xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/SROA.cpp (revision 4d3fc8b0570b29fb0d6ee9525f104d52176ff0d4)
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
14 ///
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
18 ///
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/AssumptionCache.h"
41 #include "llvm/Analysis/GlobalsModRef.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/PtrUseVisitor.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/ConstantFolder.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DIBuilder.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfo.h"
52 #include "llvm/IR/DebugInfoMetadata.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GetElementPtrTypeIterator.h"
57 #include "llvm/IR/GlobalAlias.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstVisitor.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/InitializePasses.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Compiler.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/ErrorHandling.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/Local.h"
82 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
83 #include <algorithm>
84 #include <cassert>
85 #include <cstddef>
86 #include <cstdint>
87 #include <cstring>
88 #include <iterator>
89 #include <string>
90 #include <tuple>
91 #include <utility>
92 #include <vector>
93 
94 using namespace llvm;
95 using namespace llvm::sroa;
96 
97 #define DEBUG_TYPE "sroa"
98 
99 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
100 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
101 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
102 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
103 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
104 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
105 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
106 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
107 STATISTIC(NumDeleted, "Number of instructions deleted");
108 STATISTIC(NumVectorized, "Number of vectorized aggregates");
109 
110 /// Hidden option to experiment with completely strict handling of inbounds
111 /// GEPs.
112 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
113                                         cl::Hidden);
114 
115 namespace {
116 
117 /// A custom IRBuilder inserter which prefixes all names, but only in
118 /// Assert builds.
119 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
120   std::string Prefix;
121 
122   Twine getNameWithPrefix(const Twine &Name) const {
123     return Name.isTriviallyEmpty() ? Name : Prefix + Name;
124   }
125 
126 public:
127   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
128 
129   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
130                     BasicBlock::iterator InsertPt) const override {
131     IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
132                                            InsertPt);
133   }
134 };
135 
136 /// Provide a type for IRBuilder that drops names in release builds.
137 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
138 
139 /// A used slice of an alloca.
140 ///
141 /// This structure represents a slice of an alloca used by some instruction. It
142 /// stores both the begin and end offsets of this use, a pointer to the use
143 /// itself, and a flag indicating whether we can classify the use as splittable
144 /// or not when forming partitions of the alloca.
145 class Slice {
146   /// The beginning offset of the range.
147   uint64_t BeginOffset = 0;
148 
149   /// The ending offset, not included in the range.
150   uint64_t EndOffset = 0;
151 
152   /// Storage for both the use of this slice and whether it can be
153   /// split.
154   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
155 
156 public:
157   Slice() = default;
158 
159   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
160       : BeginOffset(BeginOffset), EndOffset(EndOffset),
161         UseAndIsSplittable(U, IsSplittable) {}
162 
163   uint64_t beginOffset() const { return BeginOffset; }
164   uint64_t endOffset() const { return EndOffset; }
165 
166   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
167   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
168 
169   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
170 
171   bool isDead() const { return getUse() == nullptr; }
172   void kill() { UseAndIsSplittable.setPointer(nullptr); }
173 
174   /// Support for ordering ranges.
175   ///
176   /// This provides an ordering over ranges such that start offsets are
177   /// always increasing, and within equal start offsets, the end offsets are
178   /// decreasing. Thus the spanning range comes first in a cluster with the
179   /// same start position.
180   bool operator<(const Slice &RHS) const {
181     if (beginOffset() < RHS.beginOffset())
182       return true;
183     if (beginOffset() > RHS.beginOffset())
184       return false;
185     if (isSplittable() != RHS.isSplittable())
186       return !isSplittable();
187     if (endOffset() > RHS.endOffset())
188       return true;
189     return false;
190   }
191 
192   /// Support comparison with a single offset to allow binary searches.
193   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
194                                               uint64_t RHSOffset) {
195     return LHS.beginOffset() < RHSOffset;
196   }
197   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
198                                               const Slice &RHS) {
199     return LHSOffset < RHS.beginOffset();
200   }
201 
202   bool operator==(const Slice &RHS) const {
203     return isSplittable() == RHS.isSplittable() &&
204            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
205   }
206   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
207 };
208 
209 } // end anonymous namespace
210 
211 /// Representation of the alloca slices.
212 ///
213 /// This class represents the slices of an alloca which are formed by its
214 /// various uses. If a pointer escapes, we can't fully build a representation
215 /// for the slices used and we reflect that in this structure. The uses are
216 /// stored, sorted by increasing beginning offset and with unsplittable slices
217 /// starting at a particular offset before splittable slices.
218 class llvm::sroa::AllocaSlices {
219 public:
220   /// Construct the slices of a particular alloca.
221   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
222 
223   /// Test whether a pointer to the allocation escapes our analysis.
224   ///
225   /// If this is true, the slices are never fully built and should be
226   /// ignored.
227   bool isEscaped() const { return PointerEscapingInstr; }
228 
229   /// Support for iterating over the slices.
230   /// @{
231   using iterator = SmallVectorImpl<Slice>::iterator;
232   using range = iterator_range<iterator>;
233 
234   iterator begin() { return Slices.begin(); }
235   iterator end() { return Slices.end(); }
236 
237   using const_iterator = SmallVectorImpl<Slice>::const_iterator;
238   using const_range = iterator_range<const_iterator>;
239 
240   const_iterator begin() const { return Slices.begin(); }
241   const_iterator end() const { return Slices.end(); }
242   /// @}
243 
244   /// Erase a range of slices.
245   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
246 
247   /// Insert new slices for this alloca.
248   ///
249   /// This moves the slices into the alloca's slices collection, and re-sorts
250   /// everything so that the usual ordering properties of the alloca's slices
251   /// hold.
252   void insert(ArrayRef<Slice> NewSlices) {
253     int OldSize = Slices.size();
254     Slices.append(NewSlices.begin(), NewSlices.end());
255     auto SliceI = Slices.begin() + OldSize;
256     llvm::sort(SliceI, Slices.end());
257     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
258   }
259 
260   // Forward declare the iterator and range accessor for walking the
261   // partitions.
262   class partition_iterator;
263   iterator_range<partition_iterator> partitions();
264 
265   /// Access the dead users for this alloca.
266   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
267 
268   /// Access Uses that should be dropped if the alloca is promotable.
269   ArrayRef<Use *> getDeadUsesIfPromotable() const {
270     return DeadUseIfPromotable;
271   }
272 
273   /// Access the dead operands referring to this alloca.
274   ///
275   /// These are operands which have cannot actually be used to refer to the
276   /// alloca as they are outside its range and the user doesn't correct for
277   /// that. These mostly consist of PHI node inputs and the like which we just
278   /// need to replace with undef.
279   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
280 
281 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
282   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
283   void printSlice(raw_ostream &OS, const_iterator I,
284                   StringRef Indent = "  ") const;
285   void printUse(raw_ostream &OS, const_iterator I,
286                 StringRef Indent = "  ") const;
287   void print(raw_ostream &OS) const;
288   void dump(const_iterator I) const;
289   void dump() const;
290 #endif
291 
292 private:
293   template <typename DerivedT, typename RetT = void> class BuilderBase;
294   class SliceBuilder;
295 
296   friend class AllocaSlices::SliceBuilder;
297 
298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
299   /// Handle to alloca instruction to simplify method interfaces.
300   AllocaInst &AI;
301 #endif
302 
303   /// The instruction responsible for this alloca not having a known set
304   /// of slices.
305   ///
306   /// When an instruction (potentially) escapes the pointer to the alloca, we
307   /// store a pointer to that here and abort trying to form slices of the
308   /// alloca. This will be null if the alloca slices are analyzed successfully.
309   Instruction *PointerEscapingInstr;
310 
311   /// The slices of the alloca.
312   ///
313   /// We store a vector of the slices formed by uses of the alloca here. This
314   /// vector is sorted by increasing begin offset, and then the unsplittable
315   /// slices before the splittable ones. See the Slice inner class for more
316   /// details.
317   SmallVector<Slice, 8> Slices;
318 
319   /// Instructions which will become dead if we rewrite the alloca.
320   ///
321   /// Note that these are not separated by slice. This is because we expect an
322   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
323   /// all these instructions can simply be removed and replaced with poison as
324   /// they come from outside of the allocated space.
325   SmallVector<Instruction *, 8> DeadUsers;
326 
327   /// Uses which will become dead if can promote the alloca.
328   SmallVector<Use *, 8> DeadUseIfPromotable;
329 
330   /// Operands which will become dead if we rewrite the alloca.
331   ///
332   /// These are operands that in their particular use can be replaced with
333   /// poison when we rewrite the alloca. These show up in out-of-bounds inputs
334   /// to PHI nodes and the like. They aren't entirely dead (there might be
335   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
336   /// want to swap this particular input for poison to simplify the use lists of
337   /// the alloca.
338   SmallVector<Use *, 8> DeadOperands;
339 };
340 
341 /// A partition of the slices.
342 ///
343 /// An ephemeral representation for a range of slices which can be viewed as
344 /// a partition of the alloca. This range represents a span of the alloca's
345 /// memory which cannot be split, and provides access to all of the slices
346 /// overlapping some part of the partition.
347 ///
348 /// Objects of this type are produced by traversing the alloca's slices, but
349 /// are only ephemeral and not persistent.
350 class llvm::sroa::Partition {
351 private:
352   friend class AllocaSlices;
353   friend class AllocaSlices::partition_iterator;
354 
355   using iterator = AllocaSlices::iterator;
356 
357   /// The beginning and ending offsets of the alloca for this
358   /// partition.
359   uint64_t BeginOffset = 0, EndOffset = 0;
360 
361   /// The start and end iterators of this partition.
362   iterator SI, SJ;
363 
364   /// A collection of split slice tails overlapping the partition.
365   SmallVector<Slice *, 4> SplitTails;
366 
367   /// Raw constructor builds an empty partition starting and ending at
368   /// the given iterator.
369   Partition(iterator SI) : SI(SI), SJ(SI) {}
370 
371 public:
372   /// The start offset of this partition.
373   ///
374   /// All of the contained slices start at or after this offset.
375   uint64_t beginOffset() const { return BeginOffset; }
376 
377   /// The end offset of this partition.
378   ///
379   /// All of the contained slices end at or before this offset.
380   uint64_t endOffset() const { return EndOffset; }
381 
382   /// The size of the partition.
383   ///
384   /// Note that this can never be zero.
385   uint64_t size() const {
386     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
387     return EndOffset - BeginOffset;
388   }
389 
390   /// Test whether this partition contains no slices, and merely spans
391   /// a region occupied by split slices.
392   bool empty() const { return SI == SJ; }
393 
394   /// \name Iterate slices that start within the partition.
395   /// These may be splittable or unsplittable. They have a begin offset >= the
396   /// partition begin offset.
397   /// @{
398   // FIXME: We should probably define a "concat_iterator" helper and use that
399   // to stitch together pointee_iterators over the split tails and the
400   // contiguous iterators of the partition. That would give a much nicer
401   // interface here. We could then additionally expose filtered iterators for
402   // split, unsplit, and unsplittable splices based on the usage patterns.
403   iterator begin() const { return SI; }
404   iterator end() const { return SJ; }
405   /// @}
406 
407   /// Get the sequence of split slice tails.
408   ///
409   /// These tails are of slices which start before this partition but are
410   /// split and overlap into the partition. We accumulate these while forming
411   /// partitions.
412   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
413 };
414 
415 /// An iterator over partitions of the alloca's slices.
416 ///
417 /// This iterator implements the core algorithm for partitioning the alloca's
418 /// slices. It is a forward iterator as we don't support backtracking for
419 /// efficiency reasons, and re-use a single storage area to maintain the
420 /// current set of split slices.
421 ///
422 /// It is templated on the slice iterator type to use so that it can operate
423 /// with either const or non-const slice iterators.
424 class AllocaSlices::partition_iterator
425     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
426                                   Partition> {
427   friend class AllocaSlices;
428 
429   /// Most of the state for walking the partitions is held in a class
430   /// with a nice interface for examining them.
431   Partition P;
432 
433   /// We need to keep the end of the slices to know when to stop.
434   AllocaSlices::iterator SE;
435 
436   /// We also need to keep track of the maximum split end offset seen.
437   /// FIXME: Do we really?
438   uint64_t MaxSplitSliceEndOffset = 0;
439 
440   /// Sets the partition to be empty at given iterator, and sets the
441   /// end iterator.
442   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
443       : P(SI), SE(SE) {
444     // If not already at the end, advance our state to form the initial
445     // partition.
446     if (SI != SE)
447       advance();
448   }
449 
450   /// Advance the iterator to the next partition.
451   ///
452   /// Requires that the iterator not be at the end of the slices.
453   void advance() {
454     assert((P.SI != SE || !P.SplitTails.empty()) &&
455            "Cannot advance past the end of the slices!");
456 
457     // Clear out any split uses which have ended.
458     if (!P.SplitTails.empty()) {
459       if (P.EndOffset >= MaxSplitSliceEndOffset) {
460         // If we've finished all splits, this is easy.
461         P.SplitTails.clear();
462         MaxSplitSliceEndOffset = 0;
463       } else {
464         // Remove the uses which have ended in the prior partition. This
465         // cannot change the max split slice end because we just checked that
466         // the prior partition ended prior to that max.
467         llvm::erase_if(P.SplitTails,
468                        [&](Slice *S) { return S->endOffset() <= P.EndOffset; });
469         assert(llvm::any_of(P.SplitTails,
470                             [&](Slice *S) {
471                               return S->endOffset() == MaxSplitSliceEndOffset;
472                             }) &&
473                "Could not find the current max split slice offset!");
474         assert(llvm::all_of(P.SplitTails,
475                             [&](Slice *S) {
476                               return S->endOffset() <= MaxSplitSliceEndOffset;
477                             }) &&
478                "Max split slice end offset is not actually the max!");
479       }
480     }
481 
482     // If P.SI is already at the end, then we've cleared the split tail and
483     // now have an end iterator.
484     if (P.SI == SE) {
485       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
486       return;
487     }
488 
489     // If we had a non-empty partition previously, set up the state for
490     // subsequent partitions.
491     if (P.SI != P.SJ) {
492       // Accumulate all the splittable slices which started in the old
493       // partition into the split list.
494       for (Slice &S : P)
495         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
496           P.SplitTails.push_back(&S);
497           MaxSplitSliceEndOffset =
498               std::max(S.endOffset(), MaxSplitSliceEndOffset);
499         }
500 
501       // Start from the end of the previous partition.
502       P.SI = P.SJ;
503 
504       // If P.SI is now at the end, we at most have a tail of split slices.
505       if (P.SI == SE) {
506         P.BeginOffset = P.EndOffset;
507         P.EndOffset = MaxSplitSliceEndOffset;
508         return;
509       }
510 
511       // If the we have split slices and the next slice is after a gap and is
512       // not splittable immediately form an empty partition for the split
513       // slices up until the next slice begins.
514       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
515           !P.SI->isSplittable()) {
516         P.BeginOffset = P.EndOffset;
517         P.EndOffset = P.SI->beginOffset();
518         return;
519       }
520     }
521 
522     // OK, we need to consume new slices. Set the end offset based on the
523     // current slice, and step SJ past it. The beginning offset of the
524     // partition is the beginning offset of the next slice unless we have
525     // pre-existing split slices that are continuing, in which case we begin
526     // at the prior end offset.
527     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
528     P.EndOffset = P.SI->endOffset();
529     ++P.SJ;
530 
531     // There are two strategies to form a partition based on whether the
532     // partition starts with an unsplittable slice or a splittable slice.
533     if (!P.SI->isSplittable()) {
534       // When we're forming an unsplittable region, it must always start at
535       // the first slice and will extend through its end.
536       assert(P.BeginOffset == P.SI->beginOffset());
537 
538       // Form a partition including all of the overlapping slices with this
539       // unsplittable slice.
540       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
541         if (!P.SJ->isSplittable())
542           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
543         ++P.SJ;
544       }
545 
546       // We have a partition across a set of overlapping unsplittable
547       // partitions.
548       return;
549     }
550 
551     // If we're starting with a splittable slice, then we need to form
552     // a synthetic partition spanning it and any other overlapping splittable
553     // splices.
554     assert(P.SI->isSplittable() && "Forming a splittable partition!");
555 
556     // Collect all of the overlapping splittable slices.
557     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
558            P.SJ->isSplittable()) {
559       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
560       ++P.SJ;
561     }
562 
563     // Back upiP.EndOffset if we ended the span early when encountering an
564     // unsplittable slice. This synthesizes the early end offset of
565     // a partition spanning only splittable slices.
566     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
567       assert(!P.SJ->isSplittable());
568       P.EndOffset = P.SJ->beginOffset();
569     }
570   }
571 
572 public:
573   bool operator==(const partition_iterator &RHS) const {
574     assert(SE == RHS.SE &&
575            "End iterators don't match between compared partition iterators!");
576 
577     // The observed positions of partitions is marked by the P.SI iterator and
578     // the emptiness of the split slices. The latter is only relevant when
579     // P.SI == SE, as the end iterator will additionally have an empty split
580     // slices list, but the prior may have the same P.SI and a tail of split
581     // slices.
582     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
583       assert(P.SJ == RHS.P.SJ &&
584              "Same set of slices formed two different sized partitions!");
585       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
586              "Same slice position with differently sized non-empty split "
587              "slice tails!");
588       return true;
589     }
590     return false;
591   }
592 
593   partition_iterator &operator++() {
594     advance();
595     return *this;
596   }
597 
598   Partition &operator*() { return P; }
599 };
600 
601 /// A forward range over the partitions of the alloca's slices.
602 ///
603 /// This accesses an iterator range over the partitions of the alloca's
604 /// slices. It computes these partitions on the fly based on the overlapping
605 /// offsets of the slices and the ability to split them. It will visit "empty"
606 /// partitions to cover regions of the alloca only accessed via split
607 /// slices.
608 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
609   return make_range(partition_iterator(begin(), end()),
610                     partition_iterator(end(), end()));
611 }
612 
613 static Value *foldSelectInst(SelectInst &SI) {
614   // If the condition being selected on is a constant or the same value is
615   // being selected between, fold the select. Yes this does (rarely) happen
616   // early on.
617   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
618     return SI.getOperand(1 + CI->isZero());
619   if (SI.getOperand(1) == SI.getOperand(2))
620     return SI.getOperand(1);
621 
622   return nullptr;
623 }
624 
625 /// A helper that folds a PHI node or a select.
626 static Value *foldPHINodeOrSelectInst(Instruction &I) {
627   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
628     // If PN merges together the same value, return that value.
629     return PN->hasConstantValue();
630   }
631   return foldSelectInst(cast<SelectInst>(I));
632 }
633 
634 /// Builder for the alloca slices.
635 ///
636 /// This class builds a set of alloca slices by recursively visiting the uses
637 /// of an alloca and making a slice for each load and store at each offset.
638 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
639   friend class PtrUseVisitor<SliceBuilder>;
640   friend class InstVisitor<SliceBuilder>;
641 
642   using Base = PtrUseVisitor<SliceBuilder>;
643 
644   const uint64_t AllocSize;
645   AllocaSlices &AS;
646 
647   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
648   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
649 
650   /// Set to de-duplicate dead instructions found in the use walk.
651   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
652 
653 public:
654   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
655       : PtrUseVisitor<SliceBuilder>(DL),
656         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()),
657         AS(AS) {}
658 
659 private:
660   void markAsDead(Instruction &I) {
661     if (VisitedDeadInsts.insert(&I).second)
662       AS.DeadUsers.push_back(&I);
663   }
664 
665   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
666                  bool IsSplittable = false) {
667     // Completely skip uses which have a zero size or start either before or
668     // past the end of the allocation.
669     if (Size == 0 || Offset.uge(AllocSize)) {
670       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
671                         << Offset
672                         << " which has zero size or starts outside of the "
673                         << AllocSize << " byte alloca:\n"
674                         << "    alloca: " << AS.AI << "\n"
675                         << "       use: " << I << "\n");
676       return markAsDead(I);
677     }
678 
679     uint64_t BeginOffset = Offset.getZExtValue();
680     uint64_t EndOffset = BeginOffset + Size;
681 
682     // Clamp the end offset to the end of the allocation. Note that this is
683     // formulated to handle even the case where "BeginOffset + Size" overflows.
684     // This may appear superficially to be something we could ignore entirely,
685     // but that is not so! There may be widened loads or PHI-node uses where
686     // some instructions are dead but not others. We can't completely ignore
687     // them, and so have to record at least the information here.
688     assert(AllocSize >= BeginOffset); // Established above.
689     if (Size > AllocSize - BeginOffset) {
690       LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
691                         << Offset << " to remain within the " << AllocSize
692                         << " byte alloca:\n"
693                         << "    alloca: " << AS.AI << "\n"
694                         << "       use: " << I << "\n");
695       EndOffset = AllocSize;
696     }
697 
698     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
699   }
700 
701   void visitBitCastInst(BitCastInst &BC) {
702     if (BC.use_empty())
703       return markAsDead(BC);
704 
705     return Base::visitBitCastInst(BC);
706   }
707 
708   void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
709     if (ASC.use_empty())
710       return markAsDead(ASC);
711 
712     return Base::visitAddrSpaceCastInst(ASC);
713   }
714 
715   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
716     if (GEPI.use_empty())
717       return markAsDead(GEPI);
718 
719     if (SROAStrictInbounds && GEPI.isInBounds()) {
720       // FIXME: This is a manually un-factored variant of the basic code inside
721       // of GEPs with checking of the inbounds invariant specified in the
722       // langref in a very strict sense. If we ever want to enable
723       // SROAStrictInbounds, this code should be factored cleanly into
724       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
725       // by writing out the code here where we have the underlying allocation
726       // size readily available.
727       APInt GEPOffset = Offset;
728       const DataLayout &DL = GEPI.getModule()->getDataLayout();
729       for (gep_type_iterator GTI = gep_type_begin(GEPI),
730                              GTE = gep_type_end(GEPI);
731            GTI != GTE; ++GTI) {
732         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
733         if (!OpC)
734           break;
735 
736         // Handle a struct index, which adds its field offset to the pointer.
737         if (StructType *STy = GTI.getStructTypeOrNull()) {
738           unsigned ElementIdx = OpC->getZExtValue();
739           const StructLayout *SL = DL.getStructLayout(STy);
740           GEPOffset +=
741               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
742         } else {
743           // For array or vector indices, scale the index by the size of the
744           // type.
745           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
746           GEPOffset +=
747               Index *
748               APInt(Offset.getBitWidth(),
749                     DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
750         }
751 
752         // If this index has computed an intermediate pointer which is not
753         // inbounds, then the result of the GEP is a poison value and we can
754         // delete it and all uses.
755         if (GEPOffset.ugt(AllocSize))
756           return markAsDead(GEPI);
757       }
758     }
759 
760     return Base::visitGetElementPtrInst(GEPI);
761   }
762 
763   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
764                          uint64_t Size, bool IsVolatile) {
765     // We allow splitting of non-volatile loads and stores where the type is an
766     // integer type. These may be used to implement 'memcpy' or other "transfer
767     // of bits" patterns.
768     bool IsSplittable =
769         Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty);
770 
771     insertUse(I, Offset, Size, IsSplittable);
772   }
773 
774   void visitLoadInst(LoadInst &LI) {
775     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
776            "All simple FCA loads should have been pre-split");
777 
778     if (!IsOffsetKnown)
779       return PI.setAborted(&LI);
780 
781     if (LI.isVolatile() &&
782         LI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
783       return PI.setAborted(&LI);
784 
785     if (isa<ScalableVectorType>(LI.getType()))
786       return PI.setAborted(&LI);
787 
788     uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize();
789     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
790   }
791 
792   void visitStoreInst(StoreInst &SI) {
793     Value *ValOp = SI.getValueOperand();
794     if (ValOp == *U)
795       return PI.setEscapedAndAborted(&SI);
796     if (!IsOffsetKnown)
797       return PI.setAborted(&SI);
798 
799     if (SI.isVolatile() &&
800         SI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
801       return PI.setAborted(&SI);
802 
803     if (isa<ScalableVectorType>(ValOp->getType()))
804       return PI.setAborted(&SI);
805 
806     uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize();
807 
808     // If this memory access can be shown to *statically* extend outside the
809     // bounds of the allocation, it's behavior is undefined, so simply
810     // ignore it. Note that this is more strict than the generic clamping
811     // behavior of insertUse. We also try to handle cases which might run the
812     // risk of overflow.
813     // FIXME: We should instead consider the pointer to have escaped if this
814     // function is being instrumented for addressing bugs or race conditions.
815     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
816       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
817                         << Offset << " which extends past the end of the "
818                         << AllocSize << " byte alloca:\n"
819                         << "    alloca: " << AS.AI << "\n"
820                         << "       use: " << SI << "\n");
821       return markAsDead(SI);
822     }
823 
824     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
825            "All simple FCA stores should have been pre-split");
826     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
827   }
828 
829   void visitMemSetInst(MemSetInst &II) {
830     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
831     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
832     if ((Length && Length->getValue() == 0) ||
833         (IsOffsetKnown && Offset.uge(AllocSize)))
834       // Zero-length mem transfer intrinsics can be ignored entirely.
835       return markAsDead(II);
836 
837     if (!IsOffsetKnown)
838       return PI.setAborted(&II);
839 
840     // Don't replace this with a store with a different address space.  TODO:
841     // Use a store with the casted new alloca?
842     if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace())
843       return PI.setAborted(&II);
844 
845     insertUse(II, Offset, Length ? Length->getLimitedValue()
846                                  : AllocSize - Offset.getLimitedValue(),
847               (bool)Length);
848   }
849 
850   void visitMemTransferInst(MemTransferInst &II) {
851     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
852     if (Length && Length->getValue() == 0)
853       // Zero-length mem transfer intrinsics can be ignored entirely.
854       return markAsDead(II);
855 
856     // Because we can visit these intrinsics twice, also check to see if the
857     // first time marked this instruction as dead. If so, skip it.
858     if (VisitedDeadInsts.count(&II))
859       return;
860 
861     if (!IsOffsetKnown)
862       return PI.setAborted(&II);
863 
864     // Don't replace this with a load/store with a different address space.
865     // TODO: Use a store with the casted new alloca?
866     if (II.isVolatile() &&
867         (II.getDestAddressSpace() != DL.getAllocaAddrSpace() ||
868          II.getSourceAddressSpace() != DL.getAllocaAddrSpace()))
869       return PI.setAborted(&II);
870 
871     // This side of the transfer is completely out-of-bounds, and so we can
872     // nuke the entire transfer. However, we also need to nuke the other side
873     // if already added to our partitions.
874     // FIXME: Yet another place we really should bypass this when
875     // instrumenting for ASan.
876     if (Offset.uge(AllocSize)) {
877       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
878           MemTransferSliceMap.find(&II);
879       if (MTPI != MemTransferSliceMap.end())
880         AS.Slices[MTPI->second].kill();
881       return markAsDead(II);
882     }
883 
884     uint64_t RawOffset = Offset.getLimitedValue();
885     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
886 
887     // Check for the special case where the same exact value is used for both
888     // source and dest.
889     if (*U == II.getRawDest() && *U == II.getRawSource()) {
890       // For non-volatile transfers this is a no-op.
891       if (!II.isVolatile())
892         return markAsDead(II);
893 
894       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
895     }
896 
897     // If we have seen both source and destination for a mem transfer, then
898     // they both point to the same alloca.
899     bool Inserted;
900     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
901     std::tie(MTPI, Inserted) =
902         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
903     unsigned PrevIdx = MTPI->second;
904     if (!Inserted) {
905       Slice &PrevP = AS.Slices[PrevIdx];
906 
907       // Check if the begin offsets match and this is a non-volatile transfer.
908       // In that case, we can completely elide the transfer.
909       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
910         PrevP.kill();
911         return markAsDead(II);
912       }
913 
914       // Otherwise we have an offset transfer within the same alloca. We can't
915       // split those.
916       PrevP.makeUnsplittable();
917     }
918 
919     // Insert the use now that we've fixed up the splittable nature.
920     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
921 
922     // Check that we ended up with a valid index in the map.
923     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
924            "Map index doesn't point back to a slice with this user.");
925   }
926 
927   // Disable SRoA for any intrinsics except for lifetime invariants and
928   // invariant group.
929   // FIXME: What about debug intrinsics? This matches old behavior, but
930   // doesn't make sense.
931   void visitIntrinsicInst(IntrinsicInst &II) {
932     if (II.isDroppable()) {
933       AS.DeadUseIfPromotable.push_back(U);
934       return;
935     }
936 
937     if (!IsOffsetKnown)
938       return PI.setAborted(&II);
939 
940     if (II.isLifetimeStartOrEnd()) {
941       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
942       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
943                                Length->getLimitedValue());
944       insertUse(II, Offset, Size, true);
945       return;
946     }
947 
948     if (II.isLaunderOrStripInvariantGroup()) {
949       enqueueUsers(II);
950       return;
951     }
952 
953     Base::visitIntrinsicInst(II);
954   }
955 
956   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
957     // We consider any PHI or select that results in a direct load or store of
958     // the same offset to be a viable use for slicing purposes. These uses
959     // are considered unsplittable and the size is the maximum loaded or stored
960     // size.
961     SmallPtrSet<Instruction *, 4> Visited;
962     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
963     Visited.insert(Root);
964     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
965     const DataLayout &DL = Root->getModule()->getDataLayout();
966     // If there are no loads or stores, the access is dead. We mark that as
967     // a size zero access.
968     Size = 0;
969     do {
970       Instruction *I, *UsedI;
971       std::tie(UsedI, I) = Uses.pop_back_val();
972 
973       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
974         Size = std::max(Size,
975                         DL.getTypeStoreSize(LI->getType()).getFixedSize());
976         continue;
977       }
978       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
979         Value *Op = SI->getOperand(0);
980         if (Op == UsedI)
981           return SI;
982         Size = std::max(Size,
983                         DL.getTypeStoreSize(Op->getType()).getFixedSize());
984         continue;
985       }
986 
987       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
988         if (!GEP->hasAllZeroIndices())
989           return GEP;
990       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
991                  !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
992         return I;
993       }
994 
995       for (User *U : I->users())
996         if (Visited.insert(cast<Instruction>(U)).second)
997           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
998     } while (!Uses.empty());
999 
1000     return nullptr;
1001   }
1002 
1003   void visitPHINodeOrSelectInst(Instruction &I) {
1004     assert(isa<PHINode>(I) || isa<SelectInst>(I));
1005     if (I.use_empty())
1006       return markAsDead(I);
1007 
1008     // If this is a PHI node before a catchswitch, we cannot insert any non-PHI
1009     // instructions in this BB, which may be required during rewriting. Bail out
1010     // on these cases.
1011     if (isa<PHINode>(I) &&
1012         I.getParent()->getFirstInsertionPt() == I.getParent()->end())
1013       return PI.setAborted(&I);
1014 
1015     // TODO: We could use simplifyInstruction here to fold PHINodes and
1016     // SelectInsts. However, doing so requires to change the current
1017     // dead-operand-tracking mechanism. For instance, suppose neither loading
1018     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1019     // trap either.  However, if we simply replace %U with undef using the
1020     // current dead-operand-tracking mechanism, "load (select undef, undef,
1021     // %other)" may trap because the select may return the first operand
1022     // "undef".
1023     if (Value *Result = foldPHINodeOrSelectInst(I)) {
1024       if (Result == *U)
1025         // If the result of the constant fold will be the pointer, recurse
1026         // through the PHI/select as if we had RAUW'ed it.
1027         enqueueUsers(I);
1028       else
1029         // Otherwise the operand to the PHI/select is dead, and we can replace
1030         // it with poison.
1031         AS.DeadOperands.push_back(U);
1032 
1033       return;
1034     }
1035 
1036     if (!IsOffsetKnown)
1037       return PI.setAborted(&I);
1038 
1039     // See if we already have computed info on this node.
1040     uint64_t &Size = PHIOrSelectSizes[&I];
1041     if (!Size) {
1042       // This is a new PHI/Select, check for an unsafe use of it.
1043       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1044         return PI.setAborted(UnsafeI);
1045     }
1046 
1047     // For PHI and select operands outside the alloca, we can't nuke the entire
1048     // phi or select -- the other side might still be relevant, so we special
1049     // case them here and use a separate structure to track the operands
1050     // themselves which should be replaced with poison.
1051     // FIXME: This should instead be escaped in the event we're instrumenting
1052     // for address sanitization.
1053     if (Offset.uge(AllocSize)) {
1054       AS.DeadOperands.push_back(U);
1055       return;
1056     }
1057 
1058     insertUse(I, Offset, Size);
1059   }
1060 
1061   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1062 
1063   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1064 
1065   /// Disable SROA entirely if there are unhandled users of the alloca.
1066   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1067 };
1068 
1069 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1070     :
1071 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1072       AI(AI),
1073 #endif
1074       PointerEscapingInstr(nullptr) {
1075   SliceBuilder PB(DL, AI, *this);
1076   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1077   if (PtrI.isEscaped() || PtrI.isAborted()) {
1078     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1079     // possibly by just storing the PtrInfo in the AllocaSlices.
1080     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1081                                                   : PtrI.getAbortingInst();
1082     assert(PointerEscapingInstr && "Did not track a bad instruction");
1083     return;
1084   }
1085 
1086   llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); });
1087 
1088   // Sort the uses. This arranges for the offsets to be in ascending order,
1089   // and the sizes to be in descending order.
1090   llvm::stable_sort(Slices);
1091 }
1092 
1093 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1094 
1095 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1096                          StringRef Indent) const {
1097   printSlice(OS, I, Indent);
1098   OS << "\n";
1099   printUse(OS, I, Indent);
1100 }
1101 
1102 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1103                               StringRef Indent) const {
1104   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1105      << " slice #" << (I - begin())
1106      << (I->isSplittable() ? " (splittable)" : "");
1107 }
1108 
1109 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1110                             StringRef Indent) const {
1111   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1112 }
1113 
1114 void AllocaSlices::print(raw_ostream &OS) const {
1115   if (PointerEscapingInstr) {
1116     OS << "Can't analyze slices for alloca: " << AI << "\n"
1117        << "  A pointer to this alloca escaped by:\n"
1118        << "  " << *PointerEscapingInstr << "\n";
1119     return;
1120   }
1121 
1122   OS << "Slices of alloca: " << AI << "\n";
1123   for (const_iterator I = begin(), E = end(); I != E; ++I)
1124     print(OS, I);
1125 }
1126 
1127 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1128   print(dbgs(), I);
1129 }
1130 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1131 
1132 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1133 
1134 /// Walk the range of a partitioning looking for a common type to cover this
1135 /// sequence of slices.
1136 static std::pair<Type *, IntegerType *>
1137 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E,
1138                uint64_t EndOffset) {
1139   Type *Ty = nullptr;
1140   bool TyIsCommon = true;
1141   IntegerType *ITy = nullptr;
1142 
1143   // Note that we need to look at *every* alloca slice's Use to ensure we
1144   // always get consistent results regardless of the order of slices.
1145   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1146     Use *U = I->getUse();
1147     if (isa<IntrinsicInst>(*U->getUser()))
1148       continue;
1149     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1150       continue;
1151 
1152     Type *UserTy = nullptr;
1153     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1154       UserTy = LI->getType();
1155     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1156       UserTy = SI->getValueOperand()->getType();
1157     }
1158 
1159     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1160       // If the type is larger than the partition, skip it. We only encounter
1161       // this for split integer operations where we want to use the type of the
1162       // entity causing the split. Also skip if the type is not a byte width
1163       // multiple.
1164       if (UserITy->getBitWidth() % 8 != 0 ||
1165           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1166         continue;
1167 
1168       // Track the largest bitwidth integer type used in this way in case there
1169       // is no common type.
1170       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1171         ITy = UserITy;
1172     }
1173 
1174     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1175     // depend on types skipped above.
1176     if (!UserTy || (Ty && Ty != UserTy))
1177       TyIsCommon = false; // Give up on anything but an iN type.
1178     else
1179       Ty = UserTy;
1180   }
1181 
1182   return {TyIsCommon ? Ty : nullptr, ITy};
1183 }
1184 
1185 /// PHI instructions that use an alloca and are subsequently loaded can be
1186 /// rewritten to load both input pointers in the pred blocks and then PHI the
1187 /// results, allowing the load of the alloca to be promoted.
1188 /// From this:
1189 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1190 ///   %V = load i32* %P2
1191 /// to:
1192 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1193 ///   ...
1194 ///   %V2 = load i32* %Other
1195 ///   ...
1196 ///   %V = phi [i32 %V1, i32 %V2]
1197 ///
1198 /// We can do this to a select if its only uses are loads and if the operands
1199 /// to the select can be loaded unconditionally.
1200 ///
1201 /// FIXME: This should be hoisted into a generic utility, likely in
1202 /// Transforms/Util/Local.h
1203 static bool isSafePHIToSpeculate(PHINode &PN) {
1204   const DataLayout &DL = PN.getModule()->getDataLayout();
1205 
1206   // For now, we can only do this promotion if the load is in the same block
1207   // as the PHI, and if there are no stores between the phi and load.
1208   // TODO: Allow recursive phi users.
1209   // TODO: Allow stores.
1210   BasicBlock *BB = PN.getParent();
1211   Align MaxAlign;
1212   uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1213   Type *LoadType = nullptr;
1214   for (User *U : PN.users()) {
1215     LoadInst *LI = dyn_cast<LoadInst>(U);
1216     if (!LI || !LI->isSimple())
1217       return false;
1218 
1219     // For now we only allow loads in the same block as the PHI.  This is
1220     // a common case that happens when instcombine merges two loads through
1221     // a PHI.
1222     if (LI->getParent() != BB)
1223       return false;
1224 
1225     if (LoadType) {
1226       if (LoadType != LI->getType())
1227         return false;
1228     } else {
1229       LoadType = LI->getType();
1230     }
1231 
1232     // Ensure that there are no instructions between the PHI and the load that
1233     // could store.
1234     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1235       if (BBI->mayWriteToMemory())
1236         return false;
1237 
1238     MaxAlign = std::max(MaxAlign, LI->getAlign());
1239   }
1240 
1241   if (!LoadType)
1242     return false;
1243 
1244   APInt LoadSize = APInt(APWidth, DL.getTypeStoreSize(LoadType).getFixedSize());
1245 
1246   // We can only transform this if it is safe to push the loads into the
1247   // predecessor blocks. The only thing to watch out for is that we can't put
1248   // a possibly trapping load in the predecessor if it is a critical edge.
1249   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1250     Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1251     Value *InVal = PN.getIncomingValue(Idx);
1252 
1253     // If the value is produced by the terminator of the predecessor (an
1254     // invoke) or it has side-effects, there is no valid place to put a load
1255     // in the predecessor.
1256     if (TI == InVal || TI->mayHaveSideEffects())
1257       return false;
1258 
1259     // If the predecessor has a single successor, then the edge isn't
1260     // critical.
1261     if (TI->getNumSuccessors() == 1)
1262       continue;
1263 
1264     // If this pointer is always safe to load, or if we can prove that there
1265     // is already a load in the block, then we can move the load to the pred
1266     // block.
1267     if (isSafeToLoadUnconditionally(InVal, MaxAlign, LoadSize, DL, TI))
1268       continue;
1269 
1270     return false;
1271   }
1272 
1273   return true;
1274 }
1275 
1276 static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) {
1277   LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1278 
1279   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1280   Type *LoadTy = SomeLoad->getType();
1281   IRB.SetInsertPoint(&PN);
1282   PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1283                                  PN.getName() + ".sroa.speculated");
1284 
1285   // Get the AA tags and alignment to use from one of the loads. It does not
1286   // matter which one we get and if any differ.
1287   AAMDNodes AATags = SomeLoad->getAAMetadata();
1288   Align Alignment = SomeLoad->getAlign();
1289 
1290   // Rewrite all loads of the PN to use the new PHI.
1291   while (!PN.use_empty()) {
1292     LoadInst *LI = cast<LoadInst>(PN.user_back());
1293     LI->replaceAllUsesWith(NewPN);
1294     LI->eraseFromParent();
1295   }
1296 
1297   // Inject loads into all of the pred blocks.
1298   DenseMap<BasicBlock*, Value*> InjectedLoads;
1299   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1300     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1301     Value *InVal = PN.getIncomingValue(Idx);
1302 
1303     // A PHI node is allowed to have multiple (duplicated) entries for the same
1304     // basic block, as long as the value is the same. So if we already injected
1305     // a load in the predecessor, then we should reuse the same load for all
1306     // duplicated entries.
1307     if (Value* V = InjectedLoads.lookup(Pred)) {
1308       NewPN->addIncoming(V, Pred);
1309       continue;
1310     }
1311 
1312     Instruction *TI = Pred->getTerminator();
1313     IRB.SetInsertPoint(TI);
1314 
1315     LoadInst *Load = IRB.CreateAlignedLoad(
1316         LoadTy, InVal, Alignment,
1317         (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1318     ++NumLoadsSpeculated;
1319     if (AATags)
1320       Load->setAAMetadata(AATags);
1321     NewPN->addIncoming(Load, Pred);
1322     InjectedLoads[Pred] = Load;
1323   }
1324 
1325   LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1326   PN.eraseFromParent();
1327 }
1328 
1329 /// Select instructions that use an alloca and are subsequently loaded can be
1330 /// rewritten to load both input pointers and then select between the result,
1331 /// allowing the load of the alloca to be promoted.
1332 /// From this:
1333 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1334 ///   %V = load i32* %P2
1335 /// to:
1336 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1337 ///   %V2 = load i32* %Other
1338 ///   %V = select i1 %cond, i32 %V1, i32 %V2
1339 ///
1340 /// We can do this to a select if its only uses are loads and if the operand
1341 /// to the select can be loaded unconditionally. If found an intervening bitcast
1342 /// with a single use of the load, allow the promotion.
1343 static bool isSafeSelectToSpeculate(SelectInst &SI) {
1344   Value *TValue = SI.getTrueValue();
1345   Value *FValue = SI.getFalseValue();
1346   const DataLayout &DL = SI.getModule()->getDataLayout();
1347 
1348   for (User *U : SI.users()) {
1349     LoadInst *LI;
1350     BitCastInst *BC = dyn_cast<BitCastInst>(U);
1351     if (BC && BC->hasOneUse())
1352       LI = dyn_cast<LoadInst>(*BC->user_begin());
1353     else
1354       LI = dyn_cast<LoadInst>(U);
1355 
1356     if (!LI || !LI->isSimple())
1357       return false;
1358 
1359     // Both operands to the select need to be dereferenceable, either
1360     // absolutely (e.g. allocas) or at this point because we can see other
1361     // accesses to it.
1362     if (!isSafeToLoadUnconditionally(TValue, LI->getType(),
1363                                      LI->getAlign(), DL, LI))
1364       return false;
1365     if (!isSafeToLoadUnconditionally(FValue, LI->getType(),
1366                                      LI->getAlign(), DL, LI))
1367       return false;
1368   }
1369 
1370   return true;
1371 }
1372 
1373 static void speculateSelectInstLoads(IRBuilderTy &IRB, SelectInst &SI) {
1374   LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
1375 
1376   IRB.SetInsertPoint(&SI);
1377   Value *TV = SI.getTrueValue();
1378   Value *FV = SI.getFalseValue();
1379   // Replace the loads of the select with a select of two loads.
1380   while (!SI.use_empty()) {
1381     LoadInst *LI;
1382     BitCastInst *BC = dyn_cast<BitCastInst>(SI.user_back());
1383     if (BC) {
1384       assert(BC->hasOneUse() && "Bitcast should have a single use.");
1385       LI = cast<LoadInst>(BC->user_back());
1386     } else {
1387       LI = cast<LoadInst>(SI.user_back());
1388     }
1389 
1390     assert(LI->isSimple() && "We only speculate simple loads");
1391 
1392     IRB.SetInsertPoint(LI);
1393     Value *NewTV =
1394         BC ? IRB.CreateBitCast(TV, BC->getType(), TV->getName() + ".sroa.cast")
1395            : TV;
1396     Value *NewFV =
1397         BC ? IRB.CreateBitCast(FV, BC->getType(), FV->getName() + ".sroa.cast")
1398            : FV;
1399     LoadInst *TL = IRB.CreateLoad(LI->getType(), NewTV,
1400                                   LI->getName() + ".sroa.speculate.load.true");
1401     LoadInst *FL = IRB.CreateLoad(LI->getType(), NewFV,
1402                                   LI->getName() + ".sroa.speculate.load.false");
1403     NumLoadsSpeculated += 2;
1404 
1405     // Transfer alignment and AA info if present.
1406     TL->setAlignment(LI->getAlign());
1407     FL->setAlignment(LI->getAlign());
1408 
1409     AAMDNodes Tags = LI->getAAMetadata();
1410     if (Tags) {
1411       TL->setAAMetadata(Tags);
1412       FL->setAAMetadata(Tags);
1413     }
1414 
1415     Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1416                                 LI->getName() + ".sroa.speculated");
1417 
1418     LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1419     LI->replaceAllUsesWith(V);
1420     LI->eraseFromParent();
1421     if (BC)
1422       BC->eraseFromParent();
1423   }
1424   SI.eraseFromParent();
1425 }
1426 
1427 /// Build a GEP out of a base pointer and indices.
1428 ///
1429 /// This will return the BasePtr if that is valid, or build a new GEP
1430 /// instruction using the IRBuilder if GEP-ing is needed.
1431 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1432                        SmallVectorImpl<Value *> &Indices,
1433                        const Twine &NamePrefix) {
1434   if (Indices.empty())
1435     return BasePtr;
1436 
1437   // A single zero index is a no-op, so check for this and avoid building a GEP
1438   // in that case.
1439   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1440     return BasePtr;
1441 
1442   // buildGEP() is only called for non-opaque pointers.
1443   return IRB.CreateInBoundsGEP(
1444       BasePtr->getType()->getNonOpaquePointerElementType(), BasePtr, Indices,
1445       NamePrefix + "sroa_idx");
1446 }
1447 
1448 /// Get a natural GEP off of the BasePtr walking through Ty toward
1449 /// TargetTy without changing the offset of the pointer.
1450 ///
1451 /// This routine assumes we've already established a properly offset GEP with
1452 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1453 /// zero-indices down through type layers until we find one the same as
1454 /// TargetTy. If we can't find one with the same type, we at least try to use
1455 /// one with the same size. If none of that works, we just produce the GEP as
1456 /// indicated by Indices to have the correct offset.
1457 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1458                                     Value *BasePtr, Type *Ty, Type *TargetTy,
1459                                     SmallVectorImpl<Value *> &Indices,
1460                                     const Twine &NamePrefix) {
1461   if (Ty == TargetTy)
1462     return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1463 
1464   // Offset size to use for the indices.
1465   unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1466 
1467   // See if we can descend into a struct and locate a field with the correct
1468   // type.
1469   unsigned NumLayers = 0;
1470   Type *ElementTy = Ty;
1471   do {
1472     if (ElementTy->isPointerTy())
1473       break;
1474 
1475     if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1476       ElementTy = ArrayTy->getElementType();
1477       Indices.push_back(IRB.getIntN(OffsetSize, 0));
1478     } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1479       ElementTy = VectorTy->getElementType();
1480       Indices.push_back(IRB.getInt32(0));
1481     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1482       if (STy->element_begin() == STy->element_end())
1483         break; // Nothing left to descend into.
1484       ElementTy = *STy->element_begin();
1485       Indices.push_back(IRB.getInt32(0));
1486     } else {
1487       break;
1488     }
1489     ++NumLayers;
1490   } while (ElementTy != TargetTy);
1491   if (ElementTy != TargetTy)
1492     Indices.erase(Indices.end() - NumLayers, Indices.end());
1493 
1494   return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1495 }
1496 
1497 /// Get a natural GEP from a base pointer to a particular offset and
1498 /// resulting in a particular type.
1499 ///
1500 /// The goal is to produce a "natural" looking GEP that works with the existing
1501 /// composite types to arrive at the appropriate offset and element type for
1502 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1503 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1504 /// Indices, and setting Ty to the result subtype.
1505 ///
1506 /// If no natural GEP can be constructed, this function returns null.
1507 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1508                                       Value *Ptr, APInt Offset, Type *TargetTy,
1509                                       SmallVectorImpl<Value *> &Indices,
1510                                       const Twine &NamePrefix) {
1511   PointerType *Ty = cast<PointerType>(Ptr->getType());
1512 
1513   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1514   // an i8.
1515   if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1516     return nullptr;
1517 
1518   Type *ElementTy = Ty->getNonOpaquePointerElementType();
1519   if (!ElementTy->isSized())
1520     return nullptr; // We can't GEP through an unsized element.
1521 
1522   SmallVector<APInt> IntIndices = DL.getGEPIndicesForOffset(ElementTy, Offset);
1523   if (Offset != 0)
1524     return nullptr;
1525 
1526   for (const APInt &Index : IntIndices)
1527     Indices.push_back(IRB.getInt(Index));
1528   return getNaturalGEPWithType(IRB, DL, Ptr, ElementTy, TargetTy, Indices,
1529                                NamePrefix);
1530 }
1531 
1532 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1533 /// resulting pointer has PointerTy.
1534 ///
1535 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1536 /// and produces the pointer type desired. Where it cannot, it will try to use
1537 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1538 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1539 /// bitcast to the type.
1540 ///
1541 /// The strategy for finding the more natural GEPs is to peel off layers of the
1542 /// pointer, walking back through bit casts and GEPs, searching for a base
1543 /// pointer from which we can compute a natural GEP with the desired
1544 /// properties. The algorithm tries to fold as many constant indices into
1545 /// a single GEP as possible, thus making each GEP more independent of the
1546 /// surrounding code.
1547 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1548                              APInt Offset, Type *PointerTy,
1549                              const Twine &NamePrefix) {
1550   // Create i8 GEP for opaque pointers.
1551   if (Ptr->getType()->isOpaquePointerTy()) {
1552     if (Offset != 0)
1553       Ptr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Ptr, IRB.getInt(Offset),
1554                                   NamePrefix + "sroa_idx");
1555     return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy,
1556                                                    NamePrefix + "sroa_cast");
1557   }
1558 
1559   // Even though we don't look through PHI nodes, we could be called on an
1560   // instruction in an unreachable block, which may be on a cycle.
1561   SmallPtrSet<Value *, 4> Visited;
1562   Visited.insert(Ptr);
1563   SmallVector<Value *, 4> Indices;
1564 
1565   // We may end up computing an offset pointer that has the wrong type. If we
1566   // never are able to compute one directly that has the correct type, we'll
1567   // fall back to it, so keep it and the base it was computed from around here.
1568   Value *OffsetPtr = nullptr;
1569   Value *OffsetBasePtr;
1570 
1571   // Remember any i8 pointer we come across to re-use if we need to do a raw
1572   // byte offset.
1573   Value *Int8Ptr = nullptr;
1574   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1575 
1576   PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1577   Type *TargetTy = TargetPtrTy->getNonOpaquePointerElementType();
1578 
1579   // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1580   // address space from the expected `PointerTy` (the pointer to be used).
1581   // Adjust the pointer type based the original storage pointer.
1582   auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1583   PointerTy = TargetTy->getPointerTo(AS);
1584 
1585   do {
1586     // First fold any existing GEPs into the offset.
1587     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1588       APInt GEPOffset(Offset.getBitWidth(), 0);
1589       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1590         break;
1591       Offset += GEPOffset;
1592       Ptr = GEP->getPointerOperand();
1593       if (!Visited.insert(Ptr).second)
1594         break;
1595     }
1596 
1597     // See if we can perform a natural GEP here.
1598     Indices.clear();
1599     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1600                                            Indices, NamePrefix)) {
1601       // If we have a new natural pointer at the offset, clear out any old
1602       // offset pointer we computed. Unless it is the base pointer or
1603       // a non-instruction, we built a GEP we don't need. Zap it.
1604       if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1605         if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1606           assert(I->use_empty() && "Built a GEP with uses some how!");
1607           I->eraseFromParent();
1608         }
1609       OffsetPtr = P;
1610       OffsetBasePtr = Ptr;
1611       // If we also found a pointer of the right type, we're done.
1612       if (P->getType() == PointerTy)
1613         break;
1614     }
1615 
1616     // Stash this pointer if we've found an i8*.
1617     if (Ptr->getType()->isIntegerTy(8)) {
1618       Int8Ptr = Ptr;
1619       Int8PtrOffset = Offset;
1620     }
1621 
1622     // Peel off a layer of the pointer and update the offset appropriately.
1623     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1624       Ptr = cast<Operator>(Ptr)->getOperand(0);
1625     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1626       if (GA->isInterposable())
1627         break;
1628       Ptr = GA->getAliasee();
1629     } else {
1630       break;
1631     }
1632     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1633   } while (Visited.insert(Ptr).second);
1634 
1635   if (!OffsetPtr) {
1636     if (!Int8Ptr) {
1637       Int8Ptr = IRB.CreateBitCast(
1638           Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1639           NamePrefix + "sroa_raw_cast");
1640       Int8PtrOffset = Offset;
1641     }
1642 
1643     OffsetPtr = Int8PtrOffset == 0
1644                     ? Int8Ptr
1645                     : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1646                                             IRB.getInt(Int8PtrOffset),
1647                                             NamePrefix + "sroa_raw_idx");
1648   }
1649   Ptr = OffsetPtr;
1650 
1651   // On the off chance we were targeting i8*, guard the bitcast here.
1652   if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1653     Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1654                                                   TargetPtrTy,
1655                                                   NamePrefix + "sroa_cast");
1656   }
1657 
1658   return Ptr;
1659 }
1660 
1661 /// Compute the adjusted alignment for a load or store from an offset.
1662 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
1663   return commonAlignment(getLoadStoreAlignment(I), Offset);
1664 }
1665 
1666 /// Test whether we can convert a value from the old to the new type.
1667 ///
1668 /// This predicate should be used to guard calls to convertValue in order to
1669 /// ensure that we only try to convert viable values. The strategy is that we
1670 /// will peel off single element struct and array wrappings to get to an
1671 /// underlying value, and convert that value.
1672 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1673   if (OldTy == NewTy)
1674     return true;
1675 
1676   // For integer types, we can't handle any bit-width differences. This would
1677   // break both vector conversions with extension and introduce endianness
1678   // issues when in conjunction with loads and stores.
1679   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1680     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1681                cast<IntegerType>(NewTy)->getBitWidth() &&
1682            "We can't have the same bitwidth for different int types");
1683     return false;
1684   }
1685 
1686   if (DL.getTypeSizeInBits(NewTy).getFixedSize() !=
1687       DL.getTypeSizeInBits(OldTy).getFixedSize())
1688     return false;
1689   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1690     return false;
1691 
1692   // We can convert pointers to integers and vice-versa. Same for vectors
1693   // of pointers and integers.
1694   OldTy = OldTy->getScalarType();
1695   NewTy = NewTy->getScalarType();
1696   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1697     if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1698       unsigned OldAS = OldTy->getPointerAddressSpace();
1699       unsigned NewAS = NewTy->getPointerAddressSpace();
1700       // Convert pointers if they are pointers from the same address space or
1701       // different integral (not non-integral) address spaces with the same
1702       // pointer size.
1703       return OldAS == NewAS ||
1704              (!DL.isNonIntegralAddressSpace(OldAS) &&
1705               !DL.isNonIntegralAddressSpace(NewAS) &&
1706               DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1707     }
1708 
1709     // We can convert integers to integral pointers, but not to non-integral
1710     // pointers.
1711     if (OldTy->isIntegerTy())
1712       return !DL.isNonIntegralPointerType(NewTy);
1713 
1714     // We can convert integral pointers to integers, but non-integral pointers
1715     // need to remain pointers.
1716     if (!DL.isNonIntegralPointerType(OldTy))
1717       return NewTy->isIntegerTy();
1718 
1719     return false;
1720   }
1721 
1722   return true;
1723 }
1724 
1725 /// Generic routine to convert an SSA value to a value of a different
1726 /// type.
1727 ///
1728 /// This will try various different casting techniques, such as bitcasts,
1729 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1730 /// two types for viability with this routine.
1731 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1732                            Type *NewTy) {
1733   Type *OldTy = V->getType();
1734   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1735 
1736   if (OldTy == NewTy)
1737     return V;
1738 
1739   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1740          "Integer types must be the exact same to convert.");
1741 
1742   // See if we need inttoptr for this type pair. May require additional bitcast.
1743   if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1744     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1745     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1746     // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
1747     // Directly handle i64 to i8*
1748     return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1749                               NewTy);
1750   }
1751 
1752   // See if we need ptrtoint for this type pair. May require additional bitcast.
1753   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1754     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1755     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1756     // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
1757     // Expand i8* to i64 --> i8* to i64 to i64
1758     return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1759                              NewTy);
1760   }
1761 
1762   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1763     unsigned OldAS = OldTy->getPointerAddressSpace();
1764     unsigned NewAS = NewTy->getPointerAddressSpace();
1765     // To convert pointers with different address spaces (they are already
1766     // checked convertible, i.e. they have the same pointer size), so far we
1767     // cannot use `bitcast` (which has restrict on the same address space) or
1768     // `addrspacecast` (which is not always no-op casting). Instead, use a pair
1769     // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
1770     // size.
1771     if (OldAS != NewAS) {
1772       assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1773       return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1774                                 NewTy);
1775     }
1776   }
1777 
1778   return IRB.CreateBitCast(V, NewTy);
1779 }
1780 
1781 /// Test whether the given slice use can be promoted to a vector.
1782 ///
1783 /// This function is called to test each entry in a partition which is slated
1784 /// for a single slice.
1785 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1786                                             VectorType *Ty,
1787                                             uint64_t ElementSize,
1788                                             const DataLayout &DL) {
1789   // First validate the slice offsets.
1790   uint64_t BeginOffset =
1791       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1792   uint64_t BeginIndex = BeginOffset / ElementSize;
1793   if (BeginIndex * ElementSize != BeginOffset ||
1794       BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements())
1795     return false;
1796   uint64_t EndOffset =
1797       std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1798   uint64_t EndIndex = EndOffset / ElementSize;
1799   if (EndIndex * ElementSize != EndOffset ||
1800       EndIndex > cast<FixedVectorType>(Ty)->getNumElements())
1801     return false;
1802 
1803   assert(EndIndex > BeginIndex && "Empty vector!");
1804   uint64_t NumElements = EndIndex - BeginIndex;
1805   Type *SliceTy = (NumElements == 1)
1806                       ? Ty->getElementType()
1807                       : FixedVectorType::get(Ty->getElementType(), NumElements);
1808 
1809   Type *SplitIntTy =
1810       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1811 
1812   Use *U = S.getUse();
1813 
1814   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1815     if (MI->isVolatile())
1816       return false;
1817     if (!S.isSplittable())
1818       return false; // Skip any unsplittable intrinsics.
1819   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1820     if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
1821       return false;
1822   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1823     if (LI->isVolatile())
1824       return false;
1825     Type *LTy = LI->getType();
1826     // Disable vector promotion when there are loads or stores of an FCA.
1827     if (LTy->isStructTy())
1828       return false;
1829     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1830       assert(LTy->isIntegerTy());
1831       LTy = SplitIntTy;
1832     }
1833     if (!canConvertValue(DL, SliceTy, LTy))
1834       return false;
1835   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1836     if (SI->isVolatile())
1837       return false;
1838     Type *STy = SI->getValueOperand()->getType();
1839     // Disable vector promotion when there are loads or stores of an FCA.
1840     if (STy->isStructTy())
1841       return false;
1842     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1843       assert(STy->isIntegerTy());
1844       STy = SplitIntTy;
1845     }
1846     if (!canConvertValue(DL, STy, SliceTy))
1847       return false;
1848   } else {
1849     return false;
1850   }
1851 
1852   return true;
1853 }
1854 
1855 /// Test whether the given alloca partitioning and range of slices can be
1856 /// promoted to a vector.
1857 ///
1858 /// This is a quick test to check whether we can rewrite a particular alloca
1859 /// partition (and its newly formed alloca) into a vector alloca with only
1860 /// whole-vector loads and stores such that it could be promoted to a vector
1861 /// SSA value. We only can ensure this for a limited set of operations, and we
1862 /// don't want to do the rewrites unless we are confident that the result will
1863 /// be promotable, so we have an early test here.
1864 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1865   // Collect the candidate types for vector-based promotion. Also track whether
1866   // we have different element types.
1867   SmallVector<VectorType *, 4> CandidateTys;
1868   Type *CommonEltTy = nullptr;
1869   bool HaveCommonEltTy = true;
1870   auto CheckCandidateType = [&](Type *Ty) {
1871     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1872       // Return if bitcast to vectors is different for total size in bits.
1873       if (!CandidateTys.empty()) {
1874         VectorType *V = CandidateTys[0];
1875         if (DL.getTypeSizeInBits(VTy).getFixedSize() !=
1876             DL.getTypeSizeInBits(V).getFixedSize()) {
1877           CandidateTys.clear();
1878           return;
1879         }
1880       }
1881       CandidateTys.push_back(VTy);
1882       if (!CommonEltTy)
1883         CommonEltTy = VTy->getElementType();
1884       else if (CommonEltTy != VTy->getElementType())
1885         HaveCommonEltTy = false;
1886     }
1887   };
1888   // Consider any loads or stores that are the exact size of the slice.
1889   for (const Slice &S : P)
1890     if (S.beginOffset() == P.beginOffset() &&
1891         S.endOffset() == P.endOffset()) {
1892       if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1893         CheckCandidateType(LI->getType());
1894       else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1895         CheckCandidateType(SI->getValueOperand()->getType());
1896     }
1897 
1898   // If we didn't find a vector type, nothing to do here.
1899   if (CandidateTys.empty())
1900     return nullptr;
1901 
1902   // Remove non-integer vector types if we had multiple common element types.
1903   // FIXME: It'd be nice to replace them with integer vector types, but we can't
1904   // do that until all the backends are known to produce good code for all
1905   // integer vector types.
1906   if (!HaveCommonEltTy) {
1907     llvm::erase_if(CandidateTys, [](VectorType *VTy) {
1908       return !VTy->getElementType()->isIntegerTy();
1909     });
1910 
1911     // If there were no integer vector types, give up.
1912     if (CandidateTys.empty())
1913       return nullptr;
1914 
1915     // Rank the remaining candidate vector types. This is easy because we know
1916     // they're all integer vectors. We sort by ascending number of elements.
1917     auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1918       (void)DL;
1919       assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() ==
1920                  DL.getTypeSizeInBits(LHSTy).getFixedSize() &&
1921              "Cannot have vector types of different sizes!");
1922       assert(RHSTy->getElementType()->isIntegerTy() &&
1923              "All non-integer types eliminated!");
1924       assert(LHSTy->getElementType()->isIntegerTy() &&
1925              "All non-integer types eliminated!");
1926       return cast<FixedVectorType>(RHSTy)->getNumElements() <
1927              cast<FixedVectorType>(LHSTy)->getNumElements();
1928     };
1929     llvm::sort(CandidateTys, RankVectorTypes);
1930     CandidateTys.erase(
1931         std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1932         CandidateTys.end());
1933   } else {
1934 // The only way to have the same element type in every vector type is to
1935 // have the same vector type. Check that and remove all but one.
1936 #ifndef NDEBUG
1937     for (VectorType *VTy : CandidateTys) {
1938       assert(VTy->getElementType() == CommonEltTy &&
1939              "Unaccounted for element type!");
1940       assert(VTy == CandidateTys[0] &&
1941              "Different vector types with the same element type!");
1942     }
1943 #endif
1944     CandidateTys.resize(1);
1945   }
1946 
1947   // Try each vector type, and return the one which works.
1948   auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1949     uint64_t ElementSize =
1950         DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize();
1951 
1952     // While the definition of LLVM vectors is bitpacked, we don't support sizes
1953     // that aren't byte sized.
1954     if (ElementSize % 8)
1955       return false;
1956     assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 &&
1957            "vector size not a multiple of element size?");
1958     ElementSize /= 8;
1959 
1960     for (const Slice &S : P)
1961       if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1962         return false;
1963 
1964     for (const Slice *S : P.splitSliceTails())
1965       if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1966         return false;
1967 
1968     return true;
1969   };
1970   for (VectorType *VTy : CandidateTys)
1971     if (CheckVectorTypeForPromotion(VTy))
1972       return VTy;
1973 
1974   return nullptr;
1975 }
1976 
1977 /// Test whether a slice of an alloca is valid for integer widening.
1978 ///
1979 /// This implements the necessary checking for the \c isIntegerWideningViable
1980 /// test below on a single slice of the alloca.
1981 static bool isIntegerWideningViableForSlice(const Slice &S,
1982                                             uint64_t AllocBeginOffset,
1983                                             Type *AllocaTy,
1984                                             const DataLayout &DL,
1985                                             bool &WholeAllocaOp) {
1986   uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize();
1987 
1988   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
1989   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
1990 
1991   Use *U = S.getUse();
1992 
1993   // Lifetime intrinsics operate over the whole alloca whose sizes are usually
1994   // larger than other load/store slices (RelEnd > Size). But lifetime are
1995   // always promotable and should not impact other slices' promotability of the
1996   // partition.
1997   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1998     if (II->isLifetimeStartOrEnd() || II->isDroppable())
1999       return true;
2000   }
2001 
2002   // We can't reasonably handle cases where the load or store extends past
2003   // the end of the alloca's type and into its padding.
2004   if (RelEnd > Size)
2005     return false;
2006 
2007   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2008     if (LI->isVolatile())
2009       return false;
2010     // We can't handle loads that extend past the allocated memory.
2011     if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size)
2012       return false;
2013     // So far, AllocaSliceRewriter does not support widening split slice tails
2014     // in rewriteIntegerLoad.
2015     if (S.beginOffset() < AllocBeginOffset)
2016       return false;
2017     // Note that we don't count vector loads or stores as whole-alloca
2018     // operations which enable integer widening because we would prefer to use
2019     // vector widening instead.
2020     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2021       WholeAllocaOp = true;
2022     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2023       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2024         return false;
2025     } else if (RelBegin != 0 || RelEnd != Size ||
2026                !canConvertValue(DL, AllocaTy, LI->getType())) {
2027       // Non-integer loads need to be convertible from the alloca type so that
2028       // they are promotable.
2029       return false;
2030     }
2031   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2032     Type *ValueTy = SI->getValueOperand()->getType();
2033     if (SI->isVolatile())
2034       return false;
2035     // We can't handle stores that extend past the allocated memory.
2036     if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size)
2037       return false;
2038     // So far, AllocaSliceRewriter does not support widening split slice tails
2039     // in rewriteIntegerStore.
2040     if (S.beginOffset() < AllocBeginOffset)
2041       return false;
2042     // Note that we don't count vector loads or stores as whole-alloca
2043     // operations which enable integer widening because we would prefer to use
2044     // vector widening instead.
2045     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2046       WholeAllocaOp = true;
2047     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2048       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2049         return false;
2050     } else if (RelBegin != 0 || RelEnd != Size ||
2051                !canConvertValue(DL, ValueTy, AllocaTy)) {
2052       // Non-integer stores need to be convertible to the alloca type so that
2053       // they are promotable.
2054       return false;
2055     }
2056   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2057     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2058       return false;
2059     if (!S.isSplittable())
2060       return false; // Skip any unsplittable intrinsics.
2061   } else {
2062     return false;
2063   }
2064 
2065   return true;
2066 }
2067 
2068 /// Test whether the given alloca partition's integer operations can be
2069 /// widened to promotable ones.
2070 ///
2071 /// This is a quick test to check whether we can rewrite the integer loads and
2072 /// stores to a particular alloca into wider loads and stores and be able to
2073 /// promote the resulting alloca.
2074 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2075                                     const DataLayout &DL) {
2076   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize();
2077   // Don't create integer types larger than the maximum bitwidth.
2078   if (SizeInBits > IntegerType::MAX_INT_BITS)
2079     return false;
2080 
2081   // Don't try to handle allocas with bit-padding.
2082   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize())
2083     return false;
2084 
2085   // We need to ensure that an integer type with the appropriate bitwidth can
2086   // be converted to the alloca type, whatever that is. We don't want to force
2087   // the alloca itself to have an integer type if there is a more suitable one.
2088   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2089   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2090       !canConvertValue(DL, IntTy, AllocaTy))
2091     return false;
2092 
2093   // While examining uses, we ensure that the alloca has a covering load or
2094   // store. We don't want to widen the integer operations only to fail to
2095   // promote due to some other unsplittable entry (which we may make splittable
2096   // later). However, if there are only splittable uses, go ahead and assume
2097   // that we cover the alloca.
2098   // FIXME: We shouldn't consider split slices that happen to start in the
2099   // partition here...
2100   bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits);
2101 
2102   for (const Slice &S : P)
2103     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2104                                          WholeAllocaOp))
2105       return false;
2106 
2107   for (const Slice *S : P.splitSliceTails())
2108     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2109                                          WholeAllocaOp))
2110       return false;
2111 
2112   return WholeAllocaOp;
2113 }
2114 
2115 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2116                              IntegerType *Ty, uint64_t Offset,
2117                              const Twine &Name) {
2118   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2119   IntegerType *IntTy = cast<IntegerType>(V->getType());
2120   assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=
2121              DL.getTypeStoreSize(IntTy).getFixedSize() &&
2122          "Element extends past full value");
2123   uint64_t ShAmt = 8 * Offset;
2124   if (DL.isBigEndian())
2125     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2126                  DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2127   if (ShAmt) {
2128     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2129     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2130   }
2131   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2132          "Cannot extract to a larger integer!");
2133   if (Ty != IntTy) {
2134     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2135     LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2136   }
2137   return V;
2138 }
2139 
2140 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2141                             Value *V, uint64_t Offset, const Twine &Name) {
2142   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2143   IntegerType *Ty = cast<IntegerType>(V->getType());
2144   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2145          "Cannot insert a larger integer!");
2146   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2147   if (Ty != IntTy) {
2148     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2149     LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2150   }
2151   assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=
2152              DL.getTypeStoreSize(IntTy).getFixedSize() &&
2153          "Element store outside of alloca store");
2154   uint64_t ShAmt = 8 * Offset;
2155   if (DL.isBigEndian())
2156     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2157                  DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2158   if (ShAmt) {
2159     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2160     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2161   }
2162 
2163   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2164     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2165     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2166     LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2167     V = IRB.CreateOr(Old, V, Name + ".insert");
2168     LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2169   }
2170   return V;
2171 }
2172 
2173 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2174                             unsigned EndIndex, const Twine &Name) {
2175   auto *VecTy = cast<FixedVectorType>(V->getType());
2176   unsigned NumElements = EndIndex - BeginIndex;
2177   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2178 
2179   if (NumElements == VecTy->getNumElements())
2180     return V;
2181 
2182   if (NumElements == 1) {
2183     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2184                                  Name + ".extract");
2185     LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2186     return V;
2187   }
2188 
2189   auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex));
2190   V = IRB.CreateShuffleVector(V, Mask, Name + ".extract");
2191   LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2192   return V;
2193 }
2194 
2195 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2196                            unsigned BeginIndex, const Twine &Name) {
2197   VectorType *VecTy = cast<VectorType>(Old->getType());
2198   assert(VecTy && "Can only insert a vector into a vector");
2199 
2200   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2201   if (!Ty) {
2202     // Single element to insert.
2203     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2204                                 Name + ".insert");
2205     LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2206     return V;
2207   }
2208 
2209   assert(cast<FixedVectorType>(Ty)->getNumElements() <=
2210              cast<FixedVectorType>(VecTy)->getNumElements() &&
2211          "Too many elements!");
2212   if (cast<FixedVectorType>(Ty)->getNumElements() ==
2213       cast<FixedVectorType>(VecTy)->getNumElements()) {
2214     assert(V->getType() == VecTy && "Vector type mismatch");
2215     return V;
2216   }
2217   unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements();
2218 
2219   // When inserting a smaller vector into the larger to store, we first
2220   // use a shuffle vector to widen it with undef elements, and then
2221   // a second shuffle vector to select between the loaded vector and the
2222   // incoming vector.
2223   SmallVector<int, 8> Mask;
2224   Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2225   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2226     if (i >= BeginIndex && i < EndIndex)
2227       Mask.push_back(i - BeginIndex);
2228     else
2229       Mask.push_back(-1);
2230   V = IRB.CreateShuffleVector(V, Mask, Name + ".expand");
2231   LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2232 
2233   SmallVector<Constant *, 8> Mask2;
2234   Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2235   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2236     Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2237 
2238   V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend");
2239 
2240   LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2241   return V;
2242 }
2243 
2244 /// Visitor to rewrite instructions using p particular slice of an alloca
2245 /// to use a new alloca.
2246 ///
2247 /// Also implements the rewriting to vector-based accesses when the partition
2248 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2249 /// lives here.
2250 class llvm::sroa::AllocaSliceRewriter
2251     : public InstVisitor<AllocaSliceRewriter, bool> {
2252   // Befriend the base class so it can delegate to private visit methods.
2253   friend class InstVisitor<AllocaSliceRewriter, bool>;
2254 
2255   using Base = InstVisitor<AllocaSliceRewriter, bool>;
2256 
2257   const DataLayout &DL;
2258   AllocaSlices &AS;
2259   SROAPass &Pass;
2260   AllocaInst &OldAI, &NewAI;
2261   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2262   Type *NewAllocaTy;
2263 
2264   // This is a convenience and flag variable that will be null unless the new
2265   // alloca's integer operations should be widened to this integer type due to
2266   // passing isIntegerWideningViable above. If it is non-null, the desired
2267   // integer type will be stored here for easy access during rewriting.
2268   IntegerType *IntTy;
2269 
2270   // If we are rewriting an alloca partition which can be written as pure
2271   // vector operations, we stash extra information here. When VecTy is
2272   // non-null, we have some strict guarantees about the rewritten alloca:
2273   //   - The new alloca is exactly the size of the vector type here.
2274   //   - The accesses all either map to the entire vector or to a single
2275   //     element.
2276   //   - The set of accessing instructions is only one of those handled above
2277   //     in isVectorPromotionViable. Generally these are the same access kinds
2278   //     which are promotable via mem2reg.
2279   VectorType *VecTy;
2280   Type *ElementTy;
2281   uint64_t ElementSize;
2282 
2283   // The original offset of the slice currently being rewritten relative to
2284   // the original alloca.
2285   uint64_t BeginOffset = 0;
2286   uint64_t EndOffset = 0;
2287 
2288   // The new offsets of the slice currently being rewritten relative to the
2289   // original alloca.
2290   uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2291 
2292   uint64_t SliceSize = 0;
2293   bool IsSplittable = false;
2294   bool IsSplit = false;
2295   Use *OldUse = nullptr;
2296   Instruction *OldPtr = nullptr;
2297 
2298   // Track post-rewrite users which are PHI nodes and Selects.
2299   SmallSetVector<PHINode *, 8> &PHIUsers;
2300   SmallSetVector<SelectInst *, 8> &SelectUsers;
2301 
2302   // Utility IR builder, whose name prefix is setup for each visited use, and
2303   // the insertion point is set to point to the user.
2304   IRBuilderTy IRB;
2305 
2306 public:
2307   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROAPass &Pass,
2308                       AllocaInst &OldAI, AllocaInst &NewAI,
2309                       uint64_t NewAllocaBeginOffset,
2310                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2311                       VectorType *PromotableVecTy,
2312                       SmallSetVector<PHINode *, 8> &PHIUsers,
2313                       SmallSetVector<SelectInst *, 8> &SelectUsers)
2314       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2315         NewAllocaBeginOffset(NewAllocaBeginOffset),
2316         NewAllocaEndOffset(NewAllocaEndOffset),
2317         NewAllocaTy(NewAI.getAllocatedType()),
2318         IntTy(
2319             IsIntegerPromotable
2320                 ? Type::getIntNTy(NewAI.getContext(),
2321                                   DL.getTypeSizeInBits(NewAI.getAllocatedType())
2322                                       .getFixedSize())
2323                 : nullptr),
2324         VecTy(PromotableVecTy),
2325         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2326         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8
2327                           : 0),
2328         PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2329         IRB(NewAI.getContext(), ConstantFolder()) {
2330     if (VecTy) {
2331       assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 &&
2332              "Only multiple-of-8 sized vector elements are viable");
2333       ++NumVectorized;
2334     }
2335     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2336   }
2337 
2338   bool visit(AllocaSlices::const_iterator I) {
2339     bool CanSROA = true;
2340     BeginOffset = I->beginOffset();
2341     EndOffset = I->endOffset();
2342     IsSplittable = I->isSplittable();
2343     IsSplit =
2344         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2345     LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2346     LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2347     LLVM_DEBUG(dbgs() << "\n");
2348 
2349     // Compute the intersecting offset range.
2350     assert(BeginOffset < NewAllocaEndOffset);
2351     assert(EndOffset > NewAllocaBeginOffset);
2352     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2353     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2354 
2355     SliceSize = NewEndOffset - NewBeginOffset;
2356 
2357     OldUse = I->getUse();
2358     OldPtr = cast<Instruction>(OldUse->get());
2359 
2360     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2361     IRB.SetInsertPoint(OldUserI);
2362     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2363     IRB.getInserter().SetNamePrefix(
2364         Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2365 
2366     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2367     if (VecTy || IntTy)
2368       assert(CanSROA);
2369     return CanSROA;
2370   }
2371 
2372 private:
2373   // Make sure the other visit overloads are visible.
2374   using Base::visit;
2375 
2376   // Every instruction which can end up as a user must have a rewrite rule.
2377   bool visitInstruction(Instruction &I) {
2378     LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2379     llvm_unreachable("No rewrite rule for this instruction!");
2380   }
2381 
2382   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2383     // Note that the offset computation can use BeginOffset or NewBeginOffset
2384     // interchangeably for unsplit slices.
2385     assert(IsSplit || BeginOffset == NewBeginOffset);
2386     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2387 
2388 #ifndef NDEBUG
2389     StringRef OldName = OldPtr->getName();
2390     // Skip through the last '.sroa.' component of the name.
2391     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2392     if (LastSROAPrefix != StringRef::npos) {
2393       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2394       // Look for an SROA slice index.
2395       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2396       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2397         // Strip the index and look for the offset.
2398         OldName = OldName.substr(IndexEnd + 1);
2399         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2400         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2401           // Strip the offset.
2402           OldName = OldName.substr(OffsetEnd + 1);
2403       }
2404     }
2405     // Strip any SROA suffixes as well.
2406     OldName = OldName.substr(0, OldName.find(".sroa_"));
2407 #endif
2408 
2409     return getAdjustedPtr(IRB, DL, &NewAI,
2410                           APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2411                           PointerTy,
2412 #ifndef NDEBUG
2413                           Twine(OldName) + "."
2414 #else
2415                           Twine()
2416 #endif
2417                           );
2418   }
2419 
2420   /// Compute suitable alignment to access this slice of the *new*
2421   /// alloca.
2422   ///
2423   /// You can optionally pass a type to this routine and if that type's ABI
2424   /// alignment is itself suitable, this will return zero.
2425   Align getSliceAlign() {
2426     return commonAlignment(NewAI.getAlign(),
2427                            NewBeginOffset - NewAllocaBeginOffset);
2428   }
2429 
2430   unsigned getIndex(uint64_t Offset) {
2431     assert(VecTy && "Can only call getIndex when rewriting a vector");
2432     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2433     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2434     uint32_t Index = RelOffset / ElementSize;
2435     assert(Index * ElementSize == RelOffset);
2436     return Index;
2437   }
2438 
2439   void deleteIfTriviallyDead(Value *V) {
2440     Instruction *I = cast<Instruction>(V);
2441     if (isInstructionTriviallyDead(I))
2442       Pass.DeadInsts.push_back(I);
2443   }
2444 
2445   Value *rewriteVectorizedLoadInst(LoadInst &LI) {
2446     unsigned BeginIndex = getIndex(NewBeginOffset);
2447     unsigned EndIndex = getIndex(NewEndOffset);
2448     assert(EndIndex > BeginIndex && "Empty vector!");
2449 
2450     LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2451                                            NewAI.getAlign(), "load");
2452 
2453     Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2454                             LLVMContext::MD_access_group});
2455     return extractVector(IRB, Load, BeginIndex, EndIndex, "vec");
2456   }
2457 
2458   Value *rewriteIntegerLoad(LoadInst &LI) {
2459     assert(IntTy && "We cannot insert an integer to the alloca");
2460     assert(!LI.isVolatile());
2461     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2462                                      NewAI.getAlign(), "load");
2463     V = convertValue(DL, IRB, V, IntTy);
2464     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2465     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2466     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2467       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2468       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2469     }
2470     // It is possible that the extracted type is not the load type. This
2471     // happens if there is a load past the end of the alloca, and as
2472     // a consequence the slice is narrower but still a candidate for integer
2473     // lowering. To handle this case, we just zero extend the extracted
2474     // integer.
2475     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2476            "Can only handle an extract for an overly wide load");
2477     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2478       V = IRB.CreateZExt(V, LI.getType());
2479     return V;
2480   }
2481 
2482   bool visitLoadInst(LoadInst &LI) {
2483     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2484     Value *OldOp = LI.getOperand(0);
2485     assert(OldOp == OldPtr);
2486 
2487     AAMDNodes AATags = LI.getAAMetadata();
2488 
2489     unsigned AS = LI.getPointerAddressSpace();
2490 
2491     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2492                              : LI.getType();
2493     const bool IsLoadPastEnd =
2494         DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize;
2495     bool IsPtrAdjusted = false;
2496     Value *V;
2497     if (VecTy) {
2498       V = rewriteVectorizedLoadInst(LI);
2499     } else if (IntTy && LI.getType()->isIntegerTy()) {
2500       V = rewriteIntegerLoad(LI);
2501     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2502                NewEndOffset == NewAllocaEndOffset &&
2503                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2504                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2505                  TargetTy->isIntegerTy()))) {
2506       LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2507                                               NewAI.getAlign(), LI.isVolatile(),
2508                                               LI.getName());
2509       if (AATags)
2510         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2511       if (LI.isVolatile())
2512         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2513       if (NewLI->isAtomic())
2514         NewLI->setAlignment(LI.getAlign());
2515 
2516       // Any !nonnull metadata or !range metadata on the old load is also valid
2517       // on the new load. This is even true in some cases even when the loads
2518       // are different types, for example by mapping !nonnull metadata to
2519       // !range metadata by modeling the null pointer constant converted to the
2520       // integer type.
2521       // FIXME: Add support for range metadata here. Currently the utilities
2522       // for this don't propagate range metadata in trivial cases from one
2523       // integer load to another, don't handle non-addrspace-0 null pointers
2524       // correctly, and don't have any support for mapping ranges as the
2525       // integer type becomes winder or narrower.
2526       if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2527         copyNonnullMetadata(LI, N, *NewLI);
2528 
2529       // Try to preserve nonnull metadata
2530       V = NewLI;
2531 
2532       // If this is an integer load past the end of the slice (which means the
2533       // bytes outside the slice are undef or this load is dead) just forcibly
2534       // fix the integer size with correct handling of endianness.
2535       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2536         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2537           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2538             V = IRB.CreateZExt(V, TITy, "load.ext");
2539             if (DL.isBigEndian())
2540               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2541                                 "endian_shift");
2542           }
2543     } else {
2544       Type *LTy = TargetTy->getPointerTo(AS);
2545       LoadInst *NewLI =
2546           IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
2547                                 getSliceAlign(), LI.isVolatile(), LI.getName());
2548       if (AATags)
2549         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2550       if (LI.isVolatile())
2551         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2552       NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2553                                LLVMContext::MD_access_group});
2554 
2555       V = NewLI;
2556       IsPtrAdjusted = true;
2557     }
2558     V = convertValue(DL, IRB, V, TargetTy);
2559 
2560     if (IsSplit) {
2561       assert(!LI.isVolatile());
2562       assert(LI.getType()->isIntegerTy() &&
2563              "Only integer type loads and stores are split");
2564       assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() &&
2565              "Split load isn't smaller than original load");
2566       assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2567              "Non-byte-multiple bit width");
2568       // Move the insertion point just past the load so that we can refer to it.
2569       IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2570       // Create a placeholder value with the same type as LI to use as the
2571       // basis for the new value. This allows us to replace the uses of LI with
2572       // the computed value, and then replace the placeholder with LI, leaving
2573       // LI only used for this computation.
2574       Value *Placeholder = new LoadInst(
2575           LI.getType(), PoisonValue::get(LI.getType()->getPointerTo(AS)), "",
2576           false, Align(1));
2577       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2578                         "insert");
2579       LI.replaceAllUsesWith(V);
2580       Placeholder->replaceAllUsesWith(&LI);
2581       Placeholder->deleteValue();
2582     } else {
2583       LI.replaceAllUsesWith(V);
2584     }
2585 
2586     Pass.DeadInsts.push_back(&LI);
2587     deleteIfTriviallyDead(OldOp);
2588     LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2589     return !LI.isVolatile() && !IsPtrAdjusted;
2590   }
2591 
2592   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2593                                   AAMDNodes AATags) {
2594     if (V->getType() != VecTy) {
2595       unsigned BeginIndex = getIndex(NewBeginOffset);
2596       unsigned EndIndex = getIndex(NewEndOffset);
2597       assert(EndIndex > BeginIndex && "Empty vector!");
2598       unsigned NumElements = EndIndex - BeginIndex;
2599       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2600              "Too many elements!");
2601       Type *SliceTy = (NumElements == 1)
2602                           ? ElementTy
2603                           : FixedVectorType::get(ElementTy, NumElements);
2604       if (V->getType() != SliceTy)
2605         V = convertValue(DL, IRB, V, SliceTy);
2606 
2607       // Mix in the existing elements.
2608       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2609                                          NewAI.getAlign(), "load");
2610       V = insertVector(IRB, Old, V, BeginIndex, "vec");
2611     }
2612     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2613     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2614                              LLVMContext::MD_access_group});
2615     if (AATags)
2616       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2617     Pass.DeadInsts.push_back(&SI);
2618 
2619     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2620     return true;
2621   }
2622 
2623   bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2624     assert(IntTy && "We cannot extract an integer from the alloca");
2625     assert(!SI.isVolatile());
2626     if (DL.getTypeSizeInBits(V->getType()).getFixedSize() !=
2627         IntTy->getBitWidth()) {
2628       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2629                                          NewAI.getAlign(), "oldload");
2630       Old = convertValue(DL, IRB, Old, IntTy);
2631       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2632       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2633       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2634     }
2635     V = convertValue(DL, IRB, V, NewAllocaTy);
2636     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2637     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2638                              LLVMContext::MD_access_group});
2639     if (AATags)
2640       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2641     Pass.DeadInsts.push_back(&SI);
2642     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2643     return true;
2644   }
2645 
2646   bool visitStoreInst(StoreInst &SI) {
2647     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2648     Value *OldOp = SI.getOperand(1);
2649     assert(OldOp == OldPtr);
2650 
2651     AAMDNodes AATags = SI.getAAMetadata();
2652     Value *V = SI.getValueOperand();
2653 
2654     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2655     // alloca that should be re-examined after promoting this alloca.
2656     if (V->getType()->isPointerTy())
2657       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2658         Pass.PostPromotionWorklist.insert(AI);
2659 
2660     if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) {
2661       assert(!SI.isVolatile());
2662       assert(V->getType()->isIntegerTy() &&
2663              "Only integer type loads and stores are split");
2664       assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2665              "Non-byte-multiple bit width");
2666       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2667       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2668                          "extract");
2669     }
2670 
2671     if (VecTy)
2672       return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2673     if (IntTy && V->getType()->isIntegerTy())
2674       return rewriteIntegerStore(V, SI, AATags);
2675 
2676     const bool IsStorePastEnd =
2677         DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize;
2678     StoreInst *NewSI;
2679     if (NewBeginOffset == NewAllocaBeginOffset &&
2680         NewEndOffset == NewAllocaEndOffset &&
2681         (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2682          (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2683           V->getType()->isIntegerTy()))) {
2684       // If this is an integer store past the end of slice (and thus the bytes
2685       // past that point are irrelevant or this is unreachable), truncate the
2686       // value prior to storing.
2687       if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2688         if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2689           if (VITy->getBitWidth() > AITy->getBitWidth()) {
2690             if (DL.isBigEndian())
2691               V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2692                                  "endian_shift");
2693             V = IRB.CreateTrunc(V, AITy, "load.trunc");
2694           }
2695 
2696       V = convertValue(DL, IRB, V, NewAllocaTy);
2697       NewSI =
2698           IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile());
2699     } else {
2700       unsigned AS = SI.getPointerAddressSpace();
2701       Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2702       NewSI =
2703           IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
2704     }
2705     NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2706                              LLVMContext::MD_access_group});
2707     if (AATags)
2708       NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2709     if (SI.isVolatile())
2710       NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2711     if (NewSI->isAtomic())
2712       NewSI->setAlignment(SI.getAlign());
2713     Pass.DeadInsts.push_back(&SI);
2714     deleteIfTriviallyDead(OldOp);
2715 
2716     LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2717     return NewSI->getPointerOperand() == &NewAI &&
2718            NewSI->getValueOperand()->getType() == NewAllocaTy &&
2719            !SI.isVolatile();
2720   }
2721 
2722   /// Compute an integer value from splatting an i8 across the given
2723   /// number of bytes.
2724   ///
2725   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2726   /// call this routine.
2727   /// FIXME: Heed the advice above.
2728   ///
2729   /// \param V The i8 value to splat.
2730   /// \param Size The number of bytes in the output (assuming i8 is one byte)
2731   Value *getIntegerSplat(Value *V, unsigned Size) {
2732     assert(Size > 0 && "Expected a positive number of bytes.");
2733     IntegerType *VTy = cast<IntegerType>(V->getType());
2734     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2735     if (Size == 1)
2736       return V;
2737 
2738     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2739     V = IRB.CreateMul(
2740         IRB.CreateZExt(V, SplatIntTy, "zext"),
2741         IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy),
2742                        IRB.CreateZExt(Constant::getAllOnesValue(V->getType()),
2743                                       SplatIntTy)),
2744         "isplat");
2745     return V;
2746   }
2747 
2748   /// Compute a vector splat for a given element value.
2749   Value *getVectorSplat(Value *V, unsigned NumElements) {
2750     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2751     LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
2752     return V;
2753   }
2754 
2755   bool visitMemSetInst(MemSetInst &II) {
2756     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2757     assert(II.getRawDest() == OldPtr);
2758 
2759     AAMDNodes AATags = II.getAAMetadata();
2760 
2761     // If the memset has a variable size, it cannot be split, just adjust the
2762     // pointer to the new alloca.
2763     if (!isa<ConstantInt>(II.getLength())) {
2764       assert(!IsSplit);
2765       assert(NewBeginOffset == BeginOffset);
2766       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2767       II.setDestAlignment(getSliceAlign());
2768 
2769       deleteIfTriviallyDead(OldPtr);
2770       return false;
2771     }
2772 
2773     // Record this instruction for deletion.
2774     Pass.DeadInsts.push_back(&II);
2775 
2776     Type *AllocaTy = NewAI.getAllocatedType();
2777     Type *ScalarTy = AllocaTy->getScalarType();
2778 
2779     const bool CanContinue = [&]() {
2780       if (VecTy || IntTy)
2781         return true;
2782       if (BeginOffset > NewAllocaBeginOffset ||
2783           EndOffset < NewAllocaEndOffset)
2784         return false;
2785       // Length must be in range for FixedVectorType.
2786       auto *C = cast<ConstantInt>(II.getLength());
2787       const uint64_t Len = C->getLimitedValue();
2788       if (Len > std::numeric_limits<unsigned>::max())
2789         return false;
2790       auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
2791       auto *SrcTy = FixedVectorType::get(Int8Ty, Len);
2792       return canConvertValue(DL, SrcTy, AllocaTy) &&
2793              DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize());
2794     }();
2795 
2796     // If this doesn't map cleanly onto the alloca type, and that type isn't
2797     // a single value type, just emit a memset.
2798     if (!CanContinue) {
2799       Type *SizeTy = II.getLength()->getType();
2800       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2801       CallInst *New = IRB.CreateMemSet(
2802           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2803           MaybeAlign(getSliceAlign()), II.isVolatile());
2804       if (AATags)
2805         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2806       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2807       return false;
2808     }
2809 
2810     // If we can represent this as a simple value, we have to build the actual
2811     // value to store, which requires expanding the byte present in memset to
2812     // a sensible representation for the alloca type. This is essentially
2813     // splatting the byte to a sufficiently wide integer, splatting it across
2814     // any desired vector width, and bitcasting to the final type.
2815     Value *V;
2816 
2817     if (VecTy) {
2818       // If this is a memset of a vectorized alloca, insert it.
2819       assert(ElementTy == ScalarTy);
2820 
2821       unsigned BeginIndex = getIndex(NewBeginOffset);
2822       unsigned EndIndex = getIndex(NewEndOffset);
2823       assert(EndIndex > BeginIndex && "Empty vector!");
2824       unsigned NumElements = EndIndex - BeginIndex;
2825       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2826              "Too many elements!");
2827 
2828       Value *Splat = getIntegerSplat(
2829           II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8);
2830       Splat = convertValue(DL, IRB, Splat, ElementTy);
2831       if (NumElements > 1)
2832         Splat = getVectorSplat(Splat, NumElements);
2833 
2834       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2835                                          NewAI.getAlign(), "oldload");
2836       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2837     } else if (IntTy) {
2838       // If this is a memset on an alloca where we can widen stores, insert the
2839       // set integer.
2840       assert(!II.isVolatile());
2841 
2842       uint64_t Size = NewEndOffset - NewBeginOffset;
2843       V = getIntegerSplat(II.getValue(), Size);
2844 
2845       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2846                     EndOffset != NewAllocaBeginOffset)) {
2847         Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2848                                            NewAI.getAlign(), "oldload");
2849         Old = convertValue(DL, IRB, Old, IntTy);
2850         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2851         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2852       } else {
2853         assert(V->getType() == IntTy &&
2854                "Wrong type for an alloca wide integer!");
2855       }
2856       V = convertValue(DL, IRB, V, AllocaTy);
2857     } else {
2858       // Established these invariants above.
2859       assert(NewBeginOffset == NewAllocaBeginOffset);
2860       assert(NewEndOffset == NewAllocaEndOffset);
2861 
2862       V = getIntegerSplat(II.getValue(),
2863                           DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8);
2864       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2865         V = getVectorSplat(
2866             V, cast<FixedVectorType>(AllocaVecTy)->getNumElements());
2867 
2868       V = convertValue(DL, IRB, V, AllocaTy);
2869     }
2870 
2871     StoreInst *New =
2872         IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile());
2873     New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
2874                            LLVMContext::MD_access_group});
2875     if (AATags)
2876       New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2877     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2878     return !II.isVolatile();
2879   }
2880 
2881   bool visitMemTransferInst(MemTransferInst &II) {
2882     // Rewriting of memory transfer instructions can be a bit tricky. We break
2883     // them into two categories: split intrinsics and unsplit intrinsics.
2884 
2885     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2886 
2887     AAMDNodes AATags = II.getAAMetadata();
2888 
2889     bool IsDest = &II.getRawDestUse() == OldUse;
2890     assert((IsDest && II.getRawDest() == OldPtr) ||
2891            (!IsDest && II.getRawSource() == OldPtr));
2892 
2893     Align SliceAlign = getSliceAlign();
2894 
2895     // For unsplit intrinsics, we simply modify the source and destination
2896     // pointers in place. This isn't just an optimization, it is a matter of
2897     // correctness. With unsplit intrinsics we may be dealing with transfers
2898     // within a single alloca before SROA ran, or with transfers that have
2899     // a variable length. We may also be dealing with memmove instead of
2900     // memcpy, and so simply updating the pointers is the necessary for us to
2901     // update both source and dest of a single call.
2902     if (!IsSplittable) {
2903       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2904       if (IsDest) {
2905         II.setDest(AdjustedPtr);
2906         II.setDestAlignment(SliceAlign);
2907       }
2908       else {
2909         II.setSource(AdjustedPtr);
2910         II.setSourceAlignment(SliceAlign);
2911       }
2912 
2913       LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
2914       deleteIfTriviallyDead(OldPtr);
2915       return false;
2916     }
2917     // For split transfer intrinsics we have an incredibly useful assurance:
2918     // the source and destination do not reside within the same alloca, and at
2919     // least one of them does not escape. This means that we can replace
2920     // memmove with memcpy, and we don't need to worry about all manner of
2921     // downsides to splitting and transforming the operations.
2922 
2923     // If this doesn't map cleanly onto the alloca type, and that type isn't
2924     // a single value type, just emit a memcpy.
2925     bool EmitMemCpy =
2926         !VecTy && !IntTy &&
2927         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2928          SliceSize !=
2929              DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() ||
2930          !NewAI.getAllocatedType()->isSingleValueType());
2931 
2932     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2933     // size hasn't been shrunk based on analysis of the viable range, this is
2934     // a no-op.
2935     if (EmitMemCpy && &OldAI == &NewAI) {
2936       // Ensure the start lines up.
2937       assert(NewBeginOffset == BeginOffset);
2938 
2939       // Rewrite the size as needed.
2940       if (NewEndOffset != EndOffset)
2941         II.setLength(ConstantInt::get(II.getLength()->getType(),
2942                                       NewEndOffset - NewBeginOffset));
2943       return false;
2944     }
2945     // Record this instruction for deletion.
2946     Pass.DeadInsts.push_back(&II);
2947 
2948     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2949     // alloca that should be re-examined after rewriting this instruction.
2950     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2951     if (AllocaInst *AI =
2952             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2953       assert(AI != &OldAI && AI != &NewAI &&
2954              "Splittable transfers cannot reach the same alloca on both ends.");
2955       Pass.Worklist.insert(AI);
2956     }
2957 
2958     Type *OtherPtrTy = OtherPtr->getType();
2959     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2960 
2961     // Compute the relative offset for the other pointer within the transfer.
2962     unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
2963     APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
2964     Align OtherAlign =
2965         (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne();
2966     OtherAlign =
2967         commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
2968 
2969     if (EmitMemCpy) {
2970       // Compute the other pointer, folding as much as possible to produce
2971       // a single, simple GEP in most cases.
2972       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2973                                 OtherPtr->getName() + ".");
2974 
2975       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2976       Type *SizeTy = II.getLength()->getType();
2977       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2978 
2979       Value *DestPtr, *SrcPtr;
2980       MaybeAlign DestAlign, SrcAlign;
2981       // Note: IsDest is true iff we're copying into the new alloca slice
2982       if (IsDest) {
2983         DestPtr = OurPtr;
2984         DestAlign = SliceAlign;
2985         SrcPtr = OtherPtr;
2986         SrcAlign = OtherAlign;
2987       } else {
2988         DestPtr = OtherPtr;
2989         DestAlign = OtherAlign;
2990         SrcPtr = OurPtr;
2991         SrcAlign = SliceAlign;
2992       }
2993       CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
2994                                        Size, II.isVolatile());
2995       if (AATags)
2996         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2997       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2998       return false;
2999     }
3000 
3001     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
3002                          NewEndOffset == NewAllocaEndOffset;
3003     uint64_t Size = NewEndOffset - NewBeginOffset;
3004     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3005     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3006     unsigned NumElements = EndIndex - BeginIndex;
3007     IntegerType *SubIntTy =
3008         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3009 
3010     // Reset the other pointer type to match the register type we're going to
3011     // use, but using the address space of the original other pointer.
3012     Type *OtherTy;
3013     if (VecTy && !IsWholeAlloca) {
3014       if (NumElements == 1)
3015         OtherTy = VecTy->getElementType();
3016       else
3017         OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements);
3018     } else if (IntTy && !IsWholeAlloca) {
3019       OtherTy = SubIntTy;
3020     } else {
3021       OtherTy = NewAllocaTy;
3022     }
3023     OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3024 
3025     Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3026                                    OtherPtr->getName() + ".");
3027     MaybeAlign SrcAlign = OtherAlign;
3028     Value *DstPtr = &NewAI;
3029     MaybeAlign DstAlign = SliceAlign;
3030     if (!IsDest) {
3031       std::swap(SrcPtr, DstPtr);
3032       std::swap(SrcAlign, DstAlign);
3033     }
3034 
3035     Value *Src;
3036     if (VecTy && !IsWholeAlloca && !IsDest) {
3037       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3038                                   NewAI.getAlign(), "load");
3039       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3040     } else if (IntTy && !IsWholeAlloca && !IsDest) {
3041       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3042                                   NewAI.getAlign(), "load");
3043       Src = convertValue(DL, IRB, Src, IntTy);
3044       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3045       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3046     } else {
3047       LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3048                                              II.isVolatile(), "copyload");
3049       Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3050                               LLVMContext::MD_access_group});
3051       if (AATags)
3052         Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3053       Src = Load;
3054     }
3055 
3056     if (VecTy && !IsWholeAlloca && IsDest) {
3057       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3058                                          NewAI.getAlign(), "oldload");
3059       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3060     } else if (IntTy && !IsWholeAlloca && IsDest) {
3061       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3062                                          NewAI.getAlign(), "oldload");
3063       Old = convertValue(DL, IRB, Old, IntTy);
3064       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3065       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3066       Src = convertValue(DL, IRB, Src, NewAllocaTy);
3067     }
3068 
3069     StoreInst *Store = cast<StoreInst>(
3070         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3071     Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3072                              LLVMContext::MD_access_group});
3073     if (AATags)
3074       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3075     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3076     return !II.isVolatile();
3077   }
3078 
3079   bool visitIntrinsicInst(IntrinsicInst &II) {
3080     assert((II.isLifetimeStartOrEnd() || II.isDroppable()) &&
3081            "Unexpected intrinsic!");
3082     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3083 
3084     // Record this instruction for deletion.
3085     Pass.DeadInsts.push_back(&II);
3086 
3087     if (II.isDroppable()) {
3088       assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume");
3089       // TODO For now we forget assumed information, this can be improved.
3090       OldPtr->dropDroppableUsesIn(II);
3091       return true;
3092     }
3093 
3094     assert(II.getArgOperand(1) == OldPtr);
3095     // Lifetime intrinsics are only promotable if they cover the whole alloca.
3096     // Therefore, we drop lifetime intrinsics which don't cover the whole
3097     // alloca.
3098     // (In theory, intrinsics which partially cover an alloca could be
3099     // promoted, but PromoteMemToReg doesn't handle that case.)
3100     // FIXME: Check whether the alloca is promotable before dropping the
3101     // lifetime intrinsics?
3102     if (NewBeginOffset != NewAllocaBeginOffset ||
3103         NewEndOffset != NewAllocaEndOffset)
3104       return true;
3105 
3106     ConstantInt *Size =
3107         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3108                          NewEndOffset - NewBeginOffset);
3109     // Lifetime intrinsics always expect an i8* so directly get such a pointer
3110     // for the new alloca slice.
3111     Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3112     Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3113     Value *New;
3114     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3115       New = IRB.CreateLifetimeStart(Ptr, Size);
3116     else
3117       New = IRB.CreateLifetimeEnd(Ptr, Size);
3118 
3119     (void)New;
3120     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3121 
3122     return true;
3123   }
3124 
3125   void fixLoadStoreAlign(Instruction &Root) {
3126     // This algorithm implements the same visitor loop as
3127     // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3128     // or store found.
3129     SmallPtrSet<Instruction *, 4> Visited;
3130     SmallVector<Instruction *, 4> Uses;
3131     Visited.insert(&Root);
3132     Uses.push_back(&Root);
3133     do {
3134       Instruction *I = Uses.pop_back_val();
3135 
3136       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3137         LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
3138         continue;
3139       }
3140       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3141         SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
3142         continue;
3143       }
3144 
3145       assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3146              isa<PHINode>(I) || isa<SelectInst>(I) ||
3147              isa<GetElementPtrInst>(I));
3148       for (User *U : I->users())
3149         if (Visited.insert(cast<Instruction>(U)).second)
3150           Uses.push_back(cast<Instruction>(U));
3151     } while (!Uses.empty());
3152   }
3153 
3154   bool visitPHINode(PHINode &PN) {
3155     LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3156     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3157     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3158 
3159     // We would like to compute a new pointer in only one place, but have it be
3160     // as local as possible to the PHI. To do that, we re-use the location of
3161     // the old pointer, which necessarily must be in the right position to
3162     // dominate the PHI.
3163     IRBuilderBase::InsertPointGuard Guard(IRB);
3164     if (isa<PHINode>(OldPtr))
3165       IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3166     else
3167       IRB.SetInsertPoint(OldPtr);
3168     IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3169 
3170     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3171     // Replace the operands which were using the old pointer.
3172     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3173 
3174     LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3175     deleteIfTriviallyDead(OldPtr);
3176 
3177     // Fix the alignment of any loads or stores using this PHI node.
3178     fixLoadStoreAlign(PN);
3179 
3180     // PHIs can't be promoted on their own, but often can be speculated. We
3181     // check the speculation outside of the rewriter so that we see the
3182     // fully-rewritten alloca.
3183     PHIUsers.insert(&PN);
3184     return true;
3185   }
3186 
3187   bool visitSelectInst(SelectInst &SI) {
3188     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3189     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3190            "Pointer isn't an operand!");
3191     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3192     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3193 
3194     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3195     // Replace the operands which were using the old pointer.
3196     if (SI.getOperand(1) == OldPtr)
3197       SI.setOperand(1, NewPtr);
3198     if (SI.getOperand(2) == OldPtr)
3199       SI.setOperand(2, NewPtr);
3200 
3201     LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3202     deleteIfTriviallyDead(OldPtr);
3203 
3204     // Fix the alignment of any loads or stores using this select.
3205     fixLoadStoreAlign(SI);
3206 
3207     // Selects can't be promoted on their own, but often can be speculated. We
3208     // check the speculation outside of the rewriter so that we see the
3209     // fully-rewritten alloca.
3210     SelectUsers.insert(&SI);
3211     return true;
3212   }
3213 };
3214 
3215 namespace {
3216 
3217 /// Visitor to rewrite aggregate loads and stores as scalar.
3218 ///
3219 /// This pass aggressively rewrites all aggregate loads and stores on
3220 /// a particular pointer (or any pointer derived from it which we can identify)
3221 /// with scalar loads and stores.
3222 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3223   // Befriend the base class so it can delegate to private visit methods.
3224   friend class InstVisitor<AggLoadStoreRewriter, bool>;
3225 
3226   /// Queue of pointer uses to analyze and potentially rewrite.
3227   SmallVector<Use *, 8> Queue;
3228 
3229   /// Set to prevent us from cycling with phi nodes and loops.
3230   SmallPtrSet<User *, 8> Visited;
3231 
3232   /// The current pointer use being rewritten. This is used to dig up the used
3233   /// value (as opposed to the user).
3234   Use *U = nullptr;
3235 
3236   /// Used to calculate offsets, and hence alignment, of subobjects.
3237   const DataLayout &DL;
3238 
3239   IRBuilderTy &IRB;
3240 
3241 public:
3242   AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB)
3243       : DL(DL), IRB(IRB) {}
3244 
3245   /// Rewrite loads and stores through a pointer and all pointers derived from
3246   /// it.
3247   bool rewrite(Instruction &I) {
3248     LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3249     enqueueUsers(I);
3250     bool Changed = false;
3251     while (!Queue.empty()) {
3252       U = Queue.pop_back_val();
3253       Changed |= visit(cast<Instruction>(U->getUser()));
3254     }
3255     return Changed;
3256   }
3257 
3258 private:
3259   /// Enqueue all the users of the given instruction for further processing.
3260   /// This uses a set to de-duplicate users.
3261   void enqueueUsers(Instruction &I) {
3262     for (Use &U : I.uses())
3263       if (Visited.insert(U.getUser()).second)
3264         Queue.push_back(&U);
3265   }
3266 
3267   // Conservative default is to not rewrite anything.
3268   bool visitInstruction(Instruction &I) { return false; }
3269 
3270   /// Generic recursive split emission class.
3271   template <typename Derived> class OpSplitter {
3272   protected:
3273     /// The builder used to form new instructions.
3274     IRBuilderTy &IRB;
3275 
3276     /// The indices which to be used with insert- or extractvalue to select the
3277     /// appropriate value within the aggregate.
3278     SmallVector<unsigned, 4> Indices;
3279 
3280     /// The indices to a GEP instruction which will move Ptr to the correct slot
3281     /// within the aggregate.
3282     SmallVector<Value *, 4> GEPIndices;
3283 
3284     /// The base pointer of the original op, used as a base for GEPing the
3285     /// split operations.
3286     Value *Ptr;
3287 
3288     /// The base pointee type being GEPed into.
3289     Type *BaseTy;
3290 
3291     /// Known alignment of the base pointer.
3292     Align BaseAlign;
3293 
3294     /// To calculate offset of each component so we can correctly deduce
3295     /// alignments.
3296     const DataLayout &DL;
3297 
3298     /// Initialize the splitter with an insertion point, Ptr and start with a
3299     /// single zero GEP index.
3300     OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3301                Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB)
3302         : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy),
3303           BaseAlign(BaseAlign), DL(DL) {
3304       IRB.SetInsertPoint(InsertionPoint);
3305     }
3306 
3307   public:
3308     /// Generic recursive split emission routine.
3309     ///
3310     /// This method recursively splits an aggregate op (load or store) into
3311     /// scalar or vector ops. It splits recursively until it hits a single value
3312     /// and emits that single value operation via the template argument.
3313     ///
3314     /// The logic of this routine relies on GEPs and insertvalue and
3315     /// extractvalue all operating with the same fundamental index list, merely
3316     /// formatted differently (GEPs need actual values).
3317     ///
3318     /// \param Ty  The type being split recursively into smaller ops.
3319     /// \param Agg The aggregate value being built up or stored, depending on
3320     /// whether this is splitting a load or a store respectively.
3321     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3322       if (Ty->isSingleValueType()) {
3323         unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3324         return static_cast<Derived *>(this)->emitFunc(
3325             Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3326       }
3327 
3328       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3329         unsigned OldSize = Indices.size();
3330         (void)OldSize;
3331         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3332              ++Idx) {
3333           assert(Indices.size() == OldSize && "Did not return to the old size");
3334           Indices.push_back(Idx);
3335           GEPIndices.push_back(IRB.getInt32(Idx));
3336           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3337           GEPIndices.pop_back();
3338           Indices.pop_back();
3339         }
3340         return;
3341       }
3342 
3343       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3344         unsigned OldSize = Indices.size();
3345         (void)OldSize;
3346         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3347              ++Idx) {
3348           assert(Indices.size() == OldSize && "Did not return to the old size");
3349           Indices.push_back(Idx);
3350           GEPIndices.push_back(IRB.getInt32(Idx));
3351           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3352           GEPIndices.pop_back();
3353           Indices.pop_back();
3354         }
3355         return;
3356       }
3357 
3358       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3359     }
3360   };
3361 
3362   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3363     AAMDNodes AATags;
3364 
3365     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3366                    AAMDNodes AATags, Align BaseAlign, const DataLayout &DL,
3367                    IRBuilderTy &IRB)
3368         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL,
3369                                      IRB),
3370           AATags(AATags) {}
3371 
3372     /// Emit a leaf load of a single value. This is called at the leaves of the
3373     /// recursive emission to actually load values.
3374     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3375       assert(Ty->isSingleValueType());
3376       // Load the single value and insert it using the indices.
3377       Value *GEP =
3378           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3379       LoadInst *Load =
3380           IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
3381 
3382       APInt Offset(
3383           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3384       if (AATags &&
3385           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3386         Load->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3387 
3388       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3389       LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3390     }
3391   };
3392 
3393   bool visitLoadInst(LoadInst &LI) {
3394     assert(LI.getPointerOperand() == *U);
3395     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3396       return false;
3397 
3398     // We have an aggregate being loaded, split it apart.
3399     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3400     LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(),
3401                             getAdjustedAlignment(&LI, 0), DL, IRB);
3402     Value *V = PoisonValue::get(LI.getType());
3403     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3404     Visited.erase(&LI);
3405     LI.replaceAllUsesWith(V);
3406     LI.eraseFromParent();
3407     return true;
3408   }
3409 
3410   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3411     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3412                     AAMDNodes AATags, Align BaseAlign, const DataLayout &DL,
3413                     IRBuilderTy &IRB)
3414         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3415                                       DL, IRB),
3416           AATags(AATags) {}
3417     AAMDNodes AATags;
3418     /// Emit a leaf store of a single value. This is called at the leaves of the
3419     /// recursive emission to actually produce stores.
3420     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3421       assert(Ty->isSingleValueType());
3422       // Extract the single value and store it using the indices.
3423       //
3424       // The gep and extractvalue values are factored out of the CreateStore
3425       // call to make the output independent of the argument evaluation order.
3426       Value *ExtractValue =
3427           IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3428       Value *InBoundsGEP =
3429           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3430       StoreInst *Store =
3431           IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
3432 
3433       APInt Offset(
3434           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3435       if (AATags &&
3436           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3437         Store->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3438 
3439       LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3440     }
3441   };
3442 
3443   bool visitStoreInst(StoreInst &SI) {
3444     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3445       return false;
3446     Value *V = SI.getValueOperand();
3447     if (V->getType()->isSingleValueType())
3448       return false;
3449 
3450     // We have an aggregate being stored, split it apart.
3451     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3452     StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(),
3453                              getAdjustedAlignment(&SI, 0), DL, IRB);
3454     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3455     Visited.erase(&SI);
3456     SI.eraseFromParent();
3457     return true;
3458   }
3459 
3460   bool visitBitCastInst(BitCastInst &BC) {
3461     enqueueUsers(BC);
3462     return false;
3463   }
3464 
3465   bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3466     enqueueUsers(ASC);
3467     return false;
3468   }
3469 
3470   // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
3471   bool foldGEPSelect(GetElementPtrInst &GEPI) {
3472     if (!GEPI.hasAllConstantIndices())
3473       return false;
3474 
3475     SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand());
3476 
3477     LLVM_DEBUG(dbgs() << "  Rewriting gep(select) -> select(gep):"
3478                       << "\n    original: " << *Sel
3479                       << "\n              " << GEPI);
3480 
3481     IRB.SetInsertPoint(&GEPI);
3482     SmallVector<Value *, 4> Index(GEPI.indices());
3483     bool IsInBounds = GEPI.isInBounds();
3484 
3485     Type *Ty = GEPI.getSourceElementType();
3486     Value *True = Sel->getTrueValue();
3487     Value *NTrue = IRB.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep",
3488                                  IsInBounds);
3489 
3490     Value *False = Sel->getFalseValue();
3491 
3492     Value *NFalse = IRB.CreateGEP(Ty, False, Index,
3493                                   False->getName() + ".sroa.gep", IsInBounds);
3494 
3495     Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse,
3496                                    Sel->getName() + ".sroa.sel");
3497     Visited.erase(&GEPI);
3498     GEPI.replaceAllUsesWith(NSel);
3499     GEPI.eraseFromParent();
3500     Instruction *NSelI = cast<Instruction>(NSel);
3501     Visited.insert(NSelI);
3502     enqueueUsers(*NSelI);
3503 
3504     LLVM_DEBUG(dbgs() << "\n          to: " << *NTrue
3505                       << "\n              " << *NFalse
3506                       << "\n              " << *NSel << '\n');
3507 
3508     return true;
3509   }
3510 
3511   // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
3512   bool foldGEPPhi(GetElementPtrInst &GEPI) {
3513     if (!GEPI.hasAllConstantIndices())
3514       return false;
3515 
3516     PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand());
3517     if (GEPI.getParent() != PHI->getParent() ||
3518         llvm::any_of(PHI->incoming_values(), [](Value *In)
3519           { Instruction *I = dyn_cast<Instruction>(In);
3520             return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) ||
3521                    succ_empty(I->getParent()) ||
3522                    !I->getParent()->isLegalToHoistInto();
3523           }))
3524       return false;
3525 
3526     LLVM_DEBUG(dbgs() << "  Rewriting gep(phi) -> phi(gep):"
3527                       << "\n    original: " << *PHI
3528                       << "\n              " << GEPI
3529                       << "\n          to: ");
3530 
3531     SmallVector<Value *, 4> Index(GEPI.indices());
3532     bool IsInBounds = GEPI.isInBounds();
3533     IRB.SetInsertPoint(GEPI.getParent()->getFirstNonPHI());
3534     PHINode *NewPN = IRB.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(),
3535                                    PHI->getName() + ".sroa.phi");
3536     for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
3537       BasicBlock *B = PHI->getIncomingBlock(I);
3538       Value *NewVal = nullptr;
3539       int Idx = NewPN->getBasicBlockIndex(B);
3540       if (Idx >= 0) {
3541         NewVal = NewPN->getIncomingValue(Idx);
3542       } else {
3543         Instruction *In = cast<Instruction>(PHI->getIncomingValue(I));
3544 
3545         IRB.SetInsertPoint(In->getParent(), std::next(In->getIterator()));
3546         Type *Ty = GEPI.getSourceElementType();
3547         NewVal = IRB.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep",
3548                                IsInBounds);
3549       }
3550       NewPN->addIncoming(NewVal, B);
3551     }
3552 
3553     Visited.erase(&GEPI);
3554     GEPI.replaceAllUsesWith(NewPN);
3555     GEPI.eraseFromParent();
3556     Visited.insert(NewPN);
3557     enqueueUsers(*NewPN);
3558 
3559     LLVM_DEBUG(for (Value *In : NewPN->incoming_values())
3560                  dbgs() << "\n              " << *In;
3561                dbgs() << "\n              " << *NewPN << '\n');
3562 
3563     return true;
3564   }
3565 
3566   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3567     if (isa<SelectInst>(GEPI.getPointerOperand()) &&
3568         foldGEPSelect(GEPI))
3569       return true;
3570 
3571     if (isa<PHINode>(GEPI.getPointerOperand()) &&
3572         foldGEPPhi(GEPI))
3573       return true;
3574 
3575     enqueueUsers(GEPI);
3576     return false;
3577   }
3578 
3579   bool visitPHINode(PHINode &PN) {
3580     enqueueUsers(PN);
3581     return false;
3582   }
3583 
3584   bool visitSelectInst(SelectInst &SI) {
3585     enqueueUsers(SI);
3586     return false;
3587   }
3588 };
3589 
3590 } // end anonymous namespace
3591 
3592 /// Strip aggregate type wrapping.
3593 ///
3594 /// This removes no-op aggregate types wrapping an underlying type. It will
3595 /// strip as many layers of types as it can without changing either the type
3596 /// size or the allocated size.
3597 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3598   if (Ty->isSingleValueType())
3599     return Ty;
3600 
3601   uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize();
3602   uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize();
3603 
3604   Type *InnerTy;
3605   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3606     InnerTy = ArrTy->getElementType();
3607   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3608     const StructLayout *SL = DL.getStructLayout(STy);
3609     unsigned Index = SL->getElementContainingOffset(0);
3610     InnerTy = STy->getElementType(Index);
3611   } else {
3612     return Ty;
3613   }
3614 
3615   if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() ||
3616       TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize())
3617     return Ty;
3618 
3619   return stripAggregateTypeWrapping(DL, InnerTy);
3620 }
3621 
3622 /// Try to find a partition of the aggregate type passed in for a given
3623 /// offset and size.
3624 ///
3625 /// This recurses through the aggregate type and tries to compute a subtype
3626 /// based on the offset and size. When the offset and size span a sub-section
3627 /// of an array, it will even compute a new array type for that sub-section,
3628 /// and the same for structs.
3629 ///
3630 /// Note that this routine is very strict and tries to find a partition of the
3631 /// type which produces the *exact* right offset and size. It is not forgiving
3632 /// when the size or offset cause either end of type-based partition to be off.
3633 /// Also, this is a best-effort routine. It is reasonable to give up and not
3634 /// return a type if necessary.
3635 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3636                               uint64_t Size) {
3637   if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size)
3638     return stripAggregateTypeWrapping(DL, Ty);
3639   if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() ||
3640       (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size)
3641     return nullptr;
3642 
3643   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
3644      Type *ElementTy;
3645      uint64_t TyNumElements;
3646      if (auto *AT = dyn_cast<ArrayType>(Ty)) {
3647        ElementTy = AT->getElementType();
3648        TyNumElements = AT->getNumElements();
3649      } else {
3650        // FIXME: This isn't right for vectors with non-byte-sized or
3651        // non-power-of-two sized elements.
3652        auto *VT = cast<FixedVectorType>(Ty);
3653        ElementTy = VT->getElementType();
3654        TyNumElements = VT->getNumElements();
3655     }
3656     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3657     uint64_t NumSkippedElements = Offset / ElementSize;
3658     if (NumSkippedElements >= TyNumElements)
3659       return nullptr;
3660     Offset -= NumSkippedElements * ElementSize;
3661 
3662     // First check if we need to recurse.
3663     if (Offset > 0 || Size < ElementSize) {
3664       // Bail if the partition ends in a different array element.
3665       if ((Offset + Size) > ElementSize)
3666         return nullptr;
3667       // Recurse through the element type trying to peel off offset bytes.
3668       return getTypePartition(DL, ElementTy, Offset, Size);
3669     }
3670     assert(Offset == 0);
3671 
3672     if (Size == ElementSize)
3673       return stripAggregateTypeWrapping(DL, ElementTy);
3674     assert(Size > ElementSize);
3675     uint64_t NumElements = Size / ElementSize;
3676     if (NumElements * ElementSize != Size)
3677       return nullptr;
3678     return ArrayType::get(ElementTy, NumElements);
3679   }
3680 
3681   StructType *STy = dyn_cast<StructType>(Ty);
3682   if (!STy)
3683     return nullptr;
3684 
3685   const StructLayout *SL = DL.getStructLayout(STy);
3686   if (Offset >= SL->getSizeInBytes())
3687     return nullptr;
3688   uint64_t EndOffset = Offset + Size;
3689   if (EndOffset > SL->getSizeInBytes())
3690     return nullptr;
3691 
3692   unsigned Index = SL->getElementContainingOffset(Offset);
3693   Offset -= SL->getElementOffset(Index);
3694 
3695   Type *ElementTy = STy->getElementType(Index);
3696   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3697   if (Offset >= ElementSize)
3698     return nullptr; // The offset points into alignment padding.
3699 
3700   // See if any partition must be contained by the element.
3701   if (Offset > 0 || Size < ElementSize) {
3702     if ((Offset + Size) > ElementSize)
3703       return nullptr;
3704     return getTypePartition(DL, ElementTy, Offset, Size);
3705   }
3706   assert(Offset == 0);
3707 
3708   if (Size == ElementSize)
3709     return stripAggregateTypeWrapping(DL, ElementTy);
3710 
3711   StructType::element_iterator EI = STy->element_begin() + Index,
3712                                EE = STy->element_end();
3713   if (EndOffset < SL->getSizeInBytes()) {
3714     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3715     if (Index == EndIndex)
3716       return nullptr; // Within a single element and its padding.
3717 
3718     // Don't try to form "natural" types if the elements don't line up with the
3719     // expected size.
3720     // FIXME: We could potentially recurse down through the last element in the
3721     // sub-struct to find a natural end point.
3722     if (SL->getElementOffset(EndIndex) != EndOffset)
3723       return nullptr;
3724 
3725     assert(Index < EndIndex);
3726     EE = STy->element_begin() + EndIndex;
3727   }
3728 
3729   // Try to build up a sub-structure.
3730   StructType *SubTy =
3731       StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3732   const StructLayout *SubSL = DL.getStructLayout(SubTy);
3733   if (Size != SubSL->getSizeInBytes())
3734     return nullptr; // The sub-struct doesn't have quite the size needed.
3735 
3736   return SubTy;
3737 }
3738 
3739 /// Pre-split loads and stores to simplify rewriting.
3740 ///
3741 /// We want to break up the splittable load+store pairs as much as
3742 /// possible. This is important to do as a preprocessing step, as once we
3743 /// start rewriting the accesses to partitions of the alloca we lose the
3744 /// necessary information to correctly split apart paired loads and stores
3745 /// which both point into this alloca. The case to consider is something like
3746 /// the following:
3747 ///
3748 ///   %a = alloca [12 x i8]
3749 ///   %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3750 ///   %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3751 ///   %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3752 ///   %iptr1 = bitcast i8* %gep1 to i64*
3753 ///   %iptr2 = bitcast i8* %gep2 to i64*
3754 ///   %fptr1 = bitcast i8* %gep1 to float*
3755 ///   %fptr2 = bitcast i8* %gep2 to float*
3756 ///   %fptr3 = bitcast i8* %gep3 to float*
3757 ///   store float 0.0, float* %fptr1
3758 ///   store float 1.0, float* %fptr2
3759 ///   %v = load i64* %iptr1
3760 ///   store i64 %v, i64* %iptr2
3761 ///   %f1 = load float* %fptr2
3762 ///   %f2 = load float* %fptr3
3763 ///
3764 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3765 /// promote everything so we recover the 2 SSA values that should have been
3766 /// there all along.
3767 ///
3768 /// \returns true if any changes are made.
3769 bool SROAPass::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3770   LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3771 
3772   // Track the loads and stores which are candidates for pre-splitting here, in
3773   // the order they first appear during the partition scan. These give stable
3774   // iteration order and a basis for tracking which loads and stores we
3775   // actually split.
3776   SmallVector<LoadInst *, 4> Loads;
3777   SmallVector<StoreInst *, 4> Stores;
3778 
3779   // We need to accumulate the splits required of each load or store where we
3780   // can find them via a direct lookup. This is important to cross-check loads
3781   // and stores against each other. We also track the slice so that we can kill
3782   // all the slices that end up split.
3783   struct SplitOffsets {
3784     Slice *S;
3785     std::vector<uint64_t> Splits;
3786   };
3787   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3788 
3789   // Track loads out of this alloca which cannot, for any reason, be pre-split.
3790   // This is important as we also cannot pre-split stores of those loads!
3791   // FIXME: This is all pretty gross. It means that we can be more aggressive
3792   // in pre-splitting when the load feeding the store happens to come from
3793   // a separate alloca. Put another way, the effectiveness of SROA would be
3794   // decreased by a frontend which just concatenated all of its local allocas
3795   // into one big flat alloca. But defeating such patterns is exactly the job
3796   // SROA is tasked with! Sadly, to not have this discrepancy we would have
3797   // change store pre-splitting to actually force pre-splitting of the load
3798   // that feeds it *and all stores*. That makes pre-splitting much harder, but
3799   // maybe it would make it more principled?
3800   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3801 
3802   LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
3803   for (auto &P : AS.partitions()) {
3804     for (Slice &S : P) {
3805       Instruction *I = cast<Instruction>(S.getUse()->getUser());
3806       if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3807         // If this is a load we have to track that it can't participate in any
3808         // pre-splitting. If this is a store of a load we have to track that
3809         // that load also can't participate in any pre-splitting.
3810         if (auto *LI = dyn_cast<LoadInst>(I))
3811           UnsplittableLoads.insert(LI);
3812         else if (auto *SI = dyn_cast<StoreInst>(I))
3813           if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3814             UnsplittableLoads.insert(LI);
3815         continue;
3816       }
3817       assert(P.endOffset() > S.beginOffset() &&
3818              "Empty or backwards partition!");
3819 
3820       // Determine if this is a pre-splittable slice.
3821       if (auto *LI = dyn_cast<LoadInst>(I)) {
3822         assert(!LI->isVolatile() && "Cannot split volatile loads!");
3823 
3824         // The load must be used exclusively to store into other pointers for
3825         // us to be able to arbitrarily pre-split it. The stores must also be
3826         // simple to avoid changing semantics.
3827         auto IsLoadSimplyStored = [](LoadInst *LI) {
3828           for (User *LU : LI->users()) {
3829             auto *SI = dyn_cast<StoreInst>(LU);
3830             if (!SI || !SI->isSimple())
3831               return false;
3832           }
3833           return true;
3834         };
3835         if (!IsLoadSimplyStored(LI)) {
3836           UnsplittableLoads.insert(LI);
3837           continue;
3838         }
3839 
3840         Loads.push_back(LI);
3841       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3842         if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3843           // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3844           continue;
3845         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3846         if (!StoredLoad || !StoredLoad->isSimple())
3847           continue;
3848         assert(!SI->isVolatile() && "Cannot split volatile stores!");
3849 
3850         Stores.push_back(SI);
3851       } else {
3852         // Other uses cannot be pre-split.
3853         continue;
3854       }
3855 
3856       // Record the initial split.
3857       LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
3858       auto &Offsets = SplitOffsetsMap[I];
3859       assert(Offsets.Splits.empty() &&
3860              "Should not have splits the first time we see an instruction!");
3861       Offsets.S = &S;
3862       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3863     }
3864 
3865     // Now scan the already split slices, and add a split for any of them which
3866     // we're going to pre-split.
3867     for (Slice *S : P.splitSliceTails()) {
3868       auto SplitOffsetsMapI =
3869           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3870       if (SplitOffsetsMapI == SplitOffsetsMap.end())
3871         continue;
3872       auto &Offsets = SplitOffsetsMapI->second;
3873 
3874       assert(Offsets.S == S && "Found a mismatched slice!");
3875       assert(!Offsets.Splits.empty() &&
3876              "Cannot have an empty set of splits on the second partition!");
3877       assert(Offsets.Splits.back() ==
3878                  P.beginOffset() - Offsets.S->beginOffset() &&
3879              "Previous split does not end where this one begins!");
3880 
3881       // Record each split. The last partition's end isn't needed as the size
3882       // of the slice dictates that.
3883       if (S->endOffset() > P.endOffset())
3884         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3885     }
3886   }
3887 
3888   // We may have split loads where some of their stores are split stores. For
3889   // such loads and stores, we can only pre-split them if their splits exactly
3890   // match relative to their starting offset. We have to verify this prior to
3891   // any rewriting.
3892   llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3893     // Lookup the load we are storing in our map of split
3894     // offsets.
3895     auto *LI = cast<LoadInst>(SI->getValueOperand());
3896     // If it was completely unsplittable, then we're done,
3897     // and this store can't be pre-split.
3898     if (UnsplittableLoads.count(LI))
3899       return true;
3900 
3901     auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3902     if (LoadOffsetsI == SplitOffsetsMap.end())
3903       return false; // Unrelated loads are definitely safe.
3904     auto &LoadOffsets = LoadOffsetsI->second;
3905 
3906     // Now lookup the store's offsets.
3907     auto &StoreOffsets = SplitOffsetsMap[SI];
3908 
3909     // If the relative offsets of each split in the load and
3910     // store match exactly, then we can split them and we
3911     // don't need to remove them here.
3912     if (LoadOffsets.Splits == StoreOffsets.Splits)
3913       return false;
3914 
3915     LLVM_DEBUG(dbgs() << "    Mismatched splits for load and store:\n"
3916                       << "      " << *LI << "\n"
3917                       << "      " << *SI << "\n");
3918 
3919     // We've found a store and load that we need to split
3920     // with mismatched relative splits. Just give up on them
3921     // and remove both instructions from our list of
3922     // candidates.
3923     UnsplittableLoads.insert(LI);
3924     return true;
3925   });
3926   // Now we have to go *back* through all the stores, because a later store may
3927   // have caused an earlier store's load to become unsplittable and if it is
3928   // unsplittable for the later store, then we can't rely on it being split in
3929   // the earlier store either.
3930   llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) {
3931     auto *LI = cast<LoadInst>(SI->getValueOperand());
3932     return UnsplittableLoads.count(LI);
3933   });
3934   // Once we've established all the loads that can't be split for some reason,
3935   // filter any that made it into our list out.
3936   llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) {
3937     return UnsplittableLoads.count(LI);
3938   });
3939 
3940   // If no loads or stores are left, there is no pre-splitting to be done for
3941   // this alloca.
3942   if (Loads.empty() && Stores.empty())
3943     return false;
3944 
3945   // From here on, we can't fail and will be building new accesses, so rig up
3946   // an IR builder.
3947   IRBuilderTy IRB(&AI);
3948 
3949   // Collect the new slices which we will merge into the alloca slices.
3950   SmallVector<Slice, 4> NewSlices;
3951 
3952   // Track any allocas we end up splitting loads and stores for so we iterate
3953   // on them.
3954   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3955 
3956   // At this point, we have collected all of the loads and stores we can
3957   // pre-split, and the specific splits needed for them. We actually do the
3958   // splitting in a specific order in order to handle when one of the loads in
3959   // the value operand to one of the stores.
3960   //
3961   // First, we rewrite all of the split loads, and just accumulate each split
3962   // load in a parallel structure. We also build the slices for them and append
3963   // them to the alloca slices.
3964   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3965   std::vector<LoadInst *> SplitLoads;
3966   const DataLayout &DL = AI.getModule()->getDataLayout();
3967   for (LoadInst *LI : Loads) {
3968     SplitLoads.clear();
3969 
3970     auto &Offsets = SplitOffsetsMap[LI];
3971     unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset();
3972     assert(LI->getType()->getIntegerBitWidth() % 8 == 0 &&
3973            "Load must have type size equal to store size");
3974     assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize &&
3975            "Load must be >= slice size");
3976 
3977     uint64_t BaseOffset = Offsets.S->beginOffset();
3978     assert(BaseOffset + SliceSize > BaseOffset &&
3979            "Cannot represent alloca access size using 64-bit integers!");
3980 
3981     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3982     IRB.SetInsertPoint(LI);
3983 
3984     LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
3985 
3986     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3987     int Idx = 0, Size = Offsets.Splits.size();
3988     for (;;) {
3989       auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8);
3990       auto AS = LI->getPointerAddressSpace();
3991       auto *PartPtrTy = PartTy->getPointerTo(AS);
3992       LoadInst *PLoad = IRB.CreateAlignedLoad(
3993           PartTy,
3994           getAdjustedPtr(IRB, DL, BasePtr,
3995                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
3996                          PartPtrTy, BasePtr->getName() + "."),
3997           getAdjustedAlignment(LI, PartOffset),
3998           /*IsVolatile*/ false, LI->getName());
3999       PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4000                                 LLVMContext::MD_access_group});
4001 
4002       // Append this load onto the list of split loads so we can find it later
4003       // to rewrite the stores.
4004       SplitLoads.push_back(PLoad);
4005 
4006       // Now build a new slice for the alloca.
4007       NewSlices.push_back(
4008           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4009                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
4010                 /*IsSplittable*/ false));
4011       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4012                         << ", " << NewSlices.back().endOffset()
4013                         << "): " << *PLoad << "\n");
4014 
4015       // See if we've handled all the splits.
4016       if (Idx >= Size)
4017         break;
4018 
4019       // Setup the next partition.
4020       PartOffset = Offsets.Splits[Idx];
4021       ++Idx;
4022       PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset;
4023     }
4024 
4025     // Now that we have the split loads, do the slow walk over all uses of the
4026     // load and rewrite them as split stores, or save the split loads to use
4027     // below if the store is going to be split there anyways.
4028     bool DeferredStores = false;
4029     for (User *LU : LI->users()) {
4030       StoreInst *SI = cast<StoreInst>(LU);
4031       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
4032         DeferredStores = true;
4033         LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
4034                           << "\n");
4035         continue;
4036       }
4037 
4038       Value *StoreBasePtr = SI->getPointerOperand();
4039       IRB.SetInsertPoint(SI);
4040 
4041       LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
4042 
4043       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
4044         LoadInst *PLoad = SplitLoads[Idx];
4045         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
4046         auto *PartPtrTy =
4047             PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
4048 
4049         auto AS = SI->getPointerAddressSpace();
4050         StoreInst *PStore = IRB.CreateAlignedStore(
4051             PLoad,
4052             getAdjustedPtr(IRB, DL, StoreBasePtr,
4053                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4054                            PartPtrTy, StoreBasePtr->getName() + "."),
4055             getAdjustedAlignment(SI, PartOffset),
4056             /*IsVolatile*/ false);
4057         PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4058                                    LLVMContext::MD_access_group});
4059         LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
4060       }
4061 
4062       // We want to immediately iterate on any allocas impacted by splitting
4063       // this store, and we have to track any promotable alloca (indicated by
4064       // a direct store) as needing to be resplit because it is no longer
4065       // promotable.
4066       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
4067         ResplitPromotableAllocas.insert(OtherAI);
4068         Worklist.insert(OtherAI);
4069       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4070                      StoreBasePtr->stripInBoundsOffsets())) {
4071         Worklist.insert(OtherAI);
4072       }
4073 
4074       // Mark the original store as dead.
4075       DeadInsts.push_back(SI);
4076     }
4077 
4078     // Save the split loads if there are deferred stores among the users.
4079     if (DeferredStores)
4080       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
4081 
4082     // Mark the original load as dead and kill the original slice.
4083     DeadInsts.push_back(LI);
4084     Offsets.S->kill();
4085   }
4086 
4087   // Second, we rewrite all of the split stores. At this point, we know that
4088   // all loads from this alloca have been split already. For stores of such
4089   // loads, we can simply look up the pre-existing split loads. For stores of
4090   // other loads, we split those loads first and then write split stores of
4091   // them.
4092   for (StoreInst *SI : Stores) {
4093     auto *LI = cast<LoadInst>(SI->getValueOperand());
4094     IntegerType *Ty = cast<IntegerType>(LI->getType());
4095     assert(Ty->getBitWidth() % 8 == 0);
4096     uint64_t StoreSize = Ty->getBitWidth() / 8;
4097     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
4098 
4099     auto &Offsets = SplitOffsetsMap[SI];
4100     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
4101            "Slice size should always match load size exactly!");
4102     uint64_t BaseOffset = Offsets.S->beginOffset();
4103     assert(BaseOffset + StoreSize > BaseOffset &&
4104            "Cannot represent alloca access size using 64-bit integers!");
4105 
4106     Value *LoadBasePtr = LI->getPointerOperand();
4107     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
4108 
4109     LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
4110 
4111     // Check whether we have an already split load.
4112     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
4113     std::vector<LoadInst *> *SplitLoads = nullptr;
4114     if (SplitLoadsMapI != SplitLoadsMap.end()) {
4115       SplitLoads = &SplitLoadsMapI->second;
4116       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
4117              "Too few split loads for the number of splits in the store!");
4118     } else {
4119       LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
4120     }
4121 
4122     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4123     int Idx = 0, Size = Offsets.Splits.size();
4124     for (;;) {
4125       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4126       auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
4127       auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
4128 
4129       // Either lookup a split load or create one.
4130       LoadInst *PLoad;
4131       if (SplitLoads) {
4132         PLoad = (*SplitLoads)[Idx];
4133       } else {
4134         IRB.SetInsertPoint(LI);
4135         auto AS = LI->getPointerAddressSpace();
4136         PLoad = IRB.CreateAlignedLoad(
4137             PartTy,
4138             getAdjustedPtr(IRB, DL, LoadBasePtr,
4139                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4140                            LoadPartPtrTy, LoadBasePtr->getName() + "."),
4141             getAdjustedAlignment(LI, PartOffset),
4142             /*IsVolatile*/ false, LI->getName());
4143         PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4144                                   LLVMContext::MD_access_group});
4145       }
4146 
4147       // And store this partition.
4148       IRB.SetInsertPoint(SI);
4149       auto AS = SI->getPointerAddressSpace();
4150       StoreInst *PStore = IRB.CreateAlignedStore(
4151           PLoad,
4152           getAdjustedPtr(IRB, DL, StoreBasePtr,
4153                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4154                          StorePartPtrTy, StoreBasePtr->getName() + "."),
4155           getAdjustedAlignment(SI, PartOffset),
4156           /*IsVolatile*/ false);
4157       PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4158                                  LLVMContext::MD_access_group});
4159 
4160       // Now build a new slice for the alloca.
4161       NewSlices.push_back(
4162           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4163                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4164                 /*IsSplittable*/ false));
4165       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4166                         << ", " << NewSlices.back().endOffset()
4167                         << "): " << *PStore << "\n");
4168       if (!SplitLoads) {
4169         LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4170       }
4171 
4172       // See if we've finished all the splits.
4173       if (Idx >= Size)
4174         break;
4175 
4176       // Setup the next partition.
4177       PartOffset = Offsets.Splits[Idx];
4178       ++Idx;
4179       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4180     }
4181 
4182     // We want to immediately iterate on any allocas impacted by splitting
4183     // this load, which is only relevant if it isn't a load of this alloca and
4184     // thus we didn't already split the loads above. We also have to keep track
4185     // of any promotable allocas we split loads on as they can no longer be
4186     // promoted.
4187     if (!SplitLoads) {
4188       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4189         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4190         ResplitPromotableAllocas.insert(OtherAI);
4191         Worklist.insert(OtherAI);
4192       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4193                      LoadBasePtr->stripInBoundsOffsets())) {
4194         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4195         Worklist.insert(OtherAI);
4196       }
4197     }
4198 
4199     // Mark the original store as dead now that we've split it up and kill its
4200     // slice. Note that we leave the original load in place unless this store
4201     // was its only use. It may in turn be split up if it is an alloca load
4202     // for some other alloca, but it may be a normal load. This may introduce
4203     // redundant loads, but where those can be merged the rest of the optimizer
4204     // should handle the merging, and this uncovers SSA splits which is more
4205     // important. In practice, the original loads will almost always be fully
4206     // split and removed eventually, and the splits will be merged by any
4207     // trivial CSE, including instcombine.
4208     if (LI->hasOneUse()) {
4209       assert(*LI->user_begin() == SI && "Single use isn't this store!");
4210       DeadInsts.push_back(LI);
4211     }
4212     DeadInsts.push_back(SI);
4213     Offsets.S->kill();
4214   }
4215 
4216   // Remove the killed slices that have ben pre-split.
4217   llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); });
4218 
4219   // Insert our new slices. This will sort and merge them into the sorted
4220   // sequence.
4221   AS.insert(NewSlices);
4222 
4223   LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4224 #ifndef NDEBUG
4225   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4226     LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4227 #endif
4228 
4229   // Finally, don't try to promote any allocas that new require re-splitting.
4230   // They have already been added to the worklist above.
4231   llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) {
4232     return ResplitPromotableAllocas.count(AI);
4233   });
4234 
4235   return true;
4236 }
4237 
4238 /// Rewrite an alloca partition's users.
4239 ///
4240 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4241 /// to rewrite uses of an alloca partition to be conducive for SSA value
4242 /// promotion. If the partition needs a new, more refined alloca, this will
4243 /// build that new alloca, preserving as much type information as possible, and
4244 /// rewrite the uses of the old alloca to point at the new one and have the
4245 /// appropriate new offsets. It also evaluates how successful the rewrite was
4246 /// at enabling promotion and if it was successful queues the alloca to be
4247 /// promoted.
4248 AllocaInst *SROAPass::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4249                                        Partition &P) {
4250   // Try to compute a friendly type for this partition of the alloca. This
4251   // won't always succeed, in which case we fall back to a legal integer type
4252   // or an i8 array of an appropriate size.
4253   Type *SliceTy = nullptr;
4254   const DataLayout &DL = AI.getModule()->getDataLayout();
4255   std::pair<Type *, IntegerType *> CommonUseTy =
4256       findCommonType(P.begin(), P.end(), P.endOffset());
4257   // Do all uses operate on the same type?
4258   if (CommonUseTy.first)
4259     if (DL.getTypeAllocSize(CommonUseTy.first).getFixedSize() >= P.size())
4260       SliceTy = CommonUseTy.first;
4261   // If not, can we find an appropriate subtype in the original allocated type?
4262   if (!SliceTy)
4263     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4264                                                  P.beginOffset(), P.size()))
4265       SliceTy = TypePartitionTy;
4266   // If still not, can we use the largest bitwidth integer type used?
4267   if (!SliceTy && CommonUseTy.second)
4268     if (DL.getTypeAllocSize(CommonUseTy.second).getFixedSize() >= P.size())
4269       SliceTy = CommonUseTy.second;
4270   if ((!SliceTy || (SliceTy->isArrayTy() &&
4271                     SliceTy->getArrayElementType()->isIntegerTy())) &&
4272       DL.isLegalInteger(P.size() * 8))
4273     SliceTy = Type::getIntNTy(*C, P.size() * 8);
4274   if (!SliceTy)
4275     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4276   assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size());
4277 
4278   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4279 
4280   VectorType *VecTy =
4281       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4282   if (VecTy)
4283     SliceTy = VecTy;
4284 
4285   // Check for the case where we're going to rewrite to a new alloca of the
4286   // exact same type as the original, and with the same access offsets. In that
4287   // case, re-use the existing alloca, but still run through the rewriter to
4288   // perform phi and select speculation.
4289   // P.beginOffset() can be non-zero even with the same type in a case with
4290   // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4291   AllocaInst *NewAI;
4292   if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4293     NewAI = &AI;
4294     // FIXME: We should be able to bail at this point with "nothing changed".
4295     // FIXME: We might want to defer PHI speculation until after here.
4296     // FIXME: return nullptr;
4297   } else {
4298     // Make sure the alignment is compatible with P.beginOffset().
4299     const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
4300     // If we will get at least this much alignment from the type alone, leave
4301     // the alloca's alignment unconstrained.
4302     const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy);
4303     NewAI = new AllocaInst(
4304         SliceTy, AI.getType()->getAddressSpace(), nullptr,
4305         IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
4306         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4307     // Copy the old AI debug location over to the new one.
4308     NewAI->setDebugLoc(AI.getDebugLoc());
4309     ++NumNewAllocas;
4310   }
4311 
4312   LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4313                     << "[" << P.beginOffset() << "," << P.endOffset()
4314                     << ") to: " << *NewAI << "\n");
4315 
4316   // Track the high watermark on the worklist as it is only relevant for
4317   // promoted allocas. We will reset it to this point if the alloca is not in
4318   // fact scheduled for promotion.
4319   unsigned PPWOldSize = PostPromotionWorklist.size();
4320   unsigned NumUses = 0;
4321   SmallSetVector<PHINode *, 8> PHIUsers;
4322   SmallSetVector<SelectInst *, 8> SelectUsers;
4323 
4324   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4325                                P.endOffset(), IsIntegerPromotable, VecTy,
4326                                PHIUsers, SelectUsers);
4327   bool Promotable = true;
4328   for (Slice *S : P.splitSliceTails()) {
4329     Promotable &= Rewriter.visit(S);
4330     ++NumUses;
4331   }
4332   for (Slice &S : P) {
4333     Promotable &= Rewriter.visit(&S);
4334     ++NumUses;
4335   }
4336 
4337   NumAllocaPartitionUses += NumUses;
4338   MaxUsesPerAllocaPartition.updateMax(NumUses);
4339 
4340   // Now that we've processed all the slices in the new partition, check if any
4341   // PHIs or Selects would block promotion.
4342   for (PHINode *PHI : PHIUsers)
4343     if (!isSafePHIToSpeculate(*PHI)) {
4344       Promotable = false;
4345       PHIUsers.clear();
4346       SelectUsers.clear();
4347       break;
4348     }
4349 
4350   for (SelectInst *Sel : SelectUsers)
4351     if (!isSafeSelectToSpeculate(*Sel)) {
4352       Promotable = false;
4353       PHIUsers.clear();
4354       SelectUsers.clear();
4355       break;
4356     }
4357 
4358   if (Promotable) {
4359     for (Use *U : AS.getDeadUsesIfPromotable()) {
4360       auto *OldInst = dyn_cast<Instruction>(U->get());
4361       Value::dropDroppableUse(*U);
4362       if (OldInst)
4363         if (isInstructionTriviallyDead(OldInst))
4364           DeadInsts.push_back(OldInst);
4365     }
4366     if (PHIUsers.empty() && SelectUsers.empty()) {
4367       // Promote the alloca.
4368       PromotableAllocas.push_back(NewAI);
4369     } else {
4370       // If we have either PHIs or Selects to speculate, add them to those
4371       // worklists and re-queue the new alloca so that we promote in on the
4372       // next iteration.
4373       for (PHINode *PHIUser : PHIUsers)
4374         SpeculatablePHIs.insert(PHIUser);
4375       for (SelectInst *SelectUser : SelectUsers)
4376         SpeculatableSelects.insert(SelectUser);
4377       Worklist.insert(NewAI);
4378     }
4379   } else {
4380     // Drop any post-promotion work items if promotion didn't happen.
4381     while (PostPromotionWorklist.size() > PPWOldSize)
4382       PostPromotionWorklist.pop_back();
4383 
4384     // We couldn't promote and we didn't create a new partition, nothing
4385     // happened.
4386     if (NewAI == &AI)
4387       return nullptr;
4388 
4389     // If we can't promote the alloca, iterate on it to check for new
4390     // refinements exposed by splitting the current alloca. Don't iterate on an
4391     // alloca which didn't actually change and didn't get promoted.
4392     Worklist.insert(NewAI);
4393   }
4394 
4395   return NewAI;
4396 }
4397 
4398 /// Walks the slices of an alloca and form partitions based on them,
4399 /// rewriting each of their uses.
4400 bool SROAPass::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4401   if (AS.begin() == AS.end())
4402     return false;
4403 
4404   unsigned NumPartitions = 0;
4405   bool Changed = false;
4406   const DataLayout &DL = AI.getModule()->getDataLayout();
4407 
4408   // First try to pre-split loads and stores.
4409   Changed |= presplitLoadsAndStores(AI, AS);
4410 
4411   // Now that we have identified any pre-splitting opportunities,
4412   // mark loads and stores unsplittable except for the following case.
4413   // We leave a slice splittable if all other slices are disjoint or fully
4414   // included in the slice, such as whole-alloca loads and stores.
4415   // If we fail to split these during pre-splitting, we want to force them
4416   // to be rewritten into a partition.
4417   bool IsSorted = true;
4418 
4419   uint64_t AllocaSize =
4420       DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize();
4421   const uint64_t MaxBitVectorSize = 1024;
4422   if (AllocaSize <= MaxBitVectorSize) {
4423     // If a byte boundary is included in any load or store, a slice starting or
4424     // ending at the boundary is not splittable.
4425     SmallBitVector SplittableOffset(AllocaSize + 1, true);
4426     for (Slice &S : AS)
4427       for (unsigned O = S.beginOffset() + 1;
4428            O < S.endOffset() && O < AllocaSize; O++)
4429         SplittableOffset.reset(O);
4430 
4431     for (Slice &S : AS) {
4432       if (!S.isSplittable())
4433         continue;
4434 
4435       if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4436           (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4437         continue;
4438 
4439       if (isa<LoadInst>(S.getUse()->getUser()) ||
4440           isa<StoreInst>(S.getUse()->getUser())) {
4441         S.makeUnsplittable();
4442         IsSorted = false;
4443       }
4444     }
4445   }
4446   else {
4447     // We only allow whole-alloca splittable loads and stores
4448     // for a large alloca to avoid creating too large BitVector.
4449     for (Slice &S : AS) {
4450       if (!S.isSplittable())
4451         continue;
4452 
4453       if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4454         continue;
4455 
4456       if (isa<LoadInst>(S.getUse()->getUser()) ||
4457           isa<StoreInst>(S.getUse()->getUser())) {
4458         S.makeUnsplittable();
4459         IsSorted = false;
4460       }
4461     }
4462   }
4463 
4464   if (!IsSorted)
4465     llvm::sort(AS);
4466 
4467   /// Describes the allocas introduced by rewritePartition in order to migrate
4468   /// the debug info.
4469   struct Fragment {
4470     AllocaInst *Alloca;
4471     uint64_t Offset;
4472     uint64_t Size;
4473     Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4474       : Alloca(AI), Offset(O), Size(S) {}
4475   };
4476   SmallVector<Fragment, 4> Fragments;
4477 
4478   // Rewrite each partition.
4479   for (auto &P : AS.partitions()) {
4480     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4481       Changed = true;
4482       if (NewAI != &AI) {
4483         uint64_t SizeOfByte = 8;
4484         uint64_t AllocaSize =
4485             DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize();
4486         // Don't include any padding.
4487         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4488         Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4489       }
4490     }
4491     ++NumPartitions;
4492   }
4493 
4494   NumAllocaPartitions += NumPartitions;
4495   MaxPartitionsPerAlloca.updateMax(NumPartitions);
4496 
4497   // Migrate debug information from the old alloca to the new alloca(s)
4498   // and the individual partitions.
4499   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4500   for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) {
4501     auto *Expr = DbgDeclare->getExpression();
4502     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4503     uint64_t AllocaSize =
4504         DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize();
4505     for (auto Fragment : Fragments) {
4506       // Create a fragment expression describing the new partition or reuse AI's
4507       // expression if there is only one partition.
4508       auto *FragmentExpr = Expr;
4509       if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4510         // If this alloca is already a scalar replacement of a larger aggregate,
4511         // Fragment.Offset describes the offset inside the scalar.
4512         auto ExprFragment = Expr->getFragmentInfo();
4513         uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4514         uint64_t Start = Offset + Fragment.Offset;
4515         uint64_t Size = Fragment.Size;
4516         if (ExprFragment) {
4517           uint64_t AbsEnd =
4518               ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4519           if (Start >= AbsEnd)
4520             // No need to describe a SROAed padding.
4521             continue;
4522           Size = std::min(Size, AbsEnd - Start);
4523         }
4524         // The new, smaller fragment is stenciled out from the old fragment.
4525         if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4526           assert(Start >= OrigFragment->OffsetInBits &&
4527                  "new fragment is outside of original fragment");
4528           Start -= OrigFragment->OffsetInBits;
4529         }
4530 
4531         // The alloca may be larger than the variable.
4532         auto VarSize = DbgDeclare->getVariable()->getSizeInBits();
4533         if (VarSize) {
4534           if (Size > *VarSize)
4535             Size = *VarSize;
4536           if (Size == 0 || Start + Size > *VarSize)
4537             continue;
4538         }
4539 
4540         // Avoid creating a fragment expression that covers the entire variable.
4541         if (!VarSize || *VarSize != Size) {
4542           if (auto E =
4543                   DIExpression::createFragmentExpression(Expr, Start, Size))
4544             FragmentExpr = *E;
4545           else
4546             continue;
4547         }
4548       }
4549 
4550       // Remove any existing intrinsics on the new alloca describing
4551       // the variable fragment.
4552       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) {
4553         auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS,
4554                                        const DbgVariableIntrinsic *RHS) {
4555           return LHS->getVariable() == RHS->getVariable() &&
4556                  LHS->getDebugLoc()->getInlinedAt() ==
4557                      RHS->getDebugLoc()->getInlinedAt();
4558         };
4559         if (SameVariableFragment(OldDII, DbgDeclare))
4560           OldDII->eraseFromParent();
4561       }
4562 
4563       DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), FragmentExpr,
4564                         DbgDeclare->getDebugLoc(), &AI);
4565     }
4566   }
4567   return Changed;
4568 }
4569 
4570 /// Clobber a use with poison, deleting the used value if it becomes dead.
4571 void SROAPass::clobberUse(Use &U) {
4572   Value *OldV = U;
4573   // Replace the use with an poison value.
4574   U = PoisonValue::get(OldV->getType());
4575 
4576   // Check for this making an instruction dead. We have to garbage collect
4577   // all the dead instructions to ensure the uses of any alloca end up being
4578   // minimal.
4579   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4580     if (isInstructionTriviallyDead(OldI)) {
4581       DeadInsts.push_back(OldI);
4582     }
4583 }
4584 
4585 /// Analyze an alloca for SROA.
4586 ///
4587 /// This analyzes the alloca to ensure we can reason about it, builds
4588 /// the slices of the alloca, and then hands it off to be split and
4589 /// rewritten as needed.
4590 bool SROAPass::runOnAlloca(AllocaInst &AI) {
4591   LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4592   ++NumAllocasAnalyzed;
4593 
4594   // Special case dead allocas, as they're trivial.
4595   if (AI.use_empty()) {
4596     AI.eraseFromParent();
4597     return true;
4598   }
4599   const DataLayout &DL = AI.getModule()->getDataLayout();
4600 
4601   // Skip alloca forms that this analysis can't handle.
4602   auto *AT = AI.getAllocatedType();
4603   if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) ||
4604       DL.getTypeAllocSize(AT).getFixedSize() == 0)
4605     return false;
4606 
4607   bool Changed = false;
4608 
4609   // First, split any FCA loads and stores touching this alloca to promote
4610   // better splitting and promotion opportunities.
4611   IRBuilderTy IRB(&AI);
4612   AggLoadStoreRewriter AggRewriter(DL, IRB);
4613   Changed |= AggRewriter.rewrite(AI);
4614 
4615   // Build the slices using a recursive instruction-visiting builder.
4616   AllocaSlices AS(DL, AI);
4617   LLVM_DEBUG(AS.print(dbgs()));
4618   if (AS.isEscaped())
4619     return Changed;
4620 
4621   // Delete all the dead users of this alloca before splitting and rewriting it.
4622   for (Instruction *DeadUser : AS.getDeadUsers()) {
4623     // Free up everything used by this instruction.
4624     for (Use &DeadOp : DeadUser->operands())
4625       clobberUse(DeadOp);
4626 
4627     // Now replace the uses of this instruction.
4628     DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType()));
4629 
4630     // And mark it for deletion.
4631     DeadInsts.push_back(DeadUser);
4632     Changed = true;
4633   }
4634   for (Use *DeadOp : AS.getDeadOperands()) {
4635     clobberUse(*DeadOp);
4636     Changed = true;
4637   }
4638 
4639   // No slices to split. Leave the dead alloca for a later pass to clean up.
4640   if (AS.begin() == AS.end())
4641     return Changed;
4642 
4643   Changed |= splitAlloca(AI, AS);
4644 
4645   LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
4646   while (!SpeculatablePHIs.empty())
4647     speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val());
4648 
4649   LLVM_DEBUG(dbgs() << "  Speculating Selects\n");
4650   while (!SpeculatableSelects.empty())
4651     speculateSelectInstLoads(IRB, *SpeculatableSelects.pop_back_val());
4652 
4653   return Changed;
4654 }
4655 
4656 /// Delete the dead instructions accumulated in this run.
4657 ///
4658 /// Recursively deletes the dead instructions we've accumulated. This is done
4659 /// at the very end to maximize locality of the recursive delete and to
4660 /// minimize the problems of invalidated instruction pointers as such pointers
4661 /// are used heavily in the intermediate stages of the algorithm.
4662 ///
4663 /// We also record the alloca instructions deleted here so that they aren't
4664 /// subsequently handed to mem2reg to promote.
4665 bool SROAPass::deleteDeadInstructions(
4666     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4667   bool Changed = false;
4668   while (!DeadInsts.empty()) {
4669     Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
4670     if (!I) continue;
4671     LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4672 
4673     // If the instruction is an alloca, find the possible dbg.declare connected
4674     // to it, and remove it too. We must do this before calling RAUW or we will
4675     // not be able to find it.
4676     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4677       DeletedAllocas.insert(AI);
4678       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
4679         OldDII->eraseFromParent();
4680     }
4681 
4682     I->replaceAllUsesWith(UndefValue::get(I->getType()));
4683 
4684     for (Use &Operand : I->operands())
4685       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4686         // Zero out the operand and see if it becomes trivially dead.
4687         Operand = nullptr;
4688         if (isInstructionTriviallyDead(U))
4689           DeadInsts.push_back(U);
4690       }
4691 
4692     ++NumDeleted;
4693     I->eraseFromParent();
4694     Changed = true;
4695   }
4696   return Changed;
4697 }
4698 
4699 /// Promote the allocas, using the best available technique.
4700 ///
4701 /// This attempts to promote whatever allocas have been identified as viable in
4702 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4703 /// This function returns whether any promotion occurred.
4704 bool SROAPass::promoteAllocas(Function &F) {
4705   if (PromotableAllocas.empty())
4706     return false;
4707 
4708   NumPromoted += PromotableAllocas.size();
4709 
4710   LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4711   PromoteMemToReg(PromotableAllocas, *DT, AC);
4712   PromotableAllocas.clear();
4713   return true;
4714 }
4715 
4716 PreservedAnalyses SROAPass::runImpl(Function &F, DominatorTree &RunDT,
4717                                     AssumptionCache &RunAC) {
4718   LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4719   C = &F.getContext();
4720   DT = &RunDT;
4721   AC = &RunAC;
4722 
4723   BasicBlock &EntryBB = F.getEntryBlock();
4724   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4725        I != E; ++I) {
4726     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4727       if (isa<ScalableVectorType>(AI->getAllocatedType())) {
4728         if (isAllocaPromotable(AI))
4729           PromotableAllocas.push_back(AI);
4730       } else {
4731         Worklist.insert(AI);
4732       }
4733     }
4734   }
4735 
4736   bool Changed = false;
4737   // A set of deleted alloca instruction pointers which should be removed from
4738   // the list of promotable allocas.
4739   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4740 
4741   do {
4742     while (!Worklist.empty()) {
4743       Changed |= runOnAlloca(*Worklist.pop_back_val());
4744       Changed |= deleteDeadInstructions(DeletedAllocas);
4745 
4746       // Remove the deleted allocas from various lists so that we don't try to
4747       // continue processing them.
4748       if (!DeletedAllocas.empty()) {
4749         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4750         Worklist.remove_if(IsInSet);
4751         PostPromotionWorklist.remove_if(IsInSet);
4752         llvm::erase_if(PromotableAllocas, IsInSet);
4753         DeletedAllocas.clear();
4754       }
4755     }
4756 
4757     Changed |= promoteAllocas(F);
4758 
4759     Worklist = PostPromotionWorklist;
4760     PostPromotionWorklist.clear();
4761   } while (!Worklist.empty());
4762 
4763   if (!Changed)
4764     return PreservedAnalyses::all();
4765 
4766   PreservedAnalyses PA;
4767   PA.preserveSet<CFGAnalyses>();
4768   return PA;
4769 }
4770 
4771 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) {
4772   return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4773                  AM.getResult<AssumptionAnalysis>(F));
4774 }
4775 
4776 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4777 ///
4778 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4779 /// SROA pass.
4780 class llvm::sroa::SROALegacyPass : public FunctionPass {
4781   /// The SROA implementation.
4782   SROAPass Impl;
4783 
4784 public:
4785   static char ID;
4786 
4787   SROALegacyPass() : FunctionPass(ID) {
4788     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4789   }
4790 
4791   bool runOnFunction(Function &F) override {
4792     if (skipFunction(F))
4793       return false;
4794 
4795     auto PA = Impl.runImpl(
4796         F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4797         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4798     return !PA.areAllPreserved();
4799   }
4800 
4801   void getAnalysisUsage(AnalysisUsage &AU) const override {
4802     AU.addRequired<AssumptionCacheTracker>();
4803     AU.addRequired<DominatorTreeWrapperPass>();
4804     AU.addPreserved<GlobalsAAWrapperPass>();
4805     AU.setPreservesCFG();
4806   }
4807 
4808   StringRef getPassName() const override { return "SROA"; }
4809 };
4810 
4811 char SROALegacyPass::ID = 0;
4812 
4813 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4814 
4815 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4816                       "Scalar Replacement Of Aggregates", false, false)
4817 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4818 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4819 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4820                     false, false)
4821