xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/SROA.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
14 ///
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
18 ///
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/PointerIntPair.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SetVector.h"
33 #include "llvm/ADT/SmallBitVector.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/ADT/iterator.h"
40 #include "llvm/ADT/iterator_range.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/DomTreeUpdater.h"
43 #include "llvm/Analysis/GlobalsModRef.h"
44 #include "llvm/Analysis/Loads.h"
45 #include "llvm/Analysis/PtrUseVisitor.h"
46 #include "llvm/Config/llvm-config.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/ConstantFolder.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/DIBuilder.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugInfo.h"
54 #include "llvm/IR/DebugInfoMetadata.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GetElementPtrTypeIterator.h"
59 #include "llvm/IR/GlobalAlias.h"
60 #include "llvm/IR/IRBuilder.h"
61 #include "llvm/IR/InstVisitor.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/Metadata.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PassManager.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
85 #include "llvm/Transforms/Utils/Local.h"
86 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
87 #include <algorithm>
88 #include <cassert>
89 #include <cstddef>
90 #include <cstdint>
91 #include <cstring>
92 #include <iterator>
93 #include <string>
94 #include <tuple>
95 #include <utility>
96 #include <variant>
97 #include <vector>
98 
99 using namespace llvm;
100 
101 #define DEBUG_TYPE "sroa"
102 
103 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
104 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
105 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
106 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
107 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
108 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
109 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
110 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
111 STATISTIC(NumLoadsPredicated,
112           "Number of loads rewritten into predicated loads to allow promotion");
113 STATISTIC(
114     NumStoresPredicated,
115     "Number of stores rewritten into predicated loads to allow promotion");
116 STATISTIC(NumDeleted, "Number of instructions deleted");
117 STATISTIC(NumVectorized, "Number of vectorized aggregates");
118 
119 /// Hidden option to experiment with completely strict handling of inbounds
120 /// GEPs.
121 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
122                                         cl::Hidden);
123 /// Disable running mem2reg during SROA in order to test or debug SROA.
124 static cl::opt<bool> SROASkipMem2Reg("sroa-skip-mem2reg", cl::init(false),
125                                      cl::Hidden);
126 namespace {
127 
128 class AllocaSliceRewriter;
129 class AllocaSlices;
130 class Partition;
131 
132 class SelectHandSpeculativity {
133   unsigned char Storage = 0; // None are speculatable by default.
134   using TrueVal = Bitfield::Element<bool, 0, 1>;  // Low 0'th bit.
135   using FalseVal = Bitfield::Element<bool, 1, 1>; // Low 1'th bit.
136 public:
137   SelectHandSpeculativity() = default;
138   SelectHandSpeculativity &setAsSpeculatable(bool isTrueVal);
139   bool isSpeculatable(bool isTrueVal) const;
140   bool areAllSpeculatable() const;
141   bool areAnySpeculatable() const;
142   bool areNoneSpeculatable() const;
143   // For interop as int half of PointerIntPair.
144   explicit operator intptr_t() const { return static_cast<intptr_t>(Storage); }
145   explicit SelectHandSpeculativity(intptr_t Storage_) : Storage(Storage_) {}
146 };
147 static_assert(sizeof(SelectHandSpeculativity) == sizeof(unsigned char));
148 
149 using PossiblySpeculatableLoad =
150     PointerIntPair<LoadInst *, 2, SelectHandSpeculativity>;
151 using UnspeculatableStore = StoreInst *;
152 using RewriteableMemOp =
153     std::variant<PossiblySpeculatableLoad, UnspeculatableStore>;
154 using RewriteableMemOps = SmallVector<RewriteableMemOp, 2>;
155 
156 /// An optimization pass providing Scalar Replacement of Aggregates.
157 ///
158 /// This pass takes allocations which can be completely analyzed (that is, they
159 /// don't escape) and tries to turn them into scalar SSA values. There are
160 /// a few steps to this process.
161 ///
162 /// 1) It takes allocations of aggregates and analyzes the ways in which they
163 ///    are used to try to split them into smaller allocations, ideally of
164 ///    a single scalar data type. It will split up memcpy and memset accesses
165 ///    as necessary and try to isolate individual scalar accesses.
166 /// 2) It will transform accesses into forms which are suitable for SSA value
167 ///    promotion. This can be replacing a memset with a scalar store of an
168 ///    integer value, or it can involve speculating operations on a PHI or
169 ///    select to be a PHI or select of the results.
170 /// 3) Finally, this will try to detect a pattern of accesses which map cleanly
171 ///    onto insert and extract operations on a vector value, and convert them to
172 ///    this form. By doing so, it will enable promotion of vector aggregates to
173 ///    SSA vector values.
174 class SROA {
175   LLVMContext *const C;
176   DomTreeUpdater *const DTU;
177   AssumptionCache *const AC;
178   const bool PreserveCFG;
179 
180   /// Worklist of alloca instructions to simplify.
181   ///
182   /// Each alloca in the function is added to this. Each new alloca formed gets
183   /// added to it as well to recursively simplify unless that alloca can be
184   /// directly promoted. Finally, each time we rewrite a use of an alloca other
185   /// the one being actively rewritten, we add it back onto the list if not
186   /// already present to ensure it is re-visited.
187   SmallSetVector<AllocaInst *, 16> Worklist;
188 
189   /// A collection of instructions to delete.
190   /// We try to batch deletions to simplify code and make things a bit more
191   /// efficient. We also make sure there is no dangling pointers.
192   SmallVector<WeakVH, 8> DeadInsts;
193 
194   /// Post-promotion worklist.
195   ///
196   /// Sometimes we discover an alloca which has a high probability of becoming
197   /// viable for SROA after a round of promotion takes place. In those cases,
198   /// the alloca is enqueued here for re-processing.
199   ///
200   /// Note that we have to be very careful to clear allocas out of this list in
201   /// the event they are deleted.
202   SmallSetVector<AllocaInst *, 16> PostPromotionWorklist;
203 
204   /// A collection of alloca instructions we can directly promote.
205   std::vector<AllocaInst *> PromotableAllocas;
206 
207   /// A worklist of PHIs to speculate prior to promoting allocas.
208   ///
209   /// All of these PHIs have been checked for the safety of speculation and by
210   /// being speculated will allow promoting allocas currently in the promotable
211   /// queue.
212   SmallSetVector<PHINode *, 8> SpeculatablePHIs;
213 
214   /// A worklist of select instructions to rewrite prior to promoting
215   /// allocas.
216   SmallMapVector<SelectInst *, RewriteableMemOps, 8> SelectsToRewrite;
217 
218   /// Select instructions that use an alloca and are subsequently loaded can be
219   /// rewritten to load both input pointers and then select between the result,
220   /// allowing the load of the alloca to be promoted.
221   /// From this:
222   ///   %P2 = select i1 %cond, ptr %Alloca, ptr %Other
223   ///   %V = load <type>, ptr %P2
224   /// to:
225   ///   %V1 = load <type>, ptr %Alloca      -> will be mem2reg'd
226   ///   %V2 = load <type>, ptr %Other
227   ///   %V = select i1 %cond, <type> %V1, <type> %V2
228   ///
229   /// We can do this to a select if its only uses are loads
230   /// and if either the operand to the select can be loaded unconditionally,
231   ///        or if we are allowed to perform CFG modifications.
232   /// If found an intervening bitcast with a single use of the load,
233   /// allow the promotion.
234   static std::optional<RewriteableMemOps>
235   isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG);
236 
237 public:
238   SROA(LLVMContext *C, DomTreeUpdater *DTU, AssumptionCache *AC,
239        SROAOptions PreserveCFG_)
240       : C(C), DTU(DTU), AC(AC),
241         PreserveCFG(PreserveCFG_ == SROAOptions::PreserveCFG) {}
242 
243   /// Main run method used by both the SROAPass and by the legacy pass.
244   std::pair<bool /*Changed*/, bool /*CFGChanged*/> runSROA(Function &F);
245 
246 private:
247   friend class AllocaSliceRewriter;
248 
249   bool presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS);
250   AllocaInst *rewritePartition(AllocaInst &AI, AllocaSlices &AS, Partition &P);
251   bool splitAlloca(AllocaInst &AI, AllocaSlices &AS);
252   std::pair<bool /*Changed*/, bool /*CFGChanged*/> runOnAlloca(AllocaInst &AI);
253   void clobberUse(Use &U);
254   bool deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas);
255   bool promoteAllocas(Function &F);
256 };
257 
258 } // end anonymous namespace
259 
260 /// Calculate the fragment of a variable to use when slicing a store
261 /// based on the slice dimensions, existing fragment, and base storage
262 /// fragment.
263 /// Results:
264 /// UseFrag - Use Target as the new fragment.
265 /// UseNoFrag - The new slice already covers the whole variable.
266 /// Skip - The new alloca slice doesn't include this variable.
267 /// FIXME: Can we use calculateFragmentIntersect instead?
268 namespace {
269 enum FragCalcResult { UseFrag, UseNoFrag, Skip };
270 }
271 static FragCalcResult
272 calculateFragment(DILocalVariable *Variable,
273                   uint64_t NewStorageSliceOffsetInBits,
274                   uint64_t NewStorageSliceSizeInBits,
275                   std::optional<DIExpression::FragmentInfo> StorageFragment,
276                   std::optional<DIExpression::FragmentInfo> CurrentFragment,
277                   DIExpression::FragmentInfo &Target) {
278   // If the base storage describes part of the variable apply the offset and
279   // the size constraint.
280   if (StorageFragment) {
281     Target.SizeInBits =
282         std::min(NewStorageSliceSizeInBits, StorageFragment->SizeInBits);
283     Target.OffsetInBits =
284         NewStorageSliceOffsetInBits + StorageFragment->OffsetInBits;
285   } else {
286     Target.SizeInBits = NewStorageSliceSizeInBits;
287     Target.OffsetInBits = NewStorageSliceOffsetInBits;
288   }
289 
290   // If this slice extracts the entirety of an independent variable from a
291   // larger alloca, do not produce a fragment expression, as the variable is
292   // not fragmented.
293   if (!CurrentFragment) {
294     if (auto Size = Variable->getSizeInBits()) {
295       // Treat the current fragment as covering the whole variable.
296       CurrentFragment =  DIExpression::FragmentInfo(*Size, 0);
297       if (Target == CurrentFragment)
298         return UseNoFrag;
299     }
300   }
301 
302   // No additional work to do if there isn't a fragment already, or there is
303   // but it already exactly describes the new assignment.
304   if (!CurrentFragment || *CurrentFragment == Target)
305     return UseFrag;
306 
307   // Reject the target fragment if it doesn't fit wholly within the current
308   // fragment. TODO: We could instead chop up the target to fit in the case of
309   // a partial overlap.
310   if (Target.startInBits() < CurrentFragment->startInBits() ||
311       Target.endInBits() > CurrentFragment->endInBits())
312     return Skip;
313 
314   // Target fits within the current fragment, return it.
315   return UseFrag;
316 }
317 
318 static DebugVariable getAggregateVariable(DbgVariableIntrinsic *DVI) {
319   return DebugVariable(DVI->getVariable(), std::nullopt,
320                        DVI->getDebugLoc().getInlinedAt());
321 }
322 static DebugVariable getAggregateVariable(DPValue *DPV) {
323   return DebugVariable(DPV->getVariable(), std::nullopt,
324                        DPV->getDebugLoc().getInlinedAt());
325 }
326 
327 static DPValue *createLinkedAssign(DPValue *, DIBuilder &DIB,
328                                    Instruction *LinkedInstr, Value *NewValue,
329                                    DILocalVariable *Variable,
330                                    DIExpression *Expression, Value *Address,
331                                    DIExpression *AddressExpression,
332                                    const DILocation *DI) {
333   (void)DIB;
334   return DPValue::createLinkedDPVAssign(LinkedInstr, NewValue, Variable,
335                                         Expression, Address, AddressExpression,
336                                         DI);
337 }
338 static DbgAssignIntrinsic *createLinkedAssign(
339     DbgAssignIntrinsic *, DIBuilder &DIB, Instruction *LinkedInstr,
340     Value *NewValue, DILocalVariable *Variable, DIExpression *Expression,
341     Value *Address, DIExpression *AddressExpression, const DILocation *DI) {
342   return DIB.insertDbgAssign(LinkedInstr, NewValue, Variable, Expression,
343                              Address, AddressExpression, DI);
344 }
345 
346 /// Find linked dbg.assign and generate a new one with the correct
347 /// FragmentInfo. Link Inst to the new dbg.assign.  If Value is nullptr the
348 /// value component is copied from the old dbg.assign to the new.
349 /// \param OldAlloca             Alloca for the variable before splitting.
350 /// \param IsSplit               True if the store (not necessarily alloca)
351 ///                              is being split.
352 /// \param OldAllocaOffsetInBits Offset of the slice taken from OldAlloca.
353 /// \param SliceSizeInBits       New number of bits being written to.
354 /// \param OldInst               Instruction that is being split.
355 /// \param Inst                  New instruction performing this part of the
356 ///                              split store.
357 /// \param Dest                  Store destination.
358 /// \param Value                 Stored value.
359 /// \param DL                    Datalayout.
360 static void migrateDebugInfo(AllocaInst *OldAlloca, bool IsSplit,
361                              uint64_t OldAllocaOffsetInBits,
362                              uint64_t SliceSizeInBits, Instruction *OldInst,
363                              Instruction *Inst, Value *Dest, Value *Value,
364                              const DataLayout &DL) {
365   auto MarkerRange = at::getAssignmentMarkers(OldInst);
366   auto DPVAssignMarkerRange = at::getDPVAssignmentMarkers(OldInst);
367   // Nothing to do if OldInst has no linked dbg.assign intrinsics.
368   if (MarkerRange.empty() && DPVAssignMarkerRange.empty())
369     return;
370 
371   LLVM_DEBUG(dbgs() << "  migrateDebugInfo\n");
372   LLVM_DEBUG(dbgs() << "    OldAlloca: " << *OldAlloca << "\n");
373   LLVM_DEBUG(dbgs() << "    IsSplit: " << IsSplit << "\n");
374   LLVM_DEBUG(dbgs() << "    OldAllocaOffsetInBits: " << OldAllocaOffsetInBits
375                     << "\n");
376   LLVM_DEBUG(dbgs() << "    SliceSizeInBits: " << SliceSizeInBits << "\n");
377   LLVM_DEBUG(dbgs() << "    OldInst: " << *OldInst << "\n");
378   LLVM_DEBUG(dbgs() << "    Inst: " << *Inst << "\n");
379   LLVM_DEBUG(dbgs() << "    Dest: " << *Dest << "\n");
380   if (Value)
381     LLVM_DEBUG(dbgs() << "    Value: " << *Value << "\n");
382 
383   /// Map of aggregate variables to their fragment associated with OldAlloca.
384   DenseMap<DebugVariable, std::optional<DIExpression::FragmentInfo>>
385       BaseFragments;
386   for (auto *DAI : at::getAssignmentMarkers(OldAlloca))
387     BaseFragments[getAggregateVariable(DAI)] =
388         DAI->getExpression()->getFragmentInfo();
389   for (auto *DPV : at::getDPVAssignmentMarkers(OldAlloca))
390     BaseFragments[getAggregateVariable(DPV)] =
391         DPV->getExpression()->getFragmentInfo();
392 
393   // The new inst needs a DIAssignID unique metadata tag (if OldInst has
394   // one). It shouldn't already have one: assert this assumption.
395   assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID));
396   DIAssignID *NewID = nullptr;
397   auto &Ctx = Inst->getContext();
398   DIBuilder DIB(*OldInst->getModule(), /*AllowUnresolved*/ false);
399   assert(OldAlloca->isStaticAlloca());
400 
401   auto MigrateDbgAssign = [&](auto DbgAssign) {
402     LLVM_DEBUG(dbgs() << "      existing dbg.assign is: " << *DbgAssign
403                       << "\n");
404     auto *Expr = DbgAssign->getExpression();
405     bool SetKillLocation = false;
406 
407     if (IsSplit) {
408       std::optional<DIExpression::FragmentInfo> BaseFragment;
409       {
410         auto R = BaseFragments.find(getAggregateVariable(DbgAssign));
411         if (R == BaseFragments.end())
412           return;
413         BaseFragment = R->second;
414       }
415       std::optional<DIExpression::FragmentInfo> CurrentFragment =
416           Expr->getFragmentInfo();
417       DIExpression::FragmentInfo NewFragment;
418       FragCalcResult Result = calculateFragment(
419           DbgAssign->getVariable(), OldAllocaOffsetInBits, SliceSizeInBits,
420           BaseFragment, CurrentFragment, NewFragment);
421 
422       if (Result == Skip)
423         return;
424       if (Result == UseFrag && !(NewFragment == CurrentFragment)) {
425         if (CurrentFragment) {
426           // Rewrite NewFragment to be relative to the existing one (this is
427           // what createFragmentExpression wants).  CalculateFragment has
428           // already resolved the size for us. FIXME: Should it return the
429           // relative fragment too?
430           NewFragment.OffsetInBits -= CurrentFragment->OffsetInBits;
431         }
432         // Add the new fragment info to the existing expression if possible.
433         if (auto E = DIExpression::createFragmentExpression(
434                 Expr, NewFragment.OffsetInBits, NewFragment.SizeInBits)) {
435           Expr = *E;
436         } else {
437           // Otherwise, add the new fragment info to an empty expression and
438           // discard the value component of this dbg.assign as the value cannot
439           // be computed with the new fragment.
440           Expr = *DIExpression::createFragmentExpression(
441               DIExpression::get(Expr->getContext(), std::nullopt),
442               NewFragment.OffsetInBits, NewFragment.SizeInBits);
443           SetKillLocation = true;
444         }
445       }
446     }
447 
448     // If we haven't created a DIAssignID ID do that now and attach it to Inst.
449     if (!NewID) {
450       NewID = DIAssignID::getDistinct(Ctx);
451       Inst->setMetadata(LLVMContext::MD_DIAssignID, NewID);
452     }
453 
454     ::Value *NewValue = Value ? Value : DbgAssign->getValue();
455     auto *NewAssign = createLinkedAssign(
456         DbgAssign, DIB, Inst, NewValue, DbgAssign->getVariable(), Expr, Dest,
457         DIExpression::get(Expr->getContext(), std::nullopt),
458         DbgAssign->getDebugLoc());
459 
460     // If we've updated the value but the original dbg.assign has an arglist
461     // then kill it now - we can't use the requested new value.
462     // We can't replace the DIArgList with the new value as it'd leave
463     // the DIExpression in an invalid state (DW_OP_LLVM_arg operands without
464     // an arglist). And we can't keep the DIArgList in case the linked store
465     // is being split - in which case the DIArgList + expression may no longer
466     // be computing the correct value.
467     // This should be a very rare situation as it requires the value being
468     // stored to differ from the dbg.assign (i.e., the value has been
469     // represented differently in the debug intrinsic for some reason).
470     SetKillLocation |=
471         Value && (DbgAssign->hasArgList() ||
472                   !DbgAssign->getExpression()->isSingleLocationExpression());
473     if (SetKillLocation)
474       NewAssign->setKillLocation();
475 
476     // We could use more precision here at the cost of some additional (code)
477     // complexity - if the original dbg.assign was adjacent to its store, we
478     // could position this new dbg.assign adjacent to its store rather than the
479     // old dbg.assgn. That would result in interleaved dbg.assigns rather than
480     // what we get now:
481     //    split store !1
482     //    split store !2
483     //    dbg.assign !1
484     //    dbg.assign !2
485     // This (current behaviour) results results in debug assignments being
486     // noted as slightly offset (in code) from the store. In practice this
487     // should have little effect on the debugging experience due to the fact
488     // that all the split stores should get the same line number.
489     NewAssign->moveBefore(DbgAssign);
490 
491     NewAssign->setDebugLoc(DbgAssign->getDebugLoc());
492     LLVM_DEBUG(dbgs() << "Created new assign: " << *NewAssign << "\n");
493   };
494 
495   for_each(MarkerRange, MigrateDbgAssign);
496   for_each(DPVAssignMarkerRange, MigrateDbgAssign);
497 }
498 
499 namespace {
500 
501 /// A custom IRBuilder inserter which prefixes all names, but only in
502 /// Assert builds.
503 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
504   std::string Prefix;
505 
506   Twine getNameWithPrefix(const Twine &Name) const {
507     return Name.isTriviallyEmpty() ? Name : Prefix + Name;
508   }
509 
510 public:
511   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
512 
513   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
514                     BasicBlock::iterator InsertPt) const override {
515     IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
516                                            InsertPt);
517   }
518 };
519 
520 /// Provide a type for IRBuilder that drops names in release builds.
521 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
522 
523 /// A used slice of an alloca.
524 ///
525 /// This structure represents a slice of an alloca used by some instruction. It
526 /// stores both the begin and end offsets of this use, a pointer to the use
527 /// itself, and a flag indicating whether we can classify the use as splittable
528 /// or not when forming partitions of the alloca.
529 class Slice {
530   /// The beginning offset of the range.
531   uint64_t BeginOffset = 0;
532 
533   /// The ending offset, not included in the range.
534   uint64_t EndOffset = 0;
535 
536   /// Storage for both the use of this slice and whether it can be
537   /// split.
538   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
539 
540 public:
541   Slice() = default;
542 
543   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
544       : BeginOffset(BeginOffset), EndOffset(EndOffset),
545         UseAndIsSplittable(U, IsSplittable) {}
546 
547   uint64_t beginOffset() const { return BeginOffset; }
548   uint64_t endOffset() const { return EndOffset; }
549 
550   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
551   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
552 
553   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
554 
555   bool isDead() const { return getUse() == nullptr; }
556   void kill() { UseAndIsSplittable.setPointer(nullptr); }
557 
558   /// Support for ordering ranges.
559   ///
560   /// This provides an ordering over ranges such that start offsets are
561   /// always increasing, and within equal start offsets, the end offsets are
562   /// decreasing. Thus the spanning range comes first in a cluster with the
563   /// same start position.
564   bool operator<(const Slice &RHS) const {
565     if (beginOffset() < RHS.beginOffset())
566       return true;
567     if (beginOffset() > RHS.beginOffset())
568       return false;
569     if (isSplittable() != RHS.isSplittable())
570       return !isSplittable();
571     if (endOffset() > RHS.endOffset())
572       return true;
573     return false;
574   }
575 
576   /// Support comparison with a single offset to allow binary searches.
577   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
578                                               uint64_t RHSOffset) {
579     return LHS.beginOffset() < RHSOffset;
580   }
581   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
582                                               const Slice &RHS) {
583     return LHSOffset < RHS.beginOffset();
584   }
585 
586   bool operator==(const Slice &RHS) const {
587     return isSplittable() == RHS.isSplittable() &&
588            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
589   }
590   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
591 };
592 
593 /// Representation of the alloca slices.
594 ///
595 /// This class represents the slices of an alloca which are formed by its
596 /// various uses. If a pointer escapes, we can't fully build a representation
597 /// for the slices used and we reflect that in this structure. The uses are
598 /// stored, sorted by increasing beginning offset and with unsplittable slices
599 /// starting at a particular offset before splittable slices.
600 class AllocaSlices {
601 public:
602   /// Construct the slices of a particular alloca.
603   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
604 
605   /// Test whether a pointer to the allocation escapes our analysis.
606   ///
607   /// If this is true, the slices are never fully built and should be
608   /// ignored.
609   bool isEscaped() const { return PointerEscapingInstr; }
610 
611   /// Support for iterating over the slices.
612   /// @{
613   using iterator = SmallVectorImpl<Slice>::iterator;
614   using range = iterator_range<iterator>;
615 
616   iterator begin() { return Slices.begin(); }
617   iterator end() { return Slices.end(); }
618 
619   using const_iterator = SmallVectorImpl<Slice>::const_iterator;
620   using const_range = iterator_range<const_iterator>;
621 
622   const_iterator begin() const { return Slices.begin(); }
623   const_iterator end() const { return Slices.end(); }
624   /// @}
625 
626   /// Erase a range of slices.
627   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
628 
629   /// Insert new slices for this alloca.
630   ///
631   /// This moves the slices into the alloca's slices collection, and re-sorts
632   /// everything so that the usual ordering properties of the alloca's slices
633   /// hold.
634   void insert(ArrayRef<Slice> NewSlices) {
635     int OldSize = Slices.size();
636     Slices.append(NewSlices.begin(), NewSlices.end());
637     auto SliceI = Slices.begin() + OldSize;
638     llvm::sort(SliceI, Slices.end());
639     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
640   }
641 
642   // Forward declare the iterator and range accessor for walking the
643   // partitions.
644   class partition_iterator;
645   iterator_range<partition_iterator> partitions();
646 
647   /// Access the dead users for this alloca.
648   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
649 
650   /// Access Uses that should be dropped if the alloca is promotable.
651   ArrayRef<Use *> getDeadUsesIfPromotable() const {
652     return DeadUseIfPromotable;
653   }
654 
655   /// Access the dead operands referring to this alloca.
656   ///
657   /// These are operands which have cannot actually be used to refer to the
658   /// alloca as they are outside its range and the user doesn't correct for
659   /// that. These mostly consist of PHI node inputs and the like which we just
660   /// need to replace with undef.
661   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
662 
663 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
664   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
665   void printSlice(raw_ostream &OS, const_iterator I,
666                   StringRef Indent = "  ") const;
667   void printUse(raw_ostream &OS, const_iterator I,
668                 StringRef Indent = "  ") const;
669   void print(raw_ostream &OS) const;
670   void dump(const_iterator I) const;
671   void dump() const;
672 #endif
673 
674 private:
675   template <typename DerivedT, typename RetT = void> class BuilderBase;
676   class SliceBuilder;
677 
678   friend class AllocaSlices::SliceBuilder;
679 
680 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
681   /// Handle to alloca instruction to simplify method interfaces.
682   AllocaInst &AI;
683 #endif
684 
685   /// The instruction responsible for this alloca not having a known set
686   /// of slices.
687   ///
688   /// When an instruction (potentially) escapes the pointer to the alloca, we
689   /// store a pointer to that here and abort trying to form slices of the
690   /// alloca. This will be null if the alloca slices are analyzed successfully.
691   Instruction *PointerEscapingInstr;
692 
693   /// The slices of the alloca.
694   ///
695   /// We store a vector of the slices formed by uses of the alloca here. This
696   /// vector is sorted by increasing begin offset, and then the unsplittable
697   /// slices before the splittable ones. See the Slice inner class for more
698   /// details.
699   SmallVector<Slice, 8> Slices;
700 
701   /// Instructions which will become dead if we rewrite the alloca.
702   ///
703   /// Note that these are not separated by slice. This is because we expect an
704   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
705   /// all these instructions can simply be removed and replaced with poison as
706   /// they come from outside of the allocated space.
707   SmallVector<Instruction *, 8> DeadUsers;
708 
709   /// Uses which will become dead if can promote the alloca.
710   SmallVector<Use *, 8> DeadUseIfPromotable;
711 
712   /// Operands which will become dead if we rewrite the alloca.
713   ///
714   /// These are operands that in their particular use can be replaced with
715   /// poison when we rewrite the alloca. These show up in out-of-bounds inputs
716   /// to PHI nodes and the like. They aren't entirely dead (there might be
717   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
718   /// want to swap this particular input for poison to simplify the use lists of
719   /// the alloca.
720   SmallVector<Use *, 8> DeadOperands;
721 };
722 
723 /// A partition of the slices.
724 ///
725 /// An ephemeral representation for a range of slices which can be viewed as
726 /// a partition of the alloca. This range represents a span of the alloca's
727 /// memory which cannot be split, and provides access to all of the slices
728 /// overlapping some part of the partition.
729 ///
730 /// Objects of this type are produced by traversing the alloca's slices, but
731 /// are only ephemeral and not persistent.
732 class Partition {
733 private:
734   friend class AllocaSlices;
735   friend class AllocaSlices::partition_iterator;
736 
737   using iterator = AllocaSlices::iterator;
738 
739   /// The beginning and ending offsets of the alloca for this
740   /// partition.
741   uint64_t BeginOffset = 0, EndOffset = 0;
742 
743   /// The start and end iterators of this partition.
744   iterator SI, SJ;
745 
746   /// A collection of split slice tails overlapping the partition.
747   SmallVector<Slice *, 4> SplitTails;
748 
749   /// Raw constructor builds an empty partition starting and ending at
750   /// the given iterator.
751   Partition(iterator SI) : SI(SI), SJ(SI) {}
752 
753 public:
754   /// The start offset of this partition.
755   ///
756   /// All of the contained slices start at or after this offset.
757   uint64_t beginOffset() const { return BeginOffset; }
758 
759   /// The end offset of this partition.
760   ///
761   /// All of the contained slices end at or before this offset.
762   uint64_t endOffset() const { return EndOffset; }
763 
764   /// The size of the partition.
765   ///
766   /// Note that this can never be zero.
767   uint64_t size() const {
768     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
769     return EndOffset - BeginOffset;
770   }
771 
772   /// Test whether this partition contains no slices, and merely spans
773   /// a region occupied by split slices.
774   bool empty() const { return SI == SJ; }
775 
776   /// \name Iterate slices that start within the partition.
777   /// These may be splittable or unsplittable. They have a begin offset >= the
778   /// partition begin offset.
779   /// @{
780   // FIXME: We should probably define a "concat_iterator" helper and use that
781   // to stitch together pointee_iterators over the split tails and the
782   // contiguous iterators of the partition. That would give a much nicer
783   // interface here. We could then additionally expose filtered iterators for
784   // split, unsplit, and unsplittable splices based on the usage patterns.
785   iterator begin() const { return SI; }
786   iterator end() const { return SJ; }
787   /// @}
788 
789   /// Get the sequence of split slice tails.
790   ///
791   /// These tails are of slices which start before this partition but are
792   /// split and overlap into the partition. We accumulate these while forming
793   /// partitions.
794   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
795 };
796 
797 } // end anonymous namespace
798 
799 /// An iterator over partitions of the alloca's slices.
800 ///
801 /// This iterator implements the core algorithm for partitioning the alloca's
802 /// slices. It is a forward iterator as we don't support backtracking for
803 /// efficiency reasons, and re-use a single storage area to maintain the
804 /// current set of split slices.
805 ///
806 /// It is templated on the slice iterator type to use so that it can operate
807 /// with either const or non-const slice iterators.
808 class AllocaSlices::partition_iterator
809     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
810                                   Partition> {
811   friend class AllocaSlices;
812 
813   /// Most of the state for walking the partitions is held in a class
814   /// with a nice interface for examining them.
815   Partition P;
816 
817   /// We need to keep the end of the slices to know when to stop.
818   AllocaSlices::iterator SE;
819 
820   /// We also need to keep track of the maximum split end offset seen.
821   /// FIXME: Do we really?
822   uint64_t MaxSplitSliceEndOffset = 0;
823 
824   /// Sets the partition to be empty at given iterator, and sets the
825   /// end iterator.
826   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
827       : P(SI), SE(SE) {
828     // If not already at the end, advance our state to form the initial
829     // partition.
830     if (SI != SE)
831       advance();
832   }
833 
834   /// Advance the iterator to the next partition.
835   ///
836   /// Requires that the iterator not be at the end of the slices.
837   void advance() {
838     assert((P.SI != SE || !P.SplitTails.empty()) &&
839            "Cannot advance past the end of the slices!");
840 
841     // Clear out any split uses which have ended.
842     if (!P.SplitTails.empty()) {
843       if (P.EndOffset >= MaxSplitSliceEndOffset) {
844         // If we've finished all splits, this is easy.
845         P.SplitTails.clear();
846         MaxSplitSliceEndOffset = 0;
847       } else {
848         // Remove the uses which have ended in the prior partition. This
849         // cannot change the max split slice end because we just checked that
850         // the prior partition ended prior to that max.
851         llvm::erase_if(P.SplitTails,
852                        [&](Slice *S) { return S->endOffset() <= P.EndOffset; });
853         assert(llvm::any_of(P.SplitTails,
854                             [&](Slice *S) {
855                               return S->endOffset() == MaxSplitSliceEndOffset;
856                             }) &&
857                "Could not find the current max split slice offset!");
858         assert(llvm::all_of(P.SplitTails,
859                             [&](Slice *S) {
860                               return S->endOffset() <= MaxSplitSliceEndOffset;
861                             }) &&
862                "Max split slice end offset is not actually the max!");
863       }
864     }
865 
866     // If P.SI is already at the end, then we've cleared the split tail and
867     // now have an end iterator.
868     if (P.SI == SE) {
869       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
870       return;
871     }
872 
873     // If we had a non-empty partition previously, set up the state for
874     // subsequent partitions.
875     if (P.SI != P.SJ) {
876       // Accumulate all the splittable slices which started in the old
877       // partition into the split list.
878       for (Slice &S : P)
879         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
880           P.SplitTails.push_back(&S);
881           MaxSplitSliceEndOffset =
882               std::max(S.endOffset(), MaxSplitSliceEndOffset);
883         }
884 
885       // Start from the end of the previous partition.
886       P.SI = P.SJ;
887 
888       // If P.SI is now at the end, we at most have a tail of split slices.
889       if (P.SI == SE) {
890         P.BeginOffset = P.EndOffset;
891         P.EndOffset = MaxSplitSliceEndOffset;
892         return;
893       }
894 
895       // If the we have split slices and the next slice is after a gap and is
896       // not splittable immediately form an empty partition for the split
897       // slices up until the next slice begins.
898       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
899           !P.SI->isSplittable()) {
900         P.BeginOffset = P.EndOffset;
901         P.EndOffset = P.SI->beginOffset();
902         return;
903       }
904     }
905 
906     // OK, we need to consume new slices. Set the end offset based on the
907     // current slice, and step SJ past it. The beginning offset of the
908     // partition is the beginning offset of the next slice unless we have
909     // pre-existing split slices that are continuing, in which case we begin
910     // at the prior end offset.
911     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
912     P.EndOffset = P.SI->endOffset();
913     ++P.SJ;
914 
915     // There are two strategies to form a partition based on whether the
916     // partition starts with an unsplittable slice or a splittable slice.
917     if (!P.SI->isSplittable()) {
918       // When we're forming an unsplittable region, it must always start at
919       // the first slice and will extend through its end.
920       assert(P.BeginOffset == P.SI->beginOffset());
921 
922       // Form a partition including all of the overlapping slices with this
923       // unsplittable slice.
924       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
925         if (!P.SJ->isSplittable())
926           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
927         ++P.SJ;
928       }
929 
930       // We have a partition across a set of overlapping unsplittable
931       // partitions.
932       return;
933     }
934 
935     // If we're starting with a splittable slice, then we need to form
936     // a synthetic partition spanning it and any other overlapping splittable
937     // splices.
938     assert(P.SI->isSplittable() && "Forming a splittable partition!");
939 
940     // Collect all of the overlapping splittable slices.
941     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
942            P.SJ->isSplittable()) {
943       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
944       ++P.SJ;
945     }
946 
947     // Back upiP.EndOffset if we ended the span early when encountering an
948     // unsplittable slice. This synthesizes the early end offset of
949     // a partition spanning only splittable slices.
950     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
951       assert(!P.SJ->isSplittable());
952       P.EndOffset = P.SJ->beginOffset();
953     }
954   }
955 
956 public:
957   bool operator==(const partition_iterator &RHS) const {
958     assert(SE == RHS.SE &&
959            "End iterators don't match between compared partition iterators!");
960 
961     // The observed positions of partitions is marked by the P.SI iterator and
962     // the emptiness of the split slices. The latter is only relevant when
963     // P.SI == SE, as the end iterator will additionally have an empty split
964     // slices list, but the prior may have the same P.SI and a tail of split
965     // slices.
966     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
967       assert(P.SJ == RHS.P.SJ &&
968              "Same set of slices formed two different sized partitions!");
969       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
970              "Same slice position with differently sized non-empty split "
971              "slice tails!");
972       return true;
973     }
974     return false;
975   }
976 
977   partition_iterator &operator++() {
978     advance();
979     return *this;
980   }
981 
982   Partition &operator*() { return P; }
983 };
984 
985 /// A forward range over the partitions of the alloca's slices.
986 ///
987 /// This accesses an iterator range over the partitions of the alloca's
988 /// slices. It computes these partitions on the fly based on the overlapping
989 /// offsets of the slices and the ability to split them. It will visit "empty"
990 /// partitions to cover regions of the alloca only accessed via split
991 /// slices.
992 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
993   return make_range(partition_iterator(begin(), end()),
994                     partition_iterator(end(), end()));
995 }
996 
997 static Value *foldSelectInst(SelectInst &SI) {
998   // If the condition being selected on is a constant or the same value is
999   // being selected between, fold the select. Yes this does (rarely) happen
1000   // early on.
1001   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
1002     return SI.getOperand(1 + CI->isZero());
1003   if (SI.getOperand(1) == SI.getOperand(2))
1004     return SI.getOperand(1);
1005 
1006   return nullptr;
1007 }
1008 
1009 /// A helper that folds a PHI node or a select.
1010 static Value *foldPHINodeOrSelectInst(Instruction &I) {
1011   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
1012     // If PN merges together the same value, return that value.
1013     return PN->hasConstantValue();
1014   }
1015   return foldSelectInst(cast<SelectInst>(I));
1016 }
1017 
1018 /// Builder for the alloca slices.
1019 ///
1020 /// This class builds a set of alloca slices by recursively visiting the uses
1021 /// of an alloca and making a slice for each load and store at each offset.
1022 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
1023   friend class PtrUseVisitor<SliceBuilder>;
1024   friend class InstVisitor<SliceBuilder>;
1025 
1026   using Base = PtrUseVisitor<SliceBuilder>;
1027 
1028   const uint64_t AllocSize;
1029   AllocaSlices &AS;
1030 
1031   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
1032   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
1033 
1034   /// Set to de-duplicate dead instructions found in the use walk.
1035   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
1036 
1037 public:
1038   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
1039       : PtrUseVisitor<SliceBuilder>(DL),
1040         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue()),
1041         AS(AS) {}
1042 
1043 private:
1044   void markAsDead(Instruction &I) {
1045     if (VisitedDeadInsts.insert(&I).second)
1046       AS.DeadUsers.push_back(&I);
1047   }
1048 
1049   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
1050                  bool IsSplittable = false) {
1051     // Completely skip uses which have a zero size or start either before or
1052     // past the end of the allocation.
1053     if (Size == 0 || Offset.uge(AllocSize)) {
1054       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
1055                         << Offset
1056                         << " which has zero size or starts outside of the "
1057                         << AllocSize << " byte alloca:\n"
1058                         << "    alloca: " << AS.AI << "\n"
1059                         << "       use: " << I << "\n");
1060       return markAsDead(I);
1061     }
1062 
1063     uint64_t BeginOffset = Offset.getZExtValue();
1064     uint64_t EndOffset = BeginOffset + Size;
1065 
1066     // Clamp the end offset to the end of the allocation. Note that this is
1067     // formulated to handle even the case where "BeginOffset + Size" overflows.
1068     // This may appear superficially to be something we could ignore entirely,
1069     // but that is not so! There may be widened loads or PHI-node uses where
1070     // some instructions are dead but not others. We can't completely ignore
1071     // them, and so have to record at least the information here.
1072     assert(AllocSize >= BeginOffset); // Established above.
1073     if (Size > AllocSize - BeginOffset) {
1074       LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
1075                         << Offset << " to remain within the " << AllocSize
1076                         << " byte alloca:\n"
1077                         << "    alloca: " << AS.AI << "\n"
1078                         << "       use: " << I << "\n");
1079       EndOffset = AllocSize;
1080     }
1081 
1082     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
1083   }
1084 
1085   void visitBitCastInst(BitCastInst &BC) {
1086     if (BC.use_empty())
1087       return markAsDead(BC);
1088 
1089     return Base::visitBitCastInst(BC);
1090   }
1091 
1092   void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
1093     if (ASC.use_empty())
1094       return markAsDead(ASC);
1095 
1096     return Base::visitAddrSpaceCastInst(ASC);
1097   }
1098 
1099   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1100     if (GEPI.use_empty())
1101       return markAsDead(GEPI);
1102 
1103     if (SROAStrictInbounds && GEPI.isInBounds()) {
1104       // FIXME: This is a manually un-factored variant of the basic code inside
1105       // of GEPs with checking of the inbounds invariant specified in the
1106       // langref in a very strict sense. If we ever want to enable
1107       // SROAStrictInbounds, this code should be factored cleanly into
1108       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
1109       // by writing out the code here where we have the underlying allocation
1110       // size readily available.
1111       APInt GEPOffset = Offset;
1112       const DataLayout &DL = GEPI.getModule()->getDataLayout();
1113       for (gep_type_iterator GTI = gep_type_begin(GEPI),
1114                              GTE = gep_type_end(GEPI);
1115            GTI != GTE; ++GTI) {
1116         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1117         if (!OpC)
1118           break;
1119 
1120         // Handle a struct index, which adds its field offset to the pointer.
1121         if (StructType *STy = GTI.getStructTypeOrNull()) {
1122           unsigned ElementIdx = OpC->getZExtValue();
1123           const StructLayout *SL = DL.getStructLayout(STy);
1124           GEPOffset +=
1125               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
1126         } else {
1127           // For array or vector indices, scale the index by the size of the
1128           // type.
1129           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
1130           GEPOffset += Index * APInt(Offset.getBitWidth(),
1131                                      GTI.getSequentialElementStride(DL));
1132         }
1133 
1134         // If this index has computed an intermediate pointer which is not
1135         // inbounds, then the result of the GEP is a poison value and we can
1136         // delete it and all uses.
1137         if (GEPOffset.ugt(AllocSize))
1138           return markAsDead(GEPI);
1139       }
1140     }
1141 
1142     return Base::visitGetElementPtrInst(GEPI);
1143   }
1144 
1145   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
1146                          uint64_t Size, bool IsVolatile) {
1147     // We allow splitting of non-volatile loads and stores where the type is an
1148     // integer type. These may be used to implement 'memcpy' or other "transfer
1149     // of bits" patterns.
1150     bool IsSplittable =
1151         Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty);
1152 
1153     insertUse(I, Offset, Size, IsSplittable);
1154   }
1155 
1156   void visitLoadInst(LoadInst &LI) {
1157     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
1158            "All simple FCA loads should have been pre-split");
1159 
1160     if (!IsOffsetKnown)
1161       return PI.setAborted(&LI);
1162 
1163     TypeSize Size = DL.getTypeStoreSize(LI.getType());
1164     if (Size.isScalable())
1165       return PI.setAborted(&LI);
1166 
1167     return handleLoadOrStore(LI.getType(), LI, Offset, Size.getFixedValue(),
1168                              LI.isVolatile());
1169   }
1170 
1171   void visitStoreInst(StoreInst &SI) {
1172     Value *ValOp = SI.getValueOperand();
1173     if (ValOp == *U)
1174       return PI.setEscapedAndAborted(&SI);
1175     if (!IsOffsetKnown)
1176       return PI.setAborted(&SI);
1177 
1178     TypeSize StoreSize = DL.getTypeStoreSize(ValOp->getType());
1179     if (StoreSize.isScalable())
1180       return PI.setAborted(&SI);
1181 
1182     uint64_t Size = StoreSize.getFixedValue();
1183 
1184     // If this memory access can be shown to *statically* extend outside the
1185     // bounds of the allocation, it's behavior is undefined, so simply
1186     // ignore it. Note that this is more strict than the generic clamping
1187     // behavior of insertUse. We also try to handle cases which might run the
1188     // risk of overflow.
1189     // FIXME: We should instead consider the pointer to have escaped if this
1190     // function is being instrumented for addressing bugs or race conditions.
1191     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
1192       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
1193                         << Offset << " which extends past the end of the "
1194                         << AllocSize << " byte alloca:\n"
1195                         << "    alloca: " << AS.AI << "\n"
1196                         << "       use: " << SI << "\n");
1197       return markAsDead(SI);
1198     }
1199 
1200     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
1201            "All simple FCA stores should have been pre-split");
1202     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
1203   }
1204 
1205   void visitMemSetInst(MemSetInst &II) {
1206     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
1207     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
1208     if ((Length && Length->getValue() == 0) ||
1209         (IsOffsetKnown && Offset.uge(AllocSize)))
1210       // Zero-length mem transfer intrinsics can be ignored entirely.
1211       return markAsDead(II);
1212 
1213     if (!IsOffsetKnown)
1214       return PI.setAborted(&II);
1215 
1216     insertUse(II, Offset, Length ? Length->getLimitedValue()
1217                                  : AllocSize - Offset.getLimitedValue(),
1218               (bool)Length);
1219   }
1220 
1221   void visitMemTransferInst(MemTransferInst &II) {
1222     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
1223     if (Length && Length->getValue() == 0)
1224       // Zero-length mem transfer intrinsics can be ignored entirely.
1225       return markAsDead(II);
1226 
1227     // Because we can visit these intrinsics twice, also check to see if the
1228     // first time marked this instruction as dead. If so, skip it.
1229     if (VisitedDeadInsts.count(&II))
1230       return;
1231 
1232     if (!IsOffsetKnown)
1233       return PI.setAborted(&II);
1234 
1235     // This side of the transfer is completely out-of-bounds, and so we can
1236     // nuke the entire transfer. However, we also need to nuke the other side
1237     // if already added to our partitions.
1238     // FIXME: Yet another place we really should bypass this when
1239     // instrumenting for ASan.
1240     if (Offset.uge(AllocSize)) {
1241       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
1242           MemTransferSliceMap.find(&II);
1243       if (MTPI != MemTransferSliceMap.end())
1244         AS.Slices[MTPI->second].kill();
1245       return markAsDead(II);
1246     }
1247 
1248     uint64_t RawOffset = Offset.getLimitedValue();
1249     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
1250 
1251     // Check for the special case where the same exact value is used for both
1252     // source and dest.
1253     if (*U == II.getRawDest() && *U == II.getRawSource()) {
1254       // For non-volatile transfers this is a no-op.
1255       if (!II.isVolatile())
1256         return markAsDead(II);
1257 
1258       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
1259     }
1260 
1261     // If we have seen both source and destination for a mem transfer, then
1262     // they both point to the same alloca.
1263     bool Inserted;
1264     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
1265     std::tie(MTPI, Inserted) =
1266         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
1267     unsigned PrevIdx = MTPI->second;
1268     if (!Inserted) {
1269       Slice &PrevP = AS.Slices[PrevIdx];
1270 
1271       // Check if the begin offsets match and this is a non-volatile transfer.
1272       // In that case, we can completely elide the transfer.
1273       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
1274         PrevP.kill();
1275         return markAsDead(II);
1276       }
1277 
1278       // Otherwise we have an offset transfer within the same alloca. We can't
1279       // split those.
1280       PrevP.makeUnsplittable();
1281     }
1282 
1283     // Insert the use now that we've fixed up the splittable nature.
1284     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
1285 
1286     // Check that we ended up with a valid index in the map.
1287     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
1288            "Map index doesn't point back to a slice with this user.");
1289   }
1290 
1291   // Disable SRoA for any intrinsics except for lifetime invariants and
1292   // invariant group.
1293   // FIXME: What about debug intrinsics? This matches old behavior, but
1294   // doesn't make sense.
1295   void visitIntrinsicInst(IntrinsicInst &II) {
1296     if (II.isDroppable()) {
1297       AS.DeadUseIfPromotable.push_back(U);
1298       return;
1299     }
1300 
1301     if (!IsOffsetKnown)
1302       return PI.setAborted(&II);
1303 
1304     if (II.isLifetimeStartOrEnd()) {
1305       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
1306       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
1307                                Length->getLimitedValue());
1308       insertUse(II, Offset, Size, true);
1309       return;
1310     }
1311 
1312     if (II.isLaunderOrStripInvariantGroup()) {
1313       insertUse(II, Offset, AllocSize, true);
1314       enqueueUsers(II);
1315       return;
1316     }
1317 
1318     Base::visitIntrinsicInst(II);
1319   }
1320 
1321   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
1322     // We consider any PHI or select that results in a direct load or store of
1323     // the same offset to be a viable use for slicing purposes. These uses
1324     // are considered unsplittable and the size is the maximum loaded or stored
1325     // size.
1326     SmallPtrSet<Instruction *, 4> Visited;
1327     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
1328     Visited.insert(Root);
1329     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
1330     const DataLayout &DL = Root->getModule()->getDataLayout();
1331     // If there are no loads or stores, the access is dead. We mark that as
1332     // a size zero access.
1333     Size = 0;
1334     do {
1335       Instruction *I, *UsedI;
1336       std::tie(UsedI, I) = Uses.pop_back_val();
1337 
1338       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1339         TypeSize LoadSize = DL.getTypeStoreSize(LI->getType());
1340         if (LoadSize.isScalable()) {
1341           PI.setAborted(LI);
1342           return nullptr;
1343         }
1344         Size = std::max(Size, LoadSize.getFixedValue());
1345         continue;
1346       }
1347       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1348         Value *Op = SI->getOperand(0);
1349         if (Op == UsedI)
1350           return SI;
1351         TypeSize StoreSize = DL.getTypeStoreSize(Op->getType());
1352         if (StoreSize.isScalable()) {
1353           PI.setAborted(SI);
1354           return nullptr;
1355         }
1356         Size = std::max(Size, StoreSize.getFixedValue());
1357         continue;
1358       }
1359 
1360       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
1361         if (!GEP->hasAllZeroIndices())
1362           return GEP;
1363       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
1364                  !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
1365         return I;
1366       }
1367 
1368       for (User *U : I->users())
1369         if (Visited.insert(cast<Instruction>(U)).second)
1370           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
1371     } while (!Uses.empty());
1372 
1373     return nullptr;
1374   }
1375 
1376   void visitPHINodeOrSelectInst(Instruction &I) {
1377     assert(isa<PHINode>(I) || isa<SelectInst>(I));
1378     if (I.use_empty())
1379       return markAsDead(I);
1380 
1381     // If this is a PHI node before a catchswitch, we cannot insert any non-PHI
1382     // instructions in this BB, which may be required during rewriting. Bail out
1383     // on these cases.
1384     if (isa<PHINode>(I) &&
1385         I.getParent()->getFirstInsertionPt() == I.getParent()->end())
1386       return PI.setAborted(&I);
1387 
1388     // TODO: We could use simplifyInstruction here to fold PHINodes and
1389     // SelectInsts. However, doing so requires to change the current
1390     // dead-operand-tracking mechanism. For instance, suppose neither loading
1391     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1392     // trap either.  However, if we simply replace %U with undef using the
1393     // current dead-operand-tracking mechanism, "load (select undef, undef,
1394     // %other)" may trap because the select may return the first operand
1395     // "undef".
1396     if (Value *Result = foldPHINodeOrSelectInst(I)) {
1397       if (Result == *U)
1398         // If the result of the constant fold will be the pointer, recurse
1399         // through the PHI/select as if we had RAUW'ed it.
1400         enqueueUsers(I);
1401       else
1402         // Otherwise the operand to the PHI/select is dead, and we can replace
1403         // it with poison.
1404         AS.DeadOperands.push_back(U);
1405 
1406       return;
1407     }
1408 
1409     if (!IsOffsetKnown)
1410       return PI.setAborted(&I);
1411 
1412     // See if we already have computed info on this node.
1413     uint64_t &Size = PHIOrSelectSizes[&I];
1414     if (!Size) {
1415       // This is a new PHI/Select, check for an unsafe use of it.
1416       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1417         return PI.setAborted(UnsafeI);
1418     }
1419 
1420     // For PHI and select operands outside the alloca, we can't nuke the entire
1421     // phi or select -- the other side might still be relevant, so we special
1422     // case them here and use a separate structure to track the operands
1423     // themselves which should be replaced with poison.
1424     // FIXME: This should instead be escaped in the event we're instrumenting
1425     // for address sanitization.
1426     if (Offset.uge(AllocSize)) {
1427       AS.DeadOperands.push_back(U);
1428       return;
1429     }
1430 
1431     insertUse(I, Offset, Size);
1432   }
1433 
1434   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1435 
1436   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1437 
1438   /// Disable SROA entirely if there are unhandled users of the alloca.
1439   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1440 };
1441 
1442 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1443     :
1444 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1445       AI(AI),
1446 #endif
1447       PointerEscapingInstr(nullptr) {
1448   SliceBuilder PB(DL, AI, *this);
1449   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1450   if (PtrI.isEscaped() || PtrI.isAborted()) {
1451     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1452     // possibly by just storing the PtrInfo in the AllocaSlices.
1453     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1454                                                   : PtrI.getAbortingInst();
1455     assert(PointerEscapingInstr && "Did not track a bad instruction");
1456     return;
1457   }
1458 
1459   llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); });
1460 
1461   // Sort the uses. This arranges for the offsets to be in ascending order,
1462   // and the sizes to be in descending order.
1463   llvm::stable_sort(Slices);
1464 }
1465 
1466 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1467 
1468 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1469                          StringRef Indent) const {
1470   printSlice(OS, I, Indent);
1471   OS << "\n";
1472   printUse(OS, I, Indent);
1473 }
1474 
1475 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1476                               StringRef Indent) const {
1477   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1478      << " slice #" << (I - begin())
1479      << (I->isSplittable() ? " (splittable)" : "");
1480 }
1481 
1482 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1483                             StringRef Indent) const {
1484   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1485 }
1486 
1487 void AllocaSlices::print(raw_ostream &OS) const {
1488   if (PointerEscapingInstr) {
1489     OS << "Can't analyze slices for alloca: " << AI << "\n"
1490        << "  A pointer to this alloca escaped by:\n"
1491        << "  " << *PointerEscapingInstr << "\n";
1492     return;
1493   }
1494 
1495   OS << "Slices of alloca: " << AI << "\n";
1496   for (const_iterator I = begin(), E = end(); I != E; ++I)
1497     print(OS, I);
1498 }
1499 
1500 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1501   print(dbgs(), I);
1502 }
1503 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1504 
1505 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1506 
1507 /// Walk the range of a partitioning looking for a common type to cover this
1508 /// sequence of slices.
1509 static std::pair<Type *, IntegerType *>
1510 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E,
1511                uint64_t EndOffset) {
1512   Type *Ty = nullptr;
1513   bool TyIsCommon = true;
1514   IntegerType *ITy = nullptr;
1515 
1516   // Note that we need to look at *every* alloca slice's Use to ensure we
1517   // always get consistent results regardless of the order of slices.
1518   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1519     Use *U = I->getUse();
1520     if (isa<IntrinsicInst>(*U->getUser()))
1521       continue;
1522     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1523       continue;
1524 
1525     Type *UserTy = nullptr;
1526     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1527       UserTy = LI->getType();
1528     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1529       UserTy = SI->getValueOperand()->getType();
1530     }
1531 
1532     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1533       // If the type is larger than the partition, skip it. We only encounter
1534       // this for split integer operations where we want to use the type of the
1535       // entity causing the split. Also skip if the type is not a byte width
1536       // multiple.
1537       if (UserITy->getBitWidth() % 8 != 0 ||
1538           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1539         continue;
1540 
1541       // Track the largest bitwidth integer type used in this way in case there
1542       // is no common type.
1543       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1544         ITy = UserITy;
1545     }
1546 
1547     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1548     // depend on types skipped above.
1549     if (!UserTy || (Ty && Ty != UserTy))
1550       TyIsCommon = false; // Give up on anything but an iN type.
1551     else
1552       Ty = UserTy;
1553   }
1554 
1555   return {TyIsCommon ? Ty : nullptr, ITy};
1556 }
1557 
1558 /// PHI instructions that use an alloca and are subsequently loaded can be
1559 /// rewritten to load both input pointers in the pred blocks and then PHI the
1560 /// results, allowing the load of the alloca to be promoted.
1561 /// From this:
1562 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1563 ///   %V = load i32* %P2
1564 /// to:
1565 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1566 ///   ...
1567 ///   %V2 = load i32* %Other
1568 ///   ...
1569 ///   %V = phi [i32 %V1, i32 %V2]
1570 ///
1571 /// We can do this to a select if its only uses are loads and if the operands
1572 /// to the select can be loaded unconditionally.
1573 ///
1574 /// FIXME: This should be hoisted into a generic utility, likely in
1575 /// Transforms/Util/Local.h
1576 static bool isSafePHIToSpeculate(PHINode &PN) {
1577   const DataLayout &DL = PN.getModule()->getDataLayout();
1578 
1579   // For now, we can only do this promotion if the load is in the same block
1580   // as the PHI, and if there are no stores between the phi and load.
1581   // TODO: Allow recursive phi users.
1582   // TODO: Allow stores.
1583   BasicBlock *BB = PN.getParent();
1584   Align MaxAlign;
1585   uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1586   Type *LoadType = nullptr;
1587   for (User *U : PN.users()) {
1588     LoadInst *LI = dyn_cast<LoadInst>(U);
1589     if (!LI || !LI->isSimple())
1590       return false;
1591 
1592     // For now we only allow loads in the same block as the PHI.  This is
1593     // a common case that happens when instcombine merges two loads through
1594     // a PHI.
1595     if (LI->getParent() != BB)
1596       return false;
1597 
1598     if (LoadType) {
1599       if (LoadType != LI->getType())
1600         return false;
1601     } else {
1602       LoadType = LI->getType();
1603     }
1604 
1605     // Ensure that there are no instructions between the PHI and the load that
1606     // could store.
1607     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1608       if (BBI->mayWriteToMemory())
1609         return false;
1610 
1611     MaxAlign = std::max(MaxAlign, LI->getAlign());
1612   }
1613 
1614   if (!LoadType)
1615     return false;
1616 
1617   APInt LoadSize =
1618       APInt(APWidth, DL.getTypeStoreSize(LoadType).getFixedValue());
1619 
1620   // We can only transform this if it is safe to push the loads into the
1621   // predecessor blocks. The only thing to watch out for is that we can't put
1622   // a possibly trapping load in the predecessor if it is a critical edge.
1623   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1624     Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1625     Value *InVal = PN.getIncomingValue(Idx);
1626 
1627     // If the value is produced by the terminator of the predecessor (an
1628     // invoke) or it has side-effects, there is no valid place to put a load
1629     // in the predecessor.
1630     if (TI == InVal || TI->mayHaveSideEffects())
1631       return false;
1632 
1633     // If the predecessor has a single successor, then the edge isn't
1634     // critical.
1635     if (TI->getNumSuccessors() == 1)
1636       continue;
1637 
1638     // If this pointer is always safe to load, or if we can prove that there
1639     // is already a load in the block, then we can move the load to the pred
1640     // block.
1641     if (isSafeToLoadUnconditionally(InVal, MaxAlign, LoadSize, DL, TI))
1642       continue;
1643 
1644     return false;
1645   }
1646 
1647   return true;
1648 }
1649 
1650 static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) {
1651   LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1652 
1653   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1654   Type *LoadTy = SomeLoad->getType();
1655   IRB.SetInsertPoint(&PN);
1656   PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1657                                  PN.getName() + ".sroa.speculated");
1658 
1659   // Get the AA tags and alignment to use from one of the loads. It does not
1660   // matter which one we get and if any differ.
1661   AAMDNodes AATags = SomeLoad->getAAMetadata();
1662   Align Alignment = SomeLoad->getAlign();
1663 
1664   // Rewrite all loads of the PN to use the new PHI.
1665   while (!PN.use_empty()) {
1666     LoadInst *LI = cast<LoadInst>(PN.user_back());
1667     LI->replaceAllUsesWith(NewPN);
1668     LI->eraseFromParent();
1669   }
1670 
1671   // Inject loads into all of the pred blocks.
1672   DenseMap<BasicBlock*, Value*> InjectedLoads;
1673   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1674     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1675     Value *InVal = PN.getIncomingValue(Idx);
1676 
1677     // A PHI node is allowed to have multiple (duplicated) entries for the same
1678     // basic block, as long as the value is the same. So if we already injected
1679     // a load in the predecessor, then we should reuse the same load for all
1680     // duplicated entries.
1681     if (Value* V = InjectedLoads.lookup(Pred)) {
1682       NewPN->addIncoming(V, Pred);
1683       continue;
1684     }
1685 
1686     Instruction *TI = Pred->getTerminator();
1687     IRB.SetInsertPoint(TI);
1688 
1689     LoadInst *Load = IRB.CreateAlignedLoad(
1690         LoadTy, InVal, Alignment,
1691         (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1692     ++NumLoadsSpeculated;
1693     if (AATags)
1694       Load->setAAMetadata(AATags);
1695     NewPN->addIncoming(Load, Pred);
1696     InjectedLoads[Pred] = Load;
1697   }
1698 
1699   LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1700   PN.eraseFromParent();
1701 }
1702 
1703 SelectHandSpeculativity &
1704 SelectHandSpeculativity::setAsSpeculatable(bool isTrueVal) {
1705   if (isTrueVal)
1706     Bitfield::set<SelectHandSpeculativity::TrueVal>(Storage, true);
1707   else
1708     Bitfield::set<SelectHandSpeculativity::FalseVal>(Storage, true);
1709   return *this;
1710 }
1711 
1712 bool SelectHandSpeculativity::isSpeculatable(bool isTrueVal) const {
1713   return isTrueVal ? Bitfield::get<SelectHandSpeculativity::TrueVal>(Storage)
1714                    : Bitfield::get<SelectHandSpeculativity::FalseVal>(Storage);
1715 }
1716 
1717 bool SelectHandSpeculativity::areAllSpeculatable() const {
1718   return isSpeculatable(/*isTrueVal=*/true) &&
1719          isSpeculatable(/*isTrueVal=*/false);
1720 }
1721 
1722 bool SelectHandSpeculativity::areAnySpeculatable() const {
1723   return isSpeculatable(/*isTrueVal=*/true) ||
1724          isSpeculatable(/*isTrueVal=*/false);
1725 }
1726 bool SelectHandSpeculativity::areNoneSpeculatable() const {
1727   return !areAnySpeculatable();
1728 }
1729 
1730 static SelectHandSpeculativity
1731 isSafeLoadOfSelectToSpeculate(LoadInst &LI, SelectInst &SI, bool PreserveCFG) {
1732   assert(LI.isSimple() && "Only for simple loads");
1733   SelectHandSpeculativity Spec;
1734 
1735   const DataLayout &DL = SI.getModule()->getDataLayout();
1736   for (Value *Value : {SI.getTrueValue(), SI.getFalseValue()})
1737     if (isSafeToLoadUnconditionally(Value, LI.getType(), LI.getAlign(), DL,
1738                                     &LI))
1739       Spec.setAsSpeculatable(/*isTrueVal=*/Value == SI.getTrueValue());
1740     else if (PreserveCFG)
1741       return Spec;
1742 
1743   return Spec;
1744 }
1745 
1746 std::optional<RewriteableMemOps>
1747 SROA::isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG) {
1748   RewriteableMemOps Ops;
1749 
1750   for (User *U : SI.users()) {
1751     if (auto *BC = dyn_cast<BitCastInst>(U); BC && BC->hasOneUse())
1752       U = *BC->user_begin();
1753 
1754     if (auto *Store = dyn_cast<StoreInst>(U)) {
1755       // Note that atomic stores can be transformed; atomic semantics do not
1756       // have any meaning for a local alloca. Stores are not speculatable,
1757       // however, so if we can't turn it into a predicated store, we are done.
1758       if (Store->isVolatile() || PreserveCFG)
1759         return {}; // Give up on this `select`.
1760       Ops.emplace_back(Store);
1761       continue;
1762     }
1763 
1764     auto *LI = dyn_cast<LoadInst>(U);
1765 
1766     // Note that atomic loads can be transformed;
1767     // atomic semantics do not have any meaning for a local alloca.
1768     if (!LI || LI->isVolatile())
1769       return {}; // Give up on this `select`.
1770 
1771     PossiblySpeculatableLoad Load(LI);
1772     if (!LI->isSimple()) {
1773       // If the `load` is not simple, we can't speculatively execute it,
1774       // but we could handle this via a CFG modification. But can we?
1775       if (PreserveCFG)
1776         return {}; // Give up on this `select`.
1777       Ops.emplace_back(Load);
1778       continue;
1779     }
1780 
1781     SelectHandSpeculativity Spec =
1782         isSafeLoadOfSelectToSpeculate(*LI, SI, PreserveCFG);
1783     if (PreserveCFG && !Spec.areAllSpeculatable())
1784       return {}; // Give up on this `select`.
1785 
1786     Load.setInt(Spec);
1787     Ops.emplace_back(Load);
1788   }
1789 
1790   return Ops;
1791 }
1792 
1793 static void speculateSelectInstLoads(SelectInst &SI, LoadInst &LI,
1794                                      IRBuilderTy &IRB) {
1795   LLVM_DEBUG(dbgs() << "    original load: " << SI << "\n");
1796 
1797   Value *TV = SI.getTrueValue();
1798   Value *FV = SI.getFalseValue();
1799   // Replace the given load of the select with a select of two loads.
1800 
1801   assert(LI.isSimple() && "We only speculate simple loads");
1802 
1803   IRB.SetInsertPoint(&LI);
1804 
1805   LoadInst *TL =
1806       IRB.CreateAlignedLoad(LI.getType(), TV, LI.getAlign(),
1807                             LI.getName() + ".sroa.speculate.load.true");
1808   LoadInst *FL =
1809       IRB.CreateAlignedLoad(LI.getType(), FV, LI.getAlign(),
1810                             LI.getName() + ".sroa.speculate.load.false");
1811   NumLoadsSpeculated += 2;
1812 
1813   // Transfer alignment and AA info if present.
1814   TL->setAlignment(LI.getAlign());
1815   FL->setAlignment(LI.getAlign());
1816 
1817   AAMDNodes Tags = LI.getAAMetadata();
1818   if (Tags) {
1819     TL->setAAMetadata(Tags);
1820     FL->setAAMetadata(Tags);
1821   }
1822 
1823   Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1824                               LI.getName() + ".sroa.speculated");
1825 
1826   LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1827   LI.replaceAllUsesWith(V);
1828 }
1829 
1830 template <typename T>
1831 static void rewriteMemOpOfSelect(SelectInst &SI, T &I,
1832                                  SelectHandSpeculativity Spec,
1833                                  DomTreeUpdater &DTU) {
1834   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Only for load and store!");
1835   LLVM_DEBUG(dbgs() << "    original mem op: " << I << "\n");
1836   BasicBlock *Head = I.getParent();
1837   Instruction *ThenTerm = nullptr;
1838   Instruction *ElseTerm = nullptr;
1839   if (Spec.areNoneSpeculatable())
1840     SplitBlockAndInsertIfThenElse(SI.getCondition(), &I, &ThenTerm, &ElseTerm,
1841                                   SI.getMetadata(LLVMContext::MD_prof), &DTU);
1842   else {
1843     SplitBlockAndInsertIfThen(SI.getCondition(), &I, /*Unreachable=*/false,
1844                               SI.getMetadata(LLVMContext::MD_prof), &DTU,
1845                               /*LI=*/nullptr, /*ThenBlock=*/nullptr);
1846     if (Spec.isSpeculatable(/*isTrueVal=*/true))
1847       cast<BranchInst>(Head->getTerminator())->swapSuccessors();
1848   }
1849   auto *HeadBI = cast<BranchInst>(Head->getTerminator());
1850   Spec = {}; // Do not use `Spec` beyond this point.
1851   BasicBlock *Tail = I.getParent();
1852   Tail->setName(Head->getName() + ".cont");
1853   PHINode *PN;
1854   if (isa<LoadInst>(I))
1855     PN = PHINode::Create(I.getType(), 2, "", &I);
1856   for (BasicBlock *SuccBB : successors(Head)) {
1857     bool IsThen = SuccBB == HeadBI->getSuccessor(0);
1858     int SuccIdx = IsThen ? 0 : 1;
1859     auto *NewMemOpBB = SuccBB == Tail ? Head : SuccBB;
1860     auto &CondMemOp = cast<T>(*I.clone());
1861     if (NewMemOpBB != Head) {
1862       NewMemOpBB->setName(Head->getName() + (IsThen ? ".then" : ".else"));
1863       if (isa<LoadInst>(I))
1864         ++NumLoadsPredicated;
1865       else
1866         ++NumStoresPredicated;
1867     } else {
1868       CondMemOp.dropUBImplyingAttrsAndMetadata();
1869       ++NumLoadsSpeculated;
1870     }
1871     CondMemOp.insertBefore(NewMemOpBB->getTerminator());
1872     Value *Ptr = SI.getOperand(1 + SuccIdx);
1873     CondMemOp.setOperand(I.getPointerOperandIndex(), Ptr);
1874     if (isa<LoadInst>(I)) {
1875       CondMemOp.setName(I.getName() + (IsThen ? ".then" : ".else") + ".val");
1876       PN->addIncoming(&CondMemOp, NewMemOpBB);
1877     } else
1878       LLVM_DEBUG(dbgs() << "                 to: " << CondMemOp << "\n");
1879   }
1880   if (isa<LoadInst>(I)) {
1881     PN->takeName(&I);
1882     LLVM_DEBUG(dbgs() << "          to: " << *PN << "\n");
1883     I.replaceAllUsesWith(PN);
1884   }
1885 }
1886 
1887 static void rewriteMemOpOfSelect(SelectInst &SelInst, Instruction &I,
1888                                  SelectHandSpeculativity Spec,
1889                                  DomTreeUpdater &DTU) {
1890   if (auto *LI = dyn_cast<LoadInst>(&I))
1891     rewriteMemOpOfSelect(SelInst, *LI, Spec, DTU);
1892   else if (auto *SI = dyn_cast<StoreInst>(&I))
1893     rewriteMemOpOfSelect(SelInst, *SI, Spec, DTU);
1894   else
1895     llvm_unreachable_internal("Only for load and store.");
1896 }
1897 
1898 static bool rewriteSelectInstMemOps(SelectInst &SI,
1899                                     const RewriteableMemOps &Ops,
1900                                     IRBuilderTy &IRB, DomTreeUpdater *DTU) {
1901   bool CFGChanged = false;
1902   LLVM_DEBUG(dbgs() << "    original select: " << SI << "\n");
1903 
1904   for (const RewriteableMemOp &Op : Ops) {
1905     SelectHandSpeculativity Spec;
1906     Instruction *I;
1907     if (auto *const *US = std::get_if<UnspeculatableStore>(&Op)) {
1908       I = *US;
1909     } else {
1910       auto PSL = std::get<PossiblySpeculatableLoad>(Op);
1911       I = PSL.getPointer();
1912       Spec = PSL.getInt();
1913     }
1914     if (Spec.areAllSpeculatable()) {
1915       speculateSelectInstLoads(SI, cast<LoadInst>(*I), IRB);
1916     } else {
1917       assert(DTU && "Should not get here when not allowed to modify the CFG!");
1918       rewriteMemOpOfSelect(SI, *I, Spec, *DTU);
1919       CFGChanged = true;
1920     }
1921     I->eraseFromParent();
1922   }
1923 
1924   for (User *U : make_early_inc_range(SI.users()))
1925     cast<BitCastInst>(U)->eraseFromParent();
1926   SI.eraseFromParent();
1927   return CFGChanged;
1928 }
1929 
1930 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1931 /// resulting pointer has PointerTy.
1932 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1933                              APInt Offset, Type *PointerTy,
1934                              const Twine &NamePrefix) {
1935   if (Offset != 0)
1936     Ptr = IRB.CreateInBoundsPtrAdd(Ptr, IRB.getInt(Offset),
1937                                    NamePrefix + "sroa_idx");
1938   return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy,
1939                                                  NamePrefix + "sroa_cast");
1940 }
1941 
1942 /// Compute the adjusted alignment for a load or store from an offset.
1943 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
1944   return commonAlignment(getLoadStoreAlignment(I), Offset);
1945 }
1946 
1947 /// Test whether we can convert a value from the old to the new type.
1948 ///
1949 /// This predicate should be used to guard calls to convertValue in order to
1950 /// ensure that we only try to convert viable values. The strategy is that we
1951 /// will peel off single element struct and array wrappings to get to an
1952 /// underlying value, and convert that value.
1953 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1954   if (OldTy == NewTy)
1955     return true;
1956 
1957   // For integer types, we can't handle any bit-width differences. This would
1958   // break both vector conversions with extension and introduce endianness
1959   // issues when in conjunction with loads and stores.
1960   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1961     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1962                cast<IntegerType>(NewTy)->getBitWidth() &&
1963            "We can't have the same bitwidth for different int types");
1964     return false;
1965   }
1966 
1967   if (DL.getTypeSizeInBits(NewTy).getFixedValue() !=
1968       DL.getTypeSizeInBits(OldTy).getFixedValue())
1969     return false;
1970   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1971     return false;
1972 
1973   // We can convert pointers to integers and vice-versa. Same for vectors
1974   // of pointers and integers.
1975   OldTy = OldTy->getScalarType();
1976   NewTy = NewTy->getScalarType();
1977   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1978     if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1979       unsigned OldAS = OldTy->getPointerAddressSpace();
1980       unsigned NewAS = NewTy->getPointerAddressSpace();
1981       // Convert pointers if they are pointers from the same address space or
1982       // different integral (not non-integral) address spaces with the same
1983       // pointer size.
1984       return OldAS == NewAS ||
1985              (!DL.isNonIntegralAddressSpace(OldAS) &&
1986               !DL.isNonIntegralAddressSpace(NewAS) &&
1987               DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1988     }
1989 
1990     // We can convert integers to integral pointers, but not to non-integral
1991     // pointers.
1992     if (OldTy->isIntegerTy())
1993       return !DL.isNonIntegralPointerType(NewTy);
1994 
1995     // We can convert integral pointers to integers, but non-integral pointers
1996     // need to remain pointers.
1997     if (!DL.isNonIntegralPointerType(OldTy))
1998       return NewTy->isIntegerTy();
1999 
2000     return false;
2001   }
2002 
2003   if (OldTy->isTargetExtTy() || NewTy->isTargetExtTy())
2004     return false;
2005 
2006   return true;
2007 }
2008 
2009 /// Generic routine to convert an SSA value to a value of a different
2010 /// type.
2011 ///
2012 /// This will try various different casting techniques, such as bitcasts,
2013 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
2014 /// two types for viability with this routine.
2015 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2016                            Type *NewTy) {
2017   Type *OldTy = V->getType();
2018   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
2019 
2020   if (OldTy == NewTy)
2021     return V;
2022 
2023   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
2024          "Integer types must be the exact same to convert.");
2025 
2026   // See if we need inttoptr for this type pair. May require additional bitcast.
2027   if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
2028     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
2029     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
2030     // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
2031     // Directly handle i64 to i8*
2032     return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
2033                               NewTy);
2034   }
2035 
2036   // See if we need ptrtoint for this type pair. May require additional bitcast.
2037   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
2038     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
2039     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
2040     // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
2041     // Expand i8* to i64 --> i8* to i64 to i64
2042     return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
2043                              NewTy);
2044   }
2045 
2046   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
2047     unsigned OldAS = OldTy->getPointerAddressSpace();
2048     unsigned NewAS = NewTy->getPointerAddressSpace();
2049     // To convert pointers with different address spaces (they are already
2050     // checked convertible, i.e. they have the same pointer size), so far we
2051     // cannot use `bitcast` (which has restrict on the same address space) or
2052     // `addrspacecast` (which is not always no-op casting). Instead, use a pair
2053     // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
2054     // size.
2055     if (OldAS != NewAS) {
2056       assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
2057       return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
2058                                 NewTy);
2059     }
2060   }
2061 
2062   return IRB.CreateBitCast(V, NewTy);
2063 }
2064 
2065 /// Test whether the given slice use can be promoted to a vector.
2066 ///
2067 /// This function is called to test each entry in a partition which is slated
2068 /// for a single slice.
2069 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
2070                                             VectorType *Ty,
2071                                             uint64_t ElementSize,
2072                                             const DataLayout &DL) {
2073   // First validate the slice offsets.
2074   uint64_t BeginOffset =
2075       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
2076   uint64_t BeginIndex = BeginOffset / ElementSize;
2077   if (BeginIndex * ElementSize != BeginOffset ||
2078       BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements())
2079     return false;
2080   uint64_t EndOffset =
2081       std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
2082   uint64_t EndIndex = EndOffset / ElementSize;
2083   if (EndIndex * ElementSize != EndOffset ||
2084       EndIndex > cast<FixedVectorType>(Ty)->getNumElements())
2085     return false;
2086 
2087   assert(EndIndex > BeginIndex && "Empty vector!");
2088   uint64_t NumElements = EndIndex - BeginIndex;
2089   Type *SliceTy = (NumElements == 1)
2090                       ? Ty->getElementType()
2091                       : FixedVectorType::get(Ty->getElementType(), NumElements);
2092 
2093   Type *SplitIntTy =
2094       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
2095 
2096   Use *U = S.getUse();
2097 
2098   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2099     if (MI->isVolatile())
2100       return false;
2101     if (!S.isSplittable())
2102       return false; // Skip any unsplittable intrinsics.
2103   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2104     if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
2105       return false;
2106   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2107     if (LI->isVolatile())
2108       return false;
2109     Type *LTy = LI->getType();
2110     // Disable vector promotion when there are loads or stores of an FCA.
2111     if (LTy->isStructTy())
2112       return false;
2113     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
2114       assert(LTy->isIntegerTy());
2115       LTy = SplitIntTy;
2116     }
2117     if (!canConvertValue(DL, SliceTy, LTy))
2118       return false;
2119   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2120     if (SI->isVolatile())
2121       return false;
2122     Type *STy = SI->getValueOperand()->getType();
2123     // Disable vector promotion when there are loads or stores of an FCA.
2124     if (STy->isStructTy())
2125       return false;
2126     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
2127       assert(STy->isIntegerTy());
2128       STy = SplitIntTy;
2129     }
2130     if (!canConvertValue(DL, STy, SliceTy))
2131       return false;
2132   } else {
2133     return false;
2134   }
2135 
2136   return true;
2137 }
2138 
2139 /// Test whether a vector type is viable for promotion.
2140 ///
2141 /// This implements the necessary checking for \c checkVectorTypesForPromotion
2142 /// (and thus isVectorPromotionViable) over all slices of the alloca for the
2143 /// given VectorType.
2144 static bool checkVectorTypeForPromotion(Partition &P, VectorType *VTy,
2145                                         const DataLayout &DL) {
2146   uint64_t ElementSize =
2147       DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue();
2148 
2149   // While the definition of LLVM vectors is bitpacked, we don't support sizes
2150   // that aren't byte sized.
2151   if (ElementSize % 8)
2152     return false;
2153   assert((DL.getTypeSizeInBits(VTy).getFixedValue() % 8) == 0 &&
2154          "vector size not a multiple of element size?");
2155   ElementSize /= 8;
2156 
2157   for (const Slice &S : P)
2158     if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
2159       return false;
2160 
2161   for (const Slice *S : P.splitSliceTails())
2162     if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
2163       return false;
2164 
2165   return true;
2166 }
2167 
2168 /// Test whether any vector type in \p CandidateTys is viable for promotion.
2169 ///
2170 /// This implements the necessary checking for \c isVectorPromotionViable over
2171 /// all slices of the alloca for the given VectorType.
2172 static VectorType *
2173 checkVectorTypesForPromotion(Partition &P, const DataLayout &DL,
2174                              SmallVectorImpl<VectorType *> &CandidateTys,
2175                              bool HaveCommonEltTy, Type *CommonEltTy,
2176                              bool HaveVecPtrTy, bool HaveCommonVecPtrTy,
2177                              VectorType *CommonVecPtrTy) {
2178   // If we didn't find a vector type, nothing to do here.
2179   if (CandidateTys.empty())
2180     return nullptr;
2181 
2182   // Pointer-ness is sticky, if we had a vector-of-pointers candidate type,
2183   // then we should choose it, not some other alternative.
2184   // But, we can't perform a no-op pointer address space change via bitcast,
2185   // so if we didn't have a common pointer element type, bail.
2186   if (HaveVecPtrTy && !HaveCommonVecPtrTy)
2187     return nullptr;
2188 
2189   // Try to pick the "best" element type out of the choices.
2190   if (!HaveCommonEltTy && HaveVecPtrTy) {
2191     // If there was a pointer element type, there's really only one choice.
2192     CandidateTys.clear();
2193     CandidateTys.push_back(CommonVecPtrTy);
2194   } else if (!HaveCommonEltTy && !HaveVecPtrTy) {
2195     // Integer-ify vector types.
2196     for (VectorType *&VTy : CandidateTys) {
2197       if (!VTy->getElementType()->isIntegerTy())
2198         VTy = cast<VectorType>(VTy->getWithNewType(IntegerType::getIntNTy(
2199             VTy->getContext(), VTy->getScalarSizeInBits())));
2200     }
2201 
2202     // Rank the remaining candidate vector types. This is easy because we know
2203     // they're all integer vectors. We sort by ascending number of elements.
2204     auto RankVectorTypesComp = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
2205       (void)DL;
2206       assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() ==
2207                  DL.getTypeSizeInBits(LHSTy).getFixedValue() &&
2208              "Cannot have vector types of different sizes!");
2209       assert(RHSTy->getElementType()->isIntegerTy() &&
2210              "All non-integer types eliminated!");
2211       assert(LHSTy->getElementType()->isIntegerTy() &&
2212              "All non-integer types eliminated!");
2213       return cast<FixedVectorType>(RHSTy)->getNumElements() <
2214              cast<FixedVectorType>(LHSTy)->getNumElements();
2215     };
2216     auto RankVectorTypesEq = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
2217       (void)DL;
2218       assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() ==
2219                  DL.getTypeSizeInBits(LHSTy).getFixedValue() &&
2220              "Cannot have vector types of different sizes!");
2221       assert(RHSTy->getElementType()->isIntegerTy() &&
2222              "All non-integer types eliminated!");
2223       assert(LHSTy->getElementType()->isIntegerTy() &&
2224              "All non-integer types eliminated!");
2225       return cast<FixedVectorType>(RHSTy)->getNumElements() ==
2226              cast<FixedVectorType>(LHSTy)->getNumElements();
2227     };
2228     llvm::sort(CandidateTys, RankVectorTypesComp);
2229     CandidateTys.erase(std::unique(CandidateTys.begin(), CandidateTys.end(),
2230                                    RankVectorTypesEq),
2231                        CandidateTys.end());
2232   } else {
2233 // The only way to have the same element type in every vector type is to
2234 // have the same vector type. Check that and remove all but one.
2235 #ifndef NDEBUG
2236     for (VectorType *VTy : CandidateTys) {
2237       assert(VTy->getElementType() == CommonEltTy &&
2238              "Unaccounted for element type!");
2239       assert(VTy == CandidateTys[0] &&
2240              "Different vector types with the same element type!");
2241     }
2242 #endif
2243     CandidateTys.resize(1);
2244   }
2245 
2246   // FIXME: hack. Do we have a named constant for this?
2247   // SDAG SDNode can't have more than 65535 operands.
2248   llvm::erase_if(CandidateTys, [](VectorType *VTy) {
2249     return cast<FixedVectorType>(VTy)->getNumElements() >
2250            std::numeric_limits<unsigned short>::max();
2251   });
2252 
2253   for (VectorType *VTy : CandidateTys)
2254     if (checkVectorTypeForPromotion(P, VTy, DL))
2255       return VTy;
2256 
2257   return nullptr;
2258 }
2259 
2260 static VectorType *createAndCheckVectorTypesForPromotion(
2261     SetVector<Type *> &OtherTys, ArrayRef<VectorType *> CandidateTysCopy,
2262     function_ref<void(Type *)> CheckCandidateType, Partition &P,
2263     const DataLayout &DL, SmallVectorImpl<VectorType *> &CandidateTys,
2264     bool &HaveCommonEltTy, Type *&CommonEltTy, bool &HaveVecPtrTy,
2265     bool &HaveCommonVecPtrTy, VectorType *&CommonVecPtrTy) {
2266   [[maybe_unused]] VectorType *OriginalElt =
2267       CandidateTysCopy.size() ? CandidateTysCopy[0] : nullptr;
2268   // Consider additional vector types where the element type size is a
2269   // multiple of load/store element size.
2270   for (Type *Ty : OtherTys) {
2271     if (!VectorType::isValidElementType(Ty))
2272       continue;
2273     unsigned TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue();
2274     // Make a copy of CandidateTys and iterate through it, because we
2275     // might append to CandidateTys in the loop.
2276     for (VectorType *const VTy : CandidateTysCopy) {
2277       // The elements in the copy should remain invariant throughout the loop
2278       assert(CandidateTysCopy[0] == OriginalElt && "Different Element");
2279       unsigned VectorSize = DL.getTypeSizeInBits(VTy).getFixedValue();
2280       unsigned ElementSize =
2281           DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue();
2282       if (TypeSize != VectorSize && TypeSize != ElementSize &&
2283           VectorSize % TypeSize == 0) {
2284         VectorType *NewVTy = VectorType::get(Ty, VectorSize / TypeSize, false);
2285         CheckCandidateType(NewVTy);
2286       }
2287     }
2288   }
2289 
2290   return checkVectorTypesForPromotion(P, DL, CandidateTys, HaveCommonEltTy,
2291                                       CommonEltTy, HaveVecPtrTy,
2292                                       HaveCommonVecPtrTy, CommonVecPtrTy);
2293 }
2294 
2295 /// Test whether the given alloca partitioning and range of slices can be
2296 /// promoted to a vector.
2297 ///
2298 /// This is a quick test to check whether we can rewrite a particular alloca
2299 /// partition (and its newly formed alloca) into a vector alloca with only
2300 /// whole-vector loads and stores such that it could be promoted to a vector
2301 /// SSA value. We only can ensure this for a limited set of operations, and we
2302 /// don't want to do the rewrites unless we are confident that the result will
2303 /// be promotable, so we have an early test here.
2304 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
2305   // Collect the candidate types for vector-based promotion. Also track whether
2306   // we have different element types.
2307   SmallVector<VectorType *, 4> CandidateTys;
2308   SetVector<Type *> LoadStoreTys;
2309   SetVector<Type *> DeferredTys;
2310   Type *CommonEltTy = nullptr;
2311   VectorType *CommonVecPtrTy = nullptr;
2312   bool HaveVecPtrTy = false;
2313   bool HaveCommonEltTy = true;
2314   bool HaveCommonVecPtrTy = true;
2315   auto CheckCandidateType = [&](Type *Ty) {
2316     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
2317       // Return if bitcast to vectors is different for total size in bits.
2318       if (!CandidateTys.empty()) {
2319         VectorType *V = CandidateTys[0];
2320         if (DL.getTypeSizeInBits(VTy).getFixedValue() !=
2321             DL.getTypeSizeInBits(V).getFixedValue()) {
2322           CandidateTys.clear();
2323           return;
2324         }
2325       }
2326       CandidateTys.push_back(VTy);
2327       Type *EltTy = VTy->getElementType();
2328 
2329       if (!CommonEltTy)
2330         CommonEltTy = EltTy;
2331       else if (CommonEltTy != EltTy)
2332         HaveCommonEltTy = false;
2333 
2334       if (EltTy->isPointerTy()) {
2335         HaveVecPtrTy = true;
2336         if (!CommonVecPtrTy)
2337           CommonVecPtrTy = VTy;
2338         else if (CommonVecPtrTy != VTy)
2339           HaveCommonVecPtrTy = false;
2340       }
2341     }
2342   };
2343 
2344   // Put load and store types into a set for de-duplication.
2345   for (const Slice &S : P) {
2346     Type *Ty;
2347     if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
2348       Ty = LI->getType();
2349     else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
2350       Ty = SI->getValueOperand()->getType();
2351     else
2352       continue;
2353 
2354     auto CandTy = Ty->getScalarType();
2355     if (CandTy->isPointerTy() && (S.beginOffset() != P.beginOffset() ||
2356                                   S.endOffset() != P.endOffset())) {
2357       DeferredTys.insert(Ty);
2358       continue;
2359     }
2360 
2361     LoadStoreTys.insert(Ty);
2362     // Consider any loads or stores that are the exact size of the slice.
2363     if (S.beginOffset() == P.beginOffset() && S.endOffset() == P.endOffset())
2364       CheckCandidateType(Ty);
2365   }
2366 
2367   SmallVector<VectorType *, 4> CandidateTysCopy = CandidateTys;
2368   if (auto *VTy = createAndCheckVectorTypesForPromotion(
2369           LoadStoreTys, CandidateTysCopy, CheckCandidateType, P, DL,
2370           CandidateTys, HaveCommonEltTy, CommonEltTy, HaveVecPtrTy,
2371           HaveCommonVecPtrTy, CommonVecPtrTy))
2372     return VTy;
2373 
2374   CandidateTys.clear();
2375   return createAndCheckVectorTypesForPromotion(
2376       DeferredTys, CandidateTysCopy, CheckCandidateType, P, DL, CandidateTys,
2377       HaveCommonEltTy, CommonEltTy, HaveVecPtrTy, HaveCommonVecPtrTy,
2378       CommonVecPtrTy);
2379 }
2380 
2381 /// Test whether a slice of an alloca is valid for integer widening.
2382 ///
2383 /// This implements the necessary checking for the \c isIntegerWideningViable
2384 /// test below on a single slice of the alloca.
2385 static bool isIntegerWideningViableForSlice(const Slice &S,
2386                                             uint64_t AllocBeginOffset,
2387                                             Type *AllocaTy,
2388                                             const DataLayout &DL,
2389                                             bool &WholeAllocaOp) {
2390   uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedValue();
2391 
2392   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2393   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2394 
2395   Use *U = S.getUse();
2396 
2397   // Lifetime intrinsics operate over the whole alloca whose sizes are usually
2398   // larger than other load/store slices (RelEnd > Size). But lifetime are
2399   // always promotable and should not impact other slices' promotability of the
2400   // partition.
2401   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2402     if (II->isLifetimeStartOrEnd() || II->isDroppable())
2403       return true;
2404   }
2405 
2406   // We can't reasonably handle cases where the load or store extends past
2407   // the end of the alloca's type and into its padding.
2408   if (RelEnd > Size)
2409     return false;
2410 
2411   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2412     if (LI->isVolatile())
2413       return false;
2414     // We can't handle loads that extend past the allocated memory.
2415     if (DL.getTypeStoreSize(LI->getType()).getFixedValue() > Size)
2416       return false;
2417     // So far, AllocaSliceRewriter does not support widening split slice tails
2418     // in rewriteIntegerLoad.
2419     if (S.beginOffset() < AllocBeginOffset)
2420       return false;
2421     // Note that we don't count vector loads or stores as whole-alloca
2422     // operations which enable integer widening because we would prefer to use
2423     // vector widening instead.
2424     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2425       WholeAllocaOp = true;
2426     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2427       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
2428         return false;
2429     } else if (RelBegin != 0 || RelEnd != Size ||
2430                !canConvertValue(DL, AllocaTy, LI->getType())) {
2431       // Non-integer loads need to be convertible from the alloca type so that
2432       // they are promotable.
2433       return false;
2434     }
2435   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2436     Type *ValueTy = SI->getValueOperand()->getType();
2437     if (SI->isVolatile())
2438       return false;
2439     // We can't handle stores that extend past the allocated memory.
2440     if (DL.getTypeStoreSize(ValueTy).getFixedValue() > Size)
2441       return false;
2442     // So far, AllocaSliceRewriter does not support widening split slice tails
2443     // in rewriteIntegerStore.
2444     if (S.beginOffset() < AllocBeginOffset)
2445       return false;
2446     // Note that we don't count vector loads or stores as whole-alloca
2447     // operations which enable integer widening because we would prefer to use
2448     // vector widening instead.
2449     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2450       WholeAllocaOp = true;
2451     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2452       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue())
2453         return false;
2454     } else if (RelBegin != 0 || RelEnd != Size ||
2455                !canConvertValue(DL, ValueTy, AllocaTy)) {
2456       // Non-integer stores need to be convertible to the alloca type so that
2457       // they are promotable.
2458       return false;
2459     }
2460   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2461     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2462       return false;
2463     if (!S.isSplittable())
2464       return false; // Skip any unsplittable intrinsics.
2465   } else {
2466     return false;
2467   }
2468 
2469   return true;
2470 }
2471 
2472 /// Test whether the given alloca partition's integer operations can be
2473 /// widened to promotable ones.
2474 ///
2475 /// This is a quick test to check whether we can rewrite the integer loads and
2476 /// stores to a particular alloca into wider loads and stores and be able to
2477 /// promote the resulting alloca.
2478 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2479                                     const DataLayout &DL) {
2480   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedValue();
2481   // Don't create integer types larger than the maximum bitwidth.
2482   if (SizeInBits > IntegerType::MAX_INT_BITS)
2483     return false;
2484 
2485   // Don't try to handle allocas with bit-padding.
2486   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedValue())
2487     return false;
2488 
2489   // We need to ensure that an integer type with the appropriate bitwidth can
2490   // be converted to the alloca type, whatever that is. We don't want to force
2491   // the alloca itself to have an integer type if there is a more suitable one.
2492   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2493   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2494       !canConvertValue(DL, IntTy, AllocaTy))
2495     return false;
2496 
2497   // While examining uses, we ensure that the alloca has a covering load or
2498   // store. We don't want to widen the integer operations only to fail to
2499   // promote due to some other unsplittable entry (which we may make splittable
2500   // later). However, if there are only splittable uses, go ahead and assume
2501   // that we cover the alloca.
2502   // FIXME: We shouldn't consider split slices that happen to start in the
2503   // partition here...
2504   bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits);
2505 
2506   for (const Slice &S : P)
2507     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2508                                          WholeAllocaOp))
2509       return false;
2510 
2511   for (const Slice *S : P.splitSliceTails())
2512     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2513                                          WholeAllocaOp))
2514       return false;
2515 
2516   return WholeAllocaOp;
2517 }
2518 
2519 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2520                              IntegerType *Ty, uint64_t Offset,
2521                              const Twine &Name) {
2522   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2523   IntegerType *IntTy = cast<IntegerType>(V->getType());
2524   assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
2525              DL.getTypeStoreSize(IntTy).getFixedValue() &&
2526          "Element extends past full value");
2527   uint64_t ShAmt = 8 * Offset;
2528   if (DL.isBigEndian())
2529     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
2530                  DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
2531   if (ShAmt) {
2532     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2533     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2534   }
2535   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2536          "Cannot extract to a larger integer!");
2537   if (Ty != IntTy) {
2538     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2539     LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2540   }
2541   return V;
2542 }
2543 
2544 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2545                             Value *V, uint64_t Offset, const Twine &Name) {
2546   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2547   IntegerType *Ty = cast<IntegerType>(V->getType());
2548   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2549          "Cannot insert a larger integer!");
2550   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2551   if (Ty != IntTy) {
2552     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2553     LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2554   }
2555   assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <=
2556              DL.getTypeStoreSize(IntTy).getFixedValue() &&
2557          "Element store outside of alloca store");
2558   uint64_t ShAmt = 8 * Offset;
2559   if (DL.isBigEndian())
2560     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() -
2561                  DL.getTypeStoreSize(Ty).getFixedValue() - Offset);
2562   if (ShAmt) {
2563     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2564     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2565   }
2566 
2567   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2568     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2569     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2570     LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2571     V = IRB.CreateOr(Old, V, Name + ".insert");
2572     LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2573   }
2574   return V;
2575 }
2576 
2577 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2578                             unsigned EndIndex, const Twine &Name) {
2579   auto *VecTy = cast<FixedVectorType>(V->getType());
2580   unsigned NumElements = EndIndex - BeginIndex;
2581   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2582 
2583   if (NumElements == VecTy->getNumElements())
2584     return V;
2585 
2586   if (NumElements == 1) {
2587     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2588                                  Name + ".extract");
2589     LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2590     return V;
2591   }
2592 
2593   auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex));
2594   V = IRB.CreateShuffleVector(V, Mask, Name + ".extract");
2595   LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2596   return V;
2597 }
2598 
2599 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2600                            unsigned BeginIndex, const Twine &Name) {
2601   VectorType *VecTy = cast<VectorType>(Old->getType());
2602   assert(VecTy && "Can only insert a vector into a vector");
2603 
2604   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2605   if (!Ty) {
2606     // Single element to insert.
2607     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2608                                 Name + ".insert");
2609     LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2610     return V;
2611   }
2612 
2613   assert(cast<FixedVectorType>(Ty)->getNumElements() <=
2614              cast<FixedVectorType>(VecTy)->getNumElements() &&
2615          "Too many elements!");
2616   if (cast<FixedVectorType>(Ty)->getNumElements() ==
2617       cast<FixedVectorType>(VecTy)->getNumElements()) {
2618     assert(V->getType() == VecTy && "Vector type mismatch");
2619     return V;
2620   }
2621   unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements();
2622 
2623   // When inserting a smaller vector into the larger to store, we first
2624   // use a shuffle vector to widen it with undef elements, and then
2625   // a second shuffle vector to select between the loaded vector and the
2626   // incoming vector.
2627   SmallVector<int, 8> Mask;
2628   Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2629   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2630     if (i >= BeginIndex && i < EndIndex)
2631       Mask.push_back(i - BeginIndex);
2632     else
2633       Mask.push_back(-1);
2634   V = IRB.CreateShuffleVector(V, Mask, Name + ".expand");
2635   LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2636 
2637   SmallVector<Constant *, 8> Mask2;
2638   Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2639   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2640     Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2641 
2642   V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend");
2643 
2644   LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2645   return V;
2646 }
2647 
2648 namespace {
2649 
2650 /// Visitor to rewrite instructions using p particular slice of an alloca
2651 /// to use a new alloca.
2652 ///
2653 /// Also implements the rewriting to vector-based accesses when the partition
2654 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2655 /// lives here.
2656 class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
2657   // Befriend the base class so it can delegate to private visit methods.
2658   friend class InstVisitor<AllocaSliceRewriter, bool>;
2659 
2660   using Base = InstVisitor<AllocaSliceRewriter, bool>;
2661 
2662   const DataLayout &DL;
2663   AllocaSlices &AS;
2664   SROA &Pass;
2665   AllocaInst &OldAI, &NewAI;
2666   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2667   Type *NewAllocaTy;
2668 
2669   // This is a convenience and flag variable that will be null unless the new
2670   // alloca's integer operations should be widened to this integer type due to
2671   // passing isIntegerWideningViable above. If it is non-null, the desired
2672   // integer type will be stored here for easy access during rewriting.
2673   IntegerType *IntTy;
2674 
2675   // If we are rewriting an alloca partition which can be written as pure
2676   // vector operations, we stash extra information here. When VecTy is
2677   // non-null, we have some strict guarantees about the rewritten alloca:
2678   //   - The new alloca is exactly the size of the vector type here.
2679   //   - The accesses all either map to the entire vector or to a single
2680   //     element.
2681   //   - The set of accessing instructions is only one of those handled above
2682   //     in isVectorPromotionViable. Generally these are the same access kinds
2683   //     which are promotable via mem2reg.
2684   VectorType *VecTy;
2685   Type *ElementTy;
2686   uint64_t ElementSize;
2687 
2688   // The original offset of the slice currently being rewritten relative to
2689   // the original alloca.
2690   uint64_t BeginOffset = 0;
2691   uint64_t EndOffset = 0;
2692 
2693   // The new offsets of the slice currently being rewritten relative to the
2694   // original alloca.
2695   uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2696 
2697   uint64_t SliceSize = 0;
2698   bool IsSplittable = false;
2699   bool IsSplit = false;
2700   Use *OldUse = nullptr;
2701   Instruction *OldPtr = nullptr;
2702 
2703   // Track post-rewrite users which are PHI nodes and Selects.
2704   SmallSetVector<PHINode *, 8> &PHIUsers;
2705   SmallSetVector<SelectInst *, 8> &SelectUsers;
2706 
2707   // Utility IR builder, whose name prefix is setup for each visited use, and
2708   // the insertion point is set to point to the user.
2709   IRBuilderTy IRB;
2710 
2711   // Return the new alloca, addrspacecasted if required to avoid changing the
2712   // addrspace of a volatile access.
2713   Value *getPtrToNewAI(unsigned AddrSpace, bool IsVolatile) {
2714     if (!IsVolatile || AddrSpace == NewAI.getType()->getPointerAddressSpace())
2715       return &NewAI;
2716 
2717     Type *AccessTy = IRB.getPtrTy(AddrSpace);
2718     return IRB.CreateAddrSpaceCast(&NewAI, AccessTy);
2719   }
2720 
2721 public:
2722   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2723                       AllocaInst &OldAI, AllocaInst &NewAI,
2724                       uint64_t NewAllocaBeginOffset,
2725                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2726                       VectorType *PromotableVecTy,
2727                       SmallSetVector<PHINode *, 8> &PHIUsers,
2728                       SmallSetVector<SelectInst *, 8> &SelectUsers)
2729       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2730         NewAllocaBeginOffset(NewAllocaBeginOffset),
2731         NewAllocaEndOffset(NewAllocaEndOffset),
2732         NewAllocaTy(NewAI.getAllocatedType()),
2733         IntTy(
2734             IsIntegerPromotable
2735                 ? Type::getIntNTy(NewAI.getContext(),
2736                                   DL.getTypeSizeInBits(NewAI.getAllocatedType())
2737                                       .getFixedValue())
2738                 : nullptr),
2739         VecTy(PromotableVecTy),
2740         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2741         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8
2742                           : 0),
2743         PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2744         IRB(NewAI.getContext(), ConstantFolder()) {
2745     if (VecTy) {
2746       assert((DL.getTypeSizeInBits(ElementTy).getFixedValue() % 8) == 0 &&
2747              "Only multiple-of-8 sized vector elements are viable");
2748       ++NumVectorized;
2749     }
2750     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2751   }
2752 
2753   bool visit(AllocaSlices::const_iterator I) {
2754     bool CanSROA = true;
2755     BeginOffset = I->beginOffset();
2756     EndOffset = I->endOffset();
2757     IsSplittable = I->isSplittable();
2758     IsSplit =
2759         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2760     LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2761     LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2762     LLVM_DEBUG(dbgs() << "\n");
2763 
2764     // Compute the intersecting offset range.
2765     assert(BeginOffset < NewAllocaEndOffset);
2766     assert(EndOffset > NewAllocaBeginOffset);
2767     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2768     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2769 
2770     SliceSize = NewEndOffset - NewBeginOffset;
2771     LLVM_DEBUG(dbgs() << "   Begin:(" << BeginOffset << ", " << EndOffset
2772                       << ") NewBegin:(" << NewBeginOffset << ", "
2773                       << NewEndOffset << ") NewAllocaBegin:("
2774                       << NewAllocaBeginOffset << ", " << NewAllocaEndOffset
2775                       << ")\n");
2776     assert(IsSplit || NewBeginOffset == BeginOffset);
2777     OldUse = I->getUse();
2778     OldPtr = cast<Instruction>(OldUse->get());
2779 
2780     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2781     IRB.SetInsertPoint(OldUserI);
2782     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2783     IRB.getInserter().SetNamePrefix(
2784         Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2785 
2786     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2787     if (VecTy || IntTy)
2788       assert(CanSROA);
2789     return CanSROA;
2790   }
2791 
2792 private:
2793   // Make sure the other visit overloads are visible.
2794   using Base::visit;
2795 
2796   // Every instruction which can end up as a user must have a rewrite rule.
2797   bool visitInstruction(Instruction &I) {
2798     LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2799     llvm_unreachable("No rewrite rule for this instruction!");
2800   }
2801 
2802   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2803     // Note that the offset computation can use BeginOffset or NewBeginOffset
2804     // interchangeably for unsplit slices.
2805     assert(IsSplit || BeginOffset == NewBeginOffset);
2806     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2807 
2808 #ifndef NDEBUG
2809     StringRef OldName = OldPtr->getName();
2810     // Skip through the last '.sroa.' component of the name.
2811     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2812     if (LastSROAPrefix != StringRef::npos) {
2813       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2814       // Look for an SROA slice index.
2815       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2816       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2817         // Strip the index and look for the offset.
2818         OldName = OldName.substr(IndexEnd + 1);
2819         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2820         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2821           // Strip the offset.
2822           OldName = OldName.substr(OffsetEnd + 1);
2823       }
2824     }
2825     // Strip any SROA suffixes as well.
2826     OldName = OldName.substr(0, OldName.find(".sroa_"));
2827 #endif
2828 
2829     return getAdjustedPtr(IRB, DL, &NewAI,
2830                           APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2831                           PointerTy,
2832 #ifndef NDEBUG
2833                           Twine(OldName) + "."
2834 #else
2835                           Twine()
2836 #endif
2837                           );
2838   }
2839 
2840   /// Compute suitable alignment to access this slice of the *new*
2841   /// alloca.
2842   ///
2843   /// You can optionally pass a type to this routine and if that type's ABI
2844   /// alignment is itself suitable, this will return zero.
2845   Align getSliceAlign() {
2846     return commonAlignment(NewAI.getAlign(),
2847                            NewBeginOffset - NewAllocaBeginOffset);
2848   }
2849 
2850   unsigned getIndex(uint64_t Offset) {
2851     assert(VecTy && "Can only call getIndex when rewriting a vector");
2852     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2853     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2854     uint32_t Index = RelOffset / ElementSize;
2855     assert(Index * ElementSize == RelOffset);
2856     return Index;
2857   }
2858 
2859   void deleteIfTriviallyDead(Value *V) {
2860     Instruction *I = cast<Instruction>(V);
2861     if (isInstructionTriviallyDead(I))
2862       Pass.DeadInsts.push_back(I);
2863   }
2864 
2865   Value *rewriteVectorizedLoadInst(LoadInst &LI) {
2866     unsigned BeginIndex = getIndex(NewBeginOffset);
2867     unsigned EndIndex = getIndex(NewEndOffset);
2868     assert(EndIndex > BeginIndex && "Empty vector!");
2869 
2870     LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2871                                            NewAI.getAlign(), "load");
2872 
2873     Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2874                             LLVMContext::MD_access_group});
2875     return extractVector(IRB, Load, BeginIndex, EndIndex, "vec");
2876   }
2877 
2878   Value *rewriteIntegerLoad(LoadInst &LI) {
2879     assert(IntTy && "We cannot insert an integer to the alloca");
2880     assert(!LI.isVolatile());
2881     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2882                                      NewAI.getAlign(), "load");
2883     V = convertValue(DL, IRB, V, IntTy);
2884     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2885     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2886     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2887       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2888       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2889     }
2890     // It is possible that the extracted type is not the load type. This
2891     // happens if there is a load past the end of the alloca, and as
2892     // a consequence the slice is narrower but still a candidate for integer
2893     // lowering. To handle this case, we just zero extend the extracted
2894     // integer.
2895     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2896            "Can only handle an extract for an overly wide load");
2897     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2898       V = IRB.CreateZExt(V, LI.getType());
2899     return V;
2900   }
2901 
2902   bool visitLoadInst(LoadInst &LI) {
2903     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2904     Value *OldOp = LI.getOperand(0);
2905     assert(OldOp == OldPtr);
2906 
2907     AAMDNodes AATags = LI.getAAMetadata();
2908 
2909     unsigned AS = LI.getPointerAddressSpace();
2910 
2911     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2912                              : LI.getType();
2913     const bool IsLoadPastEnd =
2914         DL.getTypeStoreSize(TargetTy).getFixedValue() > SliceSize;
2915     bool IsPtrAdjusted = false;
2916     Value *V;
2917     if (VecTy) {
2918       V = rewriteVectorizedLoadInst(LI);
2919     } else if (IntTy && LI.getType()->isIntegerTy()) {
2920       V = rewriteIntegerLoad(LI);
2921     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2922                NewEndOffset == NewAllocaEndOffset &&
2923                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2924                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2925                  TargetTy->isIntegerTy() && !LI.isVolatile()))) {
2926       Value *NewPtr =
2927           getPtrToNewAI(LI.getPointerAddressSpace(), LI.isVolatile());
2928       LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), NewPtr,
2929                                               NewAI.getAlign(), LI.isVolatile(),
2930                                               LI.getName());
2931       if (LI.isVolatile())
2932         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2933       if (NewLI->isAtomic())
2934         NewLI->setAlignment(LI.getAlign());
2935 
2936       // Copy any metadata that is valid for the new load. This may require
2937       // conversion to a different kind of metadata, e.g. !nonnull might change
2938       // to !range or vice versa.
2939       copyMetadataForLoad(*NewLI, LI);
2940 
2941       // Do this after copyMetadataForLoad() to preserve the TBAA shift.
2942       if (AATags)
2943         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2944 
2945       // Try to preserve nonnull metadata
2946       V = NewLI;
2947 
2948       // If this is an integer load past the end of the slice (which means the
2949       // bytes outside the slice are undef or this load is dead) just forcibly
2950       // fix the integer size with correct handling of endianness.
2951       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2952         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2953           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2954             V = IRB.CreateZExt(V, TITy, "load.ext");
2955             if (DL.isBigEndian())
2956               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2957                                 "endian_shift");
2958           }
2959     } else {
2960       Type *LTy = IRB.getPtrTy(AS);
2961       LoadInst *NewLI =
2962           IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
2963                                 getSliceAlign(), LI.isVolatile(), LI.getName());
2964       if (AATags)
2965         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2966       if (LI.isVolatile())
2967         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2968       NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access,
2969                                LLVMContext::MD_access_group});
2970 
2971       V = NewLI;
2972       IsPtrAdjusted = true;
2973     }
2974     V = convertValue(DL, IRB, V, TargetTy);
2975 
2976     if (IsSplit) {
2977       assert(!LI.isVolatile());
2978       assert(LI.getType()->isIntegerTy() &&
2979              "Only integer type loads and stores are split");
2980       assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedValue() &&
2981              "Split load isn't smaller than original load");
2982       assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2983              "Non-byte-multiple bit width");
2984       // Move the insertion point just past the load so that we can refer to it.
2985       IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2986       // Create a placeholder value with the same type as LI to use as the
2987       // basis for the new value. This allows us to replace the uses of LI with
2988       // the computed value, and then replace the placeholder with LI, leaving
2989       // LI only used for this computation.
2990       Value *Placeholder =
2991           new LoadInst(LI.getType(), PoisonValue::get(IRB.getPtrTy(AS)), "",
2992                        false, Align(1));
2993       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2994                         "insert");
2995       LI.replaceAllUsesWith(V);
2996       Placeholder->replaceAllUsesWith(&LI);
2997       Placeholder->deleteValue();
2998     } else {
2999       LI.replaceAllUsesWith(V);
3000     }
3001 
3002     Pass.DeadInsts.push_back(&LI);
3003     deleteIfTriviallyDead(OldOp);
3004     LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
3005     return !LI.isVolatile() && !IsPtrAdjusted;
3006   }
3007 
3008   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
3009                                   AAMDNodes AATags) {
3010     // Capture V for the purpose of debug-info accounting once it's converted
3011     // to a vector store.
3012     Value *OrigV = V;
3013     if (V->getType() != VecTy) {
3014       unsigned BeginIndex = getIndex(NewBeginOffset);
3015       unsigned EndIndex = getIndex(NewEndOffset);
3016       assert(EndIndex > BeginIndex && "Empty vector!");
3017       unsigned NumElements = EndIndex - BeginIndex;
3018       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
3019              "Too many elements!");
3020       Type *SliceTy = (NumElements == 1)
3021                           ? ElementTy
3022                           : FixedVectorType::get(ElementTy, NumElements);
3023       if (V->getType() != SliceTy)
3024         V = convertValue(DL, IRB, V, SliceTy);
3025 
3026       // Mix in the existing elements.
3027       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3028                                          NewAI.getAlign(), "load");
3029       V = insertVector(IRB, Old, V, BeginIndex, "vec");
3030     }
3031     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
3032     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
3033                              LLVMContext::MD_access_group});
3034     if (AATags)
3035       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3036     Pass.DeadInsts.push_back(&SI);
3037 
3038     // NOTE: Careful to use OrigV rather than V.
3039     migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI,
3040                      Store, Store->getPointerOperand(), OrigV, DL);
3041     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3042     return true;
3043   }
3044 
3045   bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
3046     assert(IntTy && "We cannot extract an integer from the alloca");
3047     assert(!SI.isVolatile());
3048     if (DL.getTypeSizeInBits(V->getType()).getFixedValue() !=
3049         IntTy->getBitWidth()) {
3050       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3051                                          NewAI.getAlign(), "oldload");
3052       Old = convertValue(DL, IRB, Old, IntTy);
3053       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
3054       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
3055       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
3056     }
3057     V = convertValue(DL, IRB, V, NewAllocaTy);
3058     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
3059     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
3060                              LLVMContext::MD_access_group});
3061     if (AATags)
3062       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3063 
3064     migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI,
3065                      Store, Store->getPointerOperand(),
3066                      Store->getValueOperand(), DL);
3067 
3068     Pass.DeadInsts.push_back(&SI);
3069     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3070     return true;
3071   }
3072 
3073   bool visitStoreInst(StoreInst &SI) {
3074     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3075     Value *OldOp = SI.getOperand(1);
3076     assert(OldOp == OldPtr);
3077 
3078     AAMDNodes AATags = SI.getAAMetadata();
3079     Value *V = SI.getValueOperand();
3080 
3081     // Strip all inbounds GEPs and pointer casts to try to dig out any root
3082     // alloca that should be re-examined after promoting this alloca.
3083     if (V->getType()->isPointerTy())
3084       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
3085         Pass.PostPromotionWorklist.insert(AI);
3086 
3087     if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedValue()) {
3088       assert(!SI.isVolatile());
3089       assert(V->getType()->isIntegerTy() &&
3090              "Only integer type loads and stores are split");
3091       assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
3092              "Non-byte-multiple bit width");
3093       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
3094       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
3095                          "extract");
3096     }
3097 
3098     if (VecTy)
3099       return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
3100     if (IntTy && V->getType()->isIntegerTy())
3101       return rewriteIntegerStore(V, SI, AATags);
3102 
3103     StoreInst *NewSI;
3104     if (NewBeginOffset == NewAllocaBeginOffset &&
3105         NewEndOffset == NewAllocaEndOffset &&
3106         canConvertValue(DL, V->getType(), NewAllocaTy)) {
3107       V = convertValue(DL, IRB, V, NewAllocaTy);
3108       Value *NewPtr =
3109           getPtrToNewAI(SI.getPointerAddressSpace(), SI.isVolatile());
3110 
3111       NewSI =
3112           IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), SI.isVolatile());
3113     } else {
3114       unsigned AS = SI.getPointerAddressSpace();
3115       Value *NewPtr = getNewAllocaSlicePtr(IRB, IRB.getPtrTy(AS));
3116       NewSI =
3117           IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
3118     }
3119     NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
3120                              LLVMContext::MD_access_group});
3121     if (AATags)
3122       NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3123     if (SI.isVolatile())
3124       NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
3125     if (NewSI->isAtomic())
3126       NewSI->setAlignment(SI.getAlign());
3127 
3128     migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI,
3129                      NewSI, NewSI->getPointerOperand(),
3130                      NewSI->getValueOperand(), DL);
3131 
3132     Pass.DeadInsts.push_back(&SI);
3133     deleteIfTriviallyDead(OldOp);
3134 
3135     LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
3136     return NewSI->getPointerOperand() == &NewAI &&
3137            NewSI->getValueOperand()->getType() == NewAllocaTy &&
3138            !SI.isVolatile();
3139   }
3140 
3141   /// Compute an integer value from splatting an i8 across the given
3142   /// number of bytes.
3143   ///
3144   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
3145   /// call this routine.
3146   /// FIXME: Heed the advice above.
3147   ///
3148   /// \param V The i8 value to splat.
3149   /// \param Size The number of bytes in the output (assuming i8 is one byte)
3150   Value *getIntegerSplat(Value *V, unsigned Size) {
3151     assert(Size > 0 && "Expected a positive number of bytes.");
3152     IntegerType *VTy = cast<IntegerType>(V->getType());
3153     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
3154     if (Size == 1)
3155       return V;
3156 
3157     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
3158     V = IRB.CreateMul(
3159         IRB.CreateZExt(V, SplatIntTy, "zext"),
3160         IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy),
3161                        IRB.CreateZExt(Constant::getAllOnesValue(V->getType()),
3162                                       SplatIntTy)),
3163         "isplat");
3164     return V;
3165   }
3166 
3167   /// Compute a vector splat for a given element value.
3168   Value *getVectorSplat(Value *V, unsigned NumElements) {
3169     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
3170     LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
3171     return V;
3172   }
3173 
3174   bool visitMemSetInst(MemSetInst &II) {
3175     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3176     assert(II.getRawDest() == OldPtr);
3177 
3178     AAMDNodes AATags = II.getAAMetadata();
3179 
3180     // If the memset has a variable size, it cannot be split, just adjust the
3181     // pointer to the new alloca.
3182     if (!isa<ConstantInt>(II.getLength())) {
3183       assert(!IsSplit);
3184       assert(NewBeginOffset == BeginOffset);
3185       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
3186       II.setDestAlignment(getSliceAlign());
3187       // In theory we should call migrateDebugInfo here. However, we do not
3188       // emit dbg.assign intrinsics for mem intrinsics storing through non-
3189       // constant geps, or storing a variable number of bytes.
3190       assert(at::getAssignmentMarkers(&II).empty() &&
3191              at::getDPVAssignmentMarkers(&II).empty() &&
3192              "AT: Unexpected link to non-const GEP");
3193       deleteIfTriviallyDead(OldPtr);
3194       return false;
3195     }
3196 
3197     // Record this instruction for deletion.
3198     Pass.DeadInsts.push_back(&II);
3199 
3200     Type *AllocaTy = NewAI.getAllocatedType();
3201     Type *ScalarTy = AllocaTy->getScalarType();
3202 
3203     const bool CanContinue = [&]() {
3204       if (VecTy || IntTy)
3205         return true;
3206       if (BeginOffset > NewAllocaBeginOffset ||
3207           EndOffset < NewAllocaEndOffset)
3208         return false;
3209       // Length must be in range for FixedVectorType.
3210       auto *C = cast<ConstantInt>(II.getLength());
3211       const uint64_t Len = C->getLimitedValue();
3212       if (Len > std::numeric_limits<unsigned>::max())
3213         return false;
3214       auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
3215       auto *SrcTy = FixedVectorType::get(Int8Ty, Len);
3216       return canConvertValue(DL, SrcTy, AllocaTy) &&
3217              DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedValue());
3218     }();
3219 
3220     // If this doesn't map cleanly onto the alloca type, and that type isn't
3221     // a single value type, just emit a memset.
3222     if (!CanContinue) {
3223       Type *SizeTy = II.getLength()->getType();
3224       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
3225       MemIntrinsic *New = cast<MemIntrinsic>(IRB.CreateMemSet(
3226           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
3227           MaybeAlign(getSliceAlign()), II.isVolatile()));
3228       if (AATags)
3229         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3230 
3231       migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II,
3232                        New, New->getRawDest(), nullptr, DL);
3233 
3234       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3235       return false;
3236     }
3237 
3238     // If we can represent this as a simple value, we have to build the actual
3239     // value to store, which requires expanding the byte present in memset to
3240     // a sensible representation for the alloca type. This is essentially
3241     // splatting the byte to a sufficiently wide integer, splatting it across
3242     // any desired vector width, and bitcasting to the final type.
3243     Value *V;
3244 
3245     if (VecTy) {
3246       // If this is a memset of a vectorized alloca, insert it.
3247       assert(ElementTy == ScalarTy);
3248 
3249       unsigned BeginIndex = getIndex(NewBeginOffset);
3250       unsigned EndIndex = getIndex(NewEndOffset);
3251       assert(EndIndex > BeginIndex && "Empty vector!");
3252       unsigned NumElements = EndIndex - BeginIndex;
3253       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
3254              "Too many elements!");
3255 
3256       Value *Splat = getIntegerSplat(
3257           II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8);
3258       Splat = convertValue(DL, IRB, Splat, ElementTy);
3259       if (NumElements > 1)
3260         Splat = getVectorSplat(Splat, NumElements);
3261 
3262       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3263                                          NewAI.getAlign(), "oldload");
3264       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
3265     } else if (IntTy) {
3266       // If this is a memset on an alloca where we can widen stores, insert the
3267       // set integer.
3268       assert(!II.isVolatile());
3269 
3270       uint64_t Size = NewEndOffset - NewBeginOffset;
3271       V = getIntegerSplat(II.getValue(), Size);
3272 
3273       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
3274                     EndOffset != NewAllocaBeginOffset)) {
3275         Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3276                                            NewAI.getAlign(), "oldload");
3277         Old = convertValue(DL, IRB, Old, IntTy);
3278         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3279         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
3280       } else {
3281         assert(V->getType() == IntTy &&
3282                "Wrong type for an alloca wide integer!");
3283       }
3284       V = convertValue(DL, IRB, V, AllocaTy);
3285     } else {
3286       // Established these invariants above.
3287       assert(NewBeginOffset == NewAllocaBeginOffset);
3288       assert(NewEndOffset == NewAllocaEndOffset);
3289 
3290       V = getIntegerSplat(II.getValue(),
3291                           DL.getTypeSizeInBits(ScalarTy).getFixedValue() / 8);
3292       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
3293         V = getVectorSplat(
3294             V, cast<FixedVectorType>(AllocaVecTy)->getNumElements());
3295 
3296       V = convertValue(DL, IRB, V, AllocaTy);
3297     }
3298 
3299     Value *NewPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
3300     StoreInst *New =
3301         IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), II.isVolatile());
3302     New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3303                            LLVMContext::MD_access_group});
3304     if (AATags)
3305       New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3306 
3307     migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II,
3308                      New, New->getPointerOperand(), V, DL);
3309 
3310     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3311     return !II.isVolatile();
3312   }
3313 
3314   bool visitMemTransferInst(MemTransferInst &II) {
3315     // Rewriting of memory transfer instructions can be a bit tricky. We break
3316     // them into two categories: split intrinsics and unsplit intrinsics.
3317 
3318     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3319 
3320     AAMDNodes AATags = II.getAAMetadata();
3321 
3322     bool IsDest = &II.getRawDestUse() == OldUse;
3323     assert((IsDest && II.getRawDest() == OldPtr) ||
3324            (!IsDest && II.getRawSource() == OldPtr));
3325 
3326     Align SliceAlign = getSliceAlign();
3327     // For unsplit intrinsics, we simply modify the source and destination
3328     // pointers in place. This isn't just an optimization, it is a matter of
3329     // correctness. With unsplit intrinsics we may be dealing with transfers
3330     // within a single alloca before SROA ran, or with transfers that have
3331     // a variable length. We may also be dealing with memmove instead of
3332     // memcpy, and so simply updating the pointers is the necessary for us to
3333     // update both source and dest of a single call.
3334     if (!IsSplittable) {
3335       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3336       if (IsDest) {
3337         // Update the address component of linked dbg.assigns.
3338         auto UpdateAssignAddress = [&](auto *DbgAssign) {
3339           if (llvm::is_contained(DbgAssign->location_ops(), II.getDest()) ||
3340               DbgAssign->getAddress() == II.getDest())
3341             DbgAssign->replaceVariableLocationOp(II.getDest(), AdjustedPtr);
3342         };
3343         for_each(at::getAssignmentMarkers(&II), UpdateAssignAddress);
3344         for_each(at::getDPVAssignmentMarkers(&II), UpdateAssignAddress);
3345         II.setDest(AdjustedPtr);
3346         II.setDestAlignment(SliceAlign);
3347       } else {
3348         II.setSource(AdjustedPtr);
3349         II.setSourceAlignment(SliceAlign);
3350       }
3351 
3352       LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
3353       deleteIfTriviallyDead(OldPtr);
3354       return false;
3355     }
3356     // For split transfer intrinsics we have an incredibly useful assurance:
3357     // the source and destination do not reside within the same alloca, and at
3358     // least one of them does not escape. This means that we can replace
3359     // memmove with memcpy, and we don't need to worry about all manner of
3360     // downsides to splitting and transforming the operations.
3361 
3362     // If this doesn't map cleanly onto the alloca type, and that type isn't
3363     // a single value type, just emit a memcpy.
3364     bool EmitMemCpy =
3365         !VecTy && !IntTy &&
3366         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
3367          SliceSize !=
3368              DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedValue() ||
3369          !DL.typeSizeEqualsStoreSize(NewAI.getAllocatedType()) ||
3370          !NewAI.getAllocatedType()->isSingleValueType());
3371 
3372     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
3373     // size hasn't been shrunk based on analysis of the viable range, this is
3374     // a no-op.
3375     if (EmitMemCpy && &OldAI == &NewAI) {
3376       // Ensure the start lines up.
3377       assert(NewBeginOffset == BeginOffset);
3378 
3379       // Rewrite the size as needed.
3380       if (NewEndOffset != EndOffset)
3381         II.setLength(ConstantInt::get(II.getLength()->getType(),
3382                                       NewEndOffset - NewBeginOffset));
3383       return false;
3384     }
3385     // Record this instruction for deletion.
3386     Pass.DeadInsts.push_back(&II);
3387 
3388     // Strip all inbounds GEPs and pointer casts to try to dig out any root
3389     // alloca that should be re-examined after rewriting this instruction.
3390     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
3391     if (AllocaInst *AI =
3392             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
3393       assert(AI != &OldAI && AI != &NewAI &&
3394              "Splittable transfers cannot reach the same alloca on both ends.");
3395       Pass.Worklist.insert(AI);
3396     }
3397 
3398     Type *OtherPtrTy = OtherPtr->getType();
3399     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
3400 
3401     // Compute the relative offset for the other pointer within the transfer.
3402     unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
3403     APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
3404     Align OtherAlign =
3405         (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne();
3406     OtherAlign =
3407         commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
3408 
3409     if (EmitMemCpy) {
3410       // Compute the other pointer, folding as much as possible to produce
3411       // a single, simple GEP in most cases.
3412       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3413                                 OtherPtr->getName() + ".");
3414 
3415       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3416       Type *SizeTy = II.getLength()->getType();
3417       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
3418 
3419       Value *DestPtr, *SrcPtr;
3420       MaybeAlign DestAlign, SrcAlign;
3421       // Note: IsDest is true iff we're copying into the new alloca slice
3422       if (IsDest) {
3423         DestPtr = OurPtr;
3424         DestAlign = SliceAlign;
3425         SrcPtr = OtherPtr;
3426         SrcAlign = OtherAlign;
3427       } else {
3428         DestPtr = OtherPtr;
3429         DestAlign = OtherAlign;
3430         SrcPtr = OurPtr;
3431         SrcAlign = SliceAlign;
3432       }
3433       CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
3434                                        Size, II.isVolatile());
3435       if (AATags)
3436         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3437 
3438       APInt Offset(DL.getIndexTypeSizeInBits(DestPtr->getType()), 0);
3439       if (IsDest) {
3440         migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8,
3441                          &II, New, DestPtr, nullptr, DL);
3442       } else if (AllocaInst *Base = dyn_cast<AllocaInst>(
3443                      DestPtr->stripAndAccumulateConstantOffsets(
3444                          DL, Offset, /*AllowNonInbounds*/ true))) {
3445         migrateDebugInfo(Base, IsSplit, Offset.getZExtValue() * 8,
3446                          SliceSize * 8, &II, New, DestPtr, nullptr, DL);
3447       }
3448       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3449       return false;
3450     }
3451 
3452     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
3453                          NewEndOffset == NewAllocaEndOffset;
3454     uint64_t Size = NewEndOffset - NewBeginOffset;
3455     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3456     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3457     unsigned NumElements = EndIndex - BeginIndex;
3458     IntegerType *SubIntTy =
3459         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3460 
3461     // Reset the other pointer type to match the register type we're going to
3462     // use, but using the address space of the original other pointer.
3463     Type *OtherTy;
3464     if (VecTy && !IsWholeAlloca) {
3465       if (NumElements == 1)
3466         OtherTy = VecTy->getElementType();
3467       else
3468         OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements);
3469     } else if (IntTy && !IsWholeAlloca) {
3470       OtherTy = SubIntTy;
3471     } else {
3472       OtherTy = NewAllocaTy;
3473     }
3474 
3475     Value *AdjPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3476                                    OtherPtr->getName() + ".");
3477     MaybeAlign SrcAlign = OtherAlign;
3478     MaybeAlign DstAlign = SliceAlign;
3479     if (!IsDest)
3480       std::swap(SrcAlign, DstAlign);
3481 
3482     Value *SrcPtr;
3483     Value *DstPtr;
3484 
3485     if (IsDest) {
3486       DstPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile());
3487       SrcPtr = AdjPtr;
3488     } else {
3489       DstPtr = AdjPtr;
3490       SrcPtr = getPtrToNewAI(II.getSourceAddressSpace(), II.isVolatile());
3491     }
3492 
3493     Value *Src;
3494     if (VecTy && !IsWholeAlloca && !IsDest) {
3495       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3496                                   NewAI.getAlign(), "load");
3497       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3498     } else if (IntTy && !IsWholeAlloca && !IsDest) {
3499       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3500                                   NewAI.getAlign(), "load");
3501       Src = convertValue(DL, IRB, Src, IntTy);
3502       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3503       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3504     } else {
3505       LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3506                                              II.isVolatile(), "copyload");
3507       Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3508                               LLVMContext::MD_access_group});
3509       if (AATags)
3510         Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3511       Src = Load;
3512     }
3513 
3514     if (VecTy && !IsWholeAlloca && IsDest) {
3515       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3516                                          NewAI.getAlign(), "oldload");
3517       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3518     } else if (IntTy && !IsWholeAlloca && IsDest) {
3519       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3520                                          NewAI.getAlign(), "oldload");
3521       Old = convertValue(DL, IRB, Old, IntTy);
3522       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3523       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3524       Src = convertValue(DL, IRB, Src, NewAllocaTy);
3525     }
3526 
3527     StoreInst *Store = cast<StoreInst>(
3528         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3529     Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access,
3530                              LLVMContext::MD_access_group});
3531     if (AATags)
3532       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3533 
3534     APInt Offset(DL.getIndexTypeSizeInBits(DstPtr->getType()), 0);
3535     if (IsDest) {
3536 
3537       migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II,
3538                        Store, DstPtr, Src, DL);
3539     } else if (AllocaInst *Base = dyn_cast<AllocaInst>(
3540                    DstPtr->stripAndAccumulateConstantOffsets(
3541                        DL, Offset, /*AllowNonInbounds*/ true))) {
3542       migrateDebugInfo(Base, IsSplit, Offset.getZExtValue() * 8, SliceSize * 8,
3543                        &II, Store, DstPtr, Src, DL);
3544     }
3545 
3546     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3547     return !II.isVolatile();
3548   }
3549 
3550   bool visitIntrinsicInst(IntrinsicInst &II) {
3551     assert((II.isLifetimeStartOrEnd() || II.isLaunderOrStripInvariantGroup() ||
3552             II.isDroppable()) &&
3553            "Unexpected intrinsic!");
3554     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3555 
3556     // Record this instruction for deletion.
3557     Pass.DeadInsts.push_back(&II);
3558 
3559     if (II.isDroppable()) {
3560       assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume");
3561       // TODO For now we forget assumed information, this can be improved.
3562       OldPtr->dropDroppableUsesIn(II);
3563       return true;
3564     }
3565 
3566     if (II.isLaunderOrStripInvariantGroup())
3567       return true;
3568 
3569     assert(II.getArgOperand(1) == OldPtr);
3570     // Lifetime intrinsics are only promotable if they cover the whole alloca.
3571     // Therefore, we drop lifetime intrinsics which don't cover the whole
3572     // alloca.
3573     // (In theory, intrinsics which partially cover an alloca could be
3574     // promoted, but PromoteMemToReg doesn't handle that case.)
3575     // FIXME: Check whether the alloca is promotable before dropping the
3576     // lifetime intrinsics?
3577     if (NewBeginOffset != NewAllocaBeginOffset ||
3578         NewEndOffset != NewAllocaEndOffset)
3579       return true;
3580 
3581     ConstantInt *Size =
3582         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3583                          NewEndOffset - NewBeginOffset);
3584     // Lifetime intrinsics always expect an i8* so directly get such a pointer
3585     // for the new alloca slice.
3586     Type *PointerTy = IRB.getPtrTy(OldPtr->getType()->getPointerAddressSpace());
3587     Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3588     Value *New;
3589     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3590       New = IRB.CreateLifetimeStart(Ptr, Size);
3591     else
3592       New = IRB.CreateLifetimeEnd(Ptr, Size);
3593 
3594     (void)New;
3595     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3596 
3597     return true;
3598   }
3599 
3600   void fixLoadStoreAlign(Instruction &Root) {
3601     // This algorithm implements the same visitor loop as
3602     // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3603     // or store found.
3604     SmallPtrSet<Instruction *, 4> Visited;
3605     SmallVector<Instruction *, 4> Uses;
3606     Visited.insert(&Root);
3607     Uses.push_back(&Root);
3608     do {
3609       Instruction *I = Uses.pop_back_val();
3610 
3611       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3612         LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
3613         continue;
3614       }
3615       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3616         SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
3617         continue;
3618       }
3619 
3620       assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3621              isa<PHINode>(I) || isa<SelectInst>(I) ||
3622              isa<GetElementPtrInst>(I));
3623       for (User *U : I->users())
3624         if (Visited.insert(cast<Instruction>(U)).second)
3625           Uses.push_back(cast<Instruction>(U));
3626     } while (!Uses.empty());
3627   }
3628 
3629   bool visitPHINode(PHINode &PN) {
3630     LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3631     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3632     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3633 
3634     // We would like to compute a new pointer in only one place, but have it be
3635     // as local as possible to the PHI. To do that, we re-use the location of
3636     // the old pointer, which necessarily must be in the right position to
3637     // dominate the PHI.
3638     IRBuilderBase::InsertPointGuard Guard(IRB);
3639     if (isa<PHINode>(OldPtr))
3640       IRB.SetInsertPoint(OldPtr->getParent(),
3641                          OldPtr->getParent()->getFirstInsertionPt());
3642     else
3643       IRB.SetInsertPoint(OldPtr);
3644     IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3645 
3646     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3647     // Replace the operands which were using the old pointer.
3648     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3649 
3650     LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3651     deleteIfTriviallyDead(OldPtr);
3652 
3653     // Fix the alignment of any loads or stores using this PHI node.
3654     fixLoadStoreAlign(PN);
3655 
3656     // PHIs can't be promoted on their own, but often can be speculated. We
3657     // check the speculation outside of the rewriter so that we see the
3658     // fully-rewritten alloca.
3659     PHIUsers.insert(&PN);
3660     return true;
3661   }
3662 
3663   bool visitSelectInst(SelectInst &SI) {
3664     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3665     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3666            "Pointer isn't an operand!");
3667     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3668     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3669 
3670     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3671     // Replace the operands which were using the old pointer.
3672     if (SI.getOperand(1) == OldPtr)
3673       SI.setOperand(1, NewPtr);
3674     if (SI.getOperand(2) == OldPtr)
3675       SI.setOperand(2, NewPtr);
3676 
3677     LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3678     deleteIfTriviallyDead(OldPtr);
3679 
3680     // Fix the alignment of any loads or stores using this select.
3681     fixLoadStoreAlign(SI);
3682 
3683     // Selects can't be promoted on their own, but often can be speculated. We
3684     // check the speculation outside of the rewriter so that we see the
3685     // fully-rewritten alloca.
3686     SelectUsers.insert(&SI);
3687     return true;
3688   }
3689 };
3690 
3691 /// Visitor to rewrite aggregate loads and stores as scalar.
3692 ///
3693 /// This pass aggressively rewrites all aggregate loads and stores on
3694 /// a particular pointer (or any pointer derived from it which we can identify)
3695 /// with scalar loads and stores.
3696 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3697   // Befriend the base class so it can delegate to private visit methods.
3698   friend class InstVisitor<AggLoadStoreRewriter, bool>;
3699 
3700   /// Queue of pointer uses to analyze and potentially rewrite.
3701   SmallVector<Use *, 8> Queue;
3702 
3703   /// Set to prevent us from cycling with phi nodes and loops.
3704   SmallPtrSet<User *, 8> Visited;
3705 
3706   /// The current pointer use being rewritten. This is used to dig up the used
3707   /// value (as opposed to the user).
3708   Use *U = nullptr;
3709 
3710   /// Used to calculate offsets, and hence alignment, of subobjects.
3711   const DataLayout &DL;
3712 
3713   IRBuilderTy &IRB;
3714 
3715 public:
3716   AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB)
3717       : DL(DL), IRB(IRB) {}
3718 
3719   /// Rewrite loads and stores through a pointer and all pointers derived from
3720   /// it.
3721   bool rewrite(Instruction &I) {
3722     LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3723     enqueueUsers(I);
3724     bool Changed = false;
3725     while (!Queue.empty()) {
3726       U = Queue.pop_back_val();
3727       Changed |= visit(cast<Instruction>(U->getUser()));
3728     }
3729     return Changed;
3730   }
3731 
3732 private:
3733   /// Enqueue all the users of the given instruction for further processing.
3734   /// This uses a set to de-duplicate users.
3735   void enqueueUsers(Instruction &I) {
3736     for (Use &U : I.uses())
3737       if (Visited.insert(U.getUser()).second)
3738         Queue.push_back(&U);
3739   }
3740 
3741   // Conservative default is to not rewrite anything.
3742   bool visitInstruction(Instruction &I) { return false; }
3743 
3744   /// Generic recursive split emission class.
3745   template <typename Derived> class OpSplitter {
3746   protected:
3747     /// The builder used to form new instructions.
3748     IRBuilderTy &IRB;
3749 
3750     /// The indices which to be used with insert- or extractvalue to select the
3751     /// appropriate value within the aggregate.
3752     SmallVector<unsigned, 4> Indices;
3753 
3754     /// The indices to a GEP instruction which will move Ptr to the correct slot
3755     /// within the aggregate.
3756     SmallVector<Value *, 4> GEPIndices;
3757 
3758     /// The base pointer of the original op, used as a base for GEPing the
3759     /// split operations.
3760     Value *Ptr;
3761 
3762     /// The base pointee type being GEPed into.
3763     Type *BaseTy;
3764 
3765     /// Known alignment of the base pointer.
3766     Align BaseAlign;
3767 
3768     /// To calculate offset of each component so we can correctly deduce
3769     /// alignments.
3770     const DataLayout &DL;
3771 
3772     /// Initialize the splitter with an insertion point, Ptr and start with a
3773     /// single zero GEP index.
3774     OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3775                Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB)
3776         : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy),
3777           BaseAlign(BaseAlign), DL(DL) {
3778       IRB.SetInsertPoint(InsertionPoint);
3779     }
3780 
3781   public:
3782     /// Generic recursive split emission routine.
3783     ///
3784     /// This method recursively splits an aggregate op (load or store) into
3785     /// scalar or vector ops. It splits recursively until it hits a single value
3786     /// and emits that single value operation via the template argument.
3787     ///
3788     /// The logic of this routine relies on GEPs and insertvalue and
3789     /// extractvalue all operating with the same fundamental index list, merely
3790     /// formatted differently (GEPs need actual values).
3791     ///
3792     /// \param Ty  The type being split recursively into smaller ops.
3793     /// \param Agg The aggregate value being built up or stored, depending on
3794     /// whether this is splitting a load or a store respectively.
3795     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3796       if (Ty->isSingleValueType()) {
3797         unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3798         return static_cast<Derived *>(this)->emitFunc(
3799             Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3800       }
3801 
3802       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3803         unsigned OldSize = Indices.size();
3804         (void)OldSize;
3805         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3806              ++Idx) {
3807           assert(Indices.size() == OldSize && "Did not return to the old size");
3808           Indices.push_back(Idx);
3809           GEPIndices.push_back(IRB.getInt32(Idx));
3810           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3811           GEPIndices.pop_back();
3812           Indices.pop_back();
3813         }
3814         return;
3815       }
3816 
3817       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3818         unsigned OldSize = Indices.size();
3819         (void)OldSize;
3820         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3821              ++Idx) {
3822           assert(Indices.size() == OldSize && "Did not return to the old size");
3823           Indices.push_back(Idx);
3824           GEPIndices.push_back(IRB.getInt32(Idx));
3825           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3826           GEPIndices.pop_back();
3827           Indices.pop_back();
3828         }
3829         return;
3830       }
3831 
3832       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3833     }
3834   };
3835 
3836   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3837     AAMDNodes AATags;
3838 
3839     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3840                    AAMDNodes AATags, Align BaseAlign, const DataLayout &DL,
3841                    IRBuilderTy &IRB)
3842         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL,
3843                                      IRB),
3844           AATags(AATags) {}
3845 
3846     /// Emit a leaf load of a single value. This is called at the leaves of the
3847     /// recursive emission to actually load values.
3848     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3849       assert(Ty->isSingleValueType());
3850       // Load the single value and insert it using the indices.
3851       Value *GEP =
3852           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3853       LoadInst *Load =
3854           IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
3855 
3856       APInt Offset(
3857           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3858       if (AATags &&
3859           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3860         Load->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3861 
3862       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3863       LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3864     }
3865   };
3866 
3867   bool visitLoadInst(LoadInst &LI) {
3868     assert(LI.getPointerOperand() == *U);
3869     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3870       return false;
3871 
3872     // We have an aggregate being loaded, split it apart.
3873     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3874     LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(),
3875                             getAdjustedAlignment(&LI, 0), DL, IRB);
3876     Value *V = PoisonValue::get(LI.getType());
3877     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3878     Visited.erase(&LI);
3879     LI.replaceAllUsesWith(V);
3880     LI.eraseFromParent();
3881     return true;
3882   }
3883 
3884   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3885     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3886                     AAMDNodes AATags, StoreInst *AggStore, Align BaseAlign,
3887                     const DataLayout &DL, IRBuilderTy &IRB)
3888         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3889                                       DL, IRB),
3890           AATags(AATags), AggStore(AggStore) {}
3891     AAMDNodes AATags;
3892     StoreInst *AggStore;
3893     /// Emit a leaf store of a single value. This is called at the leaves of the
3894     /// recursive emission to actually produce stores.
3895     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3896       assert(Ty->isSingleValueType());
3897       // Extract the single value and store it using the indices.
3898       //
3899       // The gep and extractvalue values are factored out of the CreateStore
3900       // call to make the output independent of the argument evaluation order.
3901       Value *ExtractValue =
3902           IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3903       Value *InBoundsGEP =
3904           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3905       StoreInst *Store =
3906           IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
3907 
3908       APInt Offset(
3909           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3910       GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset);
3911       if (AATags)
3912         Store->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3913 
3914       // migrateDebugInfo requires the base Alloca. Walk to it from this gep.
3915       // If we cannot (because there's an intervening non-const or unbounded
3916       // gep) then we wouldn't expect to see dbg.assign intrinsics linked to
3917       // this instruction.
3918       Value *Base = AggStore->getPointerOperand()->stripInBoundsOffsets();
3919       if (auto *OldAI = dyn_cast<AllocaInst>(Base)) {
3920         uint64_t SizeInBits =
3921             DL.getTypeSizeInBits(Store->getValueOperand()->getType());
3922         migrateDebugInfo(OldAI, /*IsSplit*/ true, Offset.getZExtValue() * 8,
3923                          SizeInBits, AggStore, Store,
3924                          Store->getPointerOperand(), Store->getValueOperand(),
3925                          DL);
3926       } else {
3927         assert(at::getAssignmentMarkers(Store).empty() &&
3928                at::getDPVAssignmentMarkers(Store).empty() &&
3929                "AT: unexpected debug.assign linked to store through "
3930                "unbounded GEP");
3931       }
3932       LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3933     }
3934   };
3935 
3936   bool visitStoreInst(StoreInst &SI) {
3937     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3938       return false;
3939     Value *V = SI.getValueOperand();
3940     if (V->getType()->isSingleValueType())
3941       return false;
3942 
3943     // We have an aggregate being stored, split it apart.
3944     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3945     StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), &SI,
3946                              getAdjustedAlignment(&SI, 0), DL, IRB);
3947     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3948     Visited.erase(&SI);
3949     // The stores replacing SI each have markers describing fragments of the
3950     // assignment so delete the assignment markers linked to SI.
3951     at::deleteAssignmentMarkers(&SI);
3952     SI.eraseFromParent();
3953     return true;
3954   }
3955 
3956   bool visitBitCastInst(BitCastInst &BC) {
3957     enqueueUsers(BC);
3958     return false;
3959   }
3960 
3961   bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3962     enqueueUsers(ASC);
3963     return false;
3964   }
3965 
3966   // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
3967   bool foldGEPSelect(GetElementPtrInst &GEPI) {
3968     if (!GEPI.hasAllConstantIndices())
3969       return false;
3970 
3971     SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand());
3972 
3973     LLVM_DEBUG(dbgs() << "  Rewriting gep(select) -> select(gep):"
3974                       << "\n    original: " << *Sel
3975                       << "\n              " << GEPI);
3976 
3977     IRB.SetInsertPoint(&GEPI);
3978     SmallVector<Value *, 4> Index(GEPI.indices());
3979     bool IsInBounds = GEPI.isInBounds();
3980 
3981     Type *Ty = GEPI.getSourceElementType();
3982     Value *True = Sel->getTrueValue();
3983     Value *NTrue = IRB.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep",
3984                                  IsInBounds);
3985 
3986     Value *False = Sel->getFalseValue();
3987 
3988     Value *NFalse = IRB.CreateGEP(Ty, False, Index,
3989                                   False->getName() + ".sroa.gep", IsInBounds);
3990 
3991     Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse,
3992                                    Sel->getName() + ".sroa.sel");
3993     Visited.erase(&GEPI);
3994     GEPI.replaceAllUsesWith(NSel);
3995     GEPI.eraseFromParent();
3996     Instruction *NSelI = cast<Instruction>(NSel);
3997     Visited.insert(NSelI);
3998     enqueueUsers(*NSelI);
3999 
4000     LLVM_DEBUG(dbgs() << "\n          to: " << *NTrue
4001                       << "\n              " << *NFalse
4002                       << "\n              " << *NSel << '\n');
4003 
4004     return true;
4005   }
4006 
4007   // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
4008   bool foldGEPPhi(GetElementPtrInst &GEPI) {
4009     if (!GEPI.hasAllConstantIndices())
4010       return false;
4011 
4012     PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand());
4013     if (GEPI.getParent() != PHI->getParent() ||
4014         llvm::any_of(PHI->incoming_values(), [](Value *In)
4015           { Instruction *I = dyn_cast<Instruction>(In);
4016             return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) ||
4017                    succ_empty(I->getParent()) ||
4018                    !I->getParent()->isLegalToHoistInto();
4019           }))
4020       return false;
4021 
4022     LLVM_DEBUG(dbgs() << "  Rewriting gep(phi) -> phi(gep):"
4023                       << "\n    original: " << *PHI
4024                       << "\n              " << GEPI
4025                       << "\n          to: ");
4026 
4027     SmallVector<Value *, 4> Index(GEPI.indices());
4028     bool IsInBounds = GEPI.isInBounds();
4029     IRB.SetInsertPoint(GEPI.getParent(), GEPI.getParent()->getFirstNonPHIIt());
4030     PHINode *NewPN = IRB.CreatePHI(GEPI.getType(), PHI->getNumIncomingValues(),
4031                                    PHI->getName() + ".sroa.phi");
4032     for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
4033       BasicBlock *B = PHI->getIncomingBlock(I);
4034       Value *NewVal = nullptr;
4035       int Idx = NewPN->getBasicBlockIndex(B);
4036       if (Idx >= 0) {
4037         NewVal = NewPN->getIncomingValue(Idx);
4038       } else {
4039         Instruction *In = cast<Instruction>(PHI->getIncomingValue(I));
4040 
4041         IRB.SetInsertPoint(In->getParent(), std::next(In->getIterator()));
4042         Type *Ty = GEPI.getSourceElementType();
4043         NewVal = IRB.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep",
4044                                IsInBounds);
4045       }
4046       NewPN->addIncoming(NewVal, B);
4047     }
4048 
4049     Visited.erase(&GEPI);
4050     GEPI.replaceAllUsesWith(NewPN);
4051     GEPI.eraseFromParent();
4052     Visited.insert(NewPN);
4053     enqueueUsers(*NewPN);
4054 
4055     LLVM_DEBUG(for (Value *In : NewPN->incoming_values())
4056                  dbgs() << "\n              " << *In;
4057                dbgs() << "\n              " << *NewPN << '\n');
4058 
4059     return true;
4060   }
4061 
4062   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
4063     if (isa<SelectInst>(GEPI.getPointerOperand()) &&
4064         foldGEPSelect(GEPI))
4065       return true;
4066 
4067     if (isa<PHINode>(GEPI.getPointerOperand()) &&
4068         foldGEPPhi(GEPI))
4069       return true;
4070 
4071     enqueueUsers(GEPI);
4072     return false;
4073   }
4074 
4075   bool visitPHINode(PHINode &PN) {
4076     enqueueUsers(PN);
4077     return false;
4078   }
4079 
4080   bool visitSelectInst(SelectInst &SI) {
4081     enqueueUsers(SI);
4082     return false;
4083   }
4084 };
4085 
4086 } // end anonymous namespace
4087 
4088 /// Strip aggregate type wrapping.
4089 ///
4090 /// This removes no-op aggregate types wrapping an underlying type. It will
4091 /// strip as many layers of types as it can without changing either the type
4092 /// size or the allocated size.
4093 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
4094   if (Ty->isSingleValueType())
4095     return Ty;
4096 
4097   uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedValue();
4098   uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue();
4099 
4100   Type *InnerTy;
4101   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
4102     InnerTy = ArrTy->getElementType();
4103   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
4104     const StructLayout *SL = DL.getStructLayout(STy);
4105     unsigned Index = SL->getElementContainingOffset(0);
4106     InnerTy = STy->getElementType(Index);
4107   } else {
4108     return Ty;
4109   }
4110 
4111   if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedValue() ||
4112       TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedValue())
4113     return Ty;
4114 
4115   return stripAggregateTypeWrapping(DL, InnerTy);
4116 }
4117 
4118 /// Try to find a partition of the aggregate type passed in for a given
4119 /// offset and size.
4120 ///
4121 /// This recurses through the aggregate type and tries to compute a subtype
4122 /// based on the offset and size. When the offset and size span a sub-section
4123 /// of an array, it will even compute a new array type for that sub-section,
4124 /// and the same for structs.
4125 ///
4126 /// Note that this routine is very strict and tries to find a partition of the
4127 /// type which produces the *exact* right offset and size. It is not forgiving
4128 /// when the size or offset cause either end of type-based partition to be off.
4129 /// Also, this is a best-effort routine. It is reasonable to give up and not
4130 /// return a type if necessary.
4131 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
4132                               uint64_t Size) {
4133   if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedValue() == Size)
4134     return stripAggregateTypeWrapping(DL, Ty);
4135   if (Offset > DL.getTypeAllocSize(Ty).getFixedValue() ||
4136       (DL.getTypeAllocSize(Ty).getFixedValue() - Offset) < Size)
4137     return nullptr;
4138 
4139   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
4140      Type *ElementTy;
4141      uint64_t TyNumElements;
4142      if (auto *AT = dyn_cast<ArrayType>(Ty)) {
4143        ElementTy = AT->getElementType();
4144        TyNumElements = AT->getNumElements();
4145      } else {
4146        // FIXME: This isn't right for vectors with non-byte-sized or
4147        // non-power-of-two sized elements.
4148        auto *VT = cast<FixedVectorType>(Ty);
4149        ElementTy = VT->getElementType();
4150        TyNumElements = VT->getNumElements();
4151     }
4152     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
4153     uint64_t NumSkippedElements = Offset / ElementSize;
4154     if (NumSkippedElements >= TyNumElements)
4155       return nullptr;
4156     Offset -= NumSkippedElements * ElementSize;
4157 
4158     // First check if we need to recurse.
4159     if (Offset > 0 || Size < ElementSize) {
4160       // Bail if the partition ends in a different array element.
4161       if ((Offset + Size) > ElementSize)
4162         return nullptr;
4163       // Recurse through the element type trying to peel off offset bytes.
4164       return getTypePartition(DL, ElementTy, Offset, Size);
4165     }
4166     assert(Offset == 0);
4167 
4168     if (Size == ElementSize)
4169       return stripAggregateTypeWrapping(DL, ElementTy);
4170     assert(Size > ElementSize);
4171     uint64_t NumElements = Size / ElementSize;
4172     if (NumElements * ElementSize != Size)
4173       return nullptr;
4174     return ArrayType::get(ElementTy, NumElements);
4175   }
4176 
4177   StructType *STy = dyn_cast<StructType>(Ty);
4178   if (!STy)
4179     return nullptr;
4180 
4181   const StructLayout *SL = DL.getStructLayout(STy);
4182 
4183   if (SL->getSizeInBits().isScalable())
4184     return nullptr;
4185 
4186   if (Offset >= SL->getSizeInBytes())
4187     return nullptr;
4188   uint64_t EndOffset = Offset + Size;
4189   if (EndOffset > SL->getSizeInBytes())
4190     return nullptr;
4191 
4192   unsigned Index = SL->getElementContainingOffset(Offset);
4193   Offset -= SL->getElementOffset(Index);
4194 
4195   Type *ElementTy = STy->getElementType(Index);
4196   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue();
4197   if (Offset >= ElementSize)
4198     return nullptr; // The offset points into alignment padding.
4199 
4200   // See if any partition must be contained by the element.
4201   if (Offset > 0 || Size < ElementSize) {
4202     if ((Offset + Size) > ElementSize)
4203       return nullptr;
4204     return getTypePartition(DL, ElementTy, Offset, Size);
4205   }
4206   assert(Offset == 0);
4207 
4208   if (Size == ElementSize)
4209     return stripAggregateTypeWrapping(DL, ElementTy);
4210 
4211   StructType::element_iterator EI = STy->element_begin() + Index,
4212                                EE = STy->element_end();
4213   if (EndOffset < SL->getSizeInBytes()) {
4214     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
4215     if (Index == EndIndex)
4216       return nullptr; // Within a single element and its padding.
4217 
4218     // Don't try to form "natural" types if the elements don't line up with the
4219     // expected size.
4220     // FIXME: We could potentially recurse down through the last element in the
4221     // sub-struct to find a natural end point.
4222     if (SL->getElementOffset(EndIndex) != EndOffset)
4223       return nullptr;
4224 
4225     assert(Index < EndIndex);
4226     EE = STy->element_begin() + EndIndex;
4227   }
4228 
4229   // Try to build up a sub-structure.
4230   StructType *SubTy =
4231       StructType::get(STy->getContext(), ArrayRef(EI, EE), STy->isPacked());
4232   const StructLayout *SubSL = DL.getStructLayout(SubTy);
4233   if (Size != SubSL->getSizeInBytes())
4234     return nullptr; // The sub-struct doesn't have quite the size needed.
4235 
4236   return SubTy;
4237 }
4238 
4239 /// Pre-split loads and stores to simplify rewriting.
4240 ///
4241 /// We want to break up the splittable load+store pairs as much as
4242 /// possible. This is important to do as a preprocessing step, as once we
4243 /// start rewriting the accesses to partitions of the alloca we lose the
4244 /// necessary information to correctly split apart paired loads and stores
4245 /// which both point into this alloca. The case to consider is something like
4246 /// the following:
4247 ///
4248 ///   %a = alloca [12 x i8]
4249 ///   %gep1 = getelementptr i8, ptr %a, i32 0
4250 ///   %gep2 = getelementptr i8, ptr %a, i32 4
4251 ///   %gep3 = getelementptr i8, ptr %a, i32 8
4252 ///   store float 0.0, ptr %gep1
4253 ///   store float 1.0, ptr %gep2
4254 ///   %v = load i64, ptr %gep1
4255 ///   store i64 %v, ptr %gep2
4256 ///   %f1 = load float, ptr %gep2
4257 ///   %f2 = load float, ptr %gep3
4258 ///
4259 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
4260 /// promote everything so we recover the 2 SSA values that should have been
4261 /// there all along.
4262 ///
4263 /// \returns true if any changes are made.
4264 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
4265   LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
4266 
4267   // Track the loads and stores which are candidates for pre-splitting here, in
4268   // the order they first appear during the partition scan. These give stable
4269   // iteration order and a basis for tracking which loads and stores we
4270   // actually split.
4271   SmallVector<LoadInst *, 4> Loads;
4272   SmallVector<StoreInst *, 4> Stores;
4273 
4274   // We need to accumulate the splits required of each load or store where we
4275   // can find them via a direct lookup. This is important to cross-check loads
4276   // and stores against each other. We also track the slice so that we can kill
4277   // all the slices that end up split.
4278   struct SplitOffsets {
4279     Slice *S;
4280     std::vector<uint64_t> Splits;
4281   };
4282   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
4283 
4284   // Track loads out of this alloca which cannot, for any reason, be pre-split.
4285   // This is important as we also cannot pre-split stores of those loads!
4286   // FIXME: This is all pretty gross. It means that we can be more aggressive
4287   // in pre-splitting when the load feeding the store happens to come from
4288   // a separate alloca. Put another way, the effectiveness of SROA would be
4289   // decreased by a frontend which just concatenated all of its local allocas
4290   // into one big flat alloca. But defeating such patterns is exactly the job
4291   // SROA is tasked with! Sadly, to not have this discrepancy we would have
4292   // change store pre-splitting to actually force pre-splitting of the load
4293   // that feeds it *and all stores*. That makes pre-splitting much harder, but
4294   // maybe it would make it more principled?
4295   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
4296 
4297   LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
4298   for (auto &P : AS.partitions()) {
4299     for (Slice &S : P) {
4300       Instruction *I = cast<Instruction>(S.getUse()->getUser());
4301       if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
4302         // If this is a load we have to track that it can't participate in any
4303         // pre-splitting. If this is a store of a load we have to track that
4304         // that load also can't participate in any pre-splitting.
4305         if (auto *LI = dyn_cast<LoadInst>(I))
4306           UnsplittableLoads.insert(LI);
4307         else if (auto *SI = dyn_cast<StoreInst>(I))
4308           if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
4309             UnsplittableLoads.insert(LI);
4310         continue;
4311       }
4312       assert(P.endOffset() > S.beginOffset() &&
4313              "Empty or backwards partition!");
4314 
4315       // Determine if this is a pre-splittable slice.
4316       if (auto *LI = dyn_cast<LoadInst>(I)) {
4317         assert(!LI->isVolatile() && "Cannot split volatile loads!");
4318 
4319         // The load must be used exclusively to store into other pointers for
4320         // us to be able to arbitrarily pre-split it. The stores must also be
4321         // simple to avoid changing semantics.
4322         auto IsLoadSimplyStored = [](LoadInst *LI) {
4323           for (User *LU : LI->users()) {
4324             auto *SI = dyn_cast<StoreInst>(LU);
4325             if (!SI || !SI->isSimple())
4326               return false;
4327           }
4328           return true;
4329         };
4330         if (!IsLoadSimplyStored(LI)) {
4331           UnsplittableLoads.insert(LI);
4332           continue;
4333         }
4334 
4335         Loads.push_back(LI);
4336       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
4337         if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
4338           // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
4339           continue;
4340         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
4341         if (!StoredLoad || !StoredLoad->isSimple())
4342           continue;
4343         assert(!SI->isVolatile() && "Cannot split volatile stores!");
4344 
4345         Stores.push_back(SI);
4346       } else {
4347         // Other uses cannot be pre-split.
4348         continue;
4349       }
4350 
4351       // Record the initial split.
4352       LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
4353       auto &Offsets = SplitOffsetsMap[I];
4354       assert(Offsets.Splits.empty() &&
4355              "Should not have splits the first time we see an instruction!");
4356       Offsets.S = &S;
4357       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
4358     }
4359 
4360     // Now scan the already split slices, and add a split for any of them which
4361     // we're going to pre-split.
4362     for (Slice *S : P.splitSliceTails()) {
4363       auto SplitOffsetsMapI =
4364           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
4365       if (SplitOffsetsMapI == SplitOffsetsMap.end())
4366         continue;
4367       auto &Offsets = SplitOffsetsMapI->second;
4368 
4369       assert(Offsets.S == S && "Found a mismatched slice!");
4370       assert(!Offsets.Splits.empty() &&
4371              "Cannot have an empty set of splits on the second partition!");
4372       assert(Offsets.Splits.back() ==
4373                  P.beginOffset() - Offsets.S->beginOffset() &&
4374              "Previous split does not end where this one begins!");
4375 
4376       // Record each split. The last partition's end isn't needed as the size
4377       // of the slice dictates that.
4378       if (S->endOffset() > P.endOffset())
4379         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
4380     }
4381   }
4382 
4383   // We may have split loads where some of their stores are split stores. For
4384   // such loads and stores, we can only pre-split them if their splits exactly
4385   // match relative to their starting offset. We have to verify this prior to
4386   // any rewriting.
4387   llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
4388     // Lookup the load we are storing in our map of split
4389     // offsets.
4390     auto *LI = cast<LoadInst>(SI->getValueOperand());
4391     // If it was completely unsplittable, then we're done,
4392     // and this store can't be pre-split.
4393     if (UnsplittableLoads.count(LI))
4394       return true;
4395 
4396     auto LoadOffsetsI = SplitOffsetsMap.find(LI);
4397     if (LoadOffsetsI == SplitOffsetsMap.end())
4398       return false; // Unrelated loads are definitely safe.
4399     auto &LoadOffsets = LoadOffsetsI->second;
4400 
4401     // Now lookup the store's offsets.
4402     auto &StoreOffsets = SplitOffsetsMap[SI];
4403 
4404     // If the relative offsets of each split in the load and
4405     // store match exactly, then we can split them and we
4406     // don't need to remove them here.
4407     if (LoadOffsets.Splits == StoreOffsets.Splits)
4408       return false;
4409 
4410     LLVM_DEBUG(dbgs() << "    Mismatched splits for load and store:\n"
4411                       << "      " << *LI << "\n"
4412                       << "      " << *SI << "\n");
4413 
4414     // We've found a store and load that we need to split
4415     // with mismatched relative splits. Just give up on them
4416     // and remove both instructions from our list of
4417     // candidates.
4418     UnsplittableLoads.insert(LI);
4419     return true;
4420   });
4421   // Now we have to go *back* through all the stores, because a later store may
4422   // have caused an earlier store's load to become unsplittable and if it is
4423   // unsplittable for the later store, then we can't rely on it being split in
4424   // the earlier store either.
4425   llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) {
4426     auto *LI = cast<LoadInst>(SI->getValueOperand());
4427     return UnsplittableLoads.count(LI);
4428   });
4429   // Once we've established all the loads that can't be split for some reason,
4430   // filter any that made it into our list out.
4431   llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) {
4432     return UnsplittableLoads.count(LI);
4433   });
4434 
4435   // If no loads or stores are left, there is no pre-splitting to be done for
4436   // this alloca.
4437   if (Loads.empty() && Stores.empty())
4438     return false;
4439 
4440   // From here on, we can't fail and will be building new accesses, so rig up
4441   // an IR builder.
4442   IRBuilderTy IRB(&AI);
4443 
4444   // Collect the new slices which we will merge into the alloca slices.
4445   SmallVector<Slice, 4> NewSlices;
4446 
4447   // Track any allocas we end up splitting loads and stores for so we iterate
4448   // on them.
4449   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
4450 
4451   // At this point, we have collected all of the loads and stores we can
4452   // pre-split, and the specific splits needed for them. We actually do the
4453   // splitting in a specific order in order to handle when one of the loads in
4454   // the value operand to one of the stores.
4455   //
4456   // First, we rewrite all of the split loads, and just accumulate each split
4457   // load in a parallel structure. We also build the slices for them and append
4458   // them to the alloca slices.
4459   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
4460   std::vector<LoadInst *> SplitLoads;
4461   const DataLayout &DL = AI.getModule()->getDataLayout();
4462   for (LoadInst *LI : Loads) {
4463     SplitLoads.clear();
4464 
4465     auto &Offsets = SplitOffsetsMap[LI];
4466     unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset();
4467     assert(LI->getType()->getIntegerBitWidth() % 8 == 0 &&
4468            "Load must have type size equal to store size");
4469     assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize &&
4470            "Load must be >= slice size");
4471 
4472     uint64_t BaseOffset = Offsets.S->beginOffset();
4473     assert(BaseOffset + SliceSize > BaseOffset &&
4474            "Cannot represent alloca access size using 64-bit integers!");
4475 
4476     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
4477     IRB.SetInsertPoint(LI);
4478 
4479     LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
4480 
4481     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4482     int Idx = 0, Size = Offsets.Splits.size();
4483     for (;;) {
4484       auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8);
4485       auto AS = LI->getPointerAddressSpace();
4486       auto *PartPtrTy = LI->getPointerOperandType();
4487       LoadInst *PLoad = IRB.CreateAlignedLoad(
4488           PartTy,
4489           getAdjustedPtr(IRB, DL, BasePtr,
4490                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4491                          PartPtrTy, BasePtr->getName() + "."),
4492           getAdjustedAlignment(LI, PartOffset),
4493           /*IsVolatile*/ false, LI->getName());
4494       PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4495                                 LLVMContext::MD_access_group});
4496 
4497       // Append this load onto the list of split loads so we can find it later
4498       // to rewrite the stores.
4499       SplitLoads.push_back(PLoad);
4500 
4501       // Now build a new slice for the alloca.
4502       NewSlices.push_back(
4503           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4504                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
4505                 /*IsSplittable*/ false));
4506       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4507                         << ", " << NewSlices.back().endOffset()
4508                         << "): " << *PLoad << "\n");
4509 
4510       // See if we've handled all the splits.
4511       if (Idx >= Size)
4512         break;
4513 
4514       // Setup the next partition.
4515       PartOffset = Offsets.Splits[Idx];
4516       ++Idx;
4517       PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset;
4518     }
4519 
4520     // Now that we have the split loads, do the slow walk over all uses of the
4521     // load and rewrite them as split stores, or save the split loads to use
4522     // below if the store is going to be split there anyways.
4523     bool DeferredStores = false;
4524     for (User *LU : LI->users()) {
4525       StoreInst *SI = cast<StoreInst>(LU);
4526       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
4527         DeferredStores = true;
4528         LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
4529                           << "\n");
4530         continue;
4531       }
4532 
4533       Value *StoreBasePtr = SI->getPointerOperand();
4534       IRB.SetInsertPoint(SI);
4535 
4536       LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
4537 
4538       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
4539         LoadInst *PLoad = SplitLoads[Idx];
4540         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
4541         auto *PartPtrTy = SI->getPointerOperandType();
4542 
4543         auto AS = SI->getPointerAddressSpace();
4544         StoreInst *PStore = IRB.CreateAlignedStore(
4545             PLoad,
4546             getAdjustedPtr(IRB, DL, StoreBasePtr,
4547                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4548                            PartPtrTy, StoreBasePtr->getName() + "."),
4549             getAdjustedAlignment(SI, PartOffset),
4550             /*IsVolatile*/ false);
4551         PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4552                                    LLVMContext::MD_access_group,
4553                                    LLVMContext::MD_DIAssignID});
4554         LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
4555       }
4556 
4557       // We want to immediately iterate on any allocas impacted by splitting
4558       // this store, and we have to track any promotable alloca (indicated by
4559       // a direct store) as needing to be resplit because it is no longer
4560       // promotable.
4561       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
4562         ResplitPromotableAllocas.insert(OtherAI);
4563         Worklist.insert(OtherAI);
4564       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4565                      StoreBasePtr->stripInBoundsOffsets())) {
4566         Worklist.insert(OtherAI);
4567       }
4568 
4569       // Mark the original store as dead.
4570       DeadInsts.push_back(SI);
4571     }
4572 
4573     // Save the split loads if there are deferred stores among the users.
4574     if (DeferredStores)
4575       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
4576 
4577     // Mark the original load as dead and kill the original slice.
4578     DeadInsts.push_back(LI);
4579     Offsets.S->kill();
4580   }
4581 
4582   // Second, we rewrite all of the split stores. At this point, we know that
4583   // all loads from this alloca have been split already. For stores of such
4584   // loads, we can simply look up the pre-existing split loads. For stores of
4585   // other loads, we split those loads first and then write split stores of
4586   // them.
4587   for (StoreInst *SI : Stores) {
4588     auto *LI = cast<LoadInst>(SI->getValueOperand());
4589     IntegerType *Ty = cast<IntegerType>(LI->getType());
4590     assert(Ty->getBitWidth() % 8 == 0);
4591     uint64_t StoreSize = Ty->getBitWidth() / 8;
4592     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
4593 
4594     auto &Offsets = SplitOffsetsMap[SI];
4595     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
4596            "Slice size should always match load size exactly!");
4597     uint64_t BaseOffset = Offsets.S->beginOffset();
4598     assert(BaseOffset + StoreSize > BaseOffset &&
4599            "Cannot represent alloca access size using 64-bit integers!");
4600 
4601     Value *LoadBasePtr = LI->getPointerOperand();
4602     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
4603 
4604     LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
4605 
4606     // Check whether we have an already split load.
4607     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
4608     std::vector<LoadInst *> *SplitLoads = nullptr;
4609     if (SplitLoadsMapI != SplitLoadsMap.end()) {
4610       SplitLoads = &SplitLoadsMapI->second;
4611       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
4612              "Too few split loads for the number of splits in the store!");
4613     } else {
4614       LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
4615     }
4616 
4617     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4618     int Idx = 0, Size = Offsets.Splits.size();
4619     for (;;) {
4620       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4621       auto *LoadPartPtrTy = LI->getPointerOperandType();
4622       auto *StorePartPtrTy = SI->getPointerOperandType();
4623 
4624       // Either lookup a split load or create one.
4625       LoadInst *PLoad;
4626       if (SplitLoads) {
4627         PLoad = (*SplitLoads)[Idx];
4628       } else {
4629         IRB.SetInsertPoint(LI);
4630         auto AS = LI->getPointerAddressSpace();
4631         PLoad = IRB.CreateAlignedLoad(
4632             PartTy,
4633             getAdjustedPtr(IRB, DL, LoadBasePtr,
4634                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4635                            LoadPartPtrTy, LoadBasePtr->getName() + "."),
4636             getAdjustedAlignment(LI, PartOffset),
4637             /*IsVolatile*/ false, LI->getName());
4638         PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4639                                   LLVMContext::MD_access_group});
4640       }
4641 
4642       // And store this partition.
4643       IRB.SetInsertPoint(SI);
4644       auto AS = SI->getPointerAddressSpace();
4645       StoreInst *PStore = IRB.CreateAlignedStore(
4646           PLoad,
4647           getAdjustedPtr(IRB, DL, StoreBasePtr,
4648                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4649                          StorePartPtrTy, StoreBasePtr->getName() + "."),
4650           getAdjustedAlignment(SI, PartOffset),
4651           /*IsVolatile*/ false);
4652       PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access,
4653                                  LLVMContext::MD_access_group});
4654 
4655       // Now build a new slice for the alloca.
4656       NewSlices.push_back(
4657           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4658                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4659                 /*IsSplittable*/ false));
4660       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4661                         << ", " << NewSlices.back().endOffset()
4662                         << "): " << *PStore << "\n");
4663       if (!SplitLoads) {
4664         LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4665       }
4666 
4667       // See if we've finished all the splits.
4668       if (Idx >= Size)
4669         break;
4670 
4671       // Setup the next partition.
4672       PartOffset = Offsets.Splits[Idx];
4673       ++Idx;
4674       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4675     }
4676 
4677     // We want to immediately iterate on any allocas impacted by splitting
4678     // this load, which is only relevant if it isn't a load of this alloca and
4679     // thus we didn't already split the loads above. We also have to keep track
4680     // of any promotable allocas we split loads on as they can no longer be
4681     // promoted.
4682     if (!SplitLoads) {
4683       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4684         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4685         ResplitPromotableAllocas.insert(OtherAI);
4686         Worklist.insert(OtherAI);
4687       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4688                      LoadBasePtr->stripInBoundsOffsets())) {
4689         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4690         Worklist.insert(OtherAI);
4691       }
4692     }
4693 
4694     // Mark the original store as dead now that we've split it up and kill its
4695     // slice. Note that we leave the original load in place unless this store
4696     // was its only use. It may in turn be split up if it is an alloca load
4697     // for some other alloca, but it may be a normal load. This may introduce
4698     // redundant loads, but where those can be merged the rest of the optimizer
4699     // should handle the merging, and this uncovers SSA splits which is more
4700     // important. In practice, the original loads will almost always be fully
4701     // split and removed eventually, and the splits will be merged by any
4702     // trivial CSE, including instcombine.
4703     if (LI->hasOneUse()) {
4704       assert(*LI->user_begin() == SI && "Single use isn't this store!");
4705       DeadInsts.push_back(LI);
4706     }
4707     DeadInsts.push_back(SI);
4708     Offsets.S->kill();
4709   }
4710 
4711   // Remove the killed slices that have ben pre-split.
4712   llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); });
4713 
4714   // Insert our new slices. This will sort and merge them into the sorted
4715   // sequence.
4716   AS.insert(NewSlices);
4717 
4718   LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4719 #ifndef NDEBUG
4720   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4721     LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4722 #endif
4723 
4724   // Finally, don't try to promote any allocas that new require re-splitting.
4725   // They have already been added to the worklist above.
4726   llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) {
4727     return ResplitPromotableAllocas.count(AI);
4728   });
4729 
4730   return true;
4731 }
4732 
4733 /// Rewrite an alloca partition's users.
4734 ///
4735 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4736 /// to rewrite uses of an alloca partition to be conducive for SSA value
4737 /// promotion. If the partition needs a new, more refined alloca, this will
4738 /// build that new alloca, preserving as much type information as possible, and
4739 /// rewrite the uses of the old alloca to point at the new one and have the
4740 /// appropriate new offsets. It also evaluates how successful the rewrite was
4741 /// at enabling promotion and if it was successful queues the alloca to be
4742 /// promoted.
4743 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4744                                    Partition &P) {
4745   // Try to compute a friendly type for this partition of the alloca. This
4746   // won't always succeed, in which case we fall back to a legal integer type
4747   // or an i8 array of an appropriate size.
4748   Type *SliceTy = nullptr;
4749   VectorType *SliceVecTy = nullptr;
4750   const DataLayout &DL = AI.getModule()->getDataLayout();
4751   std::pair<Type *, IntegerType *> CommonUseTy =
4752       findCommonType(P.begin(), P.end(), P.endOffset());
4753   // Do all uses operate on the same type?
4754   if (CommonUseTy.first)
4755     if (DL.getTypeAllocSize(CommonUseTy.first).getFixedValue() >= P.size()) {
4756       SliceTy = CommonUseTy.first;
4757       SliceVecTy = dyn_cast<VectorType>(SliceTy);
4758     }
4759   // If not, can we find an appropriate subtype in the original allocated type?
4760   if (!SliceTy)
4761     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4762                                                  P.beginOffset(), P.size()))
4763       SliceTy = TypePartitionTy;
4764 
4765   // If still not, can we use the largest bitwidth integer type used?
4766   if (!SliceTy && CommonUseTy.second)
4767     if (DL.getTypeAllocSize(CommonUseTy.second).getFixedValue() >= P.size()) {
4768       SliceTy = CommonUseTy.second;
4769       SliceVecTy = dyn_cast<VectorType>(SliceTy);
4770     }
4771   if ((!SliceTy || (SliceTy->isArrayTy() &&
4772                     SliceTy->getArrayElementType()->isIntegerTy())) &&
4773       DL.isLegalInteger(P.size() * 8)) {
4774     SliceTy = Type::getIntNTy(*C, P.size() * 8);
4775   }
4776 
4777   // If the common use types are not viable for promotion then attempt to find
4778   // another type that is viable.
4779   if (SliceVecTy && !checkVectorTypeForPromotion(P, SliceVecTy, DL))
4780     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4781                                                  P.beginOffset(), P.size())) {
4782       VectorType *TypePartitionVecTy = dyn_cast<VectorType>(TypePartitionTy);
4783       if (TypePartitionVecTy &&
4784           checkVectorTypeForPromotion(P, TypePartitionVecTy, DL))
4785         SliceTy = TypePartitionTy;
4786     }
4787 
4788   if (!SliceTy)
4789     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4790   assert(DL.getTypeAllocSize(SliceTy).getFixedValue() >= P.size());
4791 
4792   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4793 
4794   VectorType *VecTy =
4795       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4796   if (VecTy)
4797     SliceTy = VecTy;
4798 
4799   // Check for the case where we're going to rewrite to a new alloca of the
4800   // exact same type as the original, and with the same access offsets. In that
4801   // case, re-use the existing alloca, but still run through the rewriter to
4802   // perform phi and select speculation.
4803   // P.beginOffset() can be non-zero even with the same type in a case with
4804   // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4805   AllocaInst *NewAI;
4806   if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4807     NewAI = &AI;
4808     // FIXME: We should be able to bail at this point with "nothing changed".
4809     // FIXME: We might want to defer PHI speculation until after here.
4810     // FIXME: return nullptr;
4811   } else {
4812     // Make sure the alignment is compatible with P.beginOffset().
4813     const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
4814     // If we will get at least this much alignment from the type alone, leave
4815     // the alloca's alignment unconstrained.
4816     const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy);
4817     NewAI = new AllocaInst(
4818         SliceTy, AI.getAddressSpace(), nullptr,
4819         IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
4820         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4821     // Copy the old AI debug location over to the new one.
4822     NewAI->setDebugLoc(AI.getDebugLoc());
4823     ++NumNewAllocas;
4824   }
4825 
4826   LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4827                     << "[" << P.beginOffset() << "," << P.endOffset()
4828                     << ") to: " << *NewAI << "\n");
4829 
4830   // Track the high watermark on the worklist as it is only relevant for
4831   // promoted allocas. We will reset it to this point if the alloca is not in
4832   // fact scheduled for promotion.
4833   unsigned PPWOldSize = PostPromotionWorklist.size();
4834   unsigned NumUses = 0;
4835   SmallSetVector<PHINode *, 8> PHIUsers;
4836   SmallSetVector<SelectInst *, 8> SelectUsers;
4837 
4838   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4839                                P.endOffset(), IsIntegerPromotable, VecTy,
4840                                PHIUsers, SelectUsers);
4841   bool Promotable = true;
4842   for (Slice *S : P.splitSliceTails()) {
4843     Promotable &= Rewriter.visit(S);
4844     ++NumUses;
4845   }
4846   for (Slice &S : P) {
4847     Promotable &= Rewriter.visit(&S);
4848     ++NumUses;
4849   }
4850 
4851   NumAllocaPartitionUses += NumUses;
4852   MaxUsesPerAllocaPartition.updateMax(NumUses);
4853 
4854   // Now that we've processed all the slices in the new partition, check if any
4855   // PHIs or Selects would block promotion.
4856   for (PHINode *PHI : PHIUsers)
4857     if (!isSafePHIToSpeculate(*PHI)) {
4858       Promotable = false;
4859       PHIUsers.clear();
4860       SelectUsers.clear();
4861       break;
4862     }
4863 
4864   SmallVector<std::pair<SelectInst *, RewriteableMemOps>, 2>
4865       NewSelectsToRewrite;
4866   NewSelectsToRewrite.reserve(SelectUsers.size());
4867   for (SelectInst *Sel : SelectUsers) {
4868     std::optional<RewriteableMemOps> Ops =
4869         isSafeSelectToSpeculate(*Sel, PreserveCFG);
4870     if (!Ops) {
4871       Promotable = false;
4872       PHIUsers.clear();
4873       SelectUsers.clear();
4874       NewSelectsToRewrite.clear();
4875       break;
4876     }
4877     NewSelectsToRewrite.emplace_back(std::make_pair(Sel, *Ops));
4878   }
4879 
4880   if (Promotable) {
4881     for (Use *U : AS.getDeadUsesIfPromotable()) {
4882       auto *OldInst = dyn_cast<Instruction>(U->get());
4883       Value::dropDroppableUse(*U);
4884       if (OldInst)
4885         if (isInstructionTriviallyDead(OldInst))
4886           DeadInsts.push_back(OldInst);
4887     }
4888     if (PHIUsers.empty() && SelectUsers.empty()) {
4889       // Promote the alloca.
4890       PromotableAllocas.push_back(NewAI);
4891     } else {
4892       // If we have either PHIs or Selects to speculate, add them to those
4893       // worklists and re-queue the new alloca so that we promote in on the
4894       // next iteration.
4895       for (PHINode *PHIUser : PHIUsers)
4896         SpeculatablePHIs.insert(PHIUser);
4897       SelectsToRewrite.reserve(SelectsToRewrite.size() +
4898                                NewSelectsToRewrite.size());
4899       for (auto &&KV : llvm::make_range(
4900                std::make_move_iterator(NewSelectsToRewrite.begin()),
4901                std::make_move_iterator(NewSelectsToRewrite.end())))
4902         SelectsToRewrite.insert(std::move(KV));
4903       Worklist.insert(NewAI);
4904     }
4905   } else {
4906     // Drop any post-promotion work items if promotion didn't happen.
4907     while (PostPromotionWorklist.size() > PPWOldSize)
4908       PostPromotionWorklist.pop_back();
4909 
4910     // We couldn't promote and we didn't create a new partition, nothing
4911     // happened.
4912     if (NewAI == &AI)
4913       return nullptr;
4914 
4915     // If we can't promote the alloca, iterate on it to check for new
4916     // refinements exposed by splitting the current alloca. Don't iterate on an
4917     // alloca which didn't actually change and didn't get promoted.
4918     Worklist.insert(NewAI);
4919   }
4920 
4921   return NewAI;
4922 }
4923 
4924 static void insertNewDbgInst(DIBuilder &DIB, DbgDeclareInst *Orig,
4925                              AllocaInst *NewAddr, DIExpression *NewFragmentExpr,
4926                              Instruction *BeforeInst) {
4927   DIB.insertDeclare(NewAddr, Orig->getVariable(), NewFragmentExpr,
4928                     Orig->getDebugLoc(), BeforeInst);
4929 }
4930 static void insertNewDbgInst(DIBuilder &DIB, DbgAssignIntrinsic *Orig,
4931                              AllocaInst *NewAddr, DIExpression *NewFragmentExpr,
4932                              Instruction *BeforeInst) {
4933   (void)BeforeInst;
4934   if (!NewAddr->hasMetadata(LLVMContext::MD_DIAssignID)) {
4935     NewAddr->setMetadata(LLVMContext::MD_DIAssignID,
4936                          DIAssignID::getDistinct(NewAddr->getContext()));
4937   }
4938   auto *NewAssign = DIB.insertDbgAssign(
4939       NewAddr, Orig->getValue(), Orig->getVariable(), NewFragmentExpr, NewAddr,
4940       Orig->getAddressExpression(), Orig->getDebugLoc());
4941   LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign << "\n");
4942   (void)NewAssign;
4943 }
4944 static void insertNewDbgInst(DIBuilder &DIB, DPValue *Orig, AllocaInst *NewAddr,
4945                              DIExpression *NewFragmentExpr,
4946                              Instruction *BeforeInst) {
4947   (void)DIB;
4948   if (Orig->isDbgDeclare()) {
4949     DPValue *DPV = DPValue::createDPVDeclare(
4950         NewAddr, Orig->getVariable(), NewFragmentExpr, Orig->getDebugLoc());
4951     BeforeInst->getParent()->insertDPValueBefore(DPV,
4952                                                  BeforeInst->getIterator());
4953     return;
4954   }
4955   if (!NewAddr->hasMetadata(LLVMContext::MD_DIAssignID)) {
4956     NewAddr->setMetadata(LLVMContext::MD_DIAssignID,
4957                          DIAssignID::getDistinct(NewAddr->getContext()));
4958   }
4959   auto *NewAssign = DPValue::createLinkedDPVAssign(
4960       NewAddr, Orig->getValue(), Orig->getVariable(), NewFragmentExpr, NewAddr,
4961       Orig->getAddressExpression(), Orig->getDebugLoc());
4962   LLVM_DEBUG(dbgs() << "Created new DPVAssign: " << *NewAssign << "\n");
4963   (void)NewAssign;
4964 }
4965 
4966 /// Walks the slices of an alloca and form partitions based on them,
4967 /// rewriting each of their uses.
4968 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4969   if (AS.begin() == AS.end())
4970     return false;
4971 
4972   unsigned NumPartitions = 0;
4973   bool Changed = false;
4974   const DataLayout &DL = AI.getModule()->getDataLayout();
4975 
4976   // First try to pre-split loads and stores.
4977   Changed |= presplitLoadsAndStores(AI, AS);
4978 
4979   // Now that we have identified any pre-splitting opportunities,
4980   // mark loads and stores unsplittable except for the following case.
4981   // We leave a slice splittable if all other slices are disjoint or fully
4982   // included in the slice, such as whole-alloca loads and stores.
4983   // If we fail to split these during pre-splitting, we want to force them
4984   // to be rewritten into a partition.
4985   bool IsSorted = true;
4986 
4987   uint64_t AllocaSize =
4988       DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue();
4989   const uint64_t MaxBitVectorSize = 1024;
4990   if (AllocaSize <= MaxBitVectorSize) {
4991     // If a byte boundary is included in any load or store, a slice starting or
4992     // ending at the boundary is not splittable.
4993     SmallBitVector SplittableOffset(AllocaSize + 1, true);
4994     for (Slice &S : AS)
4995       for (unsigned O = S.beginOffset() + 1;
4996            O < S.endOffset() && O < AllocaSize; O++)
4997         SplittableOffset.reset(O);
4998 
4999     for (Slice &S : AS) {
5000       if (!S.isSplittable())
5001         continue;
5002 
5003       if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
5004           (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
5005         continue;
5006 
5007       if (isa<LoadInst>(S.getUse()->getUser()) ||
5008           isa<StoreInst>(S.getUse()->getUser())) {
5009         S.makeUnsplittable();
5010         IsSorted = false;
5011       }
5012     }
5013   }
5014   else {
5015     // We only allow whole-alloca splittable loads and stores
5016     // for a large alloca to avoid creating too large BitVector.
5017     for (Slice &S : AS) {
5018       if (!S.isSplittable())
5019         continue;
5020 
5021       if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
5022         continue;
5023 
5024       if (isa<LoadInst>(S.getUse()->getUser()) ||
5025           isa<StoreInst>(S.getUse()->getUser())) {
5026         S.makeUnsplittable();
5027         IsSorted = false;
5028       }
5029     }
5030   }
5031 
5032   if (!IsSorted)
5033     llvm::sort(AS);
5034 
5035   /// Describes the allocas introduced by rewritePartition in order to migrate
5036   /// the debug info.
5037   struct Fragment {
5038     AllocaInst *Alloca;
5039     uint64_t Offset;
5040     uint64_t Size;
5041     Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
5042       : Alloca(AI), Offset(O), Size(S) {}
5043   };
5044   SmallVector<Fragment, 4> Fragments;
5045 
5046   // Rewrite each partition.
5047   for (auto &P : AS.partitions()) {
5048     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
5049       Changed = true;
5050       if (NewAI != &AI) {
5051         uint64_t SizeOfByte = 8;
5052         uint64_t AllocaSize =
5053             DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedValue();
5054         // Don't include any padding.
5055         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
5056         Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
5057       }
5058     }
5059     ++NumPartitions;
5060   }
5061 
5062   NumAllocaPartitions += NumPartitions;
5063   MaxPartitionsPerAlloca.updateMax(NumPartitions);
5064 
5065   // Migrate debug information from the old alloca to the new alloca(s)
5066   // and the individual partitions.
5067   auto MigrateOne = [&](auto *DbgVariable) {
5068     auto *Expr = DbgVariable->getExpression();
5069     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
5070     uint64_t AllocaSize =
5071         DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedValue();
5072     for (auto Fragment : Fragments) {
5073       // Create a fragment expression describing the new partition or reuse AI's
5074       // expression if there is only one partition.
5075       auto *FragmentExpr = Expr;
5076       if (Fragment.Size < AllocaSize || Expr->isFragment()) {
5077         // If this alloca is already a scalar replacement of a larger aggregate,
5078         // Fragment.Offset describes the offset inside the scalar.
5079         auto ExprFragment = Expr->getFragmentInfo();
5080         uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
5081         uint64_t Start = Offset + Fragment.Offset;
5082         uint64_t Size = Fragment.Size;
5083         if (ExprFragment) {
5084           uint64_t AbsEnd =
5085               ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
5086           if (Start >= AbsEnd) {
5087             // No need to describe a SROAed padding.
5088             continue;
5089           }
5090           Size = std::min(Size, AbsEnd - Start);
5091         }
5092         // The new, smaller fragment is stenciled out from the old fragment.
5093         if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
5094           assert(Start >= OrigFragment->OffsetInBits &&
5095                  "new fragment is outside of original fragment");
5096           Start -= OrigFragment->OffsetInBits;
5097         }
5098 
5099         // The alloca may be larger than the variable.
5100         auto VarSize = DbgVariable->getVariable()->getSizeInBits();
5101         if (VarSize) {
5102           if (Size > *VarSize)
5103             Size = *VarSize;
5104           if (Size == 0 || Start + Size > *VarSize)
5105             continue;
5106         }
5107 
5108         // Avoid creating a fragment expression that covers the entire variable.
5109         if (!VarSize || *VarSize != Size) {
5110           if (auto E =
5111                   DIExpression::createFragmentExpression(Expr, Start, Size))
5112             FragmentExpr = *E;
5113           else
5114             continue;
5115         }
5116       }
5117 
5118       // Remove any existing intrinsics on the new alloca describing
5119       // the variable fragment.
5120       auto RemoveOne = [DbgVariable](auto *OldDII) {
5121         auto SameVariableFragment = [](const auto *LHS, const auto *RHS) {
5122           return LHS->getVariable() == RHS->getVariable() &&
5123                  LHS->getDebugLoc()->getInlinedAt() ==
5124                      RHS->getDebugLoc()->getInlinedAt();
5125         };
5126         if (SameVariableFragment(OldDII, DbgVariable))
5127           OldDII->eraseFromParent();
5128       };
5129       for_each(findDbgDeclares(Fragment.Alloca), RemoveOne);
5130       for_each(findDPVDeclares(Fragment.Alloca), RemoveOne);
5131 
5132       insertNewDbgInst(DIB, DbgVariable, Fragment.Alloca, FragmentExpr, &AI);
5133     }
5134   };
5135 
5136   // Migrate debug information from the old alloca to the new alloca(s)
5137   // and the individual partitions.
5138   for_each(findDbgDeclares(&AI), MigrateOne);
5139   for_each(findDPVDeclares(&AI), MigrateOne);
5140   for_each(at::getAssignmentMarkers(&AI), MigrateOne);
5141   for_each(at::getDPVAssignmentMarkers(&AI), MigrateOne);
5142 
5143   return Changed;
5144 }
5145 
5146 /// Clobber a use with poison, deleting the used value if it becomes dead.
5147 void SROA::clobberUse(Use &U) {
5148   Value *OldV = U;
5149   // Replace the use with an poison value.
5150   U = PoisonValue::get(OldV->getType());
5151 
5152   // Check for this making an instruction dead. We have to garbage collect
5153   // all the dead instructions to ensure the uses of any alloca end up being
5154   // minimal.
5155   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
5156     if (isInstructionTriviallyDead(OldI)) {
5157       DeadInsts.push_back(OldI);
5158     }
5159 }
5160 
5161 /// Analyze an alloca for SROA.
5162 ///
5163 /// This analyzes the alloca to ensure we can reason about it, builds
5164 /// the slices of the alloca, and then hands it off to be split and
5165 /// rewritten as needed.
5166 std::pair<bool /*Changed*/, bool /*CFGChanged*/>
5167 SROA::runOnAlloca(AllocaInst &AI) {
5168   bool Changed = false;
5169   bool CFGChanged = false;
5170 
5171   LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
5172   ++NumAllocasAnalyzed;
5173 
5174   // Special case dead allocas, as they're trivial.
5175   if (AI.use_empty()) {
5176     AI.eraseFromParent();
5177     Changed = true;
5178     return {Changed, CFGChanged};
5179   }
5180   const DataLayout &DL = AI.getModule()->getDataLayout();
5181 
5182   // Skip alloca forms that this analysis can't handle.
5183   auto *AT = AI.getAllocatedType();
5184   TypeSize Size = DL.getTypeAllocSize(AT);
5185   if (AI.isArrayAllocation() || !AT->isSized() || Size.isScalable() ||
5186       Size.getFixedValue() == 0)
5187     return {Changed, CFGChanged};
5188 
5189   // First, split any FCA loads and stores touching this alloca to promote
5190   // better splitting and promotion opportunities.
5191   IRBuilderTy IRB(&AI);
5192   AggLoadStoreRewriter AggRewriter(DL, IRB);
5193   Changed |= AggRewriter.rewrite(AI);
5194 
5195   // Build the slices using a recursive instruction-visiting builder.
5196   AllocaSlices AS(DL, AI);
5197   LLVM_DEBUG(AS.print(dbgs()));
5198   if (AS.isEscaped())
5199     return {Changed, CFGChanged};
5200 
5201   // Delete all the dead users of this alloca before splitting and rewriting it.
5202   for (Instruction *DeadUser : AS.getDeadUsers()) {
5203     // Free up everything used by this instruction.
5204     for (Use &DeadOp : DeadUser->operands())
5205       clobberUse(DeadOp);
5206 
5207     // Now replace the uses of this instruction.
5208     DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType()));
5209 
5210     // And mark it for deletion.
5211     DeadInsts.push_back(DeadUser);
5212     Changed = true;
5213   }
5214   for (Use *DeadOp : AS.getDeadOperands()) {
5215     clobberUse(*DeadOp);
5216     Changed = true;
5217   }
5218 
5219   // No slices to split. Leave the dead alloca for a later pass to clean up.
5220   if (AS.begin() == AS.end())
5221     return {Changed, CFGChanged};
5222 
5223   Changed |= splitAlloca(AI, AS);
5224 
5225   LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
5226   while (!SpeculatablePHIs.empty())
5227     speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val());
5228 
5229   LLVM_DEBUG(dbgs() << "  Rewriting Selects\n");
5230   auto RemainingSelectsToRewrite = SelectsToRewrite.takeVector();
5231   while (!RemainingSelectsToRewrite.empty()) {
5232     const auto [K, V] = RemainingSelectsToRewrite.pop_back_val();
5233     CFGChanged |=
5234         rewriteSelectInstMemOps(*K, V, IRB, PreserveCFG ? nullptr : DTU);
5235   }
5236 
5237   return {Changed, CFGChanged};
5238 }
5239 
5240 /// Delete the dead instructions accumulated in this run.
5241 ///
5242 /// Recursively deletes the dead instructions we've accumulated. This is done
5243 /// at the very end to maximize locality of the recursive delete and to
5244 /// minimize the problems of invalidated instruction pointers as such pointers
5245 /// are used heavily in the intermediate stages of the algorithm.
5246 ///
5247 /// We also record the alloca instructions deleted here so that they aren't
5248 /// subsequently handed to mem2reg to promote.
5249 bool SROA::deleteDeadInstructions(
5250     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
5251   bool Changed = false;
5252   while (!DeadInsts.empty()) {
5253     Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
5254     if (!I)
5255       continue;
5256     LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
5257 
5258     // If the instruction is an alloca, find the possible dbg.declare connected
5259     // to it, and remove it too. We must do this before calling RAUW or we will
5260     // not be able to find it.
5261     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
5262       DeletedAllocas.insert(AI);
5263       for (DbgDeclareInst *OldDII : findDbgDeclares(AI))
5264         OldDII->eraseFromParent();
5265       for (DPValue *OldDII : findDPVDeclares(AI))
5266         OldDII->eraseFromParent();
5267     }
5268 
5269     at::deleteAssignmentMarkers(I);
5270     I->replaceAllUsesWith(UndefValue::get(I->getType()));
5271 
5272     for (Use &Operand : I->operands())
5273       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
5274         // Zero out the operand and see if it becomes trivially dead.
5275         Operand = nullptr;
5276         if (isInstructionTriviallyDead(U))
5277           DeadInsts.push_back(U);
5278       }
5279 
5280     ++NumDeleted;
5281     I->eraseFromParent();
5282     Changed = true;
5283   }
5284   return Changed;
5285 }
5286 
5287 /// Promote the allocas, using the best available technique.
5288 ///
5289 /// This attempts to promote whatever allocas have been identified as viable in
5290 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
5291 /// This function returns whether any promotion occurred.
5292 bool SROA::promoteAllocas(Function &F) {
5293   if (PromotableAllocas.empty())
5294     return false;
5295 
5296   NumPromoted += PromotableAllocas.size();
5297 
5298   if (SROASkipMem2Reg) {
5299     LLVM_DEBUG(dbgs() << "Not promoting allocas with mem2reg!\n");
5300   } else {
5301     LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
5302     PromoteMemToReg(PromotableAllocas, DTU->getDomTree(), AC);
5303   }
5304 
5305   PromotableAllocas.clear();
5306   return true;
5307 }
5308 
5309 std::pair<bool /*Changed*/, bool /*CFGChanged*/> SROA::runSROA(Function &F) {
5310   LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
5311 
5312   const DataLayout &DL = F.getParent()->getDataLayout();
5313   BasicBlock &EntryBB = F.getEntryBlock();
5314   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
5315        I != E; ++I) {
5316     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
5317       if (DL.getTypeAllocSize(AI->getAllocatedType()).isScalable() &&
5318           isAllocaPromotable(AI))
5319         PromotableAllocas.push_back(AI);
5320       else
5321         Worklist.insert(AI);
5322     }
5323   }
5324 
5325   bool Changed = false;
5326   bool CFGChanged = false;
5327   // A set of deleted alloca instruction pointers which should be removed from
5328   // the list of promotable allocas.
5329   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
5330 
5331   do {
5332     while (!Worklist.empty()) {
5333       auto [IterationChanged, IterationCFGChanged] =
5334           runOnAlloca(*Worklist.pop_back_val());
5335       Changed |= IterationChanged;
5336       CFGChanged |= IterationCFGChanged;
5337 
5338       Changed |= deleteDeadInstructions(DeletedAllocas);
5339 
5340       // Remove the deleted allocas from various lists so that we don't try to
5341       // continue processing them.
5342       if (!DeletedAllocas.empty()) {
5343         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
5344         Worklist.remove_if(IsInSet);
5345         PostPromotionWorklist.remove_if(IsInSet);
5346         llvm::erase_if(PromotableAllocas, IsInSet);
5347         DeletedAllocas.clear();
5348       }
5349     }
5350 
5351     Changed |= promoteAllocas(F);
5352 
5353     Worklist = PostPromotionWorklist;
5354     PostPromotionWorklist.clear();
5355   } while (!Worklist.empty());
5356 
5357   assert((!CFGChanged || Changed) && "Can not only modify the CFG.");
5358   assert((!CFGChanged || !PreserveCFG) &&
5359          "Should not have modified the CFG when told to preserve it.");
5360 
5361   if (Changed && isAssignmentTrackingEnabled(*F.getParent())) {
5362     for (auto &BB : F) {
5363       RemoveRedundantDbgInstrs(&BB);
5364     }
5365   }
5366 
5367   return {Changed, CFGChanged};
5368 }
5369 
5370 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) {
5371   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
5372   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
5373   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
5374   auto [Changed, CFGChanged] =
5375       SROA(&F.getContext(), &DTU, &AC, PreserveCFG).runSROA(F);
5376   if (!Changed)
5377     return PreservedAnalyses::all();
5378   PreservedAnalyses PA;
5379   if (!CFGChanged)
5380     PA.preserveSet<CFGAnalyses>();
5381   PA.preserve<DominatorTreeAnalysis>();
5382   return PA;
5383 }
5384 
5385 void SROAPass::printPipeline(
5386     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
5387   static_cast<PassInfoMixin<SROAPass> *>(this)->printPipeline(
5388       OS, MapClassName2PassName);
5389   OS << (PreserveCFG == SROAOptions::PreserveCFG ? "<preserve-cfg>"
5390                                                  : "<modify-cfg>");
5391 }
5392 
5393 SROAPass::SROAPass(SROAOptions PreserveCFG) : PreserveCFG(PreserveCFG) {}
5394 
5395 namespace {
5396 
5397 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
5398 class SROALegacyPass : public FunctionPass {
5399   SROAOptions PreserveCFG;
5400 
5401 public:
5402   static char ID;
5403 
5404   SROALegacyPass(SROAOptions PreserveCFG = SROAOptions::PreserveCFG)
5405       : FunctionPass(ID), PreserveCFG(PreserveCFG) {
5406     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
5407   }
5408 
5409   bool runOnFunction(Function &F) override {
5410     if (skipFunction(F))
5411       return false;
5412 
5413     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5414     AssumptionCache &AC =
5415         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5416     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
5417     auto [Changed, _] =
5418         SROA(&F.getContext(), &DTU, &AC, PreserveCFG).runSROA(F);
5419     return Changed;
5420   }
5421 
5422   void getAnalysisUsage(AnalysisUsage &AU) const override {
5423     AU.addRequired<AssumptionCacheTracker>();
5424     AU.addRequired<DominatorTreeWrapperPass>();
5425     AU.addPreserved<GlobalsAAWrapperPass>();
5426     AU.addPreserved<DominatorTreeWrapperPass>();
5427   }
5428 
5429   StringRef getPassName() const override { return "SROA"; }
5430 };
5431 
5432 } // end anonymous namespace
5433 
5434 char SROALegacyPass::ID = 0;
5435 
5436 FunctionPass *llvm::createSROAPass(bool PreserveCFG) {
5437   return new SROALegacyPass(PreserveCFG ? SROAOptions::PreserveCFG
5438                                         : SROAOptions::ModifyCFG);
5439 }
5440 
5441 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
5442                       "Scalar Replacement Of Aggregates", false, false)
5443 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
5444 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5445 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
5446                     false, false)
5447