1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This transformation implements the well known scalar replacement of 10 /// aggregates transformation. It tries to identify promotable elements of an 11 /// aggregate alloca, and promote them to registers. It will also try to 12 /// convert uses of an element (or set of elements) of an alloca into a vector 13 /// or bitfield-style integer scalar if appropriate. 14 /// 15 /// It works to do this with minimal slicing of the alloca so that regions 16 /// which are merely transferred in and out of external memory remain unchanged 17 /// and are not decomposed to scalar code. 18 /// 19 /// Because this also performs alloca promotion, it can be thought of as also 20 /// serving the purpose of SSA formation. The algorithm iterates on the 21 /// function until all opportunities for promotion have been realized. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/SROA.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/PointerIntPair.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/ADT/iterator.h" 39 #include "llvm/ADT/iterator_range.h" 40 #include "llvm/Analysis/AssumptionCache.h" 41 #include "llvm/Analysis/GlobalsModRef.h" 42 #include "llvm/Analysis/Loads.h" 43 #include "llvm/Analysis/PtrUseVisitor.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Config/llvm-config.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/ConstantFolder.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DIBuilder.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DebugInfoMetadata.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/GetElementPtrTypeIterator.h" 57 #include "llvm/IR/GlobalAlias.h" 58 #include "llvm/IR/IRBuilder.h" 59 #include "llvm/IR/InstVisitor.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/Metadata.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PassManager.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <chrono> 87 #include <cstddef> 88 #include <cstdint> 89 #include <cstring> 90 #include <iterator> 91 #include <string> 92 #include <tuple> 93 #include <utility> 94 #include <vector> 95 96 #ifndef NDEBUG 97 // We only use this for a debug check. 98 #include <random> 99 #endif 100 101 using namespace llvm; 102 using namespace llvm::sroa; 103 104 #define DEBUG_TYPE "sroa" 105 106 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 107 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 108 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 109 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 110 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 111 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 112 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 113 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 114 STATISTIC(NumDeleted, "Number of instructions deleted"); 115 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 116 117 /// Hidden option to enable randomly shuffling the slices to help uncover 118 /// instability in their order. 119 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices", 120 cl::init(false), cl::Hidden); 121 122 /// Hidden option to experiment with completely strict handling of inbounds 123 /// GEPs. 124 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), 125 cl::Hidden); 126 127 namespace { 128 129 /// A custom IRBuilder inserter which prefixes all names, but only in 130 /// Assert builds. 131 class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter { 132 std::string Prefix; 133 134 const Twine getNameWithPrefix(const Twine &Name) const { 135 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 136 } 137 138 public: 139 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 140 141 protected: 142 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 143 BasicBlock::iterator InsertPt) const { 144 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, 145 InsertPt); 146 } 147 }; 148 149 /// Provide a type for IRBuilder that drops names in release builds. 150 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 151 152 /// A used slice of an alloca. 153 /// 154 /// This structure represents a slice of an alloca used by some instruction. It 155 /// stores both the begin and end offsets of this use, a pointer to the use 156 /// itself, and a flag indicating whether we can classify the use as splittable 157 /// or not when forming partitions of the alloca. 158 class Slice { 159 /// The beginning offset of the range. 160 uint64_t BeginOffset = 0; 161 162 /// The ending offset, not included in the range. 163 uint64_t EndOffset = 0; 164 165 /// Storage for both the use of this slice and whether it can be 166 /// split. 167 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 168 169 public: 170 Slice() = default; 171 172 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 173 : BeginOffset(BeginOffset), EndOffset(EndOffset), 174 UseAndIsSplittable(U, IsSplittable) {} 175 176 uint64_t beginOffset() const { return BeginOffset; } 177 uint64_t endOffset() const { return EndOffset; } 178 179 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 180 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 181 182 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 183 184 bool isDead() const { return getUse() == nullptr; } 185 void kill() { UseAndIsSplittable.setPointer(nullptr); } 186 187 /// Support for ordering ranges. 188 /// 189 /// This provides an ordering over ranges such that start offsets are 190 /// always increasing, and within equal start offsets, the end offsets are 191 /// decreasing. Thus the spanning range comes first in a cluster with the 192 /// same start position. 193 bool operator<(const Slice &RHS) const { 194 if (beginOffset() < RHS.beginOffset()) 195 return true; 196 if (beginOffset() > RHS.beginOffset()) 197 return false; 198 if (isSplittable() != RHS.isSplittable()) 199 return !isSplittable(); 200 if (endOffset() > RHS.endOffset()) 201 return true; 202 return false; 203 } 204 205 /// Support comparison with a single offset to allow binary searches. 206 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 207 uint64_t RHSOffset) { 208 return LHS.beginOffset() < RHSOffset; 209 } 210 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 211 const Slice &RHS) { 212 return LHSOffset < RHS.beginOffset(); 213 } 214 215 bool operator==(const Slice &RHS) const { 216 return isSplittable() == RHS.isSplittable() && 217 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 218 } 219 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 220 }; 221 222 } // end anonymous namespace 223 224 /// Representation of the alloca slices. 225 /// 226 /// This class represents the slices of an alloca which are formed by its 227 /// various uses. If a pointer escapes, we can't fully build a representation 228 /// for the slices used and we reflect that in this structure. The uses are 229 /// stored, sorted by increasing beginning offset and with unsplittable slices 230 /// starting at a particular offset before splittable slices. 231 class llvm::sroa::AllocaSlices { 232 public: 233 /// Construct the slices of a particular alloca. 234 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 235 236 /// Test whether a pointer to the allocation escapes our analysis. 237 /// 238 /// If this is true, the slices are never fully built and should be 239 /// ignored. 240 bool isEscaped() const { return PointerEscapingInstr; } 241 242 /// Support for iterating over the slices. 243 /// @{ 244 using iterator = SmallVectorImpl<Slice>::iterator; 245 using range = iterator_range<iterator>; 246 247 iterator begin() { return Slices.begin(); } 248 iterator end() { return Slices.end(); } 249 250 using const_iterator = SmallVectorImpl<Slice>::const_iterator; 251 using const_range = iterator_range<const_iterator>; 252 253 const_iterator begin() const { return Slices.begin(); } 254 const_iterator end() const { return Slices.end(); } 255 /// @} 256 257 /// Erase a range of slices. 258 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 259 260 /// Insert new slices for this alloca. 261 /// 262 /// This moves the slices into the alloca's slices collection, and re-sorts 263 /// everything so that the usual ordering properties of the alloca's slices 264 /// hold. 265 void insert(ArrayRef<Slice> NewSlices) { 266 int OldSize = Slices.size(); 267 Slices.append(NewSlices.begin(), NewSlices.end()); 268 auto SliceI = Slices.begin() + OldSize; 269 llvm::sort(SliceI, Slices.end()); 270 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 271 } 272 273 // Forward declare the iterator and range accessor for walking the 274 // partitions. 275 class partition_iterator; 276 iterator_range<partition_iterator> partitions(); 277 278 /// Access the dead users for this alloca. 279 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 280 281 /// Access the dead operands referring to this alloca. 282 /// 283 /// These are operands which have cannot actually be used to refer to the 284 /// alloca as they are outside its range and the user doesn't correct for 285 /// that. These mostly consist of PHI node inputs and the like which we just 286 /// need to replace with undef. 287 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 288 289 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 290 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 291 void printSlice(raw_ostream &OS, const_iterator I, 292 StringRef Indent = " ") const; 293 void printUse(raw_ostream &OS, const_iterator I, 294 StringRef Indent = " ") const; 295 void print(raw_ostream &OS) const; 296 void dump(const_iterator I) const; 297 void dump() const; 298 #endif 299 300 private: 301 template <typename DerivedT, typename RetT = void> class BuilderBase; 302 class SliceBuilder; 303 304 friend class AllocaSlices::SliceBuilder; 305 306 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 307 /// Handle to alloca instruction to simplify method interfaces. 308 AllocaInst &AI; 309 #endif 310 311 /// The instruction responsible for this alloca not having a known set 312 /// of slices. 313 /// 314 /// When an instruction (potentially) escapes the pointer to the alloca, we 315 /// store a pointer to that here and abort trying to form slices of the 316 /// alloca. This will be null if the alloca slices are analyzed successfully. 317 Instruction *PointerEscapingInstr; 318 319 /// The slices of the alloca. 320 /// 321 /// We store a vector of the slices formed by uses of the alloca here. This 322 /// vector is sorted by increasing begin offset, and then the unsplittable 323 /// slices before the splittable ones. See the Slice inner class for more 324 /// details. 325 SmallVector<Slice, 8> Slices; 326 327 /// Instructions which will become dead if we rewrite the alloca. 328 /// 329 /// Note that these are not separated by slice. This is because we expect an 330 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 331 /// all these instructions can simply be removed and replaced with undef as 332 /// they come from outside of the allocated space. 333 SmallVector<Instruction *, 8> DeadUsers; 334 335 /// Operands which will become dead if we rewrite the alloca. 336 /// 337 /// These are operands that in their particular use can be replaced with 338 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs 339 /// to PHI nodes and the like. They aren't entirely dead (there might be 340 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 341 /// want to swap this particular input for undef to simplify the use lists of 342 /// the alloca. 343 SmallVector<Use *, 8> DeadOperands; 344 }; 345 346 /// A partition of the slices. 347 /// 348 /// An ephemeral representation for a range of slices which can be viewed as 349 /// a partition of the alloca. This range represents a span of the alloca's 350 /// memory which cannot be split, and provides access to all of the slices 351 /// overlapping some part of the partition. 352 /// 353 /// Objects of this type are produced by traversing the alloca's slices, but 354 /// are only ephemeral and not persistent. 355 class llvm::sroa::Partition { 356 private: 357 friend class AllocaSlices; 358 friend class AllocaSlices::partition_iterator; 359 360 using iterator = AllocaSlices::iterator; 361 362 /// The beginning and ending offsets of the alloca for this 363 /// partition. 364 uint64_t BeginOffset, EndOffset; 365 366 /// The start and end iterators of this partition. 367 iterator SI, SJ; 368 369 /// A collection of split slice tails overlapping the partition. 370 SmallVector<Slice *, 4> SplitTails; 371 372 /// Raw constructor builds an empty partition starting and ending at 373 /// the given iterator. 374 Partition(iterator SI) : SI(SI), SJ(SI) {} 375 376 public: 377 /// The start offset of this partition. 378 /// 379 /// All of the contained slices start at or after this offset. 380 uint64_t beginOffset() const { return BeginOffset; } 381 382 /// The end offset of this partition. 383 /// 384 /// All of the contained slices end at or before this offset. 385 uint64_t endOffset() const { return EndOffset; } 386 387 /// The size of the partition. 388 /// 389 /// Note that this can never be zero. 390 uint64_t size() const { 391 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 392 return EndOffset - BeginOffset; 393 } 394 395 /// Test whether this partition contains no slices, and merely spans 396 /// a region occupied by split slices. 397 bool empty() const { return SI == SJ; } 398 399 /// \name Iterate slices that start within the partition. 400 /// These may be splittable or unsplittable. They have a begin offset >= the 401 /// partition begin offset. 402 /// @{ 403 // FIXME: We should probably define a "concat_iterator" helper and use that 404 // to stitch together pointee_iterators over the split tails and the 405 // contiguous iterators of the partition. That would give a much nicer 406 // interface here. We could then additionally expose filtered iterators for 407 // split, unsplit, and unsplittable splices based on the usage patterns. 408 iterator begin() const { return SI; } 409 iterator end() const { return SJ; } 410 /// @} 411 412 /// Get the sequence of split slice tails. 413 /// 414 /// These tails are of slices which start before this partition but are 415 /// split and overlap into the partition. We accumulate these while forming 416 /// partitions. 417 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 418 }; 419 420 /// An iterator over partitions of the alloca's slices. 421 /// 422 /// This iterator implements the core algorithm for partitioning the alloca's 423 /// slices. It is a forward iterator as we don't support backtracking for 424 /// efficiency reasons, and re-use a single storage area to maintain the 425 /// current set of split slices. 426 /// 427 /// It is templated on the slice iterator type to use so that it can operate 428 /// with either const or non-const slice iterators. 429 class AllocaSlices::partition_iterator 430 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 431 Partition> { 432 friend class AllocaSlices; 433 434 /// Most of the state for walking the partitions is held in a class 435 /// with a nice interface for examining them. 436 Partition P; 437 438 /// We need to keep the end of the slices to know when to stop. 439 AllocaSlices::iterator SE; 440 441 /// We also need to keep track of the maximum split end offset seen. 442 /// FIXME: Do we really? 443 uint64_t MaxSplitSliceEndOffset = 0; 444 445 /// Sets the partition to be empty at given iterator, and sets the 446 /// end iterator. 447 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 448 : P(SI), SE(SE) { 449 // If not already at the end, advance our state to form the initial 450 // partition. 451 if (SI != SE) 452 advance(); 453 } 454 455 /// Advance the iterator to the next partition. 456 /// 457 /// Requires that the iterator not be at the end of the slices. 458 void advance() { 459 assert((P.SI != SE || !P.SplitTails.empty()) && 460 "Cannot advance past the end of the slices!"); 461 462 // Clear out any split uses which have ended. 463 if (!P.SplitTails.empty()) { 464 if (P.EndOffset >= MaxSplitSliceEndOffset) { 465 // If we've finished all splits, this is easy. 466 P.SplitTails.clear(); 467 MaxSplitSliceEndOffset = 0; 468 } else { 469 // Remove the uses which have ended in the prior partition. This 470 // cannot change the max split slice end because we just checked that 471 // the prior partition ended prior to that max. 472 P.SplitTails.erase(llvm::remove_if(P.SplitTails, 473 [&](Slice *S) { 474 return S->endOffset() <= 475 P.EndOffset; 476 }), 477 P.SplitTails.end()); 478 assert(llvm::any_of(P.SplitTails, 479 [&](Slice *S) { 480 return S->endOffset() == MaxSplitSliceEndOffset; 481 }) && 482 "Could not find the current max split slice offset!"); 483 assert(llvm::all_of(P.SplitTails, 484 [&](Slice *S) { 485 return S->endOffset() <= MaxSplitSliceEndOffset; 486 }) && 487 "Max split slice end offset is not actually the max!"); 488 } 489 } 490 491 // If P.SI is already at the end, then we've cleared the split tail and 492 // now have an end iterator. 493 if (P.SI == SE) { 494 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 495 return; 496 } 497 498 // If we had a non-empty partition previously, set up the state for 499 // subsequent partitions. 500 if (P.SI != P.SJ) { 501 // Accumulate all the splittable slices which started in the old 502 // partition into the split list. 503 for (Slice &S : P) 504 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 505 P.SplitTails.push_back(&S); 506 MaxSplitSliceEndOffset = 507 std::max(S.endOffset(), MaxSplitSliceEndOffset); 508 } 509 510 // Start from the end of the previous partition. 511 P.SI = P.SJ; 512 513 // If P.SI is now at the end, we at most have a tail of split slices. 514 if (P.SI == SE) { 515 P.BeginOffset = P.EndOffset; 516 P.EndOffset = MaxSplitSliceEndOffset; 517 return; 518 } 519 520 // If the we have split slices and the next slice is after a gap and is 521 // not splittable immediately form an empty partition for the split 522 // slices up until the next slice begins. 523 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 524 !P.SI->isSplittable()) { 525 P.BeginOffset = P.EndOffset; 526 P.EndOffset = P.SI->beginOffset(); 527 return; 528 } 529 } 530 531 // OK, we need to consume new slices. Set the end offset based on the 532 // current slice, and step SJ past it. The beginning offset of the 533 // partition is the beginning offset of the next slice unless we have 534 // pre-existing split slices that are continuing, in which case we begin 535 // at the prior end offset. 536 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 537 P.EndOffset = P.SI->endOffset(); 538 ++P.SJ; 539 540 // There are two strategies to form a partition based on whether the 541 // partition starts with an unsplittable slice or a splittable slice. 542 if (!P.SI->isSplittable()) { 543 // When we're forming an unsplittable region, it must always start at 544 // the first slice and will extend through its end. 545 assert(P.BeginOffset == P.SI->beginOffset()); 546 547 // Form a partition including all of the overlapping slices with this 548 // unsplittable slice. 549 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 550 if (!P.SJ->isSplittable()) 551 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 552 ++P.SJ; 553 } 554 555 // We have a partition across a set of overlapping unsplittable 556 // partitions. 557 return; 558 } 559 560 // If we're starting with a splittable slice, then we need to form 561 // a synthetic partition spanning it and any other overlapping splittable 562 // splices. 563 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 564 565 // Collect all of the overlapping splittable slices. 566 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 567 P.SJ->isSplittable()) { 568 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 569 ++P.SJ; 570 } 571 572 // Back upiP.EndOffset if we ended the span early when encountering an 573 // unsplittable slice. This synthesizes the early end offset of 574 // a partition spanning only splittable slices. 575 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 576 assert(!P.SJ->isSplittable()); 577 P.EndOffset = P.SJ->beginOffset(); 578 } 579 } 580 581 public: 582 bool operator==(const partition_iterator &RHS) const { 583 assert(SE == RHS.SE && 584 "End iterators don't match between compared partition iterators!"); 585 586 // The observed positions of partitions is marked by the P.SI iterator and 587 // the emptiness of the split slices. The latter is only relevant when 588 // P.SI == SE, as the end iterator will additionally have an empty split 589 // slices list, but the prior may have the same P.SI and a tail of split 590 // slices. 591 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 592 assert(P.SJ == RHS.P.SJ && 593 "Same set of slices formed two different sized partitions!"); 594 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 595 "Same slice position with differently sized non-empty split " 596 "slice tails!"); 597 return true; 598 } 599 return false; 600 } 601 602 partition_iterator &operator++() { 603 advance(); 604 return *this; 605 } 606 607 Partition &operator*() { return P; } 608 }; 609 610 /// A forward range over the partitions of the alloca's slices. 611 /// 612 /// This accesses an iterator range over the partitions of the alloca's 613 /// slices. It computes these partitions on the fly based on the overlapping 614 /// offsets of the slices and the ability to split them. It will visit "empty" 615 /// partitions to cover regions of the alloca only accessed via split 616 /// slices. 617 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 618 return make_range(partition_iterator(begin(), end()), 619 partition_iterator(end(), end())); 620 } 621 622 static Value *foldSelectInst(SelectInst &SI) { 623 // If the condition being selected on is a constant or the same value is 624 // being selected between, fold the select. Yes this does (rarely) happen 625 // early on. 626 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 627 return SI.getOperand(1 + CI->isZero()); 628 if (SI.getOperand(1) == SI.getOperand(2)) 629 return SI.getOperand(1); 630 631 return nullptr; 632 } 633 634 /// A helper that folds a PHI node or a select. 635 static Value *foldPHINodeOrSelectInst(Instruction &I) { 636 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 637 // If PN merges together the same value, return that value. 638 return PN->hasConstantValue(); 639 } 640 return foldSelectInst(cast<SelectInst>(I)); 641 } 642 643 /// Builder for the alloca slices. 644 /// 645 /// This class builds a set of alloca slices by recursively visiting the uses 646 /// of an alloca and making a slice for each load and store at each offset. 647 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 648 friend class PtrUseVisitor<SliceBuilder>; 649 friend class InstVisitor<SliceBuilder>; 650 651 using Base = PtrUseVisitor<SliceBuilder>; 652 653 const uint64_t AllocSize; 654 AllocaSlices &AS; 655 656 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 657 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 658 659 /// Set to de-duplicate dead instructions found in the use walk. 660 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 661 662 public: 663 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 664 : PtrUseVisitor<SliceBuilder>(DL), 665 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {} 666 667 private: 668 void markAsDead(Instruction &I) { 669 if (VisitedDeadInsts.insert(&I).second) 670 AS.DeadUsers.push_back(&I); 671 } 672 673 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 674 bool IsSplittable = false) { 675 // Completely skip uses which have a zero size or start either before or 676 // past the end of the allocation. 677 if (Size == 0 || Offset.uge(AllocSize)) { 678 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" 679 << Offset 680 << " which has zero size or starts outside of the " 681 << AllocSize << " byte alloca:\n" 682 << " alloca: " << AS.AI << "\n" 683 << " use: " << I << "\n"); 684 return markAsDead(I); 685 } 686 687 uint64_t BeginOffset = Offset.getZExtValue(); 688 uint64_t EndOffset = BeginOffset + Size; 689 690 // Clamp the end offset to the end of the allocation. Note that this is 691 // formulated to handle even the case where "BeginOffset + Size" overflows. 692 // This may appear superficially to be something we could ignore entirely, 693 // but that is not so! There may be widened loads or PHI-node uses where 694 // some instructions are dead but not others. We can't completely ignore 695 // them, and so have to record at least the information here. 696 assert(AllocSize >= BeginOffset); // Established above. 697 if (Size > AllocSize - BeginOffset) { 698 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" 699 << Offset << " to remain within the " << AllocSize 700 << " byte alloca:\n" 701 << " alloca: " << AS.AI << "\n" 702 << " use: " << I << "\n"); 703 EndOffset = AllocSize; 704 } 705 706 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 707 } 708 709 void visitBitCastInst(BitCastInst &BC) { 710 if (BC.use_empty()) 711 return markAsDead(BC); 712 713 return Base::visitBitCastInst(BC); 714 } 715 716 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 717 if (ASC.use_empty()) 718 return markAsDead(ASC); 719 720 return Base::visitAddrSpaceCastInst(ASC); 721 } 722 723 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 724 if (GEPI.use_empty()) 725 return markAsDead(GEPI); 726 727 if (SROAStrictInbounds && GEPI.isInBounds()) { 728 // FIXME: This is a manually un-factored variant of the basic code inside 729 // of GEPs with checking of the inbounds invariant specified in the 730 // langref in a very strict sense. If we ever want to enable 731 // SROAStrictInbounds, this code should be factored cleanly into 732 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 733 // by writing out the code here where we have the underlying allocation 734 // size readily available. 735 APInt GEPOffset = Offset; 736 const DataLayout &DL = GEPI.getModule()->getDataLayout(); 737 for (gep_type_iterator GTI = gep_type_begin(GEPI), 738 GTE = gep_type_end(GEPI); 739 GTI != GTE; ++GTI) { 740 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 741 if (!OpC) 742 break; 743 744 // Handle a struct index, which adds its field offset to the pointer. 745 if (StructType *STy = GTI.getStructTypeOrNull()) { 746 unsigned ElementIdx = OpC->getZExtValue(); 747 const StructLayout *SL = DL.getStructLayout(STy); 748 GEPOffset += 749 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 750 } else { 751 // For array or vector indices, scale the index by the size of the 752 // type. 753 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 754 GEPOffset += Index * APInt(Offset.getBitWidth(), 755 DL.getTypeAllocSize(GTI.getIndexedType())); 756 } 757 758 // If this index has computed an intermediate pointer which is not 759 // inbounds, then the result of the GEP is a poison value and we can 760 // delete it and all uses. 761 if (GEPOffset.ugt(AllocSize)) 762 return markAsDead(GEPI); 763 } 764 } 765 766 return Base::visitGetElementPtrInst(GEPI); 767 } 768 769 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 770 uint64_t Size, bool IsVolatile) { 771 // We allow splitting of non-volatile loads and stores where the type is an 772 // integer type. These may be used to implement 'memcpy' or other "transfer 773 // of bits" patterns. 774 bool IsSplittable = Ty->isIntegerTy() && !IsVolatile; 775 776 insertUse(I, Offset, Size, IsSplittable); 777 } 778 779 void visitLoadInst(LoadInst &LI) { 780 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 781 "All simple FCA loads should have been pre-split"); 782 783 if (!IsOffsetKnown) 784 return PI.setAborted(&LI); 785 786 if (LI.isVolatile() && 787 LI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 788 return PI.setAborted(&LI); 789 790 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 791 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 792 } 793 794 void visitStoreInst(StoreInst &SI) { 795 Value *ValOp = SI.getValueOperand(); 796 if (ValOp == *U) 797 return PI.setEscapedAndAborted(&SI); 798 if (!IsOffsetKnown) 799 return PI.setAborted(&SI); 800 801 if (SI.isVolatile() && 802 SI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 803 return PI.setAborted(&SI); 804 805 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()); 806 807 // If this memory access can be shown to *statically* extend outside the 808 // bounds of the allocation, it's behavior is undefined, so simply 809 // ignore it. Note that this is more strict than the generic clamping 810 // behavior of insertUse. We also try to handle cases which might run the 811 // risk of overflow. 812 // FIXME: We should instead consider the pointer to have escaped if this 813 // function is being instrumented for addressing bugs or race conditions. 814 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 815 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" 816 << Offset << " which extends past the end of the " 817 << AllocSize << " byte alloca:\n" 818 << " alloca: " << AS.AI << "\n" 819 << " use: " << SI << "\n"); 820 return markAsDead(SI); 821 } 822 823 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 824 "All simple FCA stores should have been pre-split"); 825 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 826 } 827 828 void visitMemSetInst(MemSetInst &II) { 829 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 830 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 831 if ((Length && Length->getValue() == 0) || 832 (IsOffsetKnown && Offset.uge(AllocSize))) 833 // Zero-length mem transfer intrinsics can be ignored entirely. 834 return markAsDead(II); 835 836 if (!IsOffsetKnown) 837 return PI.setAborted(&II); 838 839 // Don't replace this with a store with a different address space. TODO: 840 // Use a store with the casted new alloca? 841 if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace()) 842 return PI.setAborted(&II); 843 844 insertUse(II, Offset, Length ? Length->getLimitedValue() 845 : AllocSize - Offset.getLimitedValue(), 846 (bool)Length); 847 } 848 849 void visitMemTransferInst(MemTransferInst &II) { 850 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 851 if (Length && Length->getValue() == 0) 852 // Zero-length mem transfer intrinsics can be ignored entirely. 853 return markAsDead(II); 854 855 // Because we can visit these intrinsics twice, also check to see if the 856 // first time marked this instruction as dead. If so, skip it. 857 if (VisitedDeadInsts.count(&II)) 858 return; 859 860 if (!IsOffsetKnown) 861 return PI.setAborted(&II); 862 863 // Don't replace this with a load/store with a different address space. 864 // TODO: Use a store with the casted new alloca? 865 if (II.isVolatile() && 866 (II.getDestAddressSpace() != DL.getAllocaAddrSpace() || 867 II.getSourceAddressSpace() != DL.getAllocaAddrSpace())) 868 return PI.setAborted(&II); 869 870 // This side of the transfer is completely out-of-bounds, and so we can 871 // nuke the entire transfer. However, we also need to nuke the other side 872 // if already added to our partitions. 873 // FIXME: Yet another place we really should bypass this when 874 // instrumenting for ASan. 875 if (Offset.uge(AllocSize)) { 876 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 877 MemTransferSliceMap.find(&II); 878 if (MTPI != MemTransferSliceMap.end()) 879 AS.Slices[MTPI->second].kill(); 880 return markAsDead(II); 881 } 882 883 uint64_t RawOffset = Offset.getLimitedValue(); 884 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 885 886 // Check for the special case where the same exact value is used for both 887 // source and dest. 888 if (*U == II.getRawDest() && *U == II.getRawSource()) { 889 // For non-volatile transfers this is a no-op. 890 if (!II.isVolatile()) 891 return markAsDead(II); 892 893 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 894 } 895 896 // If we have seen both source and destination for a mem transfer, then 897 // they both point to the same alloca. 898 bool Inserted; 899 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 900 std::tie(MTPI, Inserted) = 901 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 902 unsigned PrevIdx = MTPI->second; 903 if (!Inserted) { 904 Slice &PrevP = AS.Slices[PrevIdx]; 905 906 // Check if the begin offsets match and this is a non-volatile transfer. 907 // In that case, we can completely elide the transfer. 908 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 909 PrevP.kill(); 910 return markAsDead(II); 911 } 912 913 // Otherwise we have an offset transfer within the same alloca. We can't 914 // split those. 915 PrevP.makeUnsplittable(); 916 } 917 918 // Insert the use now that we've fixed up the splittable nature. 919 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 920 921 // Check that we ended up with a valid index in the map. 922 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 923 "Map index doesn't point back to a slice with this user."); 924 } 925 926 // Disable SRoA for any intrinsics except for lifetime invariants. 927 // FIXME: What about debug intrinsics? This matches old behavior, but 928 // doesn't make sense. 929 void visitIntrinsicInst(IntrinsicInst &II) { 930 if (!IsOffsetKnown) 931 return PI.setAborted(&II); 932 933 if (II.isLifetimeStartOrEnd()) { 934 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 935 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 936 Length->getLimitedValue()); 937 insertUse(II, Offset, Size, true); 938 return; 939 } 940 941 Base::visitIntrinsicInst(II); 942 } 943 944 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 945 // We consider any PHI or select that results in a direct load or store of 946 // the same offset to be a viable use for slicing purposes. These uses 947 // are considered unsplittable and the size is the maximum loaded or stored 948 // size. 949 SmallPtrSet<Instruction *, 4> Visited; 950 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 951 Visited.insert(Root); 952 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 953 const DataLayout &DL = Root->getModule()->getDataLayout(); 954 // If there are no loads or stores, the access is dead. We mark that as 955 // a size zero access. 956 Size = 0; 957 do { 958 Instruction *I, *UsedI; 959 std::tie(UsedI, I) = Uses.pop_back_val(); 960 961 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 962 Size = std::max(Size, DL.getTypeStoreSize(LI->getType())); 963 continue; 964 } 965 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 966 Value *Op = SI->getOperand(0); 967 if (Op == UsedI) 968 return SI; 969 Size = std::max(Size, DL.getTypeStoreSize(Op->getType())); 970 continue; 971 } 972 973 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 974 if (!GEP->hasAllZeroIndices()) 975 return GEP; 976 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 977 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) { 978 return I; 979 } 980 981 for (User *U : I->users()) 982 if (Visited.insert(cast<Instruction>(U)).second) 983 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 984 } while (!Uses.empty()); 985 986 return nullptr; 987 } 988 989 void visitPHINodeOrSelectInst(Instruction &I) { 990 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 991 if (I.use_empty()) 992 return markAsDead(I); 993 994 // TODO: We could use SimplifyInstruction here to fold PHINodes and 995 // SelectInsts. However, doing so requires to change the current 996 // dead-operand-tracking mechanism. For instance, suppose neither loading 997 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 998 // trap either. However, if we simply replace %U with undef using the 999 // current dead-operand-tracking mechanism, "load (select undef, undef, 1000 // %other)" may trap because the select may return the first operand 1001 // "undef". 1002 if (Value *Result = foldPHINodeOrSelectInst(I)) { 1003 if (Result == *U) 1004 // If the result of the constant fold will be the pointer, recurse 1005 // through the PHI/select as if we had RAUW'ed it. 1006 enqueueUsers(I); 1007 else 1008 // Otherwise the operand to the PHI/select is dead, and we can replace 1009 // it with undef. 1010 AS.DeadOperands.push_back(U); 1011 1012 return; 1013 } 1014 1015 if (!IsOffsetKnown) 1016 return PI.setAborted(&I); 1017 1018 // See if we already have computed info on this node. 1019 uint64_t &Size = PHIOrSelectSizes[&I]; 1020 if (!Size) { 1021 // This is a new PHI/Select, check for an unsafe use of it. 1022 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 1023 return PI.setAborted(UnsafeI); 1024 } 1025 1026 // For PHI and select operands outside the alloca, we can't nuke the entire 1027 // phi or select -- the other side might still be relevant, so we special 1028 // case them here and use a separate structure to track the operands 1029 // themselves which should be replaced with undef. 1030 // FIXME: This should instead be escaped in the event we're instrumenting 1031 // for address sanitization. 1032 if (Offset.uge(AllocSize)) { 1033 AS.DeadOperands.push_back(U); 1034 return; 1035 } 1036 1037 insertUse(I, Offset, Size); 1038 } 1039 1040 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 1041 1042 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 1043 1044 /// Disable SROA entirely if there are unhandled users of the alloca. 1045 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 1046 }; 1047 1048 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 1049 : 1050 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1051 AI(AI), 1052 #endif 1053 PointerEscapingInstr(nullptr) { 1054 SliceBuilder PB(DL, AI, *this); 1055 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 1056 if (PtrI.isEscaped() || PtrI.isAborted()) { 1057 // FIXME: We should sink the escape vs. abort info into the caller nicely, 1058 // possibly by just storing the PtrInfo in the AllocaSlices. 1059 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 1060 : PtrI.getAbortingInst(); 1061 assert(PointerEscapingInstr && "Did not track a bad instruction"); 1062 return; 1063 } 1064 1065 Slices.erase( 1066 llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }), 1067 Slices.end()); 1068 1069 #ifndef NDEBUG 1070 if (SROARandomShuffleSlices) { 1071 std::mt19937 MT(static_cast<unsigned>( 1072 std::chrono::system_clock::now().time_since_epoch().count())); 1073 std::shuffle(Slices.begin(), Slices.end(), MT); 1074 } 1075 #endif 1076 1077 // Sort the uses. This arranges for the offsets to be in ascending order, 1078 // and the sizes to be in descending order. 1079 llvm::sort(Slices); 1080 } 1081 1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1083 1084 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1085 StringRef Indent) const { 1086 printSlice(OS, I, Indent); 1087 OS << "\n"; 1088 printUse(OS, I, Indent); 1089 } 1090 1091 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1092 StringRef Indent) const { 1093 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1094 << " slice #" << (I - begin()) 1095 << (I->isSplittable() ? " (splittable)" : ""); 1096 } 1097 1098 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1099 StringRef Indent) const { 1100 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1101 } 1102 1103 void AllocaSlices::print(raw_ostream &OS) const { 1104 if (PointerEscapingInstr) { 1105 OS << "Can't analyze slices for alloca: " << AI << "\n" 1106 << " A pointer to this alloca escaped by:\n" 1107 << " " << *PointerEscapingInstr << "\n"; 1108 return; 1109 } 1110 1111 OS << "Slices of alloca: " << AI << "\n"; 1112 for (const_iterator I = begin(), E = end(); I != E; ++I) 1113 print(OS, I); 1114 } 1115 1116 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1117 print(dbgs(), I); 1118 } 1119 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1120 1121 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1122 1123 /// Walk the range of a partitioning looking for a common type to cover this 1124 /// sequence of slices. 1125 static Type *findCommonType(AllocaSlices::const_iterator B, 1126 AllocaSlices::const_iterator E, 1127 uint64_t EndOffset) { 1128 Type *Ty = nullptr; 1129 bool TyIsCommon = true; 1130 IntegerType *ITy = nullptr; 1131 1132 // Note that we need to look at *every* alloca slice's Use to ensure we 1133 // always get consistent results regardless of the order of slices. 1134 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1135 Use *U = I->getUse(); 1136 if (isa<IntrinsicInst>(*U->getUser())) 1137 continue; 1138 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1139 continue; 1140 1141 Type *UserTy = nullptr; 1142 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1143 UserTy = LI->getType(); 1144 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1145 UserTy = SI->getValueOperand()->getType(); 1146 } 1147 1148 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1149 // If the type is larger than the partition, skip it. We only encounter 1150 // this for split integer operations where we want to use the type of the 1151 // entity causing the split. Also skip if the type is not a byte width 1152 // multiple. 1153 if (UserITy->getBitWidth() % 8 != 0 || 1154 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1155 continue; 1156 1157 // Track the largest bitwidth integer type used in this way in case there 1158 // is no common type. 1159 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1160 ITy = UserITy; 1161 } 1162 1163 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1164 // depend on types skipped above. 1165 if (!UserTy || (Ty && Ty != UserTy)) 1166 TyIsCommon = false; // Give up on anything but an iN type. 1167 else 1168 Ty = UserTy; 1169 } 1170 1171 return TyIsCommon ? Ty : ITy; 1172 } 1173 1174 /// PHI instructions that use an alloca and are subsequently loaded can be 1175 /// rewritten to load both input pointers in the pred blocks and then PHI the 1176 /// results, allowing the load of the alloca to be promoted. 1177 /// From this: 1178 /// %P2 = phi [i32* %Alloca, i32* %Other] 1179 /// %V = load i32* %P2 1180 /// to: 1181 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1182 /// ... 1183 /// %V2 = load i32* %Other 1184 /// ... 1185 /// %V = phi [i32 %V1, i32 %V2] 1186 /// 1187 /// We can do this to a select if its only uses are loads and if the operands 1188 /// to the select can be loaded unconditionally. 1189 /// 1190 /// FIXME: This should be hoisted into a generic utility, likely in 1191 /// Transforms/Util/Local.h 1192 static bool isSafePHIToSpeculate(PHINode &PN) { 1193 const DataLayout &DL = PN.getModule()->getDataLayout(); 1194 1195 // For now, we can only do this promotion if the load is in the same block 1196 // as the PHI, and if there are no stores between the phi and load. 1197 // TODO: Allow recursive phi users. 1198 // TODO: Allow stores. 1199 BasicBlock *BB = PN.getParent(); 1200 unsigned MaxAlign = 0; 1201 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); 1202 APInt MaxSize(APWidth, 0); 1203 bool HaveLoad = false; 1204 for (User *U : PN.users()) { 1205 LoadInst *LI = dyn_cast<LoadInst>(U); 1206 if (!LI || !LI->isSimple()) 1207 return false; 1208 1209 // For now we only allow loads in the same block as the PHI. This is 1210 // a common case that happens when instcombine merges two loads through 1211 // a PHI. 1212 if (LI->getParent() != BB) 1213 return false; 1214 1215 // Ensure that there are no instructions between the PHI and the load that 1216 // could store. 1217 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1218 if (BBI->mayWriteToMemory()) 1219 return false; 1220 1221 uint64_t Size = DL.getTypeStoreSizeInBits(LI->getType()); 1222 MaxAlign = std::max(MaxAlign, LI->getAlignment()); 1223 MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize; 1224 HaveLoad = true; 1225 } 1226 1227 if (!HaveLoad) 1228 return false; 1229 1230 // We can only transform this if it is safe to push the loads into the 1231 // predecessor blocks. The only thing to watch out for is that we can't put 1232 // a possibly trapping load in the predecessor if it is a critical edge. 1233 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1234 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1235 Value *InVal = PN.getIncomingValue(Idx); 1236 1237 // If the value is produced by the terminator of the predecessor (an 1238 // invoke) or it has side-effects, there is no valid place to put a load 1239 // in the predecessor. 1240 if (TI == InVal || TI->mayHaveSideEffects()) 1241 return false; 1242 1243 // If the predecessor has a single successor, then the edge isn't 1244 // critical. 1245 if (TI->getNumSuccessors() == 1) 1246 continue; 1247 1248 // If this pointer is always safe to load, or if we can prove that there 1249 // is already a load in the block, then we can move the load to the pred 1250 // block. 1251 if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI)) 1252 continue; 1253 1254 return false; 1255 } 1256 1257 return true; 1258 } 1259 1260 static void speculatePHINodeLoads(PHINode &PN) { 1261 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 1262 1263 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1264 Type *LoadTy = SomeLoad->getType(); 1265 IRBuilderTy PHIBuilder(&PN); 1266 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1267 PN.getName() + ".sroa.speculated"); 1268 1269 // Get the AA tags and alignment to use from one of the loads. It doesn't 1270 // matter which one we get and if any differ. 1271 AAMDNodes AATags; 1272 SomeLoad->getAAMetadata(AATags); 1273 unsigned Align = SomeLoad->getAlignment(); 1274 1275 // Rewrite all loads of the PN to use the new PHI. 1276 while (!PN.use_empty()) { 1277 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1278 LI->replaceAllUsesWith(NewPN); 1279 LI->eraseFromParent(); 1280 } 1281 1282 // Inject loads into all of the pred blocks. 1283 DenseMap<BasicBlock*, Value*> InjectedLoads; 1284 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1285 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1286 Value *InVal = PN.getIncomingValue(Idx); 1287 1288 // A PHI node is allowed to have multiple (duplicated) entries for the same 1289 // basic block, as long as the value is the same. So if we already injected 1290 // a load in the predecessor, then we should reuse the same load for all 1291 // duplicated entries. 1292 if (Value* V = InjectedLoads.lookup(Pred)) { 1293 NewPN->addIncoming(V, Pred); 1294 continue; 1295 } 1296 1297 Instruction *TI = Pred->getTerminator(); 1298 IRBuilderTy PredBuilder(TI); 1299 1300 LoadInst *Load = PredBuilder.CreateLoad( 1301 LoadTy, InVal, 1302 (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1303 ++NumLoadsSpeculated; 1304 Load->setAlignment(Align); 1305 if (AATags) 1306 Load->setAAMetadata(AATags); 1307 NewPN->addIncoming(Load, Pred); 1308 InjectedLoads[Pred] = Load; 1309 } 1310 1311 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1312 PN.eraseFromParent(); 1313 } 1314 1315 /// Select instructions that use an alloca and are subsequently loaded can be 1316 /// rewritten to load both input pointers and then select between the result, 1317 /// allowing the load of the alloca to be promoted. 1318 /// From this: 1319 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 1320 /// %V = load i32* %P2 1321 /// to: 1322 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1323 /// %V2 = load i32* %Other 1324 /// %V = select i1 %cond, i32 %V1, i32 %V2 1325 /// 1326 /// We can do this to a select if its only uses are loads and if the operand 1327 /// to the select can be loaded unconditionally. 1328 static bool isSafeSelectToSpeculate(SelectInst &SI) { 1329 Value *TValue = SI.getTrueValue(); 1330 Value *FValue = SI.getFalseValue(); 1331 const DataLayout &DL = SI.getModule()->getDataLayout(); 1332 1333 for (User *U : SI.users()) { 1334 LoadInst *LI = dyn_cast<LoadInst>(U); 1335 if (!LI || !LI->isSimple()) 1336 return false; 1337 1338 // Both operands to the select need to be dereferenceable, either 1339 // absolutely (e.g. allocas) or at this point because we can see other 1340 // accesses to it. 1341 if (!isSafeToLoadUnconditionally(TValue, LI->getType(), LI->getAlignment(), 1342 DL, LI)) 1343 return false; 1344 if (!isSafeToLoadUnconditionally(FValue, LI->getType(), LI->getAlignment(), 1345 DL, LI)) 1346 return false; 1347 } 1348 1349 return true; 1350 } 1351 1352 static void speculateSelectInstLoads(SelectInst &SI) { 1353 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 1354 1355 IRBuilderTy IRB(&SI); 1356 Value *TV = SI.getTrueValue(); 1357 Value *FV = SI.getFalseValue(); 1358 // Replace the loads of the select with a select of two loads. 1359 while (!SI.use_empty()) { 1360 LoadInst *LI = cast<LoadInst>(SI.user_back()); 1361 assert(LI->isSimple() && "We only speculate simple loads"); 1362 1363 IRB.SetInsertPoint(LI); 1364 LoadInst *TL = IRB.CreateLoad(LI->getType(), TV, 1365 LI->getName() + ".sroa.speculate.load.true"); 1366 LoadInst *FL = IRB.CreateLoad(LI->getType(), FV, 1367 LI->getName() + ".sroa.speculate.load.false"); 1368 NumLoadsSpeculated += 2; 1369 1370 // Transfer alignment and AA info if present. 1371 TL->setAlignment(LI->getAlignment()); 1372 FL->setAlignment(LI->getAlignment()); 1373 1374 AAMDNodes Tags; 1375 LI->getAAMetadata(Tags); 1376 if (Tags) { 1377 TL->setAAMetadata(Tags); 1378 FL->setAAMetadata(Tags); 1379 } 1380 1381 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1382 LI->getName() + ".sroa.speculated"); 1383 1384 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1385 LI->replaceAllUsesWith(V); 1386 LI->eraseFromParent(); 1387 } 1388 SI.eraseFromParent(); 1389 } 1390 1391 /// Build a GEP out of a base pointer and indices. 1392 /// 1393 /// This will return the BasePtr if that is valid, or build a new GEP 1394 /// instruction using the IRBuilder if GEP-ing is needed. 1395 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1396 SmallVectorImpl<Value *> &Indices, Twine NamePrefix) { 1397 if (Indices.empty()) 1398 return BasePtr; 1399 1400 // A single zero index is a no-op, so check for this and avoid building a GEP 1401 // in that case. 1402 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1403 return BasePtr; 1404 1405 return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(), 1406 BasePtr, Indices, NamePrefix + "sroa_idx"); 1407 } 1408 1409 /// Get a natural GEP off of the BasePtr walking through Ty toward 1410 /// TargetTy without changing the offset of the pointer. 1411 /// 1412 /// This routine assumes we've already established a properly offset GEP with 1413 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1414 /// zero-indices down through type layers until we find one the same as 1415 /// TargetTy. If we can't find one with the same type, we at least try to use 1416 /// one with the same size. If none of that works, we just produce the GEP as 1417 /// indicated by Indices to have the correct offset. 1418 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1419 Value *BasePtr, Type *Ty, Type *TargetTy, 1420 SmallVectorImpl<Value *> &Indices, 1421 Twine NamePrefix) { 1422 if (Ty == TargetTy) 1423 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1424 1425 // Offset size to use for the indices. 1426 unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType()); 1427 1428 // See if we can descend into a struct and locate a field with the correct 1429 // type. 1430 unsigned NumLayers = 0; 1431 Type *ElementTy = Ty; 1432 do { 1433 if (ElementTy->isPointerTy()) 1434 break; 1435 1436 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { 1437 ElementTy = ArrayTy->getElementType(); 1438 Indices.push_back(IRB.getIntN(OffsetSize, 0)); 1439 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { 1440 ElementTy = VectorTy->getElementType(); 1441 Indices.push_back(IRB.getInt32(0)); 1442 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1443 if (STy->element_begin() == STy->element_end()) 1444 break; // Nothing left to descend into. 1445 ElementTy = *STy->element_begin(); 1446 Indices.push_back(IRB.getInt32(0)); 1447 } else { 1448 break; 1449 } 1450 ++NumLayers; 1451 } while (ElementTy != TargetTy); 1452 if (ElementTy != TargetTy) 1453 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1454 1455 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1456 } 1457 1458 /// Recursively compute indices for a natural GEP. 1459 /// 1460 /// This is the recursive step for getNaturalGEPWithOffset that walks down the 1461 /// element types adding appropriate indices for the GEP. 1462 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, 1463 Value *Ptr, Type *Ty, APInt &Offset, 1464 Type *TargetTy, 1465 SmallVectorImpl<Value *> &Indices, 1466 Twine NamePrefix) { 1467 if (Offset == 0) 1468 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, 1469 NamePrefix); 1470 1471 // We can't recurse through pointer types. 1472 if (Ty->isPointerTy()) 1473 return nullptr; 1474 1475 // We try to analyze GEPs over vectors here, but note that these GEPs are 1476 // extremely poorly defined currently. The long-term goal is to remove GEPing 1477 // over a vector from the IR completely. 1478 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { 1479 unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType()); 1480 if (ElementSizeInBits % 8 != 0) { 1481 // GEPs over non-multiple of 8 size vector elements are invalid. 1482 return nullptr; 1483 } 1484 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); 1485 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1486 if (NumSkippedElements.ugt(VecTy->getNumElements())) 1487 return nullptr; 1488 Offset -= NumSkippedElements * ElementSize; 1489 Indices.push_back(IRB.getInt(NumSkippedElements)); 1490 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), 1491 Offset, TargetTy, Indices, NamePrefix); 1492 } 1493 1494 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 1495 Type *ElementTy = ArrTy->getElementType(); 1496 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); 1497 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1498 if (NumSkippedElements.ugt(ArrTy->getNumElements())) 1499 return nullptr; 1500 1501 Offset -= NumSkippedElements * ElementSize; 1502 Indices.push_back(IRB.getInt(NumSkippedElements)); 1503 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1504 Indices, NamePrefix); 1505 } 1506 1507 StructType *STy = dyn_cast<StructType>(Ty); 1508 if (!STy) 1509 return nullptr; 1510 1511 const StructLayout *SL = DL.getStructLayout(STy); 1512 uint64_t StructOffset = Offset.getZExtValue(); 1513 if (StructOffset >= SL->getSizeInBytes()) 1514 return nullptr; 1515 unsigned Index = SL->getElementContainingOffset(StructOffset); 1516 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); 1517 Type *ElementTy = STy->getElementType(Index); 1518 if (Offset.uge(DL.getTypeAllocSize(ElementTy))) 1519 return nullptr; // The offset points into alignment padding. 1520 1521 Indices.push_back(IRB.getInt32(Index)); 1522 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1523 Indices, NamePrefix); 1524 } 1525 1526 /// Get a natural GEP from a base pointer to a particular offset and 1527 /// resulting in a particular type. 1528 /// 1529 /// The goal is to produce a "natural" looking GEP that works with the existing 1530 /// composite types to arrive at the appropriate offset and element type for 1531 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1532 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1533 /// Indices, and setting Ty to the result subtype. 1534 /// 1535 /// If no natural GEP can be constructed, this function returns null. 1536 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1537 Value *Ptr, APInt Offset, Type *TargetTy, 1538 SmallVectorImpl<Value *> &Indices, 1539 Twine NamePrefix) { 1540 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1541 1542 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1543 // an i8. 1544 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) 1545 return nullptr; 1546 1547 Type *ElementTy = Ty->getElementType(); 1548 if (!ElementTy->isSized()) 1549 return nullptr; // We can't GEP through an unsized element. 1550 APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy)); 1551 if (ElementSize == 0) 1552 return nullptr; // Zero-length arrays can't help us build a natural GEP. 1553 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1554 1555 Offset -= NumSkippedElements * ElementSize; 1556 Indices.push_back(IRB.getInt(NumSkippedElements)); 1557 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1558 Indices, NamePrefix); 1559 } 1560 1561 /// Compute an adjusted pointer from Ptr by Offset bytes where the 1562 /// resulting pointer has PointerTy. 1563 /// 1564 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1565 /// and produces the pointer type desired. Where it cannot, it will try to use 1566 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1567 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1568 /// bitcast to the type. 1569 /// 1570 /// The strategy for finding the more natural GEPs is to peel off layers of the 1571 /// pointer, walking back through bit casts and GEPs, searching for a base 1572 /// pointer from which we can compute a natural GEP with the desired 1573 /// properties. The algorithm tries to fold as many constant indices into 1574 /// a single GEP as possible, thus making each GEP more independent of the 1575 /// surrounding code. 1576 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1577 APInt Offset, Type *PointerTy, Twine NamePrefix) { 1578 // Even though we don't look through PHI nodes, we could be called on an 1579 // instruction in an unreachable block, which may be on a cycle. 1580 SmallPtrSet<Value *, 4> Visited; 1581 Visited.insert(Ptr); 1582 SmallVector<Value *, 4> Indices; 1583 1584 // We may end up computing an offset pointer that has the wrong type. If we 1585 // never are able to compute one directly that has the correct type, we'll 1586 // fall back to it, so keep it and the base it was computed from around here. 1587 Value *OffsetPtr = nullptr; 1588 Value *OffsetBasePtr; 1589 1590 // Remember any i8 pointer we come across to re-use if we need to do a raw 1591 // byte offset. 1592 Value *Int8Ptr = nullptr; 1593 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1594 1595 PointerType *TargetPtrTy = cast<PointerType>(PointerTy); 1596 Type *TargetTy = TargetPtrTy->getElementType(); 1597 1598 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different 1599 // address space from the expected `PointerTy` (the pointer to be used). 1600 // Adjust the pointer type based the original storage pointer. 1601 auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace(); 1602 PointerTy = TargetTy->getPointerTo(AS); 1603 1604 do { 1605 // First fold any existing GEPs into the offset. 1606 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1607 APInt GEPOffset(Offset.getBitWidth(), 0); 1608 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1609 break; 1610 Offset += GEPOffset; 1611 Ptr = GEP->getPointerOperand(); 1612 if (!Visited.insert(Ptr).second) 1613 break; 1614 } 1615 1616 // See if we can perform a natural GEP here. 1617 Indices.clear(); 1618 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1619 Indices, NamePrefix)) { 1620 // If we have a new natural pointer at the offset, clear out any old 1621 // offset pointer we computed. Unless it is the base pointer or 1622 // a non-instruction, we built a GEP we don't need. Zap it. 1623 if (OffsetPtr && OffsetPtr != OffsetBasePtr) 1624 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { 1625 assert(I->use_empty() && "Built a GEP with uses some how!"); 1626 I->eraseFromParent(); 1627 } 1628 OffsetPtr = P; 1629 OffsetBasePtr = Ptr; 1630 // If we also found a pointer of the right type, we're done. 1631 if (P->getType() == PointerTy) 1632 break; 1633 } 1634 1635 // Stash this pointer if we've found an i8*. 1636 if (Ptr->getType()->isIntegerTy(8)) { 1637 Int8Ptr = Ptr; 1638 Int8PtrOffset = Offset; 1639 } 1640 1641 // Peel off a layer of the pointer and update the offset appropriately. 1642 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1643 Ptr = cast<Operator>(Ptr)->getOperand(0); 1644 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1645 if (GA->isInterposable()) 1646 break; 1647 Ptr = GA->getAliasee(); 1648 } else { 1649 break; 1650 } 1651 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1652 } while (Visited.insert(Ptr).second); 1653 1654 if (!OffsetPtr) { 1655 if (!Int8Ptr) { 1656 Int8Ptr = IRB.CreateBitCast( 1657 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), 1658 NamePrefix + "sroa_raw_cast"); 1659 Int8PtrOffset = Offset; 1660 } 1661 1662 OffsetPtr = Int8PtrOffset == 0 1663 ? Int8Ptr 1664 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, 1665 IRB.getInt(Int8PtrOffset), 1666 NamePrefix + "sroa_raw_idx"); 1667 } 1668 Ptr = OffsetPtr; 1669 1670 // On the off chance we were targeting i8*, guard the bitcast here. 1671 if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) { 1672 Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, 1673 TargetPtrTy, 1674 NamePrefix + "sroa_cast"); 1675 } 1676 1677 return Ptr; 1678 } 1679 1680 /// Compute the adjusted alignment for a load or store from an offset. 1681 static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset, 1682 const DataLayout &DL) { 1683 unsigned Alignment; 1684 Type *Ty; 1685 if (auto *LI = dyn_cast<LoadInst>(I)) { 1686 Alignment = LI->getAlignment(); 1687 Ty = LI->getType(); 1688 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 1689 Alignment = SI->getAlignment(); 1690 Ty = SI->getValueOperand()->getType(); 1691 } else { 1692 llvm_unreachable("Only loads and stores are allowed!"); 1693 } 1694 1695 if (!Alignment) 1696 Alignment = DL.getABITypeAlignment(Ty); 1697 1698 return MinAlign(Alignment, Offset); 1699 } 1700 1701 /// Test whether we can convert a value from the old to the new type. 1702 /// 1703 /// This predicate should be used to guard calls to convertValue in order to 1704 /// ensure that we only try to convert viable values. The strategy is that we 1705 /// will peel off single element struct and array wrappings to get to an 1706 /// underlying value, and convert that value. 1707 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1708 if (OldTy == NewTy) 1709 return true; 1710 1711 // For integer types, we can't handle any bit-width differences. This would 1712 // break both vector conversions with extension and introduce endianness 1713 // issues when in conjunction with loads and stores. 1714 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1715 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1716 cast<IntegerType>(NewTy)->getBitWidth() && 1717 "We can't have the same bitwidth for different int types"); 1718 return false; 1719 } 1720 1721 if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy)) 1722 return false; 1723 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1724 return false; 1725 1726 // We can convert pointers to integers and vice-versa. Same for vectors 1727 // of pointers and integers. 1728 OldTy = OldTy->getScalarType(); 1729 NewTy = NewTy->getScalarType(); 1730 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1731 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1732 return cast<PointerType>(NewTy)->getPointerAddressSpace() == 1733 cast<PointerType>(OldTy)->getPointerAddressSpace(); 1734 } 1735 1736 // We can convert integers to integral pointers, but not to non-integral 1737 // pointers. 1738 if (OldTy->isIntegerTy()) 1739 return !DL.isNonIntegralPointerType(NewTy); 1740 1741 // We can convert integral pointers to integers, but non-integral pointers 1742 // need to remain pointers. 1743 if (!DL.isNonIntegralPointerType(OldTy)) 1744 return NewTy->isIntegerTy(); 1745 1746 return false; 1747 } 1748 1749 return true; 1750 } 1751 1752 /// Generic routine to convert an SSA value to a value of a different 1753 /// type. 1754 /// 1755 /// This will try various different casting techniques, such as bitcasts, 1756 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1757 /// two types for viability with this routine. 1758 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1759 Type *NewTy) { 1760 Type *OldTy = V->getType(); 1761 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1762 1763 if (OldTy == NewTy) 1764 return V; 1765 1766 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1767 "Integer types must be the exact same to convert."); 1768 1769 // See if we need inttoptr for this type pair. A cast involving both scalars 1770 // and vectors requires and additional bitcast. 1771 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1772 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1773 if (OldTy->isVectorTy() && !NewTy->isVectorTy()) 1774 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1775 NewTy); 1776 1777 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1778 if (!OldTy->isVectorTy() && NewTy->isVectorTy()) 1779 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1780 NewTy); 1781 1782 return IRB.CreateIntToPtr(V, NewTy); 1783 } 1784 1785 // See if we need ptrtoint for this type pair. A cast involving both scalars 1786 // and vectors requires and additional bitcast. 1787 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { 1788 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1789 if (OldTy->isVectorTy() && !NewTy->isVectorTy()) 1790 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1791 NewTy); 1792 1793 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1794 if (!OldTy->isVectorTy() && NewTy->isVectorTy()) 1795 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1796 NewTy); 1797 1798 return IRB.CreatePtrToInt(V, NewTy); 1799 } 1800 1801 return IRB.CreateBitCast(V, NewTy); 1802 } 1803 1804 /// Test whether the given slice use can be promoted to a vector. 1805 /// 1806 /// This function is called to test each entry in a partition which is slated 1807 /// for a single slice. 1808 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 1809 VectorType *Ty, 1810 uint64_t ElementSize, 1811 const DataLayout &DL) { 1812 // First validate the slice offsets. 1813 uint64_t BeginOffset = 1814 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 1815 uint64_t BeginIndex = BeginOffset / ElementSize; 1816 if (BeginIndex * ElementSize != BeginOffset || 1817 BeginIndex >= Ty->getNumElements()) 1818 return false; 1819 uint64_t EndOffset = 1820 std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 1821 uint64_t EndIndex = EndOffset / ElementSize; 1822 if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements()) 1823 return false; 1824 1825 assert(EndIndex > BeginIndex && "Empty vector!"); 1826 uint64_t NumElements = EndIndex - BeginIndex; 1827 Type *SliceTy = (NumElements == 1) 1828 ? Ty->getElementType() 1829 : VectorType::get(Ty->getElementType(), NumElements); 1830 1831 Type *SplitIntTy = 1832 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1833 1834 Use *U = S.getUse(); 1835 1836 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1837 if (MI->isVolatile()) 1838 return false; 1839 if (!S.isSplittable()) 1840 return false; // Skip any unsplittable intrinsics. 1841 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1842 if (!II->isLifetimeStartOrEnd()) 1843 return false; 1844 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { 1845 // Disable vector promotion when there are loads or stores of an FCA. 1846 return false; 1847 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1848 if (LI->isVolatile()) 1849 return false; 1850 Type *LTy = LI->getType(); 1851 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1852 assert(LTy->isIntegerTy()); 1853 LTy = SplitIntTy; 1854 } 1855 if (!canConvertValue(DL, SliceTy, LTy)) 1856 return false; 1857 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1858 if (SI->isVolatile()) 1859 return false; 1860 Type *STy = SI->getValueOperand()->getType(); 1861 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1862 assert(STy->isIntegerTy()); 1863 STy = SplitIntTy; 1864 } 1865 if (!canConvertValue(DL, STy, SliceTy)) 1866 return false; 1867 } else { 1868 return false; 1869 } 1870 1871 return true; 1872 } 1873 1874 /// Test whether the given alloca partitioning and range of slices can be 1875 /// promoted to a vector. 1876 /// 1877 /// This is a quick test to check whether we can rewrite a particular alloca 1878 /// partition (and its newly formed alloca) into a vector alloca with only 1879 /// whole-vector loads and stores such that it could be promoted to a vector 1880 /// SSA value. We only can ensure this for a limited set of operations, and we 1881 /// don't want to do the rewrites unless we are confident that the result will 1882 /// be promotable, so we have an early test here. 1883 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 1884 // Collect the candidate types for vector-based promotion. Also track whether 1885 // we have different element types. 1886 SmallVector<VectorType *, 4> CandidateTys; 1887 Type *CommonEltTy = nullptr; 1888 bool HaveCommonEltTy = true; 1889 auto CheckCandidateType = [&](Type *Ty) { 1890 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 1891 CandidateTys.push_back(VTy); 1892 if (!CommonEltTy) 1893 CommonEltTy = VTy->getElementType(); 1894 else if (CommonEltTy != VTy->getElementType()) 1895 HaveCommonEltTy = false; 1896 } 1897 }; 1898 // Consider any loads or stores that are the exact size of the slice. 1899 for (const Slice &S : P) 1900 if (S.beginOffset() == P.beginOffset() && 1901 S.endOffset() == P.endOffset()) { 1902 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 1903 CheckCandidateType(LI->getType()); 1904 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 1905 CheckCandidateType(SI->getValueOperand()->getType()); 1906 } 1907 1908 // If we didn't find a vector type, nothing to do here. 1909 if (CandidateTys.empty()) 1910 return nullptr; 1911 1912 // Remove non-integer vector types if we had multiple common element types. 1913 // FIXME: It'd be nice to replace them with integer vector types, but we can't 1914 // do that until all the backends are known to produce good code for all 1915 // integer vector types. 1916 if (!HaveCommonEltTy) { 1917 CandidateTys.erase( 1918 llvm::remove_if(CandidateTys, 1919 [](VectorType *VTy) { 1920 return !VTy->getElementType()->isIntegerTy(); 1921 }), 1922 CandidateTys.end()); 1923 1924 // If there were no integer vector types, give up. 1925 if (CandidateTys.empty()) 1926 return nullptr; 1927 1928 // Rank the remaining candidate vector types. This is easy because we know 1929 // they're all integer vectors. We sort by ascending number of elements. 1930 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 1931 (void)DL; 1932 assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) && 1933 "Cannot have vector types of different sizes!"); 1934 assert(RHSTy->getElementType()->isIntegerTy() && 1935 "All non-integer types eliminated!"); 1936 assert(LHSTy->getElementType()->isIntegerTy() && 1937 "All non-integer types eliminated!"); 1938 return RHSTy->getNumElements() < LHSTy->getNumElements(); 1939 }; 1940 llvm::sort(CandidateTys, RankVectorTypes); 1941 CandidateTys.erase( 1942 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), 1943 CandidateTys.end()); 1944 } else { 1945 // The only way to have the same element type in every vector type is to 1946 // have the same vector type. Check that and remove all but one. 1947 #ifndef NDEBUG 1948 for (VectorType *VTy : CandidateTys) { 1949 assert(VTy->getElementType() == CommonEltTy && 1950 "Unaccounted for element type!"); 1951 assert(VTy == CandidateTys[0] && 1952 "Different vector types with the same element type!"); 1953 } 1954 #endif 1955 CandidateTys.resize(1); 1956 } 1957 1958 // Try each vector type, and return the one which works. 1959 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { 1960 uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType()); 1961 1962 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1963 // that aren't byte sized. 1964 if (ElementSize % 8) 1965 return false; 1966 assert((DL.getTypeSizeInBits(VTy) % 8) == 0 && 1967 "vector size not a multiple of element size?"); 1968 ElementSize /= 8; 1969 1970 for (const Slice &S : P) 1971 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 1972 return false; 1973 1974 for (const Slice *S : P.splitSliceTails()) 1975 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 1976 return false; 1977 1978 return true; 1979 }; 1980 for (VectorType *VTy : CandidateTys) 1981 if (CheckVectorTypeForPromotion(VTy)) 1982 return VTy; 1983 1984 return nullptr; 1985 } 1986 1987 /// Test whether a slice of an alloca is valid for integer widening. 1988 /// 1989 /// This implements the necessary checking for the \c isIntegerWideningViable 1990 /// test below on a single slice of the alloca. 1991 static bool isIntegerWideningViableForSlice(const Slice &S, 1992 uint64_t AllocBeginOffset, 1993 Type *AllocaTy, 1994 const DataLayout &DL, 1995 bool &WholeAllocaOp) { 1996 uint64_t Size = DL.getTypeStoreSize(AllocaTy); 1997 1998 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 1999 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 2000 2001 // We can't reasonably handle cases where the load or store extends past 2002 // the end of the alloca's type and into its padding. 2003 if (RelEnd > Size) 2004 return false; 2005 2006 Use *U = S.getUse(); 2007 2008 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 2009 if (LI->isVolatile()) 2010 return false; 2011 // We can't handle loads that extend past the allocated memory. 2012 if (DL.getTypeStoreSize(LI->getType()) > Size) 2013 return false; 2014 // So far, AllocaSliceRewriter does not support widening split slice tails 2015 // in rewriteIntegerLoad. 2016 if (S.beginOffset() < AllocBeginOffset) 2017 return false; 2018 // Note that we don't count vector loads or stores as whole-alloca 2019 // operations which enable integer widening because we would prefer to use 2020 // vector widening instead. 2021 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 2022 WholeAllocaOp = true; 2023 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 2024 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) 2025 return false; 2026 } else if (RelBegin != 0 || RelEnd != Size || 2027 !canConvertValue(DL, AllocaTy, LI->getType())) { 2028 // Non-integer loads need to be convertible from the alloca type so that 2029 // they are promotable. 2030 return false; 2031 } 2032 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2033 Type *ValueTy = SI->getValueOperand()->getType(); 2034 if (SI->isVolatile()) 2035 return false; 2036 // We can't handle stores that extend past the allocated memory. 2037 if (DL.getTypeStoreSize(ValueTy) > Size) 2038 return false; 2039 // So far, AllocaSliceRewriter does not support widening split slice tails 2040 // in rewriteIntegerStore. 2041 if (S.beginOffset() < AllocBeginOffset) 2042 return false; 2043 // Note that we don't count vector loads or stores as whole-alloca 2044 // operations which enable integer widening because we would prefer to use 2045 // vector widening instead. 2046 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 2047 WholeAllocaOp = true; 2048 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 2049 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy)) 2050 return false; 2051 } else if (RelBegin != 0 || RelEnd != Size || 2052 !canConvertValue(DL, ValueTy, AllocaTy)) { 2053 // Non-integer stores need to be convertible to the alloca type so that 2054 // they are promotable. 2055 return false; 2056 } 2057 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2058 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 2059 return false; 2060 if (!S.isSplittable()) 2061 return false; // Skip any unsplittable intrinsics. 2062 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 2063 if (!II->isLifetimeStartOrEnd()) 2064 return false; 2065 } else { 2066 return false; 2067 } 2068 2069 return true; 2070 } 2071 2072 /// Test whether the given alloca partition's integer operations can be 2073 /// widened to promotable ones. 2074 /// 2075 /// This is a quick test to check whether we can rewrite the integer loads and 2076 /// stores to a particular alloca into wider loads and stores and be able to 2077 /// promote the resulting alloca. 2078 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 2079 const DataLayout &DL) { 2080 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy); 2081 // Don't create integer types larger than the maximum bitwidth. 2082 if (SizeInBits > IntegerType::MAX_INT_BITS) 2083 return false; 2084 2085 // Don't try to handle allocas with bit-padding. 2086 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy)) 2087 return false; 2088 2089 // We need to ensure that an integer type with the appropriate bitwidth can 2090 // be converted to the alloca type, whatever that is. We don't want to force 2091 // the alloca itself to have an integer type if there is a more suitable one. 2092 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 2093 if (!canConvertValue(DL, AllocaTy, IntTy) || 2094 !canConvertValue(DL, IntTy, AllocaTy)) 2095 return false; 2096 2097 // While examining uses, we ensure that the alloca has a covering load or 2098 // store. We don't want to widen the integer operations only to fail to 2099 // promote due to some other unsplittable entry (which we may make splittable 2100 // later). However, if there are only splittable uses, go ahead and assume 2101 // that we cover the alloca. 2102 // FIXME: We shouldn't consider split slices that happen to start in the 2103 // partition here... 2104 bool WholeAllocaOp = 2105 P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits); 2106 2107 for (const Slice &S : P) 2108 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 2109 WholeAllocaOp)) 2110 return false; 2111 2112 for (const Slice *S : P.splitSliceTails()) 2113 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2114 WholeAllocaOp)) 2115 return false; 2116 2117 return WholeAllocaOp; 2118 } 2119 2120 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2121 IntegerType *Ty, uint64_t Offset, 2122 const Twine &Name) { 2123 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2124 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2125 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && 2126 "Element extends past full value"); 2127 uint64_t ShAmt = 8 * Offset; 2128 if (DL.isBigEndian()) 2129 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); 2130 if (ShAmt) { 2131 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2132 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2133 } 2134 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2135 "Cannot extract to a larger integer!"); 2136 if (Ty != IntTy) { 2137 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2138 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); 2139 } 2140 return V; 2141 } 2142 2143 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2144 Value *V, uint64_t Offset, const Twine &Name) { 2145 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2146 IntegerType *Ty = cast<IntegerType>(V->getType()); 2147 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2148 "Cannot insert a larger integer!"); 2149 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2150 if (Ty != IntTy) { 2151 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2152 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); 2153 } 2154 assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) && 2155 "Element store outside of alloca store"); 2156 uint64_t ShAmt = 8 * Offset; 2157 if (DL.isBigEndian()) 2158 ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset); 2159 if (ShAmt) { 2160 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2161 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2162 } 2163 2164 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2165 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2166 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2167 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); 2168 V = IRB.CreateOr(Old, V, Name + ".insert"); 2169 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); 2170 } 2171 return V; 2172 } 2173 2174 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2175 unsigned EndIndex, const Twine &Name) { 2176 VectorType *VecTy = cast<VectorType>(V->getType()); 2177 unsigned NumElements = EndIndex - BeginIndex; 2178 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2179 2180 if (NumElements == VecTy->getNumElements()) 2181 return V; 2182 2183 if (NumElements == 1) { 2184 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2185 Name + ".extract"); 2186 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); 2187 return V; 2188 } 2189 2190 SmallVector<Constant *, 8> Mask; 2191 Mask.reserve(NumElements); 2192 for (unsigned i = BeginIndex; i != EndIndex; ++i) 2193 Mask.push_back(IRB.getInt32(i)); 2194 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), 2195 ConstantVector::get(Mask), Name + ".extract"); 2196 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2197 return V; 2198 } 2199 2200 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2201 unsigned BeginIndex, const Twine &Name) { 2202 VectorType *VecTy = cast<VectorType>(Old->getType()); 2203 assert(VecTy && "Can only insert a vector into a vector"); 2204 2205 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2206 if (!Ty) { 2207 // Single element to insert. 2208 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2209 Name + ".insert"); 2210 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); 2211 return V; 2212 } 2213 2214 assert(Ty->getNumElements() <= VecTy->getNumElements() && 2215 "Too many elements!"); 2216 if (Ty->getNumElements() == VecTy->getNumElements()) { 2217 assert(V->getType() == VecTy && "Vector type mismatch"); 2218 return V; 2219 } 2220 unsigned EndIndex = BeginIndex + Ty->getNumElements(); 2221 2222 // When inserting a smaller vector into the larger to store, we first 2223 // use a shuffle vector to widen it with undef elements, and then 2224 // a second shuffle vector to select between the loaded vector and the 2225 // incoming vector. 2226 SmallVector<Constant *, 8> Mask; 2227 Mask.reserve(VecTy->getNumElements()); 2228 for (unsigned i = 0; i != VecTy->getNumElements(); ++i) 2229 if (i >= BeginIndex && i < EndIndex) 2230 Mask.push_back(IRB.getInt32(i - BeginIndex)); 2231 else 2232 Mask.push_back(UndefValue::get(IRB.getInt32Ty())); 2233 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), 2234 ConstantVector::get(Mask), Name + ".expand"); 2235 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2236 2237 Mask.clear(); 2238 for (unsigned i = 0; i != VecTy->getNumElements(); ++i) 2239 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2240 2241 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend"); 2242 2243 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); 2244 return V; 2245 } 2246 2247 /// Visitor to rewrite instructions using p particular slice of an alloca 2248 /// to use a new alloca. 2249 /// 2250 /// Also implements the rewriting to vector-based accesses when the partition 2251 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2252 /// lives here. 2253 class llvm::sroa::AllocaSliceRewriter 2254 : public InstVisitor<AllocaSliceRewriter, bool> { 2255 // Befriend the base class so it can delegate to private visit methods. 2256 friend class InstVisitor<AllocaSliceRewriter, bool>; 2257 2258 using Base = InstVisitor<AllocaSliceRewriter, bool>; 2259 2260 const DataLayout &DL; 2261 AllocaSlices &AS; 2262 SROA &Pass; 2263 AllocaInst &OldAI, &NewAI; 2264 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2265 Type *NewAllocaTy; 2266 2267 // This is a convenience and flag variable that will be null unless the new 2268 // alloca's integer operations should be widened to this integer type due to 2269 // passing isIntegerWideningViable above. If it is non-null, the desired 2270 // integer type will be stored here for easy access during rewriting. 2271 IntegerType *IntTy; 2272 2273 // If we are rewriting an alloca partition which can be written as pure 2274 // vector operations, we stash extra information here. When VecTy is 2275 // non-null, we have some strict guarantees about the rewritten alloca: 2276 // - The new alloca is exactly the size of the vector type here. 2277 // - The accesses all either map to the entire vector or to a single 2278 // element. 2279 // - The set of accessing instructions is only one of those handled above 2280 // in isVectorPromotionViable. Generally these are the same access kinds 2281 // which are promotable via mem2reg. 2282 VectorType *VecTy; 2283 Type *ElementTy; 2284 uint64_t ElementSize; 2285 2286 // The original offset of the slice currently being rewritten relative to 2287 // the original alloca. 2288 uint64_t BeginOffset = 0; 2289 uint64_t EndOffset = 0; 2290 2291 // The new offsets of the slice currently being rewritten relative to the 2292 // original alloca. 2293 uint64_t NewBeginOffset, NewEndOffset; 2294 2295 uint64_t SliceSize; 2296 bool IsSplittable = false; 2297 bool IsSplit = false; 2298 Use *OldUse = nullptr; 2299 Instruction *OldPtr = nullptr; 2300 2301 // Track post-rewrite users which are PHI nodes and Selects. 2302 SmallSetVector<PHINode *, 8> &PHIUsers; 2303 SmallSetVector<SelectInst *, 8> &SelectUsers; 2304 2305 // Utility IR builder, whose name prefix is setup for each visited use, and 2306 // the insertion point is set to point to the user. 2307 IRBuilderTy IRB; 2308 2309 public: 2310 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass, 2311 AllocaInst &OldAI, AllocaInst &NewAI, 2312 uint64_t NewAllocaBeginOffset, 2313 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2314 VectorType *PromotableVecTy, 2315 SmallSetVector<PHINode *, 8> &PHIUsers, 2316 SmallSetVector<SelectInst *, 8> &SelectUsers) 2317 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2318 NewAllocaBeginOffset(NewAllocaBeginOffset), 2319 NewAllocaEndOffset(NewAllocaEndOffset), 2320 NewAllocaTy(NewAI.getAllocatedType()), 2321 IntTy(IsIntegerPromotable 2322 ? Type::getIntNTy( 2323 NewAI.getContext(), 2324 DL.getTypeSizeInBits(NewAI.getAllocatedType())) 2325 : nullptr), 2326 VecTy(PromotableVecTy), 2327 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2328 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0), 2329 PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2330 IRB(NewAI.getContext(), ConstantFolder()) { 2331 if (VecTy) { 2332 assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 && 2333 "Only multiple-of-8 sized vector elements are viable"); 2334 ++NumVectorized; 2335 } 2336 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2337 } 2338 2339 bool visit(AllocaSlices::const_iterator I) { 2340 bool CanSROA = true; 2341 BeginOffset = I->beginOffset(); 2342 EndOffset = I->endOffset(); 2343 IsSplittable = I->isSplittable(); 2344 IsSplit = 2345 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2346 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2347 LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); 2348 LLVM_DEBUG(dbgs() << "\n"); 2349 2350 // Compute the intersecting offset range. 2351 assert(BeginOffset < NewAllocaEndOffset); 2352 assert(EndOffset > NewAllocaBeginOffset); 2353 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2354 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2355 2356 SliceSize = NewEndOffset - NewBeginOffset; 2357 2358 OldUse = I->getUse(); 2359 OldPtr = cast<Instruction>(OldUse->get()); 2360 2361 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2362 IRB.SetInsertPoint(OldUserI); 2363 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2364 IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2365 2366 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2367 if (VecTy || IntTy) 2368 assert(CanSROA); 2369 return CanSROA; 2370 } 2371 2372 private: 2373 // Make sure the other visit overloads are visible. 2374 using Base::visit; 2375 2376 // Every instruction which can end up as a user must have a rewrite rule. 2377 bool visitInstruction(Instruction &I) { 2378 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2379 llvm_unreachable("No rewrite rule for this instruction!"); 2380 } 2381 2382 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2383 // Note that the offset computation can use BeginOffset or NewBeginOffset 2384 // interchangeably for unsplit slices. 2385 assert(IsSplit || BeginOffset == NewBeginOffset); 2386 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2387 2388 #ifndef NDEBUG 2389 StringRef OldName = OldPtr->getName(); 2390 // Skip through the last '.sroa.' component of the name. 2391 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2392 if (LastSROAPrefix != StringRef::npos) { 2393 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2394 // Look for an SROA slice index. 2395 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2396 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2397 // Strip the index and look for the offset. 2398 OldName = OldName.substr(IndexEnd + 1); 2399 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2400 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2401 // Strip the offset. 2402 OldName = OldName.substr(OffsetEnd + 1); 2403 } 2404 } 2405 // Strip any SROA suffixes as well. 2406 OldName = OldName.substr(0, OldName.find(".sroa_")); 2407 #endif 2408 2409 return getAdjustedPtr(IRB, DL, &NewAI, 2410 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), 2411 PointerTy, 2412 #ifndef NDEBUG 2413 Twine(OldName) + "." 2414 #else 2415 Twine() 2416 #endif 2417 ); 2418 } 2419 2420 /// Compute suitable alignment to access this slice of the *new* 2421 /// alloca. 2422 /// 2423 /// You can optionally pass a type to this routine and if that type's ABI 2424 /// alignment is itself suitable, this will return zero. 2425 unsigned getSliceAlign(Type *Ty = nullptr) { 2426 unsigned NewAIAlign = NewAI.getAlignment(); 2427 if (!NewAIAlign) 2428 NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType()); 2429 unsigned Align = 2430 MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset); 2431 return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align; 2432 } 2433 2434 unsigned getIndex(uint64_t Offset) { 2435 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2436 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2437 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2438 uint32_t Index = RelOffset / ElementSize; 2439 assert(Index * ElementSize == RelOffset); 2440 return Index; 2441 } 2442 2443 void deleteIfTriviallyDead(Value *V) { 2444 Instruction *I = cast<Instruction>(V); 2445 if (isInstructionTriviallyDead(I)) 2446 Pass.DeadInsts.insert(I); 2447 } 2448 2449 Value *rewriteVectorizedLoadInst() { 2450 unsigned BeginIndex = getIndex(NewBeginOffset); 2451 unsigned EndIndex = getIndex(NewEndOffset); 2452 assert(EndIndex > BeginIndex && "Empty vector!"); 2453 2454 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2455 NewAI.getAlignment(), "load"); 2456 return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); 2457 } 2458 2459 Value *rewriteIntegerLoad(LoadInst &LI) { 2460 assert(IntTy && "We cannot insert an integer to the alloca"); 2461 assert(!LI.isVolatile()); 2462 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2463 NewAI.getAlignment(), "load"); 2464 V = convertValue(DL, IRB, V, IntTy); 2465 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2466 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2467 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2468 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2469 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2470 } 2471 // It is possible that the extracted type is not the load type. This 2472 // happens if there is a load past the end of the alloca, and as 2473 // a consequence the slice is narrower but still a candidate for integer 2474 // lowering. To handle this case, we just zero extend the extracted 2475 // integer. 2476 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2477 "Can only handle an extract for an overly wide load"); 2478 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2479 V = IRB.CreateZExt(V, LI.getType()); 2480 return V; 2481 } 2482 2483 bool visitLoadInst(LoadInst &LI) { 2484 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 2485 Value *OldOp = LI.getOperand(0); 2486 assert(OldOp == OldPtr); 2487 2488 AAMDNodes AATags; 2489 LI.getAAMetadata(AATags); 2490 2491 unsigned AS = LI.getPointerAddressSpace(); 2492 2493 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2494 : LI.getType(); 2495 const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize; 2496 bool IsPtrAdjusted = false; 2497 Value *V; 2498 if (VecTy) { 2499 V = rewriteVectorizedLoadInst(); 2500 } else if (IntTy && LI.getType()->isIntegerTy()) { 2501 V = rewriteIntegerLoad(LI); 2502 } else if (NewBeginOffset == NewAllocaBeginOffset && 2503 NewEndOffset == NewAllocaEndOffset && 2504 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2505 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2506 TargetTy->isIntegerTy()))) { 2507 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2508 NewAI.getAlignment(), 2509 LI.isVolatile(), LI.getName()); 2510 if (AATags) 2511 NewLI->setAAMetadata(AATags); 2512 if (LI.isVolatile()) 2513 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2514 2515 // Any !nonnull metadata or !range metadata on the old load is also valid 2516 // on the new load. This is even true in some cases even when the loads 2517 // are different types, for example by mapping !nonnull metadata to 2518 // !range metadata by modeling the null pointer constant converted to the 2519 // integer type. 2520 // FIXME: Add support for range metadata here. Currently the utilities 2521 // for this don't propagate range metadata in trivial cases from one 2522 // integer load to another, don't handle non-addrspace-0 null pointers 2523 // correctly, and don't have any support for mapping ranges as the 2524 // integer type becomes winder or narrower. 2525 if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull)) 2526 copyNonnullMetadata(LI, N, *NewLI); 2527 2528 // Try to preserve nonnull metadata 2529 V = NewLI; 2530 2531 // If this is an integer load past the end of the slice (which means the 2532 // bytes outside the slice are undef or this load is dead) just forcibly 2533 // fix the integer size with correct handling of endianness. 2534 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2535 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2536 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2537 V = IRB.CreateZExt(V, TITy, "load.ext"); 2538 if (DL.isBigEndian()) 2539 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2540 "endian_shift"); 2541 } 2542 } else { 2543 Type *LTy = TargetTy->getPointerTo(AS); 2544 LoadInst *NewLI = IRB.CreateAlignedLoad( 2545 TargetTy, getNewAllocaSlicePtr(IRB, LTy), getSliceAlign(TargetTy), 2546 LI.isVolatile(), LI.getName()); 2547 if (AATags) 2548 NewLI->setAAMetadata(AATags); 2549 if (LI.isVolatile()) 2550 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2551 2552 V = NewLI; 2553 IsPtrAdjusted = true; 2554 } 2555 V = convertValue(DL, IRB, V, TargetTy); 2556 2557 if (IsSplit) { 2558 assert(!LI.isVolatile()); 2559 assert(LI.getType()->isIntegerTy() && 2560 "Only integer type loads and stores are split"); 2561 assert(SliceSize < DL.getTypeStoreSize(LI.getType()) && 2562 "Split load isn't smaller than original load"); 2563 assert(DL.typeSizeEqualsStoreSize(LI.getType()) && 2564 "Non-byte-multiple bit width"); 2565 // Move the insertion point just past the load so that we can refer to it. 2566 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); 2567 // Create a placeholder value with the same type as LI to use as the 2568 // basis for the new value. This allows us to replace the uses of LI with 2569 // the computed value, and then replace the placeholder with LI, leaving 2570 // LI only used for this computation. 2571 Value *Placeholder = new LoadInst( 2572 LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS))); 2573 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2574 "insert"); 2575 LI.replaceAllUsesWith(V); 2576 Placeholder->replaceAllUsesWith(&LI); 2577 Placeholder->deleteValue(); 2578 } else { 2579 LI.replaceAllUsesWith(V); 2580 } 2581 2582 Pass.DeadInsts.insert(&LI); 2583 deleteIfTriviallyDead(OldOp); 2584 LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); 2585 return !LI.isVolatile() && !IsPtrAdjusted; 2586 } 2587 2588 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, 2589 AAMDNodes AATags) { 2590 if (V->getType() != VecTy) { 2591 unsigned BeginIndex = getIndex(NewBeginOffset); 2592 unsigned EndIndex = getIndex(NewEndOffset); 2593 assert(EndIndex > BeginIndex && "Empty vector!"); 2594 unsigned NumElements = EndIndex - BeginIndex; 2595 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2596 Type *SliceTy = (NumElements == 1) 2597 ? ElementTy 2598 : VectorType::get(ElementTy, NumElements); 2599 if (V->getType() != SliceTy) 2600 V = convertValue(DL, IRB, V, SliceTy); 2601 2602 // Mix in the existing elements. 2603 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2604 NewAI.getAlignment(), "load"); 2605 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2606 } 2607 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); 2608 if (AATags) 2609 Store->setAAMetadata(AATags); 2610 Pass.DeadInsts.insert(&SI); 2611 2612 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2613 return true; 2614 } 2615 2616 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { 2617 assert(IntTy && "We cannot extract an integer from the alloca"); 2618 assert(!SI.isVolatile()); 2619 if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) { 2620 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2621 NewAI.getAlignment(), "oldload"); 2622 Old = convertValue(DL, IRB, Old, IntTy); 2623 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2624 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2625 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 2626 } 2627 V = convertValue(DL, IRB, V, NewAllocaTy); 2628 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); 2629 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2630 LLVMContext::MD_access_group}); 2631 if (AATags) 2632 Store->setAAMetadata(AATags); 2633 Pass.DeadInsts.insert(&SI); 2634 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2635 return true; 2636 } 2637 2638 bool visitStoreInst(StoreInst &SI) { 2639 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 2640 Value *OldOp = SI.getOperand(1); 2641 assert(OldOp == OldPtr); 2642 2643 AAMDNodes AATags; 2644 SI.getAAMetadata(AATags); 2645 2646 Value *V = SI.getValueOperand(); 2647 2648 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2649 // alloca that should be re-examined after promoting this alloca. 2650 if (V->getType()->isPointerTy()) 2651 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2652 Pass.PostPromotionWorklist.insert(AI); 2653 2654 if (SliceSize < DL.getTypeStoreSize(V->getType())) { 2655 assert(!SI.isVolatile()); 2656 assert(V->getType()->isIntegerTy() && 2657 "Only integer type loads and stores are split"); 2658 assert(DL.typeSizeEqualsStoreSize(V->getType()) && 2659 "Non-byte-multiple bit width"); 2660 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2661 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 2662 "extract"); 2663 } 2664 2665 if (VecTy) 2666 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); 2667 if (IntTy && V->getType()->isIntegerTy()) 2668 return rewriteIntegerStore(V, SI, AATags); 2669 2670 const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize; 2671 StoreInst *NewSI; 2672 if (NewBeginOffset == NewAllocaBeginOffset && 2673 NewEndOffset == NewAllocaEndOffset && 2674 (canConvertValue(DL, V->getType(), NewAllocaTy) || 2675 (IsStorePastEnd && NewAllocaTy->isIntegerTy() && 2676 V->getType()->isIntegerTy()))) { 2677 // If this is an integer store past the end of slice (and thus the bytes 2678 // past that point are irrelevant or this is unreachable), truncate the 2679 // value prior to storing. 2680 if (auto *VITy = dyn_cast<IntegerType>(V->getType())) 2681 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2682 if (VITy->getBitWidth() > AITy->getBitWidth()) { 2683 if (DL.isBigEndian()) 2684 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), 2685 "endian_shift"); 2686 V = IRB.CreateTrunc(V, AITy, "load.trunc"); 2687 } 2688 2689 V = convertValue(DL, IRB, V, NewAllocaTy); 2690 NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), 2691 SI.isVolatile()); 2692 } else { 2693 unsigned AS = SI.getPointerAddressSpace(); 2694 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS)); 2695 NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()), 2696 SI.isVolatile()); 2697 } 2698 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2699 LLVMContext::MD_access_group}); 2700 if (AATags) 2701 NewSI->setAAMetadata(AATags); 2702 if (SI.isVolatile()) 2703 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 2704 Pass.DeadInsts.insert(&SI); 2705 deleteIfTriviallyDead(OldOp); 2706 2707 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2708 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); 2709 } 2710 2711 /// Compute an integer value from splatting an i8 across the given 2712 /// number of bytes. 2713 /// 2714 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2715 /// call this routine. 2716 /// FIXME: Heed the advice above. 2717 /// 2718 /// \param V The i8 value to splat. 2719 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2720 Value *getIntegerSplat(Value *V, unsigned Size) { 2721 assert(Size > 0 && "Expected a positive number of bytes."); 2722 IntegerType *VTy = cast<IntegerType>(V->getType()); 2723 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2724 if (Size == 1) 2725 return V; 2726 2727 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 2728 V = IRB.CreateMul( 2729 IRB.CreateZExt(V, SplatIntTy, "zext"), 2730 ConstantExpr::getUDiv( 2731 Constant::getAllOnesValue(SplatIntTy), 2732 ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()), 2733 SplatIntTy)), 2734 "isplat"); 2735 return V; 2736 } 2737 2738 /// Compute a vector splat for a given element value. 2739 Value *getVectorSplat(Value *V, unsigned NumElements) { 2740 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2741 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); 2742 return V; 2743 } 2744 2745 bool visitMemSetInst(MemSetInst &II) { 2746 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2747 assert(II.getRawDest() == OldPtr); 2748 2749 AAMDNodes AATags; 2750 II.getAAMetadata(AATags); 2751 2752 // If the memset has a variable size, it cannot be split, just adjust the 2753 // pointer to the new alloca. 2754 if (!isa<Constant>(II.getLength())) { 2755 assert(!IsSplit); 2756 assert(NewBeginOffset == BeginOffset); 2757 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 2758 II.setDestAlignment(getSliceAlign()); 2759 2760 deleteIfTriviallyDead(OldPtr); 2761 return false; 2762 } 2763 2764 // Record this instruction for deletion. 2765 Pass.DeadInsts.insert(&II); 2766 2767 Type *AllocaTy = NewAI.getAllocatedType(); 2768 Type *ScalarTy = AllocaTy->getScalarType(); 2769 2770 const bool CanContinue = [&]() { 2771 if (VecTy || IntTy) 2772 return true; 2773 if (BeginOffset > NewAllocaBeginOffset || 2774 EndOffset < NewAllocaEndOffset) 2775 return false; 2776 auto *C = cast<ConstantInt>(II.getLength()); 2777 if (C->getBitWidth() > 64) 2778 return false; 2779 const auto Len = C->getZExtValue(); 2780 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); 2781 auto *SrcTy = VectorType::get(Int8Ty, Len); 2782 return canConvertValue(DL, SrcTy, AllocaTy) && 2783 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)); 2784 }(); 2785 2786 // If this doesn't map cleanly onto the alloca type, and that type isn't 2787 // a single value type, just emit a memset. 2788 if (!CanContinue) { 2789 Type *SizeTy = II.getLength()->getType(); 2790 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2791 CallInst *New = IRB.CreateMemSet( 2792 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 2793 getSliceAlign(), II.isVolatile()); 2794 if (AATags) 2795 New->setAAMetadata(AATags); 2796 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2797 return false; 2798 } 2799 2800 // If we can represent this as a simple value, we have to build the actual 2801 // value to store, which requires expanding the byte present in memset to 2802 // a sensible representation for the alloca type. This is essentially 2803 // splatting the byte to a sufficiently wide integer, splatting it across 2804 // any desired vector width, and bitcasting to the final type. 2805 Value *V; 2806 2807 if (VecTy) { 2808 // If this is a memset of a vectorized alloca, insert it. 2809 assert(ElementTy == ScalarTy); 2810 2811 unsigned BeginIndex = getIndex(NewBeginOffset); 2812 unsigned EndIndex = getIndex(NewEndOffset); 2813 assert(EndIndex > BeginIndex && "Empty vector!"); 2814 unsigned NumElements = EndIndex - BeginIndex; 2815 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2816 2817 Value *Splat = 2818 getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8); 2819 Splat = convertValue(DL, IRB, Splat, ElementTy); 2820 if (NumElements > 1) 2821 Splat = getVectorSplat(Splat, NumElements); 2822 2823 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2824 NewAI.getAlignment(), "oldload"); 2825 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 2826 } else if (IntTy) { 2827 // If this is a memset on an alloca where we can widen stores, insert the 2828 // set integer. 2829 assert(!II.isVolatile()); 2830 2831 uint64_t Size = NewEndOffset - NewBeginOffset; 2832 V = getIntegerSplat(II.getValue(), Size); 2833 2834 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 2835 EndOffset != NewAllocaBeginOffset)) { 2836 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2837 NewAI.getAlignment(), "oldload"); 2838 Old = convertValue(DL, IRB, Old, IntTy); 2839 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2840 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 2841 } else { 2842 assert(V->getType() == IntTy && 2843 "Wrong type for an alloca wide integer!"); 2844 } 2845 V = convertValue(DL, IRB, V, AllocaTy); 2846 } else { 2847 // Established these invariants above. 2848 assert(NewBeginOffset == NewAllocaBeginOffset); 2849 assert(NewEndOffset == NewAllocaEndOffset); 2850 2851 V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8); 2852 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 2853 V = getVectorSplat(V, AllocaVecTy->getNumElements()); 2854 2855 V = convertValue(DL, IRB, V, AllocaTy); 2856 } 2857 2858 StoreInst *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), 2859 II.isVolatile()); 2860 if (AATags) 2861 New->setAAMetadata(AATags); 2862 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2863 return !II.isVolatile(); 2864 } 2865 2866 bool visitMemTransferInst(MemTransferInst &II) { 2867 // Rewriting of memory transfer instructions can be a bit tricky. We break 2868 // them into two categories: split intrinsics and unsplit intrinsics. 2869 2870 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2871 2872 AAMDNodes AATags; 2873 II.getAAMetadata(AATags); 2874 2875 bool IsDest = &II.getRawDestUse() == OldUse; 2876 assert((IsDest && II.getRawDest() == OldPtr) || 2877 (!IsDest && II.getRawSource() == OldPtr)); 2878 2879 unsigned SliceAlign = getSliceAlign(); 2880 2881 // For unsplit intrinsics, we simply modify the source and destination 2882 // pointers in place. This isn't just an optimization, it is a matter of 2883 // correctness. With unsplit intrinsics we may be dealing with transfers 2884 // within a single alloca before SROA ran, or with transfers that have 2885 // a variable length. We may also be dealing with memmove instead of 2886 // memcpy, and so simply updating the pointers is the necessary for us to 2887 // update both source and dest of a single call. 2888 if (!IsSplittable) { 2889 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2890 if (IsDest) { 2891 II.setDest(AdjustedPtr); 2892 II.setDestAlignment(SliceAlign); 2893 } 2894 else { 2895 II.setSource(AdjustedPtr); 2896 II.setSourceAlignment(SliceAlign); 2897 } 2898 2899 LLVM_DEBUG(dbgs() << " to: " << II << "\n"); 2900 deleteIfTriviallyDead(OldPtr); 2901 return false; 2902 } 2903 // For split transfer intrinsics we have an incredibly useful assurance: 2904 // the source and destination do not reside within the same alloca, and at 2905 // least one of them does not escape. This means that we can replace 2906 // memmove with memcpy, and we don't need to worry about all manner of 2907 // downsides to splitting and transforming the operations. 2908 2909 // If this doesn't map cleanly onto the alloca type, and that type isn't 2910 // a single value type, just emit a memcpy. 2911 bool EmitMemCpy = 2912 !VecTy && !IntTy && 2913 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 2914 SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) || 2915 !NewAI.getAllocatedType()->isSingleValueType()); 2916 2917 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 2918 // size hasn't been shrunk based on analysis of the viable range, this is 2919 // a no-op. 2920 if (EmitMemCpy && &OldAI == &NewAI) { 2921 // Ensure the start lines up. 2922 assert(NewBeginOffset == BeginOffset); 2923 2924 // Rewrite the size as needed. 2925 if (NewEndOffset != EndOffset) 2926 II.setLength(ConstantInt::get(II.getLength()->getType(), 2927 NewEndOffset - NewBeginOffset)); 2928 return false; 2929 } 2930 // Record this instruction for deletion. 2931 Pass.DeadInsts.insert(&II); 2932 2933 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2934 // alloca that should be re-examined after rewriting this instruction. 2935 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 2936 if (AllocaInst *AI = 2937 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 2938 assert(AI != &OldAI && AI != &NewAI && 2939 "Splittable transfers cannot reach the same alloca on both ends."); 2940 Pass.Worklist.insert(AI); 2941 } 2942 2943 Type *OtherPtrTy = OtherPtr->getType(); 2944 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 2945 2946 // Compute the relative offset for the other pointer within the transfer. 2947 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); 2948 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); 2949 unsigned OtherAlign = 2950 IsDest ? II.getSourceAlignment() : II.getDestAlignment(); 2951 OtherAlign = MinAlign(OtherAlign ? OtherAlign : 1, 2952 OtherOffset.zextOrTrunc(64).getZExtValue()); 2953 2954 if (EmitMemCpy) { 2955 // Compute the other pointer, folding as much as possible to produce 2956 // a single, simple GEP in most cases. 2957 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2958 OtherPtr->getName() + "."); 2959 2960 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2961 Type *SizeTy = II.getLength()->getType(); 2962 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2963 2964 Value *DestPtr, *SrcPtr; 2965 unsigned DestAlign, SrcAlign; 2966 // Note: IsDest is true iff we're copying into the new alloca slice 2967 if (IsDest) { 2968 DestPtr = OurPtr; 2969 DestAlign = SliceAlign; 2970 SrcPtr = OtherPtr; 2971 SrcAlign = OtherAlign; 2972 } else { 2973 DestPtr = OtherPtr; 2974 DestAlign = OtherAlign; 2975 SrcPtr = OurPtr; 2976 SrcAlign = SliceAlign; 2977 } 2978 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, 2979 Size, II.isVolatile()); 2980 if (AATags) 2981 New->setAAMetadata(AATags); 2982 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2983 return false; 2984 } 2985 2986 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 2987 NewEndOffset == NewAllocaEndOffset; 2988 uint64_t Size = NewEndOffset - NewBeginOffset; 2989 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 2990 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 2991 unsigned NumElements = EndIndex - BeginIndex; 2992 IntegerType *SubIntTy = 2993 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 2994 2995 // Reset the other pointer type to match the register type we're going to 2996 // use, but using the address space of the original other pointer. 2997 Type *OtherTy; 2998 if (VecTy && !IsWholeAlloca) { 2999 if (NumElements == 1) 3000 OtherTy = VecTy->getElementType(); 3001 else 3002 OtherTy = VectorType::get(VecTy->getElementType(), NumElements); 3003 } else if (IntTy && !IsWholeAlloca) { 3004 OtherTy = SubIntTy; 3005 } else { 3006 OtherTy = NewAllocaTy; 3007 } 3008 OtherPtrTy = OtherTy->getPointerTo(OtherAS); 3009 3010 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3011 OtherPtr->getName() + "."); 3012 unsigned SrcAlign = OtherAlign; 3013 Value *DstPtr = &NewAI; 3014 unsigned DstAlign = SliceAlign; 3015 if (!IsDest) { 3016 std::swap(SrcPtr, DstPtr); 3017 std::swap(SrcAlign, DstAlign); 3018 } 3019 3020 Value *Src; 3021 if (VecTy && !IsWholeAlloca && !IsDest) { 3022 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3023 NewAI.getAlignment(), "load"); 3024 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 3025 } else if (IntTy && !IsWholeAlloca && !IsDest) { 3026 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3027 NewAI.getAlignment(), "load"); 3028 Src = convertValue(DL, IRB, Src, IntTy); 3029 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3030 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 3031 } else { 3032 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, 3033 II.isVolatile(), "copyload"); 3034 if (AATags) 3035 Load->setAAMetadata(AATags); 3036 Src = Load; 3037 } 3038 3039 if (VecTy && !IsWholeAlloca && IsDest) { 3040 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3041 NewAI.getAlignment(), "oldload"); 3042 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 3043 } else if (IntTy && !IsWholeAlloca && IsDest) { 3044 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3045 NewAI.getAlignment(), "oldload"); 3046 Old = convertValue(DL, IRB, Old, IntTy); 3047 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3048 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 3049 Src = convertValue(DL, IRB, Src, NewAllocaTy); 3050 } 3051 3052 StoreInst *Store = cast<StoreInst>( 3053 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 3054 if (AATags) 3055 Store->setAAMetadata(AATags); 3056 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3057 return !II.isVolatile(); 3058 } 3059 3060 bool visitIntrinsicInst(IntrinsicInst &II) { 3061 assert(II.isLifetimeStartOrEnd()); 3062 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3063 assert(II.getArgOperand(1) == OldPtr); 3064 3065 // Record this instruction for deletion. 3066 Pass.DeadInsts.insert(&II); 3067 3068 // Lifetime intrinsics are only promotable if they cover the whole alloca. 3069 // Therefore, we drop lifetime intrinsics which don't cover the whole 3070 // alloca. 3071 // (In theory, intrinsics which partially cover an alloca could be 3072 // promoted, but PromoteMemToReg doesn't handle that case.) 3073 // FIXME: Check whether the alloca is promotable before dropping the 3074 // lifetime intrinsics? 3075 if (NewBeginOffset != NewAllocaBeginOffset || 3076 NewEndOffset != NewAllocaEndOffset) 3077 return true; 3078 3079 ConstantInt *Size = 3080 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 3081 NewEndOffset - NewBeginOffset); 3082 // Lifetime intrinsics always expect an i8* so directly get such a pointer 3083 // for the new alloca slice. 3084 Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace()); 3085 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); 3086 Value *New; 3087 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 3088 New = IRB.CreateLifetimeStart(Ptr, Size); 3089 else 3090 New = IRB.CreateLifetimeEnd(Ptr, Size); 3091 3092 (void)New; 3093 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3094 3095 return true; 3096 } 3097 3098 void fixLoadStoreAlign(Instruction &Root) { 3099 // This algorithm implements the same visitor loop as 3100 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load 3101 // or store found. 3102 SmallPtrSet<Instruction *, 4> Visited; 3103 SmallVector<Instruction *, 4> Uses; 3104 Visited.insert(&Root); 3105 Uses.push_back(&Root); 3106 do { 3107 Instruction *I = Uses.pop_back_val(); 3108 3109 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3110 unsigned LoadAlign = LI->getAlignment(); 3111 if (!LoadAlign) 3112 LoadAlign = DL.getABITypeAlignment(LI->getType()); 3113 LI->setAlignment(std::min(LoadAlign, getSliceAlign())); 3114 continue; 3115 } 3116 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3117 unsigned StoreAlign = SI->getAlignment(); 3118 if (!StoreAlign) { 3119 Value *Op = SI->getOperand(0); 3120 StoreAlign = DL.getABITypeAlignment(Op->getType()); 3121 } 3122 SI->setAlignment(std::min(StoreAlign, getSliceAlign())); 3123 continue; 3124 } 3125 3126 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || 3127 isa<PHINode>(I) || isa<SelectInst>(I) || 3128 isa<GetElementPtrInst>(I)); 3129 for (User *U : I->users()) 3130 if (Visited.insert(cast<Instruction>(U)).second) 3131 Uses.push_back(cast<Instruction>(U)); 3132 } while (!Uses.empty()); 3133 } 3134 3135 bool visitPHINode(PHINode &PN) { 3136 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 3137 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 3138 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 3139 3140 // We would like to compute a new pointer in only one place, but have it be 3141 // as local as possible to the PHI. To do that, we re-use the location of 3142 // the old pointer, which necessarily must be in the right position to 3143 // dominate the PHI. 3144 IRBuilderTy PtrBuilder(IRB); 3145 if (isa<PHINode>(OldPtr)) 3146 PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); 3147 else 3148 PtrBuilder.SetInsertPoint(OldPtr); 3149 PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 3150 3151 Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType()); 3152 // Replace the operands which were using the old pointer. 3153 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 3154 3155 LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); 3156 deleteIfTriviallyDead(OldPtr); 3157 3158 // Fix the alignment of any loads or stores using this PHI node. 3159 fixLoadStoreAlign(PN); 3160 3161 // PHIs can't be promoted on their own, but often can be speculated. We 3162 // check the speculation outside of the rewriter so that we see the 3163 // fully-rewritten alloca. 3164 PHIUsers.insert(&PN); 3165 return true; 3166 } 3167 3168 bool visitSelectInst(SelectInst &SI) { 3169 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3170 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 3171 "Pointer isn't an operand!"); 3172 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 3173 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 3174 3175 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3176 // Replace the operands which were using the old pointer. 3177 if (SI.getOperand(1) == OldPtr) 3178 SI.setOperand(1, NewPtr); 3179 if (SI.getOperand(2) == OldPtr) 3180 SI.setOperand(2, NewPtr); 3181 3182 LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); 3183 deleteIfTriviallyDead(OldPtr); 3184 3185 // Fix the alignment of any loads or stores using this select. 3186 fixLoadStoreAlign(SI); 3187 3188 // Selects can't be promoted on their own, but often can be speculated. We 3189 // check the speculation outside of the rewriter so that we see the 3190 // fully-rewritten alloca. 3191 SelectUsers.insert(&SI); 3192 return true; 3193 } 3194 }; 3195 3196 namespace { 3197 3198 /// Visitor to rewrite aggregate loads and stores as scalar. 3199 /// 3200 /// This pass aggressively rewrites all aggregate loads and stores on 3201 /// a particular pointer (or any pointer derived from it which we can identify) 3202 /// with scalar loads and stores. 3203 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 3204 // Befriend the base class so it can delegate to private visit methods. 3205 friend class InstVisitor<AggLoadStoreRewriter, bool>; 3206 3207 /// Queue of pointer uses to analyze and potentially rewrite. 3208 SmallVector<Use *, 8> Queue; 3209 3210 /// Set to prevent us from cycling with phi nodes and loops. 3211 SmallPtrSet<User *, 8> Visited; 3212 3213 /// The current pointer use being rewritten. This is used to dig up the used 3214 /// value (as opposed to the user). 3215 Use *U; 3216 3217 /// Used to calculate offsets, and hence alignment, of subobjects. 3218 const DataLayout &DL; 3219 3220 public: 3221 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} 3222 3223 /// Rewrite loads and stores through a pointer and all pointers derived from 3224 /// it. 3225 bool rewrite(Instruction &I) { 3226 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 3227 enqueueUsers(I); 3228 bool Changed = false; 3229 while (!Queue.empty()) { 3230 U = Queue.pop_back_val(); 3231 Changed |= visit(cast<Instruction>(U->getUser())); 3232 } 3233 return Changed; 3234 } 3235 3236 private: 3237 /// Enqueue all the users of the given instruction for further processing. 3238 /// This uses a set to de-duplicate users. 3239 void enqueueUsers(Instruction &I) { 3240 for (Use &U : I.uses()) 3241 if (Visited.insert(U.getUser()).second) 3242 Queue.push_back(&U); 3243 } 3244 3245 // Conservative default is to not rewrite anything. 3246 bool visitInstruction(Instruction &I) { return false; } 3247 3248 /// Generic recursive split emission class. 3249 template <typename Derived> class OpSplitter { 3250 protected: 3251 /// The builder used to form new instructions. 3252 IRBuilderTy IRB; 3253 3254 /// The indices which to be used with insert- or extractvalue to select the 3255 /// appropriate value within the aggregate. 3256 SmallVector<unsigned, 4> Indices; 3257 3258 /// The indices to a GEP instruction which will move Ptr to the correct slot 3259 /// within the aggregate. 3260 SmallVector<Value *, 4> GEPIndices; 3261 3262 /// The base pointer of the original op, used as a base for GEPing the 3263 /// split operations. 3264 Value *Ptr; 3265 3266 /// The base pointee type being GEPed into. 3267 Type *BaseTy; 3268 3269 /// Known alignment of the base pointer. 3270 unsigned BaseAlign; 3271 3272 /// To calculate offset of each component so we can correctly deduce 3273 /// alignments. 3274 const DataLayout &DL; 3275 3276 /// Initialize the splitter with an insertion point, Ptr and start with a 3277 /// single zero GEP index. 3278 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3279 unsigned BaseAlign, const DataLayout &DL) 3280 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), 3281 BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {} 3282 3283 public: 3284 /// Generic recursive split emission routine. 3285 /// 3286 /// This method recursively splits an aggregate op (load or store) into 3287 /// scalar or vector ops. It splits recursively until it hits a single value 3288 /// and emits that single value operation via the template argument. 3289 /// 3290 /// The logic of this routine relies on GEPs and insertvalue and 3291 /// extractvalue all operating with the same fundamental index list, merely 3292 /// formatted differently (GEPs need actual values). 3293 /// 3294 /// \param Ty The type being split recursively into smaller ops. 3295 /// \param Agg The aggregate value being built up or stored, depending on 3296 /// whether this is splitting a load or a store respectively. 3297 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3298 if (Ty->isSingleValueType()) { 3299 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); 3300 return static_cast<Derived *>(this)->emitFunc( 3301 Ty, Agg, MinAlign(BaseAlign, Offset), Name); 3302 } 3303 3304 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3305 unsigned OldSize = Indices.size(); 3306 (void)OldSize; 3307 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3308 ++Idx) { 3309 assert(Indices.size() == OldSize && "Did not return to the old size"); 3310 Indices.push_back(Idx); 3311 GEPIndices.push_back(IRB.getInt32(Idx)); 3312 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3313 GEPIndices.pop_back(); 3314 Indices.pop_back(); 3315 } 3316 return; 3317 } 3318 3319 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3320 unsigned OldSize = Indices.size(); 3321 (void)OldSize; 3322 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3323 ++Idx) { 3324 assert(Indices.size() == OldSize && "Did not return to the old size"); 3325 Indices.push_back(Idx); 3326 GEPIndices.push_back(IRB.getInt32(Idx)); 3327 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3328 GEPIndices.pop_back(); 3329 Indices.pop_back(); 3330 } 3331 return; 3332 } 3333 3334 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3335 } 3336 }; 3337 3338 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3339 AAMDNodes AATags; 3340 3341 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3342 AAMDNodes AATags, unsigned BaseAlign, const DataLayout &DL) 3343 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3344 DL), AATags(AATags) {} 3345 3346 /// Emit a leaf load of a single value. This is called at the leaves of the 3347 /// recursive emission to actually load values. 3348 void emitFunc(Type *Ty, Value *&Agg, unsigned Align, const Twine &Name) { 3349 assert(Ty->isSingleValueType()); 3350 // Load the single value and insert it using the indices. 3351 Value *GEP = 3352 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3353 LoadInst *Load = IRB.CreateAlignedLoad(Ty, GEP, Align, Name + ".load"); 3354 if (AATags) 3355 Load->setAAMetadata(AATags); 3356 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3357 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); 3358 } 3359 }; 3360 3361 bool visitLoadInst(LoadInst &LI) { 3362 assert(LI.getPointerOperand() == *U); 3363 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3364 return false; 3365 3366 // We have an aggregate being loaded, split it apart. 3367 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 3368 AAMDNodes AATags; 3369 LI.getAAMetadata(AATags); 3370 LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags, 3371 getAdjustedAlignment(&LI, 0, DL), DL); 3372 Value *V = UndefValue::get(LI.getType()); 3373 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3374 LI.replaceAllUsesWith(V); 3375 LI.eraseFromParent(); 3376 return true; 3377 } 3378 3379 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3380 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3381 AAMDNodes AATags, unsigned BaseAlign, const DataLayout &DL) 3382 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3383 DL), 3384 AATags(AATags) {} 3385 AAMDNodes AATags; 3386 /// Emit a leaf store of a single value. This is called at the leaves of the 3387 /// recursive emission to actually produce stores. 3388 void emitFunc(Type *Ty, Value *&Agg, unsigned Align, const Twine &Name) { 3389 assert(Ty->isSingleValueType()); 3390 // Extract the single value and store it using the indices. 3391 // 3392 // The gep and extractvalue values are factored out of the CreateStore 3393 // call to make the output independent of the argument evaluation order. 3394 Value *ExtractValue = 3395 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3396 Value *InBoundsGEP = 3397 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3398 StoreInst *Store = 3399 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Align); 3400 if (AATags) 3401 Store->setAAMetadata(AATags); 3402 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3403 } 3404 }; 3405 3406 bool visitStoreInst(StoreInst &SI) { 3407 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3408 return false; 3409 Value *V = SI.getValueOperand(); 3410 if (V->getType()->isSingleValueType()) 3411 return false; 3412 3413 // We have an aggregate being stored, split it apart. 3414 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3415 AAMDNodes AATags; 3416 SI.getAAMetadata(AATags); 3417 StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags, 3418 getAdjustedAlignment(&SI, 0, DL), DL); 3419 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3420 SI.eraseFromParent(); 3421 return true; 3422 } 3423 3424 bool visitBitCastInst(BitCastInst &BC) { 3425 enqueueUsers(BC); 3426 return false; 3427 } 3428 3429 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 3430 enqueueUsers(ASC); 3431 return false; 3432 } 3433 3434 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 3435 enqueueUsers(GEPI); 3436 return false; 3437 } 3438 3439 bool visitPHINode(PHINode &PN) { 3440 enqueueUsers(PN); 3441 return false; 3442 } 3443 3444 bool visitSelectInst(SelectInst &SI) { 3445 enqueueUsers(SI); 3446 return false; 3447 } 3448 }; 3449 3450 } // end anonymous namespace 3451 3452 /// Strip aggregate type wrapping. 3453 /// 3454 /// This removes no-op aggregate types wrapping an underlying type. It will 3455 /// strip as many layers of types as it can without changing either the type 3456 /// size or the allocated size. 3457 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 3458 if (Ty->isSingleValueType()) 3459 return Ty; 3460 3461 uint64_t AllocSize = DL.getTypeAllocSize(Ty); 3462 uint64_t TypeSize = DL.getTypeSizeInBits(Ty); 3463 3464 Type *InnerTy; 3465 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 3466 InnerTy = ArrTy->getElementType(); 3467 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 3468 const StructLayout *SL = DL.getStructLayout(STy); 3469 unsigned Index = SL->getElementContainingOffset(0); 3470 InnerTy = STy->getElementType(Index); 3471 } else { 3472 return Ty; 3473 } 3474 3475 if (AllocSize > DL.getTypeAllocSize(InnerTy) || 3476 TypeSize > DL.getTypeSizeInBits(InnerTy)) 3477 return Ty; 3478 3479 return stripAggregateTypeWrapping(DL, InnerTy); 3480 } 3481 3482 /// Try to find a partition of the aggregate type passed in for a given 3483 /// offset and size. 3484 /// 3485 /// This recurses through the aggregate type and tries to compute a subtype 3486 /// based on the offset and size. When the offset and size span a sub-section 3487 /// of an array, it will even compute a new array type for that sub-section, 3488 /// and the same for structs. 3489 /// 3490 /// Note that this routine is very strict and tries to find a partition of the 3491 /// type which produces the *exact* right offset and size. It is not forgiving 3492 /// when the size or offset cause either end of type-based partition to be off. 3493 /// Also, this is a best-effort routine. It is reasonable to give up and not 3494 /// return a type if necessary. 3495 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 3496 uint64_t Size) { 3497 if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size) 3498 return stripAggregateTypeWrapping(DL, Ty); 3499 if (Offset > DL.getTypeAllocSize(Ty) || 3500 (DL.getTypeAllocSize(Ty) - Offset) < Size) 3501 return nullptr; 3502 3503 if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { 3504 Type *ElementTy = SeqTy->getElementType(); 3505 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); 3506 uint64_t NumSkippedElements = Offset / ElementSize; 3507 if (NumSkippedElements >= SeqTy->getNumElements()) 3508 return nullptr; 3509 Offset -= NumSkippedElements * ElementSize; 3510 3511 // First check if we need to recurse. 3512 if (Offset > 0 || Size < ElementSize) { 3513 // Bail if the partition ends in a different array element. 3514 if ((Offset + Size) > ElementSize) 3515 return nullptr; 3516 // Recurse through the element type trying to peel off offset bytes. 3517 return getTypePartition(DL, ElementTy, Offset, Size); 3518 } 3519 assert(Offset == 0); 3520 3521 if (Size == ElementSize) 3522 return stripAggregateTypeWrapping(DL, ElementTy); 3523 assert(Size > ElementSize); 3524 uint64_t NumElements = Size / ElementSize; 3525 if (NumElements * ElementSize != Size) 3526 return nullptr; 3527 return ArrayType::get(ElementTy, NumElements); 3528 } 3529 3530 StructType *STy = dyn_cast<StructType>(Ty); 3531 if (!STy) 3532 return nullptr; 3533 3534 const StructLayout *SL = DL.getStructLayout(STy); 3535 if (Offset >= SL->getSizeInBytes()) 3536 return nullptr; 3537 uint64_t EndOffset = Offset + Size; 3538 if (EndOffset > SL->getSizeInBytes()) 3539 return nullptr; 3540 3541 unsigned Index = SL->getElementContainingOffset(Offset); 3542 Offset -= SL->getElementOffset(Index); 3543 3544 Type *ElementTy = STy->getElementType(Index); 3545 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy); 3546 if (Offset >= ElementSize) 3547 return nullptr; // The offset points into alignment padding. 3548 3549 // See if any partition must be contained by the element. 3550 if (Offset > 0 || Size < ElementSize) { 3551 if ((Offset + Size) > ElementSize) 3552 return nullptr; 3553 return getTypePartition(DL, ElementTy, Offset, Size); 3554 } 3555 assert(Offset == 0); 3556 3557 if (Size == ElementSize) 3558 return stripAggregateTypeWrapping(DL, ElementTy); 3559 3560 StructType::element_iterator EI = STy->element_begin() + Index, 3561 EE = STy->element_end(); 3562 if (EndOffset < SL->getSizeInBytes()) { 3563 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 3564 if (Index == EndIndex) 3565 return nullptr; // Within a single element and its padding. 3566 3567 // Don't try to form "natural" types if the elements don't line up with the 3568 // expected size. 3569 // FIXME: We could potentially recurse down through the last element in the 3570 // sub-struct to find a natural end point. 3571 if (SL->getElementOffset(EndIndex) != EndOffset) 3572 return nullptr; 3573 3574 assert(Index < EndIndex); 3575 EE = STy->element_begin() + EndIndex; 3576 } 3577 3578 // Try to build up a sub-structure. 3579 StructType *SubTy = 3580 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); 3581 const StructLayout *SubSL = DL.getStructLayout(SubTy); 3582 if (Size != SubSL->getSizeInBytes()) 3583 return nullptr; // The sub-struct doesn't have quite the size needed. 3584 3585 return SubTy; 3586 } 3587 3588 /// Pre-split loads and stores to simplify rewriting. 3589 /// 3590 /// We want to break up the splittable load+store pairs as much as 3591 /// possible. This is important to do as a preprocessing step, as once we 3592 /// start rewriting the accesses to partitions of the alloca we lose the 3593 /// necessary information to correctly split apart paired loads and stores 3594 /// which both point into this alloca. The case to consider is something like 3595 /// the following: 3596 /// 3597 /// %a = alloca [12 x i8] 3598 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 3599 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 3600 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 3601 /// %iptr1 = bitcast i8* %gep1 to i64* 3602 /// %iptr2 = bitcast i8* %gep2 to i64* 3603 /// %fptr1 = bitcast i8* %gep1 to float* 3604 /// %fptr2 = bitcast i8* %gep2 to float* 3605 /// %fptr3 = bitcast i8* %gep3 to float* 3606 /// store float 0.0, float* %fptr1 3607 /// store float 1.0, float* %fptr2 3608 /// %v = load i64* %iptr1 3609 /// store i64 %v, i64* %iptr2 3610 /// %f1 = load float* %fptr2 3611 /// %f2 = load float* %fptr3 3612 /// 3613 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 3614 /// promote everything so we recover the 2 SSA values that should have been 3615 /// there all along. 3616 /// 3617 /// \returns true if any changes are made. 3618 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 3619 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 3620 3621 // Track the loads and stores which are candidates for pre-splitting here, in 3622 // the order they first appear during the partition scan. These give stable 3623 // iteration order and a basis for tracking which loads and stores we 3624 // actually split. 3625 SmallVector<LoadInst *, 4> Loads; 3626 SmallVector<StoreInst *, 4> Stores; 3627 3628 // We need to accumulate the splits required of each load or store where we 3629 // can find them via a direct lookup. This is important to cross-check loads 3630 // and stores against each other. We also track the slice so that we can kill 3631 // all the slices that end up split. 3632 struct SplitOffsets { 3633 Slice *S; 3634 std::vector<uint64_t> Splits; 3635 }; 3636 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 3637 3638 // Track loads out of this alloca which cannot, for any reason, be pre-split. 3639 // This is important as we also cannot pre-split stores of those loads! 3640 // FIXME: This is all pretty gross. It means that we can be more aggressive 3641 // in pre-splitting when the load feeding the store happens to come from 3642 // a separate alloca. Put another way, the effectiveness of SROA would be 3643 // decreased by a frontend which just concatenated all of its local allocas 3644 // into one big flat alloca. But defeating such patterns is exactly the job 3645 // SROA is tasked with! Sadly, to not have this discrepancy we would have 3646 // change store pre-splitting to actually force pre-splitting of the load 3647 // that feeds it *and all stores*. That makes pre-splitting much harder, but 3648 // maybe it would make it more principled? 3649 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 3650 3651 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 3652 for (auto &P : AS.partitions()) { 3653 for (Slice &S : P) { 3654 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 3655 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 3656 // If this is a load we have to track that it can't participate in any 3657 // pre-splitting. If this is a store of a load we have to track that 3658 // that load also can't participate in any pre-splitting. 3659 if (auto *LI = dyn_cast<LoadInst>(I)) 3660 UnsplittableLoads.insert(LI); 3661 else if (auto *SI = dyn_cast<StoreInst>(I)) 3662 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 3663 UnsplittableLoads.insert(LI); 3664 continue; 3665 } 3666 assert(P.endOffset() > S.beginOffset() && 3667 "Empty or backwards partition!"); 3668 3669 // Determine if this is a pre-splittable slice. 3670 if (auto *LI = dyn_cast<LoadInst>(I)) { 3671 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 3672 3673 // The load must be used exclusively to store into other pointers for 3674 // us to be able to arbitrarily pre-split it. The stores must also be 3675 // simple to avoid changing semantics. 3676 auto IsLoadSimplyStored = [](LoadInst *LI) { 3677 for (User *LU : LI->users()) { 3678 auto *SI = dyn_cast<StoreInst>(LU); 3679 if (!SI || !SI->isSimple()) 3680 return false; 3681 } 3682 return true; 3683 }; 3684 if (!IsLoadSimplyStored(LI)) { 3685 UnsplittableLoads.insert(LI); 3686 continue; 3687 } 3688 3689 Loads.push_back(LI); 3690 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3691 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 3692 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 3693 continue; 3694 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 3695 if (!StoredLoad || !StoredLoad->isSimple()) 3696 continue; 3697 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 3698 3699 Stores.push_back(SI); 3700 } else { 3701 // Other uses cannot be pre-split. 3702 continue; 3703 } 3704 3705 // Record the initial split. 3706 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); 3707 auto &Offsets = SplitOffsetsMap[I]; 3708 assert(Offsets.Splits.empty() && 3709 "Should not have splits the first time we see an instruction!"); 3710 Offsets.S = &S; 3711 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 3712 } 3713 3714 // Now scan the already split slices, and add a split for any of them which 3715 // we're going to pre-split. 3716 for (Slice *S : P.splitSliceTails()) { 3717 auto SplitOffsetsMapI = 3718 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 3719 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 3720 continue; 3721 auto &Offsets = SplitOffsetsMapI->second; 3722 3723 assert(Offsets.S == S && "Found a mismatched slice!"); 3724 assert(!Offsets.Splits.empty() && 3725 "Cannot have an empty set of splits on the second partition!"); 3726 assert(Offsets.Splits.back() == 3727 P.beginOffset() - Offsets.S->beginOffset() && 3728 "Previous split does not end where this one begins!"); 3729 3730 // Record each split. The last partition's end isn't needed as the size 3731 // of the slice dictates that. 3732 if (S->endOffset() > P.endOffset()) 3733 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 3734 } 3735 } 3736 3737 // We may have split loads where some of their stores are split stores. For 3738 // such loads and stores, we can only pre-split them if their splits exactly 3739 // match relative to their starting offset. We have to verify this prior to 3740 // any rewriting. 3741 Stores.erase( 3742 llvm::remove_if(Stores, 3743 [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 3744 // Lookup the load we are storing in our map of split 3745 // offsets. 3746 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3747 // If it was completely unsplittable, then we're done, 3748 // and this store can't be pre-split. 3749 if (UnsplittableLoads.count(LI)) 3750 return true; 3751 3752 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 3753 if (LoadOffsetsI == SplitOffsetsMap.end()) 3754 return false; // Unrelated loads are definitely safe. 3755 auto &LoadOffsets = LoadOffsetsI->second; 3756 3757 // Now lookup the store's offsets. 3758 auto &StoreOffsets = SplitOffsetsMap[SI]; 3759 3760 // If the relative offsets of each split in the load and 3761 // store match exactly, then we can split them and we 3762 // don't need to remove them here. 3763 if (LoadOffsets.Splits == StoreOffsets.Splits) 3764 return false; 3765 3766 LLVM_DEBUG( 3767 dbgs() 3768 << " Mismatched splits for load and store:\n" 3769 << " " << *LI << "\n" 3770 << " " << *SI << "\n"); 3771 3772 // We've found a store and load that we need to split 3773 // with mismatched relative splits. Just give up on them 3774 // and remove both instructions from our list of 3775 // candidates. 3776 UnsplittableLoads.insert(LI); 3777 return true; 3778 }), 3779 Stores.end()); 3780 // Now we have to go *back* through all the stores, because a later store may 3781 // have caused an earlier store's load to become unsplittable and if it is 3782 // unsplittable for the later store, then we can't rely on it being split in 3783 // the earlier store either. 3784 Stores.erase(llvm::remove_if(Stores, 3785 [&UnsplittableLoads](StoreInst *SI) { 3786 auto *LI = 3787 cast<LoadInst>(SI->getValueOperand()); 3788 return UnsplittableLoads.count(LI); 3789 }), 3790 Stores.end()); 3791 // Once we've established all the loads that can't be split for some reason, 3792 // filter any that made it into our list out. 3793 Loads.erase(llvm::remove_if(Loads, 3794 [&UnsplittableLoads](LoadInst *LI) { 3795 return UnsplittableLoads.count(LI); 3796 }), 3797 Loads.end()); 3798 3799 // If no loads or stores are left, there is no pre-splitting to be done for 3800 // this alloca. 3801 if (Loads.empty() && Stores.empty()) 3802 return false; 3803 3804 // From here on, we can't fail and will be building new accesses, so rig up 3805 // an IR builder. 3806 IRBuilderTy IRB(&AI); 3807 3808 // Collect the new slices which we will merge into the alloca slices. 3809 SmallVector<Slice, 4> NewSlices; 3810 3811 // Track any allocas we end up splitting loads and stores for so we iterate 3812 // on them. 3813 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 3814 3815 // At this point, we have collected all of the loads and stores we can 3816 // pre-split, and the specific splits needed for them. We actually do the 3817 // splitting in a specific order in order to handle when one of the loads in 3818 // the value operand to one of the stores. 3819 // 3820 // First, we rewrite all of the split loads, and just accumulate each split 3821 // load in a parallel structure. We also build the slices for them and append 3822 // them to the alloca slices. 3823 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 3824 std::vector<LoadInst *> SplitLoads; 3825 const DataLayout &DL = AI.getModule()->getDataLayout(); 3826 for (LoadInst *LI : Loads) { 3827 SplitLoads.clear(); 3828 3829 IntegerType *Ty = cast<IntegerType>(LI->getType()); 3830 uint64_t LoadSize = Ty->getBitWidth() / 8; 3831 assert(LoadSize > 0 && "Cannot have a zero-sized integer load!"); 3832 3833 auto &Offsets = SplitOffsetsMap[LI]; 3834 assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 3835 "Slice size should always match load size exactly!"); 3836 uint64_t BaseOffset = Offsets.S->beginOffset(); 3837 assert(BaseOffset + LoadSize > BaseOffset && 3838 "Cannot represent alloca access size using 64-bit integers!"); 3839 3840 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 3841 IRB.SetInsertPoint(LI); 3842 3843 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 3844 3845 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 3846 int Idx = 0, Size = Offsets.Splits.size(); 3847 for (;;) { 3848 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 3849 auto AS = LI->getPointerAddressSpace(); 3850 auto *PartPtrTy = PartTy->getPointerTo(AS); 3851 LoadInst *PLoad = IRB.CreateAlignedLoad( 3852 PartTy, 3853 getAdjustedPtr(IRB, DL, BasePtr, 3854 APInt(DL.getIndexSizeInBits(AS), PartOffset), 3855 PartPtrTy, BasePtr->getName() + "."), 3856 getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false, 3857 LI->getName()); 3858 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 3859 LLVMContext::MD_access_group}); 3860 3861 // Append this load onto the list of split loads so we can find it later 3862 // to rewrite the stores. 3863 SplitLoads.push_back(PLoad); 3864 3865 // Now build a new slice for the alloca. 3866 NewSlices.push_back( 3867 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 3868 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 3869 /*IsSplittable*/ false)); 3870 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 3871 << ", " << NewSlices.back().endOffset() 3872 << "): " << *PLoad << "\n"); 3873 3874 // See if we've handled all the splits. 3875 if (Idx >= Size) 3876 break; 3877 3878 // Setup the next partition. 3879 PartOffset = Offsets.Splits[Idx]; 3880 ++Idx; 3881 PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset; 3882 } 3883 3884 // Now that we have the split loads, do the slow walk over all uses of the 3885 // load and rewrite them as split stores, or save the split loads to use 3886 // below if the store is going to be split there anyways. 3887 bool DeferredStores = false; 3888 for (User *LU : LI->users()) { 3889 StoreInst *SI = cast<StoreInst>(LU); 3890 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 3891 DeferredStores = true; 3892 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI 3893 << "\n"); 3894 continue; 3895 } 3896 3897 Value *StoreBasePtr = SI->getPointerOperand(); 3898 IRB.SetInsertPoint(SI); 3899 3900 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 3901 3902 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 3903 LoadInst *PLoad = SplitLoads[Idx]; 3904 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 3905 auto *PartPtrTy = 3906 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); 3907 3908 auto AS = SI->getPointerAddressSpace(); 3909 StoreInst *PStore = IRB.CreateAlignedStore( 3910 PLoad, 3911 getAdjustedPtr(IRB, DL, StoreBasePtr, 3912 APInt(DL.getIndexSizeInBits(AS), PartOffset), 3913 PartPtrTy, StoreBasePtr->getName() + "."), 3914 getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false); 3915 PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 3916 LLVMContext::MD_access_group}); 3917 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 3918 } 3919 3920 // We want to immediately iterate on any allocas impacted by splitting 3921 // this store, and we have to track any promotable alloca (indicated by 3922 // a direct store) as needing to be resplit because it is no longer 3923 // promotable. 3924 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 3925 ResplitPromotableAllocas.insert(OtherAI); 3926 Worklist.insert(OtherAI); 3927 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 3928 StoreBasePtr->stripInBoundsOffsets())) { 3929 Worklist.insert(OtherAI); 3930 } 3931 3932 // Mark the original store as dead. 3933 DeadInsts.insert(SI); 3934 } 3935 3936 // Save the split loads if there are deferred stores among the users. 3937 if (DeferredStores) 3938 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 3939 3940 // Mark the original load as dead and kill the original slice. 3941 DeadInsts.insert(LI); 3942 Offsets.S->kill(); 3943 } 3944 3945 // Second, we rewrite all of the split stores. At this point, we know that 3946 // all loads from this alloca have been split already. For stores of such 3947 // loads, we can simply look up the pre-existing split loads. For stores of 3948 // other loads, we split those loads first and then write split stores of 3949 // them. 3950 for (StoreInst *SI : Stores) { 3951 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3952 IntegerType *Ty = cast<IntegerType>(LI->getType()); 3953 uint64_t StoreSize = Ty->getBitWidth() / 8; 3954 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 3955 3956 auto &Offsets = SplitOffsetsMap[SI]; 3957 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 3958 "Slice size should always match load size exactly!"); 3959 uint64_t BaseOffset = Offsets.S->beginOffset(); 3960 assert(BaseOffset + StoreSize > BaseOffset && 3961 "Cannot represent alloca access size using 64-bit integers!"); 3962 3963 Value *LoadBasePtr = LI->getPointerOperand(); 3964 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 3965 3966 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 3967 3968 // Check whether we have an already split load. 3969 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 3970 std::vector<LoadInst *> *SplitLoads = nullptr; 3971 if (SplitLoadsMapI != SplitLoadsMap.end()) { 3972 SplitLoads = &SplitLoadsMapI->second; 3973 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 3974 "Too few split loads for the number of splits in the store!"); 3975 } else { 3976 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); 3977 } 3978 3979 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 3980 int Idx = 0, Size = Offsets.Splits.size(); 3981 for (;;) { 3982 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 3983 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); 3984 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); 3985 3986 // Either lookup a split load or create one. 3987 LoadInst *PLoad; 3988 if (SplitLoads) { 3989 PLoad = (*SplitLoads)[Idx]; 3990 } else { 3991 IRB.SetInsertPoint(LI); 3992 auto AS = LI->getPointerAddressSpace(); 3993 PLoad = IRB.CreateAlignedLoad( 3994 PartTy, 3995 getAdjustedPtr(IRB, DL, LoadBasePtr, 3996 APInt(DL.getIndexSizeInBits(AS), PartOffset), 3997 LoadPartPtrTy, LoadBasePtr->getName() + "."), 3998 getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false, 3999 LI->getName()); 4000 } 4001 4002 // And store this partition. 4003 IRB.SetInsertPoint(SI); 4004 auto AS = SI->getPointerAddressSpace(); 4005 StoreInst *PStore = IRB.CreateAlignedStore( 4006 PLoad, 4007 getAdjustedPtr(IRB, DL, StoreBasePtr, 4008 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4009 StorePartPtrTy, StoreBasePtr->getName() + "."), 4010 getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false); 4011 4012 // Now build a new slice for the alloca. 4013 NewSlices.push_back( 4014 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4015 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 4016 /*IsSplittable*/ false)); 4017 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4018 << ", " << NewSlices.back().endOffset() 4019 << "): " << *PStore << "\n"); 4020 if (!SplitLoads) { 4021 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 4022 } 4023 4024 // See if we've finished all the splits. 4025 if (Idx >= Size) 4026 break; 4027 4028 // Setup the next partition. 4029 PartOffset = Offsets.Splits[Idx]; 4030 ++Idx; 4031 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 4032 } 4033 4034 // We want to immediately iterate on any allocas impacted by splitting 4035 // this load, which is only relevant if it isn't a load of this alloca and 4036 // thus we didn't already split the loads above. We also have to keep track 4037 // of any promotable allocas we split loads on as they can no longer be 4038 // promoted. 4039 if (!SplitLoads) { 4040 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 4041 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4042 ResplitPromotableAllocas.insert(OtherAI); 4043 Worklist.insert(OtherAI); 4044 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4045 LoadBasePtr->stripInBoundsOffsets())) { 4046 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4047 Worklist.insert(OtherAI); 4048 } 4049 } 4050 4051 // Mark the original store as dead now that we've split it up and kill its 4052 // slice. Note that we leave the original load in place unless this store 4053 // was its only use. It may in turn be split up if it is an alloca load 4054 // for some other alloca, but it may be a normal load. This may introduce 4055 // redundant loads, but where those can be merged the rest of the optimizer 4056 // should handle the merging, and this uncovers SSA splits which is more 4057 // important. In practice, the original loads will almost always be fully 4058 // split and removed eventually, and the splits will be merged by any 4059 // trivial CSE, including instcombine. 4060 if (LI->hasOneUse()) { 4061 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 4062 DeadInsts.insert(LI); 4063 } 4064 DeadInsts.insert(SI); 4065 Offsets.S->kill(); 4066 } 4067 4068 // Remove the killed slices that have ben pre-split. 4069 AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }), 4070 AS.end()); 4071 4072 // Insert our new slices. This will sort and merge them into the sorted 4073 // sequence. 4074 AS.insert(NewSlices); 4075 4076 LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); 4077 #ifndef NDEBUG 4078 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 4079 LLVM_DEBUG(AS.print(dbgs(), I, " ")); 4080 #endif 4081 4082 // Finally, don't try to promote any allocas that new require re-splitting. 4083 // They have already been added to the worklist above. 4084 PromotableAllocas.erase( 4085 llvm::remove_if( 4086 PromotableAllocas, 4087 [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }), 4088 PromotableAllocas.end()); 4089 4090 return true; 4091 } 4092 4093 /// Rewrite an alloca partition's users. 4094 /// 4095 /// This routine drives both of the rewriting goals of the SROA pass. It tries 4096 /// to rewrite uses of an alloca partition to be conducive for SSA value 4097 /// promotion. If the partition needs a new, more refined alloca, this will 4098 /// build that new alloca, preserving as much type information as possible, and 4099 /// rewrite the uses of the old alloca to point at the new one and have the 4100 /// appropriate new offsets. It also evaluates how successful the rewrite was 4101 /// at enabling promotion and if it was successful queues the alloca to be 4102 /// promoted. 4103 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 4104 Partition &P) { 4105 // Try to compute a friendly type for this partition of the alloca. This 4106 // won't always succeed, in which case we fall back to a legal integer type 4107 // or an i8 array of an appropriate size. 4108 Type *SliceTy = nullptr; 4109 const DataLayout &DL = AI.getModule()->getDataLayout(); 4110 if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset())) 4111 if (DL.getTypeAllocSize(CommonUseTy) >= P.size()) 4112 SliceTy = CommonUseTy; 4113 if (!SliceTy) 4114 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4115 P.beginOffset(), P.size())) 4116 SliceTy = TypePartitionTy; 4117 if ((!SliceTy || (SliceTy->isArrayTy() && 4118 SliceTy->getArrayElementType()->isIntegerTy())) && 4119 DL.isLegalInteger(P.size() * 8)) 4120 SliceTy = Type::getIntNTy(*C, P.size() * 8); 4121 if (!SliceTy) 4122 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 4123 assert(DL.getTypeAllocSize(SliceTy) >= P.size()); 4124 4125 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 4126 4127 VectorType *VecTy = 4128 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 4129 if (VecTy) 4130 SliceTy = VecTy; 4131 4132 // Check for the case where we're going to rewrite to a new alloca of the 4133 // exact same type as the original, and with the same access offsets. In that 4134 // case, re-use the existing alloca, but still run through the rewriter to 4135 // perform phi and select speculation. 4136 // P.beginOffset() can be non-zero even with the same type in a case with 4137 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). 4138 AllocaInst *NewAI; 4139 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { 4140 NewAI = &AI; 4141 // FIXME: We should be able to bail at this point with "nothing changed". 4142 // FIXME: We might want to defer PHI speculation until after here. 4143 // FIXME: return nullptr; 4144 } else { 4145 unsigned Alignment = AI.getAlignment(); 4146 if (!Alignment) { 4147 // The minimum alignment which users can rely on when the explicit 4148 // alignment is omitted or zero is that required by the ABI for this 4149 // type. 4150 Alignment = DL.getABITypeAlignment(AI.getAllocatedType()); 4151 } 4152 Alignment = MinAlign(Alignment, P.beginOffset()); 4153 // If we will get at least this much alignment from the type alone, leave 4154 // the alloca's alignment unconstrained. 4155 if (Alignment <= DL.getABITypeAlignment(SliceTy)) 4156 Alignment = 0; 4157 NewAI = new AllocaInst( 4158 SliceTy, AI.getType()->getAddressSpace(), nullptr, Alignment, 4159 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); 4160 // Copy the old AI debug location over to the new one. 4161 NewAI->setDebugLoc(AI.getDebugLoc()); 4162 ++NumNewAllocas; 4163 } 4164 4165 LLVM_DEBUG(dbgs() << "Rewriting alloca partition " 4166 << "[" << P.beginOffset() << "," << P.endOffset() 4167 << ") to: " << *NewAI << "\n"); 4168 4169 // Track the high watermark on the worklist as it is only relevant for 4170 // promoted allocas. We will reset it to this point if the alloca is not in 4171 // fact scheduled for promotion. 4172 unsigned PPWOldSize = PostPromotionWorklist.size(); 4173 unsigned NumUses = 0; 4174 SmallSetVector<PHINode *, 8> PHIUsers; 4175 SmallSetVector<SelectInst *, 8> SelectUsers; 4176 4177 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 4178 P.endOffset(), IsIntegerPromotable, VecTy, 4179 PHIUsers, SelectUsers); 4180 bool Promotable = true; 4181 for (Slice *S : P.splitSliceTails()) { 4182 Promotable &= Rewriter.visit(S); 4183 ++NumUses; 4184 } 4185 for (Slice &S : P) { 4186 Promotable &= Rewriter.visit(&S); 4187 ++NumUses; 4188 } 4189 4190 NumAllocaPartitionUses += NumUses; 4191 MaxUsesPerAllocaPartition.updateMax(NumUses); 4192 4193 // Now that we've processed all the slices in the new partition, check if any 4194 // PHIs or Selects would block promotion. 4195 for (PHINode *PHI : PHIUsers) 4196 if (!isSafePHIToSpeculate(*PHI)) { 4197 Promotable = false; 4198 PHIUsers.clear(); 4199 SelectUsers.clear(); 4200 break; 4201 } 4202 4203 for (SelectInst *Sel : SelectUsers) 4204 if (!isSafeSelectToSpeculate(*Sel)) { 4205 Promotable = false; 4206 PHIUsers.clear(); 4207 SelectUsers.clear(); 4208 break; 4209 } 4210 4211 if (Promotable) { 4212 if (PHIUsers.empty() && SelectUsers.empty()) { 4213 // Promote the alloca. 4214 PromotableAllocas.push_back(NewAI); 4215 } else { 4216 // If we have either PHIs or Selects to speculate, add them to those 4217 // worklists and re-queue the new alloca so that we promote in on the 4218 // next iteration. 4219 for (PHINode *PHIUser : PHIUsers) 4220 SpeculatablePHIs.insert(PHIUser); 4221 for (SelectInst *SelectUser : SelectUsers) 4222 SpeculatableSelects.insert(SelectUser); 4223 Worklist.insert(NewAI); 4224 } 4225 } else { 4226 // Drop any post-promotion work items if promotion didn't happen. 4227 while (PostPromotionWorklist.size() > PPWOldSize) 4228 PostPromotionWorklist.pop_back(); 4229 4230 // We couldn't promote and we didn't create a new partition, nothing 4231 // happened. 4232 if (NewAI == &AI) 4233 return nullptr; 4234 4235 // If we can't promote the alloca, iterate on it to check for new 4236 // refinements exposed by splitting the current alloca. Don't iterate on an 4237 // alloca which didn't actually change and didn't get promoted. 4238 Worklist.insert(NewAI); 4239 } 4240 4241 return NewAI; 4242 } 4243 4244 /// Walks the slices of an alloca and form partitions based on them, 4245 /// rewriting each of their uses. 4246 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 4247 if (AS.begin() == AS.end()) 4248 return false; 4249 4250 unsigned NumPartitions = 0; 4251 bool Changed = false; 4252 const DataLayout &DL = AI.getModule()->getDataLayout(); 4253 4254 // First try to pre-split loads and stores. 4255 Changed |= presplitLoadsAndStores(AI, AS); 4256 4257 // Now that we have identified any pre-splitting opportunities, 4258 // mark loads and stores unsplittable except for the following case. 4259 // We leave a slice splittable if all other slices are disjoint or fully 4260 // included in the slice, such as whole-alloca loads and stores. 4261 // If we fail to split these during pre-splitting, we want to force them 4262 // to be rewritten into a partition. 4263 bool IsSorted = true; 4264 4265 uint64_t AllocaSize = DL.getTypeAllocSize(AI.getAllocatedType()); 4266 const uint64_t MaxBitVectorSize = 1024; 4267 if (AllocaSize <= MaxBitVectorSize) { 4268 // If a byte boundary is included in any load or store, a slice starting or 4269 // ending at the boundary is not splittable. 4270 SmallBitVector SplittableOffset(AllocaSize + 1, true); 4271 for (Slice &S : AS) 4272 for (unsigned O = S.beginOffset() + 1; 4273 O < S.endOffset() && O < AllocaSize; O++) 4274 SplittableOffset.reset(O); 4275 4276 for (Slice &S : AS) { 4277 if (!S.isSplittable()) 4278 continue; 4279 4280 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && 4281 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) 4282 continue; 4283 4284 if (isa<LoadInst>(S.getUse()->getUser()) || 4285 isa<StoreInst>(S.getUse()->getUser())) { 4286 S.makeUnsplittable(); 4287 IsSorted = false; 4288 } 4289 } 4290 } 4291 else { 4292 // We only allow whole-alloca splittable loads and stores 4293 // for a large alloca to avoid creating too large BitVector. 4294 for (Slice &S : AS) { 4295 if (!S.isSplittable()) 4296 continue; 4297 4298 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) 4299 continue; 4300 4301 if (isa<LoadInst>(S.getUse()->getUser()) || 4302 isa<StoreInst>(S.getUse()->getUser())) { 4303 S.makeUnsplittable(); 4304 IsSorted = false; 4305 } 4306 } 4307 } 4308 4309 if (!IsSorted) 4310 llvm::sort(AS); 4311 4312 /// Describes the allocas introduced by rewritePartition in order to migrate 4313 /// the debug info. 4314 struct Fragment { 4315 AllocaInst *Alloca; 4316 uint64_t Offset; 4317 uint64_t Size; 4318 Fragment(AllocaInst *AI, uint64_t O, uint64_t S) 4319 : Alloca(AI), Offset(O), Size(S) {} 4320 }; 4321 SmallVector<Fragment, 4> Fragments; 4322 4323 // Rewrite each partition. 4324 for (auto &P : AS.partitions()) { 4325 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 4326 Changed = true; 4327 if (NewAI != &AI) { 4328 uint64_t SizeOfByte = 8; 4329 uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType()); 4330 // Don't include any padding. 4331 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 4332 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); 4333 } 4334 } 4335 ++NumPartitions; 4336 } 4337 4338 NumAllocaPartitions += NumPartitions; 4339 MaxPartitionsPerAlloca.updateMax(NumPartitions); 4340 4341 // Migrate debug information from the old alloca to the new alloca(s) 4342 // and the individual partitions. 4343 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI); 4344 if (!DbgDeclares.empty()) { 4345 auto *Var = DbgDeclares.front()->getVariable(); 4346 auto *Expr = DbgDeclares.front()->getExpression(); 4347 auto VarSize = Var->getSizeInBits(); 4348 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 4349 uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType()); 4350 for (auto Fragment : Fragments) { 4351 // Create a fragment expression describing the new partition or reuse AI's 4352 // expression if there is only one partition. 4353 auto *FragmentExpr = Expr; 4354 if (Fragment.Size < AllocaSize || Expr->isFragment()) { 4355 // If this alloca is already a scalar replacement of a larger aggregate, 4356 // Fragment.Offset describes the offset inside the scalar. 4357 auto ExprFragment = Expr->getFragmentInfo(); 4358 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0; 4359 uint64_t Start = Offset + Fragment.Offset; 4360 uint64_t Size = Fragment.Size; 4361 if (ExprFragment) { 4362 uint64_t AbsEnd = 4363 ExprFragment->OffsetInBits + ExprFragment->SizeInBits; 4364 if (Start >= AbsEnd) 4365 // No need to describe a SROAed padding. 4366 continue; 4367 Size = std::min(Size, AbsEnd - Start); 4368 } 4369 // The new, smaller fragment is stenciled out from the old fragment. 4370 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) { 4371 assert(Start >= OrigFragment->OffsetInBits && 4372 "new fragment is outside of original fragment"); 4373 Start -= OrigFragment->OffsetInBits; 4374 } 4375 4376 // The alloca may be larger than the variable. 4377 if (VarSize) { 4378 if (Size > *VarSize) 4379 Size = *VarSize; 4380 if (Size == 0 || Start + Size > *VarSize) 4381 continue; 4382 } 4383 4384 // Avoid creating a fragment expression that covers the entire variable. 4385 if (!VarSize || *VarSize != Size) { 4386 if (auto E = 4387 DIExpression::createFragmentExpression(Expr, Start, Size)) 4388 FragmentExpr = *E; 4389 else 4390 continue; 4391 } 4392 } 4393 4394 // Remove any existing intrinsics describing the same alloca. 4395 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) 4396 OldDII->eraseFromParent(); 4397 4398 DIB.insertDeclare(Fragment.Alloca, Var, FragmentExpr, 4399 DbgDeclares.front()->getDebugLoc(), &AI); 4400 } 4401 } 4402 return Changed; 4403 } 4404 4405 /// Clobber a use with undef, deleting the used value if it becomes dead. 4406 void SROA::clobberUse(Use &U) { 4407 Value *OldV = U; 4408 // Replace the use with an undef value. 4409 U = UndefValue::get(OldV->getType()); 4410 4411 // Check for this making an instruction dead. We have to garbage collect 4412 // all the dead instructions to ensure the uses of any alloca end up being 4413 // minimal. 4414 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 4415 if (isInstructionTriviallyDead(OldI)) { 4416 DeadInsts.insert(OldI); 4417 } 4418 } 4419 4420 /// Analyze an alloca for SROA. 4421 /// 4422 /// This analyzes the alloca to ensure we can reason about it, builds 4423 /// the slices of the alloca, and then hands it off to be split and 4424 /// rewritten as needed. 4425 bool SROA::runOnAlloca(AllocaInst &AI) { 4426 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 4427 ++NumAllocasAnalyzed; 4428 4429 // Special case dead allocas, as they're trivial. 4430 if (AI.use_empty()) { 4431 AI.eraseFromParent(); 4432 return true; 4433 } 4434 const DataLayout &DL = AI.getModule()->getDataLayout(); 4435 4436 // Skip alloca forms that this analysis can't handle. 4437 if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || 4438 DL.getTypeAllocSize(AI.getAllocatedType()) == 0) 4439 return false; 4440 4441 bool Changed = false; 4442 4443 // First, split any FCA loads and stores touching this alloca to promote 4444 // better splitting and promotion opportunities. 4445 AggLoadStoreRewriter AggRewriter(DL); 4446 Changed |= AggRewriter.rewrite(AI); 4447 4448 // Build the slices using a recursive instruction-visiting builder. 4449 AllocaSlices AS(DL, AI); 4450 LLVM_DEBUG(AS.print(dbgs())); 4451 if (AS.isEscaped()) 4452 return Changed; 4453 4454 // Delete all the dead users of this alloca before splitting and rewriting it. 4455 for (Instruction *DeadUser : AS.getDeadUsers()) { 4456 // Free up everything used by this instruction. 4457 for (Use &DeadOp : DeadUser->operands()) 4458 clobberUse(DeadOp); 4459 4460 // Now replace the uses of this instruction. 4461 DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType())); 4462 4463 // And mark it for deletion. 4464 DeadInsts.insert(DeadUser); 4465 Changed = true; 4466 } 4467 for (Use *DeadOp : AS.getDeadOperands()) { 4468 clobberUse(*DeadOp); 4469 Changed = true; 4470 } 4471 4472 // No slices to split. Leave the dead alloca for a later pass to clean up. 4473 if (AS.begin() == AS.end()) 4474 return Changed; 4475 4476 Changed |= splitAlloca(AI, AS); 4477 4478 LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); 4479 while (!SpeculatablePHIs.empty()) 4480 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); 4481 4482 LLVM_DEBUG(dbgs() << " Speculating Selects\n"); 4483 while (!SpeculatableSelects.empty()) 4484 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); 4485 4486 return Changed; 4487 } 4488 4489 /// Delete the dead instructions accumulated in this run. 4490 /// 4491 /// Recursively deletes the dead instructions we've accumulated. This is done 4492 /// at the very end to maximize locality of the recursive delete and to 4493 /// minimize the problems of invalidated instruction pointers as such pointers 4494 /// are used heavily in the intermediate stages of the algorithm. 4495 /// 4496 /// We also record the alloca instructions deleted here so that they aren't 4497 /// subsequently handed to mem2reg to promote. 4498 bool SROA::deleteDeadInstructions( 4499 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 4500 bool Changed = false; 4501 while (!DeadInsts.empty()) { 4502 Instruction *I = DeadInsts.pop_back_val(); 4503 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 4504 4505 // If the instruction is an alloca, find the possible dbg.declare connected 4506 // to it, and remove it too. We must do this before calling RAUW or we will 4507 // not be able to find it. 4508 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4509 DeletedAllocas.insert(AI); 4510 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI)) 4511 OldDII->eraseFromParent(); 4512 } 4513 4514 I->replaceAllUsesWith(UndefValue::get(I->getType())); 4515 4516 for (Use &Operand : I->operands()) 4517 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 4518 // Zero out the operand and see if it becomes trivially dead. 4519 Operand = nullptr; 4520 if (isInstructionTriviallyDead(U)) 4521 DeadInsts.insert(U); 4522 } 4523 4524 ++NumDeleted; 4525 I->eraseFromParent(); 4526 Changed = true; 4527 } 4528 return Changed; 4529 } 4530 4531 /// Promote the allocas, using the best available technique. 4532 /// 4533 /// This attempts to promote whatever allocas have been identified as viable in 4534 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 4535 /// This function returns whether any promotion occurred. 4536 bool SROA::promoteAllocas(Function &F) { 4537 if (PromotableAllocas.empty()) 4538 return false; 4539 4540 NumPromoted += PromotableAllocas.size(); 4541 4542 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 4543 PromoteMemToReg(PromotableAllocas, *DT, AC); 4544 PromotableAllocas.clear(); 4545 return true; 4546 } 4547 4548 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT, 4549 AssumptionCache &RunAC) { 4550 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 4551 C = &F.getContext(); 4552 DT = &RunDT; 4553 AC = &RunAC; 4554 4555 BasicBlock &EntryBB = F.getEntryBlock(); 4556 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 4557 I != E; ++I) { 4558 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 4559 Worklist.insert(AI); 4560 } 4561 4562 bool Changed = false; 4563 // A set of deleted alloca instruction pointers which should be removed from 4564 // the list of promotable allocas. 4565 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 4566 4567 do { 4568 while (!Worklist.empty()) { 4569 Changed |= runOnAlloca(*Worklist.pop_back_val()); 4570 Changed |= deleteDeadInstructions(DeletedAllocas); 4571 4572 // Remove the deleted allocas from various lists so that we don't try to 4573 // continue processing them. 4574 if (!DeletedAllocas.empty()) { 4575 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; 4576 Worklist.remove_if(IsInSet); 4577 PostPromotionWorklist.remove_if(IsInSet); 4578 PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet), 4579 PromotableAllocas.end()); 4580 DeletedAllocas.clear(); 4581 } 4582 } 4583 4584 Changed |= promoteAllocas(F); 4585 4586 Worklist = PostPromotionWorklist; 4587 PostPromotionWorklist.clear(); 4588 } while (!Worklist.empty()); 4589 4590 if (!Changed) 4591 return PreservedAnalyses::all(); 4592 4593 PreservedAnalyses PA; 4594 PA.preserveSet<CFGAnalyses>(); 4595 PA.preserve<GlobalsAA>(); 4596 return PA; 4597 } 4598 4599 PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) { 4600 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F), 4601 AM.getResult<AssumptionAnalysis>(F)); 4602 } 4603 4604 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 4605 /// 4606 /// This is in the llvm namespace purely to allow it to be a friend of the \c 4607 /// SROA pass. 4608 class llvm::sroa::SROALegacyPass : public FunctionPass { 4609 /// The SROA implementation. 4610 SROA Impl; 4611 4612 public: 4613 static char ID; 4614 4615 SROALegacyPass() : FunctionPass(ID) { 4616 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 4617 } 4618 4619 bool runOnFunction(Function &F) override { 4620 if (skipFunction(F)) 4621 return false; 4622 4623 auto PA = Impl.runImpl( 4624 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4625 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 4626 return !PA.areAllPreserved(); 4627 } 4628 4629 void getAnalysisUsage(AnalysisUsage &AU) const override { 4630 AU.addRequired<AssumptionCacheTracker>(); 4631 AU.addRequired<DominatorTreeWrapperPass>(); 4632 AU.addPreserved<GlobalsAAWrapperPass>(); 4633 AU.setPreservesCFG(); 4634 } 4635 4636 StringRef getPassName() const override { return "SROA"; } 4637 }; 4638 4639 char SROALegacyPass::ID = 0; 4640 4641 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); } 4642 4643 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 4644 "Scalar Replacement Of Aggregates", false, false) 4645 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4646 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4647 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 4648 false, false) 4649