1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This transformation implements the well known scalar replacement of 10 /// aggregates transformation. It tries to identify promotable elements of an 11 /// aggregate alloca, and promote them to registers. It will also try to 12 /// convert uses of an element (or set of elements) of an alloca into a vector 13 /// or bitfield-style integer scalar if appropriate. 14 /// 15 /// It works to do this with minimal slicing of the alloca so that regions 16 /// which are merely transferred in and out of external memory remain unchanged 17 /// and are not decomposed to scalar code. 18 /// 19 /// Because this also performs alloca promotion, it can be thought of as also 20 /// serving the purpose of SSA formation. The algorithm iterates on the 21 /// function until all opportunities for promotion have been realized. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/SROA.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/PointerIntPair.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/ADT/iterator.h" 39 #include "llvm/ADT/iterator_range.h" 40 #include "llvm/Analysis/AssumptionCache.h" 41 #include "llvm/Analysis/GlobalsModRef.h" 42 #include "llvm/Analysis/Loads.h" 43 #include "llvm/Analysis/PtrUseVisitor.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/ConstantFolder.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DIBuilder.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalAlias.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstVisitor.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 85 #include <algorithm> 86 #include <cassert> 87 #include <chrono> 88 #include <cstddef> 89 #include <cstdint> 90 #include <cstring> 91 #include <iterator> 92 #include <string> 93 #include <tuple> 94 #include <utility> 95 #include <vector> 96 97 using namespace llvm; 98 using namespace llvm::sroa; 99 100 #define DEBUG_TYPE "sroa" 101 102 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 103 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 104 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 105 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 106 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 107 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 108 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 109 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 110 STATISTIC(NumDeleted, "Number of instructions deleted"); 111 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 112 113 /// Hidden option to experiment with completely strict handling of inbounds 114 /// GEPs. 115 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), 116 cl::Hidden); 117 118 namespace { 119 120 /// A custom IRBuilder inserter which prefixes all names, but only in 121 /// Assert builds. 122 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { 123 std::string Prefix; 124 125 Twine getNameWithPrefix(const Twine &Name) const { 126 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 127 } 128 129 public: 130 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 131 132 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 133 BasicBlock::iterator InsertPt) const override { 134 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, 135 InsertPt); 136 } 137 }; 138 139 /// Provide a type for IRBuilder that drops names in release builds. 140 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 141 142 /// A used slice of an alloca. 143 /// 144 /// This structure represents a slice of an alloca used by some instruction. It 145 /// stores both the begin and end offsets of this use, a pointer to the use 146 /// itself, and a flag indicating whether we can classify the use as splittable 147 /// or not when forming partitions of the alloca. 148 class Slice { 149 /// The beginning offset of the range. 150 uint64_t BeginOffset = 0; 151 152 /// The ending offset, not included in the range. 153 uint64_t EndOffset = 0; 154 155 /// Storage for both the use of this slice and whether it can be 156 /// split. 157 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 158 159 public: 160 Slice() = default; 161 162 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 163 : BeginOffset(BeginOffset), EndOffset(EndOffset), 164 UseAndIsSplittable(U, IsSplittable) {} 165 166 uint64_t beginOffset() const { return BeginOffset; } 167 uint64_t endOffset() const { return EndOffset; } 168 169 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 170 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 171 172 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 173 174 bool isDead() const { return getUse() == nullptr; } 175 void kill() { UseAndIsSplittable.setPointer(nullptr); } 176 177 /// Support for ordering ranges. 178 /// 179 /// This provides an ordering over ranges such that start offsets are 180 /// always increasing, and within equal start offsets, the end offsets are 181 /// decreasing. Thus the spanning range comes first in a cluster with the 182 /// same start position. 183 bool operator<(const Slice &RHS) const { 184 if (beginOffset() < RHS.beginOffset()) 185 return true; 186 if (beginOffset() > RHS.beginOffset()) 187 return false; 188 if (isSplittable() != RHS.isSplittable()) 189 return !isSplittable(); 190 if (endOffset() > RHS.endOffset()) 191 return true; 192 return false; 193 } 194 195 /// Support comparison with a single offset to allow binary searches. 196 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 197 uint64_t RHSOffset) { 198 return LHS.beginOffset() < RHSOffset; 199 } 200 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 201 const Slice &RHS) { 202 return LHSOffset < RHS.beginOffset(); 203 } 204 205 bool operator==(const Slice &RHS) const { 206 return isSplittable() == RHS.isSplittable() && 207 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 208 } 209 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 210 }; 211 212 } // end anonymous namespace 213 214 /// Representation of the alloca slices. 215 /// 216 /// This class represents the slices of an alloca which are formed by its 217 /// various uses. If a pointer escapes, we can't fully build a representation 218 /// for the slices used and we reflect that in this structure. The uses are 219 /// stored, sorted by increasing beginning offset and with unsplittable slices 220 /// starting at a particular offset before splittable slices. 221 class llvm::sroa::AllocaSlices { 222 public: 223 /// Construct the slices of a particular alloca. 224 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 225 226 /// Test whether a pointer to the allocation escapes our analysis. 227 /// 228 /// If this is true, the slices are never fully built and should be 229 /// ignored. 230 bool isEscaped() const { return PointerEscapingInstr; } 231 232 /// Support for iterating over the slices. 233 /// @{ 234 using iterator = SmallVectorImpl<Slice>::iterator; 235 using range = iterator_range<iterator>; 236 237 iterator begin() { return Slices.begin(); } 238 iterator end() { return Slices.end(); } 239 240 using const_iterator = SmallVectorImpl<Slice>::const_iterator; 241 using const_range = iterator_range<const_iterator>; 242 243 const_iterator begin() const { return Slices.begin(); } 244 const_iterator end() const { return Slices.end(); } 245 /// @} 246 247 /// Erase a range of slices. 248 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 249 250 /// Insert new slices for this alloca. 251 /// 252 /// This moves the slices into the alloca's slices collection, and re-sorts 253 /// everything so that the usual ordering properties of the alloca's slices 254 /// hold. 255 void insert(ArrayRef<Slice> NewSlices) { 256 int OldSize = Slices.size(); 257 Slices.append(NewSlices.begin(), NewSlices.end()); 258 auto SliceI = Slices.begin() + OldSize; 259 llvm::sort(SliceI, Slices.end()); 260 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 261 } 262 263 // Forward declare the iterator and range accessor for walking the 264 // partitions. 265 class partition_iterator; 266 iterator_range<partition_iterator> partitions(); 267 268 /// Access the dead users for this alloca. 269 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 270 271 /// Access Uses that should be dropped if the alloca is promotable. 272 ArrayRef<Use *> getDeadUsesIfPromotable() const { 273 return DeadUseIfPromotable; 274 } 275 276 /// Access the dead operands referring to this alloca. 277 /// 278 /// These are operands which have cannot actually be used to refer to the 279 /// alloca as they are outside its range and the user doesn't correct for 280 /// that. These mostly consist of PHI node inputs and the like which we just 281 /// need to replace with undef. 282 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 283 284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 285 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 286 void printSlice(raw_ostream &OS, const_iterator I, 287 StringRef Indent = " ") const; 288 void printUse(raw_ostream &OS, const_iterator I, 289 StringRef Indent = " ") const; 290 void print(raw_ostream &OS) const; 291 void dump(const_iterator I) const; 292 void dump() const; 293 #endif 294 295 private: 296 template <typename DerivedT, typename RetT = void> class BuilderBase; 297 class SliceBuilder; 298 299 friend class AllocaSlices::SliceBuilder; 300 301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 302 /// Handle to alloca instruction to simplify method interfaces. 303 AllocaInst &AI; 304 #endif 305 306 /// The instruction responsible for this alloca not having a known set 307 /// of slices. 308 /// 309 /// When an instruction (potentially) escapes the pointer to the alloca, we 310 /// store a pointer to that here and abort trying to form slices of the 311 /// alloca. This will be null if the alloca slices are analyzed successfully. 312 Instruction *PointerEscapingInstr; 313 314 /// The slices of the alloca. 315 /// 316 /// We store a vector of the slices formed by uses of the alloca here. This 317 /// vector is sorted by increasing begin offset, and then the unsplittable 318 /// slices before the splittable ones. See the Slice inner class for more 319 /// details. 320 SmallVector<Slice, 8> Slices; 321 322 /// Instructions which will become dead if we rewrite the alloca. 323 /// 324 /// Note that these are not separated by slice. This is because we expect an 325 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 326 /// all these instructions can simply be removed and replaced with undef as 327 /// they come from outside of the allocated space. 328 SmallVector<Instruction *, 8> DeadUsers; 329 330 /// Uses which will become dead if can promote the alloca. 331 SmallVector<Use *, 8> DeadUseIfPromotable; 332 333 /// Operands which will become dead if we rewrite the alloca. 334 /// 335 /// These are operands that in their particular use can be replaced with 336 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs 337 /// to PHI nodes and the like. They aren't entirely dead (there might be 338 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 339 /// want to swap this particular input for undef to simplify the use lists of 340 /// the alloca. 341 SmallVector<Use *, 8> DeadOperands; 342 }; 343 344 /// A partition of the slices. 345 /// 346 /// An ephemeral representation for a range of slices which can be viewed as 347 /// a partition of the alloca. This range represents a span of the alloca's 348 /// memory which cannot be split, and provides access to all of the slices 349 /// overlapping some part of the partition. 350 /// 351 /// Objects of this type are produced by traversing the alloca's slices, but 352 /// are only ephemeral and not persistent. 353 class llvm::sroa::Partition { 354 private: 355 friend class AllocaSlices; 356 friend class AllocaSlices::partition_iterator; 357 358 using iterator = AllocaSlices::iterator; 359 360 /// The beginning and ending offsets of the alloca for this 361 /// partition. 362 uint64_t BeginOffset = 0, EndOffset = 0; 363 364 /// The start and end iterators of this partition. 365 iterator SI, SJ; 366 367 /// A collection of split slice tails overlapping the partition. 368 SmallVector<Slice *, 4> SplitTails; 369 370 /// Raw constructor builds an empty partition starting and ending at 371 /// the given iterator. 372 Partition(iterator SI) : SI(SI), SJ(SI) {} 373 374 public: 375 /// The start offset of this partition. 376 /// 377 /// All of the contained slices start at or after this offset. 378 uint64_t beginOffset() const { return BeginOffset; } 379 380 /// The end offset of this partition. 381 /// 382 /// All of the contained slices end at or before this offset. 383 uint64_t endOffset() const { return EndOffset; } 384 385 /// The size of the partition. 386 /// 387 /// Note that this can never be zero. 388 uint64_t size() const { 389 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 390 return EndOffset - BeginOffset; 391 } 392 393 /// Test whether this partition contains no slices, and merely spans 394 /// a region occupied by split slices. 395 bool empty() const { return SI == SJ; } 396 397 /// \name Iterate slices that start within the partition. 398 /// These may be splittable or unsplittable. They have a begin offset >= the 399 /// partition begin offset. 400 /// @{ 401 // FIXME: We should probably define a "concat_iterator" helper and use that 402 // to stitch together pointee_iterators over the split tails and the 403 // contiguous iterators of the partition. That would give a much nicer 404 // interface here. We could then additionally expose filtered iterators for 405 // split, unsplit, and unsplittable splices based on the usage patterns. 406 iterator begin() const { return SI; } 407 iterator end() const { return SJ; } 408 /// @} 409 410 /// Get the sequence of split slice tails. 411 /// 412 /// These tails are of slices which start before this partition but are 413 /// split and overlap into the partition. We accumulate these while forming 414 /// partitions. 415 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 416 }; 417 418 /// An iterator over partitions of the alloca's slices. 419 /// 420 /// This iterator implements the core algorithm for partitioning the alloca's 421 /// slices. It is a forward iterator as we don't support backtracking for 422 /// efficiency reasons, and re-use a single storage area to maintain the 423 /// current set of split slices. 424 /// 425 /// It is templated on the slice iterator type to use so that it can operate 426 /// with either const or non-const slice iterators. 427 class AllocaSlices::partition_iterator 428 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 429 Partition> { 430 friend class AllocaSlices; 431 432 /// Most of the state for walking the partitions is held in a class 433 /// with a nice interface for examining them. 434 Partition P; 435 436 /// We need to keep the end of the slices to know when to stop. 437 AllocaSlices::iterator SE; 438 439 /// We also need to keep track of the maximum split end offset seen. 440 /// FIXME: Do we really? 441 uint64_t MaxSplitSliceEndOffset = 0; 442 443 /// Sets the partition to be empty at given iterator, and sets the 444 /// end iterator. 445 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 446 : P(SI), SE(SE) { 447 // If not already at the end, advance our state to form the initial 448 // partition. 449 if (SI != SE) 450 advance(); 451 } 452 453 /// Advance the iterator to the next partition. 454 /// 455 /// Requires that the iterator not be at the end of the slices. 456 void advance() { 457 assert((P.SI != SE || !P.SplitTails.empty()) && 458 "Cannot advance past the end of the slices!"); 459 460 // Clear out any split uses which have ended. 461 if (!P.SplitTails.empty()) { 462 if (P.EndOffset >= MaxSplitSliceEndOffset) { 463 // If we've finished all splits, this is easy. 464 P.SplitTails.clear(); 465 MaxSplitSliceEndOffset = 0; 466 } else { 467 // Remove the uses which have ended in the prior partition. This 468 // cannot change the max split slice end because we just checked that 469 // the prior partition ended prior to that max. 470 llvm::erase_if(P.SplitTails, 471 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }); 472 assert(llvm::any_of(P.SplitTails, 473 [&](Slice *S) { 474 return S->endOffset() == MaxSplitSliceEndOffset; 475 }) && 476 "Could not find the current max split slice offset!"); 477 assert(llvm::all_of(P.SplitTails, 478 [&](Slice *S) { 479 return S->endOffset() <= MaxSplitSliceEndOffset; 480 }) && 481 "Max split slice end offset is not actually the max!"); 482 } 483 } 484 485 // If P.SI is already at the end, then we've cleared the split tail and 486 // now have an end iterator. 487 if (P.SI == SE) { 488 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 489 return; 490 } 491 492 // If we had a non-empty partition previously, set up the state for 493 // subsequent partitions. 494 if (P.SI != P.SJ) { 495 // Accumulate all the splittable slices which started in the old 496 // partition into the split list. 497 for (Slice &S : P) 498 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 499 P.SplitTails.push_back(&S); 500 MaxSplitSliceEndOffset = 501 std::max(S.endOffset(), MaxSplitSliceEndOffset); 502 } 503 504 // Start from the end of the previous partition. 505 P.SI = P.SJ; 506 507 // If P.SI is now at the end, we at most have a tail of split slices. 508 if (P.SI == SE) { 509 P.BeginOffset = P.EndOffset; 510 P.EndOffset = MaxSplitSliceEndOffset; 511 return; 512 } 513 514 // If the we have split slices and the next slice is after a gap and is 515 // not splittable immediately form an empty partition for the split 516 // slices up until the next slice begins. 517 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 518 !P.SI->isSplittable()) { 519 P.BeginOffset = P.EndOffset; 520 P.EndOffset = P.SI->beginOffset(); 521 return; 522 } 523 } 524 525 // OK, we need to consume new slices. Set the end offset based on the 526 // current slice, and step SJ past it. The beginning offset of the 527 // partition is the beginning offset of the next slice unless we have 528 // pre-existing split slices that are continuing, in which case we begin 529 // at the prior end offset. 530 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 531 P.EndOffset = P.SI->endOffset(); 532 ++P.SJ; 533 534 // There are two strategies to form a partition based on whether the 535 // partition starts with an unsplittable slice or a splittable slice. 536 if (!P.SI->isSplittable()) { 537 // When we're forming an unsplittable region, it must always start at 538 // the first slice and will extend through its end. 539 assert(P.BeginOffset == P.SI->beginOffset()); 540 541 // Form a partition including all of the overlapping slices with this 542 // unsplittable slice. 543 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 544 if (!P.SJ->isSplittable()) 545 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 546 ++P.SJ; 547 } 548 549 // We have a partition across a set of overlapping unsplittable 550 // partitions. 551 return; 552 } 553 554 // If we're starting with a splittable slice, then we need to form 555 // a synthetic partition spanning it and any other overlapping splittable 556 // splices. 557 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 558 559 // Collect all of the overlapping splittable slices. 560 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 561 P.SJ->isSplittable()) { 562 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 563 ++P.SJ; 564 } 565 566 // Back upiP.EndOffset if we ended the span early when encountering an 567 // unsplittable slice. This synthesizes the early end offset of 568 // a partition spanning only splittable slices. 569 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 570 assert(!P.SJ->isSplittable()); 571 P.EndOffset = P.SJ->beginOffset(); 572 } 573 } 574 575 public: 576 bool operator==(const partition_iterator &RHS) const { 577 assert(SE == RHS.SE && 578 "End iterators don't match between compared partition iterators!"); 579 580 // The observed positions of partitions is marked by the P.SI iterator and 581 // the emptiness of the split slices. The latter is only relevant when 582 // P.SI == SE, as the end iterator will additionally have an empty split 583 // slices list, but the prior may have the same P.SI and a tail of split 584 // slices. 585 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 586 assert(P.SJ == RHS.P.SJ && 587 "Same set of slices formed two different sized partitions!"); 588 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 589 "Same slice position with differently sized non-empty split " 590 "slice tails!"); 591 return true; 592 } 593 return false; 594 } 595 596 partition_iterator &operator++() { 597 advance(); 598 return *this; 599 } 600 601 Partition &operator*() { return P; } 602 }; 603 604 /// A forward range over the partitions of the alloca's slices. 605 /// 606 /// This accesses an iterator range over the partitions of the alloca's 607 /// slices. It computes these partitions on the fly based on the overlapping 608 /// offsets of the slices and the ability to split them. It will visit "empty" 609 /// partitions to cover regions of the alloca only accessed via split 610 /// slices. 611 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 612 return make_range(partition_iterator(begin(), end()), 613 partition_iterator(end(), end())); 614 } 615 616 static Value *foldSelectInst(SelectInst &SI) { 617 // If the condition being selected on is a constant or the same value is 618 // being selected between, fold the select. Yes this does (rarely) happen 619 // early on. 620 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 621 return SI.getOperand(1 + CI->isZero()); 622 if (SI.getOperand(1) == SI.getOperand(2)) 623 return SI.getOperand(1); 624 625 return nullptr; 626 } 627 628 /// A helper that folds a PHI node or a select. 629 static Value *foldPHINodeOrSelectInst(Instruction &I) { 630 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 631 // If PN merges together the same value, return that value. 632 return PN->hasConstantValue(); 633 } 634 return foldSelectInst(cast<SelectInst>(I)); 635 } 636 637 /// Builder for the alloca slices. 638 /// 639 /// This class builds a set of alloca slices by recursively visiting the uses 640 /// of an alloca and making a slice for each load and store at each offset. 641 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 642 friend class PtrUseVisitor<SliceBuilder>; 643 friend class InstVisitor<SliceBuilder>; 644 645 using Base = PtrUseVisitor<SliceBuilder>; 646 647 const uint64_t AllocSize; 648 AllocaSlices &AS; 649 650 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 651 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 652 653 /// Set to de-duplicate dead instructions found in the use walk. 654 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 655 656 public: 657 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 658 : PtrUseVisitor<SliceBuilder>(DL), 659 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()), 660 AS(AS) {} 661 662 private: 663 void markAsDead(Instruction &I) { 664 if (VisitedDeadInsts.insert(&I).second) 665 AS.DeadUsers.push_back(&I); 666 } 667 668 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 669 bool IsSplittable = false) { 670 // Completely skip uses which have a zero size or start either before or 671 // past the end of the allocation. 672 if (Size == 0 || Offset.uge(AllocSize)) { 673 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" 674 << Offset 675 << " which has zero size or starts outside of the " 676 << AllocSize << " byte alloca:\n" 677 << " alloca: " << AS.AI << "\n" 678 << " use: " << I << "\n"); 679 return markAsDead(I); 680 } 681 682 uint64_t BeginOffset = Offset.getZExtValue(); 683 uint64_t EndOffset = BeginOffset + Size; 684 685 // Clamp the end offset to the end of the allocation. Note that this is 686 // formulated to handle even the case where "BeginOffset + Size" overflows. 687 // This may appear superficially to be something we could ignore entirely, 688 // but that is not so! There may be widened loads or PHI-node uses where 689 // some instructions are dead but not others. We can't completely ignore 690 // them, and so have to record at least the information here. 691 assert(AllocSize >= BeginOffset); // Established above. 692 if (Size > AllocSize - BeginOffset) { 693 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" 694 << Offset << " to remain within the " << AllocSize 695 << " byte alloca:\n" 696 << " alloca: " << AS.AI << "\n" 697 << " use: " << I << "\n"); 698 EndOffset = AllocSize; 699 } 700 701 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 702 } 703 704 void visitBitCastInst(BitCastInst &BC) { 705 if (BC.use_empty()) 706 return markAsDead(BC); 707 708 return Base::visitBitCastInst(BC); 709 } 710 711 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 712 if (ASC.use_empty()) 713 return markAsDead(ASC); 714 715 return Base::visitAddrSpaceCastInst(ASC); 716 } 717 718 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 719 if (GEPI.use_empty()) 720 return markAsDead(GEPI); 721 722 if (SROAStrictInbounds && GEPI.isInBounds()) { 723 // FIXME: This is a manually un-factored variant of the basic code inside 724 // of GEPs with checking of the inbounds invariant specified in the 725 // langref in a very strict sense. If we ever want to enable 726 // SROAStrictInbounds, this code should be factored cleanly into 727 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 728 // by writing out the code here where we have the underlying allocation 729 // size readily available. 730 APInt GEPOffset = Offset; 731 const DataLayout &DL = GEPI.getModule()->getDataLayout(); 732 for (gep_type_iterator GTI = gep_type_begin(GEPI), 733 GTE = gep_type_end(GEPI); 734 GTI != GTE; ++GTI) { 735 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 736 if (!OpC) 737 break; 738 739 // Handle a struct index, which adds its field offset to the pointer. 740 if (StructType *STy = GTI.getStructTypeOrNull()) { 741 unsigned ElementIdx = OpC->getZExtValue(); 742 const StructLayout *SL = DL.getStructLayout(STy); 743 GEPOffset += 744 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 745 } else { 746 // For array or vector indices, scale the index by the size of the 747 // type. 748 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 749 GEPOffset += 750 Index * 751 APInt(Offset.getBitWidth(), 752 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 753 } 754 755 // If this index has computed an intermediate pointer which is not 756 // inbounds, then the result of the GEP is a poison value and we can 757 // delete it and all uses. 758 if (GEPOffset.ugt(AllocSize)) 759 return markAsDead(GEPI); 760 } 761 } 762 763 return Base::visitGetElementPtrInst(GEPI); 764 } 765 766 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 767 uint64_t Size, bool IsVolatile) { 768 // We allow splitting of non-volatile loads and stores where the type is an 769 // integer type. These may be used to implement 'memcpy' or other "transfer 770 // of bits" patterns. 771 bool IsSplittable = 772 Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty); 773 774 insertUse(I, Offset, Size, IsSplittable); 775 } 776 777 void visitLoadInst(LoadInst &LI) { 778 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 779 "All simple FCA loads should have been pre-split"); 780 781 if (!IsOffsetKnown) 782 return PI.setAborted(&LI); 783 784 if (LI.isVolatile() && 785 LI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 786 return PI.setAborted(&LI); 787 788 if (isa<ScalableVectorType>(LI.getType())) 789 return PI.setAborted(&LI); 790 791 uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize(); 792 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 793 } 794 795 void visitStoreInst(StoreInst &SI) { 796 Value *ValOp = SI.getValueOperand(); 797 if (ValOp == *U) 798 return PI.setEscapedAndAborted(&SI); 799 if (!IsOffsetKnown) 800 return PI.setAborted(&SI); 801 802 if (SI.isVolatile() && 803 SI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 804 return PI.setAborted(&SI); 805 806 if (isa<ScalableVectorType>(ValOp->getType())) 807 return PI.setAborted(&SI); 808 809 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize(); 810 811 // If this memory access can be shown to *statically* extend outside the 812 // bounds of the allocation, it's behavior is undefined, so simply 813 // ignore it. Note that this is more strict than the generic clamping 814 // behavior of insertUse. We also try to handle cases which might run the 815 // risk of overflow. 816 // FIXME: We should instead consider the pointer to have escaped if this 817 // function is being instrumented for addressing bugs or race conditions. 818 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 819 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" 820 << Offset << " which extends past the end of the " 821 << AllocSize << " byte alloca:\n" 822 << " alloca: " << AS.AI << "\n" 823 << " use: " << SI << "\n"); 824 return markAsDead(SI); 825 } 826 827 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 828 "All simple FCA stores should have been pre-split"); 829 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 830 } 831 832 void visitMemSetInst(MemSetInst &II) { 833 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 834 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 835 if ((Length && Length->getValue() == 0) || 836 (IsOffsetKnown && Offset.uge(AllocSize))) 837 // Zero-length mem transfer intrinsics can be ignored entirely. 838 return markAsDead(II); 839 840 if (!IsOffsetKnown) 841 return PI.setAborted(&II); 842 843 // Don't replace this with a store with a different address space. TODO: 844 // Use a store with the casted new alloca? 845 if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace()) 846 return PI.setAborted(&II); 847 848 insertUse(II, Offset, Length ? Length->getLimitedValue() 849 : AllocSize - Offset.getLimitedValue(), 850 (bool)Length); 851 } 852 853 void visitMemTransferInst(MemTransferInst &II) { 854 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 855 if (Length && Length->getValue() == 0) 856 // Zero-length mem transfer intrinsics can be ignored entirely. 857 return markAsDead(II); 858 859 // Because we can visit these intrinsics twice, also check to see if the 860 // first time marked this instruction as dead. If so, skip it. 861 if (VisitedDeadInsts.count(&II)) 862 return; 863 864 if (!IsOffsetKnown) 865 return PI.setAborted(&II); 866 867 // Don't replace this with a load/store with a different address space. 868 // TODO: Use a store with the casted new alloca? 869 if (II.isVolatile() && 870 (II.getDestAddressSpace() != DL.getAllocaAddrSpace() || 871 II.getSourceAddressSpace() != DL.getAllocaAddrSpace())) 872 return PI.setAborted(&II); 873 874 // This side of the transfer is completely out-of-bounds, and so we can 875 // nuke the entire transfer. However, we also need to nuke the other side 876 // if already added to our partitions. 877 // FIXME: Yet another place we really should bypass this when 878 // instrumenting for ASan. 879 if (Offset.uge(AllocSize)) { 880 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 881 MemTransferSliceMap.find(&II); 882 if (MTPI != MemTransferSliceMap.end()) 883 AS.Slices[MTPI->second].kill(); 884 return markAsDead(II); 885 } 886 887 uint64_t RawOffset = Offset.getLimitedValue(); 888 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 889 890 // Check for the special case where the same exact value is used for both 891 // source and dest. 892 if (*U == II.getRawDest() && *U == II.getRawSource()) { 893 // For non-volatile transfers this is a no-op. 894 if (!II.isVolatile()) 895 return markAsDead(II); 896 897 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 898 } 899 900 // If we have seen both source and destination for a mem transfer, then 901 // they both point to the same alloca. 902 bool Inserted; 903 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 904 std::tie(MTPI, Inserted) = 905 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 906 unsigned PrevIdx = MTPI->second; 907 if (!Inserted) { 908 Slice &PrevP = AS.Slices[PrevIdx]; 909 910 // Check if the begin offsets match and this is a non-volatile transfer. 911 // In that case, we can completely elide the transfer. 912 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 913 PrevP.kill(); 914 return markAsDead(II); 915 } 916 917 // Otherwise we have an offset transfer within the same alloca. We can't 918 // split those. 919 PrevP.makeUnsplittable(); 920 } 921 922 // Insert the use now that we've fixed up the splittable nature. 923 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 924 925 // Check that we ended up with a valid index in the map. 926 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 927 "Map index doesn't point back to a slice with this user."); 928 } 929 930 // Disable SRoA for any intrinsics except for lifetime invariants and 931 // invariant group. 932 // FIXME: What about debug intrinsics? This matches old behavior, but 933 // doesn't make sense. 934 void visitIntrinsicInst(IntrinsicInst &II) { 935 if (II.isDroppable()) { 936 AS.DeadUseIfPromotable.push_back(U); 937 return; 938 } 939 940 if (!IsOffsetKnown) 941 return PI.setAborted(&II); 942 943 if (II.isLifetimeStartOrEnd()) { 944 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 945 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 946 Length->getLimitedValue()); 947 insertUse(II, Offset, Size, true); 948 return; 949 } 950 951 if (II.isLaunderOrStripInvariantGroup()) { 952 enqueueUsers(II); 953 return; 954 } 955 956 Base::visitIntrinsicInst(II); 957 } 958 959 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 960 // We consider any PHI or select that results in a direct load or store of 961 // the same offset to be a viable use for slicing purposes. These uses 962 // are considered unsplittable and the size is the maximum loaded or stored 963 // size. 964 SmallPtrSet<Instruction *, 4> Visited; 965 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 966 Visited.insert(Root); 967 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 968 const DataLayout &DL = Root->getModule()->getDataLayout(); 969 // If there are no loads or stores, the access is dead. We mark that as 970 // a size zero access. 971 Size = 0; 972 do { 973 Instruction *I, *UsedI; 974 std::tie(UsedI, I) = Uses.pop_back_val(); 975 976 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 977 Size = std::max(Size, 978 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 979 continue; 980 } 981 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 982 Value *Op = SI->getOperand(0); 983 if (Op == UsedI) 984 return SI; 985 Size = std::max(Size, 986 DL.getTypeStoreSize(Op->getType()).getFixedSize()); 987 continue; 988 } 989 990 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 991 if (!GEP->hasAllZeroIndices()) 992 return GEP; 993 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 994 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) { 995 return I; 996 } 997 998 for (User *U : I->users()) 999 if (Visited.insert(cast<Instruction>(U)).second) 1000 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 1001 } while (!Uses.empty()); 1002 1003 return nullptr; 1004 } 1005 1006 void visitPHINodeOrSelectInst(Instruction &I) { 1007 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 1008 if (I.use_empty()) 1009 return markAsDead(I); 1010 1011 // TODO: We could use SimplifyInstruction here to fold PHINodes and 1012 // SelectInsts. However, doing so requires to change the current 1013 // dead-operand-tracking mechanism. For instance, suppose neither loading 1014 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 1015 // trap either. However, if we simply replace %U with undef using the 1016 // current dead-operand-tracking mechanism, "load (select undef, undef, 1017 // %other)" may trap because the select may return the first operand 1018 // "undef". 1019 if (Value *Result = foldPHINodeOrSelectInst(I)) { 1020 if (Result == *U) 1021 // If the result of the constant fold will be the pointer, recurse 1022 // through the PHI/select as if we had RAUW'ed it. 1023 enqueueUsers(I); 1024 else 1025 // Otherwise the operand to the PHI/select is dead, and we can replace 1026 // it with undef. 1027 AS.DeadOperands.push_back(U); 1028 1029 return; 1030 } 1031 1032 if (!IsOffsetKnown) 1033 return PI.setAborted(&I); 1034 1035 // See if we already have computed info on this node. 1036 uint64_t &Size = PHIOrSelectSizes[&I]; 1037 if (!Size) { 1038 // This is a new PHI/Select, check for an unsafe use of it. 1039 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 1040 return PI.setAborted(UnsafeI); 1041 } 1042 1043 // For PHI and select operands outside the alloca, we can't nuke the entire 1044 // phi or select -- the other side might still be relevant, so we special 1045 // case them here and use a separate structure to track the operands 1046 // themselves which should be replaced with undef. 1047 // FIXME: This should instead be escaped in the event we're instrumenting 1048 // for address sanitization. 1049 if (Offset.uge(AllocSize)) { 1050 AS.DeadOperands.push_back(U); 1051 return; 1052 } 1053 1054 insertUse(I, Offset, Size); 1055 } 1056 1057 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 1058 1059 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 1060 1061 /// Disable SROA entirely if there are unhandled users of the alloca. 1062 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 1063 }; 1064 1065 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 1066 : 1067 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1068 AI(AI), 1069 #endif 1070 PointerEscapingInstr(nullptr) { 1071 SliceBuilder PB(DL, AI, *this); 1072 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 1073 if (PtrI.isEscaped() || PtrI.isAborted()) { 1074 // FIXME: We should sink the escape vs. abort info into the caller nicely, 1075 // possibly by just storing the PtrInfo in the AllocaSlices. 1076 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 1077 : PtrI.getAbortingInst(); 1078 assert(PointerEscapingInstr && "Did not track a bad instruction"); 1079 return; 1080 } 1081 1082 llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); }); 1083 1084 // Sort the uses. This arranges for the offsets to be in ascending order, 1085 // and the sizes to be in descending order. 1086 llvm::stable_sort(Slices); 1087 } 1088 1089 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1090 1091 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1092 StringRef Indent) const { 1093 printSlice(OS, I, Indent); 1094 OS << "\n"; 1095 printUse(OS, I, Indent); 1096 } 1097 1098 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1099 StringRef Indent) const { 1100 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1101 << " slice #" << (I - begin()) 1102 << (I->isSplittable() ? " (splittable)" : ""); 1103 } 1104 1105 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1106 StringRef Indent) const { 1107 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1108 } 1109 1110 void AllocaSlices::print(raw_ostream &OS) const { 1111 if (PointerEscapingInstr) { 1112 OS << "Can't analyze slices for alloca: " << AI << "\n" 1113 << " A pointer to this alloca escaped by:\n" 1114 << " " << *PointerEscapingInstr << "\n"; 1115 return; 1116 } 1117 1118 OS << "Slices of alloca: " << AI << "\n"; 1119 for (const_iterator I = begin(), E = end(); I != E; ++I) 1120 print(OS, I); 1121 } 1122 1123 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1124 print(dbgs(), I); 1125 } 1126 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1127 1128 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1129 1130 /// Walk the range of a partitioning looking for a common type to cover this 1131 /// sequence of slices. 1132 static std::pair<Type *, IntegerType *> 1133 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, 1134 uint64_t EndOffset) { 1135 Type *Ty = nullptr; 1136 bool TyIsCommon = true; 1137 IntegerType *ITy = nullptr; 1138 1139 // Note that we need to look at *every* alloca slice's Use to ensure we 1140 // always get consistent results regardless of the order of slices. 1141 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1142 Use *U = I->getUse(); 1143 if (isa<IntrinsicInst>(*U->getUser())) 1144 continue; 1145 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1146 continue; 1147 1148 Type *UserTy = nullptr; 1149 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1150 UserTy = LI->getType(); 1151 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1152 UserTy = SI->getValueOperand()->getType(); 1153 } 1154 1155 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1156 // If the type is larger than the partition, skip it. We only encounter 1157 // this for split integer operations where we want to use the type of the 1158 // entity causing the split. Also skip if the type is not a byte width 1159 // multiple. 1160 if (UserITy->getBitWidth() % 8 != 0 || 1161 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1162 continue; 1163 1164 // Track the largest bitwidth integer type used in this way in case there 1165 // is no common type. 1166 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1167 ITy = UserITy; 1168 } 1169 1170 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1171 // depend on types skipped above. 1172 if (!UserTy || (Ty && Ty != UserTy)) 1173 TyIsCommon = false; // Give up on anything but an iN type. 1174 else 1175 Ty = UserTy; 1176 } 1177 1178 return {TyIsCommon ? Ty : nullptr, ITy}; 1179 } 1180 1181 /// PHI instructions that use an alloca and are subsequently loaded can be 1182 /// rewritten to load both input pointers in the pred blocks and then PHI the 1183 /// results, allowing the load of the alloca to be promoted. 1184 /// From this: 1185 /// %P2 = phi [i32* %Alloca, i32* %Other] 1186 /// %V = load i32* %P2 1187 /// to: 1188 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1189 /// ... 1190 /// %V2 = load i32* %Other 1191 /// ... 1192 /// %V = phi [i32 %V1, i32 %V2] 1193 /// 1194 /// We can do this to a select if its only uses are loads and if the operands 1195 /// to the select can be loaded unconditionally. 1196 /// 1197 /// FIXME: This should be hoisted into a generic utility, likely in 1198 /// Transforms/Util/Local.h 1199 static bool isSafePHIToSpeculate(PHINode &PN) { 1200 const DataLayout &DL = PN.getModule()->getDataLayout(); 1201 1202 // For now, we can only do this promotion if the load is in the same block 1203 // as the PHI, and if there are no stores between the phi and load. 1204 // TODO: Allow recursive phi users. 1205 // TODO: Allow stores. 1206 BasicBlock *BB = PN.getParent(); 1207 Align MaxAlign; 1208 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); 1209 APInt MaxSize(APWidth, 0); 1210 bool HaveLoad = false; 1211 for (User *U : PN.users()) { 1212 LoadInst *LI = dyn_cast<LoadInst>(U); 1213 if (!LI || !LI->isSimple()) 1214 return false; 1215 1216 // For now we only allow loads in the same block as the PHI. This is 1217 // a common case that happens when instcombine merges two loads through 1218 // a PHI. 1219 if (LI->getParent() != BB) 1220 return false; 1221 1222 // Ensure that there are no instructions between the PHI and the load that 1223 // could store. 1224 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1225 if (BBI->mayWriteToMemory()) 1226 return false; 1227 1228 uint64_t Size = DL.getTypeStoreSize(LI->getType()).getFixedSize(); 1229 MaxAlign = std::max(MaxAlign, LI->getAlign()); 1230 MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize; 1231 HaveLoad = true; 1232 } 1233 1234 if (!HaveLoad) 1235 return false; 1236 1237 // We can only transform this if it is safe to push the loads into the 1238 // predecessor blocks. The only thing to watch out for is that we can't put 1239 // a possibly trapping load in the predecessor if it is a critical edge. 1240 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1241 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1242 Value *InVal = PN.getIncomingValue(Idx); 1243 1244 // If the value is produced by the terminator of the predecessor (an 1245 // invoke) or it has side-effects, there is no valid place to put a load 1246 // in the predecessor. 1247 if (TI == InVal || TI->mayHaveSideEffects()) 1248 return false; 1249 1250 // If the predecessor has a single successor, then the edge isn't 1251 // critical. 1252 if (TI->getNumSuccessors() == 1) 1253 continue; 1254 1255 // If this pointer is always safe to load, or if we can prove that there 1256 // is already a load in the block, then we can move the load to the pred 1257 // block. 1258 if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI)) 1259 continue; 1260 1261 return false; 1262 } 1263 1264 return true; 1265 } 1266 1267 static void speculatePHINodeLoads(PHINode &PN) { 1268 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 1269 1270 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1271 Type *LoadTy = SomeLoad->getType(); 1272 IRBuilderTy PHIBuilder(&PN); 1273 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1274 PN.getName() + ".sroa.speculated"); 1275 1276 // Get the AA tags and alignment to use from one of the loads. It does not 1277 // matter which one we get and if any differ. 1278 AAMDNodes AATags = SomeLoad->getAAMetadata(); 1279 Align Alignment = SomeLoad->getAlign(); 1280 1281 // Rewrite all loads of the PN to use the new PHI. 1282 while (!PN.use_empty()) { 1283 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1284 LI->replaceAllUsesWith(NewPN); 1285 LI->eraseFromParent(); 1286 } 1287 1288 // Inject loads into all of the pred blocks. 1289 DenseMap<BasicBlock*, Value*> InjectedLoads; 1290 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1291 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1292 Value *InVal = PN.getIncomingValue(Idx); 1293 1294 // A PHI node is allowed to have multiple (duplicated) entries for the same 1295 // basic block, as long as the value is the same. So if we already injected 1296 // a load in the predecessor, then we should reuse the same load for all 1297 // duplicated entries. 1298 if (Value* V = InjectedLoads.lookup(Pred)) { 1299 NewPN->addIncoming(V, Pred); 1300 continue; 1301 } 1302 1303 Instruction *TI = Pred->getTerminator(); 1304 IRBuilderTy PredBuilder(TI); 1305 1306 LoadInst *Load = PredBuilder.CreateAlignedLoad( 1307 LoadTy, InVal, Alignment, 1308 (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1309 ++NumLoadsSpeculated; 1310 if (AATags) 1311 Load->setAAMetadata(AATags); 1312 NewPN->addIncoming(Load, Pred); 1313 InjectedLoads[Pred] = Load; 1314 } 1315 1316 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1317 PN.eraseFromParent(); 1318 } 1319 1320 /// Select instructions that use an alloca and are subsequently loaded can be 1321 /// rewritten to load both input pointers and then select between the result, 1322 /// allowing the load of the alloca to be promoted. 1323 /// From this: 1324 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 1325 /// %V = load i32* %P2 1326 /// to: 1327 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1328 /// %V2 = load i32* %Other 1329 /// %V = select i1 %cond, i32 %V1, i32 %V2 1330 /// 1331 /// We can do this to a select if its only uses are loads and if the operand 1332 /// to the select can be loaded unconditionally. If found an intervening bitcast 1333 /// with a single use of the load, allow the promotion. 1334 static bool isSafeSelectToSpeculate(SelectInst &SI) { 1335 Value *TValue = SI.getTrueValue(); 1336 Value *FValue = SI.getFalseValue(); 1337 const DataLayout &DL = SI.getModule()->getDataLayout(); 1338 1339 for (User *U : SI.users()) { 1340 LoadInst *LI; 1341 BitCastInst *BC = dyn_cast<BitCastInst>(U); 1342 if (BC && BC->hasOneUse()) 1343 LI = dyn_cast<LoadInst>(*BC->user_begin()); 1344 else 1345 LI = dyn_cast<LoadInst>(U); 1346 1347 if (!LI || !LI->isSimple()) 1348 return false; 1349 1350 // Both operands to the select need to be dereferenceable, either 1351 // absolutely (e.g. allocas) or at this point because we can see other 1352 // accesses to it. 1353 if (!isSafeToLoadUnconditionally(TValue, LI->getType(), 1354 LI->getAlign(), DL, LI)) 1355 return false; 1356 if (!isSafeToLoadUnconditionally(FValue, LI->getType(), 1357 LI->getAlign(), DL, LI)) 1358 return false; 1359 } 1360 1361 return true; 1362 } 1363 1364 static void speculateSelectInstLoads(SelectInst &SI) { 1365 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 1366 1367 IRBuilderTy IRB(&SI); 1368 Value *TV = SI.getTrueValue(); 1369 Value *FV = SI.getFalseValue(); 1370 // Replace the loads of the select with a select of two loads. 1371 while (!SI.use_empty()) { 1372 LoadInst *LI; 1373 BitCastInst *BC = dyn_cast<BitCastInst>(SI.user_back()); 1374 if (BC) { 1375 assert(BC->hasOneUse() && "Bitcast should have a single use."); 1376 LI = cast<LoadInst>(BC->user_back()); 1377 } else { 1378 LI = cast<LoadInst>(SI.user_back()); 1379 } 1380 1381 assert(LI->isSimple() && "We only speculate simple loads"); 1382 1383 IRB.SetInsertPoint(LI); 1384 Value *NewTV = 1385 BC ? IRB.CreateBitCast(TV, BC->getType(), TV->getName() + ".sroa.cast") 1386 : TV; 1387 Value *NewFV = 1388 BC ? IRB.CreateBitCast(FV, BC->getType(), FV->getName() + ".sroa.cast") 1389 : FV; 1390 LoadInst *TL = IRB.CreateLoad(LI->getType(), NewTV, 1391 LI->getName() + ".sroa.speculate.load.true"); 1392 LoadInst *FL = IRB.CreateLoad(LI->getType(), NewFV, 1393 LI->getName() + ".sroa.speculate.load.false"); 1394 NumLoadsSpeculated += 2; 1395 1396 // Transfer alignment and AA info if present. 1397 TL->setAlignment(LI->getAlign()); 1398 FL->setAlignment(LI->getAlign()); 1399 1400 AAMDNodes Tags = LI->getAAMetadata(); 1401 if (Tags) { 1402 TL->setAAMetadata(Tags); 1403 FL->setAAMetadata(Tags); 1404 } 1405 1406 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1407 LI->getName() + ".sroa.speculated"); 1408 1409 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1410 LI->replaceAllUsesWith(V); 1411 LI->eraseFromParent(); 1412 if (BC) 1413 BC->eraseFromParent(); 1414 } 1415 SI.eraseFromParent(); 1416 } 1417 1418 /// Build a GEP out of a base pointer and indices. 1419 /// 1420 /// This will return the BasePtr if that is valid, or build a new GEP 1421 /// instruction using the IRBuilder if GEP-ing is needed. 1422 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1423 SmallVectorImpl<Value *> &Indices, 1424 const Twine &NamePrefix) { 1425 if (Indices.empty()) 1426 return BasePtr; 1427 1428 // A single zero index is a no-op, so check for this and avoid building a GEP 1429 // in that case. 1430 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1431 return BasePtr; 1432 1433 return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(), 1434 BasePtr, Indices, NamePrefix + "sroa_idx"); 1435 } 1436 1437 /// Get a natural GEP off of the BasePtr walking through Ty toward 1438 /// TargetTy without changing the offset of the pointer. 1439 /// 1440 /// This routine assumes we've already established a properly offset GEP with 1441 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1442 /// zero-indices down through type layers until we find one the same as 1443 /// TargetTy. If we can't find one with the same type, we at least try to use 1444 /// one with the same size. If none of that works, we just produce the GEP as 1445 /// indicated by Indices to have the correct offset. 1446 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1447 Value *BasePtr, Type *Ty, Type *TargetTy, 1448 SmallVectorImpl<Value *> &Indices, 1449 const Twine &NamePrefix) { 1450 if (Ty == TargetTy) 1451 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1452 1453 // Offset size to use for the indices. 1454 unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType()); 1455 1456 // See if we can descend into a struct and locate a field with the correct 1457 // type. 1458 unsigned NumLayers = 0; 1459 Type *ElementTy = Ty; 1460 do { 1461 if (ElementTy->isPointerTy()) 1462 break; 1463 1464 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { 1465 ElementTy = ArrayTy->getElementType(); 1466 Indices.push_back(IRB.getIntN(OffsetSize, 0)); 1467 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { 1468 ElementTy = VectorTy->getElementType(); 1469 Indices.push_back(IRB.getInt32(0)); 1470 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1471 if (STy->element_begin() == STy->element_end()) 1472 break; // Nothing left to descend into. 1473 ElementTy = *STy->element_begin(); 1474 Indices.push_back(IRB.getInt32(0)); 1475 } else { 1476 break; 1477 } 1478 ++NumLayers; 1479 } while (ElementTy != TargetTy); 1480 if (ElementTy != TargetTy) 1481 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1482 1483 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1484 } 1485 1486 /// Get a natural GEP from a base pointer to a particular offset and 1487 /// resulting in a particular type. 1488 /// 1489 /// The goal is to produce a "natural" looking GEP that works with the existing 1490 /// composite types to arrive at the appropriate offset and element type for 1491 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1492 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1493 /// Indices, and setting Ty to the result subtype. 1494 /// 1495 /// If no natural GEP can be constructed, this function returns null. 1496 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1497 Value *Ptr, APInt Offset, Type *TargetTy, 1498 SmallVectorImpl<Value *> &Indices, 1499 const Twine &NamePrefix) { 1500 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1501 1502 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1503 // an i8. 1504 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) 1505 return nullptr; 1506 1507 Type *ElementTy = Ty->getElementType(); 1508 if (!ElementTy->isSized()) 1509 return nullptr; // We can't GEP through an unsized element. 1510 1511 SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(ElementTy, Offset); 1512 if (Offset != 0) 1513 return nullptr; 1514 1515 for (const APInt &Index : IntIndices) 1516 Indices.push_back(IRB.getInt(Index)); 1517 return getNaturalGEPWithType(IRB, DL, Ptr, ElementTy, TargetTy, Indices, 1518 NamePrefix); 1519 } 1520 1521 /// Compute an adjusted pointer from Ptr by Offset bytes where the 1522 /// resulting pointer has PointerTy. 1523 /// 1524 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1525 /// and produces the pointer type desired. Where it cannot, it will try to use 1526 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1527 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1528 /// bitcast to the type. 1529 /// 1530 /// The strategy for finding the more natural GEPs is to peel off layers of the 1531 /// pointer, walking back through bit casts and GEPs, searching for a base 1532 /// pointer from which we can compute a natural GEP with the desired 1533 /// properties. The algorithm tries to fold as many constant indices into 1534 /// a single GEP as possible, thus making each GEP more independent of the 1535 /// surrounding code. 1536 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1537 APInt Offset, Type *PointerTy, 1538 const Twine &NamePrefix) { 1539 // Create i8 GEP for opaque pointers. 1540 if (Ptr->getType()->isOpaquePointerTy()) { 1541 if (Offset != 0) 1542 Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset), 1543 NamePrefix + "sroa_idx"); 1544 return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy, 1545 NamePrefix + "sroa_cast"); 1546 } 1547 1548 // Even though we don't look through PHI nodes, we could be called on an 1549 // instruction in an unreachable block, which may be on a cycle. 1550 SmallPtrSet<Value *, 4> Visited; 1551 Visited.insert(Ptr); 1552 SmallVector<Value *, 4> Indices; 1553 1554 // We may end up computing an offset pointer that has the wrong type. If we 1555 // never are able to compute one directly that has the correct type, we'll 1556 // fall back to it, so keep it and the base it was computed from around here. 1557 Value *OffsetPtr = nullptr; 1558 Value *OffsetBasePtr; 1559 1560 // Remember any i8 pointer we come across to re-use if we need to do a raw 1561 // byte offset. 1562 Value *Int8Ptr = nullptr; 1563 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1564 1565 PointerType *TargetPtrTy = cast<PointerType>(PointerTy); 1566 Type *TargetTy = TargetPtrTy->getElementType(); 1567 1568 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different 1569 // address space from the expected `PointerTy` (the pointer to be used). 1570 // Adjust the pointer type based the original storage pointer. 1571 auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace(); 1572 PointerTy = TargetTy->getPointerTo(AS); 1573 1574 do { 1575 // First fold any existing GEPs into the offset. 1576 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1577 APInt GEPOffset(Offset.getBitWidth(), 0); 1578 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1579 break; 1580 Offset += GEPOffset; 1581 Ptr = GEP->getPointerOperand(); 1582 if (!Visited.insert(Ptr).second) 1583 break; 1584 } 1585 1586 // See if we can perform a natural GEP here. 1587 Indices.clear(); 1588 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1589 Indices, NamePrefix)) { 1590 // If we have a new natural pointer at the offset, clear out any old 1591 // offset pointer we computed. Unless it is the base pointer or 1592 // a non-instruction, we built a GEP we don't need. Zap it. 1593 if (OffsetPtr && OffsetPtr != OffsetBasePtr) 1594 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { 1595 assert(I->use_empty() && "Built a GEP with uses some how!"); 1596 I->eraseFromParent(); 1597 } 1598 OffsetPtr = P; 1599 OffsetBasePtr = Ptr; 1600 // If we also found a pointer of the right type, we're done. 1601 if (P->getType() == PointerTy) 1602 break; 1603 } 1604 1605 // Stash this pointer if we've found an i8*. 1606 if (Ptr->getType()->isIntegerTy(8)) { 1607 Int8Ptr = Ptr; 1608 Int8PtrOffset = Offset; 1609 } 1610 1611 // Peel off a layer of the pointer and update the offset appropriately. 1612 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1613 Ptr = cast<Operator>(Ptr)->getOperand(0); 1614 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1615 if (GA->isInterposable()) 1616 break; 1617 Ptr = GA->getAliasee(); 1618 } else { 1619 break; 1620 } 1621 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1622 } while (Visited.insert(Ptr).second); 1623 1624 if (!OffsetPtr) { 1625 if (!Int8Ptr) { 1626 Int8Ptr = IRB.CreateBitCast( 1627 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), 1628 NamePrefix + "sroa_raw_cast"); 1629 Int8PtrOffset = Offset; 1630 } 1631 1632 OffsetPtr = Int8PtrOffset == 0 1633 ? Int8Ptr 1634 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, 1635 IRB.getInt(Int8PtrOffset), 1636 NamePrefix + "sroa_raw_idx"); 1637 } 1638 Ptr = OffsetPtr; 1639 1640 // On the off chance we were targeting i8*, guard the bitcast here. 1641 if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) { 1642 Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, 1643 TargetPtrTy, 1644 NamePrefix + "sroa_cast"); 1645 } 1646 1647 return Ptr; 1648 } 1649 1650 /// Compute the adjusted alignment for a load or store from an offset. 1651 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { 1652 return commonAlignment(getLoadStoreAlignment(I), Offset); 1653 } 1654 1655 /// Test whether we can convert a value from the old to the new type. 1656 /// 1657 /// This predicate should be used to guard calls to convertValue in order to 1658 /// ensure that we only try to convert viable values. The strategy is that we 1659 /// will peel off single element struct and array wrappings to get to an 1660 /// underlying value, and convert that value. 1661 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1662 if (OldTy == NewTy) 1663 return true; 1664 1665 // For integer types, we can't handle any bit-width differences. This would 1666 // break both vector conversions with extension and introduce endianness 1667 // issues when in conjunction with loads and stores. 1668 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1669 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1670 cast<IntegerType>(NewTy)->getBitWidth() && 1671 "We can't have the same bitwidth for different int types"); 1672 return false; 1673 } 1674 1675 if (DL.getTypeSizeInBits(NewTy).getFixedSize() != 1676 DL.getTypeSizeInBits(OldTy).getFixedSize()) 1677 return false; 1678 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1679 return false; 1680 1681 // We can convert pointers to integers and vice-versa. Same for vectors 1682 // of pointers and integers. 1683 OldTy = OldTy->getScalarType(); 1684 NewTy = NewTy->getScalarType(); 1685 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1686 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1687 unsigned OldAS = OldTy->getPointerAddressSpace(); 1688 unsigned NewAS = NewTy->getPointerAddressSpace(); 1689 // Convert pointers if they are pointers from the same address space or 1690 // different integral (not non-integral) address spaces with the same 1691 // pointer size. 1692 return OldAS == NewAS || 1693 (!DL.isNonIntegralAddressSpace(OldAS) && 1694 !DL.isNonIntegralAddressSpace(NewAS) && 1695 DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1696 } 1697 1698 // We can convert integers to integral pointers, but not to non-integral 1699 // pointers. 1700 if (OldTy->isIntegerTy()) 1701 return !DL.isNonIntegralPointerType(NewTy); 1702 1703 // We can convert integral pointers to integers, but non-integral pointers 1704 // need to remain pointers. 1705 if (!DL.isNonIntegralPointerType(OldTy)) 1706 return NewTy->isIntegerTy(); 1707 1708 return false; 1709 } 1710 1711 return true; 1712 } 1713 1714 /// Generic routine to convert an SSA value to a value of a different 1715 /// type. 1716 /// 1717 /// This will try various different casting techniques, such as bitcasts, 1718 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1719 /// two types for viability with this routine. 1720 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1721 Type *NewTy) { 1722 Type *OldTy = V->getType(); 1723 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1724 1725 if (OldTy == NewTy) 1726 return V; 1727 1728 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1729 "Integer types must be the exact same to convert."); 1730 1731 // See if we need inttoptr for this type pair. May require additional bitcast. 1732 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1733 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1734 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1735 // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*> 1736 // Directly handle i64 to i8* 1737 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1738 NewTy); 1739 } 1740 1741 // See if we need ptrtoint for this type pair. May require additional bitcast. 1742 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { 1743 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1744 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1745 // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32> 1746 // Expand i8* to i64 --> i8* to i64 to i64 1747 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1748 NewTy); 1749 } 1750 1751 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1752 unsigned OldAS = OldTy->getPointerAddressSpace(); 1753 unsigned NewAS = NewTy->getPointerAddressSpace(); 1754 // To convert pointers with different address spaces (they are already 1755 // checked convertible, i.e. they have the same pointer size), so far we 1756 // cannot use `bitcast` (which has restrict on the same address space) or 1757 // `addrspacecast` (which is not always no-op casting). Instead, use a pair 1758 // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit 1759 // size. 1760 if (OldAS != NewAS) { 1761 assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1762 return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1763 NewTy); 1764 } 1765 } 1766 1767 return IRB.CreateBitCast(V, NewTy); 1768 } 1769 1770 /// Test whether the given slice use can be promoted to a vector. 1771 /// 1772 /// This function is called to test each entry in a partition which is slated 1773 /// for a single slice. 1774 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 1775 VectorType *Ty, 1776 uint64_t ElementSize, 1777 const DataLayout &DL) { 1778 // First validate the slice offsets. 1779 uint64_t BeginOffset = 1780 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 1781 uint64_t BeginIndex = BeginOffset / ElementSize; 1782 if (BeginIndex * ElementSize != BeginOffset || 1783 BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements()) 1784 return false; 1785 uint64_t EndOffset = 1786 std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 1787 uint64_t EndIndex = EndOffset / ElementSize; 1788 if (EndIndex * ElementSize != EndOffset || 1789 EndIndex > cast<FixedVectorType>(Ty)->getNumElements()) 1790 return false; 1791 1792 assert(EndIndex > BeginIndex && "Empty vector!"); 1793 uint64_t NumElements = EndIndex - BeginIndex; 1794 Type *SliceTy = (NumElements == 1) 1795 ? Ty->getElementType() 1796 : FixedVectorType::get(Ty->getElementType(), NumElements); 1797 1798 Type *SplitIntTy = 1799 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1800 1801 Use *U = S.getUse(); 1802 1803 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1804 if (MI->isVolatile()) 1805 return false; 1806 if (!S.isSplittable()) 1807 return false; // Skip any unsplittable intrinsics. 1808 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1809 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 1810 return false; 1811 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1812 if (LI->isVolatile()) 1813 return false; 1814 Type *LTy = LI->getType(); 1815 // Disable vector promotion when there are loads or stores of an FCA. 1816 if (LTy->isStructTy()) 1817 return false; 1818 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1819 assert(LTy->isIntegerTy()); 1820 LTy = SplitIntTy; 1821 } 1822 if (!canConvertValue(DL, SliceTy, LTy)) 1823 return false; 1824 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1825 if (SI->isVolatile()) 1826 return false; 1827 Type *STy = SI->getValueOperand()->getType(); 1828 // Disable vector promotion when there are loads or stores of an FCA. 1829 if (STy->isStructTy()) 1830 return false; 1831 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1832 assert(STy->isIntegerTy()); 1833 STy = SplitIntTy; 1834 } 1835 if (!canConvertValue(DL, STy, SliceTy)) 1836 return false; 1837 } else { 1838 return false; 1839 } 1840 1841 return true; 1842 } 1843 1844 /// Test whether the given alloca partitioning and range of slices can be 1845 /// promoted to a vector. 1846 /// 1847 /// This is a quick test to check whether we can rewrite a particular alloca 1848 /// partition (and its newly formed alloca) into a vector alloca with only 1849 /// whole-vector loads and stores such that it could be promoted to a vector 1850 /// SSA value. We only can ensure this for a limited set of operations, and we 1851 /// don't want to do the rewrites unless we are confident that the result will 1852 /// be promotable, so we have an early test here. 1853 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 1854 // Collect the candidate types for vector-based promotion. Also track whether 1855 // we have different element types. 1856 SmallVector<VectorType *, 4> CandidateTys; 1857 Type *CommonEltTy = nullptr; 1858 bool HaveCommonEltTy = true; 1859 auto CheckCandidateType = [&](Type *Ty) { 1860 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 1861 // Return if bitcast to vectors is different for total size in bits. 1862 if (!CandidateTys.empty()) { 1863 VectorType *V = CandidateTys[0]; 1864 if (DL.getTypeSizeInBits(VTy).getFixedSize() != 1865 DL.getTypeSizeInBits(V).getFixedSize()) { 1866 CandidateTys.clear(); 1867 return; 1868 } 1869 } 1870 CandidateTys.push_back(VTy); 1871 if (!CommonEltTy) 1872 CommonEltTy = VTy->getElementType(); 1873 else if (CommonEltTy != VTy->getElementType()) 1874 HaveCommonEltTy = false; 1875 } 1876 }; 1877 // Consider any loads or stores that are the exact size of the slice. 1878 for (const Slice &S : P) 1879 if (S.beginOffset() == P.beginOffset() && 1880 S.endOffset() == P.endOffset()) { 1881 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 1882 CheckCandidateType(LI->getType()); 1883 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 1884 CheckCandidateType(SI->getValueOperand()->getType()); 1885 } 1886 1887 // If we didn't find a vector type, nothing to do here. 1888 if (CandidateTys.empty()) 1889 return nullptr; 1890 1891 // Remove non-integer vector types if we had multiple common element types. 1892 // FIXME: It'd be nice to replace them with integer vector types, but we can't 1893 // do that until all the backends are known to produce good code for all 1894 // integer vector types. 1895 if (!HaveCommonEltTy) { 1896 llvm::erase_if(CandidateTys, [](VectorType *VTy) { 1897 return !VTy->getElementType()->isIntegerTy(); 1898 }); 1899 1900 // If there were no integer vector types, give up. 1901 if (CandidateTys.empty()) 1902 return nullptr; 1903 1904 // Rank the remaining candidate vector types. This is easy because we know 1905 // they're all integer vectors. We sort by ascending number of elements. 1906 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 1907 (void)DL; 1908 assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() == 1909 DL.getTypeSizeInBits(LHSTy).getFixedSize() && 1910 "Cannot have vector types of different sizes!"); 1911 assert(RHSTy->getElementType()->isIntegerTy() && 1912 "All non-integer types eliminated!"); 1913 assert(LHSTy->getElementType()->isIntegerTy() && 1914 "All non-integer types eliminated!"); 1915 return cast<FixedVectorType>(RHSTy)->getNumElements() < 1916 cast<FixedVectorType>(LHSTy)->getNumElements(); 1917 }; 1918 llvm::sort(CandidateTys, RankVectorTypes); 1919 CandidateTys.erase( 1920 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), 1921 CandidateTys.end()); 1922 } else { 1923 // The only way to have the same element type in every vector type is to 1924 // have the same vector type. Check that and remove all but one. 1925 #ifndef NDEBUG 1926 for (VectorType *VTy : CandidateTys) { 1927 assert(VTy->getElementType() == CommonEltTy && 1928 "Unaccounted for element type!"); 1929 assert(VTy == CandidateTys[0] && 1930 "Different vector types with the same element type!"); 1931 } 1932 #endif 1933 CandidateTys.resize(1); 1934 } 1935 1936 // Try each vector type, and return the one which works. 1937 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { 1938 uint64_t ElementSize = 1939 DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize(); 1940 1941 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1942 // that aren't byte sized. 1943 if (ElementSize % 8) 1944 return false; 1945 assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 && 1946 "vector size not a multiple of element size?"); 1947 ElementSize /= 8; 1948 1949 for (const Slice &S : P) 1950 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 1951 return false; 1952 1953 for (const Slice *S : P.splitSliceTails()) 1954 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 1955 return false; 1956 1957 return true; 1958 }; 1959 for (VectorType *VTy : CandidateTys) 1960 if (CheckVectorTypeForPromotion(VTy)) 1961 return VTy; 1962 1963 return nullptr; 1964 } 1965 1966 /// Test whether a slice of an alloca is valid for integer widening. 1967 /// 1968 /// This implements the necessary checking for the \c isIntegerWideningViable 1969 /// test below on a single slice of the alloca. 1970 static bool isIntegerWideningViableForSlice(const Slice &S, 1971 uint64_t AllocBeginOffset, 1972 Type *AllocaTy, 1973 const DataLayout &DL, 1974 bool &WholeAllocaOp) { 1975 uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize(); 1976 1977 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 1978 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 1979 1980 // We can't reasonably handle cases where the load or store extends past 1981 // the end of the alloca's type and into its padding. 1982 if (RelEnd > Size) 1983 return false; 1984 1985 Use *U = S.getUse(); 1986 1987 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1988 if (LI->isVolatile()) 1989 return false; 1990 // We can't handle loads that extend past the allocated memory. 1991 if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size) 1992 return false; 1993 // So far, AllocaSliceRewriter does not support widening split slice tails 1994 // in rewriteIntegerLoad. 1995 if (S.beginOffset() < AllocBeginOffset) 1996 return false; 1997 // Note that we don't count vector loads or stores as whole-alloca 1998 // operations which enable integer widening because we would prefer to use 1999 // vector widening instead. 2000 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 2001 WholeAllocaOp = true; 2002 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 2003 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2004 return false; 2005 } else if (RelBegin != 0 || RelEnd != Size || 2006 !canConvertValue(DL, AllocaTy, LI->getType())) { 2007 // Non-integer loads need to be convertible from the alloca type so that 2008 // they are promotable. 2009 return false; 2010 } 2011 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2012 Type *ValueTy = SI->getValueOperand()->getType(); 2013 if (SI->isVolatile()) 2014 return false; 2015 // We can't handle stores that extend past the allocated memory. 2016 if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size) 2017 return false; 2018 // So far, AllocaSliceRewriter does not support widening split slice tails 2019 // in rewriteIntegerStore. 2020 if (S.beginOffset() < AllocBeginOffset) 2021 return false; 2022 // Note that we don't count vector loads or stores as whole-alloca 2023 // operations which enable integer widening because we would prefer to use 2024 // vector widening instead. 2025 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 2026 WholeAllocaOp = true; 2027 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 2028 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2029 return false; 2030 } else if (RelBegin != 0 || RelEnd != Size || 2031 !canConvertValue(DL, ValueTy, AllocaTy)) { 2032 // Non-integer stores need to be convertible to the alloca type so that 2033 // they are promotable. 2034 return false; 2035 } 2036 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2037 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 2038 return false; 2039 if (!S.isSplittable()) 2040 return false; // Skip any unsplittable intrinsics. 2041 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 2042 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 2043 return false; 2044 } else { 2045 return false; 2046 } 2047 2048 return true; 2049 } 2050 2051 /// Test whether the given alloca partition's integer operations can be 2052 /// widened to promotable ones. 2053 /// 2054 /// This is a quick test to check whether we can rewrite the integer loads and 2055 /// stores to a particular alloca into wider loads and stores and be able to 2056 /// promote the resulting alloca. 2057 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 2058 const DataLayout &DL) { 2059 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize(); 2060 // Don't create integer types larger than the maximum bitwidth. 2061 if (SizeInBits > IntegerType::MAX_INT_BITS) 2062 return false; 2063 2064 // Don't try to handle allocas with bit-padding. 2065 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize()) 2066 return false; 2067 2068 // We need to ensure that an integer type with the appropriate bitwidth can 2069 // be converted to the alloca type, whatever that is. We don't want to force 2070 // the alloca itself to have an integer type if there is a more suitable one. 2071 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 2072 if (!canConvertValue(DL, AllocaTy, IntTy) || 2073 !canConvertValue(DL, IntTy, AllocaTy)) 2074 return false; 2075 2076 // While examining uses, we ensure that the alloca has a covering load or 2077 // store. We don't want to widen the integer operations only to fail to 2078 // promote due to some other unsplittable entry (which we may make splittable 2079 // later). However, if there are only splittable uses, go ahead and assume 2080 // that we cover the alloca. 2081 // FIXME: We shouldn't consider split slices that happen to start in the 2082 // partition here... 2083 bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits); 2084 2085 for (const Slice &S : P) 2086 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 2087 WholeAllocaOp)) 2088 return false; 2089 2090 for (const Slice *S : P.splitSliceTails()) 2091 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2092 WholeAllocaOp)) 2093 return false; 2094 2095 return WholeAllocaOp; 2096 } 2097 2098 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2099 IntegerType *Ty, uint64_t Offset, 2100 const Twine &Name) { 2101 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2102 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2103 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2104 DL.getTypeStoreSize(IntTy).getFixedSize() && 2105 "Element extends past full value"); 2106 uint64_t ShAmt = 8 * Offset; 2107 if (DL.isBigEndian()) 2108 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2109 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2110 if (ShAmt) { 2111 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2112 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2113 } 2114 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2115 "Cannot extract to a larger integer!"); 2116 if (Ty != IntTy) { 2117 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2118 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); 2119 } 2120 return V; 2121 } 2122 2123 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2124 Value *V, uint64_t Offset, const Twine &Name) { 2125 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2126 IntegerType *Ty = cast<IntegerType>(V->getType()); 2127 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2128 "Cannot insert a larger integer!"); 2129 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2130 if (Ty != IntTy) { 2131 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2132 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); 2133 } 2134 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2135 DL.getTypeStoreSize(IntTy).getFixedSize() && 2136 "Element store outside of alloca store"); 2137 uint64_t ShAmt = 8 * Offset; 2138 if (DL.isBigEndian()) 2139 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2140 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2141 if (ShAmt) { 2142 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2143 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2144 } 2145 2146 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2147 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2148 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2149 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); 2150 V = IRB.CreateOr(Old, V, Name + ".insert"); 2151 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); 2152 } 2153 return V; 2154 } 2155 2156 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2157 unsigned EndIndex, const Twine &Name) { 2158 auto *VecTy = cast<FixedVectorType>(V->getType()); 2159 unsigned NumElements = EndIndex - BeginIndex; 2160 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2161 2162 if (NumElements == VecTy->getNumElements()) 2163 return V; 2164 2165 if (NumElements == 1) { 2166 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2167 Name + ".extract"); 2168 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); 2169 return V; 2170 } 2171 2172 SmallVector<int, 8> Mask; 2173 Mask.reserve(NumElements); 2174 for (unsigned i = BeginIndex; i != EndIndex; ++i) 2175 Mask.push_back(i); 2176 V = IRB.CreateShuffleVector(V, Mask, Name + ".extract"); 2177 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2178 return V; 2179 } 2180 2181 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2182 unsigned BeginIndex, const Twine &Name) { 2183 VectorType *VecTy = cast<VectorType>(Old->getType()); 2184 assert(VecTy && "Can only insert a vector into a vector"); 2185 2186 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2187 if (!Ty) { 2188 // Single element to insert. 2189 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2190 Name + ".insert"); 2191 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); 2192 return V; 2193 } 2194 2195 assert(cast<FixedVectorType>(Ty)->getNumElements() <= 2196 cast<FixedVectorType>(VecTy)->getNumElements() && 2197 "Too many elements!"); 2198 if (cast<FixedVectorType>(Ty)->getNumElements() == 2199 cast<FixedVectorType>(VecTy)->getNumElements()) { 2200 assert(V->getType() == VecTy && "Vector type mismatch"); 2201 return V; 2202 } 2203 unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements(); 2204 2205 // When inserting a smaller vector into the larger to store, we first 2206 // use a shuffle vector to widen it with undef elements, and then 2207 // a second shuffle vector to select between the loaded vector and the 2208 // incoming vector. 2209 SmallVector<int, 8> Mask; 2210 Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2211 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2212 if (i >= BeginIndex && i < EndIndex) 2213 Mask.push_back(i - BeginIndex); 2214 else 2215 Mask.push_back(-1); 2216 V = IRB.CreateShuffleVector(V, Mask, Name + ".expand"); 2217 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2218 2219 SmallVector<Constant *, 8> Mask2; 2220 Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2221 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2222 Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2223 2224 V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend"); 2225 2226 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); 2227 return V; 2228 } 2229 2230 /// Visitor to rewrite instructions using p particular slice of an alloca 2231 /// to use a new alloca. 2232 /// 2233 /// Also implements the rewriting to vector-based accesses when the partition 2234 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2235 /// lives here. 2236 class llvm::sroa::AllocaSliceRewriter 2237 : public InstVisitor<AllocaSliceRewriter, bool> { 2238 // Befriend the base class so it can delegate to private visit methods. 2239 friend class InstVisitor<AllocaSliceRewriter, bool>; 2240 2241 using Base = InstVisitor<AllocaSliceRewriter, bool>; 2242 2243 const DataLayout &DL; 2244 AllocaSlices &AS; 2245 SROAPass &Pass; 2246 AllocaInst &OldAI, &NewAI; 2247 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2248 Type *NewAllocaTy; 2249 2250 // This is a convenience and flag variable that will be null unless the new 2251 // alloca's integer operations should be widened to this integer type due to 2252 // passing isIntegerWideningViable above. If it is non-null, the desired 2253 // integer type will be stored here for easy access during rewriting. 2254 IntegerType *IntTy; 2255 2256 // If we are rewriting an alloca partition which can be written as pure 2257 // vector operations, we stash extra information here. When VecTy is 2258 // non-null, we have some strict guarantees about the rewritten alloca: 2259 // - The new alloca is exactly the size of the vector type here. 2260 // - The accesses all either map to the entire vector or to a single 2261 // element. 2262 // - The set of accessing instructions is only one of those handled above 2263 // in isVectorPromotionViable. Generally these are the same access kinds 2264 // which are promotable via mem2reg. 2265 VectorType *VecTy; 2266 Type *ElementTy; 2267 uint64_t ElementSize; 2268 2269 // The original offset of the slice currently being rewritten relative to 2270 // the original alloca. 2271 uint64_t BeginOffset = 0; 2272 uint64_t EndOffset = 0; 2273 2274 // The new offsets of the slice currently being rewritten relative to the 2275 // original alloca. 2276 uint64_t NewBeginOffset = 0, NewEndOffset = 0; 2277 2278 uint64_t SliceSize = 0; 2279 bool IsSplittable = false; 2280 bool IsSplit = false; 2281 Use *OldUse = nullptr; 2282 Instruction *OldPtr = nullptr; 2283 2284 // Track post-rewrite users which are PHI nodes and Selects. 2285 SmallSetVector<PHINode *, 8> &PHIUsers; 2286 SmallSetVector<SelectInst *, 8> &SelectUsers; 2287 2288 // Utility IR builder, whose name prefix is setup for each visited use, and 2289 // the insertion point is set to point to the user. 2290 IRBuilderTy IRB; 2291 2292 public: 2293 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass, 2294 AllocaInst &OldAI, AllocaInst &NewAI, 2295 uint64_t NewAllocaBeginOffset, 2296 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2297 VectorType *PromotableVecTy, 2298 SmallSetVector<PHINode *, 8> &PHIUsers, 2299 SmallSetVector<SelectInst *, 8> &SelectUsers) 2300 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2301 NewAllocaBeginOffset(NewAllocaBeginOffset), 2302 NewAllocaEndOffset(NewAllocaEndOffset), 2303 NewAllocaTy(NewAI.getAllocatedType()), 2304 IntTy( 2305 IsIntegerPromotable 2306 ? Type::getIntNTy(NewAI.getContext(), 2307 DL.getTypeSizeInBits(NewAI.getAllocatedType()) 2308 .getFixedSize()) 2309 : nullptr), 2310 VecTy(PromotableVecTy), 2311 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2312 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8 2313 : 0), 2314 PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2315 IRB(NewAI.getContext(), ConstantFolder()) { 2316 if (VecTy) { 2317 assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 && 2318 "Only multiple-of-8 sized vector elements are viable"); 2319 ++NumVectorized; 2320 } 2321 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2322 } 2323 2324 bool visit(AllocaSlices::const_iterator I) { 2325 bool CanSROA = true; 2326 BeginOffset = I->beginOffset(); 2327 EndOffset = I->endOffset(); 2328 IsSplittable = I->isSplittable(); 2329 IsSplit = 2330 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2331 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2332 LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); 2333 LLVM_DEBUG(dbgs() << "\n"); 2334 2335 // Compute the intersecting offset range. 2336 assert(BeginOffset < NewAllocaEndOffset); 2337 assert(EndOffset > NewAllocaBeginOffset); 2338 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2339 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2340 2341 SliceSize = NewEndOffset - NewBeginOffset; 2342 2343 OldUse = I->getUse(); 2344 OldPtr = cast<Instruction>(OldUse->get()); 2345 2346 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2347 IRB.SetInsertPoint(OldUserI); 2348 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2349 IRB.getInserter().SetNamePrefix( 2350 Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2351 2352 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2353 if (VecTy || IntTy) 2354 assert(CanSROA); 2355 return CanSROA; 2356 } 2357 2358 private: 2359 // Make sure the other visit overloads are visible. 2360 using Base::visit; 2361 2362 // Every instruction which can end up as a user must have a rewrite rule. 2363 bool visitInstruction(Instruction &I) { 2364 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2365 llvm_unreachable("No rewrite rule for this instruction!"); 2366 } 2367 2368 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2369 // Note that the offset computation can use BeginOffset or NewBeginOffset 2370 // interchangeably for unsplit slices. 2371 assert(IsSplit || BeginOffset == NewBeginOffset); 2372 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2373 2374 #ifndef NDEBUG 2375 StringRef OldName = OldPtr->getName(); 2376 // Skip through the last '.sroa.' component of the name. 2377 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2378 if (LastSROAPrefix != StringRef::npos) { 2379 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2380 // Look for an SROA slice index. 2381 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2382 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2383 // Strip the index and look for the offset. 2384 OldName = OldName.substr(IndexEnd + 1); 2385 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2386 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2387 // Strip the offset. 2388 OldName = OldName.substr(OffsetEnd + 1); 2389 } 2390 } 2391 // Strip any SROA suffixes as well. 2392 OldName = OldName.substr(0, OldName.find(".sroa_")); 2393 #endif 2394 2395 return getAdjustedPtr(IRB, DL, &NewAI, 2396 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), 2397 PointerTy, 2398 #ifndef NDEBUG 2399 Twine(OldName) + "." 2400 #else 2401 Twine() 2402 #endif 2403 ); 2404 } 2405 2406 /// Compute suitable alignment to access this slice of the *new* 2407 /// alloca. 2408 /// 2409 /// You can optionally pass a type to this routine and if that type's ABI 2410 /// alignment is itself suitable, this will return zero. 2411 Align getSliceAlign() { 2412 return commonAlignment(NewAI.getAlign(), 2413 NewBeginOffset - NewAllocaBeginOffset); 2414 } 2415 2416 unsigned getIndex(uint64_t Offset) { 2417 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2418 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2419 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2420 uint32_t Index = RelOffset / ElementSize; 2421 assert(Index * ElementSize == RelOffset); 2422 return Index; 2423 } 2424 2425 void deleteIfTriviallyDead(Value *V) { 2426 Instruction *I = cast<Instruction>(V); 2427 if (isInstructionTriviallyDead(I)) 2428 Pass.DeadInsts.push_back(I); 2429 } 2430 2431 Value *rewriteVectorizedLoadInst(LoadInst &LI) { 2432 unsigned BeginIndex = getIndex(NewBeginOffset); 2433 unsigned EndIndex = getIndex(NewEndOffset); 2434 assert(EndIndex > BeginIndex && "Empty vector!"); 2435 2436 LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2437 NewAI.getAlign(), "load"); 2438 2439 Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2440 LLVMContext::MD_access_group}); 2441 return extractVector(IRB, Load, BeginIndex, EndIndex, "vec"); 2442 } 2443 2444 Value *rewriteIntegerLoad(LoadInst &LI) { 2445 assert(IntTy && "We cannot insert an integer to the alloca"); 2446 assert(!LI.isVolatile()); 2447 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2448 NewAI.getAlign(), "load"); 2449 V = convertValue(DL, IRB, V, IntTy); 2450 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2451 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2452 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2453 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2454 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2455 } 2456 // It is possible that the extracted type is not the load type. This 2457 // happens if there is a load past the end of the alloca, and as 2458 // a consequence the slice is narrower but still a candidate for integer 2459 // lowering. To handle this case, we just zero extend the extracted 2460 // integer. 2461 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2462 "Can only handle an extract for an overly wide load"); 2463 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2464 V = IRB.CreateZExt(V, LI.getType()); 2465 return V; 2466 } 2467 2468 bool visitLoadInst(LoadInst &LI) { 2469 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 2470 Value *OldOp = LI.getOperand(0); 2471 assert(OldOp == OldPtr); 2472 2473 AAMDNodes AATags = LI.getAAMetadata(); 2474 2475 unsigned AS = LI.getPointerAddressSpace(); 2476 2477 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2478 : LI.getType(); 2479 const bool IsLoadPastEnd = 2480 DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize; 2481 bool IsPtrAdjusted = false; 2482 Value *V; 2483 if (VecTy) { 2484 V = rewriteVectorizedLoadInst(LI); 2485 } else if (IntTy && LI.getType()->isIntegerTy()) { 2486 V = rewriteIntegerLoad(LI); 2487 } else if (NewBeginOffset == NewAllocaBeginOffset && 2488 NewEndOffset == NewAllocaEndOffset && 2489 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2490 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2491 TargetTy->isIntegerTy()))) { 2492 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2493 NewAI.getAlign(), LI.isVolatile(), 2494 LI.getName()); 2495 if (AATags) 2496 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2497 if (LI.isVolatile()) 2498 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2499 if (NewLI->isAtomic()) 2500 NewLI->setAlignment(LI.getAlign()); 2501 2502 // Any !nonnull metadata or !range metadata on the old load is also valid 2503 // on the new load. This is even true in some cases even when the loads 2504 // are different types, for example by mapping !nonnull metadata to 2505 // !range metadata by modeling the null pointer constant converted to the 2506 // integer type. 2507 // FIXME: Add support for range metadata here. Currently the utilities 2508 // for this don't propagate range metadata in trivial cases from one 2509 // integer load to another, don't handle non-addrspace-0 null pointers 2510 // correctly, and don't have any support for mapping ranges as the 2511 // integer type becomes winder or narrower. 2512 if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull)) 2513 copyNonnullMetadata(LI, N, *NewLI); 2514 2515 // Try to preserve nonnull metadata 2516 V = NewLI; 2517 2518 // If this is an integer load past the end of the slice (which means the 2519 // bytes outside the slice are undef or this load is dead) just forcibly 2520 // fix the integer size with correct handling of endianness. 2521 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2522 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2523 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2524 V = IRB.CreateZExt(V, TITy, "load.ext"); 2525 if (DL.isBigEndian()) 2526 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2527 "endian_shift"); 2528 } 2529 } else { 2530 Type *LTy = TargetTy->getPointerTo(AS); 2531 LoadInst *NewLI = 2532 IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy), 2533 getSliceAlign(), LI.isVolatile(), LI.getName()); 2534 if (AATags) 2535 NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2536 if (LI.isVolatile()) 2537 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2538 NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2539 LLVMContext::MD_access_group}); 2540 2541 V = NewLI; 2542 IsPtrAdjusted = true; 2543 } 2544 V = convertValue(DL, IRB, V, TargetTy); 2545 2546 if (IsSplit) { 2547 assert(!LI.isVolatile()); 2548 assert(LI.getType()->isIntegerTy() && 2549 "Only integer type loads and stores are split"); 2550 assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() && 2551 "Split load isn't smaller than original load"); 2552 assert(DL.typeSizeEqualsStoreSize(LI.getType()) && 2553 "Non-byte-multiple bit width"); 2554 // Move the insertion point just past the load so that we can refer to it. 2555 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); 2556 // Create a placeholder value with the same type as LI to use as the 2557 // basis for the new value. This allows us to replace the uses of LI with 2558 // the computed value, and then replace the placeholder with LI, leaving 2559 // LI only used for this computation. 2560 Value *Placeholder = new LoadInst( 2561 LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)), "", 2562 false, Align(1)); 2563 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2564 "insert"); 2565 LI.replaceAllUsesWith(V); 2566 Placeholder->replaceAllUsesWith(&LI); 2567 Placeholder->deleteValue(); 2568 } else { 2569 LI.replaceAllUsesWith(V); 2570 } 2571 2572 Pass.DeadInsts.push_back(&LI); 2573 deleteIfTriviallyDead(OldOp); 2574 LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); 2575 return !LI.isVolatile() && !IsPtrAdjusted; 2576 } 2577 2578 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, 2579 AAMDNodes AATags) { 2580 if (V->getType() != VecTy) { 2581 unsigned BeginIndex = getIndex(NewBeginOffset); 2582 unsigned EndIndex = getIndex(NewEndOffset); 2583 assert(EndIndex > BeginIndex && "Empty vector!"); 2584 unsigned NumElements = EndIndex - BeginIndex; 2585 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2586 "Too many elements!"); 2587 Type *SliceTy = (NumElements == 1) 2588 ? ElementTy 2589 : FixedVectorType::get(ElementTy, NumElements); 2590 if (V->getType() != SliceTy) 2591 V = convertValue(DL, IRB, V, SliceTy); 2592 2593 // Mix in the existing elements. 2594 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2595 NewAI.getAlign(), "load"); 2596 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2597 } 2598 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2599 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2600 LLVMContext::MD_access_group}); 2601 if (AATags) 2602 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2603 Pass.DeadInsts.push_back(&SI); 2604 2605 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2606 return true; 2607 } 2608 2609 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { 2610 assert(IntTy && "We cannot extract an integer from the alloca"); 2611 assert(!SI.isVolatile()); 2612 if (DL.getTypeSizeInBits(V->getType()).getFixedSize() != 2613 IntTy->getBitWidth()) { 2614 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2615 NewAI.getAlign(), "oldload"); 2616 Old = convertValue(DL, IRB, Old, IntTy); 2617 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2618 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2619 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 2620 } 2621 V = convertValue(DL, IRB, V, NewAllocaTy); 2622 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2623 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2624 LLVMContext::MD_access_group}); 2625 if (AATags) 2626 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2627 Pass.DeadInsts.push_back(&SI); 2628 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2629 return true; 2630 } 2631 2632 bool visitStoreInst(StoreInst &SI) { 2633 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 2634 Value *OldOp = SI.getOperand(1); 2635 assert(OldOp == OldPtr); 2636 2637 AAMDNodes AATags = SI.getAAMetadata(); 2638 Value *V = SI.getValueOperand(); 2639 2640 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2641 // alloca that should be re-examined after promoting this alloca. 2642 if (V->getType()->isPointerTy()) 2643 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2644 Pass.PostPromotionWorklist.insert(AI); 2645 2646 if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) { 2647 assert(!SI.isVolatile()); 2648 assert(V->getType()->isIntegerTy() && 2649 "Only integer type loads and stores are split"); 2650 assert(DL.typeSizeEqualsStoreSize(V->getType()) && 2651 "Non-byte-multiple bit width"); 2652 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2653 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 2654 "extract"); 2655 } 2656 2657 if (VecTy) 2658 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); 2659 if (IntTy && V->getType()->isIntegerTy()) 2660 return rewriteIntegerStore(V, SI, AATags); 2661 2662 const bool IsStorePastEnd = 2663 DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize; 2664 StoreInst *NewSI; 2665 if (NewBeginOffset == NewAllocaBeginOffset && 2666 NewEndOffset == NewAllocaEndOffset && 2667 (canConvertValue(DL, V->getType(), NewAllocaTy) || 2668 (IsStorePastEnd && NewAllocaTy->isIntegerTy() && 2669 V->getType()->isIntegerTy()))) { 2670 // If this is an integer store past the end of slice (and thus the bytes 2671 // past that point are irrelevant or this is unreachable), truncate the 2672 // value prior to storing. 2673 if (auto *VITy = dyn_cast<IntegerType>(V->getType())) 2674 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2675 if (VITy->getBitWidth() > AITy->getBitWidth()) { 2676 if (DL.isBigEndian()) 2677 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), 2678 "endian_shift"); 2679 V = IRB.CreateTrunc(V, AITy, "load.trunc"); 2680 } 2681 2682 V = convertValue(DL, IRB, V, NewAllocaTy); 2683 NewSI = 2684 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile()); 2685 } else { 2686 unsigned AS = SI.getPointerAddressSpace(); 2687 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS)); 2688 NewSI = 2689 IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile()); 2690 } 2691 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2692 LLVMContext::MD_access_group}); 2693 if (AATags) 2694 NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2695 if (SI.isVolatile()) 2696 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 2697 if (NewSI->isAtomic()) 2698 NewSI->setAlignment(SI.getAlign()); 2699 Pass.DeadInsts.push_back(&SI); 2700 deleteIfTriviallyDead(OldOp); 2701 2702 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2703 return NewSI->getPointerOperand() == &NewAI && 2704 NewSI->getValueOperand()->getType() == NewAllocaTy && 2705 !SI.isVolatile(); 2706 } 2707 2708 /// Compute an integer value from splatting an i8 across the given 2709 /// number of bytes. 2710 /// 2711 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2712 /// call this routine. 2713 /// FIXME: Heed the advice above. 2714 /// 2715 /// \param V The i8 value to splat. 2716 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2717 Value *getIntegerSplat(Value *V, unsigned Size) { 2718 assert(Size > 0 && "Expected a positive number of bytes."); 2719 IntegerType *VTy = cast<IntegerType>(V->getType()); 2720 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2721 if (Size == 1) 2722 return V; 2723 2724 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 2725 V = IRB.CreateMul( 2726 IRB.CreateZExt(V, SplatIntTy, "zext"), 2727 ConstantExpr::getUDiv( 2728 Constant::getAllOnesValue(SplatIntTy), 2729 ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()), 2730 SplatIntTy)), 2731 "isplat"); 2732 return V; 2733 } 2734 2735 /// Compute a vector splat for a given element value. 2736 Value *getVectorSplat(Value *V, unsigned NumElements) { 2737 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2738 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); 2739 return V; 2740 } 2741 2742 bool visitMemSetInst(MemSetInst &II) { 2743 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2744 assert(II.getRawDest() == OldPtr); 2745 2746 AAMDNodes AATags = II.getAAMetadata(); 2747 2748 // If the memset has a variable size, it cannot be split, just adjust the 2749 // pointer to the new alloca. 2750 if (!isa<ConstantInt>(II.getLength())) { 2751 assert(!IsSplit); 2752 assert(NewBeginOffset == BeginOffset); 2753 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 2754 II.setDestAlignment(getSliceAlign()); 2755 2756 deleteIfTriviallyDead(OldPtr); 2757 return false; 2758 } 2759 2760 // Record this instruction for deletion. 2761 Pass.DeadInsts.push_back(&II); 2762 2763 Type *AllocaTy = NewAI.getAllocatedType(); 2764 Type *ScalarTy = AllocaTy->getScalarType(); 2765 2766 const bool CanContinue = [&]() { 2767 if (VecTy || IntTy) 2768 return true; 2769 if (BeginOffset > NewAllocaBeginOffset || 2770 EndOffset < NewAllocaEndOffset) 2771 return false; 2772 // Length must be in range for FixedVectorType. 2773 auto *C = cast<ConstantInt>(II.getLength()); 2774 const uint64_t Len = C->getLimitedValue(); 2775 if (Len > std::numeric_limits<unsigned>::max()) 2776 return false; 2777 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); 2778 auto *SrcTy = FixedVectorType::get(Int8Ty, Len); 2779 return canConvertValue(DL, SrcTy, AllocaTy) && 2780 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize()); 2781 }(); 2782 2783 // If this doesn't map cleanly onto the alloca type, and that type isn't 2784 // a single value type, just emit a memset. 2785 if (!CanContinue) { 2786 Type *SizeTy = II.getLength()->getType(); 2787 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2788 CallInst *New = IRB.CreateMemSet( 2789 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 2790 MaybeAlign(getSliceAlign()), II.isVolatile()); 2791 if (AATags) 2792 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2793 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2794 return false; 2795 } 2796 2797 // If we can represent this as a simple value, we have to build the actual 2798 // value to store, which requires expanding the byte present in memset to 2799 // a sensible representation for the alloca type. This is essentially 2800 // splatting the byte to a sufficiently wide integer, splatting it across 2801 // any desired vector width, and bitcasting to the final type. 2802 Value *V; 2803 2804 if (VecTy) { 2805 // If this is a memset of a vectorized alloca, insert it. 2806 assert(ElementTy == ScalarTy); 2807 2808 unsigned BeginIndex = getIndex(NewBeginOffset); 2809 unsigned EndIndex = getIndex(NewEndOffset); 2810 assert(EndIndex > BeginIndex && "Empty vector!"); 2811 unsigned NumElements = EndIndex - BeginIndex; 2812 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2813 "Too many elements!"); 2814 2815 Value *Splat = getIntegerSplat( 2816 II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8); 2817 Splat = convertValue(DL, IRB, Splat, ElementTy); 2818 if (NumElements > 1) 2819 Splat = getVectorSplat(Splat, NumElements); 2820 2821 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2822 NewAI.getAlign(), "oldload"); 2823 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 2824 } else if (IntTy) { 2825 // If this is a memset on an alloca where we can widen stores, insert the 2826 // set integer. 2827 assert(!II.isVolatile()); 2828 2829 uint64_t Size = NewEndOffset - NewBeginOffset; 2830 V = getIntegerSplat(II.getValue(), Size); 2831 2832 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 2833 EndOffset != NewAllocaBeginOffset)) { 2834 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2835 NewAI.getAlign(), "oldload"); 2836 Old = convertValue(DL, IRB, Old, IntTy); 2837 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2838 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 2839 } else { 2840 assert(V->getType() == IntTy && 2841 "Wrong type for an alloca wide integer!"); 2842 } 2843 V = convertValue(DL, IRB, V, AllocaTy); 2844 } else { 2845 // Established these invariants above. 2846 assert(NewBeginOffset == NewAllocaBeginOffset); 2847 assert(NewEndOffset == NewAllocaEndOffset); 2848 2849 V = getIntegerSplat(II.getValue(), 2850 DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8); 2851 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 2852 V = getVectorSplat( 2853 V, cast<FixedVectorType>(AllocaVecTy)->getNumElements()); 2854 2855 V = convertValue(DL, IRB, V, AllocaTy); 2856 } 2857 2858 StoreInst *New = 2859 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile()); 2860 New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 2861 LLVMContext::MD_access_group}); 2862 if (AATags) 2863 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2864 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2865 return !II.isVolatile(); 2866 } 2867 2868 bool visitMemTransferInst(MemTransferInst &II) { 2869 // Rewriting of memory transfer instructions can be a bit tricky. We break 2870 // them into two categories: split intrinsics and unsplit intrinsics. 2871 2872 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2873 2874 AAMDNodes AATags = II.getAAMetadata(); 2875 2876 bool IsDest = &II.getRawDestUse() == OldUse; 2877 assert((IsDest && II.getRawDest() == OldPtr) || 2878 (!IsDest && II.getRawSource() == OldPtr)); 2879 2880 MaybeAlign SliceAlign = getSliceAlign(); 2881 2882 // For unsplit intrinsics, we simply modify the source and destination 2883 // pointers in place. This isn't just an optimization, it is a matter of 2884 // correctness. With unsplit intrinsics we may be dealing with transfers 2885 // within a single alloca before SROA ran, or with transfers that have 2886 // a variable length. We may also be dealing with memmove instead of 2887 // memcpy, and so simply updating the pointers is the necessary for us to 2888 // update both source and dest of a single call. 2889 if (!IsSplittable) { 2890 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2891 if (IsDest) { 2892 II.setDest(AdjustedPtr); 2893 II.setDestAlignment(SliceAlign); 2894 } 2895 else { 2896 II.setSource(AdjustedPtr); 2897 II.setSourceAlignment(SliceAlign); 2898 } 2899 2900 LLVM_DEBUG(dbgs() << " to: " << II << "\n"); 2901 deleteIfTriviallyDead(OldPtr); 2902 return false; 2903 } 2904 // For split transfer intrinsics we have an incredibly useful assurance: 2905 // the source and destination do not reside within the same alloca, and at 2906 // least one of them does not escape. This means that we can replace 2907 // memmove with memcpy, and we don't need to worry about all manner of 2908 // downsides to splitting and transforming the operations. 2909 2910 // If this doesn't map cleanly onto the alloca type, and that type isn't 2911 // a single value type, just emit a memcpy. 2912 bool EmitMemCpy = 2913 !VecTy && !IntTy && 2914 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 2915 SliceSize != 2916 DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() || 2917 !NewAI.getAllocatedType()->isSingleValueType()); 2918 2919 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 2920 // size hasn't been shrunk based on analysis of the viable range, this is 2921 // a no-op. 2922 if (EmitMemCpy && &OldAI == &NewAI) { 2923 // Ensure the start lines up. 2924 assert(NewBeginOffset == BeginOffset); 2925 2926 // Rewrite the size as needed. 2927 if (NewEndOffset != EndOffset) 2928 II.setLength(ConstantInt::get(II.getLength()->getType(), 2929 NewEndOffset - NewBeginOffset)); 2930 return false; 2931 } 2932 // Record this instruction for deletion. 2933 Pass.DeadInsts.push_back(&II); 2934 2935 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2936 // alloca that should be re-examined after rewriting this instruction. 2937 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 2938 if (AllocaInst *AI = 2939 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 2940 assert(AI != &OldAI && AI != &NewAI && 2941 "Splittable transfers cannot reach the same alloca on both ends."); 2942 Pass.Worklist.insert(AI); 2943 } 2944 2945 Type *OtherPtrTy = OtherPtr->getType(); 2946 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 2947 2948 // Compute the relative offset for the other pointer within the transfer. 2949 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); 2950 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); 2951 Align OtherAlign = 2952 (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); 2953 OtherAlign = 2954 commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue()); 2955 2956 if (EmitMemCpy) { 2957 // Compute the other pointer, folding as much as possible to produce 2958 // a single, simple GEP in most cases. 2959 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2960 OtherPtr->getName() + "."); 2961 2962 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2963 Type *SizeTy = II.getLength()->getType(); 2964 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2965 2966 Value *DestPtr, *SrcPtr; 2967 MaybeAlign DestAlign, SrcAlign; 2968 // Note: IsDest is true iff we're copying into the new alloca slice 2969 if (IsDest) { 2970 DestPtr = OurPtr; 2971 DestAlign = SliceAlign; 2972 SrcPtr = OtherPtr; 2973 SrcAlign = OtherAlign; 2974 } else { 2975 DestPtr = OtherPtr; 2976 DestAlign = OtherAlign; 2977 SrcPtr = OurPtr; 2978 SrcAlign = SliceAlign; 2979 } 2980 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, 2981 Size, II.isVolatile()); 2982 if (AATags) 2983 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 2984 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2985 return false; 2986 } 2987 2988 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 2989 NewEndOffset == NewAllocaEndOffset; 2990 uint64_t Size = NewEndOffset - NewBeginOffset; 2991 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 2992 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 2993 unsigned NumElements = EndIndex - BeginIndex; 2994 IntegerType *SubIntTy = 2995 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 2996 2997 // Reset the other pointer type to match the register type we're going to 2998 // use, but using the address space of the original other pointer. 2999 Type *OtherTy; 3000 if (VecTy && !IsWholeAlloca) { 3001 if (NumElements == 1) 3002 OtherTy = VecTy->getElementType(); 3003 else 3004 OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements); 3005 } else if (IntTy && !IsWholeAlloca) { 3006 OtherTy = SubIntTy; 3007 } else { 3008 OtherTy = NewAllocaTy; 3009 } 3010 OtherPtrTy = OtherTy->getPointerTo(OtherAS); 3011 3012 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3013 OtherPtr->getName() + "."); 3014 MaybeAlign SrcAlign = OtherAlign; 3015 Value *DstPtr = &NewAI; 3016 MaybeAlign DstAlign = SliceAlign; 3017 if (!IsDest) { 3018 std::swap(SrcPtr, DstPtr); 3019 std::swap(SrcAlign, DstAlign); 3020 } 3021 3022 Value *Src; 3023 if (VecTy && !IsWholeAlloca && !IsDest) { 3024 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3025 NewAI.getAlign(), "load"); 3026 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 3027 } else if (IntTy && !IsWholeAlloca && !IsDest) { 3028 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3029 NewAI.getAlign(), "load"); 3030 Src = convertValue(DL, IRB, Src, IntTy); 3031 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3032 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 3033 } else { 3034 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, 3035 II.isVolatile(), "copyload"); 3036 Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3037 LLVMContext::MD_access_group}); 3038 if (AATags) 3039 Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3040 Src = Load; 3041 } 3042 3043 if (VecTy && !IsWholeAlloca && IsDest) { 3044 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3045 NewAI.getAlign(), "oldload"); 3046 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 3047 } else if (IntTy && !IsWholeAlloca && IsDest) { 3048 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3049 NewAI.getAlign(), "oldload"); 3050 Old = convertValue(DL, IRB, Old, IntTy); 3051 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3052 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 3053 Src = convertValue(DL, IRB, Src, NewAllocaTy); 3054 } 3055 3056 StoreInst *Store = cast<StoreInst>( 3057 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 3058 Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3059 LLVMContext::MD_access_group}); 3060 if (AATags) 3061 Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3062 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3063 return !II.isVolatile(); 3064 } 3065 3066 bool visitIntrinsicInst(IntrinsicInst &II) { 3067 assert((II.isLifetimeStartOrEnd() || II.isDroppable()) && 3068 "Unexpected intrinsic!"); 3069 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3070 3071 // Record this instruction for deletion. 3072 Pass.DeadInsts.push_back(&II); 3073 3074 if (II.isDroppable()) { 3075 assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume"); 3076 // TODO For now we forget assumed information, this can be improved. 3077 OldPtr->dropDroppableUsesIn(II); 3078 return true; 3079 } 3080 3081 assert(II.getArgOperand(1) == OldPtr); 3082 // Lifetime intrinsics are only promotable if they cover the whole alloca. 3083 // Therefore, we drop lifetime intrinsics which don't cover the whole 3084 // alloca. 3085 // (In theory, intrinsics which partially cover an alloca could be 3086 // promoted, but PromoteMemToReg doesn't handle that case.) 3087 // FIXME: Check whether the alloca is promotable before dropping the 3088 // lifetime intrinsics? 3089 if (NewBeginOffset != NewAllocaBeginOffset || 3090 NewEndOffset != NewAllocaEndOffset) 3091 return true; 3092 3093 ConstantInt *Size = 3094 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 3095 NewEndOffset - NewBeginOffset); 3096 // Lifetime intrinsics always expect an i8* so directly get such a pointer 3097 // for the new alloca slice. 3098 Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace()); 3099 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); 3100 Value *New; 3101 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 3102 New = IRB.CreateLifetimeStart(Ptr, Size); 3103 else 3104 New = IRB.CreateLifetimeEnd(Ptr, Size); 3105 3106 (void)New; 3107 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3108 3109 return true; 3110 } 3111 3112 void fixLoadStoreAlign(Instruction &Root) { 3113 // This algorithm implements the same visitor loop as 3114 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load 3115 // or store found. 3116 SmallPtrSet<Instruction *, 4> Visited; 3117 SmallVector<Instruction *, 4> Uses; 3118 Visited.insert(&Root); 3119 Uses.push_back(&Root); 3120 do { 3121 Instruction *I = Uses.pop_back_val(); 3122 3123 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3124 LI->setAlignment(std::min(LI->getAlign(), getSliceAlign())); 3125 continue; 3126 } 3127 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3128 SI->setAlignment(std::min(SI->getAlign(), getSliceAlign())); 3129 continue; 3130 } 3131 3132 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || 3133 isa<PHINode>(I) || isa<SelectInst>(I) || 3134 isa<GetElementPtrInst>(I)); 3135 for (User *U : I->users()) 3136 if (Visited.insert(cast<Instruction>(U)).second) 3137 Uses.push_back(cast<Instruction>(U)); 3138 } while (!Uses.empty()); 3139 } 3140 3141 bool visitPHINode(PHINode &PN) { 3142 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 3143 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 3144 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 3145 3146 // We would like to compute a new pointer in only one place, but have it be 3147 // as local as possible to the PHI. To do that, we re-use the location of 3148 // the old pointer, which necessarily must be in the right position to 3149 // dominate the PHI. 3150 IRBuilderBase::InsertPointGuard Guard(IRB); 3151 if (isa<PHINode>(OldPtr)) 3152 IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); 3153 else 3154 IRB.SetInsertPoint(OldPtr); 3155 IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 3156 3157 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3158 // Replace the operands which were using the old pointer. 3159 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 3160 3161 LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); 3162 deleteIfTriviallyDead(OldPtr); 3163 3164 // Fix the alignment of any loads or stores using this PHI node. 3165 fixLoadStoreAlign(PN); 3166 3167 // PHIs can't be promoted on their own, but often can be speculated. We 3168 // check the speculation outside of the rewriter so that we see the 3169 // fully-rewritten alloca. 3170 PHIUsers.insert(&PN); 3171 return true; 3172 } 3173 3174 bool visitSelectInst(SelectInst &SI) { 3175 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3176 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 3177 "Pointer isn't an operand!"); 3178 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 3179 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 3180 3181 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3182 // Replace the operands which were using the old pointer. 3183 if (SI.getOperand(1) == OldPtr) 3184 SI.setOperand(1, NewPtr); 3185 if (SI.getOperand(2) == OldPtr) 3186 SI.setOperand(2, NewPtr); 3187 3188 LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); 3189 deleteIfTriviallyDead(OldPtr); 3190 3191 // Fix the alignment of any loads or stores using this select. 3192 fixLoadStoreAlign(SI); 3193 3194 // Selects can't be promoted on their own, but often can be speculated. We 3195 // check the speculation outside of the rewriter so that we see the 3196 // fully-rewritten alloca. 3197 SelectUsers.insert(&SI); 3198 return true; 3199 } 3200 }; 3201 3202 namespace { 3203 3204 /// Visitor to rewrite aggregate loads and stores as scalar. 3205 /// 3206 /// This pass aggressively rewrites all aggregate loads and stores on 3207 /// a particular pointer (or any pointer derived from it which we can identify) 3208 /// with scalar loads and stores. 3209 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 3210 // Befriend the base class so it can delegate to private visit methods. 3211 friend class InstVisitor<AggLoadStoreRewriter, bool>; 3212 3213 /// Queue of pointer uses to analyze and potentially rewrite. 3214 SmallVector<Use *, 8> Queue; 3215 3216 /// Set to prevent us from cycling with phi nodes and loops. 3217 SmallPtrSet<User *, 8> Visited; 3218 3219 /// The current pointer use being rewritten. This is used to dig up the used 3220 /// value (as opposed to the user). 3221 Use *U = nullptr; 3222 3223 /// Used to calculate offsets, and hence alignment, of subobjects. 3224 const DataLayout &DL; 3225 3226 public: 3227 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} 3228 3229 /// Rewrite loads and stores through a pointer and all pointers derived from 3230 /// it. 3231 bool rewrite(Instruction &I) { 3232 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 3233 enqueueUsers(I); 3234 bool Changed = false; 3235 while (!Queue.empty()) { 3236 U = Queue.pop_back_val(); 3237 Changed |= visit(cast<Instruction>(U->getUser())); 3238 } 3239 return Changed; 3240 } 3241 3242 private: 3243 /// Enqueue all the users of the given instruction for further processing. 3244 /// This uses a set to de-duplicate users. 3245 void enqueueUsers(Instruction &I) { 3246 for (Use &U : I.uses()) 3247 if (Visited.insert(U.getUser()).second) 3248 Queue.push_back(&U); 3249 } 3250 3251 // Conservative default is to not rewrite anything. 3252 bool visitInstruction(Instruction &I) { return false; } 3253 3254 /// Generic recursive split emission class. 3255 template <typename Derived> class OpSplitter { 3256 protected: 3257 /// The builder used to form new instructions. 3258 IRBuilderTy IRB; 3259 3260 /// The indices which to be used with insert- or extractvalue to select the 3261 /// appropriate value within the aggregate. 3262 SmallVector<unsigned, 4> Indices; 3263 3264 /// The indices to a GEP instruction which will move Ptr to the correct slot 3265 /// within the aggregate. 3266 SmallVector<Value *, 4> GEPIndices; 3267 3268 /// The base pointer of the original op, used as a base for GEPing the 3269 /// split operations. 3270 Value *Ptr; 3271 3272 /// The base pointee type being GEPed into. 3273 Type *BaseTy; 3274 3275 /// Known alignment of the base pointer. 3276 Align BaseAlign; 3277 3278 /// To calculate offset of each component so we can correctly deduce 3279 /// alignments. 3280 const DataLayout &DL; 3281 3282 /// Initialize the splitter with an insertion point, Ptr and start with a 3283 /// single zero GEP index. 3284 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3285 Align BaseAlign, const DataLayout &DL) 3286 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), 3287 BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {} 3288 3289 public: 3290 /// Generic recursive split emission routine. 3291 /// 3292 /// This method recursively splits an aggregate op (load or store) into 3293 /// scalar or vector ops. It splits recursively until it hits a single value 3294 /// and emits that single value operation via the template argument. 3295 /// 3296 /// The logic of this routine relies on GEPs and insertvalue and 3297 /// extractvalue all operating with the same fundamental index list, merely 3298 /// formatted differently (GEPs need actual values). 3299 /// 3300 /// \param Ty The type being split recursively into smaller ops. 3301 /// \param Agg The aggregate value being built up or stored, depending on 3302 /// whether this is splitting a load or a store respectively. 3303 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3304 if (Ty->isSingleValueType()) { 3305 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); 3306 return static_cast<Derived *>(this)->emitFunc( 3307 Ty, Agg, commonAlignment(BaseAlign, Offset), Name); 3308 } 3309 3310 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3311 unsigned OldSize = Indices.size(); 3312 (void)OldSize; 3313 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3314 ++Idx) { 3315 assert(Indices.size() == OldSize && "Did not return to the old size"); 3316 Indices.push_back(Idx); 3317 GEPIndices.push_back(IRB.getInt32(Idx)); 3318 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3319 GEPIndices.pop_back(); 3320 Indices.pop_back(); 3321 } 3322 return; 3323 } 3324 3325 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3326 unsigned OldSize = Indices.size(); 3327 (void)OldSize; 3328 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3329 ++Idx) { 3330 assert(Indices.size() == OldSize && "Did not return to the old size"); 3331 Indices.push_back(Idx); 3332 GEPIndices.push_back(IRB.getInt32(Idx)); 3333 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3334 GEPIndices.pop_back(); 3335 Indices.pop_back(); 3336 } 3337 return; 3338 } 3339 3340 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3341 } 3342 }; 3343 3344 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3345 AAMDNodes AATags; 3346 3347 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3348 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL) 3349 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3350 DL), 3351 AATags(AATags) {} 3352 3353 /// Emit a leaf load of a single value. This is called at the leaves of the 3354 /// recursive emission to actually load values. 3355 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3356 assert(Ty->isSingleValueType()); 3357 // Load the single value and insert it using the indices. 3358 Value *GEP = 3359 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3360 LoadInst *Load = 3361 IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load"); 3362 3363 APInt Offset( 3364 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3365 if (AATags && 3366 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3367 Load->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3368 3369 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3370 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); 3371 } 3372 }; 3373 3374 bool visitLoadInst(LoadInst &LI) { 3375 assert(LI.getPointerOperand() == *U); 3376 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3377 return false; 3378 3379 // We have an aggregate being loaded, split it apart. 3380 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 3381 LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(), 3382 getAdjustedAlignment(&LI, 0), DL); 3383 Value *V = UndefValue::get(LI.getType()); 3384 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3385 Visited.erase(&LI); 3386 LI.replaceAllUsesWith(V); 3387 LI.eraseFromParent(); 3388 return true; 3389 } 3390 3391 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3392 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3393 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL) 3394 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3395 DL), 3396 AATags(AATags) {} 3397 AAMDNodes AATags; 3398 /// Emit a leaf store of a single value. This is called at the leaves of the 3399 /// recursive emission to actually produce stores. 3400 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3401 assert(Ty->isSingleValueType()); 3402 // Extract the single value and store it using the indices. 3403 // 3404 // The gep and extractvalue values are factored out of the CreateStore 3405 // call to make the output independent of the argument evaluation order. 3406 Value *ExtractValue = 3407 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3408 Value *InBoundsGEP = 3409 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3410 StoreInst *Store = 3411 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment); 3412 3413 APInt Offset( 3414 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3415 if (AATags && 3416 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3417 Store->setAAMetadata(AATags.shift(Offset.getZExtValue())); 3418 3419 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3420 } 3421 }; 3422 3423 bool visitStoreInst(StoreInst &SI) { 3424 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3425 return false; 3426 Value *V = SI.getValueOperand(); 3427 if (V->getType()->isSingleValueType()) 3428 return false; 3429 3430 // We have an aggregate being stored, split it apart. 3431 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3432 StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), 3433 getAdjustedAlignment(&SI, 0), DL); 3434 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3435 Visited.erase(&SI); 3436 SI.eraseFromParent(); 3437 return true; 3438 } 3439 3440 bool visitBitCastInst(BitCastInst &BC) { 3441 enqueueUsers(BC); 3442 return false; 3443 } 3444 3445 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 3446 enqueueUsers(ASC); 3447 return false; 3448 } 3449 3450 // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2) 3451 bool foldGEPSelect(GetElementPtrInst &GEPI) { 3452 if (!GEPI.hasAllConstantIndices()) 3453 return false; 3454 3455 SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand()); 3456 3457 LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):" 3458 << "\n original: " << *Sel 3459 << "\n " << GEPI); 3460 3461 IRBuilderTy Builder(&GEPI); 3462 SmallVector<Value *, 4> Index(GEPI.indices()); 3463 bool IsInBounds = GEPI.isInBounds(); 3464 3465 Type *Ty = GEPI.getSourceElementType(); 3466 Value *True = Sel->getTrueValue(); 3467 Value *NTrue = 3468 IsInBounds 3469 ? Builder.CreateInBoundsGEP(Ty, True, Index, 3470 True->getName() + ".sroa.gep") 3471 : Builder.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep"); 3472 3473 Value *False = Sel->getFalseValue(); 3474 3475 Value *NFalse = 3476 IsInBounds 3477 ? Builder.CreateInBoundsGEP(Ty, False, Index, 3478 False->getName() + ".sroa.gep") 3479 : Builder.CreateGEP(Ty, False, Index, 3480 False->getName() + ".sroa.gep"); 3481 3482 Value *NSel = Builder.CreateSelect(Sel->getCondition(), NTrue, NFalse, 3483 Sel->getName() + ".sroa.sel"); 3484 Visited.erase(&GEPI); 3485 GEPI.replaceAllUsesWith(NSel); 3486 GEPI.eraseFromParent(); 3487 Instruction *NSelI = cast<Instruction>(NSel); 3488 Visited.insert(NSelI); 3489 enqueueUsers(*NSelI); 3490 3491 LLVM_DEBUG(dbgs() << "\n to: " << *NTrue 3492 << "\n " << *NFalse 3493 << "\n " << *NSel << '\n'); 3494 3495 return true; 3496 } 3497 3498 // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2) 3499 bool foldGEPPhi(GetElementPtrInst &GEPI) { 3500 if (!GEPI.hasAllConstantIndices()) 3501 return false; 3502 3503 PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand()); 3504 if (GEPI.getParent() != PHI->getParent() || 3505 llvm::any_of(PHI->incoming_values(), [](Value *In) 3506 { Instruction *I = dyn_cast<Instruction>(In); 3507 return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) || 3508 succ_empty(I->getParent()) || 3509 !I->getParent()->isLegalToHoistInto(); 3510 })) 3511 return false; 3512 3513 LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):" 3514 << "\n original: " << *PHI 3515 << "\n " << GEPI 3516 << "\n to: "); 3517 3518 SmallVector<Value *, 4> Index(GEPI.indices()); 3519 bool IsInBounds = GEPI.isInBounds(); 3520 IRBuilderTy PHIBuilder(GEPI.getParent()->getFirstNonPHI()); 3521 PHINode *NewPN = PHIBuilder.CreatePHI(GEPI.getType(), 3522 PHI->getNumIncomingValues(), 3523 PHI->getName() + ".sroa.phi"); 3524 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) { 3525 BasicBlock *B = PHI->getIncomingBlock(I); 3526 Value *NewVal = nullptr; 3527 int Idx = NewPN->getBasicBlockIndex(B); 3528 if (Idx >= 0) { 3529 NewVal = NewPN->getIncomingValue(Idx); 3530 } else { 3531 Instruction *In = cast<Instruction>(PHI->getIncomingValue(I)); 3532 3533 IRBuilderTy B(In->getParent(), std::next(In->getIterator())); 3534 Type *Ty = GEPI.getSourceElementType(); 3535 NewVal = IsInBounds 3536 ? B.CreateInBoundsGEP(Ty, In, Index, In->getName() + ".sroa.gep") 3537 : B.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep"); 3538 } 3539 NewPN->addIncoming(NewVal, B); 3540 } 3541 3542 Visited.erase(&GEPI); 3543 GEPI.replaceAllUsesWith(NewPN); 3544 GEPI.eraseFromParent(); 3545 Visited.insert(NewPN); 3546 enqueueUsers(*NewPN); 3547 3548 LLVM_DEBUG(for (Value *In : NewPN->incoming_values()) 3549 dbgs() << "\n " << *In; 3550 dbgs() << "\n " << *NewPN << '\n'); 3551 3552 return true; 3553 } 3554 3555 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 3556 if (isa<SelectInst>(GEPI.getPointerOperand()) && 3557 foldGEPSelect(GEPI)) 3558 return true; 3559 3560 if (isa<PHINode>(GEPI.getPointerOperand()) && 3561 foldGEPPhi(GEPI)) 3562 return true; 3563 3564 enqueueUsers(GEPI); 3565 return false; 3566 } 3567 3568 bool visitPHINode(PHINode &PN) { 3569 enqueueUsers(PN); 3570 return false; 3571 } 3572 3573 bool visitSelectInst(SelectInst &SI) { 3574 enqueueUsers(SI); 3575 return false; 3576 } 3577 }; 3578 3579 } // end anonymous namespace 3580 3581 /// Strip aggregate type wrapping. 3582 /// 3583 /// This removes no-op aggregate types wrapping an underlying type. It will 3584 /// strip as many layers of types as it can without changing either the type 3585 /// size or the allocated size. 3586 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 3587 if (Ty->isSingleValueType()) 3588 return Ty; 3589 3590 uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize(); 3591 uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize(); 3592 3593 Type *InnerTy; 3594 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 3595 InnerTy = ArrTy->getElementType(); 3596 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 3597 const StructLayout *SL = DL.getStructLayout(STy); 3598 unsigned Index = SL->getElementContainingOffset(0); 3599 InnerTy = STy->getElementType(Index); 3600 } else { 3601 return Ty; 3602 } 3603 3604 if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() || 3605 TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize()) 3606 return Ty; 3607 3608 return stripAggregateTypeWrapping(DL, InnerTy); 3609 } 3610 3611 /// Try to find a partition of the aggregate type passed in for a given 3612 /// offset and size. 3613 /// 3614 /// This recurses through the aggregate type and tries to compute a subtype 3615 /// based on the offset and size. When the offset and size span a sub-section 3616 /// of an array, it will even compute a new array type for that sub-section, 3617 /// and the same for structs. 3618 /// 3619 /// Note that this routine is very strict and tries to find a partition of the 3620 /// type which produces the *exact* right offset and size. It is not forgiving 3621 /// when the size or offset cause either end of type-based partition to be off. 3622 /// Also, this is a best-effort routine. It is reasonable to give up and not 3623 /// return a type if necessary. 3624 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 3625 uint64_t Size) { 3626 if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size) 3627 return stripAggregateTypeWrapping(DL, Ty); 3628 if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() || 3629 (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size) 3630 return nullptr; 3631 3632 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 3633 Type *ElementTy; 3634 uint64_t TyNumElements; 3635 if (auto *AT = dyn_cast<ArrayType>(Ty)) { 3636 ElementTy = AT->getElementType(); 3637 TyNumElements = AT->getNumElements(); 3638 } else { 3639 // FIXME: This isn't right for vectors with non-byte-sized or 3640 // non-power-of-two sized elements. 3641 auto *VT = cast<FixedVectorType>(Ty); 3642 ElementTy = VT->getElementType(); 3643 TyNumElements = VT->getNumElements(); 3644 } 3645 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3646 uint64_t NumSkippedElements = Offset / ElementSize; 3647 if (NumSkippedElements >= TyNumElements) 3648 return nullptr; 3649 Offset -= NumSkippedElements * ElementSize; 3650 3651 // First check if we need to recurse. 3652 if (Offset > 0 || Size < ElementSize) { 3653 // Bail if the partition ends in a different array element. 3654 if ((Offset + Size) > ElementSize) 3655 return nullptr; 3656 // Recurse through the element type trying to peel off offset bytes. 3657 return getTypePartition(DL, ElementTy, Offset, Size); 3658 } 3659 assert(Offset == 0); 3660 3661 if (Size == ElementSize) 3662 return stripAggregateTypeWrapping(DL, ElementTy); 3663 assert(Size > ElementSize); 3664 uint64_t NumElements = Size / ElementSize; 3665 if (NumElements * ElementSize != Size) 3666 return nullptr; 3667 return ArrayType::get(ElementTy, NumElements); 3668 } 3669 3670 StructType *STy = dyn_cast<StructType>(Ty); 3671 if (!STy) 3672 return nullptr; 3673 3674 const StructLayout *SL = DL.getStructLayout(STy); 3675 if (Offset >= SL->getSizeInBytes()) 3676 return nullptr; 3677 uint64_t EndOffset = Offset + Size; 3678 if (EndOffset > SL->getSizeInBytes()) 3679 return nullptr; 3680 3681 unsigned Index = SL->getElementContainingOffset(Offset); 3682 Offset -= SL->getElementOffset(Index); 3683 3684 Type *ElementTy = STy->getElementType(Index); 3685 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3686 if (Offset >= ElementSize) 3687 return nullptr; // The offset points into alignment padding. 3688 3689 // See if any partition must be contained by the element. 3690 if (Offset > 0 || Size < ElementSize) { 3691 if ((Offset + Size) > ElementSize) 3692 return nullptr; 3693 return getTypePartition(DL, ElementTy, Offset, Size); 3694 } 3695 assert(Offset == 0); 3696 3697 if (Size == ElementSize) 3698 return stripAggregateTypeWrapping(DL, ElementTy); 3699 3700 StructType::element_iterator EI = STy->element_begin() + Index, 3701 EE = STy->element_end(); 3702 if (EndOffset < SL->getSizeInBytes()) { 3703 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 3704 if (Index == EndIndex) 3705 return nullptr; // Within a single element and its padding. 3706 3707 // Don't try to form "natural" types if the elements don't line up with the 3708 // expected size. 3709 // FIXME: We could potentially recurse down through the last element in the 3710 // sub-struct to find a natural end point. 3711 if (SL->getElementOffset(EndIndex) != EndOffset) 3712 return nullptr; 3713 3714 assert(Index < EndIndex); 3715 EE = STy->element_begin() + EndIndex; 3716 } 3717 3718 // Try to build up a sub-structure. 3719 StructType *SubTy = 3720 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); 3721 const StructLayout *SubSL = DL.getStructLayout(SubTy); 3722 if (Size != SubSL->getSizeInBytes()) 3723 return nullptr; // The sub-struct doesn't have quite the size needed. 3724 3725 return SubTy; 3726 } 3727 3728 /// Pre-split loads and stores to simplify rewriting. 3729 /// 3730 /// We want to break up the splittable load+store pairs as much as 3731 /// possible. This is important to do as a preprocessing step, as once we 3732 /// start rewriting the accesses to partitions of the alloca we lose the 3733 /// necessary information to correctly split apart paired loads and stores 3734 /// which both point into this alloca. The case to consider is something like 3735 /// the following: 3736 /// 3737 /// %a = alloca [12 x i8] 3738 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 3739 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 3740 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 3741 /// %iptr1 = bitcast i8* %gep1 to i64* 3742 /// %iptr2 = bitcast i8* %gep2 to i64* 3743 /// %fptr1 = bitcast i8* %gep1 to float* 3744 /// %fptr2 = bitcast i8* %gep2 to float* 3745 /// %fptr3 = bitcast i8* %gep3 to float* 3746 /// store float 0.0, float* %fptr1 3747 /// store float 1.0, float* %fptr2 3748 /// %v = load i64* %iptr1 3749 /// store i64 %v, i64* %iptr2 3750 /// %f1 = load float* %fptr2 3751 /// %f2 = load float* %fptr3 3752 /// 3753 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 3754 /// promote everything so we recover the 2 SSA values that should have been 3755 /// there all along. 3756 /// 3757 /// \returns true if any changes are made. 3758 bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 3759 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 3760 3761 // Track the loads and stores which are candidates for pre-splitting here, in 3762 // the order they first appear during the partition scan. These give stable 3763 // iteration order and a basis for tracking which loads and stores we 3764 // actually split. 3765 SmallVector<LoadInst *, 4> Loads; 3766 SmallVector<StoreInst *, 4> Stores; 3767 3768 // We need to accumulate the splits required of each load or store where we 3769 // can find them via a direct lookup. This is important to cross-check loads 3770 // and stores against each other. We also track the slice so that we can kill 3771 // all the slices that end up split. 3772 struct SplitOffsets { 3773 Slice *S; 3774 std::vector<uint64_t> Splits; 3775 }; 3776 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 3777 3778 // Track loads out of this alloca which cannot, for any reason, be pre-split. 3779 // This is important as we also cannot pre-split stores of those loads! 3780 // FIXME: This is all pretty gross. It means that we can be more aggressive 3781 // in pre-splitting when the load feeding the store happens to come from 3782 // a separate alloca. Put another way, the effectiveness of SROA would be 3783 // decreased by a frontend which just concatenated all of its local allocas 3784 // into one big flat alloca. But defeating such patterns is exactly the job 3785 // SROA is tasked with! Sadly, to not have this discrepancy we would have 3786 // change store pre-splitting to actually force pre-splitting of the load 3787 // that feeds it *and all stores*. That makes pre-splitting much harder, but 3788 // maybe it would make it more principled? 3789 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 3790 3791 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 3792 for (auto &P : AS.partitions()) { 3793 for (Slice &S : P) { 3794 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 3795 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 3796 // If this is a load we have to track that it can't participate in any 3797 // pre-splitting. If this is a store of a load we have to track that 3798 // that load also can't participate in any pre-splitting. 3799 if (auto *LI = dyn_cast<LoadInst>(I)) 3800 UnsplittableLoads.insert(LI); 3801 else if (auto *SI = dyn_cast<StoreInst>(I)) 3802 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 3803 UnsplittableLoads.insert(LI); 3804 continue; 3805 } 3806 assert(P.endOffset() > S.beginOffset() && 3807 "Empty or backwards partition!"); 3808 3809 // Determine if this is a pre-splittable slice. 3810 if (auto *LI = dyn_cast<LoadInst>(I)) { 3811 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 3812 3813 // The load must be used exclusively to store into other pointers for 3814 // us to be able to arbitrarily pre-split it. The stores must also be 3815 // simple to avoid changing semantics. 3816 auto IsLoadSimplyStored = [](LoadInst *LI) { 3817 for (User *LU : LI->users()) { 3818 auto *SI = dyn_cast<StoreInst>(LU); 3819 if (!SI || !SI->isSimple()) 3820 return false; 3821 } 3822 return true; 3823 }; 3824 if (!IsLoadSimplyStored(LI)) { 3825 UnsplittableLoads.insert(LI); 3826 continue; 3827 } 3828 3829 Loads.push_back(LI); 3830 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3831 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 3832 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 3833 continue; 3834 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 3835 if (!StoredLoad || !StoredLoad->isSimple()) 3836 continue; 3837 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 3838 3839 Stores.push_back(SI); 3840 } else { 3841 // Other uses cannot be pre-split. 3842 continue; 3843 } 3844 3845 // Record the initial split. 3846 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); 3847 auto &Offsets = SplitOffsetsMap[I]; 3848 assert(Offsets.Splits.empty() && 3849 "Should not have splits the first time we see an instruction!"); 3850 Offsets.S = &S; 3851 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 3852 } 3853 3854 // Now scan the already split slices, and add a split for any of them which 3855 // we're going to pre-split. 3856 for (Slice *S : P.splitSliceTails()) { 3857 auto SplitOffsetsMapI = 3858 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 3859 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 3860 continue; 3861 auto &Offsets = SplitOffsetsMapI->second; 3862 3863 assert(Offsets.S == S && "Found a mismatched slice!"); 3864 assert(!Offsets.Splits.empty() && 3865 "Cannot have an empty set of splits on the second partition!"); 3866 assert(Offsets.Splits.back() == 3867 P.beginOffset() - Offsets.S->beginOffset() && 3868 "Previous split does not end where this one begins!"); 3869 3870 // Record each split. The last partition's end isn't needed as the size 3871 // of the slice dictates that. 3872 if (S->endOffset() > P.endOffset()) 3873 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 3874 } 3875 } 3876 3877 // We may have split loads where some of their stores are split stores. For 3878 // such loads and stores, we can only pre-split them if their splits exactly 3879 // match relative to their starting offset. We have to verify this prior to 3880 // any rewriting. 3881 llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 3882 // Lookup the load we are storing in our map of split 3883 // offsets. 3884 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3885 // If it was completely unsplittable, then we're done, 3886 // and this store can't be pre-split. 3887 if (UnsplittableLoads.count(LI)) 3888 return true; 3889 3890 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 3891 if (LoadOffsetsI == SplitOffsetsMap.end()) 3892 return false; // Unrelated loads are definitely safe. 3893 auto &LoadOffsets = LoadOffsetsI->second; 3894 3895 // Now lookup the store's offsets. 3896 auto &StoreOffsets = SplitOffsetsMap[SI]; 3897 3898 // If the relative offsets of each split in the load and 3899 // store match exactly, then we can split them and we 3900 // don't need to remove them here. 3901 if (LoadOffsets.Splits == StoreOffsets.Splits) 3902 return false; 3903 3904 LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n" 3905 << " " << *LI << "\n" 3906 << " " << *SI << "\n"); 3907 3908 // We've found a store and load that we need to split 3909 // with mismatched relative splits. Just give up on them 3910 // and remove both instructions from our list of 3911 // candidates. 3912 UnsplittableLoads.insert(LI); 3913 return true; 3914 }); 3915 // Now we have to go *back* through all the stores, because a later store may 3916 // have caused an earlier store's load to become unsplittable and if it is 3917 // unsplittable for the later store, then we can't rely on it being split in 3918 // the earlier store either. 3919 llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) { 3920 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3921 return UnsplittableLoads.count(LI); 3922 }); 3923 // Once we've established all the loads that can't be split for some reason, 3924 // filter any that made it into our list out. 3925 llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) { 3926 return UnsplittableLoads.count(LI); 3927 }); 3928 3929 // If no loads or stores are left, there is no pre-splitting to be done for 3930 // this alloca. 3931 if (Loads.empty() && Stores.empty()) 3932 return false; 3933 3934 // From here on, we can't fail and will be building new accesses, so rig up 3935 // an IR builder. 3936 IRBuilderTy IRB(&AI); 3937 3938 // Collect the new slices which we will merge into the alloca slices. 3939 SmallVector<Slice, 4> NewSlices; 3940 3941 // Track any allocas we end up splitting loads and stores for so we iterate 3942 // on them. 3943 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 3944 3945 // At this point, we have collected all of the loads and stores we can 3946 // pre-split, and the specific splits needed for them. We actually do the 3947 // splitting in a specific order in order to handle when one of the loads in 3948 // the value operand to one of the stores. 3949 // 3950 // First, we rewrite all of the split loads, and just accumulate each split 3951 // load in a parallel structure. We also build the slices for them and append 3952 // them to the alloca slices. 3953 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 3954 std::vector<LoadInst *> SplitLoads; 3955 const DataLayout &DL = AI.getModule()->getDataLayout(); 3956 for (LoadInst *LI : Loads) { 3957 SplitLoads.clear(); 3958 3959 IntegerType *Ty = cast<IntegerType>(LI->getType()); 3960 assert(Ty->getBitWidth() % 8 == 0); 3961 uint64_t LoadSize = Ty->getBitWidth() / 8; 3962 assert(LoadSize > 0 && "Cannot have a zero-sized integer load!"); 3963 3964 auto &Offsets = SplitOffsetsMap[LI]; 3965 assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 3966 "Slice size should always match load size exactly!"); 3967 uint64_t BaseOffset = Offsets.S->beginOffset(); 3968 assert(BaseOffset + LoadSize > BaseOffset && 3969 "Cannot represent alloca access size using 64-bit integers!"); 3970 3971 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 3972 IRB.SetInsertPoint(LI); 3973 3974 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 3975 3976 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 3977 int Idx = 0, Size = Offsets.Splits.size(); 3978 for (;;) { 3979 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 3980 auto AS = LI->getPointerAddressSpace(); 3981 auto *PartPtrTy = PartTy->getPointerTo(AS); 3982 LoadInst *PLoad = IRB.CreateAlignedLoad( 3983 PartTy, 3984 getAdjustedPtr(IRB, DL, BasePtr, 3985 APInt(DL.getIndexSizeInBits(AS), PartOffset), 3986 PartPtrTy, BasePtr->getName() + "."), 3987 getAdjustedAlignment(LI, PartOffset), 3988 /*IsVolatile*/ false, LI->getName()); 3989 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 3990 LLVMContext::MD_access_group}); 3991 3992 // Append this load onto the list of split loads so we can find it later 3993 // to rewrite the stores. 3994 SplitLoads.push_back(PLoad); 3995 3996 // Now build a new slice for the alloca. 3997 NewSlices.push_back( 3998 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 3999 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 4000 /*IsSplittable*/ false)); 4001 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4002 << ", " << NewSlices.back().endOffset() 4003 << "): " << *PLoad << "\n"); 4004 4005 // See if we've handled all the splits. 4006 if (Idx >= Size) 4007 break; 4008 4009 // Setup the next partition. 4010 PartOffset = Offsets.Splits[Idx]; 4011 ++Idx; 4012 PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset; 4013 } 4014 4015 // Now that we have the split loads, do the slow walk over all uses of the 4016 // load and rewrite them as split stores, or save the split loads to use 4017 // below if the store is going to be split there anyways. 4018 bool DeferredStores = false; 4019 for (User *LU : LI->users()) { 4020 StoreInst *SI = cast<StoreInst>(LU); 4021 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 4022 DeferredStores = true; 4023 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI 4024 << "\n"); 4025 continue; 4026 } 4027 4028 Value *StoreBasePtr = SI->getPointerOperand(); 4029 IRB.SetInsertPoint(SI); 4030 4031 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 4032 4033 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 4034 LoadInst *PLoad = SplitLoads[Idx]; 4035 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 4036 auto *PartPtrTy = 4037 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); 4038 4039 auto AS = SI->getPointerAddressSpace(); 4040 StoreInst *PStore = IRB.CreateAlignedStore( 4041 PLoad, 4042 getAdjustedPtr(IRB, DL, StoreBasePtr, 4043 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4044 PartPtrTy, StoreBasePtr->getName() + "."), 4045 getAdjustedAlignment(SI, PartOffset), 4046 /*IsVolatile*/ false); 4047 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4048 LLVMContext::MD_access_group}); 4049 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 4050 } 4051 4052 // We want to immediately iterate on any allocas impacted by splitting 4053 // this store, and we have to track any promotable alloca (indicated by 4054 // a direct store) as needing to be resplit because it is no longer 4055 // promotable. 4056 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 4057 ResplitPromotableAllocas.insert(OtherAI); 4058 Worklist.insert(OtherAI); 4059 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4060 StoreBasePtr->stripInBoundsOffsets())) { 4061 Worklist.insert(OtherAI); 4062 } 4063 4064 // Mark the original store as dead. 4065 DeadInsts.push_back(SI); 4066 } 4067 4068 // Save the split loads if there are deferred stores among the users. 4069 if (DeferredStores) 4070 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 4071 4072 // Mark the original load as dead and kill the original slice. 4073 DeadInsts.push_back(LI); 4074 Offsets.S->kill(); 4075 } 4076 4077 // Second, we rewrite all of the split stores. At this point, we know that 4078 // all loads from this alloca have been split already. For stores of such 4079 // loads, we can simply look up the pre-existing split loads. For stores of 4080 // other loads, we split those loads first and then write split stores of 4081 // them. 4082 for (StoreInst *SI : Stores) { 4083 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4084 IntegerType *Ty = cast<IntegerType>(LI->getType()); 4085 assert(Ty->getBitWidth() % 8 == 0); 4086 uint64_t StoreSize = Ty->getBitWidth() / 8; 4087 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 4088 4089 auto &Offsets = SplitOffsetsMap[SI]; 4090 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 4091 "Slice size should always match load size exactly!"); 4092 uint64_t BaseOffset = Offsets.S->beginOffset(); 4093 assert(BaseOffset + StoreSize > BaseOffset && 4094 "Cannot represent alloca access size using 64-bit integers!"); 4095 4096 Value *LoadBasePtr = LI->getPointerOperand(); 4097 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 4098 4099 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 4100 4101 // Check whether we have an already split load. 4102 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 4103 std::vector<LoadInst *> *SplitLoads = nullptr; 4104 if (SplitLoadsMapI != SplitLoadsMap.end()) { 4105 SplitLoads = &SplitLoadsMapI->second; 4106 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 4107 "Too few split loads for the number of splits in the store!"); 4108 } else { 4109 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); 4110 } 4111 4112 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4113 int Idx = 0, Size = Offsets.Splits.size(); 4114 for (;;) { 4115 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 4116 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); 4117 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); 4118 4119 // Either lookup a split load or create one. 4120 LoadInst *PLoad; 4121 if (SplitLoads) { 4122 PLoad = (*SplitLoads)[Idx]; 4123 } else { 4124 IRB.SetInsertPoint(LI); 4125 auto AS = LI->getPointerAddressSpace(); 4126 PLoad = IRB.CreateAlignedLoad( 4127 PartTy, 4128 getAdjustedPtr(IRB, DL, LoadBasePtr, 4129 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4130 LoadPartPtrTy, LoadBasePtr->getName() + "."), 4131 getAdjustedAlignment(LI, PartOffset), 4132 /*IsVolatile*/ false, LI->getName()); 4133 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4134 LLVMContext::MD_access_group}); 4135 } 4136 4137 // And store this partition. 4138 IRB.SetInsertPoint(SI); 4139 auto AS = SI->getPointerAddressSpace(); 4140 StoreInst *PStore = IRB.CreateAlignedStore( 4141 PLoad, 4142 getAdjustedPtr(IRB, DL, StoreBasePtr, 4143 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4144 StorePartPtrTy, StoreBasePtr->getName() + "."), 4145 getAdjustedAlignment(SI, PartOffset), 4146 /*IsVolatile*/ false); 4147 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4148 LLVMContext::MD_access_group}); 4149 4150 // Now build a new slice for the alloca. 4151 NewSlices.push_back( 4152 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4153 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 4154 /*IsSplittable*/ false)); 4155 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4156 << ", " << NewSlices.back().endOffset() 4157 << "): " << *PStore << "\n"); 4158 if (!SplitLoads) { 4159 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 4160 } 4161 4162 // See if we've finished all the splits. 4163 if (Idx >= Size) 4164 break; 4165 4166 // Setup the next partition. 4167 PartOffset = Offsets.Splits[Idx]; 4168 ++Idx; 4169 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 4170 } 4171 4172 // We want to immediately iterate on any allocas impacted by splitting 4173 // this load, which is only relevant if it isn't a load of this alloca and 4174 // thus we didn't already split the loads above. We also have to keep track 4175 // of any promotable allocas we split loads on as they can no longer be 4176 // promoted. 4177 if (!SplitLoads) { 4178 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 4179 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4180 ResplitPromotableAllocas.insert(OtherAI); 4181 Worklist.insert(OtherAI); 4182 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4183 LoadBasePtr->stripInBoundsOffsets())) { 4184 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4185 Worklist.insert(OtherAI); 4186 } 4187 } 4188 4189 // Mark the original store as dead now that we've split it up and kill its 4190 // slice. Note that we leave the original load in place unless this store 4191 // was its only use. It may in turn be split up if it is an alloca load 4192 // for some other alloca, but it may be a normal load. This may introduce 4193 // redundant loads, but where those can be merged the rest of the optimizer 4194 // should handle the merging, and this uncovers SSA splits which is more 4195 // important. In practice, the original loads will almost always be fully 4196 // split and removed eventually, and the splits will be merged by any 4197 // trivial CSE, including instcombine. 4198 if (LI->hasOneUse()) { 4199 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 4200 DeadInsts.push_back(LI); 4201 } 4202 DeadInsts.push_back(SI); 4203 Offsets.S->kill(); 4204 } 4205 4206 // Remove the killed slices that have ben pre-split. 4207 llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); }); 4208 4209 // Insert our new slices. This will sort and merge them into the sorted 4210 // sequence. 4211 AS.insert(NewSlices); 4212 4213 LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); 4214 #ifndef NDEBUG 4215 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 4216 LLVM_DEBUG(AS.print(dbgs(), I, " ")); 4217 #endif 4218 4219 // Finally, don't try to promote any allocas that new require re-splitting. 4220 // They have already been added to the worklist above. 4221 llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) { 4222 return ResplitPromotableAllocas.count(AI); 4223 }); 4224 4225 return true; 4226 } 4227 4228 /// Rewrite an alloca partition's users. 4229 /// 4230 /// This routine drives both of the rewriting goals of the SROA pass. It tries 4231 /// to rewrite uses of an alloca partition to be conducive for SSA value 4232 /// promotion. If the partition needs a new, more refined alloca, this will 4233 /// build that new alloca, preserving as much type information as possible, and 4234 /// rewrite the uses of the old alloca to point at the new one and have the 4235 /// appropriate new offsets. It also evaluates how successful the rewrite was 4236 /// at enabling promotion and if it was successful queues the alloca to be 4237 /// promoted. 4238 AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 4239 Partition &P) { 4240 // Try to compute a friendly type for this partition of the alloca. This 4241 // won't always succeed, in which case we fall back to a legal integer type 4242 // or an i8 array of an appropriate size. 4243 Type *SliceTy = nullptr; 4244 const DataLayout &DL = AI.getModule()->getDataLayout(); 4245 std::pair<Type *, IntegerType *> CommonUseTy = 4246 findCommonType(P.begin(), P.end(), P.endOffset()); 4247 // Do all uses operate on the same type? 4248 if (CommonUseTy.first) 4249 if (DL.getTypeAllocSize(CommonUseTy.first).getFixedSize() >= P.size()) 4250 SliceTy = CommonUseTy.first; 4251 // If not, can we find an appropriate subtype in the original allocated type? 4252 if (!SliceTy) 4253 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4254 P.beginOffset(), P.size())) 4255 SliceTy = TypePartitionTy; 4256 // If still not, can we use the largest bitwidth integer type used? 4257 if (!SliceTy && CommonUseTy.second) 4258 if (DL.getTypeAllocSize(CommonUseTy.second).getFixedSize() >= P.size()) 4259 SliceTy = CommonUseTy.second; 4260 if ((!SliceTy || (SliceTy->isArrayTy() && 4261 SliceTy->getArrayElementType()->isIntegerTy())) && 4262 DL.isLegalInteger(P.size() * 8)) 4263 SliceTy = Type::getIntNTy(*C, P.size() * 8); 4264 if (!SliceTy) 4265 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 4266 assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size()); 4267 4268 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 4269 4270 VectorType *VecTy = 4271 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 4272 if (VecTy) 4273 SliceTy = VecTy; 4274 4275 // Check for the case where we're going to rewrite to a new alloca of the 4276 // exact same type as the original, and with the same access offsets. In that 4277 // case, re-use the existing alloca, but still run through the rewriter to 4278 // perform phi and select speculation. 4279 // P.beginOffset() can be non-zero even with the same type in a case with 4280 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). 4281 AllocaInst *NewAI; 4282 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { 4283 NewAI = &AI; 4284 // FIXME: We should be able to bail at this point with "nothing changed". 4285 // FIXME: We might want to defer PHI speculation until after here. 4286 // FIXME: return nullptr; 4287 } else { 4288 // Make sure the alignment is compatible with P.beginOffset(). 4289 const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset()); 4290 // If we will get at least this much alignment from the type alone, leave 4291 // the alloca's alignment unconstrained. 4292 const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy); 4293 NewAI = new AllocaInst( 4294 SliceTy, AI.getType()->getAddressSpace(), nullptr, 4295 IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment, 4296 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); 4297 // Copy the old AI debug location over to the new one. 4298 NewAI->setDebugLoc(AI.getDebugLoc()); 4299 ++NumNewAllocas; 4300 } 4301 4302 LLVM_DEBUG(dbgs() << "Rewriting alloca partition " 4303 << "[" << P.beginOffset() << "," << P.endOffset() 4304 << ") to: " << *NewAI << "\n"); 4305 4306 // Track the high watermark on the worklist as it is only relevant for 4307 // promoted allocas. We will reset it to this point if the alloca is not in 4308 // fact scheduled for promotion. 4309 unsigned PPWOldSize = PostPromotionWorklist.size(); 4310 unsigned NumUses = 0; 4311 SmallSetVector<PHINode *, 8> PHIUsers; 4312 SmallSetVector<SelectInst *, 8> SelectUsers; 4313 4314 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 4315 P.endOffset(), IsIntegerPromotable, VecTy, 4316 PHIUsers, SelectUsers); 4317 bool Promotable = true; 4318 for (Slice *S : P.splitSliceTails()) { 4319 Promotable &= Rewriter.visit(S); 4320 ++NumUses; 4321 } 4322 for (Slice &S : P) { 4323 Promotable &= Rewriter.visit(&S); 4324 ++NumUses; 4325 } 4326 4327 NumAllocaPartitionUses += NumUses; 4328 MaxUsesPerAllocaPartition.updateMax(NumUses); 4329 4330 // Now that we've processed all the slices in the new partition, check if any 4331 // PHIs or Selects would block promotion. 4332 for (PHINode *PHI : PHIUsers) 4333 if (!isSafePHIToSpeculate(*PHI)) { 4334 Promotable = false; 4335 PHIUsers.clear(); 4336 SelectUsers.clear(); 4337 break; 4338 } 4339 4340 for (SelectInst *Sel : SelectUsers) 4341 if (!isSafeSelectToSpeculate(*Sel)) { 4342 Promotable = false; 4343 PHIUsers.clear(); 4344 SelectUsers.clear(); 4345 break; 4346 } 4347 4348 if (Promotable) { 4349 for (Use *U : AS.getDeadUsesIfPromotable()) { 4350 auto *OldInst = dyn_cast<Instruction>(U->get()); 4351 Value::dropDroppableUse(*U); 4352 if (OldInst) 4353 if (isInstructionTriviallyDead(OldInst)) 4354 DeadInsts.push_back(OldInst); 4355 } 4356 if (PHIUsers.empty() && SelectUsers.empty()) { 4357 // Promote the alloca. 4358 PromotableAllocas.push_back(NewAI); 4359 } else { 4360 // If we have either PHIs or Selects to speculate, add them to those 4361 // worklists and re-queue the new alloca so that we promote in on the 4362 // next iteration. 4363 for (PHINode *PHIUser : PHIUsers) 4364 SpeculatablePHIs.insert(PHIUser); 4365 for (SelectInst *SelectUser : SelectUsers) 4366 SpeculatableSelects.insert(SelectUser); 4367 Worklist.insert(NewAI); 4368 } 4369 } else { 4370 // Drop any post-promotion work items if promotion didn't happen. 4371 while (PostPromotionWorklist.size() > PPWOldSize) 4372 PostPromotionWorklist.pop_back(); 4373 4374 // We couldn't promote and we didn't create a new partition, nothing 4375 // happened. 4376 if (NewAI == &AI) 4377 return nullptr; 4378 4379 // If we can't promote the alloca, iterate on it to check for new 4380 // refinements exposed by splitting the current alloca. Don't iterate on an 4381 // alloca which didn't actually change and didn't get promoted. 4382 Worklist.insert(NewAI); 4383 } 4384 4385 return NewAI; 4386 } 4387 4388 /// Walks the slices of an alloca and form partitions based on them, 4389 /// rewriting each of their uses. 4390 bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 4391 if (AS.begin() == AS.end()) 4392 return false; 4393 4394 unsigned NumPartitions = 0; 4395 bool Changed = false; 4396 const DataLayout &DL = AI.getModule()->getDataLayout(); 4397 4398 // First try to pre-split loads and stores. 4399 Changed |= presplitLoadsAndStores(AI, AS); 4400 4401 // Now that we have identified any pre-splitting opportunities, 4402 // mark loads and stores unsplittable except for the following case. 4403 // We leave a slice splittable if all other slices are disjoint or fully 4404 // included in the slice, such as whole-alloca loads and stores. 4405 // If we fail to split these during pre-splitting, we want to force them 4406 // to be rewritten into a partition. 4407 bool IsSorted = true; 4408 4409 uint64_t AllocaSize = 4410 DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize(); 4411 const uint64_t MaxBitVectorSize = 1024; 4412 if (AllocaSize <= MaxBitVectorSize) { 4413 // If a byte boundary is included in any load or store, a slice starting or 4414 // ending at the boundary is not splittable. 4415 SmallBitVector SplittableOffset(AllocaSize + 1, true); 4416 for (Slice &S : AS) 4417 for (unsigned O = S.beginOffset() + 1; 4418 O < S.endOffset() && O < AllocaSize; O++) 4419 SplittableOffset.reset(O); 4420 4421 for (Slice &S : AS) { 4422 if (!S.isSplittable()) 4423 continue; 4424 4425 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && 4426 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) 4427 continue; 4428 4429 if (isa<LoadInst>(S.getUse()->getUser()) || 4430 isa<StoreInst>(S.getUse()->getUser())) { 4431 S.makeUnsplittable(); 4432 IsSorted = false; 4433 } 4434 } 4435 } 4436 else { 4437 // We only allow whole-alloca splittable loads and stores 4438 // for a large alloca to avoid creating too large BitVector. 4439 for (Slice &S : AS) { 4440 if (!S.isSplittable()) 4441 continue; 4442 4443 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) 4444 continue; 4445 4446 if (isa<LoadInst>(S.getUse()->getUser()) || 4447 isa<StoreInst>(S.getUse()->getUser())) { 4448 S.makeUnsplittable(); 4449 IsSorted = false; 4450 } 4451 } 4452 } 4453 4454 if (!IsSorted) 4455 llvm::sort(AS); 4456 4457 /// Describes the allocas introduced by rewritePartition in order to migrate 4458 /// the debug info. 4459 struct Fragment { 4460 AllocaInst *Alloca; 4461 uint64_t Offset; 4462 uint64_t Size; 4463 Fragment(AllocaInst *AI, uint64_t O, uint64_t S) 4464 : Alloca(AI), Offset(O), Size(S) {} 4465 }; 4466 SmallVector<Fragment, 4> Fragments; 4467 4468 // Rewrite each partition. 4469 for (auto &P : AS.partitions()) { 4470 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 4471 Changed = true; 4472 if (NewAI != &AI) { 4473 uint64_t SizeOfByte = 8; 4474 uint64_t AllocaSize = 4475 DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize(); 4476 // Don't include any padding. 4477 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 4478 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); 4479 } 4480 } 4481 ++NumPartitions; 4482 } 4483 4484 NumAllocaPartitions += NumPartitions; 4485 MaxPartitionsPerAlloca.updateMax(NumPartitions); 4486 4487 // Migrate debug information from the old alloca to the new alloca(s) 4488 // and the individual partitions. 4489 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI); 4490 for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) { 4491 auto *Expr = DbgDeclare->getExpression(); 4492 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 4493 uint64_t AllocaSize = 4494 DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize(); 4495 for (auto Fragment : Fragments) { 4496 // Create a fragment expression describing the new partition or reuse AI's 4497 // expression if there is only one partition. 4498 auto *FragmentExpr = Expr; 4499 if (Fragment.Size < AllocaSize || Expr->isFragment()) { 4500 // If this alloca is already a scalar replacement of a larger aggregate, 4501 // Fragment.Offset describes the offset inside the scalar. 4502 auto ExprFragment = Expr->getFragmentInfo(); 4503 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0; 4504 uint64_t Start = Offset + Fragment.Offset; 4505 uint64_t Size = Fragment.Size; 4506 if (ExprFragment) { 4507 uint64_t AbsEnd = 4508 ExprFragment->OffsetInBits + ExprFragment->SizeInBits; 4509 if (Start >= AbsEnd) 4510 // No need to describe a SROAed padding. 4511 continue; 4512 Size = std::min(Size, AbsEnd - Start); 4513 } 4514 // The new, smaller fragment is stenciled out from the old fragment. 4515 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) { 4516 assert(Start >= OrigFragment->OffsetInBits && 4517 "new fragment is outside of original fragment"); 4518 Start -= OrigFragment->OffsetInBits; 4519 } 4520 4521 // The alloca may be larger than the variable. 4522 auto VarSize = DbgDeclare->getVariable()->getSizeInBits(); 4523 if (VarSize) { 4524 if (Size > *VarSize) 4525 Size = *VarSize; 4526 if (Size == 0 || Start + Size > *VarSize) 4527 continue; 4528 } 4529 4530 // Avoid creating a fragment expression that covers the entire variable. 4531 if (!VarSize || *VarSize != Size) { 4532 if (auto E = 4533 DIExpression::createFragmentExpression(Expr, Start, Size)) 4534 FragmentExpr = *E; 4535 else 4536 continue; 4537 } 4538 } 4539 4540 // Remove any existing intrinsics on the new alloca describing 4541 // the variable fragment. 4542 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) { 4543 auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS, 4544 const DbgVariableIntrinsic *RHS) { 4545 return LHS->getVariable() == RHS->getVariable() && 4546 LHS->getDebugLoc()->getInlinedAt() == 4547 RHS->getDebugLoc()->getInlinedAt(); 4548 }; 4549 if (SameVariableFragment(OldDII, DbgDeclare)) 4550 OldDII->eraseFromParent(); 4551 } 4552 4553 DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), FragmentExpr, 4554 DbgDeclare->getDebugLoc(), &AI); 4555 } 4556 } 4557 return Changed; 4558 } 4559 4560 /// Clobber a use with undef, deleting the used value if it becomes dead. 4561 void SROAPass::clobberUse(Use &U) { 4562 Value *OldV = U; 4563 // Replace the use with an undef value. 4564 U = UndefValue::get(OldV->getType()); 4565 4566 // Check for this making an instruction dead. We have to garbage collect 4567 // all the dead instructions to ensure the uses of any alloca end up being 4568 // minimal. 4569 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 4570 if (isInstructionTriviallyDead(OldI)) { 4571 DeadInsts.push_back(OldI); 4572 } 4573 } 4574 4575 /// Analyze an alloca for SROA. 4576 /// 4577 /// This analyzes the alloca to ensure we can reason about it, builds 4578 /// the slices of the alloca, and then hands it off to be split and 4579 /// rewritten as needed. 4580 bool SROAPass::runOnAlloca(AllocaInst &AI) { 4581 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 4582 ++NumAllocasAnalyzed; 4583 4584 // Special case dead allocas, as they're trivial. 4585 if (AI.use_empty()) { 4586 AI.eraseFromParent(); 4587 return true; 4588 } 4589 const DataLayout &DL = AI.getModule()->getDataLayout(); 4590 4591 // Skip alloca forms that this analysis can't handle. 4592 auto *AT = AI.getAllocatedType(); 4593 if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) || 4594 DL.getTypeAllocSize(AT).getFixedSize() == 0) 4595 return false; 4596 4597 bool Changed = false; 4598 4599 // First, split any FCA loads and stores touching this alloca to promote 4600 // better splitting and promotion opportunities. 4601 AggLoadStoreRewriter AggRewriter(DL); 4602 Changed |= AggRewriter.rewrite(AI); 4603 4604 // Build the slices using a recursive instruction-visiting builder. 4605 AllocaSlices AS(DL, AI); 4606 LLVM_DEBUG(AS.print(dbgs())); 4607 if (AS.isEscaped()) 4608 return Changed; 4609 4610 // Delete all the dead users of this alloca before splitting and rewriting it. 4611 for (Instruction *DeadUser : AS.getDeadUsers()) { 4612 // Free up everything used by this instruction. 4613 for (Use &DeadOp : DeadUser->operands()) 4614 clobberUse(DeadOp); 4615 4616 // Now replace the uses of this instruction. 4617 DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType())); 4618 4619 // And mark it for deletion. 4620 DeadInsts.push_back(DeadUser); 4621 Changed = true; 4622 } 4623 for (Use *DeadOp : AS.getDeadOperands()) { 4624 clobberUse(*DeadOp); 4625 Changed = true; 4626 } 4627 4628 // No slices to split. Leave the dead alloca for a later pass to clean up. 4629 if (AS.begin() == AS.end()) 4630 return Changed; 4631 4632 Changed |= splitAlloca(AI, AS); 4633 4634 LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); 4635 while (!SpeculatablePHIs.empty()) 4636 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); 4637 4638 LLVM_DEBUG(dbgs() << " Speculating Selects\n"); 4639 while (!SpeculatableSelects.empty()) 4640 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); 4641 4642 return Changed; 4643 } 4644 4645 /// Delete the dead instructions accumulated in this run. 4646 /// 4647 /// Recursively deletes the dead instructions we've accumulated. This is done 4648 /// at the very end to maximize locality of the recursive delete and to 4649 /// minimize the problems of invalidated instruction pointers as such pointers 4650 /// are used heavily in the intermediate stages of the algorithm. 4651 /// 4652 /// We also record the alloca instructions deleted here so that they aren't 4653 /// subsequently handed to mem2reg to promote. 4654 bool SROAPass::deleteDeadInstructions( 4655 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 4656 bool Changed = false; 4657 while (!DeadInsts.empty()) { 4658 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()); 4659 if (!I) continue; 4660 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 4661 4662 // If the instruction is an alloca, find the possible dbg.declare connected 4663 // to it, and remove it too. We must do this before calling RAUW or we will 4664 // not be able to find it. 4665 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4666 DeletedAllocas.insert(AI); 4667 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI)) 4668 OldDII->eraseFromParent(); 4669 } 4670 4671 I->replaceAllUsesWith(UndefValue::get(I->getType())); 4672 4673 for (Use &Operand : I->operands()) 4674 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 4675 // Zero out the operand and see if it becomes trivially dead. 4676 Operand = nullptr; 4677 if (isInstructionTriviallyDead(U)) 4678 DeadInsts.push_back(U); 4679 } 4680 4681 ++NumDeleted; 4682 I->eraseFromParent(); 4683 Changed = true; 4684 } 4685 return Changed; 4686 } 4687 4688 /// Promote the allocas, using the best available technique. 4689 /// 4690 /// This attempts to promote whatever allocas have been identified as viable in 4691 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 4692 /// This function returns whether any promotion occurred. 4693 bool SROAPass::promoteAllocas(Function &F) { 4694 if (PromotableAllocas.empty()) 4695 return false; 4696 4697 NumPromoted += PromotableAllocas.size(); 4698 4699 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 4700 PromoteMemToReg(PromotableAllocas, *DT, AC); 4701 PromotableAllocas.clear(); 4702 return true; 4703 } 4704 4705 PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT, 4706 AssumptionCache &RunAC) { 4707 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 4708 C = &F.getContext(); 4709 DT = &RunDT; 4710 AC = &RunAC; 4711 4712 BasicBlock &EntryBB = F.getEntryBlock(); 4713 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 4714 I != E; ++I) { 4715 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4716 if (isa<ScalableVectorType>(AI->getAllocatedType())) { 4717 if (isAllocaPromotable(AI)) 4718 PromotableAllocas.push_back(AI); 4719 } else { 4720 Worklist.insert(AI); 4721 } 4722 } 4723 } 4724 4725 bool Changed = false; 4726 // A set of deleted alloca instruction pointers which should be removed from 4727 // the list of promotable allocas. 4728 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 4729 4730 do { 4731 while (!Worklist.empty()) { 4732 Changed |= runOnAlloca(*Worklist.pop_back_val()); 4733 Changed |= deleteDeadInstructions(DeletedAllocas); 4734 4735 // Remove the deleted allocas from various lists so that we don't try to 4736 // continue processing them. 4737 if (!DeletedAllocas.empty()) { 4738 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; 4739 Worklist.remove_if(IsInSet); 4740 PostPromotionWorklist.remove_if(IsInSet); 4741 llvm::erase_if(PromotableAllocas, IsInSet); 4742 DeletedAllocas.clear(); 4743 } 4744 } 4745 4746 Changed |= promoteAllocas(F); 4747 4748 Worklist = PostPromotionWorklist; 4749 PostPromotionWorklist.clear(); 4750 } while (!Worklist.empty()); 4751 4752 if (!Changed) 4753 return PreservedAnalyses::all(); 4754 4755 PreservedAnalyses PA; 4756 PA.preserveSet<CFGAnalyses>(); 4757 return PA; 4758 } 4759 4760 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) { 4761 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F), 4762 AM.getResult<AssumptionAnalysis>(F)); 4763 } 4764 4765 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 4766 /// 4767 /// This is in the llvm namespace purely to allow it to be a friend of the \c 4768 /// SROA pass. 4769 class llvm::sroa::SROALegacyPass : public FunctionPass { 4770 /// The SROA implementation. 4771 SROAPass Impl; 4772 4773 public: 4774 static char ID; 4775 4776 SROALegacyPass() : FunctionPass(ID) { 4777 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 4778 } 4779 4780 bool runOnFunction(Function &F) override { 4781 if (skipFunction(F)) 4782 return false; 4783 4784 auto PA = Impl.runImpl( 4785 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4786 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 4787 return !PA.areAllPreserved(); 4788 } 4789 4790 void getAnalysisUsage(AnalysisUsage &AU) const override { 4791 AU.addRequired<AssumptionCacheTracker>(); 4792 AU.addRequired<DominatorTreeWrapperPass>(); 4793 AU.addPreserved<GlobalsAAWrapperPass>(); 4794 AU.setPreservesCFG(); 4795 } 4796 4797 StringRef getPassName() const override { return "SROA"; } 4798 }; 4799 4800 char SROALegacyPass::ID = 0; 4801 4802 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); } 4803 4804 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 4805 "Scalar Replacement Of Aggregates", false, false) 4806 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4807 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4808 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 4809 false, false) 4810