless it is the base pointer or
1835       // a non-instruction, we built a GEP we don't need. Zap it.
1836       if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1837         if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1838           assert(I->use_empty() && "Built a GEP with uses some how!");
1839           I->eraseFromParent();
1840         }
1841       OffsetPtr = P;
1842       OffsetBasePtr = Ptr;
1843       // If we also found a pointer of the right type, we're done.
1844       if (P->getType() == PointerTy)
1845         break;
1846     }
1847 
1848     // Stash this pointer if we've found an i8*.
1849     if (Ptr->getType()->isIntegerTy(8)) {
1850       Int8Ptr = Ptr;
1851       Int8PtrOffset = Offset;
1852     }
1853 
1854     // Peel off a layer of the pointer and update the offset appropriately.
1855     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1856       Ptr = cast<Operator>(Ptr)->getOperand(0);
1857     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1858       if (GA->isInterposable())
1859         break;
1860       Ptr = GA->getAliasee();
1861     } else {
1862       break;
1863     }
1864     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1865   } while (Visited.insert(Ptr).second);
1866 
1867   if (!OffsetPtr) {
1868     if (!Int8Ptr) {
1869       Int8Ptr = IRB.CreateBitCast(
1870           Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1871           NamePrefix + "sroa_raw_cast");
1872       Int8PtrOffset = Offset;
1873     }
1874 
1875     OffsetPtr = Int8PtrOffset == 0
1876                     ? Int8Ptr
1877                     : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1878                                             IRB.getInt(Int8PtrOffset),
1879                                             NamePrefix + "sroa_raw_idx");
1880   }
1881   Ptr = OffsetPtr;
1882 
1883   // On the off chance we were targeting i8*, guard the bitcast here.
1884   if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1885     Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1886                                                   TargetPtrTy,
1887                                                   NamePrefix + "sroa_cast");
1888   }
1889 
1890   return Ptr;
1891 }
1892 
1893 /// Compute the adjusted alignment for a load or store from an offset.
1894 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
1895   return commonAlignment(getLoadStoreAlignment(I), Offset);
1896 }
1897 
1898 /// Test whether we can convert a value from the old to the new type.
1899 ///
1900 /// This predicate should be used to guard calls to convertValue in order to
1901 /// ensure that we only try to convert viable values. The strategy is that we
1902 /// will peel off single element struct and array wrappings to get to an
1903 /// underlying value, and convert that value.
1904 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1905   if (OldTy == NewTy)
1906     return true;
1907 
1908   // For integer types, we can't handle any bit-width differences. This would
1909   // break both vector conversions with extension and introduce endianness
1910   // issues when in conjunction with loads and stores.
1911   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1912     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1913                cast<IntegerType>(NewTy)->getBitWidth() &&
1914            "We can't have the same bitwidth for different int types");
1915     return false;
1916   }
1917 
1918   if (DL.getTypeSizeInBits(NewTy).getFixedValue() !=
1919       DL.getTypeSizeInBits(OldTy).getFixedValue())
1920     return false;
1921   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1922     return false;
1923 
1924   // We can convert pointers to integers and vice-versa. Same for vectors
1925   // of pointers and integers.
1926   OldTy = OldTy->getScalarType();
1927   NewTy = NewTy->getScalarType();
1928   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1929     if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1930       unsigned OldAS = OldTy->getPointerAddressSpace();
1931       unsigned NewAS = NewTy->getPointerAddressSpace();
1932       // Convert pointers if they are pointers from the same address space or
1933       // different integral (not non-integral) address spaces with the same
1934       // pointer size.
1935       return OldAS == NewAS ||
1936              (!DL.isNonIntegralAddressSpace(OldAS) &&
1937               !DL.isNonIntegralAddressSpace(NewAS) &&
1938               DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1939     }
1940 
1941     // We can convert integers to integral pointers, but not to non-integral
1942     // pointers.
1943     if (OldTy->isIntegerTy())
1944       return !DL.isNonIntegralPointerType(NewTy);
1945 
1946     // We can convert integral pointers to integers, but non-integral pointers
1947     // need to remain pointers.
1948     if (!DL.isNonIntegralPointerType(OldTy))
1949       return NewTy->isIntegerTy();
1950 
1951     return false;
1952   }
1953 
1954   if (OldTy->isTargetExtTy() || NewTy->isTargetExtTy())
1955     return false;
1956 
1957   return true;
1958 }
1959 
1960 /// Generic routine to convert an SSA value to a value of a different
1961 /// type.
1962 ///
1963 /// This will try various different casting techniques, such as bitcasts,
1964 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1965 /// two types for viability with this routine.
1966 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1967                            Type *NewTy) {
1968   Type *OldTy = V->getType();
1969   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1970 
1971   if (OldTy == NewTy)
1972     return V;
1973 
1974   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1975          "Integer types must be the exact same to convert.");
1976 
1977   // See if we need inttoptr for this type pair. May require additional bitcast.
1978   if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1979     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1980     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1981     // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
1982     // Directly handle i64 to i8*
1983     return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1984                               NewTy);
1985   }
1986 
1987   // See if we need ptrtoint for this type pair. May require additional bitcast.
1988   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1989     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1990     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1991     // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
1992     // Expand i8* to i64 --> i8* to i64 to i64
1993     return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1994                              NewTy);
1995   }
1996 
1997   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1998     unsigned OldAS = OldTy->getPointerAddressSpace();
1999     unsigned NewAS = NewTy->getPointerAddressSpace();
2000     // To convert pointers with different address spaces (they are already
2001     // checked convertible, i.e. they have the same pointer size), so far we
2002     // cannot use `bitcast` (which has restrict on the same address space) or
2003     // `addrspacecast` (which is not always no-op casting). Instead, use a pair
2004     // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
2005     // size.
2006     if (OldAS != NewAS) {
2007       assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
2008       return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
2009                                 NewTy);
2010     }
2011   }
2012 
2013   return IRB.CreateBitCast(V, NewTy);
2014 }
2015 
2016 /// Test whether the given slice use can be promoted to a vector.
2017 ///
2018 /// This function is called to test each entry in a partition which is slated
2019 /// for a single slice.
2020 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
2021                                             VectorType *Ty,
2022                                             uint64_t ElementSize,
2023                                             const DataLayout &DL) {
2024   // First validate the slice offsets.
2025   uint64_t BeginOffset =
2026       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
2027   uint64_t BeginIndex = BeginOffset / ElementSize;
2028   if (BeginIndex * ElementSize != BeginOffset ||
2029       BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements())
2030     return false;
2031   uint64_t EndOffset =
2032       std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
2033   uint64_t EndIndex = EndOffset / ElementSize;
2034   if (EndIndex * ElementSize != EndOffset ||
2035       EndIndex > cast<FixedVectorType>(Ty)->getNumElements())
2036     return false;
2037 
2038   assert(EndIndex > BeginIndex && "Empty vector!");
2039   uint64_t NumElements = EndIndex - BeginIndex;
2040   Type *SliceTy = (NumElements == 1)
2041                       ? Ty->getElementType()
2042                       : FixedVectorType::get(Ty->getElementType(), NumElements);
2043 
2044   Type *SplitIntTy =
2045       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
2046 
2047   Use *U = S.getUse();
2048 
2049   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2050     if (MI->isVolatile())
2051       return false;
2052     if (!S.isSplittable())
2053       return false; // Skip any unsplittable intrinsics.
2054   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2055     if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
2056       return false;
2057   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2058     if (LI->isVolatile())
2059       return false;
2060     Type *LTy = LI->getType();
2061     // Disable vector promotion when there are loads or stores of an FCA.
2062     if (LTy->isStructTy())
2063       return false;
2064     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
2065       assert(LTy->isIntegerTy());
2066       LTy = SplitIntTy;
2067     }
2068     if (!canConvertValue(DL, SliceTy, LTy))
2069       return false;
2070   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2071     if (SI->isVolatile())
2072       return false;
2073     Type *STy = SI->getValueOperand()->getType();
2074     // Disable vector promotion when there are loads or stores of an FCA.
2075     if (STy->isStructTy())
2076       return false;
2077     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
2078       assert(STy->isIntegerTy());
2079       STy = SplitIntTy;
2080     }
2081     if (!canConvertValue(DL, STy, SliceTy))
2082       return false;
2083   } else {
2084     return false;
2085   }
2086 
2087   return true;
2088 }
2089 
2090 /// Test whether a vector type is viable for promotion.
2091 ///
2092 /// This implements the necessary checking for \c isVectorPromotionViable over
2093 /// all slices of the alloca for the given VectorType.
2094 static bool checkVectorTypeForPromotion(Partition &P, VectorType *VTy,
2095                                         const DataLayout &DL) {
2096   uint64_t ElementSize =
2097       DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue();
2098 
2099   // While the definition of LLVM vectors is bitpacked, we don't support sizes
2100   // that aren't byte sized.
2101   if (ElementSize % 8)
2102     return false;
2103   assert((DL.getTypeSizeInBits(VTy).getFixedValue() % 8) == 0 &&
2104          "vector size not a multiple of element size?");
2105   ElementSize /= 8;
2106 
2107   for (const Slice &S : P)
2108     if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
2109       return false;
2110 
2111   for (const Slice *S : P.splitSliceTails())
2112     if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
2113       return false;
2114 
2115   return true;
2116 }
2117 
2118 /// Test whether the given alloca partitioning and range of slices can be
2119 /// promoted to a vector.
2120 ///
2121 /// This is a quick test to check whether we can rewrite a particular alloca
2122 /// partition (and its newly formed alloca) into a vector alloca with only
2123 /// whole-vector loads and stores such that it could be promoted to a vector
2124 /// SSA value. We only can ensure this for a limited set of operations, and we
2125 /// don't want to do the rewrites unless we are confident that the result will
2126 /// be promotable, so we have an early test here.
2127 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
2128   // Collect the candidate types for vector-based promotion. Also track whether
2129   // we have different element types.
2130   SmallVector<VectorType *, 4> CandidateTys;
2131   Type *CommonEltTy = nullptr;
2132   VectorType *CommonVecPtrTy = nullptr;
2133   bool HaveVecPtrTy = false;
2134   bool HaveCommonEltTy = true;
2135   bool HaveCommonVecPtrTy = true;
2136   auto CheckCandidateType = [&](Type *Ty) {
2137     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2138       // Return if bitcast to vectors is different for total size in bits.
2139       if (!CandidateTys.empty()) {
2140         VectorType *V = CandidateTys[0];
2141         if (DL.getTypeSizeInBits(VTy).getFixedValue() !=
2142             DL.getTypeSizeInBits(V).getFixedValue()) {
2143           CandidateTys.clear();
2144           return;
2145         }
2146       }
2147       CandidateTys.push_back(VTy);
2148       Type *EltTy = VTy->getElementType();
2149 
2150       if (!CommonEltTy)
2151         CommonEltTy = EltTy;
2152       else if (CommonEltTy != EltTy)
2153         HaveCommonEltTy = false;
2154 
2155       if (EltTy->isPointerTy()) {
2156         HaveVecPtrTy = true;
2157         if (!CommonVecPtrTy)
2158           CommonVecPtrTy = VTy;
2159         else if (CommonVecPtrTy != VTy)
2160           HaveCommonVecPtrTy = false;
2161       }
2162     }
2163   };
2164   // Consider any loads or stores that are the exact size of the slice.
2165   for (const Slice &S : P)
2166     if (S.beginOffset() == P.beginOffset() &&
2167         S.endOffset() == P.endOffset()) {
2168       if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
2169         CheckCandidateType(LI->getType());
2170       else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
2171         CheckCandidateType(SI->getValueOperand()->getType());
2172     }
2173 
2174   // If we didn't find a vector type, nothing to do here.
2175   if (CandidateTys.empty())
2176     return nullptr;
2177 
2178   // Pointer-ness is sticky, if we had a vector-of-pointers candidate type,
2179   // then we should choose it, not some other alternative.
2180   // But, we can't perform a no-op pointer address space change via bitcast,
2181   // so if we didn't have a common pointer element type, bail.
2182   if (HaveVecPtrTy && !HaveCommonVecPtrTy)
2183     return nullptr;
2184 
2185   // Try to pick the "best" element type out of the choices.
2186   if (!HaveCommonEltTy && HaveVecPtrTy) {
2187     // If there was a pointer element type, there's really only one choice.
2188     CandidateTys.clear();
2189     CandidateTys.push_back(CommonVecPtrTy);
2190   } else if (!HaveCommonEltTy && !HaveVecPtrTy) {
2191     // Integer-ify vector types.
2192     for (VectorType *&VTy : CandidateTys) {
2193       if (!VTy->getElementType()->isIntegerTy())
2194         VTy = cast<VectorType>(VTy->getWithNewType(IntegerType::getIntNTy(
2195             VTy->getContext(), VTy->getScalarSizeInBits())));
2196     }
2197 
2198     // Rank the remaining candidate vector types. This is easy because we know
2199     // they're all integer vectors. We sort by ascending number of elements.
2200     auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
2201       (void)DL;
2202       assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() ==
2203                  DL.getTypeSizeInBits(LHSTy).getFixedValue() &&
2204              "Cannot have vector types of different sizes!");
2205       assert(RHSTy->getElementType()->isIntegerTy() &&
2206              "All non-integer types eliminated!");
2207       assert(LHSTy->getElementType()->isIntegerTy() &&
2208              "All non-integer types eliminated!");
2209       return cast<FixedVectorType>(RHSTy)->getNumElements() <
2210              cast<FixedVectorType>(LHSTy)->getNumElements();
2211     };
2212     llvm::sort(CandidateTys, RankVectorTypes);
2213     CandidateTys.erase(
2214         std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
2215         CandidateTys.end());
2216   } else {
2217 // The only way to have the same element type in every vector type is to
2218 // have the same vector type. Check that and remove all but one.
2219 #ifndef NDEBUG
2220     for (VectorType *VTy : CandidateTys) {
2221       assert(VTy->getElementType() == CommonEltTy &&
2222              "Unaccounted for element type!");
2223       assert(VTy == CandidateTys[0] &&
2224              "Different vector types with the same element type!");
2225     }
2226 #endif
2227     CandidateTys.resize(1);
2228   }
2229 
2230   // FIXME: hack. Do we have a named constant for this?
2231   // SDAG SDNode can't have more than 65535 operands.
2232   llvm::erase_if(CandidateTys, [](VectorType *VTy) {
2233     return cast<FixedVectorType>(VTy)->getNumElements() >
2234            std::numeric_limits<unsigned short>::max();
2235   });
2236 
2237   for (VectorType *VTy : CandidateTys)
2238     if (checkVectorTypeForPromotion(P, VTy, DL))
2239       return VTy;
2240 
2241   return nullptr;
2242 }
2243 
2244 /// Test whether a slice of an alloca is valid for integer widening.
2245 ///
2246 /// This implements the necessary checking for the \c isIntegerWideningViable
2247 /// test below on a single slice of the alloca.
2248 static bool isIntegerWideningViableForSlice(const Slice &S,
2249                                             uint64_t AllocBeginOffset,
2250                                             Type *AllocaTy,
2251                                             const DataLayout &DL,
2252                                             bool &WholeAllocaOp) {
2253   uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedValue();
2254 
2255   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2256   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2257 
2258   Use *U = S.getUse();
2259 
2260   // Lifetime intrinsics operate over the whole alloca whose sizes are usually
2261   // larger than other load/store slices (RelEnd > Size). But lifetime are
2262   // always promotable and should not impact other slices' promotability of the
2263   // partition.
2264   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2265     if (II->isLifetimeStartOrEnd() || II->isDroppable())
2266       return true;
2267   }
2268 
2269   // We can't reasonably handle cases where the load or store extends past
2270   // the end of the alloca's type and into its padding.
2271   if (RelEnd > Size)
2272     return false;
2273 
2274   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2275     if (LI->isVolatile())
2276       return false;
2277     // We can't handle loads that extend past the allocated memory.
2278     if (DL.getTypeStoreSize(LI->getType()).getFixedValue() > Size)
2279       return false;
2280     // So far, AllocaSliceRewriter does not support widening split slice tails
2281     // in rewriteIntegerLoad.
2282     if (S.beginOffset() < AllocBeginOffset)
2283       return false;
2284     // Note that we don't count vector loads or stores as whole-alloca
2285     // operations which enable integer widening because we would prefer to use
2286     // vector widening instead.
2287     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2288       WholeAllocaOp = true;
2289     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2290       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
2291         return false;
2292     } else if (RelBegin != 0 || RelEnd != Size ||
2293                !canConvertValue(DL, AllocaTy, LI->getType())) {
2294       // Non-integer loads need to be convertible from the alloca type so that
2295       // they are promotable.
2296       return false;
2297     }
2298   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2299     Type *ValueTy = SI->getValueOperand()->getType();
2300     if (SI->isVolatile())
2301       return false;
2302     // We can't handle stores that extend past the allocated memory.
2303     if (DL.getTypeStoreSize(ValueTy).getFixedValue() > Size)
2304       return false;
2305     // So far, AllocaSliceRewriter does not support widening split slice tails
2306     // in rewriteIntegerStore.
2307     if (S.beginOffset() < AllocBeginOffset)
2308       return false;
2309     // Note that we don't count vector loads or stores as whole-alloca
2310     // operations which enable integer widening because we would prefer to use
2311     // vector widening instead.
2312     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2313       WholeAllocaOp = true;
2314     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2315       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
2316         return false;
2317     } else if (RelBegin != 0 || RelEnd != Size ||
2318                !canConvertValue(DL, ValueTy, AllocaTy)) {
2319       // Non-integer stores need to be convertible to the alloca type so that
2320       // they are promotable.
2321       return false;
2322     }
2323   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2324     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2325       return false;
2326     if (!S.isSplittable())
2327       return false; // Skip any unsplittable intrinsics.
2328   } else {
2329     return false;
2330   }
2331 
2332   return true;
2333 }
2334 
2335 /// Test whether the given alloca partition's integer operations can be
2336 /// widened to promotable ones.
2337 ///
2338 /// This is a quick test to check whether we can rewrite the integer loads and
2339 /// stores to a particular alloca into wider loads and stores and be able to
2340 /// promote the resulting alloca.
2341 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2342                                     const DataLayout &DL) {
2343   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedValue();
2344   // Don't create integer types larger than the maximum bitwidth.
2345   if (SizeInBits > IntegerType::MAX_INT_BITS)
2346     return false;
2347 
2348   // Don't try to handle allocas with bit-padding.
2349   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedValue())
2350     return false;
2351 
2352   // We need to ensure that an integer type with the appropriate bitwidth can
2353   // be converted to the alloca type, whatever that is. We don't want to force
2354   // the alloca itself to have an integer type if there is a more suitable one.
2355   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2356   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2357       !canConvertValue(DL, IntTy, AllocaTy))
2358     return false;
2359 
2360   // While examining uses, we ensure that the alloca has a covering load or
2361   // store. We don't want to widen the integer operations only to fail to
2362   // promote due to some other unsplittable entry (which we may make splittable
2363   // later). However, if there are only splittable uses, go ahead and assume
2364   // that we cover the alloca.
2365   // FIXME: We shouldn't consider split slices that happen to start in the
2366   // partition here...
2367   bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits);
2368 
2369   for (const Slice &S : P)
2370     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2371                                          WholeAllocaOp))
2372       return false;
2373 
2374   for (const Slice *S : P.splitSliceTails())
2375     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2376                                          WholeAllocaOp))
2377       return false;
2378 
2379   return WholeAllocaOp;
2380 }
2381 
2382 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2383                              IntegerType *Ty, uint64_t Offset,
2384                              const Twine &Name) {
2385   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2386   IntegerType *IntTy = cast<IntegerType>(V->getType());
2387   assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
2388              DL.getTypeStoreSize(IntTy).getFixedValue() &&
2389          "Element extends past full value");
2390   uint64_t ShAmt = 8 * Offset;
2391   if (DL.isBigEndian())
2392     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
2393                  DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
2394   if (ShAmt) {
2395     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2396     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2397   }
2398   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2399          "Cannot extract to a larger integer!");
2400   if (Ty != IntTy) {
2401     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2402     LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2403   }
2404   return V;
2405 }
2406 
2407 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2408                             Value *V, uint64_t Offset, const Twine &Name) {
2409   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2410   IntegerType *Ty = cast<IntegerType>(V->getType());
2411   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2412          "Cannot insert a larger integer!");
2413   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2414   if (Ty != IntTy) {
2415     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2416     LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2417   }
2418   assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
2419              DL.getTypeStoreSize(IntTy).getFixedValue() &&
2420          "Element store outside of alloca store");
2421   uint64_t ShAmt = 8 * Offset;
2422   if (DL.isBigEndian())
2423     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
2424                  DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
2425   if (ShAmt) {
2426     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2427     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2428   }
2429 
2430   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2431     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2432     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2433     LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2434     V = IRB.CreateOr(Old, V, Name + ".insert");
2435     LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2436   }
2437   return V;
2438 }
2439 
2440 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2441                             unsigned EndIndex, const Twine &Name) {
2442   auto *VecTy = cast<FixedVectorType>(V->getType());
2443   unsigned NumElements = EndIndex - BeginIndex;
2444   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2445 
2446   if (NumElements == VecTy->getNumElements())
2447     return V;
2448 
2449   if (NumElements == 1) {
2450     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2451                                  Name + ".extract");
2452     LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2453     return V;
2454   }
2455 
2456   auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex));
2457   V = IRB.CreateShuffleVector(V, Mask, Name + ".extract");
2458   LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2459   return V;
2460 }
2461 
2462 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2463                            unsigned BeginIndex, const Twine &Name) {
2464   VectorType *VecTy = cast<VectorType>(Old->getType());
2465   assert(VecTy && "Can only insert a vector into a vector");
2466 
2467   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2468   if (!Ty) {
2469     // Single element to insert.
2470     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2471                                 Name + ".insert");
2472     LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2473     return V;
2474   }
2475 
2476   assert(cast<FixedVectorType>(Ty)->getNumElements() <=
2477              cast<FixedVectorType>(VecTy)->getNumElements() &&
2478          "Too many elements!");
2479   if (cast<FixedVectorType>(Ty)->getNumElements() ==
2480       cast<FixedVectorType>(VecTy)->getNumElements()) {
2481     assert(V->getType() == VecTy && "Vector type mismatch");
2482     return V;
2483   }
2484   unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements();
2485 
2486   // When inserting a smaller vector into the larger to store, we first
2487   // use a shuffle vector to widen it with undef elements, and then
2488   // a second shuffle vector to select between the loaded vector and the
2489   // incoming vector.
2490   SmallVector<int, 8> Mask;
2491   Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2492   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2493     if (i >= BeginIndex && i < EndIndex)
2494       Mask.push_back(i - BeginIndex);
2495     else
2496       Mask.push_back(-1);
2497   V = IRB.CreateShuffleVector(V, Mask, Name + ".expand");
2498   LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2499 
2500   SmallVector<Constant *, 8> Mask2;
2501   Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2502   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2503     Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2504 
2505   V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend");
2506 
2507   LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2508   return V;
2509 }
2510 
2511 /// Visitor to rewrite instructions using p particular slice of an alloca
2512 /// to use a new alloca.
2513 ///
2514 /// Also implements the rewriting to vector-based accesses when the partition
2515 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2516 /// lives here.
2517 class llvm::sroa::AllocaSliceRewriter
2518     : public InstVisitor<AllocaSliceRewriter, bool> {
2519   // Befriend the base class so it can delegate to private visit methods.
2520   friend class InstVisitor<AllocaSliceRewriter, bool>;
2521 
2522   using Base = InstVisitor<AllocaSliceRewriter, bool>;
2523 
2524   const DataLayout &DL;
2525   AllocaSlices &AS;
2526   SROAPass &Pass;
2527   AllocaInst &OldAI, &NewAI;
2528   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2529   Type *NewAllocaTy;
2530 
2531   // This is a convenience and flag variable that will be null unless the new
2532   // alloca's integer operations should be widened to this integer type due to
2533   // passing isIntegerWideningViable above. If it is non-null, the desired
2534   // integer type will be stored here for easy access during rewriting.
2535   IntegerType *IntTy;
2536 
2537   // If we are rewriting an alloca partition which can be written as pure
2538   // vector operations, we stash extra information here. When VecTy is
2539   // non-null, we have some strict guarantees about the rewritten alloca:
2540   //   - The new alloca is exactly the size of the vector type here.
2541   //   - The accesses all either map to the entire vector or to a single
2542   //     element.
2543   //   - The set of accessing instructions is only one of those handled above
2544   //     in isVectorPromotionViable. Generally these are the same access kinds
2545   //     which are promotable via mem2reg.
2546   VectorType *VecTy;
2547   Type *ElementTy;
2548   uint64_t ElementSize;
2549 
2550   // The original offset of the slice currently being rewritten relative to
2551   // the original alloca.
2552   uint64_t BeginOffset = 0;
2553   uint64_t EndOffset = 0;
2554 
2555   // The new offsets of the slice currently being rewritten relative to the
2556   // original alloca.
2557   uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2558 
2559   uint64_t RelativeOffset = 0;
2560   uint64_t SliceSize = 0;
2561   bool IsSplittable = false;
2562   bool IsSplit = false;
2563   Use *OldUse = nullptr;
2564   Instruction *OldPtr = nullptr;
2565 
2566   // Track post-rewrite users which are PHI nodes and Selects.
2567   SmallSetVector<PHINode *, 8> &PHIUsers;
2568   SmallSetVector<SelectInst *, 8> &SelectUsers;
2569 
2570   // Utility IR builder, whose name prefix is setup for each visited use, and
2571   // the insertion point is set to point to the user.
2572   IRBuilderTy IRB;
2573 
2574   // Return the new alloca, addrspacecasted if required to avoid changing the
2575   // addrspace of a volatile access.
2576   Value *getPtrToNewAI(unsigned AddrSpace, bool IsVolatile) {
2577     if (!IsVolatile || AddrSpace == NewAI.getType()->getPointerAddressSpace())
2578       return &NewAI;
2579 
2580     Type *AccessTy = NewAI.getAllocatedType()->getPointerTo(AddrSpace);
2581     return IRB.CreateAddrSpaceCast(&NewAI, AccessTy);
2582   }
2583 
2584 public:
2585   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass,
2586                       AllocaInst &OldAI, AllocaInst &NewAI,
2587                       uint64_t NewAllocaBeginOffset,
2588                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2589                       VectorType *PromotableVecTy,
2590                       SmallSetVector<PHINode *, 8> &PHIUsers,
2591                       SmallSetVector<SelectInst *, 8> &SelectUsers)
2592       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2593         NewAllocaBeginOffset(NewAllocaBeginOffset),
2594         NewAllocaEndOffset(NewAllocaEndOffset),
2595         NewAllocaTy(NewAI.getAllocatedType()),
2596         IntTy(
2597             IsIntegerPromotable
2598                 ? Type::getIntNTy(NewAI.getContext(),
2599                                   DL.getTypeSizeInBits(NewAI.getAllocatedType())
2600                                       .getFixedValue())
2601                 : nullptr),
2602         VecTy(PromotableVecTy),
2603         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2604         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8
2605                           : 0),
2606         PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2607         IRB(NewAI.getContext(), ConstantFolder()) {
2608     if (VecTy) {
2609       assert((DL.getTypeSizeInBits(ElementTy).getFixedValue() % 8) == 0 &&
2610              "Only multiple-of-8 sized vector elements are viable");
2611       ++NumVectorized;
2612     }
2613     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2614   }
2615 
2616   bool visit(AllocaSlices::const_iterator I) {
2617     bool CanSROA = true;
2618     BeginOffset = I->beginOffset();
2619     EndOffset = I->endOffset();
2620     IsSplittable = I->isSplittable();
2621     IsSplit =
2622         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2623     LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2624     LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2625     LLVM_DEBUG(dbgs() << "\n");
2626 
2627     // Compute the intersecting offset range.
2628     assert(BeginOffset < NewAllocaEndOffset);
2629     assert(EndOffset > NewAllocaBeginOffset);
2630     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2631     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2632 
2633     RelativeOffset = NewBeginOffset - BeginOffset;
2634     SliceSize = NewEndOffset - NewBeginOffset;
2635     LLVM_DEBUG(dbgs() << "   Begin:(" << BeginOffset << ", " << EndOffset
2636                       << ") NewBegin:(" << NewBeginOffset << ", "
2637                       << NewEndOffset << ") NewAllocaBegin:("
2638                       << NewAllocaBeginOffset << ", " << NewAllocaEndOffset
2639                       << ")\n");
2640     assert(IsSplit || RelativeOffset == 0);
2641     OldUse = I->getUse();
2642     OldPtr = cast<Instruction>(OldUse->get());
2643 
2644     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2645     IRB.SetInsertPoint(OldUserI);
2646     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2647     IRB.getInserter().SetNamePrefix(
2648         Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2649 
2650     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2651     if (VecTy || IntTy)
2652       assert(CanSROA);
2653     return CanSROA;
2654   }
2655 
2656 private:
2657   // Make sure the other visit overloads are visible.
2658   using Base::visit;
2659 
2660   // Every instruction which can end up as a user must have a rewrite rule.
2661   bool visitInstruction(Instruction &I) {
2662     LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2663     llvm_unreachable("No rewrite rule for this instruction!");
2664   }
2665 
2666   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2667     // Note that the offset computation can use BeginOffset or NewBeginOffset
2668     // interchangeably for unsplit slices.
2669     assert(IsSplit || BeginOffset == NewBeginOffset);
2670     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2671 
2672 #ifndef NDEBUG
2673     StringRef OldName = OldPtr->getName();
2674     // Skip through the last '.sroa.' component of the name.
2675     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2676     if (LastSROAPrefix != StringRef::npos) {
2677       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2678       // Look for an SROA slice index.
2679       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2680       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2681         // Strip the index and look for the offset.
2682         OldName = OldName.substr(IndexEnd + 1);
2683         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2684         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2685           // Strip the offset.
2686           OldName = OldName.substr(OffsetEnd + 1);
2687       }
2688     }
2689     // Strip any SROA suffixes as well.
2690     OldName = OldName.substr(0, OldName.find(".sroa_"));
2691 #endif
2692 
2693     return getAdjustedPtr(IRB, DL, &NewAI,
2694                           APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2695                           PointerTy,
2696 #ifndef NDEBUG
2697                           Twine(OldName) + "."
2698 #else
2699                           Twine()
2700 #endif
2701                           );
2702   }
2703 
2704   /// Compute suitable alignment to access this slice of the *new*
2705   /// alloca.
2706   ///
2707   /// You can optionally pass a type to this routine and if that type's ABI
2708   /// alignment is itself suitable, this will return zero.
2709   Align getSliceAlign() {
2710     return commonAlignment(NewAI.getAlign(),
2711                            NewBeginOffset - NewAllocaBeginOffset);
2712   }
2713 
2714   unsigned getIndex(uint64_t Offset) {
2715     assert(VecTy && "Can only call getIndex when rewriting a vector");
2716     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2717     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2718     uint32_t Index = RelOffset / ElementSize;
2719     assert(Index * ElementSize == RelOffset);
2720     return Index;
2721   }
2722 
2723   void deleteIfTriviallyDead(Value *V) {
2724     Instruction *I = cast<Instruction>(V);
2725     if (isInstructionTriviallyDead(I))
2726       Pass.DeadInsts.push_back(I);
2727   }
2728 
2729   Value *rewriteVectorizedLoadInst(LoadInst &LI) {
2730     unsigned BeginIndex = getIndex(NewBeginOffset);
2731     unsigned EndIndex = getIndex(NewEndOffset);
2732     assert(EndIndex > BeginIndex && "Empty vector!");
2733 
2734     LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2735                                            NewAI.getAlign(), "load");
2736 
2737     Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2738                             LLVMContext::MD_access_group});
2739     return extractVector(IRB, Load, BeginIndex, EndIndex, "vec");
2740   }
2741 
2742   Value *rewriteIntegerLoad(LoadInst &LI) {
2743     assert(IntTy && "We cannot insert an integer to the alloca");
2744     assert(!LI.isVolatile());
2745     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2746                                      NewAI.getAlign(), "load");
2747     V = convertValue(DL, IRB, V, IntTy);
2748     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2749     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2750     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2751       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2752       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2753     }
2754     // It is possible that the extracted type is not the load type. This
2755     // happens if there is a load past the end of the alloca, and as
2756     // a consequence the slice is narrower but still a candidate for integer
2757     // lowering. To handle this case, we just zero extend the extracted
2758     // integer.
2759     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2760            "Can only handle an extract for an overly wide load");
2761     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2762       V = IRB.CreateZExt(V, LI.getType());
2763     return V;
2764   }
2765 
2766   bool visitLoadInst(LoadInst &LI) {
2767     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2768     Value *OldOp = LI.getOperand(0);
2769     assert(OldOp == OldPtr);
2770 
2771     AAMDNodes AATags = LI.getAAMetadata();
2772 
2773     unsigned AS = LI.getPointerAddressSpace();
2774 
2775     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2776                              : LI.getType();
2777     const bool IsLoadPastEnd =
2778         DL.getTypeStoreSize(TargetTy).getFixedValue() > SliceSize;
2779     bool IsPtrAdjusted = false;
2780     Value *V;
2781     if (VecTy) {
2782       V = rewriteVectorizedLoadInst(LI);
2783     } else if (IntTy && LI.getType()->isIntegerTy()) {
2784       V = rewriteIntegerLoad(LI);
2785     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2786                NewEndOffset == NewAllocaEndOffset &&
2787                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2788                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2789                  TargetTy->isIntegerTy()))) {
2790       Value *NewPtr =
2791           getPtrToNewAI(LI.getPointerAddressSpace(), LI.isVolatile());
2792       LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), NewPtr,
2793                                               NewAI.getAlign(), LI.isVolatile(),
2794                                               LI.getName());
2795       if (LI.isVolatile())
2796         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2797       if (NewLI->isAtomic())
2798         NewLI->setAlignment(LI.getAlign());
2799 
2800       // Copy any metadata that is valid for the new load. This may require
2801       // conversion to a different kind of metadata, e.g. !nonnull might change
2802       // to !range or vice versa.
2803       copyMetadataForLoad(*NewLI, LI);
2804 
2805       // Do this after copyMetadataForLoad() to preserve the TBAA shift.
2806       if (AATags)
2807         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2808 
2809       // Try to preserve nonnull metadata
2810       V = NewLI;
2811 
2812       // If this is an integer load past the end of the slice (which means the
2813       // bytes outside the slice are undef or this load is dead) just forcibly
2814       // fix the integer size with correct handling of endianness.
2815       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2816         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2817           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2818             V = IRB.CreateZExt(V, TITy, "load.ext");
2819             if (DL.isBigEndian())
2820               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2821                                 "endian_shift");
2822           }
2823     } else {
2824       Type *LTy = TargetTy->getPointerTo(AS);
2825       LoadInst *NewLI =
2826           IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
2827                                 getSliceAlign(), LI.isVolatile(), LI.getName());
2828       if (AATags)
2829         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2830       if (LI.isVolatile())
2831         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2832       NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2833                                LLVMContext::MD_access_group});
2834 
2835       V = NewLI;
2836       IsPtrAdjusted = true;
2837     }
2838     V = convertValue(DL, IRB, V, TargetTy);
2839 
2840     if (IsSplit) {
2841       assert(!LI.isVolatile());
2842       assert(LI.getType()->isIntegerTy() &&
2843              "Only integer type loads and stores are split");
2844       assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedValue() &&
2845              "Split load isn't smaller than original load");
2846       assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2847              "Non-byte-multiple bit width");
2848       // Move the insertion point just past the load so that we can refer to it.
2849       IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2850       // Create a placeholder value with the same type as LI to use as the
2851       // basis for the new value. This allows us to replace the uses of LI with
2852       // the computed value, and then replace the placeholder with LI, leaving
2853       // LI only used for this computation.
2854       Value *Placeholder = new LoadInst(
2855           LI.getType(), PoisonValue::get(LI.getType()->getPointerTo(AS)), "",
2856           false, Align(1));
2857       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2858                         "insert");
2859       LI.replaceAllUsesWith(V);
2860       Placeholder->replaceAllUsesWith(&LI);
2861       Placeholder->deleteValue();
2862     } else {
2863       LI.replaceAllUsesWith(V);
2864     }
2865 
2866     Pass.DeadInsts.push_back(&LI);
2867     deleteIfTriviallyDead(OldOp);
2868     LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2869     return !LI.isVolatile() && !IsPtrAdjusted;
2870   }
2871 
2872   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2873                                   AAMDNodes AATags) {
2874     // Capture V for the purpose of debug-info accounting once it's converted
2875     // to a vector store.
2876     Value *OrigV = V;
2877     if (V->getType() != VecTy) {
2878       unsigned BeginIndex = getIndex(NewBeginOffset);
2879       unsigned EndIndex = getIndex(NewEndOffset);
2880       assert(EndIndex > BeginIndex && "Empty vector!");
2881       unsigned NumElements = EndIndex - BeginIndex;
2882       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2883              "Too many elements!");
2884       Type *SliceTy = (NumElements == 1)
2885                           ? ElementTy
2886                           : FixedVectorType::get(ElementTy, NumElements);
2887       if (V->getType() != SliceTy)
2888         V = convertValue(DL, IRB, V, SliceTy);
2889 
2890       // Mix in the existing elements.
2891       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2892                                          NewAI.getAlign(), "load");
2893       V = insertVector(IRB, Old, V, BeginIndex, "vec");
2894     }
2895     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2896     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2897                              LLVMContext::MD_access_group});
2898     if (AATags)
2899       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2900     Pass.DeadInsts.push_back(&SI);
2901 
2902     // NOTE: Careful to use OrigV rather than V.
2903     migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, Store,
2904                      Store->getPointerOperand(), OrigV, DL);
2905     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2906     return true;
2907   }
2908 
2909   bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2910     assert(IntTy && "We cannot extract an integer from the alloca");
2911     assert(!SI.isVolatile());
2912     if (DL.getTypeSizeInBits(V->getType()).getFixedValue() !=
2913         IntTy->getBitWidth()) {
2914       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2915                                          NewAI.getAlign(), "oldload");
2916       Old = convertValue(DL, IRB, Old, IntTy);
2917       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2918       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2919       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2920     }
2921     V = convertValue(DL, IRB, V, NewAllocaTy);
2922     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2923     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2924                              LLVMContext::MD_access_group});
2925     if (AATags)
2926       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2927 
2928     migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, Store,
2929                      Store->getPointerOperand(), Store->getValueOperand(), DL);
2930 
2931     Pass.DeadInsts.push_back(&SI);
2932     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2933     return true;
2934   }
2935 
2936   bool visitStoreInst(StoreInst &SI) {
2937     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2938     Value *OldOp = SI.getOperand(1);
2939     assert(OldOp == OldPtr);
2940 
2941     AAMDNodes AATags = SI.getAAMetadata();
2942     Value *V = SI.getValueOperand();
2943 
2944     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2945     // alloca that should be re-examined after promoting this alloca.
2946     if (V->getType()->isPointerTy())
2947       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2948         Pass.PostPromotionWorklist.insert(AI);
2949 
2950     if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedValue()) {
2951       assert(!SI.isVolatile());
2952       assert(V->getType()->isIntegerTy() &&
2953              "Only integer type loads and stores are split");
2954       assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2955              "Non-byte-multiple bit width");
2956       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2957       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2958                          "extract");
2959     }
2960 
2961     if (VecTy)
2962       return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2963     if (IntTy && V->getType()->isIntegerTy())
2964       return rewriteIntegerStore(V, SI, AATags);
2965 
2966     const bool IsStorePastEnd =
2967         DL.getTypeStoreSize(V->getType()).getFixedValue() > SliceSize;
2968     StoreInst *NewSI;
2969     if (NewBeginOffset == NewAllocaBeginOffset &&
2970         NewEndOffset == NewAllocaEndOffset &&
2971         (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2972          (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2973           V->getType()->isIntegerTy()))) {
2974       // If this is an integer store past the end of slice (and thus the bytes
2975       // past that point are irrelevant or this is unreachable), truncate the
2976       // value prior to storing.
2977       if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2978         if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2979           if (VITy->getBitWidth() > AITy->getBitWidth()) {
2980             if (DL.isBigEndian())
2981               V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2982                                  "endian_shift");
2983             V = IRB.CreateTrunc(V, AITy, "load.trunc");
2984           }
2985 
2986       V = convertValue(DL, IRB, V, NewAllocaTy);
2987       Value *NewPtr =
2988           getPtrToNewAI(SI.getPointerAddressSpace(), SI.isVolatile());
2989 
2990       NewSI =
2991           IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), SI.isVolatile());
2992     } else {
2993       unsigned AS = SI.getPointerAddressSpace();
2994       Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2995       NewSI =
2996           IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
2997     }
2998     NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2999                              LLVMContext::MD_access_group});
3000     if (AATags)
3001       NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3002     if (SI.isVolatile())
3003       NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
3004     if (NewSI->isAtomic())
3005       NewSI->setAlignment(SI.getAlign());
3006 
3007     migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &SI, NewSI,
3008                      NewSI->getPointerOperand(), NewSI->getValueOperand(), DL);
3009 
3010     Pass.DeadInsts.push_back(&SI);
3011     deleteIfTriviallyDead(OldOp);
3012 
3013     LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
3014     return NewSI->getPointerOperand() == &NewAI &&
3015            NewSI->getValueOperand()->getType() == NewAllocaTy &&
3016            !SI.isVolatile();
3017   }
3018 
3019   /// Compute an integer value from splatting an i8 across the given
3020   /// number of bytes.
3021   ///
3022   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
3023   /// call this routine.
3024   /// FIXME: Heed the advice above.
3025   ///
3026   /// \param V The i8 value to splat.
3027   /// \param Size The number of bytes in the output (assuming i8 is one byte)
3028   Value *getIntegerSplat(Value *V, unsigned Size) {
3029     assert(Size > 0 && "Expected a positive number of bytes.");
3030     IntegerType *VTy = cast<IntegerType>(V->getType());
3031     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
3032     if (Size == 1)
3033       return V;
3034 
3035     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
3036     V = IRB.CreateMul(
3037         IRB.CreateZExt(V, SplatIntTy, "zext"),
3038         IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy),
3039                        IRB.CreateZExt(Constant::getAllOnesValue(V->getType()),
3040                                       SplatIntTy)),
3041         "isplat");
3042     return V;
3043   }
3044 
3045   /// Compute a vector splat for a given element value.
3046   Value *getVectorSplat(Value *V, unsigned NumElements) {
3047     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
3048     LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
3049     return V;
3050   }
3051 
3052   bool visitMemSetInst(MemSetInst &II) {
3053     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3054     assert(II.getRawDest() == OldPtr);
3055 
3056     AAMDNodes AATags = II.getAAMetadata();
3057 
3058     // If the memset has a variable size, it cannot be split, just adjust the
3059     // pointer to the new alloca.
3060     if (!isa<ConstantInt>(II.getLength())) {
3061       assert(!IsSplit);
3062       assert(NewBeginOffset == BeginOffset);
3063       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
3064       II.setDestAlignment(getSliceAlign());
3065       // In theory we should call migrateDebugInfo here. However, we do not
3066       // emit dbg.assign intrinsics for mem intrinsics storing through non-
3067       // constant geps, or storing a variable number of bytes.
3068       assert(at::getAssignmentMarkers(&II).empty() &&
3069              "AT: Unexpected link to non-const GEP");
3070       deleteIfTriviallyDead(OldPtr);
3071       return false;
3072     }
3073 
3074     // Record this instruction for deletion.
3075     Pass.DeadInsts.push_back(&II);
3076 
3077     Type *AllocaTy = NewAI.getAllocatedType();
3078     Type *ScalarTy = AllocaTy->getScalarType();
3079 
3080     const bool CanContinue = [&]() {
3081       if (VecTy || IntTy)
3082         return true;
3083       if (BeginOffset > NewAllocaBeginOffset ||
3084           EndOffset < NewAllocaEndOffset)
3085         return false;
3086       // Length must be in range for FixedVectorType.
3087       auto *C = cast<ConstantInt>(II.getLength());
3088       const uint64_t Len = C->getLimitedValue();
3089       if (Len > std::numeric_limits<unsigned>::max())
3090         return false;
3091       auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
3092       auto *SrcTy = FixedVectorType::get(Int8Ty, Len);
3093       return canConvertValue(DL, SrcTy, AllocaTy) &&
3094              DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedValue());
3095     }();
3096 
3097     // If this doesn't map cleanly onto the alloca type, and that type isn't
3098     // a single value type, just emit a memset.
3099     if (!CanContinue) {
3100       Type *SizeTy = II.getLength()->getType();
3101       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
3102       MemIntrinsic *New = cast<MemIntrinsic>(IRB.CreateMemSet(
3103           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
3104           MaybeAlign(getSliceAlign()), II.isVolatile()));
3105       if (AATags)
3106         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3107 
3108       migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
3109                        New->getRawDest(), nullptr, DL);
3110 
3111       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3112       return false;
3113     }
3114 
3115     // If we can represent this as a simple value, we have to build the actual
3116     // value to store, which requires expanding the byte present in memset to
3117     // a sensible representation for the alloca type. This is essentially
3118     // splatting the byte to a sufficiently wide integer, splatting it across
3119     // any desired vector width, and bitcasting to the final type.
3120     Value *V;
3121 
3122     if (VecTy) {
3123       // If this is a memset of a vectorized alloca, insert it.
3124       assert(ElementTy == ScalarTy);
3125 
3126       unsigned BeginIndex = getIndex(NewBeginOffset);
3127       unsigned EndIndex = getIndex(NewEndOffset);
3128       assert(EndIndex > BeginIndex && "Empty vector!");
3129       unsigned NumElements = EndIndex - BeginIndex;
3130       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
3131              "Too many elements!");
3132 
3133       Value *Splat = getIntegerSplat(
3134           II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8);
3135       Splat = convertValue(DL, IRB, Splat, ElementTy);
3136       if (NumElements > 1)
3137         Splat = getVectorSplat(Splat, NumElements);
3138 
3139       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3140                                          NewAI.getAlign(), "oldload");
3141       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
3142     } else if (IntTy) {
3143       // If this is a memset on an alloca where we can widen stores, insert the
3144       // set integer.
3145       assert(!II.isVolatile());
3146 
3147       uint64_t Size = NewEndOffset - NewBeginOffset;
3148       V = getIntegerSplat(II.getValue(), Size);
3149 
3150       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
3151                     EndOffset != NewAllocaBeginOffset)) {
3152         Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3153                                            NewAI.getAlign(), "oldload");
3154         Old = convertValue(DL, IRB, Old, IntTy);
3155         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3156         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
3157       } else {
3158         assert(V->getType() == IntTy &&
3159                "Wrong type for an alloca wide integer!");
3160       }
3161       V = convertValue(DL, IRB, V, AllocaTy);
3162     } else {
3163       // Established these invariants above.
3164       assert(NewBeginOffset == NewAllocaBeginOffset);
3165       assert(NewEndOffset == NewAllocaEndOffset);
3166 
3167       V = getIntegerSplat(II.getValue(),
3168                           DL.getTypeSizeInBits(ScalarTy).getFixedValue() / 8);
3169       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
3170         V = getVectorSplat(
3171             V, cast<FixedVectorType>(AllocaVecTy)->getNumElements());
3172 
3173       V = convertValue(DL, IRB, V, AllocaTy);
3174     }
3175 
3176     Value *NewPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
3177     StoreInst *New =
3178         IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), II.isVolatile());
3179     New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3180                            LLVMContext::MD_access_group});
3181     if (AATags)
3182       New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3183 
3184     migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
3185                      New->getPointerOperand(), V, DL);
3186 
3187     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3188     return !II.isVolatile();
3189   }
3190 
3191   bool visitMemTransferInst(MemTransferInst &II) {
3192     // Rewriting of memory transfer instructions can be a bit tricky. We break
3193     // them into two categories: split intrinsics and unsplit intrinsics.
3194 
3195     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3196 
3197     AAMDNodes AATags = II.getAAMetadata();
3198 
3199     bool IsDest = &II.getRawDestUse() == OldUse;
3200     assert((IsDest && II.getRawDest() == OldPtr) ||
3201            (!IsDest && II.getRawSource() == OldPtr));
3202 
3203     Align SliceAlign = getSliceAlign();
3204     // For unsplit intrinsics, we simply modify the source and destination
3205     // pointers in place. This isn't just an optimization, it is a matter of
3206     // correctness. With unsplit intrinsics we may be dealing with transfers
3207     // within a single alloca before SROA ran, or with transfers that have
3208     // a variable length. We may also be dealing with memmove instead of
3209     // memcpy, and so simply updating the pointers is the necessary for us to
3210     // update both source and dest of a single call.
3211     if (!IsSplittable) {
3212       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3213       if (IsDest) {
3214         // Update the address component of linked dbg.assigns.
3215         for (auto *DAI : at::getAssignmentMarkers(&II)) {
3216           if (any_of(DAI->location_ops(),
3217                      [&](Value *V) { return V == II.getDest(); }) ||
3218               DAI->getAddress() == II.getDest())
3219             DAI->replaceVariableLocationOp(II.getDest(), AdjustedPtr);
3220         }
3221         II.setDest(AdjustedPtr);
3222         II.setDestAlignment(SliceAlign);
3223       } else {
3224         II.setSource(AdjustedPtr);
3225         II.setSourceAlignment(SliceAlign);
3226       }
3227 
3228       LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
3229       deleteIfTriviallyDead(OldPtr);
3230       return false;
3231     }
3232     // For split transfer intrinsics we have an incredibly useful assurance:
3233     // the source and destination do not reside within the same alloca, and at
3234     // least one of them does not escape. This means that we can replace
3235     // memmove with memcpy, and we don't need to worry about all manner of
3236     // downsides to splitting and transforming the operations.
3237 
3238     // If this doesn't map cleanly onto the alloca type, and that type isn't
3239     // a single value type, just emit a memcpy.
3240     bool EmitMemCpy =
3241         !VecTy && !IntTy &&
3242         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
3243          SliceSize !=
3244              DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedValue() ||
3245          !NewAI.getAllocatedType()->isSingleValueType());
3246 
3247     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
3248     // size hasn't been shrunk based on analysis of the viable range, this is
3249     // a no-op.
3250     if (EmitMemCpy && &OldAI == &NewAI) {
3251       // Ensure the start lines up.
3252       assert(NewBeginOffset == BeginOffset);
3253 
3254       // Rewrite the size as needed.
3255       if (NewEndOffset != EndOffset)
3256         II.setLength(ConstantInt::get(II.getLength()->getType(),
3257                                       NewEndOffset - NewBeginOffset));
3258       return false;
3259     }
3260     // Record this instruction for deletion.
3261     Pass.DeadInsts.push_back(&II);
3262 
3263     // Strip all inbounds GEPs and pointer casts to try to dig out any root
3264     // alloca that should be re-examined after rewriting this instruction.
3265     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
3266     if (AllocaInst *AI =
3267             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
3268       assert(AI != &OldAI && AI != &NewAI &&
3269              "Splittable transfers cannot reach the same alloca on both ends.");
3270       Pass.Worklist.insert(AI);
3271     }
3272 
3273     Type *OtherPtrTy = OtherPtr->getType();
3274     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
3275 
3276     // Compute the relative offset for the other pointer within the transfer.
3277     unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
3278     APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
3279     Align OtherAlign =
3280         (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne();
3281     OtherAlign =
3282         commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
3283 
3284     if (EmitMemCpy) {
3285       // Compute the other pointer, folding as much as possible to produce
3286       // a single, simple GEP in most cases.
3287       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3288                                 OtherPtr->getName() + ".");
3289 
3290       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3291       Type *SizeTy = II.getLength()->getType();
3292       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
3293 
3294       Value *DestPtr, *SrcPtr;
3295       MaybeAlign DestAlign, SrcAlign;
3296       // Note: IsDest is true iff we're copying into the new alloca slice
3297       if (IsDest) {
3298         DestPtr = OurPtr;
3299         DestAlign = SliceAlign;
3300         SrcPtr = OtherPtr;
3301         SrcAlign = OtherAlign;
3302       } else {
3303         DestPtr = OtherPtr;
3304         DestAlign = OtherAlign;
3305         SrcPtr = OurPtr;
3306         SrcAlign = SliceAlign;
3307       }
3308       CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
3309                                        Size, II.isVolatile());
3310       if (AATags)
3311         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3312 
3313       migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, New,
3314                        DestPtr, nullptr, DL);
3315       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3316       return false;
3317     }
3318 
3319     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
3320                          NewEndOffset == NewAllocaEndOffset;
3321     uint64_t Size = NewEndOffset - NewBeginOffset;
3322     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3323     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3324     unsigned NumElements = EndIndex - BeginIndex;
3325     IntegerType *SubIntTy =
3326         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3327 
3328     // Reset the other pointer type to match the register type we're going to
3329     // use, but using the address space of the original other pointer.
3330     Type *OtherTy;
3331     if (VecTy && !IsWholeAlloca) {
3332       if (NumElements == 1)
3333         OtherTy = VecTy->getElementType();
3334       else
3335         OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements);
3336     } else if (IntTy && !IsWholeAlloca) {
3337       OtherTy = SubIntTy;
3338     } else {
3339       OtherTy = NewAllocaTy;
3340     }
3341     OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3342 
3343     Value *AdjPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3344                                    OtherPtr->getName() + ".");
3345     MaybeAlign SrcAlign = OtherAlign;
3346     MaybeAlign DstAlign = SliceAlign;
3347     if (!IsDest)
3348       std::swap(SrcAlign, DstAlign);
3349 
3350     Value *SrcPtr;
3351     Value *DstPtr;
3352 
3353     if (IsDest) {
3354       DstPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
3355       SrcPtr = AdjPtr;
3356     } else {
3357       DstPtr = AdjPtr;
3358       SrcPtr = getPtrToNewAI(II.getSourceAddressSpace(), II.isVolatile());
3359     }
3360 
3361     Value *Src;
3362     if (VecTy && !IsWholeAlloca && !IsDest) {
3363       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3364                                   NewAI.getAlign(), "load");
3365       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3366     } else if (IntTy && !IsWholeAlloca && !IsDest) {
3367       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3368                                   NewAI.getAlign(), "load");
3369       Src = convertValue(DL, IRB, Src, IntTy);
3370       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3371       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3372     } else {
3373       LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3374                                              II.isVolatile(), "copyload");
3375       Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3376                               LLVMContext::MD_access_group});
3377       if (AATags)
3378         Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3379       Src = Load;
3380     }
3381 
3382     if (VecTy && !IsWholeAlloca && IsDest) {
3383       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3384                                          NewAI.getAlign(), "oldload");
3385       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3386     } else if (IntTy && !IsWholeAlloca && IsDest) {
3387       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3388                                          NewAI.getAlign(), "oldload");
3389       Old = convertValue(DL, IRB, Old, IntTy);
3390       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3391       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3392       Src = convertValue(DL, IRB, Src, NewAllocaTy);
3393     }
3394 
3395     StoreInst *Store = cast<StoreInst>(
3396         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3397     Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3398                              LLVMContext::MD_access_group});
3399     if (AATags)
3400       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3401 
3402     migrateDebugInfo(&OldAI, RelativeOffset * 8, SliceSize * 8, &II, Store,
3403                      DstPtr, Src, DL);
3404     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3405     return !II.isVolatile();
3406   }
3407 
3408   bool visitIntrinsicInst(IntrinsicInst &II) {
3409     assert((II.isLifetimeStartOrEnd() || II.isDroppable()) &&
3410            "Unexpected intrinsic!");
3411     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3412 
3413     // Record this instruction for deletion.
3414     Pass.DeadInsts.push_back(&II);
3415 
3416     if (II.isDroppable()) {
3417       assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume");
3418       // TODO For now we forget assumed information, this can be improved.
3419       OldPtr->dropDroppableUsesIn(II);
3420       return true;
3421     }
3422 
3423     assert(II.getArgOperand(1) == OldPtr);
3424     // Lifetime intrinsics are only promotable if they cover the whole alloca.
3425     // Therefore, we drop lifetime intrinsics which don't cover the whole
3426     // alloca.
3427     // (In theory, intrinsics which partially cover an alloca could be
3428     // promoted, but PromoteMemToReg doesn't handle that case.)
3429     // FIXME: Check whether the alloca is promotable before dropping the
3430     // lifetime intrinsics?
3431     if (NewBeginOffset != NewAllocaBeginOffset ||
3432         NewEndOffset != NewAllocaEndOffset)
3433       return true;
3434 
3435     ConstantInt *Size =
3436         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3437                          NewEndOffset - NewBeginOffset);
3438     // Lifetime intrinsics always expect an i8* so directly get such a pointer
3439     // for the new alloca slice.
3440     Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3441     Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3442     Value *New;
3443     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3444       New = IRB.CreateLifetimeStart(Ptr, Size);
3445     else
3446       New = IRB.CreateLifetimeEnd(Ptr, Size);
3447 
3448     (void)New;
3449     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3450 
3451     return true;
3452   }
3453 
3454   void fixLoadStoreAlign(Instruction &Root) {
3455     // This algorithm implements the same visitor loop as
3456     // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3457     // or store found.
3458     SmallPtrSet<Instruction *, 4> Visited;
3459     SmallVector<Instruction *, 4> Uses;
3460     Visited.insert(&Root);
3461     Uses.push_back(&Root);
3462     do {
3463       Instruction *I = Uses.pop_back_val();
3464 
3465       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3466         LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
3467         continue;
3468       }
3469       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3470         SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
3471         continue;
3472       }
3473 
3474       assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3475              isa<PHINode>(I) || isa<SelectInst>(I) ||
3476              isa<GetElementPtrInst>(I));
3477       for (User *U : I->users())
3478         if (Visited.insert(cast<Instruction>(U)).second)
3479           Uses.push_back(cast<Instruction>(U));
3480     } while (!Uses.empty());
3481   }
3482 
3483   bool visitPHINode(PHINode &PN) {
3484     LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3485     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3486     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3487 
3488     // We would like to compute a new pointer in only one place, but have it be
3489     // as local as possible to the PHI. To do that, we re-use the location of
3490     // the old pointer, which necessarily must be in the right position to
3491     // dominate the PHI.
3492     IRBuilderBase::InsertPointGuard Guard(IRB);
3493     if (isa<PHINode>(OldPtr))
3494       IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3495     else
3496       IRB.SetInsertPoint(OldPtr);
3497     IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3498 
3499     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3500     // Replace the operands which were using the old pointer.
3501     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3502 
3503     LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3504     deleteIfTriviallyDead(OldPtr);
3505 
3506     // Fix the alignment of any loads or stores using this PHI node.
3507     fixLoadStoreAlign(PN);
3508 
3509     // PHIs can't be promoted on their own, but often can be speculated. We
3510     // check the speculation outside of the rewriter so that we see the
3511     // fully-rewritten alloca.
3512     PHIUsers.insert(&PN);
3513     return true;
3514   }
3515 
3516   bool visitSelectInst(SelectInst &SI) {
3517     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3518     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3519            "Pointer isn't an operand!");
3520     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3521     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3522 
3523     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3524     // Replace the operands which were using the old pointer.
3525     if (SI.getOperand(1) == OldPtr)
3526       SI.setOperand(1, NewPtr);
3527     if (SI.getOperand(2) == OldPtr)
3528       SI.setOperand(2, NewPtr);
3529 
3530     LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3531     deleteIfTriviallyDead(OldPtr);
3532 
3533     // Fix the alignment of any loads or stores using this select.
3534     fixLoadStoreAlign(SI);
3535 
3536     // Selects can't be promoted on their own, but often can be speculated. We
3537     // check the speculation outside of the rewriter so that we see the
3538     // fully-rewritten alloca.
3539     SelectUsers.insert(&SI);
3540     return true;
3541   }
3542 };
3543 
3544 namespace {
3545 
3546 /// Visitor to rewrite aggregate loads and stores as scalar.
3547 ///
3548 /// This pass aggressively rewrites all aggregate loads and stores on
3549 /// a particular pointer (or any pointer derived from it which we can identify)
3550 /// with scalar loads and stores.
3551 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3552   // Befriend the base class so it can delegate to private visit methods.
3553   friend class InstVisitor<AggLoadStoreRewriter, bool>;
3554 
3555   /// Queue of pointer uses to analyze and potentially rewrite.
3556   SmallVector<Use *, 8> Queue;
3557 
3558   /// Set to prevent us from cycling with phi nodes and loops.
3559   SmallPtrSet<User *, 8> Visited;
3560 
3561   /// The current pointer use being rewritten. This is used to dig up the used
3562   /// value (as opposed to the user).
3563   Use *U = nullptr;
3564 
3565   /// Used to calculate offsets, and hence alignment, of subobjects.
3566   const DataLayout &DL;
3567 
3568   IRBuilderTy &IRB;
3569 
3570 public:
3571   AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB)
3572       : DL(DL), IRB(IRB) {}
3573 
3574   /// Rewrite loads and stores through a pointer and all pointers derived from
3575   /// it.
3576   bool rewrite(Instruction &I) {
3577     LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3578     enqueueUsers(I);
3579     bool Changed = false;
3580     while (!Queue.empty()) {
3581       U = Queue.pop_back_val();
3582       Changed |= visit(cast<Instruction>(U->getUser()));
3583     }
3584     return Changed;
3585   }
3586 
3587 private:
3588   /// Enqueue all the users of the given instruction for further processing.
3589   /// This uses a set to de-duplicate users.
3590   void enqueueUsers(Instruction &I) {
3591     for (Use &U : I.uses())
3592       if (Visited.insert(U.getUser()).second)
3593         Queue.push_back(&U);
3594   }
3595 
3596   // Conservative default is to not rewrite anything.
3597   bool visitInstruction(Instruction &I) { return false; }
3598 
3599   /// Generic recursive split emission class.
3600   template <typename Derived> class OpSplitter {
3601   protected:
3602     /// The builder used to form new instructions.
3603     IRBuilderTy &IRB;
3604 
3605     /// The indices which to be used with insert- or extractvalue to select the
3606     /// appropriate value within the aggregate.
3607     SmallVector<unsigned, 4> Indices;
3608 
3609     /// The indices to a GEP instruction which will move Ptr to the correct slot
3610     /// within the aggregate.
3611     SmallVector<Value *, 4> GEPIndices;
3612 
3613     /// The base pointer of the original op, used as a base for GEPing the
3614     /// split operations.
3615     Value *Ptr;
3616 
3617     /// The base pointee type being GEPed into.
3618     Type *BaseTy;
3619 
3620     /// Known alignment of the base pointer.
3621     Align BaseAlign;
3622 
3623     /// To calculate offset of each component so we can correctly deduce
3624     /// alignments.
3625     const DataLayout &DL;
3626 
3627     /// Initialize the splitter with an insertion point, Ptr and start with a
3628     /// single zero GEP index.
3629     OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3630                Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB)
3631         : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy),
3632           BaseAlign(BaseAlign), DL(DL) {
3633       IRB.SetInsertPoint(InsertionPoint);
3634     }
3635 
3636   public:
3637     /// Generic recursive split emission routine.
3638     ///
3639     /// This method recursively splits an aggregate op (load or store) into
3640     /// scalar or vector ops. It splits recursively until it hits a single value
3641     /// and emits that single value operation via the template argument.
3642     ///
3643     /// The logic of this routine relies on GEPs and insertvalue and
3644     /// extractvalue all operating with the same fundamental index list, merely
3645     /// formatted differently (GEPs need actual values).
3646     ///
3647     /// \param Ty  The type being split recursively into smaller ops.
3648     /// \param Agg The aggregate value being built up or stored, depending on
3649     /// whether this is splitting a load or a store respectively.
3650     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3651       if (Ty->isSingleValueType()) {
3652         unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3653         return static_cast<Derived *>(this)->emitFunc(
3654             Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3655       }
3656 
3657       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3658         unsigned OldSize = Indices.size();
3659         (void)OldSize;
3660         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3661              ++Idx) {
3662           assert(Indices.size() == OldSize && "Did not return to the old size");
3663           Indices.push_back(Idx);
3664           GEPIndices.push_back(IRB.getInt32(Idx));
3665           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3666           GEPIndices.pop_back();
3667           Indices.pop_back();
3668         }
3669         return;
3670       }
3671 
3672       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3673         unsigned OldSize = Indices.size();
3674         (void)OldSize;
3675         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3676              ++Idx) {
3677           assert(Indices.size() == OldSize && "Did not return to the old size");
3678           Indices.push_back(Idx);
3679           GEPIndices.push_back(IRB.getInt32(Idx));
3680           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3681           GEPIndices.pop_back();
3682           Indices.pop_back();
3683         }
3684         return;
3685       }
3686 
3687       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3688     }
3689   };
3690 
3691   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3692     AAMDNodes AATags;
3693 
3694     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3695                    AAMDNodes AATags, Align BaseAlign, const DataLayout &DL,
3696                    IRBuilderTy &IRB)
3697         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL,
3698                                      IRB),
3699           AATags(AATags) {}
3700 
3701     /// Emit a leaf load of a single value. This is called at the leaves of the
3702     /// recursive emission to actually load values.
3703     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3704       assert(Ty->isSingleValueType());
3705       // Load the single value and insert it using the indices.
3706       Value *GEP =
3707           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3708       LoadInst *Load =
3709           IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
3710 
3711       APInt Offset(
3712           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3713       if (AATags &&
3714           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3715         Load->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3716 
3717       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3718       LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3719     }
3720   };
3721 
3722   bool visitLoadInst(LoadInst &LI) {
3723     assert(LI.getPointerOperand() == *U);
3724     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3725       return false;
3726 
3727     // We have an aggregate being loaded, split it apart.
3728     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3729     LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(),
3730                             getAdjustedAlignment(&LI, 0), DL, IRB);
3731     Value *V = PoisonValue::get(LI.getType());
3732     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3733     Visited.erase(&LI);
3734     LI.replaceAllUsesWith(V);
3735     LI.eraseFromParent();
3736     return true;
3737   }
3738 
3739   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3740     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3741                     AAMDNodes AATags, StoreInst *AggStore, Align BaseAlign,
3742                     const DataLayout &DL, IRBuilderTy &IRB)
3743         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3744                                       DL, IRB),
3745           AATags(AATags), AggStore(AggStore) {}
3746     AAMDNodes AATags;
3747     StoreInst *AggStore;
3748     /// Emit a leaf store of a single value. This is called at the leaves of the
3749     /// recursive emission to actually produce stores.
3750     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3751       assert(Ty->isSingleValueType());
3752       // Extract the single value and store it using the indices.
3753       //
3754       // The gep and extractvalue values are factored out of the CreateStore
3755       // call to make the output independent of the argument evaluation order.
3756       Value *ExtractValue =
3757           IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3758       Value *InBoundsGEP =
3759           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3760       StoreInst *Store =
3761           IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
3762 
3763       APInt Offset(
3764           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3765       if (AATags &&
3766           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3767         Store->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3768 
3769       // migrateDebugInfo requires the base Alloca. Walk to it from this gep.
3770       // If we cannot (because there's an intervening non-const or unbounded
3771       // gep) then we wouldn't expect to see dbg.assign intrinsics linked to
3772       // this instruction.
3773       APInt OffsetInBytes(DL.getTypeSizeInBits(Ptr->getType()), false);
3774       Value *Base = InBoundsGEP->stripAndAccumulateInBoundsConstantOffsets(
3775           DL, OffsetInBytes);
3776       if (auto *OldAI = dyn_cast<AllocaInst>(Base)) {
3777         uint64_t SizeInBits =
3778             DL.getTypeSizeInBits(Store->getValueOperand()->getType());
3779         migrateDebugInfo(OldAI, OffsetInBytes.getZExtValue() * 8, SizeInBits,
3780                          AggStore, Store, Store->getPointerOperand(),
3781                          Store->getValueOperand(), DL);
3782       } else {
3783         assert(at::getAssignmentMarkers(Store).empty() &&
3784                "AT: unexpected debug.assign linked to store through "
3785                "unbounded GEP");
3786       }
3787       LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3788     }
3789   };
3790 
3791   bool visitStoreInst(StoreInst &SI) {
3792     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3793       return false;
3794     Value *V = SI.getValueOperand();
3795     if (V->getType()->isSingleValueType())
3796       return false;
3797 
3798     // We have an aggregate being stored, split it apart.
3799     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3800     StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), &SI,
3801                              getAdjustedAlignment(&SI, 0), DL, IRB);
3802     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3803     Visited.erase(&SI);
3804     SI.eraseFromParent();
3805     return true;
3806   }
3807 
3808   bool visitBitCastInst(BitCastInst &BC) {
3809     enqueueUsers(BC);
3810     return false;
3811   }
3812 
3813   bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3814     enqueueUsers(ASC);
3815     return false;
3816   }
3817 
3818   // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
3819   bool foldGEPSelect(GetElementPtrInst &GEPI) {
3820     if (!GEPI.hasAllConstantIndices())
3821       return false;
3822 
3823     SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand());
3824 
3825     LLVM_DEBUG(dbgs() << "  Rewriting gep(select) -> select(gep):"
3826                       << "\n    original: " << *Sel
3827                       << "\n              " << GEPI);
3828 
3829     IRB.SetInsertPoint(&GEPI);
3830     SmallVector<Value *, 4> Index(GEPI.indices());
3831     bool IsInBounds = GEPI.isInBounds();
3832 
3833     Type *Ty = GEPI.getSourceElementType();
3834     Value *True = Sel->getTrueValue();
3835     Value *NTrue = IRB.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep",
3836                                  IsInBounds);
3837 
3838     Value *False = Sel->getFalseValue();
3839 
3840     Value *NFalse = IRB.CreateGEP(Ty, False, Index,
3841                                   False->getName() + ".sroa.gep", IsInBounds);
3842 
3843     Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse,
3844                                    Sel->getName() + ".sroa.sel");
3845     Visited.erase(&GEPI);
3846     GEPI.replaceAllUsesWith(NSel);
3847     GEPI.eraseFromParent();
3848     Instruction *NSelI = cast<Instruction>(NSel);
3849     Visited.insert(NSelI);
3850     enqueueUsers(*NSelI);
3851 
3852     LLVM_DEBUG(dbgs() << "\n          to: " << *NTrue
3853                       << "\n              " << *NFalse
3854                       << "\n              " << *NSel << '\n');
3855 
3856     return true;
3857   }
3858 
3859   // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
3860   bool foldGEPPhi(GetElementPtrInst &GEPI) {
3861     if (!GEPI.hasAllConstantIndices())
3862       return false;
3863 
3864     PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand());
3865     if (GEPI.getParent() != PHI->getParent() ||
3866         llvm::any_of(PHI->incoming_values(), [](Value *In)
3867           { Instruction *I = dyn_cast<Instruction>(In);
3868             return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) ||
3869                    succ_empty(I->getParent()) ||
3870                    !I->getParent()->isLegalToHoistInto();
3871           }))
3872       return false;
3873 
3874     LLVM_DEBUG(dbgs() << "  Rewriting gep(phi) -> phi(gep):"
3875                       << "\n    original: " << *PHI
3876                       << "\n              " << GEPI
3877                       << "\n          to: ");
3878 
3879     SmallVector<Value *, 4> Index(GEPI.indices());
3880     bool IsInBounds = GEPI.isInBounds();
3881     IRB.SetInsertPoint(GEPI.getParent()->getFirstNonPHI());
3882     PHINode *NewPN = IRB.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(),
3883                                    PHI->getName() + ".sroa.phi");
3884     for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
3885       BasicBlock *B = PHI->getIncomingBlock(I);
3886       Value *NewVal = nullptr;
3887       int Idx = NewPN->getBasicBlockIndex(B);
3888       if (Idx >= 0) {
3889         NewVal = NewPN->getIncomingValue(Idx);
3890       } else {
3891         Instruction *In = cast<Instruction>(PHI->getIncomingValue(I));
3892 
3893         IRB.SetInsertPoint(In->getParent(), std::next(In->getIterator()));
3894         Type *Ty = GEPI.getSourceElementType();
3895         NewVal = IRB.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep",
3896                                IsInBounds);
3897       }
3898       NewPN->addIncoming(NewVal, B);
3899     }
3900 
3901     Visited.erase(&GEPI);
3902     GEPI.replaceAllUsesWith(NewPN);
3903     GEPI.eraseFromParent();
3904     Visited.insert(NewPN);
3905     enqueueUsers(*NewPN);
3906 
3907     LLVM_DEBUG(for (Value *In : NewPN->incoming_values())
3908                  dbgs() << "\n              " << *In;
3909                dbgs() << "\n              " << *NewPN << '\n');
3910 
3911     return true;
3912   }
3913 
3914   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3915     if (isa<SelectInst>(GEPI.getPointerOperand()) &&
3916         foldGEPSelect(GEPI))
3917       return true;
3918 
3919     if (isa<PHINode>(GEPI.getPointerOperand()) &&
3920         foldGEPPhi(GEPI))
3921       return true;
3922 
3923     enqueueUsers(GEPI);
3924     return false;
3925   }
3926 
3927   bool visitPHINode(PHINode &PN) {
3928     enqueueUsers(PN);
3929     return false;
3930   }
3931 
3932   bool visitSelectInst(SelectInst &SI) {
3933     enqueueUsers(SI);
3934     return false;
3935   }
3936 };
3937 
3938 } // end anonymous namespace
3939 
3940 /// Strip aggregate type wrapping.
3941 ///
3942 /// This removes no-op aggregate types wrapping an underlying type. It will
3943 /// strip as many layers of types as it can without changing either the type
3944 /// size or the allocated size.
3945 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3946   if (Ty->isSingleValueType())
3947     return Ty;
3948 
3949   uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedValue();
3950   uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue();
3951 
3952   Type *InnerTy;
3953   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3954     InnerTy = ArrTy->getElementType();
3955   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3956     const StructLayout *SL = DL.getStructLayout(STy);
3957     unsigned Index = SL->getElementContainingOffset(0);
3958     InnerTy = STy->getElementType(Index);
3959   } else {
3960     return Ty;
3961   }
3962 
3963   if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedValue() ||
3964       TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedValue())
3965     return Ty;
3966 
3967   return stripAggregateTypeWrapping(DL, InnerTy);
3968 }
3969 
3970 /// Try to find a partition of the aggregate type passed in for a given
3971 /// offset and size.
3972 ///
3973 /// This recurses through the aggregate type and tries to compute a subtype
3974 /// based on the offset and size. When the offset and size span a sub-section
3975 /// of an array, it will even compute a new array type for that sub-section,
3976 /// and the same for structs.
3977 ///
3978 /// Note that this routine is very strict and tries to find a partition of the
3979 /// type which produces the *exact* right offset and size. It is not forgiving
3980 /// when the size or offset cause either end of type-based partition to be off.
3981 /// Also, this is a best-effort routine. It is reasonable to give up and not
3982 /// return a type if necessary.
3983 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3984                               uint64_t Size) {
3985   if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedValue() == Size)
3986     return stripAggregateTypeWrapping(DL, Ty);
3987   if (Offset > DL.getTypeAllocSize(Ty).getFixedValue() ||
3988       (DL.getTypeAllocSize(Ty).getFixedValue() - Offset) < Size)
3989     return nullptr;
3990 
3991   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
3992      Type *ElementTy;
3993      uint64_t TyNumElements;
3994      if (auto *AT = dyn_cast<ArrayType>(Ty)) {
3995        ElementTy = AT->getElementType();
3996        TyNumElements = AT->getNumElements();
3997      } else {
3998        // FIXME: This isn't right for vectors with non-byte-sized or
3999        // non-power-of-two sized elements.
4000        auto *VT = cast<FixedVectorType>(Ty);
4001        ElementTy = VT->getElementType();
4002        TyNumElements = VT->getNumElements();
4003     }
4004     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
4005     uint64_t NumSkippedElements = Offset / ElementSize;
4006     if (NumSkippedElements >= TyNumElements)
4007       return nullptr;
4008     Offset -= NumSkippedElements * ElementSize;
4009 
4010     // First check if we need to recurse.
4011     if (Offset > 0 || Size < ElementSize) {
4012       // Bail if the partition ends in a different array element.
4013       if ((Offset + Size) > ElementSize)
4014         return nullptr;
4015       // Recurse through the element type trying to peel off offset bytes.
4016       return getTypePartition(DL, ElementTy, Offset, Size);
4017     }
4018     assert(Offset == 0);
4019 
4020     if (Size == ElementSize)
4021       return stripAggregateTypeWrapping(DL, ElementTy);
4022     assert(Size > ElementSize);
4023     uint64_t NumElements = Size / ElementSize;
4024     if (NumElements * ElementSize != Size)
4025       return nullptr;
4026     return ArrayType::get(ElementTy, NumElements);
4027   }
4028 
4029   StructType *STy = dyn_cast<StructType>(Ty);
4030   if (!STy)
4031     return nullptr;
4032 
4033   const StructLayout *SL = DL.getStructLayout(STy);
4034   if (Offset >= SL->getSizeInBytes())
4035     return nullptr;
4036   uint64_t EndOffset = Offset + Size;
4037   if (EndOffset > SL->getSizeInBytes())
4038     return nullptr;
4039 
4040   unsigned Index = SL->getElementContainingOffset(Offset);
4041   Offset -= SL->getElementOffset(Index);
4042 
4043   Type *ElementTy = STy->getElementType(Index);
4044   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
4045   if (Offset >= ElementSize)
4046     return nullptr; // The offset points into alignment padding.
4047 
4048   // See if any partition must be contained by the element.
4049   if (Offset > 0 || Size < ElementSize) {
4050     if ((Offset + Size) > ElementSize)
4051       return nullptr;
4052     return getTypePartition(DL, ElementTy, Offset, Size);
4053   }
4054   assert(Offset == 0);
4055 
4056   if (Size == ElementSize)
4057     return stripAggregateTypeWrapping(DL, ElementTy);
4058 
4059   StructType::element_iterator EI = STy->element_begin() + Index,
4060                                EE = STy->element_end();
4061   if (EndOffset < SL->getSizeInBytes()) {
4062     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
4063     if (Index == EndIndex)
4064       return nullptr; // Within a single element and its padding.
4065 
4066     // Don't try to form "natural" types if the elements don't line up with the
4067     // expected size.
4068     // FIXME: We could potentially recurse down through the last element in the
4069     // sub-struct to find a natural end point.
4070     if (SL->getElementOffset(EndIndex) != EndOffset)
4071       return nullptr;
4072 
4073     assert(Index < EndIndex);
4074     EE = STy->element_begin() + EndIndex;
4075   }
4076 
4077   // Try to build up a sub-structure.
4078   StructType *SubTy =
4079       StructType::get(STy->getContext(), ArrayRef(EI, EE), STy->isPacked());
4080   const StructLayout *SubSL = DL.getStructLayout(SubTy);
4081   if (Size != SubSL->getSizeInBytes())
4082     return nullptr; // The sub-struct doesn't have quite the size needed.
4083 
4084   return SubTy;
4085 }
4086 
4087 /// Pre-split loads and stores to simplify rewriting.
4088 ///
4089 /// We want to break up the splittable load+store pairs as much as
4090 /// possible. This is important to do as a preprocessing step, as once we
4091 /// start rewriting the accesses to partitions of the alloca we lose the
4092 /// necessary information to correctly split apart paired loads and stores
4093 /// which both point into this alloca. The case to consider is something like
4094 /// the following:
4095 ///
4096 ///   %a = alloca [12 x i8]
4097 ///   %gep1 = getelementptr i8, ptr %a, i32 0
4098 ///   %gep2 = getelementptr i8, ptr %a, i32 4
4099 ///   %gep3 = getelementptr i8, ptr %a, i32 8
4100 ///   store float 0.0, ptr %gep1
4101 ///   store float 1.0, ptr %gep2
4102 ///   %v = load i64, ptr %gep1
4103 ///   store i64 %v, ptr %gep2
4104 ///   %f1 = load float, ptr %gep2
4105 ///   %f2 = load float, ptr %gep3
4106 ///
4107 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
4108 /// promote everything so we recover the 2 SSA values that should have been
4109 /// there all along.
4110 ///
4111 /// \returns true if any changes are made.
4112 bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
4113   LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
4114 
4115   // Track the loads and stores which are candidates for pre-splitting here, in
4116   // the order they first appear during the partition scan. These give stable
4117   // iteration order and a basis for tracking which loads and stores we
4118   // actually split.
4119   SmallVector<LoadInst *, 4> Loads;
4120   SmallVector<StoreInst *, 4> Stores;
4121 
4122   // We need to accumulate the splits required of each load or store where we
4123   // can find them via a direct lookup. This is important to cross-check loads
4124   // and stores against each other. We also track the slice so that we can kill
4125   // all the slices that end up split.
4126   struct SplitOffsets {
4127     Slice *S;
4128     std::vector<uint64_t> Splits;
4129   };
4130   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
4131 
4132   // Track loads out of this alloca which cannot, for any reason, be pre-split.
4133   // This is important as we also cannot pre-split stores of those loads!
4134   // FIXME: This is all pretty gross. It means that we can be more aggressive
4135   // in pre-splitting when the load feeding the store happens to come from
4136   // a separate alloca. Put another way, the effectiveness of SROA would be
4137   // decreased by a frontend which just concatenated all of its local allocas
4138   // into one big flat alloca. But defeating such patterns is exactly the job
4139   // SROA is tasked with! Sadly, to not have this discrepancy we would have
4140   // change store pre-splitting to actually force pre-splitting of the load
4141   // that feeds it *and all stores*. That makes pre-splitting much harder, but
4142   // maybe it would make it more principled?
4143   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
4144 
4145   LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
4146   for (auto &P : AS.partitions()) {
4147     for (Slice &S : P) {
4148       Instruction *I = cast<Instruction>(S.getUse()->getUser());
4149       if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
4150         // If this is a load we have to track that it can't participate in any
4151         // pre-splitting. If this is a store of a load we have to track that
4152         // that load also can't participate in any pre-splitting.
4153         if (auto *LI = dyn_cast<LoadInst>(I))
4154           UnsplittableLoads.insert(LI);
4155         else if (auto *SI = dyn_cast<StoreInst>(I))
4156           if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
4157             UnsplittableLoads.insert(LI);
4158         continue;
4159       }
4160       assert(P.endOffset() > S.beginOffset() &&
4161              "Empty or backwards partition!");
4162 
4163       // Determine if this is a pre-splittable slice.
4164       if (auto *LI = dyn_cast<LoadInst>(I)) {
4165         assert(!LI->isVolatile() && "Cannot split volatile loads!");
4166 
4167         // The load must be used exclusively to store into other pointers for
4168         // us to be able to arbitrarily pre-split it. The stores must also be
4169         // simple to avoid changing semantics.
4170         auto IsLoadSimplyStored = [](LoadInst *LI) {
4171           for (User *LU : LI->users()) {
4172             auto *SI = dyn_cast<StoreInst>(LU);
4173             if (!SI || !SI->isSimple())
4174               return false;
4175           }
4176           return true;
4177         };
4178         if (!IsLoadSimplyStored(LI)) {
4179           UnsplittableLoads.insert(LI);
4180           continue;
4181         }
4182 
4183         Loads.push_back(LI);
4184       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
4185         if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
4186           // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
4187           continue;
4188         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
4189         if (!StoredLoad || !StoredLoad->isSimple())
4190           continue;
4191         assert(!SI->isVolatile() && "Cannot split volatile stores!");
4192 
4193         Stores.push_back(SI);
4194       } else {
4195         // Other uses cannot be pre-split.
4196         continue;
4197       }
4198 
4199       // Record the initial split.
4200       LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
4201       auto &Offsets = SplitOffsetsMap[I];
4202       assert(Offsets.Splits.empty() &&
4203              "Should not have splits the first time we see an instruction!");
4204       Offsets.S = &S;
4205       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
4206     }
4207 
4208     // Now scan the already split slices, and add a split for any of them which
4209     // we're going to pre-split.
4210     for (Slice *S : P.splitSliceTails()) {
4211       auto SplitOffsetsMapI =
4212           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
4213       if (SplitOffsetsMapI == SplitOffsetsMap.end())
4214         continue;
4215       auto &Offsets = SplitOffsetsMapI->second;
4216 
4217       assert(Offsets.S == S && "Found a mismatched slice!");
4218       assert(!Offsets.Splits.empty() &&
4219              "Cannot have an empty set of splits on the second partition!");
4220       assert(Offsets.Splits.back() ==
4221                  P.beginOffset() - Offsets.S->beginOffset() &&
4222              "Previous split does not end where this one begins!");
4223 
4224       // Record each split. The last partition's end isn't needed as the size
4225       // of the slice dictates that.
4226       if (S->endOffset() > P.endOffset())
4227         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
4228     }
4229   }
4230 
4231   // We may have split loads where some of their stores are split stores. For
4232   // such loads and stores, we can only pre-split them if their splits exactly
4233   // match relative to their starting offset. We have to verify this prior to
4234   // any rewriting.
4235   llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
4236     // Lookup the load we are storing in our map of split
4237     // offsets.
4238     auto *LI = cast<LoadInst>(SI->getValueOperand());
4239     // If it was completely unsplittable, then we're done,
4240     // and this store can't be pre-split.
4241     if (UnsplittableLoads.count(LI))
4242       return true;
4243 
4244     auto LoadOffsetsI = SplitOffsetsMap.find(LI);
4245     if (LoadOffsetsI == SplitOffsetsMap.end())
4246       return false; // Unrelated loads are definitely safe.
4247     auto &LoadOffsets = LoadOffsetsI->second;
4248 
4249     // Now lookup the store's offsets.
4250     auto &StoreOffsets = SplitOffsetsMap[SI];
4251 
4252     // If the relative offsets of each split in the load and
4253     // store match exactly, then we can split them and we
4254     // don't need to remove them here.
4255     if (LoadOffsets.Splits == StoreOffsets.Splits)
4256       return false;
4257 
4258     LLVM_DEBUG(dbgs() << "    Mismatched splits for load and store:\n"
4259                       << "      " << *LI << "\n"
4260                       << "      " << *SI << "\n");
4261 
4262     // We've found a store and load that we need to split
4263     // with mismatched relative splits. Just give up on them
4264     // and remove both instructions from our list of
4265     // candidates.
4266     UnsplittableLoads.insert(LI);
4267     return true;
4268   });
4269   // Now we have to go *back* through all the stores, because a later store may
4270   // have caused an earlier store's load to become unsplittable and if it is
4271   // unsplittable for the later store, then we can't rely on it being split in
4272   // the earlier store either.
4273   llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) {
4274     auto *LI = cast<LoadInst>(SI->getValueOperand());
4275     return UnsplittableLoads.count(LI);
4276   });
4277   // Once we've established all the loads that can't be split for some reason,
4278   // filter any that made it into our list out.
4279   llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) {
4280     return UnsplittableLoads.count(LI);
4281   });
4282 
4283   // If no loads or stores are left, there is no pre-splitting to be done for
4284   // this alloca.
4285   if (Loads.empty() && Stores.empty())
4286     return false;
4287 
4288   // From here on, we can't fail and will be building new accesses, so rig up
4289   // an IR builder.
4290   IRBuilderTy IRB(&AI);
4291 
4292   // Collect the new slices which we will merge into the alloca slices.
4293   SmallVector<Slice, 4> NewSlices;
4294 
4295   // Track any allocas we end up splitting loads and stores for so we iterate
4296   // on them.
4297   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
4298 
4299   // At this point, we have collected all of the loads and stores we can
4300   // pre-split, and the specific splits needed for them. We actually do the
4301   // splitting in a specific order in order to handle when one of the loads in
4302   // the value operand to one of the stores.
4303   //
4304   // First, we rewrite all of the split loads, and just accumulate each split
4305   // load in a parallel structure. We also build the slices for them and append
4306   // them to the alloca slices.
4307   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
4308   std::vector<LoadInst *> SplitLoads;
4309   const DataLayout &DL = AI.getModule()->getDataLayout();
4310   for (LoadInst *LI : Loads) {
4311     SplitLoads.clear();
4312 
4313     auto &Offsets = SplitOffsetsMap[LI];
4314     unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset();
4315     assert(LI->getType()->getIntegerBitWidth() % 8 == 0 &&
4316            "Load must have type size equal to store size");
4317     assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize &&
4318            "Load must be >= slice size");
4319 
4320     uint64_t BaseOffset = Offsets.S->beginOffset();
4321     assert(BaseOffset + SliceSize > BaseOffset &&
4322            "Cannot represent alloca access size using 64-bit integers!");
4323 
4324     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
4325     IRB.SetInsertPoint(LI);
4326 
4327     LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
4328 
4329     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4330     int Idx = 0, Size = Offsets.Splits.size();
4331     for (;;) {
4332       auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8);
4333       auto AS = LI->getPointerAddressSpace();
4334       auto *PartPtrTy = PartTy->getPointerTo(AS);
4335       LoadInst *PLoad = IRB.CreateAlignedLoad(
4336           PartTy,
4337           getAdjustedPtr(IRB, DL, BasePtr,
4338                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4339                          PartPtrTy, BasePtr->getName() + "."),
4340           getAdjustedAlignment(LI, PartOffset),
4341           /*IsVolatile*/ false, LI->getName());
4342       PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4343                                 LLVMContext::MD_access_group});
4344 
4345       // Append this load onto the list of split loads so we can find it later
4346       // to rewrite the stores.
4347       SplitLoads.push_back(PLoad);
4348 
4349       // Now build a new slice for the alloca.
4350       NewSlices.push_back(
4351           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4352                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
4353                 /*IsSplittable*/ false));
4354       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4355                         << ", " << NewSlices.back().endOffset()
4356                         << "): " << *PLoad << "\n");
4357 
4358       // See if we've handled all the splits.
4359       if (Idx >= Size)
4360         break;
4361 
4362       // Setup the next partition.
4363       PartOffset = Offsets.Splits[Idx];
4364       ++Idx;
4365       PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset;
4366     }
4367 
4368     // Now that we have the split loads, do the slow walk over all uses of the
4369     // load and rewrite them as split stores, or save the split loads to use
4370     // below if the store is going to be split there anyways.
4371     bool DeferredStores = false;
4372     for (User *LU : LI->users()) {
4373       StoreInst *SI = cast<StoreInst>(LU);
4374       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
4375         DeferredStores = true;
4376         LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
4377                           << "\n");
4378         continue;
4379       }
4380 
4381       Value *StoreBasePtr = SI->getPointerOperand();
4382       IRB.SetInsertPoint(SI);
4383 
4384       LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
4385 
4386       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
4387         LoadInst *PLoad = SplitLoads[Idx];
4388         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
4389         auto *PartPtrTy =
4390             PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
4391 
4392         auto AS = SI->getPointerAddressSpace();
4393         StoreInst *PStore = IRB.CreateAlignedStore(
4394             PLoad,
4395             getAdjustedPtr(IRB, DL, StoreBasePtr,
4396                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4397                            PartPtrTy, StoreBasePtr->getName() + "."),
4398             getAdjustedAlignment(SI, PartOffset),
4399             /*IsVolatile*/ false);
4400         PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4401                                    LLVMContext::MD_access_group,
4402                                    LLVMContext::MD_DIAssignID});
4403         LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
4404       }
4405 
4406       // We want to immediately iterate on any allocas impacted by splitting
4407       // this store, and we have to track any promotable alloca (indicated by
4408       // a direct store) as needing to be resplit because it is no longer
4409       // promotable.
4410       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
4411         ResplitPromotableAllocas.insert(OtherAI);
4412         Worklist.insert(OtherAI);
4413       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4414                      StoreBasePtr->stripInBoundsOffsets())) {
4415         Worklist.insert(OtherAI);
4416       }
4417 
4418       // Mark the original store as dead.
4419       DeadInsts.push_back(SI);
4420     }
4421 
4422     // Save the split loads if there are deferred stores among the users.
4423     if (DeferredStores)
4424       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
4425 
4426     // Mark the original load as dead and kill the original slice.
4427     DeadInsts.push_back(LI);
4428     Offsets.S->kill();
4429   }
4430 
4431   // Second, we rewrite all of the split stores. At this point, we know that
4432   // all loads from this alloca have been split already. For stores of such
4433   // loads, we can simply look up the pre-existing split loads. For stores of
4434   // other loads, we split those loads first and then write split stores of
4435   // them.
4436   for (StoreInst *SI : Stores) {
4437     auto *LI = cast<LoadInst>(SI->getValueOperand());
4438     IntegerType *Ty = cast<IntegerType>(LI->getType());
4439     assert(Ty->getBitWidth() % 8 == 0);
4440     uint64_t StoreSize = Ty->getBitWidth() / 8;
4441     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
4442 
4443     auto &Offsets = SplitOffsetsMap[SI];
4444     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
4445            "Slice size should always match load size exactly!");
4446     uint64_t BaseOffset = Offsets.S->beginOffset();
4447     assert(BaseOffset + StoreSize > BaseOffset &&
4448            "Cannot represent alloca access size using 64-bit integers!");
4449 
4450     Value *LoadBasePtr = LI->getPointerOperand();
4451     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
4452 
4453     LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
4454 
4455     // Check whether we have an already split load.
4456     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
4457     std::vector<LoadInst *> *SplitLoads = nullptr;
4458     if (SplitLoadsMapI != SplitLoadsMap.end()) {
4459       SplitLoads = &SplitLoadsMapI->second;
4460       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
4461              "Too few split loads for the number of splits in the store!");
4462     } else {
4463       LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
4464     }
4465 
4466     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4467     int Idx = 0, Size = Offsets.Splits.size();
4468     for (;;) {
4469       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4470       auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
4471       auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
4472 
4473       // Either lookup a split load or create one.
4474       LoadInst *PLoad;
4475       if (SplitLoads) {
4476         PLoad = (*SplitLoads)[Idx];
4477       } else {
4478         IRB.SetInsertPoint(LI);
4479         auto AS = LI->getPointerAddressSpace();
4480         PLoad = IRB.CreateAlignedLoad(
4481             PartTy,
4482             getAdjustedPtr(IRB, DL, LoadBasePtr,
4483                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4484                            LoadPartPtrTy, LoadBasePtr->getName() + "."),
4485             getAdjustedAlignment(LI, PartOffset),
4486             /*IsVolatile*/ false, LI->getName());
4487         PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4488                                   LLVMContext::MD_access_group});
4489       }
4490 
4491       // And store this partition.
4492       IRB.SetInsertPoint(SI);
4493       auto AS = SI->getPointerAddressSpace();
4494       StoreInst *PStore = IRB.CreateAlignedStore(
4495           PLoad,
4496           getAdjustedPtr(IRB, DL, StoreBasePtr,
4497                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4498                          StorePartPtrTy, StoreBasePtr->getName() + "."),
4499           getAdjustedAlignment(SI, PartOffset),
4500           /*IsVolatile*/ false);
4501       PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4502                                  LLVMContext::MD_access_group});
4503 
4504       // Now build a new slice for the alloca.
4505       NewSlices.push_back(
4506           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4507                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4508                 /*IsSplittable*/ false));
4509       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4510                         << ", " << NewSlices.back().endOffset()
4511                         << "): " << *PStore << "\n");
4512       if (!SplitLoads) {
4513         LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4514       }
4515 
4516       // See if we've finished all the splits.
4517       if (Idx >= Size)
4518         break;
4519 
4520       // Setup the next partition.
4521       PartOffset = Offsets.Splits[Idx];
4522       ++Idx;
4523       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4524     }
4525 
4526     // We want to immediately iterate on any allocas impacted by splitting
4527     // this load, which is only relevant if it isn't a load of this alloca and
4528     // thus we didn't already split the loads above. We also have to keep track
4529     // of any promotable allocas we split loads on as they can no longer be
4530     // promoted.
4531     if (!SplitLoads) {
4532       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4533         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4534         ResplitPromotableAllocas.insert(OtherAI);
4535         Worklist.insert(OtherAI);
4536       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4537                      LoadBasePtr->stripInBoundsOffsets())) {
4538         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4539         Worklist.insert(OtherAI);
4540       }
4541     }
4542 
4543     // Mark the original store as dead now that we've split it up and kill its
4544     // slice. Note that we leave the original load in place unless this store
4545     // was its only use. It may in turn be split up if it is an alloca load
4546     // for some other alloca, but it may be a normal load. This may introduce
4547     // redundant loads, but where those can be merged the rest of the optimizer
4548     // should handle the merging, and this uncovers SSA splits which is more
4549     // important. In practice, the original loads will almost always be fully
4550     // split and removed eventually, and the splits will be merged by any
4551     // trivial CSE, including instcombine.
4552     if (LI->hasOneUse()) {
4553       assert(*LI->user_begin() == SI && "Single use isn't this store!");
4554       DeadInsts.push_back(LI);
4555     }
4556     DeadInsts.push_back(SI);
4557     Offsets.S->kill();
4558   }
4559 
4560   // Remove the killed slices that have ben pre-split.
4561   llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); });
4562 
4563   // Insert our new slices. This will sort and merge them into the sorted
4564   // sequence.
4565   AS.insert(NewSlices);
4566 
4567   LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4568 #ifndef NDEBUG
4569   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4570     LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4571 #endif
4572 
4573   // Finally, don't try to promote any allocas that new require re-splitting.
4574   // They have already been added to the worklist above.
4575   llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) {
4576     return ResplitPromotableAllocas.count(AI);
4577   });
4578 
4579   return true;
4580 }
4581 
4582 /// Rewrite an alloca partition's users.
4583 ///
4584 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4585 /// to rewrite uses of an alloca partition to be conducive for SSA value
4586 /// promotion. If the partition needs a new, more refined alloca, this will
4587 /// build that new alloca, preserving as much type information as possible, and
4588 /// rewrite the uses of the old alloca to point at the new one and have the
4589 /// appropriate new offsets. It also evaluates how successful the rewrite was
4590 /// at enabling promotion and if it was successful queues the alloca to be
4591 /// promoted.
4592 AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4593                                        Partition &P) {
4594   // Try to compute a friendly type for this partition of the alloca. This
4595   // won't always succeed, in which case we fall back to a legal integer type
4596   // or an i8 array of an appropriate size.
4597   Type *SliceTy = nullptr;
4598   VectorType *SliceVecTy = nullptr;
4599   const DataLayout &DL = AI.getModule()->getDataLayout();
4600   std::pair<Type *, IntegerType *> CommonUseTy =
4601       findCommonType(P.begin(), P.end(), P.endOffset());
4602   // Do all uses operate on the same type?
4603   if (CommonUseTy.first)
4604     if (DL.getTypeAllocSize(CommonUseTy.first).getFixedValue() >= P.size()) {
4605       SliceTy = CommonUseTy.first;
4606       SliceVecTy = dyn_cast<VectorType>(SliceTy);
4607     }
4608   // If not, can we find an appropriate subtype in the original allocated type?
4609   if (!SliceTy)
4610     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4611                                                  P.beginOffset(), P.size()))
4612       SliceTy = TypePartitionTy;
4613 
4614   // If still not, can we use the largest bitwidth integer type used?
4615   if (!SliceTy && CommonUseTy.second)
4616     if (DL.getTypeAllocSize(CommonUseTy.second).getFixedValue() >= P.size()) {
4617       SliceTy = CommonUseTy.second;
4618       SliceVecTy = dyn_cast<VectorType>(SliceTy);
4619     }
4620   if ((!SliceTy || (SliceTy->isArrayTy() &&
4621                     SliceTy->getArrayElementType()->isIntegerTy())) &&
4622       DL.isLegalInteger(P.size() * 8)) {
4623     SliceTy = Type::getIntNTy(*C, P.size() * 8);
4624   }
4625 
4626   // If the common use types are not viable for promotion then attempt to find
4627   // another type that is viable.
4628   if (SliceVecTy && !checkVectorTypeForPromotion(P, SliceVecTy, DL))
4629     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4630                                                  P.beginOffset(), P.size())) {
4631       VectorType *TypePartitionVecTy = dyn_cast<VectorType>(TypePartitionTy);
4632       if (TypePartitionVecTy &&
4633           checkVectorTypeForPromotion(P, TypePartitionVecTy, DL))
4634         SliceTy = TypePartitionTy;
4635     }
4636 
4637   if (!SliceTy)
4638     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4639   assert(DL.getTypeAllocSize(SliceTy).getFixedValue() >= P.size());
4640 
4641   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4642 
4643   VectorType *VecTy =
4644       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4645   if (VecTy)
4646     SliceTy = VecTy;
4647 
4648   // Check for the case where we're going to rewrite to a new alloca of the
4649   // exact same type as the original, and with the same access offsets. In that
4650   // case, re-use the existing alloca, but still run through the rewriter to
4651   // perform phi and select speculation.
4652   // P.beginOffset() can be non-zero even with the same type in a case with
4653   // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4654   AllocaInst *NewAI;
4655   if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4656     NewAI = &AI;
4657     // FIXME: We should be able to bail at this point with "nothing changed".
4658     // FIXME: We might want to defer PHI speculation until after here.
4659     // FIXME: return nullptr;
4660   } else {
4661     // Make sure the alignment is compatible with P.beginOffset().
4662     const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
4663     // If we will get at least this much alignment from the type alone, leave
4664     // the alloca's alignment unconstrained.
4665     const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy);
4666     NewAI = new AllocaInst(
4667         SliceTy, AI.getAddressSpace(), nullptr,
4668         IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
4669         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4670     // Copy the old AI debug location over to the new one.
4671     NewAI->setDebugLoc(AI.getDebugLoc());
4672     ++NumNewAllocas;
4673   }
4674 
4675   LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4676                     << "[" << P.beginOffset() << "," << P.endOffset()
4677                     << ") to: " << *NewAI << "\n");
4678 
4679   // Track the high watermark on the worklist as it is only relevant for
4680   // promoted allocas. We will reset it to this point if the alloca is not in
4681   // fact scheduled for promotion.
4682   unsigned PPWOldSize = PostPromotionWorklist.size();
4683   unsigned NumUses = 0;
4684   SmallSetVector<PHINode *, 8> PHIUsers;
4685   SmallSetVector<SelectInst *, 8> SelectUsers;
4686 
4687   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4688                                P.endOffset(), IsIntegerPromotable, VecTy,
4689                                PHIUsers, SelectUsers);
4690   bool Promotable = true;
4691   for (Slice *S : P.splitSliceTails()) {
4692     Promotable &= Rewriter.visit(S);
4693     ++NumUses;
4694   }
4695   for (Slice &S : P) {
4696     Promotable &= Rewriter.visit(&S);
4697     ++NumUses;
4698   }
4699 
4700   NumAllocaPartitionUses += NumUses;
4701   MaxUsesPerAllocaPartition.updateMax(NumUses);
4702 
4703   // Now that we've processed all the slices in the new partition, check if any
4704   // PHIs or Selects would block promotion.
4705   for (PHINode *PHI : PHIUsers)
4706     if (!isSafePHIToSpeculate(*PHI)) {
4707       Promotable = false;
4708       PHIUsers.clear();
4709       SelectUsers.clear();
4710       break;
4711     }
4712 
4713   SmallVector<std::pair<SelectInst *, RewriteableMemOps>, 2>
4714       NewSelectsToRewrite;
4715   NewSelectsToRewrite.reserve(SelectUsers.size());
4716   for (SelectInst *Sel : SelectUsers) {
4717     std::optional<RewriteableMemOps> Ops =
4718         isSafeSelectToSpeculate(*Sel, PreserveCFG);
4719     if (!Ops) {
4720       Promotable = false;
4721       PHIUsers.clear();
4722       SelectUsers.clear();
4723       NewSelectsToRewrite.clear();
4724       break;
4725     }
4726     NewSelectsToRewrite.emplace_back(std::make_pair(Sel, *Ops));
4727   }
4728 
4729   if (Promotable) {
4730     for (Use *U : AS.getDeadUsesIfPromotable()) {
4731       auto *OldInst = dyn_cast<Instruction>(U->get());
4732       Value::dropDroppableUse(*U);
4733       if (OldInst)
4734         if (isInstructionTriviallyDead(OldInst))
4735           DeadInsts.push_back(OldInst);
4736     }
4737     if (PHIUsers.empty() && SelectUsers.empty()) {
4738       // Promote the alloca.
4739       PromotableAllocas.push_back(NewAI);
4740     } else {
4741       // If we have either PHIs or Selects to speculate, add them to those
4742       // worklists and re-queue the new alloca so that we promote in on the
4743       // next iteration.
4744       for (PHINode *PHIUser : PHIUsers)
4745         SpeculatablePHIs.insert(PHIUser);
4746       SelectsToRewrite.reserve(SelectsToRewrite.size() +
4747                                NewSelectsToRewrite.size());
4748       for (auto &&KV : llvm::make_range(
4749                std::make_move_iterator(NewSelectsToRewrite.begin()),
4750                std::make_move_iterator(NewSelectsToRewrite.end())))
4751         SelectsToRewrite.insert(std::move(KV));
4752       Worklist.insert(NewAI);
4753     }
4754   } else {
4755     // Drop any post-promotion work items if promotion didn't happen.
4756     while (PostPromotionWorklist.size() > PPWOldSize)
4757       PostPromotionWorklist.pop_back();
4758 
4759     // We couldn't promote and we didn't create a new partition, nothing
4760     // happened.
4761     if (NewAI == &AI)
4762       return nullptr;
4763 
4764     // If we can't promote the alloca, iterate on it to check for new
4765     // refinements exposed by splitting the current alloca. Don't iterate on an
4766     // alloca which didn't actually change and didn't get promoted.
4767     Worklist.insert(NewAI);
4768   }
4769 
4770   return NewAI;
4771 }
4772 
4773 /// Walks the slices of an alloca and form partitions based on them,
4774 /// rewriting each of their uses.
4775 bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4776   if (AS.begin() == AS.end())
4777     return false;
4778 
4779   unsigned NumPartitions = 0;
4780   bool Changed = false;
4781   const DataLayout &DL = AI.getModule()->getDataLayout();
4782 
4783   // First try to pre-split loads and stores.
4784   Changed |= presplitLoadsAndStores(AI, AS);
4785 
4786   // Now that we have identified any pre-splitting opportunities,
4787   // mark loads and stores unsplittable except for the following case.
4788   // We leave a slice splittable if all other slices are disjoint or fully
4789   // included in the slice, such as whole-alloca loads and stores.
4790   // If we fail to split these during pre-splitting, we want to force them
4791   // to be rewritten into a partition.
4792   bool IsSorted = true;
4793 
4794   uint64_t AllocaSize =
4795       DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue();
4796   const uint64_t MaxBitVectorSize = 1024;
4797   if (AllocaSize <= MaxBitVectorSize) {
4798     // If a byte boundary is included in any load or store, a slice starting or
4799     // ending at the boundary is not splittable.
4800     SmallBitVector SplittableOffset(AllocaSize + 1, true);
4801     for (Slice &S : AS)
4802       for (unsigned O = S.beginOffset() + 1;
4803            O < S.endOffset() && O < AllocaSize; O++)
4804         SplittableOffset.reset(O);
4805 
4806     for (Slice &S : AS) {
4807       if (!S.isSplittable())
4808         continue;
4809 
4810       if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4811           (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4812         continue;
4813 
4814       if (isa<LoadInst>(S.getUse()->getUser()) ||
4815           isa<StoreInst>(S.getUse()->getUser())) {
4816         S.makeUnsplittable();
4817         IsSorted = false;
4818       }
4819     }
4820   }
4821   else {
4822     // We only allow whole-alloca splittable loads and stores
4823     // for a large alloca to avoid creating too large BitVector.
4824     for (Slice &S : AS) {
4825       if (!S.isSplittable())
4826         continue;
4827 
4828       if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4829         continue;
4830 
4831       if (isa<LoadInst>(S.getUse()->getUser()) ||
4832           isa<StoreInst>(S.getUse()->getUser())) {
4833         S.makeUnsplittable();
4834         IsSorted = false;
4835       }
4836     }
4837   }
4838 
4839   if (!IsSorted)
4840     llvm::sort(AS);
4841 
4842   /// Describes the allocas introduced by rewritePartition in order to migrate
4843   /// the debug info.
4844   struct Fragment {
4845     AllocaInst *Alloca;
4846     uint64_t Offset;
4847     uint64_t Size;
4848     Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4849       : Alloca(AI), Offset(O), Size(S) {}
4850   };
4851   SmallVector<Fragment, 4> Fragments;
4852 
4853   // Rewrite each partition.
4854   for (auto &P : AS.partitions()) {
4855     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4856       Changed = true;
4857       if (NewAI != &AI) {
4858         uint64_t SizeOfByte = 8;
4859         uint64_t AllocaSize =
4860             DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedValue();
4861         // Don't include any padding.
4862         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4863         Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4864       }
4865     }
4866     ++NumPartitions;
4867   }
4868 
4869   NumAllocaPartitions += NumPartitions;
4870   MaxPartitionsPerAlloca.updateMax(NumPartitions);
4871 
4872   // Migrate debug information from the old alloca to the new alloca(s)
4873   // and the individual partitions.
4874   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4875   for (auto *DbgAssign : at::getAssignmentMarkers(&AI))
4876     DbgDeclares.push_back(DbgAssign);
4877   for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) {
4878     auto *Expr = DbgDeclare->getExpression();
4879     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4880     uint64_t AllocaSize =
4881         DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedValue();
4882     for (auto Fragment : Fragments) {
4883       // Create a fragment expression describing the new partition or reuse AI's
4884       // expression if there is only one partition.
4885       auto *FragmentExpr = Expr;
4886       if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4887         // If this alloca is already a scalar replacement of a larger aggregate,
4888         // Fragment.Offset describes the offset inside the scalar.
4889         auto ExprFragment = Expr->getFragmentInfo();
4890         uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4891         uint64_t Start = Offset + Fragment.Offset;
4892         uint64_t Size = Fragment.Size;
4893         if (ExprFragment) {
4894           uint64_t AbsEnd =
4895               ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4896           if (Start >= AbsEnd) {
4897             // No need to describe a SROAed padding.
4898             continue;
4899           }
4900           Size = std::min(Size, AbsEnd - Start);
4901         }
4902         // The new, smaller fragment is stenciled out from the old fragment.
4903         if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4904           assert(Start >= OrigFragment->OffsetInBits &&
4905                  "new fragment is outside of original fragment");
4906           Start -= OrigFragment->OffsetInBits;
4907         }
4908 
4909         // The alloca may be larger than the variable.
4910         auto VarSize = DbgDeclare->getVariable()->getSizeInBits();
4911         if (VarSize) {
4912           if (Size > *VarSize)
4913             Size = *VarSize;
4914           if (Size == 0 || Start + Size > *VarSize)
4915             continue;
4916         }
4917 
4918         // Avoid creating a fragment expression that covers the entire variable.
4919         if (!VarSize || *VarSize != Size) {
4920           if (auto E =
4921                   DIExpression::createFragmentExpression(Expr, Start, Size))
4922             FragmentExpr = *E;
4923           else
4924             continue;
4925         }
4926       }
4927 
4928       // Remove any existing intrinsics on the new alloca describing
4929       // the variable fragment.
4930       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) {
4931         auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS,
4932                                        const DbgVariableIntrinsic *RHS) {
4933           return LHS->getVariable() == RHS->getVariable() &&
4934                  LHS->getDebugLoc()->getInlinedAt() ==
4935                      RHS->getDebugLoc()->getInlinedAt();
4936         };
4937         if (SameVariableFragment(OldDII, DbgDeclare))
4938           OldDII->eraseFromParent();
4939       }
4940 
4941       if (auto *DbgAssign = dyn_cast<DbgAssignIntrinsic>(DbgDeclare)) {
4942         if (!Fragment.Alloca->hasMetadata(LLVMContext::MD_DIAssignID)) {
4943           Fragment.Alloca->setMetadata(
4944               LLVMContext::MD_DIAssignID,
4945               DIAssignID::getDistinct(AI.getContext()));
4946         }
4947         auto *NewAssign = DIB.insertDbgAssign(
4948             Fragment.Alloca, DbgAssign->getValue(), DbgAssign->getVariable(),
4949             FragmentExpr, Fragment.Alloca, DbgAssign->getAddressExpression(),
4950             DbgAssign->getDebugLoc());
4951         NewAssign->setDebugLoc(DbgAssign->getDebugLoc());
4952         LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign
4953                           << "\n");
4954       } else {
4955         DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(),
4956                           FragmentExpr, DbgDeclare->getDebugLoc(), &AI);
4957       }
4958     }
4959   }
4960   return Changed;
4961 }
4962 
4963 /// Clobber a use with poison, deleting the used value if it becomes dead.
4964 void SROAPass::clobberUse(Use &U) {
4965   Value *OldV = U;
4966   // Replace the use with an poison value.
4967   U = PoisonValue::get(OldV->getType());
4968 
4969   // Check for this making an instruction dead. We have to garbage collect
4970   // all the dead instructions to ensure the uses of any alloca end up being
4971   // minimal.
4972   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4973     if (isInstructionTriviallyDead(OldI)) {
4974       DeadInsts.push_back(OldI);
4975     }
4976 }
4977 
4978 /// Analyze an alloca for SROA.
4979 ///
4980 /// This analyzes the alloca to ensure we can reason about it, builds
4981 /// the slices of the alloca, and then hands it off to be split and
4982 /// rewritten as needed.
4983 std::pair<bool /*Changed*/, bool /*CFGChanged*/>
4984 SROAPass::runOnAlloca(AllocaInst &AI) {
4985   bool Changed = false;
4986   bool CFGChanged = false;
4987 
4988   LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4989   ++NumAllocasAnalyzed;
4990 
4991   // Special case dead allocas, as they're trivial.
4992   if (AI.use_empty()) {
4993     AI.eraseFromParent();
4994     Changed = true;
4995     return {Changed, CFGChanged};
4996   }
4997   const DataLayout &DL = AI.getModule()->getDataLayout();
4998 
4999   // Skip alloca forms that this analysis can't handle.
5000   auto *AT = AI.getAllocatedType();
5001   if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) ||
5002       DL.getTypeAllocSize(AT).getFixedValue() == 0)
5003     return {Changed, CFGChanged};
5004 
5005   // First, split any FCA loads and stores touching this alloca to promote
5006   // better splitting and promotion opportunities.
5007   IRBuilderTy IRB(&AI);
5008   AggLoadStoreRewriter AggRewriter(DL, IRB);
5009   Changed |= AggRewriter.rewrite(AI);
5010 
5011   // Build the slices using a recursive instruction-visiting builder.
5012   AllocaSlices AS(DL, AI);
5013   LLVM_DEBUG(AS.print(dbgs()));
5014   if (AS.isEscaped())
5015     return {Changed, CFGChanged};
5016 
5017   // Delete all the dead users of this alloca before splitting and rewriting it.
5018   for (Instruction *DeadUser : AS.getDeadUsers()) {
5019     // Free up everything used by this instruction.
5020     for (Use &DeadOp : DeadUser->operands())
5021       clobberUse(DeadOp);
5022 
5023     // Now replace the uses of this instruction.
5024     DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType()));
5025 
5026     // And mark it for deletion.
5027     DeadInsts.push_back(DeadUser);
5028     Changed = true;
5029   }
5030   for (Use *DeadOp : AS.getDeadOperands()) {
5031     clobberUse(*DeadOp);
5032     Changed = true;
5033   }
5034 
5035   // No slices to split. Leave the dead alloca for a later pass to clean up.
5036   if (AS.begin() == AS.end())
5037     return {Changed, CFGChanged};
5038 
5039   Changed |= splitAlloca(AI, AS);
5040 
5041   LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
5042   while (!SpeculatablePHIs.empty())
5043     speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val());
5044 
5045   LLVM_DEBUG(dbgs() << "  Rewriting Selects\n");
5046   auto RemainingSelectsToRewrite = SelectsToRewrite.takeVector();
5047   while (!RemainingSelectsToRewrite.empty()) {
5048     const auto [K, V] = RemainingSelectsToRewrite.pop_back_val();
5049     CFGChanged |=
5050         rewriteSelectInstMemOps(*K, V, IRB, PreserveCFG ? nullptr : DTU);
5051   }
5052 
5053   return {Changed, CFGChanged};
5054 }
5055 
5056 /// Delete the dead instructions accumulated in this run.
5057 ///
5058 /// Recursively deletes the dead instructions we've accumulated. This is done
5059 /// at the very end to maximize locality of the recursive delete and to
5060 /// minimize the problems of invalidated instruction pointers as such pointers
5061 /// are used heavily in the intermediate stages of the algorithm.
5062 ///
5063 /// We also record the alloca instructions deleted here so that they aren't
5064 /// subsequently handed to mem2reg to promote.
5065 bool SROAPass::deleteDeadInstructions(
5066     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
5067   bool Changed = false;
5068   while (!DeadInsts.empty()) {
5069     Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
5070     if (!I)
5071       continue;
5072     LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
5073 
5074     // If the instruction is an alloca, find the possible dbg.declare connected
5075     // to it, and remove it too. We must do this before calling RAUW or we will
5076     // not be able to find it.
5077     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
5078       DeletedAllocas.insert(AI);
5079       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
5080         OldDII->eraseFromParent();
5081     }
5082 
5083     at::deleteAssignmentMarkers(I);
5084     I->replaceAllUsesWith(UndefValue::get(I->getType()));
5085 
5086     for (Use &Operand : I->operands())
5087       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
5088         // Zero out the operand and see if it becomes trivially dead.
5089         Operand = nullptr;
5090         if (isInstructionTriviallyDead(U))
5091           DeadInsts.push_back(U);
5092       }
5093 
5094     ++NumDeleted;
5095     I->eraseFromParent();
5096     Changed = true;
5097   }
5098   return Changed;
5099 }
5100 
5101 /// Promote the allocas, using the best available technique.
5102 ///
5103 /// This attempts to promote whatever allocas have been identified as viable in
5104 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
5105 /// This function returns whether any promotion occurred.
5106 bool SROAPass::promoteAllocas(Function &F) {
5107   if (PromotableAllocas.empty())
5108     return false;
5109 
5110   NumPromoted += PromotableAllocas.size();
5111 
5112   LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
5113   PromoteMemToReg(PromotableAllocas, DTU->getDomTree(), AC);
5114   PromotableAllocas.clear();
5115   return true;
5116 }
5117 
5118 PreservedAnalyses SROAPass::runImpl(Function &F, DomTreeUpdater &RunDTU,
5119                                     AssumptionCache &RunAC) {
5120   LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
5121   C = &F.getContext();
5122   DTU = &RunDTU;
5123   AC = &RunAC;
5124 
5125   BasicBlock &EntryBB = F.getEntryBlock();
5126   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
5127        I != E; ++I) {
5128     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
5129       if (isa<ScalableVectorType>(AI->getAllocatedType())) {
5130         if (isAllocaPromotable(AI))
5131           PromotableAllocas.push_back(AI);
5132       } else {
5133         Worklist.insert(AI);
5134       }
5135     }
5136   }
5137 
5138   bool Changed = false;
5139   bool CFGChanged = false;
5140   // A set of deleted alloca instruction pointers which should be removed from
5141   // the list of promotable allocas.
5142   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
5143 
5144   do {
5145     while (!Worklist.empty()) {
5146       auto [IterationChanged, IterationCFGChanged] =
5147           runOnAlloca(*Worklist.pop_back_val());
5148       Changed |= IterationChanged;
5149       CFGChanged |= IterationCFGChanged;
5150 
5151       Changed |= deleteDeadInstructions(DeletedAllocas);
5152 
5153       // Remove the deleted allocas from various lists so that we don't try to
5154       // continue processing them.
5155       if (!DeletedAllocas.empty()) {
5156         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
5157         Worklist.remove_if(IsInSet);
5158         PostPromotionWorklist.remove_if(IsInSet);
5159         llvm::erase_if(PromotableAllocas, IsInSet);
5160         DeletedAllocas.clear();
5161       }
5162     }
5163 
5164     Changed |= promoteAllocas(F);
5165 
5166     Worklist = PostPromotionWorklist;
5167     PostPromotionWorklist.clear();
5168   } while (!Worklist.empty());
5169 
5170   assert((!CFGChanged || Changed) && "Can not only modify the CFG.");
5171   assert((!CFGChanged || !PreserveCFG) &&
5172          "Should not have modified the CFG when told to preserve it.");
5173 
5174   if (!Changed)
5175     return PreservedAnalyses::all();
5176 
5177   PreservedAnalyses PA;
5178   if (!CFGChanged)
5179     PA.preserveSet<CFGAnalyses>();
5180   PA.preserve<DominatorTreeAnalysis>();
5181   return PA;
5182 }
5183 
5184 PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT,
5185                                     AssumptionCache &RunAC) {
5186   DomTreeUpdater DTU(RunDT, DomTreeUpdater::UpdateStrategy::Lazy);
5187   return runImpl(F, DTU, RunAC);
5188 }
5189 
5190 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) {
5191   return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
5192                  AM.getResult<AssumptionAnalysis>(F));
5193 }
5194 
5195 void SROAPass::printPipeline(
5196     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
5197   static_cast<PassInfoMixin<SROAPass> *>(this)->printPipeline(
5198       OS, MapClassName2PassName);
5199   OS << (PreserveCFG ? "<preserve-cfg>" : "<modify-cfg>");
5200 }
5201 
5202 SROAPass::SROAPass(SROAOptions PreserveCFG_)
5203     : PreserveCFG(PreserveCFG_ == SROAOptions::PreserveCFG) {}
5204 
5205 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
5206 ///
5207 /// This is in the llvm namespace purely to allow it to be a friend of the \c
5208 /// SROA pass.
5209 class llvm::sroa::SROALegacyPass : public FunctionPass {
5210   /// The SROA implementation.
5211   SROAPass Impl;
5212 
5213 public:
5214   static char ID;
5215 
5216   SROALegacyPass(SROAOptions PreserveCFG = SROAOptions::PreserveCFG)
5217       : FunctionPass(ID), Impl(PreserveCFG) {
5218     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
5219   }
5220 
5221   bool runOnFunction(Function &F) override {
5222     if (skipFunction(F))
5223       return false;
5224 
5225     auto PA = Impl.runImpl(
5226         F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
5227         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
5228     return !PA.areAllPreserved();
5229   }
5230 
5231   void getAnalysisUsage(AnalysisUsage &AU) const override {
5232     AU.addRequired<AssumptionCacheTracker>();
5233     AU.addRequired<DominatorTreeWrapperPass>();
5234     AU.addPreserved<GlobalsAAWrapperPass>();
5235     AU.addPreserved<DominatorTreeWrapperPass>();
5236   }
5237 
5238   StringRef getPassName() const override { return "SROA"; }
5239 };
5240 
5241 char SROALegacyPass::ID = 0;
5242 
5243 FunctionPass *llvm::createSROAPass(bool PreserveCFG) {
5244   return new SROALegacyPass(PreserveCFG ? SROAOptions::PreserveCFG
5245                                         : SROAOptions::ModifyCFG);
5246 }
5247 
5248 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
5249                       "Scalar Replacement Of Aggregates", false, false)
5250 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
5251 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5252 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
5253                     false, false)
5254