xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/SROA.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
14 ///
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
18 ///
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/AssumptionCache.h"
41 #include "llvm/Analysis/GlobalsModRef.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/PtrUseVisitor.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/ConstantFolder.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DIBuilder.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GetElementPtrTypeIterator.h"
56 #include "llvm/IR/GlobalAlias.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstVisitor.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <chrono>
88 #include <cstddef>
89 #include <cstdint>
90 #include <cstring>
91 #include <iterator>
92 #include <string>
93 #include <tuple>
94 #include <utility>
95 #include <vector>
96 
97 using namespace llvm;
98 using namespace llvm::sroa;
99 
100 #define DEBUG_TYPE "sroa"
101 
102 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
103 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
104 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
105 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
106 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
107 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
108 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
109 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
110 STATISTIC(NumDeleted, "Number of instructions deleted");
111 STATISTIC(NumVectorized, "Number of vectorized aggregates");
112 
113 /// Hidden option to experiment with completely strict handling of inbounds
114 /// GEPs.
115 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
116                                         cl::Hidden);
117 
118 namespace {
119 
120 /// A custom IRBuilder inserter which prefixes all names, but only in
121 /// Assert builds.
122 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
123   std::string Prefix;
124 
125   Twine getNameWithPrefix(const Twine &Name) const {
126     return Name.isTriviallyEmpty() ? Name : Prefix + Name;
127   }
128 
129 public:
130   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
131 
132   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
133                     BasicBlock::iterator InsertPt) const override {
134     IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
135                                            InsertPt);
136   }
137 };
138 
139 /// Provide a type for IRBuilder that drops names in release builds.
140 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
141 
142 /// A used slice of an alloca.
143 ///
144 /// This structure represents a slice of an alloca used by some instruction. It
145 /// stores both the begin and end offsets of this use, a pointer to the use
146 /// itself, and a flag indicating whether we can classify the use as splittable
147 /// or not when forming partitions of the alloca.
148 class Slice {
149   /// The beginning offset of the range.
150   uint64_t BeginOffset = 0;
151 
152   /// The ending offset, not included in the range.
153   uint64_t EndOffset = 0;
154 
155   /// Storage for both the use of this slice and whether it can be
156   /// split.
157   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
158 
159 public:
160   Slice() = default;
161 
162   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
163       : BeginOffset(BeginOffset), EndOffset(EndOffset),
164         UseAndIsSplittable(U, IsSplittable) {}
165 
166   uint64_t beginOffset() const { return BeginOffset; }
167   uint64_t endOffset() const { return EndOffset; }
168 
169   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
170   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
171 
172   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
173 
174   bool isDead() const { return getUse() == nullptr; }
175   void kill() { UseAndIsSplittable.setPointer(nullptr); }
176 
177   /// Support for ordering ranges.
178   ///
179   /// This provides an ordering over ranges such that start offsets are
180   /// always increasing, and within equal start offsets, the end offsets are
181   /// decreasing. Thus the spanning range comes first in a cluster with the
182   /// same start position.
183   bool operator<(const Slice &RHS) const {
184     if (beginOffset() < RHS.beginOffset())
185       return true;
186     if (beginOffset() > RHS.beginOffset())
187       return false;
188     if (isSplittable() != RHS.isSplittable())
189       return !isSplittable();
190     if (endOffset() > RHS.endOffset())
191       return true;
192     return false;
193   }
194 
195   /// Support comparison with a single offset to allow binary searches.
196   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
197                                               uint64_t RHSOffset) {
198     return LHS.beginOffset() < RHSOffset;
199   }
200   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
201                                               const Slice &RHS) {
202     return LHSOffset < RHS.beginOffset();
203   }
204 
205   bool operator==(const Slice &RHS) const {
206     return isSplittable() == RHS.isSplittable() &&
207            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
208   }
209   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
210 };
211 
212 } // end anonymous namespace
213 
214 /// Representation of the alloca slices.
215 ///
216 /// This class represents the slices of an alloca which are formed by its
217 /// various uses. If a pointer escapes, we can't fully build a representation
218 /// for the slices used and we reflect that in this structure. The uses are
219 /// stored, sorted by increasing beginning offset and with unsplittable slices
220 /// starting at a particular offset before splittable slices.
221 class llvm::sroa::AllocaSlices {
222 public:
223   /// Construct the slices of a particular alloca.
224   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
225 
226   /// Test whether a pointer to the allocation escapes our analysis.
227   ///
228   /// If this is true, the slices are never fully built and should be
229   /// ignored.
230   bool isEscaped() const { return PointerEscapingInstr; }
231 
232   /// Support for iterating over the slices.
233   /// @{
234   using iterator = SmallVectorImpl<Slice>::iterator;
235   using range = iterator_range<iterator>;
236 
237   iterator begin() { return Slices.begin(); }
238   iterator end() { return Slices.end(); }
239 
240   using const_iterator = SmallVectorImpl<Slice>::const_iterator;
241   using const_range = iterator_range<const_iterator>;
242 
243   const_iterator begin() const { return Slices.begin(); }
244   const_iterator end() const { return Slices.end(); }
245   /// @}
246 
247   /// Erase a range of slices.
248   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
249 
250   /// Insert new slices for this alloca.
251   ///
252   /// This moves the slices into the alloca's slices collection, and re-sorts
253   /// everything so that the usual ordering properties of the alloca's slices
254   /// hold.
255   void insert(ArrayRef<Slice> NewSlices) {
256     int OldSize = Slices.size();
257     Slices.append(NewSlices.begin(), NewSlices.end());
258     auto SliceI = Slices.begin() + OldSize;
259     llvm::sort(SliceI, Slices.end());
260     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
261   }
262 
263   // Forward declare the iterator and range accessor for walking the
264   // partitions.
265   class partition_iterator;
266   iterator_range<partition_iterator> partitions();
267 
268   /// Access the dead users for this alloca.
269   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
270 
271   /// Access Uses that should be dropped if the alloca is promotable.
272   ArrayRef<Use *> getDeadUsesIfPromotable() const {
273     return DeadUseIfPromotable;
274   }
275 
276   /// Access the dead operands referring to this alloca.
277   ///
278   /// These are operands which have cannot actually be used to refer to the
279   /// alloca as they are outside its range and the user doesn't correct for
280   /// that. These mostly consist of PHI node inputs and the like which we just
281   /// need to replace with undef.
282   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
283 
284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
285   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
286   void printSlice(raw_ostream &OS, const_iterator I,
287                   StringRef Indent = "  ") const;
288   void printUse(raw_ostream &OS, const_iterator I,
289                 StringRef Indent = "  ") const;
290   void print(raw_ostream &OS) const;
291   void dump(const_iterator I) const;
292   void dump() const;
293 #endif
294 
295 private:
296   template <typename DerivedT, typename RetT = void> class BuilderBase;
297   class SliceBuilder;
298 
299   friend class AllocaSlices::SliceBuilder;
300 
301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
302   /// Handle to alloca instruction to simplify method interfaces.
303   AllocaInst &AI;
304 #endif
305 
306   /// The instruction responsible for this alloca not having a known set
307   /// of slices.
308   ///
309   /// When an instruction (potentially) escapes the pointer to the alloca, we
310   /// store a pointer to that here and abort trying to form slices of the
311   /// alloca. This will be null if the alloca slices are analyzed successfully.
312   Instruction *PointerEscapingInstr;
313 
314   /// The slices of the alloca.
315   ///
316   /// We store a vector of the slices formed by uses of the alloca here. This
317   /// vector is sorted by increasing begin offset, and then the unsplittable
318   /// slices before the splittable ones. See the Slice inner class for more
319   /// details.
320   SmallVector<Slice, 8> Slices;
321 
322   /// Instructions which will become dead if we rewrite the alloca.
323   ///
324   /// Note that these are not separated by slice. This is because we expect an
325   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
326   /// all these instructions can simply be removed and replaced with undef as
327   /// they come from outside of the allocated space.
328   SmallVector<Instruction *, 8> DeadUsers;
329 
330   /// Uses which will become dead if can promote the alloca.
331   SmallVector<Use *, 8> DeadUseIfPromotable;
332 
333   /// Operands which will become dead if we rewrite the alloca.
334   ///
335   /// These are operands that in their particular use can be replaced with
336   /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
337   /// to PHI nodes and the like. They aren't entirely dead (there might be
338   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
339   /// want to swap this particular input for undef to simplify the use lists of
340   /// the alloca.
341   SmallVector<Use *, 8> DeadOperands;
342 };
343 
344 /// A partition of the slices.
345 ///
346 /// An ephemeral representation for a range of slices which can be viewed as
347 /// a partition of the alloca. This range represents a span of the alloca's
348 /// memory which cannot be split, and provides access to all of the slices
349 /// overlapping some part of the partition.
350 ///
351 /// Objects of this type are produced by traversing the alloca's slices, but
352 /// are only ephemeral and not persistent.
353 class llvm::sroa::Partition {
354 private:
355   friend class AllocaSlices;
356   friend class AllocaSlices::partition_iterator;
357 
358   using iterator = AllocaSlices::iterator;
359 
360   /// The beginning and ending offsets of the alloca for this
361   /// partition.
362   uint64_t BeginOffset = 0, EndOffset = 0;
363 
364   /// The start and end iterators of this partition.
365   iterator SI, SJ;
366 
367   /// A collection of split slice tails overlapping the partition.
368   SmallVector<Slice *, 4> SplitTails;
369 
370   /// Raw constructor builds an empty partition starting and ending at
371   /// the given iterator.
372   Partition(iterator SI) : SI(SI), SJ(SI) {}
373 
374 public:
375   /// The start offset of this partition.
376   ///
377   /// All of the contained slices start at or after this offset.
378   uint64_t beginOffset() const { return BeginOffset; }
379 
380   /// The end offset of this partition.
381   ///
382   /// All of the contained slices end at or before this offset.
383   uint64_t endOffset() const { return EndOffset; }
384 
385   /// The size of the partition.
386   ///
387   /// Note that this can never be zero.
388   uint64_t size() const {
389     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
390     return EndOffset - BeginOffset;
391   }
392 
393   /// Test whether this partition contains no slices, and merely spans
394   /// a region occupied by split slices.
395   bool empty() const { return SI == SJ; }
396 
397   /// \name Iterate slices that start within the partition.
398   /// These may be splittable or unsplittable. They have a begin offset >= the
399   /// partition begin offset.
400   /// @{
401   // FIXME: We should probably define a "concat_iterator" helper and use that
402   // to stitch together pointee_iterators over the split tails and the
403   // contiguous iterators of the partition. That would give a much nicer
404   // interface here. We could then additionally expose filtered iterators for
405   // split, unsplit, and unsplittable splices based on the usage patterns.
406   iterator begin() const { return SI; }
407   iterator end() const { return SJ; }
408   /// @}
409 
410   /// Get the sequence of split slice tails.
411   ///
412   /// These tails are of slices which start before this partition but are
413   /// split and overlap into the partition. We accumulate these while forming
414   /// partitions.
415   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
416 };
417 
418 /// An iterator over partitions of the alloca's slices.
419 ///
420 /// This iterator implements the core algorithm for partitioning the alloca's
421 /// slices. It is a forward iterator as we don't support backtracking for
422 /// efficiency reasons, and re-use a single storage area to maintain the
423 /// current set of split slices.
424 ///
425 /// It is templated on the slice iterator type to use so that it can operate
426 /// with either const or non-const slice iterators.
427 class AllocaSlices::partition_iterator
428     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
429                                   Partition> {
430   friend class AllocaSlices;
431 
432   /// Most of the state for walking the partitions is held in a class
433   /// with a nice interface for examining them.
434   Partition P;
435 
436   /// We need to keep the end of the slices to know when to stop.
437   AllocaSlices::iterator SE;
438 
439   /// We also need to keep track of the maximum split end offset seen.
440   /// FIXME: Do we really?
441   uint64_t MaxSplitSliceEndOffset = 0;
442 
443   /// Sets the partition to be empty at given iterator, and sets the
444   /// end iterator.
445   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
446       : P(SI), SE(SE) {
447     // If not already at the end, advance our state to form the initial
448     // partition.
449     if (SI != SE)
450       advance();
451   }
452 
453   /// Advance the iterator to the next partition.
454   ///
455   /// Requires that the iterator not be at the end of the slices.
456   void advance() {
457     assert((P.SI != SE || !P.SplitTails.empty()) &&
458            "Cannot advance past the end of the slices!");
459 
460     // Clear out any split uses which have ended.
461     if (!P.SplitTails.empty()) {
462       if (P.EndOffset >= MaxSplitSliceEndOffset) {
463         // If we've finished all splits, this is easy.
464         P.SplitTails.clear();
465         MaxSplitSliceEndOffset = 0;
466       } else {
467         // Remove the uses which have ended in the prior partition. This
468         // cannot change the max split slice end because we just checked that
469         // the prior partition ended prior to that max.
470         llvm::erase_if(P.SplitTails,
471                        [&](Slice *S) { return S->endOffset() <= P.EndOffset; });
472         assert(llvm::any_of(P.SplitTails,
473                             [&](Slice *S) {
474                               return S->endOffset() == MaxSplitSliceEndOffset;
475                             }) &&
476                "Could not find the current max split slice offset!");
477         assert(llvm::all_of(P.SplitTails,
478                             [&](Slice *S) {
479                               return S->endOffset() <= MaxSplitSliceEndOffset;
480                             }) &&
481                "Max split slice end offset is not actually the max!");
482       }
483     }
484 
485     // If P.SI is already at the end, then we've cleared the split tail and
486     // now have an end iterator.
487     if (P.SI == SE) {
488       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
489       return;
490     }
491 
492     // If we had a non-empty partition previously, set up the state for
493     // subsequent partitions.
494     if (P.SI != P.SJ) {
495       // Accumulate all the splittable slices which started in the old
496       // partition into the split list.
497       for (Slice &S : P)
498         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
499           P.SplitTails.push_back(&S);
500           MaxSplitSliceEndOffset =
501               std::max(S.endOffset(), MaxSplitSliceEndOffset);
502         }
503 
504       // Start from the end of the previous partition.
505       P.SI = P.SJ;
506 
507       // If P.SI is now at the end, we at most have a tail of split slices.
508       if (P.SI == SE) {
509         P.BeginOffset = P.EndOffset;
510         P.EndOffset = MaxSplitSliceEndOffset;
511         return;
512       }
513 
514       // If the we have split slices and the next slice is after a gap and is
515       // not splittable immediately form an empty partition for the split
516       // slices up until the next slice begins.
517       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
518           !P.SI->isSplittable()) {
519         P.BeginOffset = P.EndOffset;
520         P.EndOffset = P.SI->beginOffset();
521         return;
522       }
523     }
524 
525     // OK, we need to consume new slices. Set the end offset based on the
526     // current slice, and step SJ past it. The beginning offset of the
527     // partition is the beginning offset of the next slice unless we have
528     // pre-existing split slices that are continuing, in which case we begin
529     // at the prior end offset.
530     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
531     P.EndOffset = P.SI->endOffset();
532     ++P.SJ;
533 
534     // There are two strategies to form a partition based on whether the
535     // partition starts with an unsplittable slice or a splittable slice.
536     if (!P.SI->isSplittable()) {
537       // When we're forming an unsplittable region, it must always start at
538       // the first slice and will extend through its end.
539       assert(P.BeginOffset == P.SI->beginOffset());
540 
541       // Form a partition including all of the overlapping slices with this
542       // unsplittable slice.
543       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
544         if (!P.SJ->isSplittable())
545           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
546         ++P.SJ;
547       }
548 
549       // We have a partition across a set of overlapping unsplittable
550       // partitions.
551       return;
552     }
553 
554     // If we're starting with a splittable slice, then we need to form
555     // a synthetic partition spanning it and any other overlapping splittable
556     // splices.
557     assert(P.SI->isSplittable() && "Forming a splittable partition!");
558 
559     // Collect all of the overlapping splittable slices.
560     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
561            P.SJ->isSplittable()) {
562       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
563       ++P.SJ;
564     }
565 
566     // Back upiP.EndOffset if we ended the span early when encountering an
567     // unsplittable slice. This synthesizes the early end offset of
568     // a partition spanning only splittable slices.
569     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
570       assert(!P.SJ->isSplittable());
571       P.EndOffset = P.SJ->beginOffset();
572     }
573   }
574 
575 public:
576   bool operator==(const partition_iterator &RHS) const {
577     assert(SE == RHS.SE &&
578            "End iterators don't match between compared partition iterators!");
579 
580     // The observed positions of partitions is marked by the P.SI iterator and
581     // the emptiness of the split slices. The latter is only relevant when
582     // P.SI == SE, as the end iterator will additionally have an empty split
583     // slices list, but the prior may have the same P.SI and a tail of split
584     // slices.
585     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
586       assert(P.SJ == RHS.P.SJ &&
587              "Same set of slices formed two different sized partitions!");
588       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
589              "Same slice position with differently sized non-empty split "
590              "slice tails!");
591       return true;
592     }
593     return false;
594   }
595 
596   partition_iterator &operator++() {
597     advance();
598     return *this;
599   }
600 
601   Partition &operator*() { return P; }
602 };
603 
604 /// A forward range over the partitions of the alloca's slices.
605 ///
606 /// This accesses an iterator range over the partitions of the alloca's
607 /// slices. It computes these partitions on the fly based on the overlapping
608 /// offsets of the slices and the ability to split them. It will visit "empty"
609 /// partitions to cover regions of the alloca only accessed via split
610 /// slices.
611 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
612   return make_range(partition_iterator(begin(), end()),
613                     partition_iterator(end(), end()));
614 }
615 
616 static Value *foldSelectInst(SelectInst &SI) {
617   // If the condition being selected on is a constant or the same value is
618   // being selected between, fold the select. Yes this does (rarely) happen
619   // early on.
620   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
621     return SI.getOperand(1 + CI->isZero());
622   if (SI.getOperand(1) == SI.getOperand(2))
623     return SI.getOperand(1);
624 
625   return nullptr;
626 }
627 
628 /// A helper that folds a PHI node or a select.
629 static Value *foldPHINodeOrSelectInst(Instruction &I) {
630   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
631     // If PN merges together the same value, return that value.
632     return PN->hasConstantValue();
633   }
634   return foldSelectInst(cast<SelectInst>(I));
635 }
636 
637 /// Builder for the alloca slices.
638 ///
639 /// This class builds a set of alloca slices by recursively visiting the uses
640 /// of an alloca and making a slice for each load and store at each offset.
641 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
642   friend class PtrUseVisitor<SliceBuilder>;
643   friend class InstVisitor<SliceBuilder>;
644 
645   using Base = PtrUseVisitor<SliceBuilder>;
646 
647   const uint64_t AllocSize;
648   AllocaSlices &AS;
649 
650   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
651   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
652 
653   /// Set to de-duplicate dead instructions found in the use walk.
654   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
655 
656 public:
657   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
658       : PtrUseVisitor<SliceBuilder>(DL),
659         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()),
660         AS(AS) {}
661 
662 private:
663   void markAsDead(Instruction &I) {
664     if (VisitedDeadInsts.insert(&I).second)
665       AS.DeadUsers.push_back(&I);
666   }
667 
668   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
669                  bool IsSplittable = false) {
670     // Completely skip uses which have a zero size or start either before or
671     // past the end of the allocation.
672     if (Size == 0 || Offset.uge(AllocSize)) {
673       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
674                         << Offset
675                         << " which has zero size or starts outside of the "
676                         << AllocSize << " byte alloca:\n"
677                         << "    alloca: " << AS.AI << "\n"
678                         << "       use: " << I << "\n");
679       return markAsDead(I);
680     }
681 
682     uint64_t BeginOffset = Offset.getZExtValue();
683     uint64_t EndOffset = BeginOffset + Size;
684 
685     // Clamp the end offset to the end of the allocation. Note that this is
686     // formulated to handle even the case where "BeginOffset + Size" overflows.
687     // This may appear superficially to be something we could ignore entirely,
688     // but that is not so! There may be widened loads or PHI-node uses where
689     // some instructions are dead but not others. We can't completely ignore
690     // them, and so have to record at least the information here.
691     assert(AllocSize >= BeginOffset); // Established above.
692     if (Size > AllocSize - BeginOffset) {
693       LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
694                         << Offset << " to remain within the " << AllocSize
695                         << " byte alloca:\n"
696                         << "    alloca: " << AS.AI << "\n"
697                         << "       use: " << I << "\n");
698       EndOffset = AllocSize;
699     }
700 
701     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
702   }
703 
704   void visitBitCastInst(BitCastInst &BC) {
705     if (BC.use_empty())
706       return markAsDead(BC);
707 
708     return Base::visitBitCastInst(BC);
709   }
710 
711   void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
712     if (ASC.use_empty())
713       return markAsDead(ASC);
714 
715     return Base::visitAddrSpaceCastInst(ASC);
716   }
717 
718   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
719     if (GEPI.use_empty())
720       return markAsDead(GEPI);
721 
722     if (SROAStrictInbounds && GEPI.isInBounds()) {
723       // FIXME: This is a manually un-factored variant of the basic code inside
724       // of GEPs with checking of the inbounds invariant specified in the
725       // langref in a very strict sense. If we ever want to enable
726       // SROAStrictInbounds, this code should be factored cleanly into
727       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
728       // by writing out the code here where we have the underlying allocation
729       // size readily available.
730       APInt GEPOffset = Offset;
731       const DataLayout &DL = GEPI.getModule()->getDataLayout();
732       for (gep_type_iterator GTI = gep_type_begin(GEPI),
733                              GTE = gep_type_end(GEPI);
734            GTI != GTE; ++GTI) {
735         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
736         if (!OpC)
737           break;
738 
739         // Handle a struct index, which adds its field offset to the pointer.
740         if (StructType *STy = GTI.getStructTypeOrNull()) {
741           unsigned ElementIdx = OpC->getZExtValue();
742           const StructLayout *SL = DL.getStructLayout(STy);
743           GEPOffset +=
744               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
745         } else {
746           // For array or vector indices, scale the index by the size of the
747           // type.
748           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
749           GEPOffset +=
750               Index *
751               APInt(Offset.getBitWidth(),
752                     DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
753         }
754 
755         // If this index has computed an intermediate pointer which is not
756         // inbounds, then the result of the GEP is a poison value and we can
757         // delete it and all uses.
758         if (GEPOffset.ugt(AllocSize))
759           return markAsDead(GEPI);
760       }
761     }
762 
763     return Base::visitGetElementPtrInst(GEPI);
764   }
765 
766   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
767                          uint64_t Size, bool IsVolatile) {
768     // We allow splitting of non-volatile loads and stores where the type is an
769     // integer type. These may be used to implement 'memcpy' or other "transfer
770     // of bits" patterns.
771     bool IsSplittable =
772         Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty);
773 
774     insertUse(I, Offset, Size, IsSplittable);
775   }
776 
777   void visitLoadInst(LoadInst &LI) {
778     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
779            "All simple FCA loads should have been pre-split");
780 
781     if (!IsOffsetKnown)
782       return PI.setAborted(&LI);
783 
784     if (LI.isVolatile() &&
785         LI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
786       return PI.setAborted(&LI);
787 
788     if (isa<ScalableVectorType>(LI.getType()))
789       return PI.setAborted(&LI);
790 
791     uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize();
792     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
793   }
794 
795   void visitStoreInst(StoreInst &SI) {
796     Value *ValOp = SI.getValueOperand();
797     if (ValOp == *U)
798       return PI.setEscapedAndAborted(&SI);
799     if (!IsOffsetKnown)
800       return PI.setAborted(&SI);
801 
802     if (SI.isVolatile() &&
803         SI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
804       return PI.setAborted(&SI);
805 
806     if (isa<ScalableVectorType>(ValOp->getType()))
807       return PI.setAborted(&SI);
808 
809     uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize();
810 
811     // If this memory access can be shown to *statically* extend outside the
812     // bounds of the allocation, it's behavior is undefined, so simply
813     // ignore it. Note that this is more strict than the generic clamping
814     // behavior of insertUse. We also try to handle cases which might run the
815     // risk of overflow.
816     // FIXME: We should instead consider the pointer to have escaped if this
817     // function is being instrumented for addressing bugs or race conditions.
818     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
819       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
820                         << Offset << " which extends past the end of the "
821                         << AllocSize << " byte alloca:\n"
822                         << "    alloca: " << AS.AI << "\n"
823                         << "       use: " << SI << "\n");
824       return markAsDead(SI);
825     }
826 
827     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
828            "All simple FCA stores should have been pre-split");
829     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
830   }
831 
832   void visitMemSetInst(MemSetInst &II) {
833     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
834     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
835     if ((Length && Length->getValue() == 0) ||
836         (IsOffsetKnown && Offset.uge(AllocSize)))
837       // Zero-length mem transfer intrinsics can be ignored entirely.
838       return markAsDead(II);
839 
840     if (!IsOffsetKnown)
841       return PI.setAborted(&II);
842 
843     // Don't replace this with a store with a different address space.  TODO:
844     // Use a store with the casted new alloca?
845     if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace())
846       return PI.setAborted(&II);
847 
848     insertUse(II, Offset, Length ? Length->getLimitedValue()
849                                  : AllocSize - Offset.getLimitedValue(),
850               (bool)Length);
851   }
852 
853   void visitMemTransferInst(MemTransferInst &II) {
854     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
855     if (Length && Length->getValue() == 0)
856       // Zero-length mem transfer intrinsics can be ignored entirely.
857       return markAsDead(II);
858 
859     // Because we can visit these intrinsics twice, also check to see if the
860     // first time marked this instruction as dead. If so, skip it.
861     if (VisitedDeadInsts.count(&II))
862       return;
863 
864     if (!IsOffsetKnown)
865       return PI.setAborted(&II);
866 
867     // Don't replace this with a load/store with a different address space.
868     // TODO: Use a store with the casted new alloca?
869     if (II.isVolatile() &&
870         (II.getDestAddressSpace() != DL.getAllocaAddrSpace() ||
871          II.getSourceAddressSpace() != DL.getAllocaAddrSpace()))
872       return PI.setAborted(&II);
873 
874     // This side of the transfer is completely out-of-bounds, and so we can
875     // nuke the entire transfer. However, we also need to nuke the other side
876     // if already added to our partitions.
877     // FIXME: Yet another place we really should bypass this when
878     // instrumenting for ASan.
879     if (Offset.uge(AllocSize)) {
880       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
881           MemTransferSliceMap.find(&II);
882       if (MTPI != MemTransferSliceMap.end())
883         AS.Slices[MTPI->second].kill();
884       return markAsDead(II);
885     }
886 
887     uint64_t RawOffset = Offset.getLimitedValue();
888     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
889 
890     // Check for the special case where the same exact value is used for both
891     // source and dest.
892     if (*U == II.getRawDest() && *U == II.getRawSource()) {
893       // For non-volatile transfers this is a no-op.
894       if (!II.isVolatile())
895         return markAsDead(II);
896 
897       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
898     }
899 
900     // If we have seen both source and destination for a mem transfer, then
901     // they both point to the same alloca.
902     bool Inserted;
903     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
904     std::tie(MTPI, Inserted) =
905         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
906     unsigned PrevIdx = MTPI->second;
907     if (!Inserted) {
908       Slice &PrevP = AS.Slices[PrevIdx];
909 
910       // Check if the begin offsets match and this is a non-volatile transfer.
911       // In that case, we can completely elide the transfer.
912       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
913         PrevP.kill();
914         return markAsDead(II);
915       }
916 
917       // Otherwise we have an offset transfer within the same alloca. We can't
918       // split those.
919       PrevP.makeUnsplittable();
920     }
921 
922     // Insert the use now that we've fixed up the splittable nature.
923     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
924 
925     // Check that we ended up with a valid index in the map.
926     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
927            "Map index doesn't point back to a slice with this user.");
928   }
929 
930   // Disable SRoA for any intrinsics except for lifetime invariants and
931   // invariant group.
932   // FIXME: What about debug intrinsics? This matches old behavior, but
933   // doesn't make sense.
934   void visitIntrinsicInst(IntrinsicInst &II) {
935     if (II.isDroppable()) {
936       AS.DeadUseIfPromotable.push_back(U);
937       return;
938     }
939 
940     if (!IsOffsetKnown)
941       return PI.setAborted(&II);
942 
943     if (II.isLifetimeStartOrEnd()) {
944       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
945       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
946                                Length->getLimitedValue());
947       insertUse(II, Offset, Size, true);
948       return;
949     }
950 
951     if (II.isLaunderOrStripInvariantGroup()) {
952       enqueueUsers(II);
953       return;
954     }
955 
956     Base::visitIntrinsicInst(II);
957   }
958 
959   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
960     // We consider any PHI or select that results in a direct load or store of
961     // the same offset to be a viable use for slicing purposes. These uses
962     // are considered unsplittable and the size is the maximum loaded or stored
963     // size.
964     SmallPtrSet<Instruction *, 4> Visited;
965     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
966     Visited.insert(Root);
967     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
968     const DataLayout &DL = Root->getModule()->getDataLayout();
969     // If there are no loads or stores, the access is dead. We mark that as
970     // a size zero access.
971     Size = 0;
972     do {
973       Instruction *I, *UsedI;
974       std::tie(UsedI, I) = Uses.pop_back_val();
975 
976       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
977         Size = std::max(Size,
978                         DL.getTypeStoreSize(LI->getType()).getFixedSize());
979         continue;
980       }
981       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
982         Value *Op = SI->getOperand(0);
983         if (Op == UsedI)
984           return SI;
985         Size = std::max(Size,
986                         DL.getTypeStoreSize(Op->getType()).getFixedSize());
987         continue;
988       }
989 
990       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
991         if (!GEP->hasAllZeroIndices())
992           return GEP;
993       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
994                  !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
995         return I;
996       }
997 
998       for (User *U : I->users())
999         if (Visited.insert(cast<Instruction>(U)).second)
1000           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
1001     } while (!Uses.empty());
1002 
1003     return nullptr;
1004   }
1005 
1006   void visitPHINodeOrSelectInst(Instruction &I) {
1007     assert(isa<PHINode>(I) || isa<SelectInst>(I));
1008     if (I.use_empty())
1009       return markAsDead(I);
1010 
1011     // TODO: We could use SimplifyInstruction here to fold PHINodes and
1012     // SelectInsts. However, doing so requires to change the current
1013     // dead-operand-tracking mechanism. For instance, suppose neither loading
1014     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1015     // trap either.  However, if we simply replace %U with undef using the
1016     // current dead-operand-tracking mechanism, "load (select undef, undef,
1017     // %other)" may trap because the select may return the first operand
1018     // "undef".
1019     if (Value *Result = foldPHINodeOrSelectInst(I)) {
1020       if (Result == *U)
1021         // If the result of the constant fold will be the pointer, recurse
1022         // through the PHI/select as if we had RAUW'ed it.
1023         enqueueUsers(I);
1024       else
1025         // Otherwise the operand to the PHI/select is dead, and we can replace
1026         // it with undef.
1027         AS.DeadOperands.push_back(U);
1028 
1029       return;
1030     }
1031 
1032     if (!IsOffsetKnown)
1033       return PI.setAborted(&I);
1034 
1035     // See if we already have computed info on this node.
1036     uint64_t &Size = PHIOrSelectSizes[&I];
1037     if (!Size) {
1038       // This is a new PHI/Select, check for an unsafe use of it.
1039       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1040         return PI.setAborted(UnsafeI);
1041     }
1042 
1043     // For PHI and select operands outside the alloca, we can't nuke the entire
1044     // phi or select -- the other side might still be relevant, so we special
1045     // case them here and use a separate structure to track the operands
1046     // themselves which should be replaced with undef.
1047     // FIXME: This should instead be escaped in the event we're instrumenting
1048     // for address sanitization.
1049     if (Offset.uge(AllocSize)) {
1050       AS.DeadOperands.push_back(U);
1051       return;
1052     }
1053 
1054     insertUse(I, Offset, Size);
1055   }
1056 
1057   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1058 
1059   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1060 
1061   /// Disable SROA entirely if there are unhandled users of the alloca.
1062   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1063 };
1064 
1065 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1066     :
1067 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1068       AI(AI),
1069 #endif
1070       PointerEscapingInstr(nullptr) {
1071   SliceBuilder PB(DL, AI, *this);
1072   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1073   if (PtrI.isEscaped() || PtrI.isAborted()) {
1074     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1075     // possibly by just storing the PtrInfo in the AllocaSlices.
1076     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1077                                                   : PtrI.getAbortingInst();
1078     assert(PointerEscapingInstr && "Did not track a bad instruction");
1079     return;
1080   }
1081 
1082   llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); });
1083 
1084   // Sort the uses. This arranges for the offsets to be in ascending order,
1085   // and the sizes to be in descending order.
1086   llvm::stable_sort(Slices);
1087 }
1088 
1089 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1090 
1091 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1092                          StringRef Indent) const {
1093   printSlice(OS, I, Indent);
1094   OS << "\n";
1095   printUse(OS, I, Indent);
1096 }
1097 
1098 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1099                               StringRef Indent) const {
1100   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1101      << " slice #" << (I - begin())
1102      << (I->isSplittable() ? " (splittable)" : "");
1103 }
1104 
1105 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1106                             StringRef Indent) const {
1107   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1108 }
1109 
1110 void AllocaSlices::print(raw_ostream &OS) const {
1111   if (PointerEscapingInstr) {
1112     OS << "Can't analyze slices for alloca: " << AI << "\n"
1113        << "  A pointer to this alloca escaped by:\n"
1114        << "  " << *PointerEscapingInstr << "\n";
1115     return;
1116   }
1117 
1118   OS << "Slices of alloca: " << AI << "\n";
1119   for (const_iterator I = begin(), E = end(); I != E; ++I)
1120     print(OS, I);
1121 }
1122 
1123 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1124   print(dbgs(), I);
1125 }
1126 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1127 
1128 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1129 
1130 /// Walk the range of a partitioning looking for a common type to cover this
1131 /// sequence of slices.
1132 static std::pair<Type *, IntegerType *>
1133 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E,
1134                uint64_t EndOffset) {
1135   Type *Ty = nullptr;
1136   bool TyIsCommon = true;
1137   IntegerType *ITy = nullptr;
1138 
1139   // Note that we need to look at *every* alloca slice's Use to ensure we
1140   // always get consistent results regardless of the order of slices.
1141   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1142     Use *U = I->getUse();
1143     if (isa<IntrinsicInst>(*U->getUser()))
1144       continue;
1145     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1146       continue;
1147 
1148     Type *UserTy = nullptr;
1149     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1150       UserTy = LI->getType();
1151     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1152       UserTy = SI->getValueOperand()->getType();
1153     }
1154 
1155     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1156       // If the type is larger than the partition, skip it. We only encounter
1157       // this for split integer operations where we want to use the type of the
1158       // entity causing the split. Also skip if the type is not a byte width
1159       // multiple.
1160       if (UserITy->getBitWidth() % 8 != 0 ||
1161           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1162         continue;
1163 
1164       // Track the largest bitwidth integer type used in this way in case there
1165       // is no common type.
1166       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1167         ITy = UserITy;
1168     }
1169 
1170     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1171     // depend on types skipped above.
1172     if (!UserTy || (Ty && Ty != UserTy))
1173       TyIsCommon = false; // Give up on anything but an iN type.
1174     else
1175       Ty = UserTy;
1176   }
1177 
1178   return {TyIsCommon ? Ty : nullptr, ITy};
1179 }
1180 
1181 /// PHI instructions that use an alloca and are subsequently loaded can be
1182 /// rewritten to load both input pointers in the pred blocks and then PHI the
1183 /// results, allowing the load of the alloca to be promoted.
1184 /// From this:
1185 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1186 ///   %V = load i32* %P2
1187 /// to:
1188 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1189 ///   ...
1190 ///   %V2 = load i32* %Other
1191 ///   ...
1192 ///   %V = phi [i32 %V1, i32 %V2]
1193 ///
1194 /// We can do this to a select if its only uses are loads and if the operands
1195 /// to the select can be loaded unconditionally.
1196 ///
1197 /// FIXME: This should be hoisted into a generic utility, likely in
1198 /// Transforms/Util/Local.h
1199 static bool isSafePHIToSpeculate(PHINode &PN) {
1200   const DataLayout &DL = PN.getModule()->getDataLayout();
1201 
1202   // For now, we can only do this promotion if the load is in the same block
1203   // as the PHI, and if there are no stores between the phi and load.
1204   // TODO: Allow recursive phi users.
1205   // TODO: Allow stores.
1206   BasicBlock *BB = PN.getParent();
1207   Align MaxAlign;
1208   uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1209   APInt MaxSize(APWidth, 0);
1210   bool HaveLoad = false;
1211   for (User *U : PN.users()) {
1212     LoadInst *LI = dyn_cast<LoadInst>(U);
1213     if (!LI || !LI->isSimple())
1214       return false;
1215 
1216     // For now we only allow loads in the same block as the PHI.  This is
1217     // a common case that happens when instcombine merges two loads through
1218     // a PHI.
1219     if (LI->getParent() != BB)
1220       return false;
1221 
1222     // Ensure that there are no instructions between the PHI and the load that
1223     // could store.
1224     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1225       if (BBI->mayWriteToMemory())
1226         return false;
1227 
1228     uint64_t Size = DL.getTypeStoreSize(LI->getType()).getFixedSize();
1229     MaxAlign = std::max(MaxAlign, LI->getAlign());
1230     MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize;
1231     HaveLoad = true;
1232   }
1233 
1234   if (!HaveLoad)
1235     return false;
1236 
1237   // We can only transform this if it is safe to push the loads into the
1238   // predecessor blocks. The only thing to watch out for is that we can't put
1239   // a possibly trapping load in the predecessor if it is a critical edge.
1240   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1241     Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1242     Value *InVal = PN.getIncomingValue(Idx);
1243 
1244     // If the value is produced by the terminator of the predecessor (an
1245     // invoke) or it has side-effects, there is no valid place to put a load
1246     // in the predecessor.
1247     if (TI == InVal || TI->mayHaveSideEffects())
1248       return false;
1249 
1250     // If the predecessor has a single successor, then the edge isn't
1251     // critical.
1252     if (TI->getNumSuccessors() == 1)
1253       continue;
1254 
1255     // If this pointer is always safe to load, or if we can prove that there
1256     // is already a load in the block, then we can move the load to the pred
1257     // block.
1258     if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI))
1259       continue;
1260 
1261     return false;
1262   }
1263 
1264   return true;
1265 }
1266 
1267 static void speculatePHINodeLoads(PHINode &PN) {
1268   LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1269 
1270   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1271   Type *LoadTy = SomeLoad->getType();
1272   IRBuilderTy PHIBuilder(&PN);
1273   PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1274                                         PN.getName() + ".sroa.speculated");
1275 
1276   // Get the AA tags and alignment to use from one of the loads. It does not
1277   // matter which one we get and if any differ.
1278   AAMDNodes AATags = SomeLoad->getAAMetadata();
1279   Align Alignment = SomeLoad->getAlign();
1280 
1281   // Rewrite all loads of the PN to use the new PHI.
1282   while (!PN.use_empty()) {
1283     LoadInst *LI = cast<LoadInst>(PN.user_back());
1284     LI->replaceAllUsesWith(NewPN);
1285     LI->eraseFromParent();
1286   }
1287 
1288   // Inject loads into all of the pred blocks.
1289   DenseMap<BasicBlock*, Value*> InjectedLoads;
1290   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1291     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1292     Value *InVal = PN.getIncomingValue(Idx);
1293 
1294     // A PHI node is allowed to have multiple (duplicated) entries for the same
1295     // basic block, as long as the value is the same. So if we already injected
1296     // a load in the predecessor, then we should reuse the same load for all
1297     // duplicated entries.
1298     if (Value* V = InjectedLoads.lookup(Pred)) {
1299       NewPN->addIncoming(V, Pred);
1300       continue;
1301     }
1302 
1303     Instruction *TI = Pred->getTerminator();
1304     IRBuilderTy PredBuilder(TI);
1305 
1306     LoadInst *Load = PredBuilder.CreateAlignedLoad(
1307         LoadTy, InVal, Alignment,
1308         (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1309     ++NumLoadsSpeculated;
1310     if (AATags)
1311       Load->setAAMetadata(AATags);
1312     NewPN->addIncoming(Load, Pred);
1313     InjectedLoads[Pred] = Load;
1314   }
1315 
1316   LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1317   PN.eraseFromParent();
1318 }
1319 
1320 /// Select instructions that use an alloca and are subsequently loaded can be
1321 /// rewritten to load both input pointers and then select between the result,
1322 /// allowing the load of the alloca to be promoted.
1323 /// From this:
1324 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1325 ///   %V = load i32* %P2
1326 /// to:
1327 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1328 ///   %V2 = load i32* %Other
1329 ///   %V = select i1 %cond, i32 %V1, i32 %V2
1330 ///
1331 /// We can do this to a select if its only uses are loads and if the operand
1332 /// to the select can be loaded unconditionally. If found an intervening bitcast
1333 /// with a single use of the load, allow the promotion.
1334 static bool isSafeSelectToSpeculate(SelectInst &SI) {
1335   Value *TValue = SI.getTrueValue();
1336   Value *FValue = SI.getFalseValue();
1337   const DataLayout &DL = SI.getModule()->getDataLayout();
1338 
1339   for (User *U : SI.users()) {
1340     LoadInst *LI;
1341     BitCastInst *BC = dyn_cast<BitCastInst>(U);
1342     if (BC && BC->hasOneUse())
1343       LI = dyn_cast<LoadInst>(*BC->user_begin());
1344     else
1345       LI = dyn_cast<LoadInst>(U);
1346 
1347     if (!LI || !LI->isSimple())
1348       return false;
1349 
1350     // Both operands to the select need to be dereferenceable, either
1351     // absolutely (e.g. allocas) or at this point because we can see other
1352     // accesses to it.
1353     if (!isSafeToLoadUnconditionally(TValue, LI->getType(),
1354                                      LI->getAlign(), DL, LI))
1355       return false;
1356     if (!isSafeToLoadUnconditionally(FValue, LI->getType(),
1357                                      LI->getAlign(), DL, LI))
1358       return false;
1359   }
1360 
1361   return true;
1362 }
1363 
1364 static void speculateSelectInstLoads(SelectInst &SI) {
1365   LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
1366 
1367   IRBuilderTy IRB(&SI);
1368   Value *TV = SI.getTrueValue();
1369   Value *FV = SI.getFalseValue();
1370   // Replace the loads of the select with a select of two loads.
1371   while (!SI.use_empty()) {
1372     LoadInst *LI;
1373     BitCastInst *BC = dyn_cast<BitCastInst>(SI.user_back());
1374     if (BC) {
1375       assert(BC->hasOneUse() && "Bitcast should have a single use.");
1376       LI = cast<LoadInst>(BC->user_back());
1377     } else {
1378       LI = cast<LoadInst>(SI.user_back());
1379     }
1380 
1381     assert(LI->isSimple() && "We only speculate simple loads");
1382 
1383     IRB.SetInsertPoint(LI);
1384     Value *NewTV =
1385         BC ? IRB.CreateBitCast(TV, BC->getType(), TV->getName() + ".sroa.cast")
1386            : TV;
1387     Value *NewFV =
1388         BC ? IRB.CreateBitCast(FV, BC->getType(), FV->getName() + ".sroa.cast")
1389            : FV;
1390     LoadInst *TL = IRB.CreateLoad(LI->getType(), NewTV,
1391                                   LI->getName() + ".sroa.speculate.load.true");
1392     LoadInst *FL = IRB.CreateLoad(LI->getType(), NewFV,
1393                                   LI->getName() + ".sroa.speculate.load.false");
1394     NumLoadsSpeculated += 2;
1395 
1396     // Transfer alignment and AA info if present.
1397     TL->setAlignment(LI->getAlign());
1398     FL->setAlignment(LI->getAlign());
1399 
1400     AAMDNodes Tags = LI->getAAMetadata();
1401     if (Tags) {
1402       TL->setAAMetadata(Tags);
1403       FL->setAAMetadata(Tags);
1404     }
1405 
1406     Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1407                                 LI->getName() + ".sroa.speculated");
1408 
1409     LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1410     LI->replaceAllUsesWith(V);
1411     LI->eraseFromParent();
1412     if (BC)
1413       BC->eraseFromParent();
1414   }
1415   SI.eraseFromParent();
1416 }
1417 
1418 /// Build a GEP out of a base pointer and indices.
1419 ///
1420 /// This will return the BasePtr if that is valid, or build a new GEP
1421 /// instruction using the IRBuilder if GEP-ing is needed.
1422 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1423                        SmallVectorImpl<Value *> &Indices,
1424                        const Twine &NamePrefix) {
1425   if (Indices.empty())
1426     return BasePtr;
1427 
1428   // A single zero index is a no-op, so check for this and avoid building a GEP
1429   // in that case.
1430   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1431     return BasePtr;
1432 
1433   return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(),
1434                                BasePtr, Indices, NamePrefix + "sroa_idx");
1435 }
1436 
1437 /// Get a natural GEP off of the BasePtr walking through Ty toward
1438 /// TargetTy without changing the offset of the pointer.
1439 ///
1440 /// This routine assumes we've already established a properly offset GEP with
1441 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1442 /// zero-indices down through type layers until we find one the same as
1443 /// TargetTy. If we can't find one with the same type, we at least try to use
1444 /// one with the same size. If none of that works, we just produce the GEP as
1445 /// indicated by Indices to have the correct offset.
1446 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1447                                     Value *BasePtr, Type *Ty, Type *TargetTy,
1448                                     SmallVectorImpl<Value *> &Indices,
1449                                     const Twine &NamePrefix) {
1450   if (Ty == TargetTy)
1451     return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1452 
1453   // Offset size to use for the indices.
1454   unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1455 
1456   // See if we can descend into a struct and locate a field with the correct
1457   // type.
1458   unsigned NumLayers = 0;
1459   Type *ElementTy = Ty;
1460   do {
1461     if (ElementTy->isPointerTy())
1462       break;
1463 
1464     if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1465       ElementTy = ArrayTy->getElementType();
1466       Indices.push_back(IRB.getIntN(OffsetSize, 0));
1467     } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1468       ElementTy = VectorTy->getElementType();
1469       Indices.push_back(IRB.getInt32(0));
1470     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1471       if (STy->element_begin() == STy->element_end())
1472         break; // Nothing left to descend into.
1473       ElementTy = *STy->element_begin();
1474       Indices.push_back(IRB.getInt32(0));
1475     } else {
1476       break;
1477     }
1478     ++NumLayers;
1479   } while (ElementTy != TargetTy);
1480   if (ElementTy != TargetTy)
1481     Indices.erase(Indices.end() - NumLayers, Indices.end());
1482 
1483   return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1484 }
1485 
1486 /// Get a natural GEP from a base pointer to a particular offset and
1487 /// resulting in a particular type.
1488 ///
1489 /// The goal is to produce a "natural" looking GEP that works with the existing
1490 /// composite types to arrive at the appropriate offset and element type for
1491 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1492 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1493 /// Indices, and setting Ty to the result subtype.
1494 ///
1495 /// If no natural GEP can be constructed, this function returns null.
1496 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1497                                       Value *Ptr, APInt Offset, Type *TargetTy,
1498                                       SmallVectorImpl<Value *> &Indices,
1499                                       const Twine &NamePrefix) {
1500   PointerType *Ty = cast<PointerType>(Ptr->getType());
1501 
1502   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1503   // an i8.
1504   if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1505     return nullptr;
1506 
1507   Type *ElementTy = Ty->getElementType();
1508   if (!ElementTy->isSized())
1509     return nullptr; // We can't GEP through an unsized element.
1510 
1511   SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(ElementTy, Offset);
1512   if (Offset != 0)
1513     return nullptr;
1514 
1515   for (const APInt &Index : IntIndices)
1516     Indices.push_back(IRB.getInt(Index));
1517   return getNaturalGEPWithType(IRB, DL, Ptr, ElementTy, TargetTy, Indices,
1518                                NamePrefix);
1519 }
1520 
1521 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1522 /// resulting pointer has PointerTy.
1523 ///
1524 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1525 /// and produces the pointer type desired. Where it cannot, it will try to use
1526 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1527 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1528 /// bitcast to the type.
1529 ///
1530 /// The strategy for finding the more natural GEPs is to peel off layers of the
1531 /// pointer, walking back through bit casts and GEPs, searching for a base
1532 /// pointer from which we can compute a natural GEP with the desired
1533 /// properties. The algorithm tries to fold as many constant indices into
1534 /// a single GEP as possible, thus making each GEP more independent of the
1535 /// surrounding code.
1536 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1537                              APInt Offset, Type *PointerTy,
1538                              const Twine &NamePrefix) {
1539   // Create i8 GEP for opaque pointers.
1540   if (Ptr->getType()->isOpaquePointerTy()) {
1541     if (Offset != 0)
1542       Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset),
1543                                   NamePrefix + "sroa_idx");
1544     return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy,
1545                                                    NamePrefix + "sroa_cast");
1546   }
1547 
1548   // Even though we don't look through PHI nodes, we could be called on an
1549   // instruction in an unreachable block, which may be on a cycle.
1550   SmallPtrSet<Value *, 4> Visited;
1551   Visited.insert(Ptr);
1552   SmallVector<Value *, 4> Indices;
1553 
1554   // We may end up computing an offset pointer that has the wrong type. If we
1555   // never are able to compute one directly that has the correct type, we'll
1556   // fall back to it, so keep it and the base it was computed from around here.
1557   Value *OffsetPtr = nullptr;
1558   Value *OffsetBasePtr;
1559 
1560   // Remember any i8 pointer we come across to re-use if we need to do a raw
1561   // byte offset.
1562   Value *Int8Ptr = nullptr;
1563   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1564 
1565   PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1566   Type *TargetTy = TargetPtrTy->getElementType();
1567 
1568   // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1569   // address space from the expected `PointerTy` (the pointer to be used).
1570   // Adjust the pointer type based the original storage pointer.
1571   auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1572   PointerTy = TargetTy->getPointerTo(AS);
1573 
1574   do {
1575     // First fold any existing GEPs into the offset.
1576     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1577       APInt GEPOffset(Offset.getBitWidth(), 0);
1578       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1579         break;
1580       Offset += GEPOffset;
1581       Ptr = GEP->getPointerOperand();
1582       if (!Visited.insert(Ptr).second)
1583         break;
1584     }
1585 
1586     // See if we can perform a natural GEP here.
1587     Indices.clear();
1588     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1589                                            Indices, NamePrefix)) {
1590       // If we have a new natural pointer at the offset, clear out any old
1591       // offset pointer we computed. Unless it is the base pointer or
1592       // a non-instruction, we built a GEP we don't need. Zap it.
1593       if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1594         if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1595           assert(I->use_empty() && "Built a GEP with uses some how!");
1596           I->eraseFromParent();
1597         }
1598       OffsetPtr = P;
1599       OffsetBasePtr = Ptr;
1600       // If we also found a pointer of the right type, we're done.
1601       if (P->getType() == PointerTy)
1602         break;
1603     }
1604 
1605     // Stash this pointer if we've found an i8*.
1606     if (Ptr->getType()->isIntegerTy(8)) {
1607       Int8Ptr = Ptr;
1608       Int8PtrOffset = Offset;
1609     }
1610 
1611     // Peel off a layer of the pointer and update the offset appropriately.
1612     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1613       Ptr = cast<Operator>(Ptr)->getOperand(0);
1614     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1615       if (GA->isInterposable())
1616         break;
1617       Ptr = GA->getAliasee();
1618     } else {
1619       break;
1620     }
1621     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1622   } while (Visited.insert(Ptr).second);
1623 
1624   if (!OffsetPtr) {
1625     if (!Int8Ptr) {
1626       Int8Ptr = IRB.CreateBitCast(
1627           Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1628           NamePrefix + "sroa_raw_cast");
1629       Int8PtrOffset = Offset;
1630     }
1631 
1632     OffsetPtr = Int8PtrOffset == 0
1633                     ? Int8Ptr
1634                     : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1635                                             IRB.getInt(Int8PtrOffset),
1636                                             NamePrefix + "sroa_raw_idx");
1637   }
1638   Ptr = OffsetPtr;
1639 
1640   // On the off chance we were targeting i8*, guard the bitcast here.
1641   if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1642     Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1643                                                   TargetPtrTy,
1644                                                   NamePrefix + "sroa_cast");
1645   }
1646 
1647   return Ptr;
1648 }
1649 
1650 /// Compute the adjusted alignment for a load or store from an offset.
1651 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
1652   return commonAlignment(getLoadStoreAlignment(I), Offset);
1653 }
1654 
1655 /// Test whether we can convert a value from the old to the new type.
1656 ///
1657 /// This predicate should be used to guard calls to convertValue in order to
1658 /// ensure that we only try to convert viable values. The strategy is that we
1659 /// will peel off single element struct and array wrappings to get to an
1660 /// underlying value, and convert that value.
1661 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1662   if (OldTy == NewTy)
1663     return true;
1664 
1665   // For integer types, we can't handle any bit-width differences. This would
1666   // break both vector conversions with extension and introduce endianness
1667   // issues when in conjunction with loads and stores.
1668   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1669     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1670                cast<IntegerType>(NewTy)->getBitWidth() &&
1671            "We can't have the same bitwidth for different int types");
1672     return false;
1673   }
1674 
1675   if (DL.getTypeSizeInBits(NewTy).getFixedSize() !=
1676       DL.getTypeSizeInBits(OldTy).getFixedSize())
1677     return false;
1678   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1679     return false;
1680 
1681   // We can convert pointers to integers and vice-versa. Same for vectors
1682   // of pointers and integers.
1683   OldTy = OldTy->getScalarType();
1684   NewTy = NewTy->getScalarType();
1685   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1686     if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1687       unsigned OldAS = OldTy->getPointerAddressSpace();
1688       unsigned NewAS = NewTy->getPointerAddressSpace();
1689       // Convert pointers if they are pointers from the same address space or
1690       // different integral (not non-integral) address spaces with the same
1691       // pointer size.
1692       return OldAS == NewAS ||
1693              (!DL.isNonIntegralAddressSpace(OldAS) &&
1694               !DL.isNonIntegralAddressSpace(NewAS) &&
1695               DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1696     }
1697 
1698     // We can convert integers to integral pointers, but not to non-integral
1699     // pointers.
1700     if (OldTy->isIntegerTy())
1701       return !DL.isNonIntegralPointerType(NewTy);
1702 
1703     // We can convert integral pointers to integers, but non-integral pointers
1704     // need to remain pointers.
1705     if (!DL.isNonIntegralPointerType(OldTy))
1706       return NewTy->isIntegerTy();
1707 
1708     return false;
1709   }
1710 
1711   return true;
1712 }
1713 
1714 /// Generic routine to convert an SSA value to a value of a different
1715 /// type.
1716 ///
1717 /// This will try various different casting techniques, such as bitcasts,
1718 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1719 /// two types for viability with this routine.
1720 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1721                            Type *NewTy) {
1722   Type *OldTy = V->getType();
1723   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1724 
1725   if (OldTy == NewTy)
1726     return V;
1727 
1728   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1729          "Integer types must be the exact same to convert.");
1730 
1731   // See if we need inttoptr for this type pair. May require additional bitcast.
1732   if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1733     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1734     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1735     // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
1736     // Directly handle i64 to i8*
1737     return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1738                               NewTy);
1739   }
1740 
1741   // See if we need ptrtoint for this type pair. May require additional bitcast.
1742   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1743     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1744     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1745     // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
1746     // Expand i8* to i64 --> i8* to i64 to i64
1747     return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1748                              NewTy);
1749   }
1750 
1751   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1752     unsigned OldAS = OldTy->getPointerAddressSpace();
1753     unsigned NewAS = NewTy->getPointerAddressSpace();
1754     // To convert pointers with different address spaces (they are already
1755     // checked convertible, i.e. they have the same pointer size), so far we
1756     // cannot use `bitcast` (which has restrict on the same address space) or
1757     // `addrspacecast` (which is not always no-op casting). Instead, use a pair
1758     // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
1759     // size.
1760     if (OldAS != NewAS) {
1761       assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1762       return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1763                                 NewTy);
1764     }
1765   }
1766 
1767   return IRB.CreateBitCast(V, NewTy);
1768 }
1769 
1770 /// Test whether the given slice use can be promoted to a vector.
1771 ///
1772 /// This function is called to test each entry in a partition which is slated
1773 /// for a single slice.
1774 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1775                                             VectorType *Ty,
1776                                             uint64_t ElementSize,
1777                                             const DataLayout &DL) {
1778   // First validate the slice offsets.
1779   uint64_t BeginOffset =
1780       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1781   uint64_t BeginIndex = BeginOffset / ElementSize;
1782   if (BeginIndex * ElementSize != BeginOffset ||
1783       BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements())
1784     return false;
1785   uint64_t EndOffset =
1786       std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1787   uint64_t EndIndex = EndOffset / ElementSize;
1788   if (EndIndex * ElementSize != EndOffset ||
1789       EndIndex > cast<FixedVectorType>(Ty)->getNumElements())
1790     return false;
1791 
1792   assert(EndIndex > BeginIndex && "Empty vector!");
1793   uint64_t NumElements = EndIndex - BeginIndex;
1794   Type *SliceTy = (NumElements == 1)
1795                       ? Ty->getElementType()
1796                       : FixedVectorType::get(Ty->getElementType(), NumElements);
1797 
1798   Type *SplitIntTy =
1799       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1800 
1801   Use *U = S.getUse();
1802 
1803   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1804     if (MI->isVolatile())
1805       return false;
1806     if (!S.isSplittable())
1807       return false; // Skip any unsplittable intrinsics.
1808   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1809     if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
1810       return false;
1811   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1812     if (LI->isVolatile())
1813       return false;
1814     Type *LTy = LI->getType();
1815     // Disable vector promotion when there are loads or stores of an FCA.
1816     if (LTy->isStructTy())
1817       return false;
1818     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1819       assert(LTy->isIntegerTy());
1820       LTy = SplitIntTy;
1821     }
1822     if (!canConvertValue(DL, SliceTy, LTy))
1823       return false;
1824   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1825     if (SI->isVolatile())
1826       return false;
1827     Type *STy = SI->getValueOperand()->getType();
1828     // Disable vector promotion when there are loads or stores of an FCA.
1829     if (STy->isStructTy())
1830       return false;
1831     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1832       assert(STy->isIntegerTy());
1833       STy = SplitIntTy;
1834     }
1835     if (!canConvertValue(DL, STy, SliceTy))
1836       return false;
1837   } else {
1838     return false;
1839   }
1840 
1841   return true;
1842 }
1843 
1844 /// Test whether the given alloca partitioning and range of slices can be
1845 /// promoted to a vector.
1846 ///
1847 /// This is a quick test to check whether we can rewrite a particular alloca
1848 /// partition (and its newly formed alloca) into a vector alloca with only
1849 /// whole-vector loads and stores such that it could be promoted to a vector
1850 /// SSA value. We only can ensure this for a limited set of operations, and we
1851 /// don't want to do the rewrites unless we are confident that the result will
1852 /// be promotable, so we have an early test here.
1853 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1854   // Collect the candidate types for vector-based promotion. Also track whether
1855   // we have different element types.
1856   SmallVector<VectorType *, 4> CandidateTys;
1857   Type *CommonEltTy = nullptr;
1858   bool HaveCommonEltTy = true;
1859   auto CheckCandidateType = [&](Type *Ty) {
1860     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1861       // Return if bitcast to vectors is different for total size in bits.
1862       if (!CandidateTys.empty()) {
1863         VectorType *V = CandidateTys[0];
1864         if (DL.getTypeSizeInBits(VTy).getFixedSize() !=
1865             DL.getTypeSizeInBits(V).getFixedSize()) {
1866           CandidateTys.clear();
1867           return;
1868         }
1869       }
1870       CandidateTys.push_back(VTy);
1871       if (!CommonEltTy)
1872         CommonEltTy = VTy->getElementType();
1873       else if (CommonEltTy != VTy->getElementType())
1874         HaveCommonEltTy = false;
1875     }
1876   };
1877   // Consider any loads or stores that are the exact size of the slice.
1878   for (const Slice &S : P)
1879     if (S.beginOffset() == P.beginOffset() &&
1880         S.endOffset() == P.endOffset()) {
1881       if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1882         CheckCandidateType(LI->getType());
1883       else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1884         CheckCandidateType(SI->getValueOperand()->getType());
1885     }
1886 
1887   // If we didn't find a vector type, nothing to do here.
1888   if (CandidateTys.empty())
1889     return nullptr;
1890 
1891   // Remove non-integer vector types if we had multiple common element types.
1892   // FIXME: It'd be nice to replace them with integer vector types, but we can't
1893   // do that until all the backends are known to produce good code for all
1894   // integer vector types.
1895   if (!HaveCommonEltTy) {
1896     llvm::erase_if(CandidateTys, [](VectorType *VTy) {
1897       return !VTy->getElementType()->isIntegerTy();
1898     });
1899 
1900     // If there were no integer vector types, give up.
1901     if (CandidateTys.empty())
1902       return nullptr;
1903 
1904     // Rank the remaining candidate vector types. This is easy because we know
1905     // they're all integer vectors. We sort by ascending number of elements.
1906     auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1907       (void)DL;
1908       assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() ==
1909                  DL.getTypeSizeInBits(LHSTy).getFixedSize() &&
1910              "Cannot have vector types of different sizes!");
1911       assert(RHSTy->getElementType()->isIntegerTy() &&
1912              "All non-integer types eliminated!");
1913       assert(LHSTy->getElementType()->isIntegerTy() &&
1914              "All non-integer types eliminated!");
1915       return cast<FixedVectorType>(RHSTy)->getNumElements() <
1916              cast<FixedVectorType>(LHSTy)->getNumElements();
1917     };
1918     llvm::sort(CandidateTys, RankVectorTypes);
1919     CandidateTys.erase(
1920         std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1921         CandidateTys.end());
1922   } else {
1923 // The only way to have the same element type in every vector type is to
1924 // have the same vector type. Check that and remove all but one.
1925 #ifndef NDEBUG
1926     for (VectorType *VTy : CandidateTys) {
1927       assert(VTy->getElementType() == CommonEltTy &&
1928              "Unaccounted for element type!");
1929       assert(VTy == CandidateTys[0] &&
1930              "Different vector types with the same element type!");
1931     }
1932 #endif
1933     CandidateTys.resize(1);
1934   }
1935 
1936   // Try each vector type, and return the one which works.
1937   auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1938     uint64_t ElementSize =
1939         DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize();
1940 
1941     // While the definition of LLVM vectors is bitpacked, we don't support sizes
1942     // that aren't byte sized.
1943     if (ElementSize % 8)
1944       return false;
1945     assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 &&
1946            "vector size not a multiple of element size?");
1947     ElementSize /= 8;
1948 
1949     for (const Slice &S : P)
1950       if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1951         return false;
1952 
1953     for (const Slice *S : P.splitSliceTails())
1954       if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1955         return false;
1956 
1957     return true;
1958   };
1959   for (VectorType *VTy : CandidateTys)
1960     if (CheckVectorTypeForPromotion(VTy))
1961       return VTy;
1962 
1963   return nullptr;
1964 }
1965 
1966 /// Test whether a slice of an alloca is valid for integer widening.
1967 ///
1968 /// This implements the necessary checking for the \c isIntegerWideningViable
1969 /// test below on a single slice of the alloca.
1970 static bool isIntegerWideningViableForSlice(const Slice &S,
1971                                             uint64_t AllocBeginOffset,
1972                                             Type *AllocaTy,
1973                                             const DataLayout &DL,
1974                                             bool &WholeAllocaOp) {
1975   uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize();
1976 
1977   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
1978   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
1979 
1980   // We can't reasonably handle cases where the load or store extends past
1981   // the end of the alloca's type and into its padding.
1982   if (RelEnd > Size)
1983     return false;
1984 
1985   Use *U = S.getUse();
1986 
1987   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1988     if (LI->isVolatile())
1989       return false;
1990     // We can't handle loads that extend past the allocated memory.
1991     if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size)
1992       return false;
1993     // So far, AllocaSliceRewriter does not support widening split slice tails
1994     // in rewriteIntegerLoad.
1995     if (S.beginOffset() < AllocBeginOffset)
1996       return false;
1997     // Note that we don't count vector loads or stores as whole-alloca
1998     // operations which enable integer widening because we would prefer to use
1999     // vector widening instead.
2000     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2001       WholeAllocaOp = true;
2002     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2003       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2004         return false;
2005     } else if (RelBegin != 0 || RelEnd != Size ||
2006                !canConvertValue(DL, AllocaTy, LI->getType())) {
2007       // Non-integer loads need to be convertible from the alloca type so that
2008       // they are promotable.
2009       return false;
2010     }
2011   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2012     Type *ValueTy = SI->getValueOperand()->getType();
2013     if (SI->isVolatile())
2014       return false;
2015     // We can't handle stores that extend past the allocated memory.
2016     if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size)
2017       return false;
2018     // So far, AllocaSliceRewriter does not support widening split slice tails
2019     // in rewriteIntegerStore.
2020     if (S.beginOffset() < AllocBeginOffset)
2021       return false;
2022     // Note that we don't count vector loads or stores as whole-alloca
2023     // operations which enable integer widening because we would prefer to use
2024     // vector widening instead.
2025     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2026       WholeAllocaOp = true;
2027     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2028       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2029         return false;
2030     } else if (RelBegin != 0 || RelEnd != Size ||
2031                !canConvertValue(DL, ValueTy, AllocaTy)) {
2032       // Non-integer stores need to be convertible to the alloca type so that
2033       // they are promotable.
2034       return false;
2035     }
2036   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2037     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2038       return false;
2039     if (!S.isSplittable())
2040       return false; // Skip any unsplittable intrinsics.
2041   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2042     if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
2043       return false;
2044   } else {
2045     return false;
2046   }
2047 
2048   return true;
2049 }
2050 
2051 /// Test whether the given alloca partition's integer operations can be
2052 /// widened to promotable ones.
2053 ///
2054 /// This is a quick test to check whether we can rewrite the integer loads and
2055 /// stores to a particular alloca into wider loads and stores and be able to
2056 /// promote the resulting alloca.
2057 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2058                                     const DataLayout &DL) {
2059   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize();
2060   // Don't create integer types larger than the maximum bitwidth.
2061   if (SizeInBits > IntegerType::MAX_INT_BITS)
2062     return false;
2063 
2064   // Don't try to handle allocas with bit-padding.
2065   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize())
2066     return false;
2067 
2068   // We need to ensure that an integer type with the appropriate bitwidth can
2069   // be converted to the alloca type, whatever that is. We don't want to force
2070   // the alloca itself to have an integer type if there is a more suitable one.
2071   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2072   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2073       !canConvertValue(DL, IntTy, AllocaTy))
2074     return false;
2075 
2076   // While examining uses, we ensure that the alloca has a covering load or
2077   // store. We don't want to widen the integer operations only to fail to
2078   // promote due to some other unsplittable entry (which we may make splittable
2079   // later). However, if there are only splittable uses, go ahead and assume
2080   // that we cover the alloca.
2081   // FIXME: We shouldn't consider split slices that happen to start in the
2082   // partition here...
2083   bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits);
2084 
2085   for (const Slice &S : P)
2086     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2087                                          WholeAllocaOp))
2088       return false;
2089 
2090   for (const Slice *S : P.splitSliceTails())
2091     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2092                                          WholeAllocaOp))
2093       return false;
2094 
2095   return WholeAllocaOp;
2096 }
2097 
2098 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2099                              IntegerType *Ty, uint64_t Offset,
2100                              const Twine &Name) {
2101   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2102   IntegerType *IntTy = cast<IntegerType>(V->getType());
2103   assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=
2104              DL.getTypeStoreSize(IntTy).getFixedSize() &&
2105          "Element extends past full value");
2106   uint64_t ShAmt = 8 * Offset;
2107   if (DL.isBigEndian())
2108     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2109                  DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2110   if (ShAmt) {
2111     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2112     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2113   }
2114   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2115          "Cannot extract to a larger integer!");
2116   if (Ty != IntTy) {
2117     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2118     LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2119   }
2120   return V;
2121 }
2122 
2123 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2124                             Value *V, uint64_t Offset, const Twine &Name) {
2125   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2126   IntegerType *Ty = cast<IntegerType>(V->getType());
2127   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2128          "Cannot insert a larger integer!");
2129   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2130   if (Ty != IntTy) {
2131     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2132     LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2133   }
2134   assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=
2135              DL.getTypeStoreSize(IntTy).getFixedSize() &&
2136          "Element store outside of alloca store");
2137   uint64_t ShAmt = 8 * Offset;
2138   if (DL.isBigEndian())
2139     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2140                  DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2141   if (ShAmt) {
2142     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2143     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2144   }
2145 
2146   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2147     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2148     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2149     LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2150     V = IRB.CreateOr(Old, V, Name + ".insert");
2151     LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2152   }
2153   return V;
2154 }
2155 
2156 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2157                             unsigned EndIndex, const Twine &Name) {
2158   auto *VecTy = cast<FixedVectorType>(V->getType());
2159   unsigned NumElements = EndIndex - BeginIndex;
2160   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2161 
2162   if (NumElements == VecTy->getNumElements())
2163     return V;
2164 
2165   if (NumElements == 1) {
2166     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2167                                  Name + ".extract");
2168     LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2169     return V;
2170   }
2171 
2172   SmallVector<int, 8> Mask;
2173   Mask.reserve(NumElements);
2174   for (unsigned i = BeginIndex; i != EndIndex; ++i)
2175     Mask.push_back(i);
2176   V = IRB.CreateShuffleVector(V, Mask, Name + ".extract");
2177   LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2178   return V;
2179 }
2180 
2181 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2182                            unsigned BeginIndex, const Twine &Name) {
2183   VectorType *VecTy = cast<VectorType>(Old->getType());
2184   assert(VecTy && "Can only insert a vector into a vector");
2185 
2186   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2187   if (!Ty) {
2188     // Single element to insert.
2189     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2190                                 Name + ".insert");
2191     LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2192     return V;
2193   }
2194 
2195   assert(cast<FixedVectorType>(Ty)->getNumElements() <=
2196              cast<FixedVectorType>(VecTy)->getNumElements() &&
2197          "Too many elements!");
2198   if (cast<FixedVectorType>(Ty)->getNumElements() ==
2199       cast<FixedVectorType>(VecTy)->getNumElements()) {
2200     assert(V->getType() == VecTy && "Vector type mismatch");
2201     return V;
2202   }
2203   unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements();
2204 
2205   // When inserting a smaller vector into the larger to store, we first
2206   // use a shuffle vector to widen it with undef elements, and then
2207   // a second shuffle vector to select between the loaded vector and the
2208   // incoming vector.
2209   SmallVector<int, 8> Mask;
2210   Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2211   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2212     if (i >= BeginIndex && i < EndIndex)
2213       Mask.push_back(i - BeginIndex);
2214     else
2215       Mask.push_back(-1);
2216   V = IRB.CreateShuffleVector(V, Mask, Name + ".expand");
2217   LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2218 
2219   SmallVector<Constant *, 8> Mask2;
2220   Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2221   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2222     Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2223 
2224   V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend");
2225 
2226   LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2227   return V;
2228 }
2229 
2230 /// Visitor to rewrite instructions using p particular slice of an alloca
2231 /// to use a new alloca.
2232 ///
2233 /// Also implements the rewriting to vector-based accesses when the partition
2234 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2235 /// lives here.
2236 class llvm::sroa::AllocaSliceRewriter
2237     : public InstVisitor<AllocaSliceRewriter, bool> {
2238   // Befriend the base class so it can delegate to private visit methods.
2239   friend class InstVisitor<AllocaSliceRewriter, bool>;
2240 
2241   using Base = InstVisitor<AllocaSliceRewriter, bool>;
2242 
2243   const DataLayout &DL;
2244   AllocaSlices &AS;
2245   SROAPass &Pass;
2246   AllocaInst &OldAI, &NewAI;
2247   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2248   Type *NewAllocaTy;
2249 
2250   // This is a convenience and flag variable that will be null unless the new
2251   // alloca's integer operations should be widened to this integer type due to
2252   // passing isIntegerWideningViable above. If it is non-null, the desired
2253   // integer type will be stored here for easy access during rewriting.
2254   IntegerType *IntTy;
2255 
2256   // If we are rewriting an alloca partition which can be written as pure
2257   // vector operations, we stash extra information here. When VecTy is
2258   // non-null, we have some strict guarantees about the rewritten alloca:
2259   //   - The new alloca is exactly the size of the vector type here.
2260   //   - The accesses all either map to the entire vector or to a single
2261   //     element.
2262   //   - The set of accessing instructions is only one of those handled above
2263   //     in isVectorPromotionViable. Generally these are the same access kinds
2264   //     which are promotable via mem2reg.
2265   VectorType *VecTy;
2266   Type *ElementTy;
2267   uint64_t ElementSize;
2268 
2269   // The original offset of the slice currently being rewritten relative to
2270   // the original alloca.
2271   uint64_t BeginOffset = 0;
2272   uint64_t EndOffset = 0;
2273 
2274   // The new offsets of the slice currently being rewritten relative to the
2275   // original alloca.
2276   uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2277 
2278   uint64_t SliceSize = 0;
2279   bool IsSplittable = false;
2280   bool IsSplit = false;
2281   Use *OldUse = nullptr;
2282   Instruction *OldPtr = nullptr;
2283 
2284   // Track post-rewrite users which are PHI nodes and Selects.
2285   SmallSetVector<PHINode *, 8> &PHIUsers;
2286   SmallSetVector<SelectInst *, 8> &SelectUsers;
2287 
2288   // Utility IR builder, whose name prefix is setup for each visited use, and
2289   // the insertion point is set to point to the user.
2290   IRBuilderTy IRB;
2291 
2292 public:
2293   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass,
2294                       AllocaInst &OldAI, AllocaInst &NewAI,
2295                       uint64_t NewAllocaBeginOffset,
2296                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2297                       VectorType *PromotableVecTy,
2298                       SmallSetVector<PHINode *, 8> &PHIUsers,
2299                       SmallSetVector<SelectInst *, 8> &SelectUsers)
2300       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2301         NewAllocaBeginOffset(NewAllocaBeginOffset),
2302         NewAllocaEndOffset(NewAllocaEndOffset),
2303         NewAllocaTy(NewAI.getAllocatedType()),
2304         IntTy(
2305             IsIntegerPromotable
2306                 ? Type::getIntNTy(NewAI.getContext(),
2307                                   DL.getTypeSizeInBits(NewAI.getAllocatedType())
2308                                       .getFixedSize())
2309                 : nullptr),
2310         VecTy(PromotableVecTy),
2311         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2312         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8
2313                           : 0),
2314         PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2315         IRB(NewAI.getContext(), ConstantFolder()) {
2316     if (VecTy) {
2317       assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 &&
2318              "Only multiple-of-8 sized vector elements are viable");
2319       ++NumVectorized;
2320     }
2321     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2322   }
2323 
2324   bool visit(AllocaSlices::const_iterator I) {
2325     bool CanSROA = true;
2326     BeginOffset = I->beginOffset();
2327     EndOffset = I->endOffset();
2328     IsSplittable = I->isSplittable();
2329     IsSplit =
2330         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2331     LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2332     LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2333     LLVM_DEBUG(dbgs() << "\n");
2334 
2335     // Compute the intersecting offset range.
2336     assert(BeginOffset < NewAllocaEndOffset);
2337     assert(EndOffset > NewAllocaBeginOffset);
2338     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2339     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2340 
2341     SliceSize = NewEndOffset - NewBeginOffset;
2342 
2343     OldUse = I->getUse();
2344     OldPtr = cast<Instruction>(OldUse->get());
2345 
2346     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2347     IRB.SetInsertPoint(OldUserI);
2348     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2349     IRB.getInserter().SetNamePrefix(
2350         Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2351 
2352     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2353     if (VecTy || IntTy)
2354       assert(CanSROA);
2355     return CanSROA;
2356   }
2357 
2358 private:
2359   // Make sure the other visit overloads are visible.
2360   using Base::visit;
2361 
2362   // Every instruction which can end up as a user must have a rewrite rule.
2363   bool visitInstruction(Instruction &I) {
2364     LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2365     llvm_unreachable("No rewrite rule for this instruction!");
2366   }
2367 
2368   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2369     // Note that the offset computation can use BeginOffset or NewBeginOffset
2370     // interchangeably for unsplit slices.
2371     assert(IsSplit || BeginOffset == NewBeginOffset);
2372     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2373 
2374 #ifndef NDEBUG
2375     StringRef OldName = OldPtr->getName();
2376     // Skip through the last '.sroa.' component of the name.
2377     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2378     if (LastSROAPrefix != StringRef::npos) {
2379       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2380       // Look for an SROA slice index.
2381       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2382       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2383         // Strip the index and look for the offset.
2384         OldName = OldName.substr(IndexEnd + 1);
2385         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2386         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2387           // Strip the offset.
2388           OldName = OldName.substr(OffsetEnd + 1);
2389       }
2390     }
2391     // Strip any SROA suffixes as well.
2392     OldName = OldName.substr(0, OldName.find(".sroa_"));
2393 #endif
2394 
2395     return getAdjustedPtr(IRB, DL, &NewAI,
2396                           APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2397                           PointerTy,
2398 #ifndef NDEBUG
2399                           Twine(OldName) + "."
2400 #else
2401                           Twine()
2402 #endif
2403                           );
2404   }
2405 
2406   /// Compute suitable alignment to access this slice of the *new*
2407   /// alloca.
2408   ///
2409   /// You can optionally pass a type to this routine and if that type's ABI
2410   /// alignment is itself suitable, this will return zero.
2411   Align getSliceAlign() {
2412     return commonAlignment(NewAI.getAlign(),
2413                            NewBeginOffset - NewAllocaBeginOffset);
2414   }
2415 
2416   unsigned getIndex(uint64_t Offset) {
2417     assert(VecTy && "Can only call getIndex when rewriting a vector");
2418     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2419     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2420     uint32_t Index = RelOffset / ElementSize;
2421     assert(Index * ElementSize == RelOffset);
2422     return Index;
2423   }
2424 
2425   void deleteIfTriviallyDead(Value *V) {
2426     Instruction *I = cast<Instruction>(V);
2427     if (isInstructionTriviallyDead(I))
2428       Pass.DeadInsts.push_back(I);
2429   }
2430 
2431   Value *rewriteVectorizedLoadInst(LoadInst &LI) {
2432     unsigned BeginIndex = getIndex(NewBeginOffset);
2433     unsigned EndIndex = getIndex(NewEndOffset);
2434     assert(EndIndex > BeginIndex && "Empty vector!");
2435 
2436     LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2437                                            NewAI.getAlign(), "load");
2438 
2439     Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2440                             LLVMContext::MD_access_group});
2441     return extractVector(IRB, Load, BeginIndex, EndIndex, "vec");
2442   }
2443 
2444   Value *rewriteIntegerLoad(LoadInst &LI) {
2445     assert(IntTy && "We cannot insert an integer to the alloca");
2446     assert(!LI.isVolatile());
2447     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2448                                      NewAI.getAlign(), "load");
2449     V = convertValue(DL, IRB, V, IntTy);
2450     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2451     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2452     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2453       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2454       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2455     }
2456     // It is possible that the extracted type is not the load type. This
2457     // happens if there is a load past the end of the alloca, and as
2458     // a consequence the slice is narrower but still a candidate for integer
2459     // lowering. To handle this case, we just zero extend the extracted
2460     // integer.
2461     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2462            "Can only handle an extract for an overly wide load");
2463     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2464       V = IRB.CreateZExt(V, LI.getType());
2465     return V;
2466   }
2467 
2468   bool visitLoadInst(LoadInst &LI) {
2469     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2470     Value *OldOp = LI.getOperand(0);
2471     assert(OldOp == OldPtr);
2472 
2473     AAMDNodes AATags = LI.getAAMetadata();
2474 
2475     unsigned AS = LI.getPointerAddressSpace();
2476 
2477     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2478                              : LI.getType();
2479     const bool IsLoadPastEnd =
2480         DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize;
2481     bool IsPtrAdjusted = false;
2482     Value *V;
2483     if (VecTy) {
2484       V = rewriteVectorizedLoadInst(LI);
2485     } else if (IntTy && LI.getType()->isIntegerTy()) {
2486       V = rewriteIntegerLoad(LI);
2487     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2488                NewEndOffset == NewAllocaEndOffset &&
2489                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2490                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2491                  TargetTy->isIntegerTy()))) {
2492       LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2493                                               NewAI.getAlign(), LI.isVolatile(),
2494                                               LI.getName());
2495       if (AATags)
2496         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2497       if (LI.isVolatile())
2498         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2499       if (NewLI->isAtomic())
2500         NewLI->setAlignment(LI.getAlign());
2501 
2502       // Any !nonnull metadata or !range metadata on the old load is also valid
2503       // on the new load. This is even true in some cases even when the loads
2504       // are different types, for example by mapping !nonnull metadata to
2505       // !range metadata by modeling the null pointer constant converted to the
2506       // integer type.
2507       // FIXME: Add support for range metadata here. Currently the utilities
2508       // for this don't propagate range metadata in trivial cases from one
2509       // integer load to another, don't handle non-addrspace-0 null pointers
2510       // correctly, and don't have any support for mapping ranges as the
2511       // integer type becomes winder or narrower.
2512       if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2513         copyNonnullMetadata(LI, N, *NewLI);
2514 
2515       // Try to preserve nonnull metadata
2516       V = NewLI;
2517 
2518       // If this is an integer load past the end of the slice (which means the
2519       // bytes outside the slice are undef or this load is dead) just forcibly
2520       // fix the integer size with correct handling of endianness.
2521       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2522         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2523           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2524             V = IRB.CreateZExt(V, TITy, "load.ext");
2525             if (DL.isBigEndian())
2526               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2527                                 "endian_shift");
2528           }
2529     } else {
2530       Type *LTy = TargetTy->getPointerTo(AS);
2531       LoadInst *NewLI =
2532           IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
2533                                 getSliceAlign(), LI.isVolatile(), LI.getName());
2534       if (AATags)
2535         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2536       if (LI.isVolatile())
2537         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2538       NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2539                                LLVMContext::MD_access_group});
2540 
2541       V = NewLI;
2542       IsPtrAdjusted = true;
2543     }
2544     V = convertValue(DL, IRB, V, TargetTy);
2545 
2546     if (IsSplit) {
2547       assert(!LI.isVolatile());
2548       assert(LI.getType()->isIntegerTy() &&
2549              "Only integer type loads and stores are split");
2550       assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() &&
2551              "Split load isn't smaller than original load");
2552       assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2553              "Non-byte-multiple bit width");
2554       // Move the insertion point just past the load so that we can refer to it.
2555       IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2556       // Create a placeholder value with the same type as LI to use as the
2557       // basis for the new value. This allows us to replace the uses of LI with
2558       // the computed value, and then replace the placeholder with LI, leaving
2559       // LI only used for this computation.
2560       Value *Placeholder = new LoadInst(
2561           LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)), "",
2562           false, Align(1));
2563       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2564                         "insert");
2565       LI.replaceAllUsesWith(V);
2566       Placeholder->replaceAllUsesWith(&LI);
2567       Placeholder->deleteValue();
2568     } else {
2569       LI.replaceAllUsesWith(V);
2570     }
2571 
2572     Pass.DeadInsts.push_back(&LI);
2573     deleteIfTriviallyDead(OldOp);
2574     LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2575     return !LI.isVolatile() && !IsPtrAdjusted;
2576   }
2577 
2578   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2579                                   AAMDNodes AATags) {
2580     if (V->getType() != VecTy) {
2581       unsigned BeginIndex = getIndex(NewBeginOffset);
2582       unsigned EndIndex = getIndex(NewEndOffset);
2583       assert(EndIndex > BeginIndex && "Empty vector!");
2584       unsigned NumElements = EndIndex - BeginIndex;
2585       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2586              "Too many elements!");
2587       Type *SliceTy = (NumElements == 1)
2588                           ? ElementTy
2589                           : FixedVectorType::get(ElementTy, NumElements);
2590       if (V->getType() != SliceTy)
2591         V = convertValue(DL, IRB, V, SliceTy);
2592 
2593       // Mix in the existing elements.
2594       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2595                                          NewAI.getAlign(), "load");
2596       V = insertVector(IRB, Old, V, BeginIndex, "vec");
2597     }
2598     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2599     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2600                              LLVMContext::MD_access_group});
2601     if (AATags)
2602       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2603     Pass.DeadInsts.push_back(&SI);
2604 
2605     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2606     return true;
2607   }
2608 
2609   bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2610     assert(IntTy && "We cannot extract an integer from the alloca");
2611     assert(!SI.isVolatile());
2612     if (DL.getTypeSizeInBits(V->getType()).getFixedSize() !=
2613         IntTy->getBitWidth()) {
2614       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2615                                          NewAI.getAlign(), "oldload");
2616       Old = convertValue(DL, IRB, Old, IntTy);
2617       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2618       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2619       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2620     }
2621     V = convertValue(DL, IRB, V, NewAllocaTy);
2622     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2623     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2624                              LLVMContext::MD_access_group});
2625     if (AATags)
2626       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2627     Pass.DeadInsts.push_back(&SI);
2628     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2629     return true;
2630   }
2631 
2632   bool visitStoreInst(StoreInst &SI) {
2633     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2634     Value *OldOp = SI.getOperand(1);
2635     assert(OldOp == OldPtr);
2636 
2637     AAMDNodes AATags = SI.getAAMetadata();
2638     Value *V = SI.getValueOperand();
2639 
2640     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2641     // alloca that should be re-examined after promoting this alloca.
2642     if (V->getType()->isPointerTy())
2643       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2644         Pass.PostPromotionWorklist.insert(AI);
2645 
2646     if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) {
2647       assert(!SI.isVolatile());
2648       assert(V->getType()->isIntegerTy() &&
2649              "Only integer type loads and stores are split");
2650       assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2651              "Non-byte-multiple bit width");
2652       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2653       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2654                          "extract");
2655     }
2656 
2657     if (VecTy)
2658       return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2659     if (IntTy && V->getType()->isIntegerTy())
2660       return rewriteIntegerStore(V, SI, AATags);
2661 
2662     const bool IsStorePastEnd =
2663         DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize;
2664     StoreInst *NewSI;
2665     if (NewBeginOffset == NewAllocaBeginOffset &&
2666         NewEndOffset == NewAllocaEndOffset &&
2667         (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2668          (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2669           V->getType()->isIntegerTy()))) {
2670       // If this is an integer store past the end of slice (and thus the bytes
2671       // past that point are irrelevant or this is unreachable), truncate the
2672       // value prior to storing.
2673       if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2674         if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2675           if (VITy->getBitWidth() > AITy->getBitWidth()) {
2676             if (DL.isBigEndian())
2677               V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2678                                  "endian_shift");
2679             V = IRB.CreateTrunc(V, AITy, "load.trunc");
2680           }
2681 
2682       V = convertValue(DL, IRB, V, NewAllocaTy);
2683       NewSI =
2684           IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile());
2685     } else {
2686       unsigned AS = SI.getPointerAddressSpace();
2687       Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2688       NewSI =
2689           IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
2690     }
2691     NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2692                              LLVMContext::MD_access_group});
2693     if (AATags)
2694       NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2695     if (SI.isVolatile())
2696       NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2697     if (NewSI->isAtomic())
2698       NewSI->setAlignment(SI.getAlign());
2699     Pass.DeadInsts.push_back(&SI);
2700     deleteIfTriviallyDead(OldOp);
2701 
2702     LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2703     return NewSI->getPointerOperand() == &NewAI &&
2704            NewSI->getValueOperand()->getType() == NewAllocaTy &&
2705            !SI.isVolatile();
2706   }
2707 
2708   /// Compute an integer value from splatting an i8 across the given
2709   /// number of bytes.
2710   ///
2711   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2712   /// call this routine.
2713   /// FIXME: Heed the advice above.
2714   ///
2715   /// \param V The i8 value to splat.
2716   /// \param Size The number of bytes in the output (assuming i8 is one byte)
2717   Value *getIntegerSplat(Value *V, unsigned Size) {
2718     assert(Size > 0 && "Expected a positive number of bytes.");
2719     IntegerType *VTy = cast<IntegerType>(V->getType());
2720     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2721     if (Size == 1)
2722       return V;
2723 
2724     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2725     V = IRB.CreateMul(
2726         IRB.CreateZExt(V, SplatIntTy, "zext"),
2727         ConstantExpr::getUDiv(
2728             Constant::getAllOnesValue(SplatIntTy),
2729             ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2730                                   SplatIntTy)),
2731         "isplat");
2732     return V;
2733   }
2734 
2735   /// Compute a vector splat for a given element value.
2736   Value *getVectorSplat(Value *V, unsigned NumElements) {
2737     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2738     LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
2739     return V;
2740   }
2741 
2742   bool visitMemSetInst(MemSetInst &II) {
2743     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2744     assert(II.getRawDest() == OldPtr);
2745 
2746     AAMDNodes AATags = II.getAAMetadata();
2747 
2748     // If the memset has a variable size, it cannot be split, just adjust the
2749     // pointer to the new alloca.
2750     if (!isa<ConstantInt>(II.getLength())) {
2751       assert(!IsSplit);
2752       assert(NewBeginOffset == BeginOffset);
2753       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2754       II.setDestAlignment(getSliceAlign());
2755 
2756       deleteIfTriviallyDead(OldPtr);
2757       return false;
2758     }
2759 
2760     // Record this instruction for deletion.
2761     Pass.DeadInsts.push_back(&II);
2762 
2763     Type *AllocaTy = NewAI.getAllocatedType();
2764     Type *ScalarTy = AllocaTy->getScalarType();
2765 
2766     const bool CanContinue = [&]() {
2767       if (VecTy || IntTy)
2768         return true;
2769       if (BeginOffset > NewAllocaBeginOffset ||
2770           EndOffset < NewAllocaEndOffset)
2771         return false;
2772       // Length must be in range for FixedVectorType.
2773       auto *C = cast<ConstantInt>(II.getLength());
2774       const uint64_t Len = C->getLimitedValue();
2775       if (Len > std::numeric_limits<unsigned>::max())
2776         return false;
2777       auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
2778       auto *SrcTy = FixedVectorType::get(Int8Ty, Len);
2779       return canConvertValue(DL, SrcTy, AllocaTy) &&
2780              DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize());
2781     }();
2782 
2783     // If this doesn't map cleanly onto the alloca type, and that type isn't
2784     // a single value type, just emit a memset.
2785     if (!CanContinue) {
2786       Type *SizeTy = II.getLength()->getType();
2787       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2788       CallInst *New = IRB.CreateMemSet(
2789           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2790           MaybeAlign(getSliceAlign()), II.isVolatile());
2791       if (AATags)
2792         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2793       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2794       return false;
2795     }
2796 
2797     // If we can represent this as a simple value, we have to build the actual
2798     // value to store, which requires expanding the byte present in memset to
2799     // a sensible representation for the alloca type. This is essentially
2800     // splatting the byte to a sufficiently wide integer, splatting it across
2801     // any desired vector width, and bitcasting to the final type.
2802     Value *V;
2803 
2804     if (VecTy) {
2805       // If this is a memset of a vectorized alloca, insert it.
2806       assert(ElementTy == ScalarTy);
2807 
2808       unsigned BeginIndex = getIndex(NewBeginOffset);
2809       unsigned EndIndex = getIndex(NewEndOffset);
2810       assert(EndIndex > BeginIndex && "Empty vector!");
2811       unsigned NumElements = EndIndex - BeginIndex;
2812       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2813              "Too many elements!");
2814 
2815       Value *Splat = getIntegerSplat(
2816           II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8);
2817       Splat = convertValue(DL, IRB, Splat, ElementTy);
2818       if (NumElements > 1)
2819         Splat = getVectorSplat(Splat, NumElements);
2820 
2821       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2822                                          NewAI.getAlign(), "oldload");
2823       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2824     } else if (IntTy) {
2825       // If this is a memset on an alloca where we can widen stores, insert the
2826       // set integer.
2827       assert(!II.isVolatile());
2828 
2829       uint64_t Size = NewEndOffset - NewBeginOffset;
2830       V = getIntegerSplat(II.getValue(), Size);
2831 
2832       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2833                     EndOffset != NewAllocaBeginOffset)) {
2834         Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2835                                            NewAI.getAlign(), "oldload");
2836         Old = convertValue(DL, IRB, Old, IntTy);
2837         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2838         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2839       } else {
2840         assert(V->getType() == IntTy &&
2841                "Wrong type for an alloca wide integer!");
2842       }
2843       V = convertValue(DL, IRB, V, AllocaTy);
2844     } else {
2845       // Established these invariants above.
2846       assert(NewBeginOffset == NewAllocaBeginOffset);
2847       assert(NewEndOffset == NewAllocaEndOffset);
2848 
2849       V = getIntegerSplat(II.getValue(),
2850                           DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8);
2851       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2852         V = getVectorSplat(
2853             V, cast<FixedVectorType>(AllocaVecTy)->getNumElements());
2854 
2855       V = convertValue(DL, IRB, V, AllocaTy);
2856     }
2857 
2858     StoreInst *New =
2859         IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile());
2860     New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
2861                            LLVMContext::MD_access_group});
2862     if (AATags)
2863       New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2864     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2865     return !II.isVolatile();
2866   }
2867 
2868   bool visitMemTransferInst(MemTransferInst &II) {
2869     // Rewriting of memory transfer instructions can be a bit tricky. We break
2870     // them into two categories: split intrinsics and unsplit intrinsics.
2871 
2872     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2873 
2874     AAMDNodes AATags = II.getAAMetadata();
2875 
2876     bool IsDest = &II.getRawDestUse() == OldUse;
2877     assert((IsDest && II.getRawDest() == OldPtr) ||
2878            (!IsDest && II.getRawSource() == OldPtr));
2879 
2880     MaybeAlign SliceAlign = getSliceAlign();
2881 
2882     // For unsplit intrinsics, we simply modify the source and destination
2883     // pointers in place. This isn't just an optimization, it is a matter of
2884     // correctness. With unsplit intrinsics we may be dealing with transfers
2885     // within a single alloca before SROA ran, or with transfers that have
2886     // a variable length. We may also be dealing with memmove instead of
2887     // memcpy, and so simply updating the pointers is the necessary for us to
2888     // update both source and dest of a single call.
2889     if (!IsSplittable) {
2890       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2891       if (IsDest) {
2892         II.setDest(AdjustedPtr);
2893         II.setDestAlignment(SliceAlign);
2894       }
2895       else {
2896         II.setSource(AdjustedPtr);
2897         II.setSourceAlignment(SliceAlign);
2898       }
2899 
2900       LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
2901       deleteIfTriviallyDead(OldPtr);
2902       return false;
2903     }
2904     // For split transfer intrinsics we have an incredibly useful assurance:
2905     // the source and destination do not reside within the same alloca, and at
2906     // least one of them does not escape. This means that we can replace
2907     // memmove with memcpy, and we don't need to worry about all manner of
2908     // downsides to splitting and transforming the operations.
2909 
2910     // If this doesn't map cleanly onto the alloca type, and that type isn't
2911     // a single value type, just emit a memcpy.
2912     bool EmitMemCpy =
2913         !VecTy && !IntTy &&
2914         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2915          SliceSize !=
2916              DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() ||
2917          !NewAI.getAllocatedType()->isSingleValueType());
2918 
2919     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2920     // size hasn't been shrunk based on analysis of the viable range, this is
2921     // a no-op.
2922     if (EmitMemCpy && &OldAI == &NewAI) {
2923       // Ensure the start lines up.
2924       assert(NewBeginOffset == BeginOffset);
2925 
2926       // Rewrite the size as needed.
2927       if (NewEndOffset != EndOffset)
2928         II.setLength(ConstantInt::get(II.getLength()->getType(),
2929                                       NewEndOffset - NewBeginOffset));
2930       return false;
2931     }
2932     // Record this instruction for deletion.
2933     Pass.DeadInsts.push_back(&II);
2934 
2935     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2936     // alloca that should be re-examined after rewriting this instruction.
2937     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2938     if (AllocaInst *AI =
2939             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2940       assert(AI != &OldAI && AI != &NewAI &&
2941              "Splittable transfers cannot reach the same alloca on both ends.");
2942       Pass.Worklist.insert(AI);
2943     }
2944 
2945     Type *OtherPtrTy = OtherPtr->getType();
2946     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2947 
2948     // Compute the relative offset for the other pointer within the transfer.
2949     unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
2950     APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
2951     Align OtherAlign =
2952         (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne();
2953     OtherAlign =
2954         commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
2955 
2956     if (EmitMemCpy) {
2957       // Compute the other pointer, folding as much as possible to produce
2958       // a single, simple GEP in most cases.
2959       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2960                                 OtherPtr->getName() + ".");
2961 
2962       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2963       Type *SizeTy = II.getLength()->getType();
2964       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2965 
2966       Value *DestPtr, *SrcPtr;
2967       MaybeAlign DestAlign, SrcAlign;
2968       // Note: IsDest is true iff we're copying into the new alloca slice
2969       if (IsDest) {
2970         DestPtr = OurPtr;
2971         DestAlign = SliceAlign;
2972         SrcPtr = OtherPtr;
2973         SrcAlign = OtherAlign;
2974       } else {
2975         DestPtr = OtherPtr;
2976         DestAlign = OtherAlign;
2977         SrcPtr = OurPtr;
2978         SrcAlign = SliceAlign;
2979       }
2980       CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
2981                                        Size, II.isVolatile());
2982       if (AATags)
2983         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2984       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2985       return false;
2986     }
2987 
2988     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2989                          NewEndOffset == NewAllocaEndOffset;
2990     uint64_t Size = NewEndOffset - NewBeginOffset;
2991     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2992     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2993     unsigned NumElements = EndIndex - BeginIndex;
2994     IntegerType *SubIntTy =
2995         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
2996 
2997     // Reset the other pointer type to match the register type we're going to
2998     // use, but using the address space of the original other pointer.
2999     Type *OtherTy;
3000     if (VecTy && !IsWholeAlloca) {
3001       if (NumElements == 1)
3002         OtherTy = VecTy->getElementType();
3003       else
3004         OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements);
3005     } else if (IntTy && !IsWholeAlloca) {
3006       OtherTy = SubIntTy;
3007     } else {
3008       OtherTy = NewAllocaTy;
3009     }
3010     OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3011 
3012     Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3013                                    OtherPtr->getName() + ".");
3014     MaybeAlign SrcAlign = OtherAlign;
3015     Value *DstPtr = &NewAI;
3016     MaybeAlign DstAlign = SliceAlign;
3017     if (!IsDest) {
3018       std::swap(SrcPtr, DstPtr);
3019       std::swap(SrcAlign, DstAlign);
3020     }
3021 
3022     Value *Src;
3023     if (VecTy && !IsWholeAlloca && !IsDest) {
3024       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3025                                   NewAI.getAlign(), "load");
3026       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3027     } else if (IntTy && !IsWholeAlloca && !IsDest) {
3028       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3029                                   NewAI.getAlign(), "load");
3030       Src = convertValue(DL, IRB, Src, IntTy);
3031       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3032       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3033     } else {
3034       LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3035                                              II.isVolatile(), "copyload");
3036       Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3037                               LLVMContext::MD_access_group});
3038       if (AATags)
3039         Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3040       Src = Load;
3041     }
3042 
3043     if (VecTy && !IsWholeAlloca && IsDest) {
3044       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3045                                          NewAI.getAlign(), "oldload");
3046       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3047     } else if (IntTy && !IsWholeAlloca && IsDest) {
3048       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3049                                          NewAI.getAlign(), "oldload");
3050       Old = convertValue(DL, IRB, Old, IntTy);
3051       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3052       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3053       Src = convertValue(DL, IRB, Src, NewAllocaTy);
3054     }
3055 
3056     StoreInst *Store = cast<StoreInst>(
3057         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3058     Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3059                              LLVMContext::MD_access_group});
3060     if (AATags)
3061       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3062     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3063     return !II.isVolatile();
3064   }
3065 
3066   bool visitIntrinsicInst(IntrinsicInst &II) {
3067     assert((II.isLifetimeStartOrEnd() || II.isDroppable()) &&
3068            "Unexpected intrinsic!");
3069     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3070 
3071     // Record this instruction for deletion.
3072     Pass.DeadInsts.push_back(&II);
3073 
3074     if (II.isDroppable()) {
3075       assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume");
3076       // TODO For now we forget assumed information, this can be improved.
3077       OldPtr->dropDroppableUsesIn(II);
3078       return true;
3079     }
3080 
3081     assert(II.getArgOperand(1) == OldPtr);
3082     // Lifetime intrinsics are only promotable if they cover the whole alloca.
3083     // Therefore, we drop lifetime intrinsics which don't cover the whole
3084     // alloca.
3085     // (In theory, intrinsics which partially cover an alloca could be
3086     // promoted, but PromoteMemToReg doesn't handle that case.)
3087     // FIXME: Check whether the alloca is promotable before dropping the
3088     // lifetime intrinsics?
3089     if (NewBeginOffset != NewAllocaBeginOffset ||
3090         NewEndOffset != NewAllocaEndOffset)
3091       return true;
3092 
3093     ConstantInt *Size =
3094         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3095                          NewEndOffset - NewBeginOffset);
3096     // Lifetime intrinsics always expect an i8* so directly get such a pointer
3097     // for the new alloca slice.
3098     Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3099     Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3100     Value *New;
3101     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3102       New = IRB.CreateLifetimeStart(Ptr, Size);
3103     else
3104       New = IRB.CreateLifetimeEnd(Ptr, Size);
3105 
3106     (void)New;
3107     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3108 
3109     return true;
3110   }
3111 
3112   void fixLoadStoreAlign(Instruction &Root) {
3113     // This algorithm implements the same visitor loop as
3114     // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3115     // or store found.
3116     SmallPtrSet<Instruction *, 4> Visited;
3117     SmallVector<Instruction *, 4> Uses;
3118     Visited.insert(&Root);
3119     Uses.push_back(&Root);
3120     do {
3121       Instruction *I = Uses.pop_back_val();
3122 
3123       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3124         LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
3125         continue;
3126       }
3127       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3128         SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
3129         continue;
3130       }
3131 
3132       assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3133              isa<PHINode>(I) || isa<SelectInst>(I) ||
3134              isa<GetElementPtrInst>(I));
3135       for (User *U : I->users())
3136         if (Visited.insert(cast<Instruction>(U)).second)
3137           Uses.push_back(cast<Instruction>(U));
3138     } while (!Uses.empty());
3139   }
3140 
3141   bool visitPHINode(PHINode &PN) {
3142     LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3143     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3144     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3145 
3146     // We would like to compute a new pointer in only one place, but have it be
3147     // as local as possible to the PHI. To do that, we re-use the location of
3148     // the old pointer, which necessarily must be in the right position to
3149     // dominate the PHI.
3150     IRBuilderBase::InsertPointGuard Guard(IRB);
3151     if (isa<PHINode>(OldPtr))
3152       IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3153     else
3154       IRB.SetInsertPoint(OldPtr);
3155     IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3156 
3157     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3158     // Replace the operands which were using the old pointer.
3159     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3160 
3161     LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3162     deleteIfTriviallyDead(OldPtr);
3163 
3164     // Fix the alignment of any loads or stores using this PHI node.
3165     fixLoadStoreAlign(PN);
3166 
3167     // PHIs can't be promoted on their own, but often can be speculated. We
3168     // check the speculation outside of the rewriter so that we see the
3169     // fully-rewritten alloca.
3170     PHIUsers.insert(&PN);
3171     return true;
3172   }
3173 
3174   bool visitSelectInst(SelectInst &SI) {
3175     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3176     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3177            "Pointer isn't an operand!");
3178     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3179     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3180 
3181     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3182     // Replace the operands which were using the old pointer.
3183     if (SI.getOperand(1) == OldPtr)
3184       SI.setOperand(1, NewPtr);
3185     if (SI.getOperand(2) == OldPtr)
3186       SI.setOperand(2, NewPtr);
3187 
3188     LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3189     deleteIfTriviallyDead(OldPtr);
3190 
3191     // Fix the alignment of any loads or stores using this select.
3192     fixLoadStoreAlign(SI);
3193 
3194     // Selects can't be promoted on their own, but often can be speculated. We
3195     // check the speculation outside of the rewriter so that we see the
3196     // fully-rewritten alloca.
3197     SelectUsers.insert(&SI);
3198     return true;
3199   }
3200 };
3201 
3202 namespace {
3203 
3204 /// Visitor to rewrite aggregate loads and stores as scalar.
3205 ///
3206 /// This pass aggressively rewrites all aggregate loads and stores on
3207 /// a particular pointer (or any pointer derived from it which we can identify)
3208 /// with scalar loads and stores.
3209 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3210   // Befriend the base class so it can delegate to private visit methods.
3211   friend class InstVisitor<AggLoadStoreRewriter, bool>;
3212 
3213   /// Queue of pointer uses to analyze and potentially rewrite.
3214   SmallVector<Use *, 8> Queue;
3215 
3216   /// Set to prevent us from cycling with phi nodes and loops.
3217   SmallPtrSet<User *, 8> Visited;
3218 
3219   /// The current pointer use being rewritten. This is used to dig up the used
3220   /// value (as opposed to the user).
3221   Use *U = nullptr;
3222 
3223   /// Used to calculate offsets, and hence alignment, of subobjects.
3224   const DataLayout &DL;
3225 
3226 public:
3227   AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
3228 
3229   /// Rewrite loads and stores through a pointer and all pointers derived from
3230   /// it.
3231   bool rewrite(Instruction &I) {
3232     LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3233     enqueueUsers(I);
3234     bool Changed = false;
3235     while (!Queue.empty()) {
3236       U = Queue.pop_back_val();
3237       Changed |= visit(cast<Instruction>(U->getUser()));
3238     }
3239     return Changed;
3240   }
3241 
3242 private:
3243   /// Enqueue all the users of the given instruction for further processing.
3244   /// This uses a set to de-duplicate users.
3245   void enqueueUsers(Instruction &I) {
3246     for (Use &U : I.uses())
3247       if (Visited.insert(U.getUser()).second)
3248         Queue.push_back(&U);
3249   }
3250 
3251   // Conservative default is to not rewrite anything.
3252   bool visitInstruction(Instruction &I) { return false; }
3253 
3254   /// Generic recursive split emission class.
3255   template <typename Derived> class OpSplitter {
3256   protected:
3257     /// The builder used to form new instructions.
3258     IRBuilderTy IRB;
3259 
3260     /// The indices which to be used with insert- or extractvalue to select the
3261     /// appropriate value within the aggregate.
3262     SmallVector<unsigned, 4> Indices;
3263 
3264     /// The indices to a GEP instruction which will move Ptr to the correct slot
3265     /// within the aggregate.
3266     SmallVector<Value *, 4> GEPIndices;
3267 
3268     /// The base pointer of the original op, used as a base for GEPing the
3269     /// split operations.
3270     Value *Ptr;
3271 
3272     /// The base pointee type being GEPed into.
3273     Type *BaseTy;
3274 
3275     /// Known alignment of the base pointer.
3276     Align BaseAlign;
3277 
3278     /// To calculate offset of each component so we can correctly deduce
3279     /// alignments.
3280     const DataLayout &DL;
3281 
3282     /// Initialize the splitter with an insertion point, Ptr and start with a
3283     /// single zero GEP index.
3284     OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3285                Align BaseAlign, const DataLayout &DL)
3286         : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr),
3287           BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {}
3288 
3289   public:
3290     /// Generic recursive split emission routine.
3291     ///
3292     /// This method recursively splits an aggregate op (load or store) into
3293     /// scalar or vector ops. It splits recursively until it hits a single value
3294     /// and emits that single value operation via the template argument.
3295     ///
3296     /// The logic of this routine relies on GEPs and insertvalue and
3297     /// extractvalue all operating with the same fundamental index list, merely
3298     /// formatted differently (GEPs need actual values).
3299     ///
3300     /// \param Ty  The type being split recursively into smaller ops.
3301     /// \param Agg The aggregate value being built up or stored, depending on
3302     /// whether this is splitting a load or a store respectively.
3303     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3304       if (Ty->isSingleValueType()) {
3305         unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3306         return static_cast<Derived *>(this)->emitFunc(
3307             Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3308       }
3309 
3310       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3311         unsigned OldSize = Indices.size();
3312         (void)OldSize;
3313         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3314              ++Idx) {
3315           assert(Indices.size() == OldSize && "Did not return to the old size");
3316           Indices.push_back(Idx);
3317           GEPIndices.push_back(IRB.getInt32(Idx));
3318           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3319           GEPIndices.pop_back();
3320           Indices.pop_back();
3321         }
3322         return;
3323       }
3324 
3325       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3326         unsigned OldSize = Indices.size();
3327         (void)OldSize;
3328         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3329              ++Idx) {
3330           assert(Indices.size() == OldSize && "Did not return to the old size");
3331           Indices.push_back(Idx);
3332           GEPIndices.push_back(IRB.getInt32(Idx));
3333           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3334           GEPIndices.pop_back();
3335           Indices.pop_back();
3336         }
3337         return;
3338       }
3339 
3340       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3341     }
3342   };
3343 
3344   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3345     AAMDNodes AATags;
3346 
3347     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3348                    AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3349         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3350                                      DL),
3351           AATags(AATags) {}
3352 
3353     /// Emit a leaf load of a single value. This is called at the leaves of the
3354     /// recursive emission to actually load values.
3355     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3356       assert(Ty->isSingleValueType());
3357       // Load the single value and insert it using the indices.
3358       Value *GEP =
3359           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3360       LoadInst *Load =
3361           IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
3362 
3363       APInt Offset(
3364           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3365       if (AATags &&
3366           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3367         Load->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3368 
3369       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3370       LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3371     }
3372   };
3373 
3374   bool visitLoadInst(LoadInst &LI) {
3375     assert(LI.getPointerOperand() == *U);
3376     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3377       return false;
3378 
3379     // We have an aggregate being loaded, split it apart.
3380     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3381     LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(),
3382                             getAdjustedAlignment(&LI, 0), DL);
3383     Value *V = UndefValue::get(LI.getType());
3384     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3385     Visited.erase(&LI);
3386     LI.replaceAllUsesWith(V);
3387     LI.eraseFromParent();
3388     return true;
3389   }
3390 
3391   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3392     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3393                     AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3394         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3395                                       DL),
3396           AATags(AATags) {}
3397     AAMDNodes AATags;
3398     /// Emit a leaf store of a single value. This is called at the leaves of the
3399     /// recursive emission to actually produce stores.
3400     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3401       assert(Ty->isSingleValueType());
3402       // Extract the single value and store it using the indices.
3403       //
3404       // The gep and extractvalue values are factored out of the CreateStore
3405       // call to make the output independent of the argument evaluation order.
3406       Value *ExtractValue =
3407           IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3408       Value *InBoundsGEP =
3409           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3410       StoreInst *Store =
3411           IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
3412 
3413       APInt Offset(
3414           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3415       if (AATags &&
3416           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3417         Store->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3418 
3419       LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3420     }
3421   };
3422 
3423   bool visitStoreInst(StoreInst &SI) {
3424     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3425       return false;
3426     Value *V = SI.getValueOperand();
3427     if (V->getType()->isSingleValueType())
3428       return false;
3429 
3430     // We have an aggregate being stored, split it apart.
3431     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3432     StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(),
3433                              getAdjustedAlignment(&SI, 0), DL);
3434     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3435     Visited.erase(&SI);
3436     SI.eraseFromParent();
3437     return true;
3438   }
3439 
3440   bool visitBitCastInst(BitCastInst &BC) {
3441     enqueueUsers(BC);
3442     return false;
3443   }
3444 
3445   bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3446     enqueueUsers(ASC);
3447     return false;
3448   }
3449 
3450   // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
3451   bool foldGEPSelect(GetElementPtrInst &GEPI) {
3452     if (!GEPI.hasAllConstantIndices())
3453       return false;
3454 
3455     SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand());
3456 
3457     LLVM_DEBUG(dbgs() << "  Rewriting gep(select) -> select(gep):"
3458                       << "\n    original: " << *Sel
3459                       << "\n              " << GEPI);
3460 
3461     IRBuilderTy Builder(&GEPI);
3462     SmallVector<Value *, 4> Index(GEPI.indices());
3463     bool IsInBounds = GEPI.isInBounds();
3464 
3465     Type *Ty = GEPI.getSourceElementType();
3466     Value *True = Sel->getTrueValue();
3467     Value *NTrue =
3468         IsInBounds
3469             ? Builder.CreateInBoundsGEP(Ty, True, Index,
3470                                         True->getName() + ".sroa.gep")
3471             : Builder.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep");
3472 
3473     Value *False = Sel->getFalseValue();
3474 
3475     Value *NFalse =
3476         IsInBounds
3477             ? Builder.CreateInBoundsGEP(Ty, False, Index,
3478                                         False->getName() + ".sroa.gep")
3479             : Builder.CreateGEP(Ty, False, Index,
3480                                 False->getName() + ".sroa.gep");
3481 
3482     Value *NSel = Builder.CreateSelect(Sel->getCondition(), NTrue, NFalse,
3483                                        Sel->getName() + ".sroa.sel");
3484     Visited.erase(&GEPI);
3485     GEPI.replaceAllUsesWith(NSel);
3486     GEPI.eraseFromParent();
3487     Instruction *NSelI = cast<Instruction>(NSel);
3488     Visited.insert(NSelI);
3489     enqueueUsers(*NSelI);
3490 
3491     LLVM_DEBUG(dbgs() << "\n          to: " << *NTrue
3492                       << "\n              " << *NFalse
3493                       << "\n              " << *NSel << '\n');
3494 
3495     return true;
3496   }
3497 
3498   // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
3499   bool foldGEPPhi(GetElementPtrInst &GEPI) {
3500     if (!GEPI.hasAllConstantIndices())
3501       return false;
3502 
3503     PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand());
3504     if (GEPI.getParent() != PHI->getParent() ||
3505         llvm::any_of(PHI->incoming_values(), [](Value *In)
3506           { Instruction *I = dyn_cast<Instruction>(In);
3507             return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) ||
3508                    succ_empty(I->getParent()) ||
3509                    !I->getParent()->isLegalToHoistInto();
3510           }))
3511       return false;
3512 
3513     LLVM_DEBUG(dbgs() << "  Rewriting gep(phi) -> phi(gep):"
3514                       << "\n    original: " << *PHI
3515                       << "\n              " << GEPI
3516                       << "\n          to: ");
3517 
3518     SmallVector<Value *, 4> Index(GEPI.indices());
3519     bool IsInBounds = GEPI.isInBounds();
3520     IRBuilderTy PHIBuilder(GEPI.getParent()->getFirstNonPHI());
3521     PHINode *NewPN = PHIBuilder.CreatePHI(GEPI.getType(),
3522                                           PHI->getNumIncomingValues(),
3523                                           PHI->getName() + ".sroa.phi");
3524     for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
3525       BasicBlock *B = PHI->getIncomingBlock(I);
3526       Value *NewVal = nullptr;
3527       int Idx = NewPN->getBasicBlockIndex(B);
3528       if (Idx >= 0) {
3529         NewVal = NewPN->getIncomingValue(Idx);
3530       } else {
3531         Instruction *In = cast<Instruction>(PHI->getIncomingValue(I));
3532 
3533         IRBuilderTy B(In->getParent(), std::next(In->getIterator()));
3534         Type *Ty = GEPI.getSourceElementType();
3535         NewVal = IsInBounds
3536             ? B.CreateInBoundsGEP(Ty, In, Index, In->getName() + ".sroa.gep")
3537             : B.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep");
3538       }
3539       NewPN->addIncoming(NewVal, B);
3540     }
3541 
3542     Visited.erase(&GEPI);
3543     GEPI.replaceAllUsesWith(NewPN);
3544     GEPI.eraseFromParent();
3545     Visited.insert(NewPN);
3546     enqueueUsers(*NewPN);
3547 
3548     LLVM_DEBUG(for (Value *In : NewPN->incoming_values())
3549                  dbgs() << "\n              " << *In;
3550                dbgs() << "\n              " << *NewPN << '\n');
3551 
3552     return true;
3553   }
3554 
3555   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3556     if (isa<SelectInst>(GEPI.getPointerOperand()) &&
3557         foldGEPSelect(GEPI))
3558       return true;
3559 
3560     if (isa<PHINode>(GEPI.getPointerOperand()) &&
3561         foldGEPPhi(GEPI))
3562       return true;
3563 
3564     enqueueUsers(GEPI);
3565     return false;
3566   }
3567 
3568   bool visitPHINode(PHINode &PN) {
3569     enqueueUsers(PN);
3570     return false;
3571   }
3572 
3573   bool visitSelectInst(SelectInst &SI) {
3574     enqueueUsers(SI);
3575     return false;
3576   }
3577 };
3578 
3579 } // end anonymous namespace
3580 
3581 /// Strip aggregate type wrapping.
3582 ///
3583 /// This removes no-op aggregate types wrapping an underlying type. It will
3584 /// strip as many layers of types as it can without changing either the type
3585 /// size or the allocated size.
3586 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3587   if (Ty->isSingleValueType())
3588     return Ty;
3589 
3590   uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize();
3591   uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize();
3592 
3593   Type *InnerTy;
3594   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3595     InnerTy = ArrTy->getElementType();
3596   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3597     const StructLayout *SL = DL.getStructLayout(STy);
3598     unsigned Index = SL->getElementContainingOffset(0);
3599     InnerTy = STy->getElementType(Index);
3600   } else {
3601     return Ty;
3602   }
3603 
3604   if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() ||
3605       TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize())
3606     return Ty;
3607 
3608   return stripAggregateTypeWrapping(DL, InnerTy);
3609 }
3610 
3611 /// Try to find a partition of the aggregate type passed in for a given
3612 /// offset and size.
3613 ///
3614 /// This recurses through the aggregate type and tries to compute a subtype
3615 /// based on the offset and size. When the offset and size span a sub-section
3616 /// of an array, it will even compute a new array type for that sub-section,
3617 /// and the same for structs.
3618 ///
3619 /// Note that this routine is very strict and tries to find a partition of the
3620 /// type which produces the *exact* right offset and size. It is not forgiving
3621 /// when the size or offset cause either end of type-based partition to be off.
3622 /// Also, this is a best-effort routine. It is reasonable to give up and not
3623 /// return a type if necessary.
3624 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3625                               uint64_t Size) {
3626   if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size)
3627     return stripAggregateTypeWrapping(DL, Ty);
3628   if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() ||
3629       (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size)
3630     return nullptr;
3631 
3632   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
3633      Type *ElementTy;
3634      uint64_t TyNumElements;
3635      if (auto *AT = dyn_cast<ArrayType>(Ty)) {
3636        ElementTy = AT->getElementType();
3637        TyNumElements = AT->getNumElements();
3638      } else {
3639        // FIXME: This isn't right for vectors with non-byte-sized or
3640        // non-power-of-two sized elements.
3641        auto *VT = cast<FixedVectorType>(Ty);
3642        ElementTy = VT->getElementType();
3643        TyNumElements = VT->getNumElements();
3644     }
3645     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3646     uint64_t NumSkippedElements = Offset / ElementSize;
3647     if (NumSkippedElements >= TyNumElements)
3648       return nullptr;
3649     Offset -= NumSkippedElements * ElementSize;
3650 
3651     // First check if we need to recurse.
3652     if (Offset > 0 || Size < ElementSize) {
3653       // Bail if the partition ends in a different array element.
3654       if ((Offset + Size) > ElementSize)
3655         return nullptr;
3656       // Recurse through the element type trying to peel off offset bytes.
3657       return getTypePartition(DL, ElementTy, Offset, Size);
3658     }
3659     assert(Offset == 0);
3660 
3661     if (Size == ElementSize)
3662       return stripAggregateTypeWrapping(DL, ElementTy);
3663     assert(Size > ElementSize);
3664     uint64_t NumElements = Size / ElementSize;
3665     if (NumElements * ElementSize != Size)
3666       return nullptr;
3667     return ArrayType::get(ElementTy, NumElements);
3668   }
3669 
3670   StructType *STy = dyn_cast<StructType>(Ty);
3671   if (!STy)
3672     return nullptr;
3673 
3674   const StructLayout *SL = DL.getStructLayout(STy);
3675   if (Offset >= SL->getSizeInBytes())
3676     return nullptr;
3677   uint64_t EndOffset = Offset + Size;
3678   if (EndOffset > SL->getSizeInBytes())
3679     return nullptr;
3680 
3681   unsigned Index = SL->getElementContainingOffset(Offset);
3682   Offset -= SL->getElementOffset(Index);
3683 
3684   Type *ElementTy = STy->getElementType(Index);
3685   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3686   if (Offset >= ElementSize)
3687     return nullptr; // The offset points into alignment padding.
3688 
3689   // See if any partition must be contained by the element.
3690   if (Offset > 0 || Size < ElementSize) {
3691     if ((Offset + Size) > ElementSize)
3692       return nullptr;
3693     return getTypePartition(DL, ElementTy, Offset, Size);
3694   }
3695   assert(Offset == 0);
3696 
3697   if (Size == ElementSize)
3698     return stripAggregateTypeWrapping(DL, ElementTy);
3699 
3700   StructType::element_iterator EI = STy->element_begin() + Index,
3701                                EE = STy->element_end();
3702   if (EndOffset < SL->getSizeInBytes()) {
3703     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3704     if (Index == EndIndex)
3705       return nullptr; // Within a single element and its padding.
3706 
3707     // Don't try to form "natural" types if the elements don't line up with the
3708     // expected size.
3709     // FIXME: We could potentially recurse down through the last element in the
3710     // sub-struct to find a natural end point.
3711     if (SL->getElementOffset(EndIndex) != EndOffset)
3712       return nullptr;
3713 
3714     assert(Index < EndIndex);
3715     EE = STy->element_begin() + EndIndex;
3716   }
3717 
3718   // Try to build up a sub-structure.
3719   StructType *SubTy =
3720       StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3721   const StructLayout *SubSL = DL.getStructLayout(SubTy);
3722   if (Size != SubSL->getSizeInBytes())
3723     return nullptr; // The sub-struct doesn't have quite the size needed.
3724 
3725   return SubTy;
3726 }
3727 
3728 /// Pre-split loads and stores to simplify rewriting.
3729 ///
3730 /// We want to break up the splittable load+store pairs as much as
3731 /// possible. This is important to do as a preprocessing step, as once we
3732 /// start rewriting the accesses to partitions of the alloca we lose the
3733 /// necessary information to correctly split apart paired loads and stores
3734 /// which both point into this alloca. The case to consider is something like
3735 /// the following:
3736 ///
3737 ///   %a = alloca [12 x i8]
3738 ///   %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3739 ///   %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3740 ///   %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3741 ///   %iptr1 = bitcast i8* %gep1 to i64*
3742 ///   %iptr2 = bitcast i8* %gep2 to i64*
3743 ///   %fptr1 = bitcast i8* %gep1 to float*
3744 ///   %fptr2 = bitcast i8* %gep2 to float*
3745 ///   %fptr3 = bitcast i8* %gep3 to float*
3746 ///   store float 0.0, float* %fptr1
3747 ///   store float 1.0, float* %fptr2
3748 ///   %v = load i64* %iptr1
3749 ///   store i64 %v, i64* %iptr2
3750 ///   %f1 = load float* %fptr2
3751 ///   %f2 = load float* %fptr3
3752 ///
3753 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3754 /// promote everything so we recover the 2 SSA values that should have been
3755 /// there all along.
3756 ///
3757 /// \returns true if any changes are made.
3758 bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3759   LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3760 
3761   // Track the loads and stores which are candidates for pre-splitting here, in
3762   // the order they first appear during the partition scan. These give stable
3763   // iteration order and a basis for tracking which loads and stores we
3764   // actually split.
3765   SmallVector<LoadInst *, 4> Loads;
3766   SmallVector<StoreInst *, 4> Stores;
3767 
3768   // We need to accumulate the splits required of each load or store where we
3769   // can find them via a direct lookup. This is important to cross-check loads
3770   // and stores against each other. We also track the slice so that we can kill
3771   // all the slices that end up split.
3772   struct SplitOffsets {
3773     Slice *S;
3774     std::vector<uint64_t> Splits;
3775   };
3776   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3777 
3778   // Track loads out of this alloca which cannot, for any reason, be pre-split.
3779   // This is important as we also cannot pre-split stores of those loads!
3780   // FIXME: This is all pretty gross. It means that we can be more aggressive
3781   // in pre-splitting when the load feeding the store happens to come from
3782   // a separate alloca. Put another way, the effectiveness of SROA would be
3783   // decreased by a frontend which just concatenated all of its local allocas
3784   // into one big flat alloca. But defeating such patterns is exactly the job
3785   // SROA is tasked with! Sadly, to not have this discrepancy we would have
3786   // change store pre-splitting to actually force pre-splitting of the load
3787   // that feeds it *and all stores*. That makes pre-splitting much harder, but
3788   // maybe it would make it more principled?
3789   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3790 
3791   LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
3792   for (auto &P : AS.partitions()) {
3793     for (Slice &S : P) {
3794       Instruction *I = cast<Instruction>(S.getUse()->getUser());
3795       if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3796         // If this is a load we have to track that it can't participate in any
3797         // pre-splitting. If this is a store of a load we have to track that
3798         // that load also can't participate in any pre-splitting.
3799         if (auto *LI = dyn_cast<LoadInst>(I))
3800           UnsplittableLoads.insert(LI);
3801         else if (auto *SI = dyn_cast<StoreInst>(I))
3802           if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3803             UnsplittableLoads.insert(LI);
3804         continue;
3805       }
3806       assert(P.endOffset() > S.beginOffset() &&
3807              "Empty or backwards partition!");
3808 
3809       // Determine if this is a pre-splittable slice.
3810       if (auto *LI = dyn_cast<LoadInst>(I)) {
3811         assert(!LI->isVolatile() && "Cannot split volatile loads!");
3812 
3813         // The load must be used exclusively to store into other pointers for
3814         // us to be able to arbitrarily pre-split it. The stores must also be
3815         // simple to avoid changing semantics.
3816         auto IsLoadSimplyStored = [](LoadInst *LI) {
3817           for (User *LU : LI->users()) {
3818             auto *SI = dyn_cast<StoreInst>(LU);
3819             if (!SI || !SI->isSimple())
3820               return false;
3821           }
3822           return true;
3823         };
3824         if (!IsLoadSimplyStored(LI)) {
3825           UnsplittableLoads.insert(LI);
3826           continue;
3827         }
3828 
3829         Loads.push_back(LI);
3830       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3831         if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3832           // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3833           continue;
3834         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3835         if (!StoredLoad || !StoredLoad->isSimple())
3836           continue;
3837         assert(!SI->isVolatile() && "Cannot split volatile stores!");
3838 
3839         Stores.push_back(SI);
3840       } else {
3841         // Other uses cannot be pre-split.
3842         continue;
3843       }
3844 
3845       // Record the initial split.
3846       LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
3847       auto &Offsets = SplitOffsetsMap[I];
3848       assert(Offsets.Splits.empty() &&
3849              "Should not have splits the first time we see an instruction!");
3850       Offsets.S = &S;
3851       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3852     }
3853 
3854     // Now scan the already split slices, and add a split for any of them which
3855     // we're going to pre-split.
3856     for (Slice *S : P.splitSliceTails()) {
3857       auto SplitOffsetsMapI =
3858           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3859       if (SplitOffsetsMapI == SplitOffsetsMap.end())
3860         continue;
3861       auto &Offsets = SplitOffsetsMapI->second;
3862 
3863       assert(Offsets.S == S && "Found a mismatched slice!");
3864       assert(!Offsets.Splits.empty() &&
3865              "Cannot have an empty set of splits on the second partition!");
3866       assert(Offsets.Splits.back() ==
3867                  P.beginOffset() - Offsets.S->beginOffset() &&
3868              "Previous split does not end where this one begins!");
3869 
3870       // Record each split. The last partition's end isn't needed as the size
3871       // of the slice dictates that.
3872       if (S->endOffset() > P.endOffset())
3873         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3874     }
3875   }
3876 
3877   // We may have split loads where some of their stores are split stores. For
3878   // such loads and stores, we can only pre-split them if their splits exactly
3879   // match relative to their starting offset. We have to verify this prior to
3880   // any rewriting.
3881   llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3882     // Lookup the load we are storing in our map of split
3883     // offsets.
3884     auto *LI = cast<LoadInst>(SI->getValueOperand());
3885     // If it was completely unsplittable, then we're done,
3886     // and this store can't be pre-split.
3887     if (UnsplittableLoads.count(LI))
3888       return true;
3889 
3890     auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3891     if (LoadOffsetsI == SplitOffsetsMap.end())
3892       return false; // Unrelated loads are definitely safe.
3893     auto &LoadOffsets = LoadOffsetsI->second;
3894 
3895     // Now lookup the store's offsets.
3896     auto &StoreOffsets = SplitOffsetsMap[SI];
3897 
3898     // If the relative offsets of each split in the load and
3899     // store match exactly, then we can split them and we
3900     // don't need to remove them here.
3901     if (LoadOffsets.Splits == StoreOffsets.Splits)
3902       return false;
3903 
3904     LLVM_DEBUG(dbgs() << "    Mismatched splits for load and store:\n"
3905                       << "      " << *LI << "\n"
3906                       << "      " << *SI << "\n");
3907 
3908     // We've found a store and load that we need to split
3909     // with mismatched relative splits. Just give up on them
3910     // and remove both instructions from our list of
3911     // candidates.
3912     UnsplittableLoads.insert(LI);
3913     return true;
3914   });
3915   // Now we have to go *back* through all the stores, because a later store may
3916   // have caused an earlier store's load to become unsplittable and if it is
3917   // unsplittable for the later store, then we can't rely on it being split in
3918   // the earlier store either.
3919   llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) {
3920     auto *LI = cast<LoadInst>(SI->getValueOperand());
3921     return UnsplittableLoads.count(LI);
3922   });
3923   // Once we've established all the loads that can't be split for some reason,
3924   // filter any that made it into our list out.
3925   llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) {
3926     return UnsplittableLoads.count(LI);
3927   });
3928 
3929   // If no loads or stores are left, there is no pre-splitting to be done for
3930   // this alloca.
3931   if (Loads.empty() && Stores.empty())
3932     return false;
3933 
3934   // From here on, we can't fail and will be building new accesses, so rig up
3935   // an IR builder.
3936   IRBuilderTy IRB(&AI);
3937 
3938   // Collect the new slices which we will merge into the alloca slices.
3939   SmallVector<Slice, 4> NewSlices;
3940 
3941   // Track any allocas we end up splitting loads and stores for so we iterate
3942   // on them.
3943   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3944 
3945   // At this point, we have collected all of the loads and stores we can
3946   // pre-split, and the specific splits needed for them. We actually do the
3947   // splitting in a specific order in order to handle when one of the loads in
3948   // the value operand to one of the stores.
3949   //
3950   // First, we rewrite all of the split loads, and just accumulate each split
3951   // load in a parallel structure. We also build the slices for them and append
3952   // them to the alloca slices.
3953   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3954   std::vector<LoadInst *> SplitLoads;
3955   const DataLayout &DL = AI.getModule()->getDataLayout();
3956   for (LoadInst *LI : Loads) {
3957     SplitLoads.clear();
3958 
3959     IntegerType *Ty = cast<IntegerType>(LI->getType());
3960     assert(Ty->getBitWidth() % 8 == 0);
3961     uint64_t LoadSize = Ty->getBitWidth() / 8;
3962     assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3963 
3964     auto &Offsets = SplitOffsetsMap[LI];
3965     assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3966            "Slice size should always match load size exactly!");
3967     uint64_t BaseOffset = Offsets.S->beginOffset();
3968     assert(BaseOffset + LoadSize > BaseOffset &&
3969            "Cannot represent alloca access size using 64-bit integers!");
3970 
3971     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3972     IRB.SetInsertPoint(LI);
3973 
3974     LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
3975 
3976     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3977     int Idx = 0, Size = Offsets.Splits.size();
3978     for (;;) {
3979       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3980       auto AS = LI->getPointerAddressSpace();
3981       auto *PartPtrTy = PartTy->getPointerTo(AS);
3982       LoadInst *PLoad = IRB.CreateAlignedLoad(
3983           PartTy,
3984           getAdjustedPtr(IRB, DL, BasePtr,
3985                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
3986                          PartPtrTy, BasePtr->getName() + "."),
3987           getAdjustedAlignment(LI, PartOffset),
3988           /*IsVolatile*/ false, LI->getName());
3989       PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
3990                                 LLVMContext::MD_access_group});
3991 
3992       // Append this load onto the list of split loads so we can find it later
3993       // to rewrite the stores.
3994       SplitLoads.push_back(PLoad);
3995 
3996       // Now build a new slice for the alloca.
3997       NewSlices.push_back(
3998           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3999                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
4000                 /*IsSplittable*/ false));
4001       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4002                         << ", " << NewSlices.back().endOffset()
4003                         << "): " << *PLoad << "\n");
4004 
4005       // See if we've handled all the splits.
4006       if (Idx >= Size)
4007         break;
4008 
4009       // Setup the next partition.
4010       PartOffset = Offsets.Splits[Idx];
4011       ++Idx;
4012       PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
4013     }
4014 
4015     // Now that we have the split loads, do the slow walk over all uses of the
4016     // load and rewrite them as split stores, or save the split loads to use
4017     // below if the store is going to be split there anyways.
4018     bool DeferredStores = false;
4019     for (User *LU : LI->users()) {
4020       StoreInst *SI = cast<StoreInst>(LU);
4021       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
4022         DeferredStores = true;
4023         LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
4024                           << "\n");
4025         continue;
4026       }
4027 
4028       Value *StoreBasePtr = SI->getPointerOperand();
4029       IRB.SetInsertPoint(SI);
4030 
4031       LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
4032 
4033       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
4034         LoadInst *PLoad = SplitLoads[Idx];
4035         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
4036         auto *PartPtrTy =
4037             PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
4038 
4039         auto AS = SI->getPointerAddressSpace();
4040         StoreInst *PStore = IRB.CreateAlignedStore(
4041             PLoad,
4042             getAdjustedPtr(IRB, DL, StoreBasePtr,
4043                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4044                            PartPtrTy, StoreBasePtr->getName() + "."),
4045             getAdjustedAlignment(SI, PartOffset),
4046             /*IsVolatile*/ false);
4047         PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4048                                    LLVMContext::MD_access_group});
4049         LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
4050       }
4051 
4052       // We want to immediately iterate on any allocas impacted by splitting
4053       // this store, and we have to track any promotable alloca (indicated by
4054       // a direct store) as needing to be resplit because it is no longer
4055       // promotable.
4056       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
4057         ResplitPromotableAllocas.insert(OtherAI);
4058         Worklist.insert(OtherAI);
4059       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4060                      StoreBasePtr->stripInBoundsOffsets())) {
4061         Worklist.insert(OtherAI);
4062       }
4063 
4064       // Mark the original store as dead.
4065       DeadInsts.push_back(SI);
4066     }
4067 
4068     // Save the split loads if there are deferred stores among the users.
4069     if (DeferredStores)
4070       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
4071 
4072     // Mark the original load as dead and kill the original slice.
4073     DeadInsts.push_back(LI);
4074     Offsets.S->kill();
4075   }
4076 
4077   // Second, we rewrite all of the split stores. At this point, we know that
4078   // all loads from this alloca have been split already. For stores of such
4079   // loads, we can simply look up the pre-existing split loads. For stores of
4080   // other loads, we split those loads first and then write split stores of
4081   // them.
4082   for (StoreInst *SI : Stores) {
4083     auto *LI = cast<LoadInst>(SI->getValueOperand());
4084     IntegerType *Ty = cast<IntegerType>(LI->getType());
4085     assert(Ty->getBitWidth() % 8 == 0);
4086     uint64_t StoreSize = Ty->getBitWidth() / 8;
4087     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
4088 
4089     auto &Offsets = SplitOffsetsMap[SI];
4090     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
4091            "Slice size should always match load size exactly!");
4092     uint64_t BaseOffset = Offsets.S->beginOffset();
4093     assert(BaseOffset + StoreSize > BaseOffset &&
4094            "Cannot represent alloca access size using 64-bit integers!");
4095 
4096     Value *LoadBasePtr = LI->getPointerOperand();
4097     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
4098 
4099     LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
4100 
4101     // Check whether we have an already split load.
4102     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
4103     std::vector<LoadInst *> *SplitLoads = nullptr;
4104     if (SplitLoadsMapI != SplitLoadsMap.end()) {
4105       SplitLoads = &SplitLoadsMapI->second;
4106       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
4107              "Too few split loads for the number of splits in the store!");
4108     } else {
4109       LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
4110     }
4111 
4112     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4113     int Idx = 0, Size = Offsets.Splits.size();
4114     for (;;) {
4115       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4116       auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
4117       auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
4118 
4119       // Either lookup a split load or create one.
4120       LoadInst *PLoad;
4121       if (SplitLoads) {
4122         PLoad = (*SplitLoads)[Idx];
4123       } else {
4124         IRB.SetInsertPoint(LI);
4125         auto AS = LI->getPointerAddressSpace();
4126         PLoad = IRB.CreateAlignedLoad(
4127             PartTy,
4128             getAdjustedPtr(IRB, DL, LoadBasePtr,
4129                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4130                            LoadPartPtrTy, LoadBasePtr->getName() + "."),
4131             getAdjustedAlignment(LI, PartOffset),
4132             /*IsVolatile*/ false, LI->getName());
4133         PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4134                                   LLVMContext::MD_access_group});
4135       }
4136 
4137       // And store this partition.
4138       IRB.SetInsertPoint(SI);
4139       auto AS = SI->getPointerAddressSpace();
4140       StoreInst *PStore = IRB.CreateAlignedStore(
4141           PLoad,
4142           getAdjustedPtr(IRB, DL, StoreBasePtr,
4143                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4144                          StorePartPtrTy, StoreBasePtr->getName() + "."),
4145           getAdjustedAlignment(SI, PartOffset),
4146           /*IsVolatile*/ false);
4147       PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4148                                  LLVMContext::MD_access_group});
4149 
4150       // Now build a new slice for the alloca.
4151       NewSlices.push_back(
4152           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4153                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4154                 /*IsSplittable*/ false));
4155       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4156                         << ", " << NewSlices.back().endOffset()
4157                         << "): " << *PStore << "\n");
4158       if (!SplitLoads) {
4159         LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4160       }
4161 
4162       // See if we've finished all the splits.
4163       if (Idx >= Size)
4164         break;
4165 
4166       // Setup the next partition.
4167       PartOffset = Offsets.Splits[Idx];
4168       ++Idx;
4169       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4170     }
4171 
4172     // We want to immediately iterate on any allocas impacted by splitting
4173     // this load, which is only relevant if it isn't a load of this alloca and
4174     // thus we didn't already split the loads above. We also have to keep track
4175     // of any promotable allocas we split loads on as they can no longer be
4176     // promoted.
4177     if (!SplitLoads) {
4178       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4179         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4180         ResplitPromotableAllocas.insert(OtherAI);
4181         Worklist.insert(OtherAI);
4182       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4183                      LoadBasePtr->stripInBoundsOffsets())) {
4184         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4185         Worklist.insert(OtherAI);
4186       }
4187     }
4188 
4189     // Mark the original store as dead now that we've split it up and kill its
4190     // slice. Note that we leave the original load in place unless this store
4191     // was its only use. It may in turn be split up if it is an alloca load
4192     // for some other alloca, but it may be a normal load. This may introduce
4193     // redundant loads, but where those can be merged the rest of the optimizer
4194     // should handle the merging, and this uncovers SSA splits which is more
4195     // important. In practice, the original loads will almost always be fully
4196     // split and removed eventually, and the splits will be merged by any
4197     // trivial CSE, including instcombine.
4198     if (LI->hasOneUse()) {
4199       assert(*LI->user_begin() == SI && "Single use isn't this store!");
4200       DeadInsts.push_back(LI);
4201     }
4202     DeadInsts.push_back(SI);
4203     Offsets.S->kill();
4204   }
4205 
4206   // Remove the killed slices that have ben pre-split.
4207   llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); });
4208 
4209   // Insert our new slices. This will sort and merge them into the sorted
4210   // sequence.
4211   AS.insert(NewSlices);
4212 
4213   LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4214 #ifndef NDEBUG
4215   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4216     LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4217 #endif
4218 
4219   // Finally, don't try to promote any allocas that new require re-splitting.
4220   // They have already been added to the worklist above.
4221   llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) {
4222     return ResplitPromotableAllocas.count(AI);
4223   });
4224 
4225   return true;
4226 }
4227 
4228 /// Rewrite an alloca partition's users.
4229 ///
4230 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4231 /// to rewrite uses of an alloca partition to be conducive for SSA value
4232 /// promotion. If the partition needs a new, more refined alloca, this will
4233 /// build that new alloca, preserving as much type information as possible, and
4234 /// rewrite the uses of the old alloca to point at the new one and have the
4235 /// appropriate new offsets. It also evaluates how successful the rewrite was
4236 /// at enabling promotion and if it was successful queues the alloca to be
4237 /// promoted.
4238 AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4239                                        Partition &P) {
4240   // Try to compute a friendly type for this partition of the alloca. This
4241   // won't always succeed, in which case we fall back to a legal integer type
4242   // or an i8 array of an appropriate size.
4243   Type *SliceTy = nullptr;
4244   const DataLayout &DL = AI.getModule()->getDataLayout();
4245   std::pair<Type *, IntegerType *> CommonUseTy =
4246       findCommonType(P.begin(), P.end(), P.endOffset());
4247   // Do all uses operate on the same type?
4248   if (CommonUseTy.first)
4249     if (DL.getTypeAllocSize(CommonUseTy.first).getFixedSize() >= P.size())
4250       SliceTy = CommonUseTy.first;
4251   // If not, can we find an appropriate subtype in the original allocated type?
4252   if (!SliceTy)
4253     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4254                                                  P.beginOffset(), P.size()))
4255       SliceTy = TypePartitionTy;
4256   // If still not, can we use the largest bitwidth integer type used?
4257   if (!SliceTy && CommonUseTy.second)
4258     if (DL.getTypeAllocSize(CommonUseTy.second).getFixedSize() >= P.size())
4259       SliceTy = CommonUseTy.second;
4260   if ((!SliceTy || (SliceTy->isArrayTy() &&
4261                     SliceTy->getArrayElementType()->isIntegerTy())) &&
4262       DL.isLegalInteger(P.size() * 8))
4263     SliceTy = Type::getIntNTy(*C, P.size() * 8);
4264   if (!SliceTy)
4265     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4266   assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size());
4267 
4268   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4269 
4270   VectorType *VecTy =
4271       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4272   if (VecTy)
4273     SliceTy = VecTy;
4274 
4275   // Check for the case where we're going to rewrite to a new alloca of the
4276   // exact same type as the original, and with the same access offsets. In that
4277   // case, re-use the existing alloca, but still run through the rewriter to
4278   // perform phi and select speculation.
4279   // P.beginOffset() can be non-zero even with the same type in a case with
4280   // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4281   AllocaInst *NewAI;
4282   if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4283     NewAI = &AI;
4284     // FIXME: We should be able to bail at this point with "nothing changed".
4285     // FIXME: We might want to defer PHI speculation until after here.
4286     // FIXME: return nullptr;
4287   } else {
4288     // Make sure the alignment is compatible with P.beginOffset().
4289     const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
4290     // If we will get at least this much alignment from the type alone, leave
4291     // the alloca's alignment unconstrained.
4292     const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy);
4293     NewAI = new AllocaInst(
4294         SliceTy, AI.getType()->getAddressSpace(), nullptr,
4295         IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
4296         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4297     // Copy the old AI debug location over to the new one.
4298     NewAI->setDebugLoc(AI.getDebugLoc());
4299     ++NumNewAllocas;
4300   }
4301 
4302   LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4303                     << "[" << P.beginOffset() << "," << P.endOffset()
4304                     << ") to: " << *NewAI << "\n");
4305 
4306   // Track the high watermark on the worklist as it is only relevant for
4307   // promoted allocas. We will reset it to this point if the alloca is not in
4308   // fact scheduled for promotion.
4309   unsigned PPWOldSize = PostPromotionWorklist.size();
4310   unsigned NumUses = 0;
4311   SmallSetVector<PHINode *, 8> PHIUsers;
4312   SmallSetVector<SelectInst *, 8> SelectUsers;
4313 
4314   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4315                                P.endOffset(), IsIntegerPromotable, VecTy,
4316                                PHIUsers, SelectUsers);
4317   bool Promotable = true;
4318   for (Slice *S : P.splitSliceTails()) {
4319     Promotable &= Rewriter.visit(S);
4320     ++NumUses;
4321   }
4322   for (Slice &S : P) {
4323     Promotable &= Rewriter.visit(&S);
4324     ++NumUses;
4325   }
4326 
4327   NumAllocaPartitionUses += NumUses;
4328   MaxUsesPerAllocaPartition.updateMax(NumUses);
4329 
4330   // Now that we've processed all the slices in the new partition, check if any
4331   // PHIs or Selects would block promotion.
4332   for (PHINode *PHI : PHIUsers)
4333     if (!isSafePHIToSpeculate(*PHI)) {
4334       Promotable = false;
4335       PHIUsers.clear();
4336       SelectUsers.clear();
4337       break;
4338     }
4339 
4340   for (SelectInst *Sel : SelectUsers)
4341     if (!isSafeSelectToSpeculate(*Sel)) {
4342       Promotable = false;
4343       PHIUsers.clear();
4344       SelectUsers.clear();
4345       break;
4346     }
4347 
4348   if (Promotable) {
4349     for (Use *U : AS.getDeadUsesIfPromotable()) {
4350       auto *OldInst = dyn_cast<Instruction>(U->get());
4351       Value::dropDroppableUse(*U);
4352       if (OldInst)
4353         if (isInstructionTriviallyDead(OldInst))
4354           DeadInsts.push_back(OldInst);
4355     }
4356     if (PHIUsers.empty() && SelectUsers.empty()) {
4357       // Promote the alloca.
4358       PromotableAllocas.push_back(NewAI);
4359     } else {
4360       // If we have either PHIs or Selects to speculate, add them to those
4361       // worklists and re-queue the new alloca so that we promote in on the
4362       // next iteration.
4363       for (PHINode *PHIUser : PHIUsers)
4364         SpeculatablePHIs.insert(PHIUser);
4365       for (SelectInst *SelectUser : SelectUsers)
4366         SpeculatableSelects.insert(SelectUser);
4367       Worklist.insert(NewAI);
4368     }
4369   } else {
4370     // Drop any post-promotion work items if promotion didn't happen.
4371     while (PostPromotionWorklist.size() > PPWOldSize)
4372       PostPromotionWorklist.pop_back();
4373 
4374     // We couldn't promote and we didn't create a new partition, nothing
4375     // happened.
4376     if (NewAI == &AI)
4377       return nullptr;
4378 
4379     // If we can't promote the alloca, iterate on it to check for new
4380     // refinements exposed by splitting the current alloca. Don't iterate on an
4381     // alloca which didn't actually change and didn't get promoted.
4382     Worklist.insert(NewAI);
4383   }
4384 
4385   return NewAI;
4386 }
4387 
4388 /// Walks the slices of an alloca and form partitions based on them,
4389 /// rewriting each of their uses.
4390 bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4391   if (AS.begin() == AS.end())
4392     return false;
4393 
4394   unsigned NumPartitions = 0;
4395   bool Changed = false;
4396   const DataLayout &DL = AI.getModule()->getDataLayout();
4397 
4398   // First try to pre-split loads and stores.
4399   Changed |= presplitLoadsAndStores(AI, AS);
4400 
4401   // Now that we have identified any pre-splitting opportunities,
4402   // mark loads and stores unsplittable except for the following case.
4403   // We leave a slice splittable if all other slices are disjoint or fully
4404   // included in the slice, such as whole-alloca loads and stores.
4405   // If we fail to split these during pre-splitting, we want to force them
4406   // to be rewritten into a partition.
4407   bool IsSorted = true;
4408 
4409   uint64_t AllocaSize =
4410       DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize();
4411   const uint64_t MaxBitVectorSize = 1024;
4412   if (AllocaSize <= MaxBitVectorSize) {
4413     // If a byte boundary is included in any load or store, a slice starting or
4414     // ending at the boundary is not splittable.
4415     SmallBitVector SplittableOffset(AllocaSize + 1, true);
4416     for (Slice &S : AS)
4417       for (unsigned O = S.beginOffset() + 1;
4418            O < S.endOffset() && O < AllocaSize; O++)
4419         SplittableOffset.reset(O);
4420 
4421     for (Slice &S : AS) {
4422       if (!S.isSplittable())
4423         continue;
4424 
4425       if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4426           (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4427         continue;
4428 
4429       if (isa<LoadInst>(S.getUse()->getUser()) ||
4430           isa<StoreInst>(S.getUse()->getUser())) {
4431         S.makeUnsplittable();
4432         IsSorted = false;
4433       }
4434     }
4435   }
4436   else {
4437     // We only allow whole-alloca splittable loads and stores
4438     // for a large alloca to avoid creating too large BitVector.
4439     for (Slice &S : AS) {
4440       if (!S.isSplittable())
4441         continue;
4442 
4443       if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4444         continue;
4445 
4446       if (isa<LoadInst>(S.getUse()->getUser()) ||
4447           isa<StoreInst>(S.getUse()->getUser())) {
4448         S.makeUnsplittable();
4449         IsSorted = false;
4450       }
4451     }
4452   }
4453 
4454   if (!IsSorted)
4455     llvm::sort(AS);
4456 
4457   /// Describes the allocas introduced by rewritePartition in order to migrate
4458   /// the debug info.
4459   struct Fragment {
4460     AllocaInst *Alloca;
4461     uint64_t Offset;
4462     uint64_t Size;
4463     Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4464       : Alloca(AI), Offset(O), Size(S) {}
4465   };
4466   SmallVector<Fragment, 4> Fragments;
4467 
4468   // Rewrite each partition.
4469   for (auto &P : AS.partitions()) {
4470     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4471       Changed = true;
4472       if (NewAI != &AI) {
4473         uint64_t SizeOfByte = 8;
4474         uint64_t AllocaSize =
4475             DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize();
4476         // Don't include any padding.
4477         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4478         Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4479       }
4480     }
4481     ++NumPartitions;
4482   }
4483 
4484   NumAllocaPartitions += NumPartitions;
4485   MaxPartitionsPerAlloca.updateMax(NumPartitions);
4486 
4487   // Migrate debug information from the old alloca to the new alloca(s)
4488   // and the individual partitions.
4489   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4490   for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) {
4491     auto *Expr = DbgDeclare->getExpression();
4492     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4493     uint64_t AllocaSize =
4494         DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize();
4495     for (auto Fragment : Fragments) {
4496       // Create a fragment expression describing the new partition or reuse AI's
4497       // expression if there is only one partition.
4498       auto *FragmentExpr = Expr;
4499       if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4500         // If this alloca is already a scalar replacement of a larger aggregate,
4501         // Fragment.Offset describes the offset inside the scalar.
4502         auto ExprFragment = Expr->getFragmentInfo();
4503         uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4504         uint64_t Start = Offset + Fragment.Offset;
4505         uint64_t Size = Fragment.Size;
4506         if (ExprFragment) {
4507           uint64_t AbsEnd =
4508               ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4509           if (Start >= AbsEnd)
4510             // No need to describe a SROAed padding.
4511             continue;
4512           Size = std::min(Size, AbsEnd - Start);
4513         }
4514         // The new, smaller fragment is stenciled out from the old fragment.
4515         if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4516           assert(Start >= OrigFragment->OffsetInBits &&
4517                  "new fragment is outside of original fragment");
4518           Start -= OrigFragment->OffsetInBits;
4519         }
4520 
4521         // The alloca may be larger than the variable.
4522         auto VarSize = DbgDeclare->getVariable()->getSizeInBits();
4523         if (VarSize) {
4524           if (Size > *VarSize)
4525             Size = *VarSize;
4526           if (Size == 0 || Start + Size > *VarSize)
4527             continue;
4528         }
4529 
4530         // Avoid creating a fragment expression that covers the entire variable.
4531         if (!VarSize || *VarSize != Size) {
4532           if (auto E =
4533                   DIExpression::createFragmentExpression(Expr, Start, Size))
4534             FragmentExpr = *E;
4535           else
4536             continue;
4537         }
4538       }
4539 
4540       // Remove any existing intrinsics on the new alloca describing
4541       // the variable fragment.
4542       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) {
4543         auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS,
4544                                        const DbgVariableIntrinsic *RHS) {
4545           return LHS->getVariable() == RHS->getVariable() &&
4546                  LHS->getDebugLoc()->getInlinedAt() ==
4547                      RHS->getDebugLoc()->getInlinedAt();
4548         };
4549         if (SameVariableFragment(OldDII, DbgDeclare))
4550           OldDII->eraseFromParent();
4551       }
4552 
4553       DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), FragmentExpr,
4554                         DbgDeclare->getDebugLoc(), &AI);
4555     }
4556   }
4557   return Changed;
4558 }
4559 
4560 /// Clobber a use with undef, deleting the used value if it becomes dead.
4561 void SROAPass::clobberUse(Use &U) {
4562   Value *OldV = U;
4563   // Replace the use with an undef value.
4564   U = UndefValue::get(OldV->getType());
4565 
4566   // Check for this making an instruction dead. We have to garbage collect
4567   // all the dead instructions to ensure the uses of any alloca end up being
4568   // minimal.
4569   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4570     if (isInstructionTriviallyDead(OldI)) {
4571       DeadInsts.push_back(OldI);
4572     }
4573 }
4574 
4575 /// Analyze an alloca for SROA.
4576 ///
4577 /// This analyzes the alloca to ensure we can reason about it, builds
4578 /// the slices of the alloca, and then hands it off to be split and
4579 /// rewritten as needed.
4580 bool SROAPass::runOnAlloca(AllocaInst &AI) {
4581   LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4582   ++NumAllocasAnalyzed;
4583 
4584   // Special case dead allocas, as they're trivial.
4585   if (AI.use_empty()) {
4586     AI.eraseFromParent();
4587     return true;
4588   }
4589   const DataLayout &DL = AI.getModule()->getDataLayout();
4590 
4591   // Skip alloca forms that this analysis can't handle.
4592   auto *AT = AI.getAllocatedType();
4593   if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) ||
4594       DL.getTypeAllocSize(AT).getFixedSize() == 0)
4595     return false;
4596 
4597   bool Changed = false;
4598 
4599   // First, split any FCA loads and stores touching this alloca to promote
4600   // better splitting and promotion opportunities.
4601   AggLoadStoreRewriter AggRewriter(DL);
4602   Changed |= AggRewriter.rewrite(AI);
4603 
4604   // Build the slices using a recursive instruction-visiting builder.
4605   AllocaSlices AS(DL, AI);
4606   LLVM_DEBUG(AS.print(dbgs()));
4607   if (AS.isEscaped())
4608     return Changed;
4609 
4610   // Delete all the dead users of this alloca before splitting and rewriting it.
4611   for (Instruction *DeadUser : AS.getDeadUsers()) {
4612     // Free up everything used by this instruction.
4613     for (Use &DeadOp : DeadUser->operands())
4614       clobberUse(DeadOp);
4615 
4616     // Now replace the uses of this instruction.
4617     DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4618 
4619     // And mark it for deletion.
4620     DeadInsts.push_back(DeadUser);
4621     Changed = true;
4622   }
4623   for (Use *DeadOp : AS.getDeadOperands()) {
4624     clobberUse(*DeadOp);
4625     Changed = true;
4626   }
4627 
4628   // No slices to split. Leave the dead alloca for a later pass to clean up.
4629   if (AS.begin() == AS.end())
4630     return Changed;
4631 
4632   Changed |= splitAlloca(AI, AS);
4633 
4634   LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
4635   while (!SpeculatablePHIs.empty())
4636     speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4637 
4638   LLVM_DEBUG(dbgs() << "  Speculating Selects\n");
4639   while (!SpeculatableSelects.empty())
4640     speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4641 
4642   return Changed;
4643 }
4644 
4645 /// Delete the dead instructions accumulated in this run.
4646 ///
4647 /// Recursively deletes the dead instructions we've accumulated. This is done
4648 /// at the very end to maximize locality of the recursive delete and to
4649 /// minimize the problems of invalidated instruction pointers as such pointers
4650 /// are used heavily in the intermediate stages of the algorithm.
4651 ///
4652 /// We also record the alloca instructions deleted here so that they aren't
4653 /// subsequently handed to mem2reg to promote.
4654 bool SROAPass::deleteDeadInstructions(
4655     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4656   bool Changed = false;
4657   while (!DeadInsts.empty()) {
4658     Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
4659     if (!I) continue;
4660     LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4661 
4662     // If the instruction is an alloca, find the possible dbg.declare connected
4663     // to it, and remove it too. We must do this before calling RAUW or we will
4664     // not be able to find it.
4665     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4666       DeletedAllocas.insert(AI);
4667       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
4668         OldDII->eraseFromParent();
4669     }
4670 
4671     I->replaceAllUsesWith(UndefValue::get(I->getType()));
4672 
4673     for (Use &Operand : I->operands())
4674       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4675         // Zero out the operand and see if it becomes trivially dead.
4676         Operand = nullptr;
4677         if (isInstructionTriviallyDead(U))
4678           DeadInsts.push_back(U);
4679       }
4680 
4681     ++NumDeleted;
4682     I->eraseFromParent();
4683     Changed = true;
4684   }
4685   return Changed;
4686 }
4687 
4688 /// Promote the allocas, using the best available technique.
4689 ///
4690 /// This attempts to promote whatever allocas have been identified as viable in
4691 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4692 /// This function returns whether any promotion occurred.
4693 bool SROAPass::promoteAllocas(Function &F) {
4694   if (PromotableAllocas.empty())
4695     return false;
4696 
4697   NumPromoted += PromotableAllocas.size();
4698 
4699   LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4700   PromoteMemToReg(PromotableAllocas, *DT, AC);
4701   PromotableAllocas.clear();
4702   return true;
4703 }
4704 
4705 PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT,
4706                                     AssumptionCache &RunAC) {
4707   LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4708   C = &F.getContext();
4709   DT = &RunDT;
4710   AC = &RunAC;
4711 
4712   BasicBlock &EntryBB = F.getEntryBlock();
4713   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4714        I != E; ++I) {
4715     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4716       if (isa<ScalableVectorType>(AI->getAllocatedType())) {
4717         if (isAllocaPromotable(AI))
4718           PromotableAllocas.push_back(AI);
4719       } else {
4720         Worklist.insert(AI);
4721       }
4722     }
4723   }
4724 
4725   bool Changed = false;
4726   // A set of deleted alloca instruction pointers which should be removed from
4727   // the list of promotable allocas.
4728   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4729 
4730   do {
4731     while (!Worklist.empty()) {
4732       Changed |= runOnAlloca(*Worklist.pop_back_val());
4733       Changed |= deleteDeadInstructions(DeletedAllocas);
4734 
4735       // Remove the deleted allocas from various lists so that we don't try to
4736       // continue processing them.
4737       if (!DeletedAllocas.empty()) {
4738         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4739         Worklist.remove_if(IsInSet);
4740         PostPromotionWorklist.remove_if(IsInSet);
4741         llvm::erase_if(PromotableAllocas, IsInSet);
4742         DeletedAllocas.clear();
4743       }
4744     }
4745 
4746     Changed |= promoteAllocas(F);
4747 
4748     Worklist = PostPromotionWorklist;
4749     PostPromotionWorklist.clear();
4750   } while (!Worklist.empty());
4751 
4752   if (!Changed)
4753     return PreservedAnalyses::all();
4754 
4755   PreservedAnalyses PA;
4756   PA.preserveSet<CFGAnalyses>();
4757   return PA;
4758 }
4759 
4760 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) {
4761   return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4762                  AM.getResult<AssumptionAnalysis>(F));
4763 }
4764 
4765 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4766 ///
4767 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4768 /// SROA pass.
4769 class llvm::sroa::SROALegacyPass : public FunctionPass {
4770   /// The SROA implementation.
4771   SROAPass Impl;
4772 
4773 public:
4774   static char ID;
4775 
4776   SROALegacyPass() : FunctionPass(ID) {
4777     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4778   }
4779 
4780   bool runOnFunction(Function &F) override {
4781     if (skipFunction(F))
4782       return false;
4783 
4784     auto PA = Impl.runImpl(
4785         F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4786         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4787     return !PA.areAllPreserved();
4788   }
4789 
4790   void getAnalysisUsage(AnalysisUsage &AU) const override {
4791     AU.addRequired<AssumptionCacheTracker>();
4792     AU.addRequired<DominatorTreeWrapperPass>();
4793     AU.addPreserved<GlobalsAAWrapperPass>();
4794     AU.setPreservesCFG();
4795   }
4796 
4797   StringRef getPassName() const override { return "SROA"; }
4798 };
4799 
4800 char SROALegacyPass::ID = 0;
4801 
4802 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4803 
4804 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4805                       "Scalar Replacement Of Aggregates", false, false)
4806 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4807 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4808 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4809                     false, false)
4810