1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This transformation implements the well known scalar replacement of 10 /// aggregates transformation. It tries to identify promotable elements of an 11 /// aggregate alloca, and promote them to registers. It will also try to 12 /// convert uses of an element (or set of elements) of an alloca into a vector 13 /// or bitfield-style integer scalar if appropriate. 14 /// 15 /// It works to do this with minimal slicing of the alloca so that regions 16 /// which are merely transferred in and out of external memory remain unchanged 17 /// and are not decomposed to scalar code. 18 /// 19 /// Because this also performs alloca promotion, it can be thought of as also 20 /// serving the purpose of SSA formation. The algorithm iterates on the 21 /// function until all opportunities for promotion have been realized. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/SROA.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/PointerIntPair.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetVector.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Statistic.h" 36 #include "llvm/ADT/StringRef.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/ADT/iterator.h" 39 #include "llvm/ADT/iterator_range.h" 40 #include "llvm/Analysis/AssumptionCache.h" 41 #include "llvm/Analysis/GlobalsModRef.h" 42 #include "llvm/Analysis/Loads.h" 43 #include "llvm/Analysis/PtrUseVisitor.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/ConstantFolder.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DIBuilder.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DebugInfoMetadata.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/GetElementPtrTypeIterator.h" 56 #include "llvm/IR/GlobalAlias.h" 57 #include "llvm/IR/IRBuilder.h" 58 #include "llvm/IR/InstVisitor.h" 59 #include "llvm/IR/InstrTypes.h" 60 #include "llvm/IR/Instruction.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/IR/IntrinsicInst.h" 63 #include "llvm/IR/Intrinsics.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/Metadata.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PassManager.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Compiler.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/Transforms/Scalar.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 85 #include <algorithm> 86 #include <cassert> 87 #include <chrono> 88 #include <cstddef> 89 #include <cstdint> 90 #include <cstring> 91 #include <iterator> 92 #include <string> 93 #include <tuple> 94 #include <utility> 95 #include <vector> 96 97 using namespace llvm; 98 using namespace llvm::sroa; 99 100 #define DEBUG_TYPE "sroa" 101 102 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 103 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 104 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 105 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 106 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 107 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 108 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 109 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 110 STATISTIC(NumDeleted, "Number of instructions deleted"); 111 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 112 113 /// Hidden option to experiment with completely strict handling of inbounds 114 /// GEPs. 115 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false), 116 cl::Hidden); 117 118 namespace { 119 120 /// A custom IRBuilder inserter which prefixes all names, but only in 121 /// Assert builds. 122 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { 123 std::string Prefix; 124 125 const Twine getNameWithPrefix(const Twine &Name) const { 126 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 127 } 128 129 public: 130 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 131 132 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, 133 BasicBlock::iterator InsertPt) const override { 134 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB, 135 InsertPt); 136 } 137 }; 138 139 /// Provide a type for IRBuilder that drops names in release builds. 140 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 141 142 /// A used slice of an alloca. 143 /// 144 /// This structure represents a slice of an alloca used by some instruction. It 145 /// stores both the begin and end offsets of this use, a pointer to the use 146 /// itself, and a flag indicating whether we can classify the use as splittable 147 /// or not when forming partitions of the alloca. 148 class Slice { 149 /// The beginning offset of the range. 150 uint64_t BeginOffset = 0; 151 152 /// The ending offset, not included in the range. 153 uint64_t EndOffset = 0; 154 155 /// Storage for both the use of this slice and whether it can be 156 /// split. 157 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 158 159 public: 160 Slice() = default; 161 162 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 163 : BeginOffset(BeginOffset), EndOffset(EndOffset), 164 UseAndIsSplittable(U, IsSplittable) {} 165 166 uint64_t beginOffset() const { return BeginOffset; } 167 uint64_t endOffset() const { return EndOffset; } 168 169 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 170 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 171 172 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 173 174 bool isDead() const { return getUse() == nullptr; } 175 void kill() { UseAndIsSplittable.setPointer(nullptr); } 176 177 /// Support for ordering ranges. 178 /// 179 /// This provides an ordering over ranges such that start offsets are 180 /// always increasing, and within equal start offsets, the end offsets are 181 /// decreasing. Thus the spanning range comes first in a cluster with the 182 /// same start position. 183 bool operator<(const Slice &RHS) const { 184 if (beginOffset() < RHS.beginOffset()) 185 return true; 186 if (beginOffset() > RHS.beginOffset()) 187 return false; 188 if (isSplittable() != RHS.isSplittable()) 189 return !isSplittable(); 190 if (endOffset() > RHS.endOffset()) 191 return true; 192 return false; 193 } 194 195 /// Support comparison with a single offset to allow binary searches. 196 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 197 uint64_t RHSOffset) { 198 return LHS.beginOffset() < RHSOffset; 199 } 200 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 201 const Slice &RHS) { 202 return LHSOffset < RHS.beginOffset(); 203 } 204 205 bool operator==(const Slice &RHS) const { 206 return isSplittable() == RHS.isSplittable() && 207 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 208 } 209 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 210 }; 211 212 } // end anonymous namespace 213 214 /// Representation of the alloca slices. 215 /// 216 /// This class represents the slices of an alloca which are formed by its 217 /// various uses. If a pointer escapes, we can't fully build a representation 218 /// for the slices used and we reflect that in this structure. The uses are 219 /// stored, sorted by increasing beginning offset and with unsplittable slices 220 /// starting at a particular offset before splittable slices. 221 class llvm::sroa::AllocaSlices { 222 public: 223 /// Construct the slices of a particular alloca. 224 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 225 226 /// Test whether a pointer to the allocation escapes our analysis. 227 /// 228 /// If this is true, the slices are never fully built and should be 229 /// ignored. 230 bool isEscaped() const { return PointerEscapingInstr; } 231 232 /// Support for iterating over the slices. 233 /// @{ 234 using iterator = SmallVectorImpl<Slice>::iterator; 235 using range = iterator_range<iterator>; 236 237 iterator begin() { return Slices.begin(); } 238 iterator end() { return Slices.end(); } 239 240 using const_iterator = SmallVectorImpl<Slice>::const_iterator; 241 using const_range = iterator_range<const_iterator>; 242 243 const_iterator begin() const { return Slices.begin(); } 244 const_iterator end() const { return Slices.end(); } 245 /// @} 246 247 /// Erase a range of slices. 248 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 249 250 /// Insert new slices for this alloca. 251 /// 252 /// This moves the slices into the alloca's slices collection, and re-sorts 253 /// everything so that the usual ordering properties of the alloca's slices 254 /// hold. 255 void insert(ArrayRef<Slice> NewSlices) { 256 int OldSize = Slices.size(); 257 Slices.append(NewSlices.begin(), NewSlices.end()); 258 auto SliceI = Slices.begin() + OldSize; 259 llvm::sort(SliceI, Slices.end()); 260 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 261 } 262 263 // Forward declare the iterator and range accessor for walking the 264 // partitions. 265 class partition_iterator; 266 iterator_range<partition_iterator> partitions(); 267 268 /// Access the dead users for this alloca. 269 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 270 271 /// Access the dead operands referring to this alloca. 272 /// 273 /// These are operands which have cannot actually be used to refer to the 274 /// alloca as they are outside its range and the user doesn't correct for 275 /// that. These mostly consist of PHI node inputs and the like which we just 276 /// need to replace with undef. 277 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 278 279 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 280 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 281 void printSlice(raw_ostream &OS, const_iterator I, 282 StringRef Indent = " ") const; 283 void printUse(raw_ostream &OS, const_iterator I, 284 StringRef Indent = " ") const; 285 void print(raw_ostream &OS) const; 286 void dump(const_iterator I) const; 287 void dump() const; 288 #endif 289 290 private: 291 template <typename DerivedT, typename RetT = void> class BuilderBase; 292 class SliceBuilder; 293 294 friend class AllocaSlices::SliceBuilder; 295 296 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 297 /// Handle to alloca instruction to simplify method interfaces. 298 AllocaInst &AI; 299 #endif 300 301 /// The instruction responsible for this alloca not having a known set 302 /// of slices. 303 /// 304 /// When an instruction (potentially) escapes the pointer to the alloca, we 305 /// store a pointer to that here and abort trying to form slices of the 306 /// alloca. This will be null if the alloca slices are analyzed successfully. 307 Instruction *PointerEscapingInstr; 308 309 /// The slices of the alloca. 310 /// 311 /// We store a vector of the slices formed by uses of the alloca here. This 312 /// vector is sorted by increasing begin offset, and then the unsplittable 313 /// slices before the splittable ones. See the Slice inner class for more 314 /// details. 315 SmallVector<Slice, 8> Slices; 316 317 /// Instructions which will become dead if we rewrite the alloca. 318 /// 319 /// Note that these are not separated by slice. This is because we expect an 320 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 321 /// all these instructions can simply be removed and replaced with undef as 322 /// they come from outside of the allocated space. 323 SmallVector<Instruction *, 8> DeadUsers; 324 325 /// Operands which will become dead if we rewrite the alloca. 326 /// 327 /// These are operands that in their particular use can be replaced with 328 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs 329 /// to PHI nodes and the like. They aren't entirely dead (there might be 330 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 331 /// want to swap this particular input for undef to simplify the use lists of 332 /// the alloca. 333 SmallVector<Use *, 8> DeadOperands; 334 }; 335 336 /// A partition of the slices. 337 /// 338 /// An ephemeral representation for a range of slices which can be viewed as 339 /// a partition of the alloca. This range represents a span of the alloca's 340 /// memory which cannot be split, and provides access to all of the slices 341 /// overlapping some part of the partition. 342 /// 343 /// Objects of this type are produced by traversing the alloca's slices, but 344 /// are only ephemeral and not persistent. 345 class llvm::sroa::Partition { 346 private: 347 friend class AllocaSlices; 348 friend class AllocaSlices::partition_iterator; 349 350 using iterator = AllocaSlices::iterator; 351 352 /// The beginning and ending offsets of the alloca for this 353 /// partition. 354 uint64_t BeginOffset = 0, EndOffset = 0; 355 356 /// The start and end iterators of this partition. 357 iterator SI, SJ; 358 359 /// A collection of split slice tails overlapping the partition. 360 SmallVector<Slice *, 4> SplitTails; 361 362 /// Raw constructor builds an empty partition starting and ending at 363 /// the given iterator. 364 Partition(iterator SI) : SI(SI), SJ(SI) {} 365 366 public: 367 /// The start offset of this partition. 368 /// 369 /// All of the contained slices start at or after this offset. 370 uint64_t beginOffset() const { return BeginOffset; } 371 372 /// The end offset of this partition. 373 /// 374 /// All of the contained slices end at or before this offset. 375 uint64_t endOffset() const { return EndOffset; } 376 377 /// The size of the partition. 378 /// 379 /// Note that this can never be zero. 380 uint64_t size() const { 381 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 382 return EndOffset - BeginOffset; 383 } 384 385 /// Test whether this partition contains no slices, and merely spans 386 /// a region occupied by split slices. 387 bool empty() const { return SI == SJ; } 388 389 /// \name Iterate slices that start within the partition. 390 /// These may be splittable or unsplittable. They have a begin offset >= the 391 /// partition begin offset. 392 /// @{ 393 // FIXME: We should probably define a "concat_iterator" helper and use that 394 // to stitch together pointee_iterators over the split tails and the 395 // contiguous iterators of the partition. That would give a much nicer 396 // interface here. We could then additionally expose filtered iterators for 397 // split, unsplit, and unsplittable splices based on the usage patterns. 398 iterator begin() const { return SI; } 399 iterator end() const { return SJ; } 400 /// @} 401 402 /// Get the sequence of split slice tails. 403 /// 404 /// These tails are of slices which start before this partition but are 405 /// split and overlap into the partition. We accumulate these while forming 406 /// partitions. 407 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 408 }; 409 410 /// An iterator over partitions of the alloca's slices. 411 /// 412 /// This iterator implements the core algorithm for partitioning the alloca's 413 /// slices. It is a forward iterator as we don't support backtracking for 414 /// efficiency reasons, and re-use a single storage area to maintain the 415 /// current set of split slices. 416 /// 417 /// It is templated on the slice iterator type to use so that it can operate 418 /// with either const or non-const slice iterators. 419 class AllocaSlices::partition_iterator 420 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 421 Partition> { 422 friend class AllocaSlices; 423 424 /// Most of the state for walking the partitions is held in a class 425 /// with a nice interface for examining them. 426 Partition P; 427 428 /// We need to keep the end of the slices to know when to stop. 429 AllocaSlices::iterator SE; 430 431 /// We also need to keep track of the maximum split end offset seen. 432 /// FIXME: Do we really? 433 uint64_t MaxSplitSliceEndOffset = 0; 434 435 /// Sets the partition to be empty at given iterator, and sets the 436 /// end iterator. 437 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 438 : P(SI), SE(SE) { 439 // If not already at the end, advance our state to form the initial 440 // partition. 441 if (SI != SE) 442 advance(); 443 } 444 445 /// Advance the iterator to the next partition. 446 /// 447 /// Requires that the iterator not be at the end of the slices. 448 void advance() { 449 assert((P.SI != SE || !P.SplitTails.empty()) && 450 "Cannot advance past the end of the slices!"); 451 452 // Clear out any split uses which have ended. 453 if (!P.SplitTails.empty()) { 454 if (P.EndOffset >= MaxSplitSliceEndOffset) { 455 // If we've finished all splits, this is easy. 456 P.SplitTails.clear(); 457 MaxSplitSliceEndOffset = 0; 458 } else { 459 // Remove the uses which have ended in the prior partition. This 460 // cannot change the max split slice end because we just checked that 461 // the prior partition ended prior to that max. 462 P.SplitTails.erase(llvm::remove_if(P.SplitTails, 463 [&](Slice *S) { 464 return S->endOffset() <= 465 P.EndOffset; 466 }), 467 P.SplitTails.end()); 468 assert(llvm::any_of(P.SplitTails, 469 [&](Slice *S) { 470 return S->endOffset() == MaxSplitSliceEndOffset; 471 }) && 472 "Could not find the current max split slice offset!"); 473 assert(llvm::all_of(P.SplitTails, 474 [&](Slice *S) { 475 return S->endOffset() <= MaxSplitSliceEndOffset; 476 }) && 477 "Max split slice end offset is not actually the max!"); 478 } 479 } 480 481 // If P.SI is already at the end, then we've cleared the split tail and 482 // now have an end iterator. 483 if (P.SI == SE) { 484 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 485 return; 486 } 487 488 // If we had a non-empty partition previously, set up the state for 489 // subsequent partitions. 490 if (P.SI != P.SJ) { 491 // Accumulate all the splittable slices which started in the old 492 // partition into the split list. 493 for (Slice &S : P) 494 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 495 P.SplitTails.push_back(&S); 496 MaxSplitSliceEndOffset = 497 std::max(S.endOffset(), MaxSplitSliceEndOffset); 498 } 499 500 // Start from the end of the previous partition. 501 P.SI = P.SJ; 502 503 // If P.SI is now at the end, we at most have a tail of split slices. 504 if (P.SI == SE) { 505 P.BeginOffset = P.EndOffset; 506 P.EndOffset = MaxSplitSliceEndOffset; 507 return; 508 } 509 510 // If the we have split slices and the next slice is after a gap and is 511 // not splittable immediately form an empty partition for the split 512 // slices up until the next slice begins. 513 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 514 !P.SI->isSplittable()) { 515 P.BeginOffset = P.EndOffset; 516 P.EndOffset = P.SI->beginOffset(); 517 return; 518 } 519 } 520 521 // OK, we need to consume new slices. Set the end offset based on the 522 // current slice, and step SJ past it. The beginning offset of the 523 // partition is the beginning offset of the next slice unless we have 524 // pre-existing split slices that are continuing, in which case we begin 525 // at the prior end offset. 526 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 527 P.EndOffset = P.SI->endOffset(); 528 ++P.SJ; 529 530 // There are two strategies to form a partition based on whether the 531 // partition starts with an unsplittable slice or a splittable slice. 532 if (!P.SI->isSplittable()) { 533 // When we're forming an unsplittable region, it must always start at 534 // the first slice and will extend through its end. 535 assert(P.BeginOffset == P.SI->beginOffset()); 536 537 // Form a partition including all of the overlapping slices with this 538 // unsplittable slice. 539 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 540 if (!P.SJ->isSplittable()) 541 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 542 ++P.SJ; 543 } 544 545 // We have a partition across a set of overlapping unsplittable 546 // partitions. 547 return; 548 } 549 550 // If we're starting with a splittable slice, then we need to form 551 // a synthetic partition spanning it and any other overlapping splittable 552 // splices. 553 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 554 555 // Collect all of the overlapping splittable slices. 556 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 557 P.SJ->isSplittable()) { 558 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 559 ++P.SJ; 560 } 561 562 // Back upiP.EndOffset if we ended the span early when encountering an 563 // unsplittable slice. This synthesizes the early end offset of 564 // a partition spanning only splittable slices. 565 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 566 assert(!P.SJ->isSplittable()); 567 P.EndOffset = P.SJ->beginOffset(); 568 } 569 } 570 571 public: 572 bool operator==(const partition_iterator &RHS) const { 573 assert(SE == RHS.SE && 574 "End iterators don't match between compared partition iterators!"); 575 576 // The observed positions of partitions is marked by the P.SI iterator and 577 // the emptiness of the split slices. The latter is only relevant when 578 // P.SI == SE, as the end iterator will additionally have an empty split 579 // slices list, but the prior may have the same P.SI and a tail of split 580 // slices. 581 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 582 assert(P.SJ == RHS.P.SJ && 583 "Same set of slices formed two different sized partitions!"); 584 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 585 "Same slice position with differently sized non-empty split " 586 "slice tails!"); 587 return true; 588 } 589 return false; 590 } 591 592 partition_iterator &operator++() { 593 advance(); 594 return *this; 595 } 596 597 Partition &operator*() { return P; } 598 }; 599 600 /// A forward range over the partitions of the alloca's slices. 601 /// 602 /// This accesses an iterator range over the partitions of the alloca's 603 /// slices. It computes these partitions on the fly based on the overlapping 604 /// offsets of the slices and the ability to split them. It will visit "empty" 605 /// partitions to cover regions of the alloca only accessed via split 606 /// slices. 607 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 608 return make_range(partition_iterator(begin(), end()), 609 partition_iterator(end(), end())); 610 } 611 612 static Value *foldSelectInst(SelectInst &SI) { 613 // If the condition being selected on is a constant or the same value is 614 // being selected between, fold the select. Yes this does (rarely) happen 615 // early on. 616 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 617 return SI.getOperand(1 + CI->isZero()); 618 if (SI.getOperand(1) == SI.getOperand(2)) 619 return SI.getOperand(1); 620 621 return nullptr; 622 } 623 624 /// A helper that folds a PHI node or a select. 625 static Value *foldPHINodeOrSelectInst(Instruction &I) { 626 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 627 // If PN merges together the same value, return that value. 628 return PN->hasConstantValue(); 629 } 630 return foldSelectInst(cast<SelectInst>(I)); 631 } 632 633 /// Builder for the alloca slices. 634 /// 635 /// This class builds a set of alloca slices by recursively visiting the uses 636 /// of an alloca and making a slice for each load and store at each offset. 637 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 638 friend class PtrUseVisitor<SliceBuilder>; 639 friend class InstVisitor<SliceBuilder>; 640 641 using Base = PtrUseVisitor<SliceBuilder>; 642 643 const uint64_t AllocSize; 644 AllocaSlices &AS; 645 646 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 647 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 648 649 /// Set to de-duplicate dead instructions found in the use walk. 650 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 651 652 public: 653 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 654 : PtrUseVisitor<SliceBuilder>(DL), 655 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()), 656 AS(AS) {} 657 658 private: 659 void markAsDead(Instruction &I) { 660 if (VisitedDeadInsts.insert(&I).second) 661 AS.DeadUsers.push_back(&I); 662 } 663 664 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 665 bool IsSplittable = false) { 666 // Completely skip uses which have a zero size or start either before or 667 // past the end of the allocation. 668 if (Size == 0 || Offset.uge(AllocSize)) { 669 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" 670 << Offset 671 << " which has zero size or starts outside of the " 672 << AllocSize << " byte alloca:\n" 673 << " alloca: " << AS.AI << "\n" 674 << " use: " << I << "\n"); 675 return markAsDead(I); 676 } 677 678 uint64_t BeginOffset = Offset.getZExtValue(); 679 uint64_t EndOffset = BeginOffset + Size; 680 681 // Clamp the end offset to the end of the allocation. Note that this is 682 // formulated to handle even the case where "BeginOffset + Size" overflows. 683 // This may appear superficially to be something we could ignore entirely, 684 // but that is not so! There may be widened loads or PHI-node uses where 685 // some instructions are dead but not others. We can't completely ignore 686 // them, and so have to record at least the information here. 687 assert(AllocSize >= BeginOffset); // Established above. 688 if (Size > AllocSize - BeginOffset) { 689 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" 690 << Offset << " to remain within the " << AllocSize 691 << " byte alloca:\n" 692 << " alloca: " << AS.AI << "\n" 693 << " use: " << I << "\n"); 694 EndOffset = AllocSize; 695 } 696 697 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 698 } 699 700 void visitBitCastInst(BitCastInst &BC) { 701 if (BC.use_empty()) 702 return markAsDead(BC); 703 704 return Base::visitBitCastInst(BC); 705 } 706 707 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 708 if (ASC.use_empty()) 709 return markAsDead(ASC); 710 711 return Base::visitAddrSpaceCastInst(ASC); 712 } 713 714 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 715 if (GEPI.use_empty()) 716 return markAsDead(GEPI); 717 718 if (SROAStrictInbounds && GEPI.isInBounds()) { 719 // FIXME: This is a manually un-factored variant of the basic code inside 720 // of GEPs with checking of the inbounds invariant specified in the 721 // langref in a very strict sense. If we ever want to enable 722 // SROAStrictInbounds, this code should be factored cleanly into 723 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds 724 // by writing out the code here where we have the underlying allocation 725 // size readily available. 726 APInt GEPOffset = Offset; 727 const DataLayout &DL = GEPI.getModule()->getDataLayout(); 728 for (gep_type_iterator GTI = gep_type_begin(GEPI), 729 GTE = gep_type_end(GEPI); 730 GTI != GTE; ++GTI) { 731 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 732 if (!OpC) 733 break; 734 735 // Handle a struct index, which adds its field offset to the pointer. 736 if (StructType *STy = GTI.getStructTypeOrNull()) { 737 unsigned ElementIdx = OpC->getZExtValue(); 738 const StructLayout *SL = DL.getStructLayout(STy); 739 GEPOffset += 740 APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)); 741 } else { 742 // For array or vector indices, scale the index by the size of the 743 // type. 744 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 745 GEPOffset += 746 Index * 747 APInt(Offset.getBitWidth(), 748 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 749 } 750 751 // If this index has computed an intermediate pointer which is not 752 // inbounds, then the result of the GEP is a poison value and we can 753 // delete it and all uses. 754 if (GEPOffset.ugt(AllocSize)) 755 return markAsDead(GEPI); 756 } 757 } 758 759 return Base::visitGetElementPtrInst(GEPI); 760 } 761 762 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 763 uint64_t Size, bool IsVolatile) { 764 // We allow splitting of non-volatile loads and stores where the type is an 765 // integer type. These may be used to implement 'memcpy' or other "transfer 766 // of bits" patterns. 767 bool IsSplittable = Ty->isIntegerTy() && !IsVolatile; 768 769 insertUse(I, Offset, Size, IsSplittable); 770 } 771 772 void visitLoadInst(LoadInst &LI) { 773 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 774 "All simple FCA loads should have been pre-split"); 775 776 if (!IsOffsetKnown) 777 return PI.setAborted(&LI); 778 779 if (LI.isVolatile() && 780 LI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 781 return PI.setAborted(&LI); 782 783 uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize(); 784 return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile()); 785 } 786 787 void visitStoreInst(StoreInst &SI) { 788 Value *ValOp = SI.getValueOperand(); 789 if (ValOp == *U) 790 return PI.setEscapedAndAborted(&SI); 791 if (!IsOffsetKnown) 792 return PI.setAborted(&SI); 793 794 if (SI.isVolatile() && 795 SI.getPointerAddressSpace() != DL.getAllocaAddrSpace()) 796 return PI.setAborted(&SI); 797 798 uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize(); 799 800 // If this memory access can be shown to *statically* extend outside the 801 // bounds of the allocation, it's behavior is undefined, so simply 802 // ignore it. Note that this is more strict than the generic clamping 803 // behavior of insertUse. We also try to handle cases which might run the 804 // risk of overflow. 805 // FIXME: We should instead consider the pointer to have escaped if this 806 // function is being instrumented for addressing bugs or race conditions. 807 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 808 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" 809 << Offset << " which extends past the end of the " 810 << AllocSize << " byte alloca:\n" 811 << " alloca: " << AS.AI << "\n" 812 << " use: " << SI << "\n"); 813 return markAsDead(SI); 814 } 815 816 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 817 "All simple FCA stores should have been pre-split"); 818 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 819 } 820 821 void visitMemSetInst(MemSetInst &II) { 822 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 823 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 824 if ((Length && Length->getValue() == 0) || 825 (IsOffsetKnown && Offset.uge(AllocSize))) 826 // Zero-length mem transfer intrinsics can be ignored entirely. 827 return markAsDead(II); 828 829 if (!IsOffsetKnown) 830 return PI.setAborted(&II); 831 832 // Don't replace this with a store with a different address space. TODO: 833 // Use a store with the casted new alloca? 834 if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace()) 835 return PI.setAborted(&II); 836 837 insertUse(II, Offset, Length ? Length->getLimitedValue() 838 : AllocSize - Offset.getLimitedValue(), 839 (bool)Length); 840 } 841 842 void visitMemTransferInst(MemTransferInst &II) { 843 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 844 if (Length && Length->getValue() == 0) 845 // Zero-length mem transfer intrinsics can be ignored entirely. 846 return markAsDead(II); 847 848 // Because we can visit these intrinsics twice, also check to see if the 849 // first time marked this instruction as dead. If so, skip it. 850 if (VisitedDeadInsts.count(&II)) 851 return; 852 853 if (!IsOffsetKnown) 854 return PI.setAborted(&II); 855 856 // Don't replace this with a load/store with a different address space. 857 // TODO: Use a store with the casted new alloca? 858 if (II.isVolatile() && 859 (II.getDestAddressSpace() != DL.getAllocaAddrSpace() || 860 II.getSourceAddressSpace() != DL.getAllocaAddrSpace())) 861 return PI.setAborted(&II); 862 863 // This side of the transfer is completely out-of-bounds, and so we can 864 // nuke the entire transfer. However, we also need to nuke the other side 865 // if already added to our partitions. 866 // FIXME: Yet another place we really should bypass this when 867 // instrumenting for ASan. 868 if (Offset.uge(AllocSize)) { 869 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 870 MemTransferSliceMap.find(&II); 871 if (MTPI != MemTransferSliceMap.end()) 872 AS.Slices[MTPI->second].kill(); 873 return markAsDead(II); 874 } 875 876 uint64_t RawOffset = Offset.getLimitedValue(); 877 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 878 879 // Check for the special case where the same exact value is used for both 880 // source and dest. 881 if (*U == II.getRawDest() && *U == II.getRawSource()) { 882 // For non-volatile transfers this is a no-op. 883 if (!II.isVolatile()) 884 return markAsDead(II); 885 886 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 887 } 888 889 // If we have seen both source and destination for a mem transfer, then 890 // they both point to the same alloca. 891 bool Inserted; 892 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 893 std::tie(MTPI, Inserted) = 894 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 895 unsigned PrevIdx = MTPI->second; 896 if (!Inserted) { 897 Slice &PrevP = AS.Slices[PrevIdx]; 898 899 // Check if the begin offsets match and this is a non-volatile transfer. 900 // In that case, we can completely elide the transfer. 901 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 902 PrevP.kill(); 903 return markAsDead(II); 904 } 905 906 // Otherwise we have an offset transfer within the same alloca. We can't 907 // split those. 908 PrevP.makeUnsplittable(); 909 } 910 911 // Insert the use now that we've fixed up the splittable nature. 912 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 913 914 // Check that we ended up with a valid index in the map. 915 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 916 "Map index doesn't point back to a slice with this user."); 917 } 918 919 // Disable SRoA for any intrinsics except for lifetime invariants. 920 // FIXME: What about debug intrinsics? This matches old behavior, but 921 // doesn't make sense. 922 void visitIntrinsicInst(IntrinsicInst &II) { 923 if (!IsOffsetKnown) 924 return PI.setAborted(&II); 925 926 if (II.isLifetimeStartOrEnd()) { 927 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 928 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 929 Length->getLimitedValue()); 930 insertUse(II, Offset, Size, true); 931 return; 932 } 933 934 Base::visitIntrinsicInst(II); 935 } 936 937 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 938 // We consider any PHI or select that results in a direct load or store of 939 // the same offset to be a viable use for slicing purposes. These uses 940 // are considered unsplittable and the size is the maximum loaded or stored 941 // size. 942 SmallPtrSet<Instruction *, 4> Visited; 943 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 944 Visited.insert(Root); 945 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 946 const DataLayout &DL = Root->getModule()->getDataLayout(); 947 // If there are no loads or stores, the access is dead. We mark that as 948 // a size zero access. 949 Size = 0; 950 do { 951 Instruction *I, *UsedI; 952 std::tie(UsedI, I) = Uses.pop_back_val(); 953 954 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 955 Size = std::max(Size, 956 DL.getTypeStoreSize(LI->getType()).getFixedSize()); 957 continue; 958 } 959 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 960 Value *Op = SI->getOperand(0); 961 if (Op == UsedI) 962 return SI; 963 Size = std::max(Size, 964 DL.getTypeStoreSize(Op->getType()).getFixedSize()); 965 continue; 966 } 967 968 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 969 if (!GEP->hasAllZeroIndices()) 970 return GEP; 971 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 972 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) { 973 return I; 974 } 975 976 for (User *U : I->users()) 977 if (Visited.insert(cast<Instruction>(U)).second) 978 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 979 } while (!Uses.empty()); 980 981 return nullptr; 982 } 983 984 void visitPHINodeOrSelectInst(Instruction &I) { 985 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 986 if (I.use_empty()) 987 return markAsDead(I); 988 989 // TODO: We could use SimplifyInstruction here to fold PHINodes and 990 // SelectInsts. However, doing so requires to change the current 991 // dead-operand-tracking mechanism. For instance, suppose neither loading 992 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 993 // trap either. However, if we simply replace %U with undef using the 994 // current dead-operand-tracking mechanism, "load (select undef, undef, 995 // %other)" may trap because the select may return the first operand 996 // "undef". 997 if (Value *Result = foldPHINodeOrSelectInst(I)) { 998 if (Result == *U) 999 // If the result of the constant fold will be the pointer, recurse 1000 // through the PHI/select as if we had RAUW'ed it. 1001 enqueueUsers(I); 1002 else 1003 // Otherwise the operand to the PHI/select is dead, and we can replace 1004 // it with undef. 1005 AS.DeadOperands.push_back(U); 1006 1007 return; 1008 } 1009 1010 if (!IsOffsetKnown) 1011 return PI.setAborted(&I); 1012 1013 // See if we already have computed info on this node. 1014 uint64_t &Size = PHIOrSelectSizes[&I]; 1015 if (!Size) { 1016 // This is a new PHI/Select, check for an unsafe use of it. 1017 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 1018 return PI.setAborted(UnsafeI); 1019 } 1020 1021 // For PHI and select operands outside the alloca, we can't nuke the entire 1022 // phi or select -- the other side might still be relevant, so we special 1023 // case them here and use a separate structure to track the operands 1024 // themselves which should be replaced with undef. 1025 // FIXME: This should instead be escaped in the event we're instrumenting 1026 // for address sanitization. 1027 if (Offset.uge(AllocSize)) { 1028 AS.DeadOperands.push_back(U); 1029 return; 1030 } 1031 1032 insertUse(I, Offset, Size); 1033 } 1034 1035 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 1036 1037 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 1038 1039 /// Disable SROA entirely if there are unhandled users of the alloca. 1040 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 1041 }; 1042 1043 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 1044 : 1045 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1046 AI(AI), 1047 #endif 1048 PointerEscapingInstr(nullptr) { 1049 SliceBuilder PB(DL, AI, *this); 1050 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 1051 if (PtrI.isEscaped() || PtrI.isAborted()) { 1052 // FIXME: We should sink the escape vs. abort info into the caller nicely, 1053 // possibly by just storing the PtrInfo in the AllocaSlices. 1054 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 1055 : PtrI.getAbortingInst(); 1056 assert(PointerEscapingInstr && "Did not track a bad instruction"); 1057 return; 1058 } 1059 1060 Slices.erase( 1061 llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }), 1062 Slices.end()); 1063 1064 // Sort the uses. This arranges for the offsets to be in ascending order, 1065 // and the sizes to be in descending order. 1066 std::stable_sort(Slices.begin(), Slices.end()); 1067 } 1068 1069 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1070 1071 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1072 StringRef Indent) const { 1073 printSlice(OS, I, Indent); 1074 OS << "\n"; 1075 printUse(OS, I, Indent); 1076 } 1077 1078 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1079 StringRef Indent) const { 1080 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1081 << " slice #" << (I - begin()) 1082 << (I->isSplittable() ? " (splittable)" : ""); 1083 } 1084 1085 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1086 StringRef Indent) const { 1087 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1088 } 1089 1090 void AllocaSlices::print(raw_ostream &OS) const { 1091 if (PointerEscapingInstr) { 1092 OS << "Can't analyze slices for alloca: " << AI << "\n" 1093 << " A pointer to this alloca escaped by:\n" 1094 << " " << *PointerEscapingInstr << "\n"; 1095 return; 1096 } 1097 1098 OS << "Slices of alloca: " << AI << "\n"; 1099 for (const_iterator I = begin(), E = end(); I != E; ++I) 1100 print(OS, I); 1101 } 1102 1103 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1104 print(dbgs(), I); 1105 } 1106 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1107 1108 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1109 1110 /// Walk the range of a partitioning looking for a common type to cover this 1111 /// sequence of slices. 1112 static Type *findCommonType(AllocaSlices::const_iterator B, 1113 AllocaSlices::const_iterator E, 1114 uint64_t EndOffset) { 1115 Type *Ty = nullptr; 1116 bool TyIsCommon = true; 1117 IntegerType *ITy = nullptr; 1118 1119 // Note that we need to look at *every* alloca slice's Use to ensure we 1120 // always get consistent results regardless of the order of slices. 1121 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1122 Use *U = I->getUse(); 1123 if (isa<IntrinsicInst>(*U->getUser())) 1124 continue; 1125 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1126 continue; 1127 1128 Type *UserTy = nullptr; 1129 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1130 UserTy = LI->getType(); 1131 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1132 UserTy = SI->getValueOperand()->getType(); 1133 } 1134 1135 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1136 // If the type is larger than the partition, skip it. We only encounter 1137 // this for split integer operations where we want to use the type of the 1138 // entity causing the split. Also skip if the type is not a byte width 1139 // multiple. 1140 if (UserITy->getBitWidth() % 8 != 0 || 1141 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1142 continue; 1143 1144 // Track the largest bitwidth integer type used in this way in case there 1145 // is no common type. 1146 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1147 ITy = UserITy; 1148 } 1149 1150 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1151 // depend on types skipped above. 1152 if (!UserTy || (Ty && Ty != UserTy)) 1153 TyIsCommon = false; // Give up on anything but an iN type. 1154 else 1155 Ty = UserTy; 1156 } 1157 1158 return TyIsCommon ? Ty : ITy; 1159 } 1160 1161 /// PHI instructions that use an alloca and are subsequently loaded can be 1162 /// rewritten to load both input pointers in the pred blocks and then PHI the 1163 /// results, allowing the load of the alloca to be promoted. 1164 /// From this: 1165 /// %P2 = phi [i32* %Alloca, i32* %Other] 1166 /// %V = load i32* %P2 1167 /// to: 1168 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1169 /// ... 1170 /// %V2 = load i32* %Other 1171 /// ... 1172 /// %V = phi [i32 %V1, i32 %V2] 1173 /// 1174 /// We can do this to a select if its only uses are loads and if the operands 1175 /// to the select can be loaded unconditionally. 1176 /// 1177 /// FIXME: This should be hoisted into a generic utility, likely in 1178 /// Transforms/Util/Local.h 1179 static bool isSafePHIToSpeculate(PHINode &PN) { 1180 const DataLayout &DL = PN.getModule()->getDataLayout(); 1181 1182 // For now, we can only do this promotion if the load is in the same block 1183 // as the PHI, and if there are no stores between the phi and load. 1184 // TODO: Allow recursive phi users. 1185 // TODO: Allow stores. 1186 BasicBlock *BB = PN.getParent(); 1187 Align MaxAlign; 1188 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); 1189 APInt MaxSize(APWidth, 0); 1190 bool HaveLoad = false; 1191 for (User *U : PN.users()) { 1192 LoadInst *LI = dyn_cast<LoadInst>(U); 1193 if (!LI || !LI->isSimple()) 1194 return false; 1195 1196 // For now we only allow loads in the same block as the PHI. This is 1197 // a common case that happens when instcombine merges two loads through 1198 // a PHI. 1199 if (LI->getParent() != BB) 1200 return false; 1201 1202 // Ensure that there are no instructions between the PHI and the load that 1203 // could store. 1204 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1205 if (BBI->mayWriteToMemory()) 1206 return false; 1207 1208 uint64_t Size = DL.getTypeStoreSize(LI->getType()).getFixedSize(); 1209 MaxAlign = std::max(MaxAlign, LI->getAlign()); 1210 MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize; 1211 HaveLoad = true; 1212 } 1213 1214 if (!HaveLoad) 1215 return false; 1216 1217 // We can only transform this if it is safe to push the loads into the 1218 // predecessor blocks. The only thing to watch out for is that we can't put 1219 // a possibly trapping load in the predecessor if it is a critical edge. 1220 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1221 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1222 Value *InVal = PN.getIncomingValue(Idx); 1223 1224 // If the value is produced by the terminator of the predecessor (an 1225 // invoke) or it has side-effects, there is no valid place to put a load 1226 // in the predecessor. 1227 if (TI == InVal || TI->mayHaveSideEffects()) 1228 return false; 1229 1230 // If the predecessor has a single successor, then the edge isn't 1231 // critical. 1232 if (TI->getNumSuccessors() == 1) 1233 continue; 1234 1235 // If this pointer is always safe to load, or if we can prove that there 1236 // is already a load in the block, then we can move the load to the pred 1237 // block. 1238 if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI)) 1239 continue; 1240 1241 return false; 1242 } 1243 1244 return true; 1245 } 1246 1247 static void speculatePHINodeLoads(PHINode &PN) { 1248 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 1249 1250 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1251 Type *LoadTy = SomeLoad->getType(); 1252 IRBuilderTy PHIBuilder(&PN); 1253 PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1254 PN.getName() + ".sroa.speculated"); 1255 1256 // Get the AA tags and alignment to use from one of the loads. It does not 1257 // matter which one we get and if any differ. 1258 AAMDNodes AATags; 1259 SomeLoad->getAAMetadata(AATags); 1260 Align Alignment = SomeLoad->getAlign(); 1261 1262 // Rewrite all loads of the PN to use the new PHI. 1263 while (!PN.use_empty()) { 1264 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1265 LI->replaceAllUsesWith(NewPN); 1266 LI->eraseFromParent(); 1267 } 1268 1269 // Inject loads into all of the pred blocks. 1270 DenseMap<BasicBlock*, Value*> InjectedLoads; 1271 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1272 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1273 Value *InVal = PN.getIncomingValue(Idx); 1274 1275 // A PHI node is allowed to have multiple (duplicated) entries for the same 1276 // basic block, as long as the value is the same. So if we already injected 1277 // a load in the predecessor, then we should reuse the same load for all 1278 // duplicated entries. 1279 if (Value* V = InjectedLoads.lookup(Pred)) { 1280 NewPN->addIncoming(V, Pred); 1281 continue; 1282 } 1283 1284 Instruction *TI = Pred->getTerminator(); 1285 IRBuilderTy PredBuilder(TI); 1286 1287 LoadInst *Load = PredBuilder.CreateAlignedLoad( 1288 LoadTy, InVal, Alignment, 1289 (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1290 ++NumLoadsSpeculated; 1291 if (AATags) 1292 Load->setAAMetadata(AATags); 1293 NewPN->addIncoming(Load, Pred); 1294 InjectedLoads[Pred] = Load; 1295 } 1296 1297 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1298 PN.eraseFromParent(); 1299 } 1300 1301 /// Select instructions that use an alloca and are subsequently loaded can be 1302 /// rewritten to load both input pointers and then select between the result, 1303 /// allowing the load of the alloca to be promoted. 1304 /// From this: 1305 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other 1306 /// %V = load i32* %P2 1307 /// to: 1308 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1309 /// %V2 = load i32* %Other 1310 /// %V = select i1 %cond, i32 %V1, i32 %V2 1311 /// 1312 /// We can do this to a select if its only uses are loads and if the operand 1313 /// to the select can be loaded unconditionally. 1314 static bool isSafeSelectToSpeculate(SelectInst &SI) { 1315 Value *TValue = SI.getTrueValue(); 1316 Value *FValue = SI.getFalseValue(); 1317 const DataLayout &DL = SI.getModule()->getDataLayout(); 1318 1319 for (User *U : SI.users()) { 1320 LoadInst *LI = dyn_cast<LoadInst>(U); 1321 if (!LI || !LI->isSimple()) 1322 return false; 1323 1324 // Both operands to the select need to be dereferenceable, either 1325 // absolutely (e.g. allocas) or at this point because we can see other 1326 // accesses to it. 1327 if (!isSafeToLoadUnconditionally(TValue, LI->getType(), 1328 LI->getAlign(), DL, LI)) 1329 return false; 1330 if (!isSafeToLoadUnconditionally(FValue, LI->getType(), 1331 LI->getAlign(), DL, LI)) 1332 return false; 1333 } 1334 1335 return true; 1336 } 1337 1338 static void speculateSelectInstLoads(SelectInst &SI) { 1339 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 1340 1341 IRBuilderTy IRB(&SI); 1342 Value *TV = SI.getTrueValue(); 1343 Value *FV = SI.getFalseValue(); 1344 // Replace the loads of the select with a select of two loads. 1345 while (!SI.use_empty()) { 1346 LoadInst *LI = cast<LoadInst>(SI.user_back()); 1347 assert(LI->isSimple() && "We only speculate simple loads"); 1348 1349 IRB.SetInsertPoint(LI); 1350 LoadInst *TL = IRB.CreateLoad(LI->getType(), TV, 1351 LI->getName() + ".sroa.speculate.load.true"); 1352 LoadInst *FL = IRB.CreateLoad(LI->getType(), FV, 1353 LI->getName() + ".sroa.speculate.load.false"); 1354 NumLoadsSpeculated += 2; 1355 1356 // Transfer alignment and AA info if present. 1357 TL->setAlignment(LI->getAlign()); 1358 FL->setAlignment(LI->getAlign()); 1359 1360 AAMDNodes Tags; 1361 LI->getAAMetadata(Tags); 1362 if (Tags) { 1363 TL->setAAMetadata(Tags); 1364 FL->setAAMetadata(Tags); 1365 } 1366 1367 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1368 LI->getName() + ".sroa.speculated"); 1369 1370 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1371 LI->replaceAllUsesWith(V); 1372 LI->eraseFromParent(); 1373 } 1374 SI.eraseFromParent(); 1375 } 1376 1377 /// Build a GEP out of a base pointer and indices. 1378 /// 1379 /// This will return the BasePtr if that is valid, or build a new GEP 1380 /// instruction using the IRBuilder if GEP-ing is needed. 1381 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr, 1382 SmallVectorImpl<Value *> &Indices, Twine NamePrefix) { 1383 if (Indices.empty()) 1384 return BasePtr; 1385 1386 // A single zero index is a no-op, so check for this and avoid building a GEP 1387 // in that case. 1388 if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) 1389 return BasePtr; 1390 1391 return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(), 1392 BasePtr, Indices, NamePrefix + "sroa_idx"); 1393 } 1394 1395 /// Get a natural GEP off of the BasePtr walking through Ty toward 1396 /// TargetTy without changing the offset of the pointer. 1397 /// 1398 /// This routine assumes we've already established a properly offset GEP with 1399 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with 1400 /// zero-indices down through type layers until we find one the same as 1401 /// TargetTy. If we can't find one with the same type, we at least try to use 1402 /// one with the same size. If none of that works, we just produce the GEP as 1403 /// indicated by Indices to have the correct offset. 1404 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL, 1405 Value *BasePtr, Type *Ty, Type *TargetTy, 1406 SmallVectorImpl<Value *> &Indices, 1407 Twine NamePrefix) { 1408 if (Ty == TargetTy) 1409 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1410 1411 // Offset size to use for the indices. 1412 unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType()); 1413 1414 // See if we can descend into a struct and locate a field with the correct 1415 // type. 1416 unsigned NumLayers = 0; 1417 Type *ElementTy = Ty; 1418 do { 1419 if (ElementTy->isPointerTy()) 1420 break; 1421 1422 if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) { 1423 ElementTy = ArrayTy->getElementType(); 1424 Indices.push_back(IRB.getIntN(OffsetSize, 0)); 1425 } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) { 1426 ElementTy = VectorTy->getElementType(); 1427 Indices.push_back(IRB.getInt32(0)); 1428 } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { 1429 if (STy->element_begin() == STy->element_end()) 1430 break; // Nothing left to descend into. 1431 ElementTy = *STy->element_begin(); 1432 Indices.push_back(IRB.getInt32(0)); 1433 } else { 1434 break; 1435 } 1436 ++NumLayers; 1437 } while (ElementTy != TargetTy); 1438 if (ElementTy != TargetTy) 1439 Indices.erase(Indices.end() - NumLayers, Indices.end()); 1440 1441 return buildGEP(IRB, BasePtr, Indices, NamePrefix); 1442 } 1443 1444 /// Recursively compute indices for a natural GEP. 1445 /// 1446 /// This is the recursive step for getNaturalGEPWithOffset that walks down the 1447 /// element types adding appropriate indices for the GEP. 1448 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL, 1449 Value *Ptr, Type *Ty, APInt &Offset, 1450 Type *TargetTy, 1451 SmallVectorImpl<Value *> &Indices, 1452 Twine NamePrefix) { 1453 if (Offset == 0) 1454 return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices, 1455 NamePrefix); 1456 1457 // We can't recurse through pointer types. 1458 if (Ty->isPointerTy()) 1459 return nullptr; 1460 1461 // We try to analyze GEPs over vectors here, but note that these GEPs are 1462 // extremely poorly defined currently. The long-term goal is to remove GEPing 1463 // over a vector from the IR completely. 1464 if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { 1465 unsigned ElementSizeInBits = 1466 DL.getTypeSizeInBits(VecTy->getScalarType()).getFixedSize(); 1467 if (ElementSizeInBits % 8 != 0) { 1468 // GEPs over non-multiple of 8 size vector elements are invalid. 1469 return nullptr; 1470 } 1471 APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); 1472 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1473 if (NumSkippedElements.ugt(cast<FixedVectorType>(VecTy)->getNumElements())) 1474 return nullptr; 1475 Offset -= NumSkippedElements * ElementSize; 1476 Indices.push_back(IRB.getInt(NumSkippedElements)); 1477 return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(), 1478 Offset, TargetTy, Indices, NamePrefix); 1479 } 1480 1481 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 1482 Type *ElementTy = ArrTy->getElementType(); 1483 APInt ElementSize(Offset.getBitWidth(), 1484 DL.getTypeAllocSize(ElementTy).getFixedSize()); 1485 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1486 if (NumSkippedElements.ugt(ArrTy->getNumElements())) 1487 return nullptr; 1488 1489 Offset -= NumSkippedElements * ElementSize; 1490 Indices.push_back(IRB.getInt(NumSkippedElements)); 1491 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1492 Indices, NamePrefix); 1493 } 1494 1495 StructType *STy = dyn_cast<StructType>(Ty); 1496 if (!STy) 1497 return nullptr; 1498 1499 const StructLayout *SL = DL.getStructLayout(STy); 1500 uint64_t StructOffset = Offset.getZExtValue(); 1501 if (StructOffset >= SL->getSizeInBytes()) 1502 return nullptr; 1503 unsigned Index = SL->getElementContainingOffset(StructOffset); 1504 Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); 1505 Type *ElementTy = STy->getElementType(Index); 1506 if (Offset.uge(DL.getTypeAllocSize(ElementTy).getFixedSize())) 1507 return nullptr; // The offset points into alignment padding. 1508 1509 Indices.push_back(IRB.getInt32(Index)); 1510 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1511 Indices, NamePrefix); 1512 } 1513 1514 /// Get a natural GEP from a base pointer to a particular offset and 1515 /// resulting in a particular type. 1516 /// 1517 /// The goal is to produce a "natural" looking GEP that works with the existing 1518 /// composite types to arrive at the appropriate offset and element type for 1519 /// a pointer. TargetTy is the element type the returned GEP should point-to if 1520 /// possible. We recurse by decreasing Offset, adding the appropriate index to 1521 /// Indices, and setting Ty to the result subtype. 1522 /// 1523 /// If no natural GEP can be constructed, this function returns null. 1524 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL, 1525 Value *Ptr, APInt Offset, Type *TargetTy, 1526 SmallVectorImpl<Value *> &Indices, 1527 Twine NamePrefix) { 1528 PointerType *Ty = cast<PointerType>(Ptr->getType()); 1529 1530 // Don't consider any GEPs through an i8* as natural unless the TargetTy is 1531 // an i8. 1532 if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8)) 1533 return nullptr; 1534 1535 Type *ElementTy = Ty->getElementType(); 1536 if (!ElementTy->isSized()) 1537 return nullptr; // We can't GEP through an unsized element. 1538 APInt ElementSize(Offset.getBitWidth(), 1539 DL.getTypeAllocSize(ElementTy).getFixedSize()); 1540 if (ElementSize == 0) 1541 return nullptr; // Zero-length arrays can't help us build a natural GEP. 1542 APInt NumSkippedElements = Offset.sdiv(ElementSize); 1543 1544 Offset -= NumSkippedElements * ElementSize; 1545 Indices.push_back(IRB.getInt(NumSkippedElements)); 1546 return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy, 1547 Indices, NamePrefix); 1548 } 1549 1550 /// Compute an adjusted pointer from Ptr by Offset bytes where the 1551 /// resulting pointer has PointerTy. 1552 /// 1553 /// This tries very hard to compute a "natural" GEP which arrives at the offset 1554 /// and produces the pointer type desired. Where it cannot, it will try to use 1555 /// the natural GEP to arrive at the offset and bitcast to the type. Where that 1556 /// fails, it will try to use an existing i8* and GEP to the byte offset and 1557 /// bitcast to the type. 1558 /// 1559 /// The strategy for finding the more natural GEPs is to peel off layers of the 1560 /// pointer, walking back through bit casts and GEPs, searching for a base 1561 /// pointer from which we can compute a natural GEP with the desired 1562 /// properties. The algorithm tries to fold as many constant indices into 1563 /// a single GEP as possible, thus making each GEP more independent of the 1564 /// surrounding code. 1565 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1566 APInt Offset, Type *PointerTy, Twine NamePrefix) { 1567 // Even though we don't look through PHI nodes, we could be called on an 1568 // instruction in an unreachable block, which may be on a cycle. 1569 SmallPtrSet<Value *, 4> Visited; 1570 Visited.insert(Ptr); 1571 SmallVector<Value *, 4> Indices; 1572 1573 // We may end up computing an offset pointer that has the wrong type. If we 1574 // never are able to compute one directly that has the correct type, we'll 1575 // fall back to it, so keep it and the base it was computed from around here. 1576 Value *OffsetPtr = nullptr; 1577 Value *OffsetBasePtr; 1578 1579 // Remember any i8 pointer we come across to re-use if we need to do a raw 1580 // byte offset. 1581 Value *Int8Ptr = nullptr; 1582 APInt Int8PtrOffset(Offset.getBitWidth(), 0); 1583 1584 PointerType *TargetPtrTy = cast<PointerType>(PointerTy); 1585 Type *TargetTy = TargetPtrTy->getElementType(); 1586 1587 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different 1588 // address space from the expected `PointerTy` (the pointer to be used). 1589 // Adjust the pointer type based the original storage pointer. 1590 auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace(); 1591 PointerTy = TargetTy->getPointerTo(AS); 1592 1593 do { 1594 // First fold any existing GEPs into the offset. 1595 while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1596 APInt GEPOffset(Offset.getBitWidth(), 0); 1597 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 1598 break; 1599 Offset += GEPOffset; 1600 Ptr = GEP->getPointerOperand(); 1601 if (!Visited.insert(Ptr).second) 1602 break; 1603 } 1604 1605 // See if we can perform a natural GEP here. 1606 Indices.clear(); 1607 if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy, 1608 Indices, NamePrefix)) { 1609 // If we have a new natural pointer at the offset, clear out any old 1610 // offset pointer we computed. Unless it is the base pointer or 1611 // a non-instruction, we built a GEP we don't need. Zap it. 1612 if (OffsetPtr && OffsetPtr != OffsetBasePtr) 1613 if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) { 1614 assert(I->use_empty() && "Built a GEP with uses some how!"); 1615 I->eraseFromParent(); 1616 } 1617 OffsetPtr = P; 1618 OffsetBasePtr = Ptr; 1619 // If we also found a pointer of the right type, we're done. 1620 if (P->getType() == PointerTy) 1621 break; 1622 } 1623 1624 // Stash this pointer if we've found an i8*. 1625 if (Ptr->getType()->isIntegerTy(8)) { 1626 Int8Ptr = Ptr; 1627 Int8PtrOffset = Offset; 1628 } 1629 1630 // Peel off a layer of the pointer and update the offset appropriately. 1631 if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1632 Ptr = cast<Operator>(Ptr)->getOperand(0); 1633 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1634 if (GA->isInterposable()) 1635 break; 1636 Ptr = GA->getAliasee(); 1637 } else { 1638 break; 1639 } 1640 assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); 1641 } while (Visited.insert(Ptr).second); 1642 1643 if (!OffsetPtr) { 1644 if (!Int8Ptr) { 1645 Int8Ptr = IRB.CreateBitCast( 1646 Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()), 1647 NamePrefix + "sroa_raw_cast"); 1648 Int8PtrOffset = Offset; 1649 } 1650 1651 OffsetPtr = Int8PtrOffset == 0 1652 ? Int8Ptr 1653 : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr, 1654 IRB.getInt(Int8PtrOffset), 1655 NamePrefix + "sroa_raw_idx"); 1656 } 1657 Ptr = OffsetPtr; 1658 1659 // On the off chance we were targeting i8*, guard the bitcast here. 1660 if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) { 1661 Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, 1662 TargetPtrTy, 1663 NamePrefix + "sroa_cast"); 1664 } 1665 1666 return Ptr; 1667 } 1668 1669 /// Compute the adjusted alignment for a load or store from an offset. 1670 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { 1671 return commonAlignment(getLoadStoreAlignment(I), Offset); 1672 } 1673 1674 /// Test whether we can convert a value from the old to the new type. 1675 /// 1676 /// This predicate should be used to guard calls to convertValue in order to 1677 /// ensure that we only try to convert viable values. The strategy is that we 1678 /// will peel off single element struct and array wrappings to get to an 1679 /// underlying value, and convert that value. 1680 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1681 if (OldTy == NewTy) 1682 return true; 1683 1684 // For integer types, we can't handle any bit-width differences. This would 1685 // break both vector conversions with extension and introduce endianness 1686 // issues when in conjunction with loads and stores. 1687 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1688 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1689 cast<IntegerType>(NewTy)->getBitWidth() && 1690 "We can't have the same bitwidth for different int types"); 1691 return false; 1692 } 1693 1694 if (DL.getTypeSizeInBits(NewTy).getFixedSize() != 1695 DL.getTypeSizeInBits(OldTy).getFixedSize()) 1696 return false; 1697 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1698 return false; 1699 1700 // We can convert pointers to integers and vice-versa. Same for vectors 1701 // of pointers and integers. 1702 OldTy = OldTy->getScalarType(); 1703 NewTy = NewTy->getScalarType(); 1704 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1705 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1706 unsigned OldAS = OldTy->getPointerAddressSpace(); 1707 unsigned NewAS = NewTy->getPointerAddressSpace(); 1708 // Convert pointers if they are pointers from the same address space or 1709 // different integral (not non-integral) address spaces with the same 1710 // pointer size. 1711 return OldAS == NewAS || 1712 (!DL.isNonIntegralAddressSpace(OldAS) && 1713 !DL.isNonIntegralAddressSpace(NewAS) && 1714 DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1715 } 1716 1717 // We can convert integers to integral pointers, but not to non-integral 1718 // pointers. 1719 if (OldTy->isIntegerTy()) 1720 return !DL.isNonIntegralPointerType(NewTy); 1721 1722 // We can convert integral pointers to integers, but non-integral pointers 1723 // need to remain pointers. 1724 if (!DL.isNonIntegralPointerType(OldTy)) 1725 return NewTy->isIntegerTy(); 1726 1727 return false; 1728 } 1729 1730 return true; 1731 } 1732 1733 /// Generic routine to convert an SSA value to a value of a different 1734 /// type. 1735 /// 1736 /// This will try various different casting techniques, such as bitcasts, 1737 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1738 /// two types for viability with this routine. 1739 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1740 Type *NewTy) { 1741 Type *OldTy = V->getType(); 1742 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1743 1744 if (OldTy == NewTy) 1745 return V; 1746 1747 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1748 "Integer types must be the exact same to convert."); 1749 1750 // See if we need inttoptr for this type pair. May require additional bitcast. 1751 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1752 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 1753 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 1754 // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*> 1755 // Directly handle i64 to i8* 1756 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 1757 NewTy); 1758 } 1759 1760 // See if we need ptrtoint for this type pair. May require additional bitcast. 1761 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { 1762 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 1763 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 1764 // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32> 1765 // Expand i8* to i64 --> i8* to i64 to i64 1766 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1767 NewTy); 1768 } 1769 1770 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 1771 unsigned OldAS = OldTy->getPointerAddressSpace(); 1772 unsigned NewAS = NewTy->getPointerAddressSpace(); 1773 // To convert pointers with different address spaces (they are already 1774 // checked convertible, i.e. they have the same pointer size), so far we 1775 // cannot use `bitcast` (which has restrict on the same address space) or 1776 // `addrspacecast` (which is not always no-op casting). Instead, use a pair 1777 // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit 1778 // size. 1779 if (OldAS != NewAS) { 1780 assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1781 return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 1782 NewTy); 1783 } 1784 } 1785 1786 return IRB.CreateBitCast(V, NewTy); 1787 } 1788 1789 /// Test whether the given slice use can be promoted to a vector. 1790 /// 1791 /// This function is called to test each entry in a partition which is slated 1792 /// for a single slice. 1793 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 1794 VectorType *Ty, 1795 uint64_t ElementSize, 1796 const DataLayout &DL) { 1797 // First validate the slice offsets. 1798 uint64_t BeginOffset = 1799 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 1800 uint64_t BeginIndex = BeginOffset / ElementSize; 1801 if (BeginIndex * ElementSize != BeginOffset || 1802 BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements()) 1803 return false; 1804 uint64_t EndOffset = 1805 std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 1806 uint64_t EndIndex = EndOffset / ElementSize; 1807 if (EndIndex * ElementSize != EndOffset || 1808 EndIndex > cast<FixedVectorType>(Ty)->getNumElements()) 1809 return false; 1810 1811 assert(EndIndex > BeginIndex && "Empty vector!"); 1812 uint64_t NumElements = EndIndex - BeginIndex; 1813 Type *SliceTy = (NumElements == 1) 1814 ? Ty->getElementType() 1815 : FixedVectorType::get(Ty->getElementType(), NumElements); 1816 1817 Type *SplitIntTy = 1818 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 1819 1820 Use *U = S.getUse(); 1821 1822 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 1823 if (MI->isVolatile()) 1824 return false; 1825 if (!S.isSplittable()) 1826 return false; // Skip any unsplittable intrinsics. 1827 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 1828 if (!II->isLifetimeStartOrEnd()) 1829 return false; 1830 } else if (U->get()->getType()->getPointerElementType()->isStructTy()) { 1831 // Disable vector promotion when there are loads or stores of an FCA. 1832 return false; 1833 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1834 if (LI->isVolatile()) 1835 return false; 1836 Type *LTy = LI->getType(); 1837 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1838 assert(LTy->isIntegerTy()); 1839 LTy = SplitIntTy; 1840 } 1841 if (!canConvertValue(DL, SliceTy, LTy)) 1842 return false; 1843 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1844 if (SI->isVolatile()) 1845 return false; 1846 Type *STy = SI->getValueOperand()->getType(); 1847 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 1848 assert(STy->isIntegerTy()); 1849 STy = SplitIntTy; 1850 } 1851 if (!canConvertValue(DL, STy, SliceTy)) 1852 return false; 1853 } else { 1854 return false; 1855 } 1856 1857 return true; 1858 } 1859 1860 /// Test whether the given alloca partitioning and range of slices can be 1861 /// promoted to a vector. 1862 /// 1863 /// This is a quick test to check whether we can rewrite a particular alloca 1864 /// partition (and its newly formed alloca) into a vector alloca with only 1865 /// whole-vector loads and stores such that it could be promoted to a vector 1866 /// SSA value. We only can ensure this for a limited set of operations, and we 1867 /// don't want to do the rewrites unless we are confident that the result will 1868 /// be promotable, so we have an early test here. 1869 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 1870 // Collect the candidate types for vector-based promotion. Also track whether 1871 // we have different element types. 1872 SmallVector<VectorType *, 4> CandidateTys; 1873 Type *CommonEltTy = nullptr; 1874 bool HaveCommonEltTy = true; 1875 auto CheckCandidateType = [&](Type *Ty) { 1876 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 1877 // Return if bitcast to vectors is different for total size in bits. 1878 if (!CandidateTys.empty()) { 1879 VectorType *V = CandidateTys[0]; 1880 if (DL.getTypeSizeInBits(VTy).getFixedSize() != 1881 DL.getTypeSizeInBits(V).getFixedSize()) { 1882 CandidateTys.clear(); 1883 return; 1884 } 1885 } 1886 CandidateTys.push_back(VTy); 1887 if (!CommonEltTy) 1888 CommonEltTy = VTy->getElementType(); 1889 else if (CommonEltTy != VTy->getElementType()) 1890 HaveCommonEltTy = false; 1891 } 1892 }; 1893 // Consider any loads or stores that are the exact size of the slice. 1894 for (const Slice &S : P) 1895 if (S.beginOffset() == P.beginOffset() && 1896 S.endOffset() == P.endOffset()) { 1897 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 1898 CheckCandidateType(LI->getType()); 1899 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 1900 CheckCandidateType(SI->getValueOperand()->getType()); 1901 } 1902 1903 // If we didn't find a vector type, nothing to do here. 1904 if (CandidateTys.empty()) 1905 return nullptr; 1906 1907 // Remove non-integer vector types if we had multiple common element types. 1908 // FIXME: It'd be nice to replace them with integer vector types, but we can't 1909 // do that until all the backends are known to produce good code for all 1910 // integer vector types. 1911 if (!HaveCommonEltTy) { 1912 CandidateTys.erase( 1913 llvm::remove_if(CandidateTys, 1914 [](VectorType *VTy) { 1915 return !VTy->getElementType()->isIntegerTy(); 1916 }), 1917 CandidateTys.end()); 1918 1919 // If there were no integer vector types, give up. 1920 if (CandidateTys.empty()) 1921 return nullptr; 1922 1923 // Rank the remaining candidate vector types. This is easy because we know 1924 // they're all integer vectors. We sort by ascending number of elements. 1925 auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 1926 (void)DL; 1927 assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() == 1928 DL.getTypeSizeInBits(LHSTy).getFixedSize() && 1929 "Cannot have vector types of different sizes!"); 1930 assert(RHSTy->getElementType()->isIntegerTy() && 1931 "All non-integer types eliminated!"); 1932 assert(LHSTy->getElementType()->isIntegerTy() && 1933 "All non-integer types eliminated!"); 1934 return cast<FixedVectorType>(RHSTy)->getNumElements() < 1935 cast<FixedVectorType>(LHSTy)->getNumElements(); 1936 }; 1937 llvm::sort(CandidateTys, RankVectorTypes); 1938 CandidateTys.erase( 1939 std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes), 1940 CandidateTys.end()); 1941 } else { 1942 // The only way to have the same element type in every vector type is to 1943 // have the same vector type. Check that and remove all but one. 1944 #ifndef NDEBUG 1945 for (VectorType *VTy : CandidateTys) { 1946 assert(VTy->getElementType() == CommonEltTy && 1947 "Unaccounted for element type!"); 1948 assert(VTy == CandidateTys[0] && 1949 "Different vector types with the same element type!"); 1950 } 1951 #endif 1952 CandidateTys.resize(1); 1953 } 1954 1955 // Try each vector type, and return the one which works. 1956 auto CheckVectorTypeForPromotion = [&](VectorType *VTy) { 1957 uint64_t ElementSize = 1958 DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize(); 1959 1960 // While the definition of LLVM vectors is bitpacked, we don't support sizes 1961 // that aren't byte sized. 1962 if (ElementSize % 8) 1963 return false; 1964 assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 && 1965 "vector size not a multiple of element size?"); 1966 ElementSize /= 8; 1967 1968 for (const Slice &S : P) 1969 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 1970 return false; 1971 1972 for (const Slice *S : P.splitSliceTails()) 1973 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 1974 return false; 1975 1976 return true; 1977 }; 1978 for (VectorType *VTy : CandidateTys) 1979 if (CheckVectorTypeForPromotion(VTy)) 1980 return VTy; 1981 1982 return nullptr; 1983 } 1984 1985 /// Test whether a slice of an alloca is valid for integer widening. 1986 /// 1987 /// This implements the necessary checking for the \c isIntegerWideningViable 1988 /// test below on a single slice of the alloca. 1989 static bool isIntegerWideningViableForSlice(const Slice &S, 1990 uint64_t AllocBeginOffset, 1991 Type *AllocaTy, 1992 const DataLayout &DL, 1993 bool &WholeAllocaOp) { 1994 uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize(); 1995 1996 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 1997 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 1998 1999 // We can't reasonably handle cases where the load or store extends past 2000 // the end of the alloca's type and into its padding. 2001 if (RelEnd > Size) 2002 return false; 2003 2004 Use *U = S.getUse(); 2005 2006 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 2007 if (LI->isVolatile()) 2008 return false; 2009 // We can't handle loads that extend past the allocated memory. 2010 if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size) 2011 return false; 2012 // So far, AllocaSliceRewriter does not support widening split slice tails 2013 // in rewriteIntegerLoad. 2014 if (S.beginOffset() < AllocBeginOffset) 2015 return false; 2016 // Note that we don't count vector loads or stores as whole-alloca 2017 // operations which enable integer widening because we would prefer to use 2018 // vector widening instead. 2019 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 2020 WholeAllocaOp = true; 2021 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 2022 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2023 return false; 2024 } else if (RelBegin != 0 || RelEnd != Size || 2025 !canConvertValue(DL, AllocaTy, LI->getType())) { 2026 // Non-integer loads need to be convertible from the alloca type so that 2027 // they are promotable. 2028 return false; 2029 } 2030 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2031 Type *ValueTy = SI->getValueOperand()->getType(); 2032 if (SI->isVolatile()) 2033 return false; 2034 // We can't handle stores that extend past the allocated memory. 2035 if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size) 2036 return false; 2037 // So far, AllocaSliceRewriter does not support widening split slice tails 2038 // in rewriteIntegerStore. 2039 if (S.beginOffset() < AllocBeginOffset) 2040 return false; 2041 // Note that we don't count vector loads or stores as whole-alloca 2042 // operations which enable integer widening because we would prefer to use 2043 // vector widening instead. 2044 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 2045 WholeAllocaOp = true; 2046 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 2047 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize()) 2048 return false; 2049 } else if (RelBegin != 0 || RelEnd != Size || 2050 !canConvertValue(DL, ValueTy, AllocaTy)) { 2051 // Non-integer stores need to be convertible to the alloca type so that 2052 // they are promotable. 2053 return false; 2054 } 2055 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2056 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 2057 return false; 2058 if (!S.isSplittable()) 2059 return false; // Skip any unsplittable intrinsics. 2060 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 2061 if (!II->isLifetimeStartOrEnd()) 2062 return false; 2063 } else { 2064 return false; 2065 } 2066 2067 return true; 2068 } 2069 2070 /// Test whether the given alloca partition's integer operations can be 2071 /// widened to promotable ones. 2072 /// 2073 /// This is a quick test to check whether we can rewrite the integer loads and 2074 /// stores to a particular alloca into wider loads and stores and be able to 2075 /// promote the resulting alloca. 2076 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 2077 const DataLayout &DL) { 2078 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize(); 2079 // Don't create integer types larger than the maximum bitwidth. 2080 if (SizeInBits > IntegerType::MAX_INT_BITS) 2081 return false; 2082 2083 // Don't try to handle allocas with bit-padding. 2084 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize()) 2085 return false; 2086 2087 // We need to ensure that an integer type with the appropriate bitwidth can 2088 // be converted to the alloca type, whatever that is. We don't want to force 2089 // the alloca itself to have an integer type if there is a more suitable one. 2090 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 2091 if (!canConvertValue(DL, AllocaTy, IntTy) || 2092 !canConvertValue(DL, IntTy, AllocaTy)) 2093 return false; 2094 2095 // While examining uses, we ensure that the alloca has a covering load or 2096 // store. We don't want to widen the integer operations only to fail to 2097 // promote due to some other unsplittable entry (which we may make splittable 2098 // later). However, if there are only splittable uses, go ahead and assume 2099 // that we cover the alloca. 2100 // FIXME: We shouldn't consider split slices that happen to start in the 2101 // partition here... 2102 bool WholeAllocaOp = 2103 P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits); 2104 2105 for (const Slice &S : P) 2106 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 2107 WholeAllocaOp)) 2108 return false; 2109 2110 for (const Slice *S : P.splitSliceTails()) 2111 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2112 WholeAllocaOp)) 2113 return false; 2114 2115 return WholeAllocaOp; 2116 } 2117 2118 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2119 IntegerType *Ty, uint64_t Offset, 2120 const Twine &Name) { 2121 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2122 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2123 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2124 DL.getTypeStoreSize(IntTy).getFixedSize() && 2125 "Element extends past full value"); 2126 uint64_t ShAmt = 8 * Offset; 2127 if (DL.isBigEndian()) 2128 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2129 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2130 if (ShAmt) { 2131 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2132 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2133 } 2134 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2135 "Cannot extract to a larger integer!"); 2136 if (Ty != IntTy) { 2137 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2138 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); 2139 } 2140 return V; 2141 } 2142 2143 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2144 Value *V, uint64_t Offset, const Twine &Name) { 2145 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2146 IntegerType *Ty = cast<IntegerType>(V->getType()); 2147 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2148 "Cannot insert a larger integer!"); 2149 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2150 if (Ty != IntTy) { 2151 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2152 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); 2153 } 2154 assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <= 2155 DL.getTypeStoreSize(IntTy).getFixedSize() && 2156 "Element store outside of alloca store"); 2157 uint64_t ShAmt = 8 * Offset; 2158 if (DL.isBigEndian()) 2159 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() - 2160 DL.getTypeStoreSize(Ty).getFixedSize() - Offset); 2161 if (ShAmt) { 2162 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2163 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2164 } 2165 2166 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2167 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2168 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2169 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); 2170 V = IRB.CreateOr(Old, V, Name + ".insert"); 2171 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); 2172 } 2173 return V; 2174 } 2175 2176 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2177 unsigned EndIndex, const Twine &Name) { 2178 auto *VecTy = cast<FixedVectorType>(V->getType()); 2179 unsigned NumElements = EndIndex - BeginIndex; 2180 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2181 2182 if (NumElements == VecTy->getNumElements()) 2183 return V; 2184 2185 if (NumElements == 1) { 2186 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2187 Name + ".extract"); 2188 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); 2189 return V; 2190 } 2191 2192 SmallVector<int, 8> Mask; 2193 Mask.reserve(NumElements); 2194 for (unsigned i = BeginIndex; i != EndIndex; ++i) 2195 Mask.push_back(i); 2196 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), Mask, 2197 Name + ".extract"); 2198 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2199 return V; 2200 } 2201 2202 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2203 unsigned BeginIndex, const Twine &Name) { 2204 VectorType *VecTy = cast<VectorType>(Old->getType()); 2205 assert(VecTy && "Can only insert a vector into a vector"); 2206 2207 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2208 if (!Ty) { 2209 // Single element to insert. 2210 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2211 Name + ".insert"); 2212 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); 2213 return V; 2214 } 2215 2216 assert(cast<FixedVectorType>(Ty)->getNumElements() <= 2217 cast<FixedVectorType>(VecTy)->getNumElements() && 2218 "Too many elements!"); 2219 if (cast<FixedVectorType>(Ty)->getNumElements() == 2220 cast<FixedVectorType>(VecTy)->getNumElements()) { 2221 assert(V->getType() == VecTy && "Vector type mismatch"); 2222 return V; 2223 } 2224 unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements(); 2225 2226 // When inserting a smaller vector into the larger to store, we first 2227 // use a shuffle vector to widen it with undef elements, and then 2228 // a second shuffle vector to select between the loaded vector and the 2229 // incoming vector. 2230 SmallVector<Constant *, 8> Mask; 2231 Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2232 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2233 if (i >= BeginIndex && i < EndIndex) 2234 Mask.push_back(IRB.getInt32(i - BeginIndex)); 2235 else 2236 Mask.push_back(UndefValue::get(IRB.getInt32Ty())); 2237 V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()), 2238 ConstantVector::get(Mask), Name + ".expand"); 2239 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2240 2241 Mask.clear(); 2242 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2243 Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2244 2245 V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend"); 2246 2247 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); 2248 return V; 2249 } 2250 2251 /// Visitor to rewrite instructions using p particular slice of an alloca 2252 /// to use a new alloca. 2253 /// 2254 /// Also implements the rewriting to vector-based accesses when the partition 2255 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2256 /// lives here. 2257 class llvm::sroa::AllocaSliceRewriter 2258 : public InstVisitor<AllocaSliceRewriter, bool> { 2259 // Befriend the base class so it can delegate to private visit methods. 2260 friend class InstVisitor<AllocaSliceRewriter, bool>; 2261 2262 using Base = InstVisitor<AllocaSliceRewriter, bool>; 2263 2264 const DataLayout &DL; 2265 AllocaSlices &AS; 2266 SROA &Pass; 2267 AllocaInst &OldAI, &NewAI; 2268 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2269 Type *NewAllocaTy; 2270 2271 // This is a convenience and flag variable that will be null unless the new 2272 // alloca's integer operations should be widened to this integer type due to 2273 // passing isIntegerWideningViable above. If it is non-null, the desired 2274 // integer type will be stored here for easy access during rewriting. 2275 IntegerType *IntTy; 2276 2277 // If we are rewriting an alloca partition which can be written as pure 2278 // vector operations, we stash extra information here. When VecTy is 2279 // non-null, we have some strict guarantees about the rewritten alloca: 2280 // - The new alloca is exactly the size of the vector type here. 2281 // - The accesses all either map to the entire vector or to a single 2282 // element. 2283 // - The set of accessing instructions is only one of those handled above 2284 // in isVectorPromotionViable. Generally these are the same access kinds 2285 // which are promotable via mem2reg. 2286 VectorType *VecTy; 2287 Type *ElementTy; 2288 uint64_t ElementSize; 2289 2290 // The original offset of the slice currently being rewritten relative to 2291 // the original alloca. 2292 uint64_t BeginOffset = 0; 2293 uint64_t EndOffset = 0; 2294 2295 // The new offsets of the slice currently being rewritten relative to the 2296 // original alloca. 2297 uint64_t NewBeginOffset = 0, NewEndOffset = 0; 2298 2299 uint64_t SliceSize = 0; 2300 bool IsSplittable = false; 2301 bool IsSplit = false; 2302 Use *OldUse = nullptr; 2303 Instruction *OldPtr = nullptr; 2304 2305 // Track post-rewrite users which are PHI nodes and Selects. 2306 SmallSetVector<PHINode *, 8> &PHIUsers; 2307 SmallSetVector<SelectInst *, 8> &SelectUsers; 2308 2309 // Utility IR builder, whose name prefix is setup for each visited use, and 2310 // the insertion point is set to point to the user. 2311 IRBuilderTy IRB; 2312 2313 public: 2314 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass, 2315 AllocaInst &OldAI, AllocaInst &NewAI, 2316 uint64_t NewAllocaBeginOffset, 2317 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2318 VectorType *PromotableVecTy, 2319 SmallSetVector<PHINode *, 8> &PHIUsers, 2320 SmallSetVector<SelectInst *, 8> &SelectUsers) 2321 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2322 NewAllocaBeginOffset(NewAllocaBeginOffset), 2323 NewAllocaEndOffset(NewAllocaEndOffset), 2324 NewAllocaTy(NewAI.getAllocatedType()), 2325 IntTy( 2326 IsIntegerPromotable 2327 ? Type::getIntNTy(NewAI.getContext(), 2328 DL.getTypeSizeInBits(NewAI.getAllocatedType()) 2329 .getFixedSize()) 2330 : nullptr), 2331 VecTy(PromotableVecTy), 2332 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2333 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8 2334 : 0), 2335 PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2336 IRB(NewAI.getContext(), ConstantFolder()) { 2337 if (VecTy) { 2338 assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 && 2339 "Only multiple-of-8 sized vector elements are viable"); 2340 ++NumVectorized; 2341 } 2342 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2343 } 2344 2345 bool visit(AllocaSlices::const_iterator I) { 2346 bool CanSROA = true; 2347 BeginOffset = I->beginOffset(); 2348 EndOffset = I->endOffset(); 2349 IsSplittable = I->isSplittable(); 2350 IsSplit = 2351 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2352 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2353 LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); 2354 LLVM_DEBUG(dbgs() << "\n"); 2355 2356 // Compute the intersecting offset range. 2357 assert(BeginOffset < NewAllocaEndOffset); 2358 assert(EndOffset > NewAllocaBeginOffset); 2359 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2360 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2361 2362 SliceSize = NewEndOffset - NewBeginOffset; 2363 2364 OldUse = I->getUse(); 2365 OldPtr = cast<Instruction>(OldUse->get()); 2366 2367 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2368 IRB.SetInsertPoint(OldUserI); 2369 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2370 IRB.getInserter().SetNamePrefix( 2371 Twine(NewAI.getName()) + "." + Twine(BeginOffset) + "."); 2372 2373 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2374 if (VecTy || IntTy) 2375 assert(CanSROA); 2376 return CanSROA; 2377 } 2378 2379 private: 2380 // Make sure the other visit overloads are visible. 2381 using Base::visit; 2382 2383 // Every instruction which can end up as a user must have a rewrite rule. 2384 bool visitInstruction(Instruction &I) { 2385 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2386 llvm_unreachable("No rewrite rule for this instruction!"); 2387 } 2388 2389 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2390 // Note that the offset computation can use BeginOffset or NewBeginOffset 2391 // interchangeably for unsplit slices. 2392 assert(IsSplit || BeginOffset == NewBeginOffset); 2393 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2394 2395 #ifndef NDEBUG 2396 StringRef OldName = OldPtr->getName(); 2397 // Skip through the last '.sroa.' component of the name. 2398 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2399 if (LastSROAPrefix != StringRef::npos) { 2400 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2401 // Look for an SROA slice index. 2402 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2403 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2404 // Strip the index and look for the offset. 2405 OldName = OldName.substr(IndexEnd + 1); 2406 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2407 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2408 // Strip the offset. 2409 OldName = OldName.substr(OffsetEnd + 1); 2410 } 2411 } 2412 // Strip any SROA suffixes as well. 2413 OldName = OldName.substr(0, OldName.find(".sroa_")); 2414 #endif 2415 2416 return getAdjustedPtr(IRB, DL, &NewAI, 2417 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), 2418 PointerTy, 2419 #ifndef NDEBUG 2420 Twine(OldName) + "." 2421 #else 2422 Twine() 2423 #endif 2424 ); 2425 } 2426 2427 /// Compute suitable alignment to access this slice of the *new* 2428 /// alloca. 2429 /// 2430 /// You can optionally pass a type to this routine and if that type's ABI 2431 /// alignment is itself suitable, this will return zero. 2432 Align getSliceAlign() { 2433 return commonAlignment(NewAI.getAlign(), 2434 NewBeginOffset - NewAllocaBeginOffset); 2435 } 2436 2437 unsigned getIndex(uint64_t Offset) { 2438 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2439 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2440 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2441 uint32_t Index = RelOffset / ElementSize; 2442 assert(Index * ElementSize == RelOffset); 2443 return Index; 2444 } 2445 2446 void deleteIfTriviallyDead(Value *V) { 2447 Instruction *I = cast<Instruction>(V); 2448 if (isInstructionTriviallyDead(I)) 2449 Pass.DeadInsts.insert(I); 2450 } 2451 2452 Value *rewriteVectorizedLoadInst() { 2453 unsigned BeginIndex = getIndex(NewBeginOffset); 2454 unsigned EndIndex = getIndex(NewEndOffset); 2455 assert(EndIndex > BeginIndex && "Empty vector!"); 2456 2457 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2458 NewAI.getAlign(), "load"); 2459 return extractVector(IRB, V, BeginIndex, EndIndex, "vec"); 2460 } 2461 2462 Value *rewriteIntegerLoad(LoadInst &LI) { 2463 assert(IntTy && "We cannot insert an integer to the alloca"); 2464 assert(!LI.isVolatile()); 2465 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2466 NewAI.getAlign(), "load"); 2467 V = convertValue(DL, IRB, V, IntTy); 2468 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2469 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2470 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2471 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2472 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2473 } 2474 // It is possible that the extracted type is not the load type. This 2475 // happens if there is a load past the end of the alloca, and as 2476 // a consequence the slice is narrower but still a candidate for integer 2477 // lowering. To handle this case, we just zero extend the extracted 2478 // integer. 2479 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2480 "Can only handle an extract for an overly wide load"); 2481 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2482 V = IRB.CreateZExt(V, LI.getType()); 2483 return V; 2484 } 2485 2486 bool visitLoadInst(LoadInst &LI) { 2487 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 2488 Value *OldOp = LI.getOperand(0); 2489 assert(OldOp == OldPtr); 2490 2491 AAMDNodes AATags; 2492 LI.getAAMetadata(AATags); 2493 2494 unsigned AS = LI.getPointerAddressSpace(); 2495 2496 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2497 : LI.getType(); 2498 const bool IsLoadPastEnd = 2499 DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize; 2500 bool IsPtrAdjusted = false; 2501 Value *V; 2502 if (VecTy) { 2503 V = rewriteVectorizedLoadInst(); 2504 } else if (IntTy && LI.getType()->isIntegerTy()) { 2505 V = rewriteIntegerLoad(LI); 2506 } else if (NewBeginOffset == NewAllocaBeginOffset && 2507 NewEndOffset == NewAllocaEndOffset && 2508 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2509 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2510 TargetTy->isIntegerTy()))) { 2511 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2512 NewAI.getAlign(), LI.isVolatile(), 2513 LI.getName()); 2514 if (AATags) 2515 NewLI->setAAMetadata(AATags); 2516 if (LI.isVolatile()) 2517 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2518 if (NewLI->isAtomic()) 2519 NewLI->setAlignment(LI.getAlign()); 2520 2521 // Any !nonnull metadata or !range metadata on the old load is also valid 2522 // on the new load. This is even true in some cases even when the loads 2523 // are different types, for example by mapping !nonnull metadata to 2524 // !range metadata by modeling the null pointer constant converted to the 2525 // integer type. 2526 // FIXME: Add support for range metadata here. Currently the utilities 2527 // for this don't propagate range metadata in trivial cases from one 2528 // integer load to another, don't handle non-addrspace-0 null pointers 2529 // correctly, and don't have any support for mapping ranges as the 2530 // integer type becomes winder or narrower. 2531 if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull)) 2532 copyNonnullMetadata(LI, N, *NewLI); 2533 2534 // Try to preserve nonnull metadata 2535 V = NewLI; 2536 2537 // If this is an integer load past the end of the slice (which means the 2538 // bytes outside the slice are undef or this load is dead) just forcibly 2539 // fix the integer size with correct handling of endianness. 2540 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2541 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2542 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2543 V = IRB.CreateZExt(V, TITy, "load.ext"); 2544 if (DL.isBigEndian()) 2545 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2546 "endian_shift"); 2547 } 2548 } else { 2549 Type *LTy = TargetTy->getPointerTo(AS); 2550 LoadInst *NewLI = 2551 IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy), 2552 getSliceAlign(), LI.isVolatile(), LI.getName()); 2553 if (AATags) 2554 NewLI->setAAMetadata(AATags); 2555 if (LI.isVolatile()) 2556 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2557 2558 V = NewLI; 2559 IsPtrAdjusted = true; 2560 } 2561 V = convertValue(DL, IRB, V, TargetTy); 2562 2563 if (IsSplit) { 2564 assert(!LI.isVolatile()); 2565 assert(LI.getType()->isIntegerTy() && 2566 "Only integer type loads and stores are split"); 2567 assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() && 2568 "Split load isn't smaller than original load"); 2569 assert(DL.typeSizeEqualsStoreSize(LI.getType()) && 2570 "Non-byte-multiple bit width"); 2571 // Move the insertion point just past the load so that we can refer to it. 2572 IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI))); 2573 // Create a placeholder value with the same type as LI to use as the 2574 // basis for the new value. This allows us to replace the uses of LI with 2575 // the computed value, and then replace the placeholder with LI, leaving 2576 // LI only used for this computation. 2577 Value *Placeholder = new LoadInst( 2578 LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)), "", 2579 false, Align(1)); 2580 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2581 "insert"); 2582 LI.replaceAllUsesWith(V); 2583 Placeholder->replaceAllUsesWith(&LI); 2584 Placeholder->deleteValue(); 2585 } else { 2586 LI.replaceAllUsesWith(V); 2587 } 2588 2589 Pass.DeadInsts.insert(&LI); 2590 deleteIfTriviallyDead(OldOp); 2591 LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); 2592 return !LI.isVolatile() && !IsPtrAdjusted; 2593 } 2594 2595 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, 2596 AAMDNodes AATags) { 2597 if (V->getType() != VecTy) { 2598 unsigned BeginIndex = getIndex(NewBeginOffset); 2599 unsigned EndIndex = getIndex(NewEndOffset); 2600 assert(EndIndex > BeginIndex && "Empty vector!"); 2601 unsigned NumElements = EndIndex - BeginIndex; 2602 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2603 "Too many elements!"); 2604 Type *SliceTy = (NumElements == 1) 2605 ? ElementTy 2606 : FixedVectorType::get(ElementTy, NumElements); 2607 if (V->getType() != SliceTy) 2608 V = convertValue(DL, IRB, V, SliceTy); 2609 2610 // Mix in the existing elements. 2611 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2612 NewAI.getAlign(), "load"); 2613 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 2614 } 2615 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2616 if (AATags) 2617 Store->setAAMetadata(AATags); 2618 Pass.DeadInsts.insert(&SI); 2619 2620 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2621 return true; 2622 } 2623 2624 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { 2625 assert(IntTy && "We cannot extract an integer from the alloca"); 2626 assert(!SI.isVolatile()); 2627 if (DL.getTypeSizeInBits(V->getType()).getFixedSize() != 2628 IntTy->getBitWidth()) { 2629 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2630 NewAI.getAlign(), "oldload"); 2631 Old = convertValue(DL, IRB, Old, IntTy); 2632 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2633 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 2634 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 2635 } 2636 V = convertValue(DL, IRB, V, NewAllocaTy); 2637 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 2638 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2639 LLVMContext::MD_access_group}); 2640 if (AATags) 2641 Store->setAAMetadata(AATags); 2642 Pass.DeadInsts.insert(&SI); 2643 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 2644 return true; 2645 } 2646 2647 bool visitStoreInst(StoreInst &SI) { 2648 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 2649 Value *OldOp = SI.getOperand(1); 2650 assert(OldOp == OldPtr); 2651 2652 AAMDNodes AATags; 2653 SI.getAAMetadata(AATags); 2654 2655 Value *V = SI.getValueOperand(); 2656 2657 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2658 // alloca that should be re-examined after promoting this alloca. 2659 if (V->getType()->isPointerTy()) 2660 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 2661 Pass.PostPromotionWorklist.insert(AI); 2662 2663 if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) { 2664 assert(!SI.isVolatile()); 2665 assert(V->getType()->isIntegerTy() && 2666 "Only integer type loads and stores are split"); 2667 assert(DL.typeSizeEqualsStoreSize(V->getType()) && 2668 "Non-byte-multiple bit width"); 2669 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 2670 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 2671 "extract"); 2672 } 2673 2674 if (VecTy) 2675 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); 2676 if (IntTy && V->getType()->isIntegerTy()) 2677 return rewriteIntegerStore(V, SI, AATags); 2678 2679 const bool IsStorePastEnd = 2680 DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize; 2681 StoreInst *NewSI; 2682 if (NewBeginOffset == NewAllocaBeginOffset && 2683 NewEndOffset == NewAllocaEndOffset && 2684 (canConvertValue(DL, V->getType(), NewAllocaTy) || 2685 (IsStorePastEnd && NewAllocaTy->isIntegerTy() && 2686 V->getType()->isIntegerTy()))) { 2687 // If this is an integer store past the end of slice (and thus the bytes 2688 // past that point are irrelevant or this is unreachable), truncate the 2689 // value prior to storing. 2690 if (auto *VITy = dyn_cast<IntegerType>(V->getType())) 2691 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2692 if (VITy->getBitWidth() > AITy->getBitWidth()) { 2693 if (DL.isBigEndian()) 2694 V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(), 2695 "endian_shift"); 2696 V = IRB.CreateTrunc(V, AITy, "load.trunc"); 2697 } 2698 2699 V = convertValue(DL, IRB, V, NewAllocaTy); 2700 NewSI = 2701 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile()); 2702 } else { 2703 unsigned AS = SI.getPointerAddressSpace(); 2704 Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS)); 2705 NewSI = 2706 IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile()); 2707 } 2708 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 2709 LLVMContext::MD_access_group}); 2710 if (AATags) 2711 NewSI->setAAMetadata(AATags); 2712 if (SI.isVolatile()) 2713 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 2714 if (NewSI->isAtomic()) 2715 NewSI->setAlignment(SI.getAlign()); 2716 Pass.DeadInsts.insert(&SI); 2717 deleteIfTriviallyDead(OldOp); 2718 2719 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); 2720 return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile(); 2721 } 2722 2723 /// Compute an integer value from splatting an i8 across the given 2724 /// number of bytes. 2725 /// 2726 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 2727 /// call this routine. 2728 /// FIXME: Heed the advice above. 2729 /// 2730 /// \param V The i8 value to splat. 2731 /// \param Size The number of bytes in the output (assuming i8 is one byte) 2732 Value *getIntegerSplat(Value *V, unsigned Size) { 2733 assert(Size > 0 && "Expected a positive number of bytes."); 2734 IntegerType *VTy = cast<IntegerType>(V->getType()); 2735 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 2736 if (Size == 1) 2737 return V; 2738 2739 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 2740 V = IRB.CreateMul( 2741 IRB.CreateZExt(V, SplatIntTy, "zext"), 2742 ConstantExpr::getUDiv( 2743 Constant::getAllOnesValue(SplatIntTy), 2744 ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()), 2745 SplatIntTy)), 2746 "isplat"); 2747 return V; 2748 } 2749 2750 /// Compute a vector splat for a given element value. 2751 Value *getVectorSplat(Value *V, unsigned NumElements) { 2752 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 2753 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); 2754 return V; 2755 } 2756 2757 bool visitMemSetInst(MemSetInst &II) { 2758 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2759 assert(II.getRawDest() == OldPtr); 2760 2761 AAMDNodes AATags; 2762 II.getAAMetadata(AATags); 2763 2764 // If the memset has a variable size, it cannot be split, just adjust the 2765 // pointer to the new alloca. 2766 if (!isa<Constant>(II.getLength())) { 2767 assert(!IsSplit); 2768 assert(NewBeginOffset == BeginOffset); 2769 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 2770 II.setDestAlignment(getSliceAlign()); 2771 2772 deleteIfTriviallyDead(OldPtr); 2773 return false; 2774 } 2775 2776 // Record this instruction for deletion. 2777 Pass.DeadInsts.insert(&II); 2778 2779 Type *AllocaTy = NewAI.getAllocatedType(); 2780 Type *ScalarTy = AllocaTy->getScalarType(); 2781 2782 const bool CanContinue = [&]() { 2783 if (VecTy || IntTy) 2784 return true; 2785 if (BeginOffset > NewAllocaBeginOffset || 2786 EndOffset < NewAllocaEndOffset) 2787 return false; 2788 auto *C = cast<ConstantInt>(II.getLength()); 2789 if (C->getBitWidth() > 64) 2790 return false; 2791 const auto Len = C->getZExtValue(); 2792 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); 2793 auto *SrcTy = FixedVectorType::get(Int8Ty, Len); 2794 return canConvertValue(DL, SrcTy, AllocaTy) && 2795 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize()); 2796 }(); 2797 2798 // If this doesn't map cleanly onto the alloca type, and that type isn't 2799 // a single value type, just emit a memset. 2800 if (!CanContinue) { 2801 Type *SizeTy = II.getLength()->getType(); 2802 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2803 CallInst *New = IRB.CreateMemSet( 2804 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 2805 MaybeAlign(getSliceAlign()), II.isVolatile()); 2806 if (AATags) 2807 New->setAAMetadata(AATags); 2808 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2809 return false; 2810 } 2811 2812 // If we can represent this as a simple value, we have to build the actual 2813 // value to store, which requires expanding the byte present in memset to 2814 // a sensible representation for the alloca type. This is essentially 2815 // splatting the byte to a sufficiently wide integer, splatting it across 2816 // any desired vector width, and bitcasting to the final type. 2817 Value *V; 2818 2819 if (VecTy) { 2820 // If this is a memset of a vectorized alloca, insert it. 2821 assert(ElementTy == ScalarTy); 2822 2823 unsigned BeginIndex = getIndex(NewBeginOffset); 2824 unsigned EndIndex = getIndex(NewEndOffset); 2825 assert(EndIndex > BeginIndex && "Empty vector!"); 2826 unsigned NumElements = EndIndex - BeginIndex; 2827 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 2828 "Too many elements!"); 2829 2830 Value *Splat = getIntegerSplat( 2831 II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8); 2832 Splat = convertValue(DL, IRB, Splat, ElementTy); 2833 if (NumElements > 1) 2834 Splat = getVectorSplat(Splat, NumElements); 2835 2836 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2837 NewAI.getAlign(), "oldload"); 2838 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 2839 } else if (IntTy) { 2840 // If this is a memset on an alloca where we can widen stores, insert the 2841 // set integer. 2842 assert(!II.isVolatile()); 2843 2844 uint64_t Size = NewEndOffset - NewBeginOffset; 2845 V = getIntegerSplat(II.getValue(), Size); 2846 2847 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 2848 EndOffset != NewAllocaBeginOffset)) { 2849 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2850 NewAI.getAlign(), "oldload"); 2851 Old = convertValue(DL, IRB, Old, IntTy); 2852 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2853 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 2854 } else { 2855 assert(V->getType() == IntTy && 2856 "Wrong type for an alloca wide integer!"); 2857 } 2858 V = convertValue(DL, IRB, V, AllocaTy); 2859 } else { 2860 // Established these invariants above. 2861 assert(NewBeginOffset == NewAllocaBeginOffset); 2862 assert(NewEndOffset == NewAllocaEndOffset); 2863 2864 V = getIntegerSplat(II.getValue(), 2865 DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8); 2866 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 2867 V = getVectorSplat( 2868 V, cast<FixedVectorType>(AllocaVecTy)->getNumElements()); 2869 2870 V = convertValue(DL, IRB, V, AllocaTy); 2871 } 2872 2873 StoreInst *New = 2874 IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile()); 2875 if (AATags) 2876 New->setAAMetadata(AATags); 2877 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2878 return !II.isVolatile(); 2879 } 2880 2881 bool visitMemTransferInst(MemTransferInst &II) { 2882 // Rewriting of memory transfer instructions can be a bit tricky. We break 2883 // them into two categories: split intrinsics and unsplit intrinsics. 2884 2885 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 2886 2887 AAMDNodes AATags; 2888 II.getAAMetadata(AATags); 2889 2890 bool IsDest = &II.getRawDestUse() == OldUse; 2891 assert((IsDest && II.getRawDest() == OldPtr) || 2892 (!IsDest && II.getRawSource() == OldPtr)); 2893 2894 MaybeAlign SliceAlign = getSliceAlign(); 2895 2896 // For unsplit intrinsics, we simply modify the source and destination 2897 // pointers in place. This isn't just an optimization, it is a matter of 2898 // correctness. With unsplit intrinsics we may be dealing with transfers 2899 // within a single alloca before SROA ran, or with transfers that have 2900 // a variable length. We may also be dealing with memmove instead of 2901 // memcpy, and so simply updating the pointers is the necessary for us to 2902 // update both source and dest of a single call. 2903 if (!IsSplittable) { 2904 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2905 if (IsDest) { 2906 II.setDest(AdjustedPtr); 2907 II.setDestAlignment(SliceAlign); 2908 } 2909 else { 2910 II.setSource(AdjustedPtr); 2911 II.setSourceAlignment(SliceAlign); 2912 } 2913 2914 LLVM_DEBUG(dbgs() << " to: " << II << "\n"); 2915 deleteIfTriviallyDead(OldPtr); 2916 return false; 2917 } 2918 // For split transfer intrinsics we have an incredibly useful assurance: 2919 // the source and destination do not reside within the same alloca, and at 2920 // least one of them does not escape. This means that we can replace 2921 // memmove with memcpy, and we don't need to worry about all manner of 2922 // downsides to splitting and transforming the operations. 2923 2924 // If this doesn't map cleanly onto the alloca type, and that type isn't 2925 // a single value type, just emit a memcpy. 2926 bool EmitMemCpy = 2927 !VecTy && !IntTy && 2928 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 2929 SliceSize != 2930 DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() || 2931 !NewAI.getAllocatedType()->isSingleValueType()); 2932 2933 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 2934 // size hasn't been shrunk based on analysis of the viable range, this is 2935 // a no-op. 2936 if (EmitMemCpy && &OldAI == &NewAI) { 2937 // Ensure the start lines up. 2938 assert(NewBeginOffset == BeginOffset); 2939 2940 // Rewrite the size as needed. 2941 if (NewEndOffset != EndOffset) 2942 II.setLength(ConstantInt::get(II.getLength()->getType(), 2943 NewEndOffset - NewBeginOffset)); 2944 return false; 2945 } 2946 // Record this instruction for deletion. 2947 Pass.DeadInsts.insert(&II); 2948 2949 // Strip all inbounds GEPs and pointer casts to try to dig out any root 2950 // alloca that should be re-examined after rewriting this instruction. 2951 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 2952 if (AllocaInst *AI = 2953 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 2954 assert(AI != &OldAI && AI != &NewAI && 2955 "Splittable transfers cannot reach the same alloca on both ends."); 2956 Pass.Worklist.insert(AI); 2957 } 2958 2959 Type *OtherPtrTy = OtherPtr->getType(); 2960 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 2961 2962 // Compute the relative offset for the other pointer within the transfer. 2963 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); 2964 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); 2965 Align OtherAlign = 2966 (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); 2967 OtherAlign = 2968 commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue()); 2969 2970 if (EmitMemCpy) { 2971 // Compute the other pointer, folding as much as possible to produce 2972 // a single, simple GEP in most cases. 2973 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 2974 OtherPtr->getName() + "."); 2975 2976 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 2977 Type *SizeTy = II.getLength()->getType(); 2978 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 2979 2980 Value *DestPtr, *SrcPtr; 2981 MaybeAlign DestAlign, SrcAlign; 2982 // Note: IsDest is true iff we're copying into the new alloca slice 2983 if (IsDest) { 2984 DestPtr = OurPtr; 2985 DestAlign = SliceAlign; 2986 SrcPtr = OtherPtr; 2987 SrcAlign = OtherAlign; 2988 } else { 2989 DestPtr = OtherPtr; 2990 DestAlign = OtherAlign; 2991 SrcPtr = OurPtr; 2992 SrcAlign = SliceAlign; 2993 } 2994 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, 2995 Size, II.isVolatile()); 2996 if (AATags) 2997 New->setAAMetadata(AATags); 2998 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 2999 return false; 3000 } 3001 3002 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 3003 NewEndOffset == NewAllocaEndOffset; 3004 uint64_t Size = NewEndOffset - NewBeginOffset; 3005 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 3006 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 3007 unsigned NumElements = EndIndex - BeginIndex; 3008 IntegerType *SubIntTy = 3009 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 3010 3011 // Reset the other pointer type to match the register type we're going to 3012 // use, but using the address space of the original other pointer. 3013 Type *OtherTy; 3014 if (VecTy && !IsWholeAlloca) { 3015 if (NumElements == 1) 3016 OtherTy = VecTy->getElementType(); 3017 else 3018 OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements); 3019 } else if (IntTy && !IsWholeAlloca) { 3020 OtherTy = SubIntTy; 3021 } else { 3022 OtherTy = NewAllocaTy; 3023 } 3024 OtherPtrTy = OtherTy->getPointerTo(OtherAS); 3025 3026 Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3027 OtherPtr->getName() + "."); 3028 MaybeAlign SrcAlign = OtherAlign; 3029 Value *DstPtr = &NewAI; 3030 MaybeAlign DstAlign = SliceAlign; 3031 if (!IsDest) { 3032 std::swap(SrcPtr, DstPtr); 3033 std::swap(SrcAlign, DstAlign); 3034 } 3035 3036 Value *Src; 3037 if (VecTy && !IsWholeAlloca && !IsDest) { 3038 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3039 NewAI.getAlign(), "load"); 3040 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 3041 } else if (IntTy && !IsWholeAlloca && !IsDest) { 3042 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3043 NewAI.getAlign(), "load"); 3044 Src = convertValue(DL, IRB, Src, IntTy); 3045 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3046 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 3047 } else { 3048 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, 3049 II.isVolatile(), "copyload"); 3050 if (AATags) 3051 Load->setAAMetadata(AATags); 3052 Src = Load; 3053 } 3054 3055 if (VecTy && !IsWholeAlloca && IsDest) { 3056 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3057 NewAI.getAlign(), "oldload"); 3058 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 3059 } else if (IntTy && !IsWholeAlloca && IsDest) { 3060 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3061 NewAI.getAlign(), "oldload"); 3062 Old = convertValue(DL, IRB, Old, IntTy); 3063 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3064 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 3065 Src = convertValue(DL, IRB, Src, NewAllocaTy); 3066 } 3067 3068 StoreInst *Store = cast<StoreInst>( 3069 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 3070 if (AATags) 3071 Store->setAAMetadata(AATags); 3072 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3073 return !II.isVolatile(); 3074 } 3075 3076 bool visitIntrinsicInst(IntrinsicInst &II) { 3077 assert(II.isLifetimeStartOrEnd()); 3078 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3079 assert(II.getArgOperand(1) == OldPtr); 3080 3081 // Record this instruction for deletion. 3082 Pass.DeadInsts.insert(&II); 3083 3084 // Lifetime intrinsics are only promotable if they cover the whole alloca. 3085 // Therefore, we drop lifetime intrinsics which don't cover the whole 3086 // alloca. 3087 // (In theory, intrinsics which partially cover an alloca could be 3088 // promoted, but PromoteMemToReg doesn't handle that case.) 3089 // FIXME: Check whether the alloca is promotable before dropping the 3090 // lifetime intrinsics? 3091 if (NewBeginOffset != NewAllocaBeginOffset || 3092 NewEndOffset != NewAllocaEndOffset) 3093 return true; 3094 3095 ConstantInt *Size = 3096 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 3097 NewEndOffset - NewBeginOffset); 3098 // Lifetime intrinsics always expect an i8* so directly get such a pointer 3099 // for the new alloca slice. 3100 Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace()); 3101 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); 3102 Value *New; 3103 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 3104 New = IRB.CreateLifetimeStart(Ptr, Size); 3105 else 3106 New = IRB.CreateLifetimeEnd(Ptr, Size); 3107 3108 (void)New; 3109 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3110 3111 return true; 3112 } 3113 3114 void fixLoadStoreAlign(Instruction &Root) { 3115 // This algorithm implements the same visitor loop as 3116 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load 3117 // or store found. 3118 SmallPtrSet<Instruction *, 4> Visited; 3119 SmallVector<Instruction *, 4> Uses; 3120 Visited.insert(&Root); 3121 Uses.push_back(&Root); 3122 do { 3123 Instruction *I = Uses.pop_back_val(); 3124 3125 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3126 LI->setAlignment(std::min(LI->getAlign(), getSliceAlign())); 3127 continue; 3128 } 3129 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3130 SI->setAlignment(std::min(SI->getAlign(), getSliceAlign())); 3131 continue; 3132 } 3133 3134 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || 3135 isa<PHINode>(I) || isa<SelectInst>(I) || 3136 isa<GetElementPtrInst>(I)); 3137 for (User *U : I->users()) 3138 if (Visited.insert(cast<Instruction>(U)).second) 3139 Uses.push_back(cast<Instruction>(U)); 3140 } while (!Uses.empty()); 3141 } 3142 3143 bool visitPHINode(PHINode &PN) { 3144 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 3145 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 3146 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 3147 3148 // We would like to compute a new pointer in only one place, but have it be 3149 // as local as possible to the PHI. To do that, we re-use the location of 3150 // the old pointer, which necessarily must be in the right position to 3151 // dominate the PHI. 3152 IRBuilderBase::InsertPointGuard Guard(IRB); 3153 if (isa<PHINode>(OldPtr)) 3154 IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt()); 3155 else 3156 IRB.SetInsertPoint(OldPtr); 3157 IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 3158 3159 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3160 // Replace the operands which were using the old pointer. 3161 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 3162 3163 LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); 3164 deleteIfTriviallyDead(OldPtr); 3165 3166 // Fix the alignment of any loads or stores using this PHI node. 3167 fixLoadStoreAlign(PN); 3168 3169 // PHIs can't be promoted on their own, but often can be speculated. We 3170 // check the speculation outside of the rewriter so that we see the 3171 // fully-rewritten alloca. 3172 PHIUsers.insert(&PN); 3173 return true; 3174 } 3175 3176 bool visitSelectInst(SelectInst &SI) { 3177 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3178 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 3179 "Pointer isn't an operand!"); 3180 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 3181 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 3182 3183 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3184 // Replace the operands which were using the old pointer. 3185 if (SI.getOperand(1) == OldPtr) 3186 SI.setOperand(1, NewPtr); 3187 if (SI.getOperand(2) == OldPtr) 3188 SI.setOperand(2, NewPtr); 3189 3190 LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); 3191 deleteIfTriviallyDead(OldPtr); 3192 3193 // Fix the alignment of any loads or stores using this select. 3194 fixLoadStoreAlign(SI); 3195 3196 // Selects can't be promoted on their own, but often can be speculated. We 3197 // check the speculation outside of the rewriter so that we see the 3198 // fully-rewritten alloca. 3199 SelectUsers.insert(&SI); 3200 return true; 3201 } 3202 }; 3203 3204 namespace { 3205 3206 /// Visitor to rewrite aggregate loads and stores as scalar. 3207 /// 3208 /// This pass aggressively rewrites all aggregate loads and stores on 3209 /// a particular pointer (or any pointer derived from it which we can identify) 3210 /// with scalar loads and stores. 3211 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 3212 // Befriend the base class so it can delegate to private visit methods. 3213 friend class InstVisitor<AggLoadStoreRewriter, bool>; 3214 3215 /// Queue of pointer uses to analyze and potentially rewrite. 3216 SmallVector<Use *, 8> Queue; 3217 3218 /// Set to prevent us from cycling with phi nodes and loops. 3219 SmallPtrSet<User *, 8> Visited; 3220 3221 /// The current pointer use being rewritten. This is used to dig up the used 3222 /// value (as opposed to the user). 3223 Use *U = nullptr; 3224 3225 /// Used to calculate offsets, and hence alignment, of subobjects. 3226 const DataLayout &DL; 3227 3228 public: 3229 AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {} 3230 3231 /// Rewrite loads and stores through a pointer and all pointers derived from 3232 /// it. 3233 bool rewrite(Instruction &I) { 3234 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 3235 enqueueUsers(I); 3236 bool Changed = false; 3237 while (!Queue.empty()) { 3238 U = Queue.pop_back_val(); 3239 Changed |= visit(cast<Instruction>(U->getUser())); 3240 } 3241 return Changed; 3242 } 3243 3244 private: 3245 /// Enqueue all the users of the given instruction for further processing. 3246 /// This uses a set to de-duplicate users. 3247 void enqueueUsers(Instruction &I) { 3248 for (Use &U : I.uses()) 3249 if (Visited.insert(U.getUser()).second) 3250 Queue.push_back(&U); 3251 } 3252 3253 // Conservative default is to not rewrite anything. 3254 bool visitInstruction(Instruction &I) { return false; } 3255 3256 /// Generic recursive split emission class. 3257 template <typename Derived> class OpSplitter { 3258 protected: 3259 /// The builder used to form new instructions. 3260 IRBuilderTy IRB; 3261 3262 /// The indices which to be used with insert- or extractvalue to select the 3263 /// appropriate value within the aggregate. 3264 SmallVector<unsigned, 4> Indices; 3265 3266 /// The indices to a GEP instruction which will move Ptr to the correct slot 3267 /// within the aggregate. 3268 SmallVector<Value *, 4> GEPIndices; 3269 3270 /// The base pointer of the original op, used as a base for GEPing the 3271 /// split operations. 3272 Value *Ptr; 3273 3274 /// The base pointee type being GEPed into. 3275 Type *BaseTy; 3276 3277 /// Known alignment of the base pointer. 3278 Align BaseAlign; 3279 3280 /// To calculate offset of each component so we can correctly deduce 3281 /// alignments. 3282 const DataLayout &DL; 3283 3284 /// Initialize the splitter with an insertion point, Ptr and start with a 3285 /// single zero GEP index. 3286 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3287 Align BaseAlign, const DataLayout &DL) 3288 : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), 3289 BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {} 3290 3291 public: 3292 /// Generic recursive split emission routine. 3293 /// 3294 /// This method recursively splits an aggregate op (load or store) into 3295 /// scalar or vector ops. It splits recursively until it hits a single value 3296 /// and emits that single value operation via the template argument. 3297 /// 3298 /// The logic of this routine relies on GEPs and insertvalue and 3299 /// extractvalue all operating with the same fundamental index list, merely 3300 /// formatted differently (GEPs need actual values). 3301 /// 3302 /// \param Ty The type being split recursively into smaller ops. 3303 /// \param Agg The aggregate value being built up or stored, depending on 3304 /// whether this is splitting a load or a store respectively. 3305 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3306 if (Ty->isSingleValueType()) { 3307 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); 3308 return static_cast<Derived *>(this)->emitFunc( 3309 Ty, Agg, commonAlignment(BaseAlign, Offset), Name); 3310 } 3311 3312 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3313 unsigned OldSize = Indices.size(); 3314 (void)OldSize; 3315 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3316 ++Idx) { 3317 assert(Indices.size() == OldSize && "Did not return to the old size"); 3318 Indices.push_back(Idx); 3319 GEPIndices.push_back(IRB.getInt32(Idx)); 3320 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3321 GEPIndices.pop_back(); 3322 Indices.pop_back(); 3323 } 3324 return; 3325 } 3326 3327 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3328 unsigned OldSize = Indices.size(); 3329 (void)OldSize; 3330 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3331 ++Idx) { 3332 assert(Indices.size() == OldSize && "Did not return to the old size"); 3333 Indices.push_back(Idx); 3334 GEPIndices.push_back(IRB.getInt32(Idx)); 3335 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3336 GEPIndices.pop_back(); 3337 Indices.pop_back(); 3338 } 3339 return; 3340 } 3341 3342 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3343 } 3344 }; 3345 3346 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3347 AAMDNodes AATags; 3348 3349 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3350 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL) 3351 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3352 DL), 3353 AATags(AATags) {} 3354 3355 /// Emit a leaf load of a single value. This is called at the leaves of the 3356 /// recursive emission to actually load values. 3357 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3358 assert(Ty->isSingleValueType()); 3359 // Load the single value and insert it using the indices. 3360 Value *GEP = 3361 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3362 LoadInst *Load = 3363 IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load"); 3364 if (AATags) 3365 Load->setAAMetadata(AATags); 3366 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3367 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); 3368 } 3369 }; 3370 3371 bool visitLoadInst(LoadInst &LI) { 3372 assert(LI.getPointerOperand() == *U); 3373 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3374 return false; 3375 3376 // We have an aggregate being loaded, split it apart. 3377 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 3378 AAMDNodes AATags; 3379 LI.getAAMetadata(AATags); 3380 LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags, 3381 getAdjustedAlignment(&LI, 0), DL); 3382 Value *V = UndefValue::get(LI.getType()); 3383 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3384 Visited.erase(&LI); 3385 LI.replaceAllUsesWith(V); 3386 LI.eraseFromParent(); 3387 return true; 3388 } 3389 3390 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3391 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3392 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL) 3393 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3394 DL), 3395 AATags(AATags) {} 3396 AAMDNodes AATags; 3397 /// Emit a leaf store of a single value. This is called at the leaves of the 3398 /// recursive emission to actually produce stores. 3399 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3400 assert(Ty->isSingleValueType()); 3401 // Extract the single value and store it using the indices. 3402 // 3403 // The gep and extractvalue values are factored out of the CreateStore 3404 // call to make the output independent of the argument evaluation order. 3405 Value *ExtractValue = 3406 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3407 Value *InBoundsGEP = 3408 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3409 StoreInst *Store = 3410 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment); 3411 if (AATags) 3412 Store->setAAMetadata(AATags); 3413 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3414 } 3415 }; 3416 3417 bool visitStoreInst(StoreInst &SI) { 3418 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3419 return false; 3420 Value *V = SI.getValueOperand(); 3421 if (V->getType()->isSingleValueType()) 3422 return false; 3423 3424 // We have an aggregate being stored, split it apart. 3425 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3426 AAMDNodes AATags; 3427 SI.getAAMetadata(AATags); 3428 StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags, 3429 getAdjustedAlignment(&SI, 0), DL); 3430 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3431 Visited.erase(&SI); 3432 SI.eraseFromParent(); 3433 return true; 3434 } 3435 3436 bool visitBitCastInst(BitCastInst &BC) { 3437 enqueueUsers(BC); 3438 return false; 3439 } 3440 3441 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 3442 enqueueUsers(ASC); 3443 return false; 3444 } 3445 3446 // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2) 3447 bool foldGEPSelect(GetElementPtrInst &GEPI) { 3448 if (!GEPI.hasAllConstantIndices()) 3449 return false; 3450 3451 SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand()); 3452 3453 LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):" 3454 << "\n original: " << *Sel 3455 << "\n " << GEPI); 3456 3457 IRBuilderTy Builder(&GEPI); 3458 SmallVector<Value *, 4> Index(GEPI.idx_begin(), GEPI.idx_end()); 3459 bool IsInBounds = GEPI.isInBounds(); 3460 3461 Value *True = Sel->getTrueValue(); 3462 Value *NTrue = 3463 IsInBounds 3464 ? Builder.CreateInBoundsGEP(True, Index, 3465 True->getName() + ".sroa.gep") 3466 : Builder.CreateGEP(True, Index, True->getName() + ".sroa.gep"); 3467 3468 Value *False = Sel->getFalseValue(); 3469 3470 Value *NFalse = 3471 IsInBounds 3472 ? Builder.CreateInBoundsGEP(False, Index, 3473 False->getName() + ".sroa.gep") 3474 : Builder.CreateGEP(False, Index, False->getName() + ".sroa.gep"); 3475 3476 Value *NSel = Builder.CreateSelect(Sel->getCondition(), NTrue, NFalse, 3477 Sel->getName() + ".sroa.sel"); 3478 Visited.erase(&GEPI); 3479 GEPI.replaceAllUsesWith(NSel); 3480 GEPI.eraseFromParent(); 3481 Instruction *NSelI = cast<Instruction>(NSel); 3482 Visited.insert(NSelI); 3483 enqueueUsers(*NSelI); 3484 3485 LLVM_DEBUG(dbgs() << "\n to: " << *NTrue 3486 << "\n " << *NFalse 3487 << "\n " << *NSel << '\n'); 3488 3489 return true; 3490 } 3491 3492 // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2) 3493 bool foldGEPPhi(GetElementPtrInst &GEPI) { 3494 if (!GEPI.hasAllConstantIndices()) 3495 return false; 3496 3497 PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand()); 3498 if (GEPI.getParent() != PHI->getParent() || 3499 llvm::any_of(PHI->incoming_values(), [](Value *In) 3500 { Instruction *I = dyn_cast<Instruction>(In); 3501 return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) || 3502 succ_empty(I->getParent()) || 3503 !I->getParent()->isLegalToHoistInto(); 3504 })) 3505 return false; 3506 3507 LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):" 3508 << "\n original: " << *PHI 3509 << "\n " << GEPI 3510 << "\n to: "); 3511 3512 SmallVector<Value *, 4> Index(GEPI.idx_begin(), GEPI.idx_end()); 3513 bool IsInBounds = GEPI.isInBounds(); 3514 IRBuilderTy PHIBuilder(GEPI.getParent()->getFirstNonPHI()); 3515 PHINode *NewPN = PHIBuilder.CreatePHI(GEPI.getType(), 3516 PHI->getNumIncomingValues(), 3517 PHI->getName() + ".sroa.phi"); 3518 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) { 3519 Instruction *In = cast<Instruction>(PHI->getIncomingValue(I)); 3520 3521 IRBuilderTy B(In->getParent(), std::next(In->getIterator())); 3522 Value *NewVal = IsInBounds 3523 ? B.CreateInBoundsGEP(In, Index, In->getName() + ".sroa.gep") 3524 : B.CreateGEP(In, Index, In->getName() + ".sroa.gep"); 3525 NewPN->addIncoming(NewVal, PHI->getIncomingBlock(I)); 3526 } 3527 3528 Visited.erase(&GEPI); 3529 GEPI.replaceAllUsesWith(NewPN); 3530 GEPI.eraseFromParent(); 3531 Visited.insert(NewPN); 3532 enqueueUsers(*NewPN); 3533 3534 LLVM_DEBUG(for (Value *In : NewPN->incoming_values()) 3535 dbgs() << "\n " << *In; 3536 dbgs() << "\n " << *NewPN << '\n'); 3537 3538 return true; 3539 } 3540 3541 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 3542 if (isa<SelectInst>(GEPI.getPointerOperand()) && 3543 foldGEPSelect(GEPI)) 3544 return true; 3545 3546 if (isa<PHINode>(GEPI.getPointerOperand()) && 3547 foldGEPPhi(GEPI)) 3548 return true; 3549 3550 enqueueUsers(GEPI); 3551 return false; 3552 } 3553 3554 bool visitPHINode(PHINode &PN) { 3555 enqueueUsers(PN); 3556 return false; 3557 } 3558 3559 bool visitSelectInst(SelectInst &SI) { 3560 enqueueUsers(SI); 3561 return false; 3562 } 3563 }; 3564 3565 } // end anonymous namespace 3566 3567 /// Strip aggregate type wrapping. 3568 /// 3569 /// This removes no-op aggregate types wrapping an underlying type. It will 3570 /// strip as many layers of types as it can without changing either the type 3571 /// size or the allocated size. 3572 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 3573 if (Ty->isSingleValueType()) 3574 return Ty; 3575 3576 uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize(); 3577 uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize(); 3578 3579 Type *InnerTy; 3580 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 3581 InnerTy = ArrTy->getElementType(); 3582 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 3583 const StructLayout *SL = DL.getStructLayout(STy); 3584 unsigned Index = SL->getElementContainingOffset(0); 3585 InnerTy = STy->getElementType(Index); 3586 } else { 3587 return Ty; 3588 } 3589 3590 if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() || 3591 TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize()) 3592 return Ty; 3593 3594 return stripAggregateTypeWrapping(DL, InnerTy); 3595 } 3596 3597 /// Try to find a partition of the aggregate type passed in for a given 3598 /// offset and size. 3599 /// 3600 /// This recurses through the aggregate type and tries to compute a subtype 3601 /// based on the offset and size. When the offset and size span a sub-section 3602 /// of an array, it will even compute a new array type for that sub-section, 3603 /// and the same for structs. 3604 /// 3605 /// Note that this routine is very strict and tries to find a partition of the 3606 /// type which produces the *exact* right offset and size. It is not forgiving 3607 /// when the size or offset cause either end of type-based partition to be off. 3608 /// Also, this is a best-effort routine. It is reasonable to give up and not 3609 /// return a type if necessary. 3610 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 3611 uint64_t Size) { 3612 if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size) 3613 return stripAggregateTypeWrapping(DL, Ty); 3614 if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() || 3615 (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size) 3616 return nullptr; 3617 3618 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 3619 Type *ElementTy; 3620 uint64_t TyNumElements; 3621 if (auto *AT = dyn_cast<ArrayType>(Ty)) { 3622 ElementTy = AT->getElementType(); 3623 TyNumElements = AT->getNumElements(); 3624 } else { 3625 // FIXME: This isn't right for vectors with non-byte-sized or 3626 // non-power-of-two sized elements. 3627 auto *VT = cast<FixedVectorType>(Ty); 3628 ElementTy = VT->getElementType(); 3629 TyNumElements = VT->getNumElements(); 3630 } 3631 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3632 uint64_t NumSkippedElements = Offset / ElementSize; 3633 if (NumSkippedElements >= TyNumElements) 3634 return nullptr; 3635 Offset -= NumSkippedElements * ElementSize; 3636 3637 // First check if we need to recurse. 3638 if (Offset > 0 || Size < ElementSize) { 3639 // Bail if the partition ends in a different array element. 3640 if ((Offset + Size) > ElementSize) 3641 return nullptr; 3642 // Recurse through the element type trying to peel off offset bytes. 3643 return getTypePartition(DL, ElementTy, Offset, Size); 3644 } 3645 assert(Offset == 0); 3646 3647 if (Size == ElementSize) 3648 return stripAggregateTypeWrapping(DL, ElementTy); 3649 assert(Size > ElementSize); 3650 uint64_t NumElements = Size / ElementSize; 3651 if (NumElements * ElementSize != Size) 3652 return nullptr; 3653 return ArrayType::get(ElementTy, NumElements); 3654 } 3655 3656 StructType *STy = dyn_cast<StructType>(Ty); 3657 if (!STy) 3658 return nullptr; 3659 3660 const StructLayout *SL = DL.getStructLayout(STy); 3661 if (Offset >= SL->getSizeInBytes()) 3662 return nullptr; 3663 uint64_t EndOffset = Offset + Size; 3664 if (EndOffset > SL->getSizeInBytes()) 3665 return nullptr; 3666 3667 unsigned Index = SL->getElementContainingOffset(Offset); 3668 Offset -= SL->getElementOffset(Index); 3669 3670 Type *ElementTy = STy->getElementType(Index); 3671 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize(); 3672 if (Offset >= ElementSize) 3673 return nullptr; // The offset points into alignment padding. 3674 3675 // See if any partition must be contained by the element. 3676 if (Offset > 0 || Size < ElementSize) { 3677 if ((Offset + Size) > ElementSize) 3678 return nullptr; 3679 return getTypePartition(DL, ElementTy, Offset, Size); 3680 } 3681 assert(Offset == 0); 3682 3683 if (Size == ElementSize) 3684 return stripAggregateTypeWrapping(DL, ElementTy); 3685 3686 StructType::element_iterator EI = STy->element_begin() + Index, 3687 EE = STy->element_end(); 3688 if (EndOffset < SL->getSizeInBytes()) { 3689 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 3690 if (Index == EndIndex) 3691 return nullptr; // Within a single element and its padding. 3692 3693 // Don't try to form "natural" types if the elements don't line up with the 3694 // expected size. 3695 // FIXME: We could potentially recurse down through the last element in the 3696 // sub-struct to find a natural end point. 3697 if (SL->getElementOffset(EndIndex) != EndOffset) 3698 return nullptr; 3699 3700 assert(Index < EndIndex); 3701 EE = STy->element_begin() + EndIndex; 3702 } 3703 3704 // Try to build up a sub-structure. 3705 StructType *SubTy = 3706 StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked()); 3707 const StructLayout *SubSL = DL.getStructLayout(SubTy); 3708 if (Size != SubSL->getSizeInBytes()) 3709 return nullptr; // The sub-struct doesn't have quite the size needed. 3710 3711 return SubTy; 3712 } 3713 3714 /// Pre-split loads and stores to simplify rewriting. 3715 /// 3716 /// We want to break up the splittable load+store pairs as much as 3717 /// possible. This is important to do as a preprocessing step, as once we 3718 /// start rewriting the accesses to partitions of the alloca we lose the 3719 /// necessary information to correctly split apart paired loads and stores 3720 /// which both point into this alloca. The case to consider is something like 3721 /// the following: 3722 /// 3723 /// %a = alloca [12 x i8] 3724 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0 3725 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4 3726 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8 3727 /// %iptr1 = bitcast i8* %gep1 to i64* 3728 /// %iptr2 = bitcast i8* %gep2 to i64* 3729 /// %fptr1 = bitcast i8* %gep1 to float* 3730 /// %fptr2 = bitcast i8* %gep2 to float* 3731 /// %fptr3 = bitcast i8* %gep3 to float* 3732 /// store float 0.0, float* %fptr1 3733 /// store float 1.0, float* %fptr2 3734 /// %v = load i64* %iptr1 3735 /// store i64 %v, i64* %iptr2 3736 /// %f1 = load float* %fptr2 3737 /// %f2 = load float* %fptr3 3738 /// 3739 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 3740 /// promote everything so we recover the 2 SSA values that should have been 3741 /// there all along. 3742 /// 3743 /// \returns true if any changes are made. 3744 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 3745 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 3746 3747 // Track the loads and stores which are candidates for pre-splitting here, in 3748 // the order they first appear during the partition scan. These give stable 3749 // iteration order and a basis for tracking which loads and stores we 3750 // actually split. 3751 SmallVector<LoadInst *, 4> Loads; 3752 SmallVector<StoreInst *, 4> Stores; 3753 3754 // We need to accumulate the splits required of each load or store where we 3755 // can find them via a direct lookup. This is important to cross-check loads 3756 // and stores against each other. We also track the slice so that we can kill 3757 // all the slices that end up split. 3758 struct SplitOffsets { 3759 Slice *S; 3760 std::vector<uint64_t> Splits; 3761 }; 3762 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 3763 3764 // Track loads out of this alloca which cannot, for any reason, be pre-split. 3765 // This is important as we also cannot pre-split stores of those loads! 3766 // FIXME: This is all pretty gross. It means that we can be more aggressive 3767 // in pre-splitting when the load feeding the store happens to come from 3768 // a separate alloca. Put another way, the effectiveness of SROA would be 3769 // decreased by a frontend which just concatenated all of its local allocas 3770 // into one big flat alloca. But defeating such patterns is exactly the job 3771 // SROA is tasked with! Sadly, to not have this discrepancy we would have 3772 // change store pre-splitting to actually force pre-splitting of the load 3773 // that feeds it *and all stores*. That makes pre-splitting much harder, but 3774 // maybe it would make it more principled? 3775 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 3776 3777 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 3778 for (auto &P : AS.partitions()) { 3779 for (Slice &S : P) { 3780 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 3781 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 3782 // If this is a load we have to track that it can't participate in any 3783 // pre-splitting. If this is a store of a load we have to track that 3784 // that load also can't participate in any pre-splitting. 3785 if (auto *LI = dyn_cast<LoadInst>(I)) 3786 UnsplittableLoads.insert(LI); 3787 else if (auto *SI = dyn_cast<StoreInst>(I)) 3788 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 3789 UnsplittableLoads.insert(LI); 3790 continue; 3791 } 3792 assert(P.endOffset() > S.beginOffset() && 3793 "Empty or backwards partition!"); 3794 3795 // Determine if this is a pre-splittable slice. 3796 if (auto *LI = dyn_cast<LoadInst>(I)) { 3797 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 3798 3799 // The load must be used exclusively to store into other pointers for 3800 // us to be able to arbitrarily pre-split it. The stores must also be 3801 // simple to avoid changing semantics. 3802 auto IsLoadSimplyStored = [](LoadInst *LI) { 3803 for (User *LU : LI->users()) { 3804 auto *SI = dyn_cast<StoreInst>(LU); 3805 if (!SI || !SI->isSimple()) 3806 return false; 3807 } 3808 return true; 3809 }; 3810 if (!IsLoadSimplyStored(LI)) { 3811 UnsplittableLoads.insert(LI); 3812 continue; 3813 } 3814 3815 Loads.push_back(LI); 3816 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3817 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 3818 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 3819 continue; 3820 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 3821 if (!StoredLoad || !StoredLoad->isSimple()) 3822 continue; 3823 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 3824 3825 Stores.push_back(SI); 3826 } else { 3827 // Other uses cannot be pre-split. 3828 continue; 3829 } 3830 3831 // Record the initial split. 3832 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); 3833 auto &Offsets = SplitOffsetsMap[I]; 3834 assert(Offsets.Splits.empty() && 3835 "Should not have splits the first time we see an instruction!"); 3836 Offsets.S = &S; 3837 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 3838 } 3839 3840 // Now scan the already split slices, and add a split for any of them which 3841 // we're going to pre-split. 3842 for (Slice *S : P.splitSliceTails()) { 3843 auto SplitOffsetsMapI = 3844 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 3845 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 3846 continue; 3847 auto &Offsets = SplitOffsetsMapI->second; 3848 3849 assert(Offsets.S == S && "Found a mismatched slice!"); 3850 assert(!Offsets.Splits.empty() && 3851 "Cannot have an empty set of splits on the second partition!"); 3852 assert(Offsets.Splits.back() == 3853 P.beginOffset() - Offsets.S->beginOffset() && 3854 "Previous split does not end where this one begins!"); 3855 3856 // Record each split. The last partition's end isn't needed as the size 3857 // of the slice dictates that. 3858 if (S->endOffset() > P.endOffset()) 3859 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 3860 } 3861 } 3862 3863 // We may have split loads where some of their stores are split stores. For 3864 // such loads and stores, we can only pre-split them if their splits exactly 3865 // match relative to their starting offset. We have to verify this prior to 3866 // any rewriting. 3867 Stores.erase( 3868 llvm::remove_if(Stores, 3869 [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 3870 // Lookup the load we are storing in our map of split 3871 // offsets. 3872 auto *LI = cast<LoadInst>(SI->getValueOperand()); 3873 // If it was completely unsplittable, then we're done, 3874 // and this store can't be pre-split. 3875 if (UnsplittableLoads.count(LI)) 3876 return true; 3877 3878 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 3879 if (LoadOffsetsI == SplitOffsetsMap.end()) 3880 return false; // Unrelated loads are definitely safe. 3881 auto &LoadOffsets = LoadOffsetsI->second; 3882 3883 // Now lookup the store's offsets. 3884 auto &StoreOffsets = SplitOffsetsMap[SI]; 3885 3886 // If the relative offsets of each split in the load and 3887 // store match exactly, then we can split them and we 3888 // don't need to remove them here. 3889 if (LoadOffsets.Splits == StoreOffsets.Splits) 3890 return false; 3891 3892 LLVM_DEBUG( 3893 dbgs() 3894 << " Mismatched splits for load and store:\n" 3895 << " " << *LI << "\n" 3896 << " " << *SI << "\n"); 3897 3898 // We've found a store and load that we need to split 3899 // with mismatched relative splits. Just give up on them 3900 // and remove both instructions from our list of 3901 // candidates. 3902 UnsplittableLoads.insert(LI); 3903 return true; 3904 }), 3905 Stores.end()); 3906 // Now we have to go *back* through all the stores, because a later store may 3907 // have caused an earlier store's load to become unsplittable and if it is 3908 // unsplittable for the later store, then we can't rely on it being split in 3909 // the earlier store either. 3910 Stores.erase(llvm::remove_if(Stores, 3911 [&UnsplittableLoads](StoreInst *SI) { 3912 auto *LI = 3913 cast<LoadInst>(SI->getValueOperand()); 3914 return UnsplittableLoads.count(LI); 3915 }), 3916 Stores.end()); 3917 // Once we've established all the loads that can't be split for some reason, 3918 // filter any that made it into our list out. 3919 Loads.erase(llvm::remove_if(Loads, 3920 [&UnsplittableLoads](LoadInst *LI) { 3921 return UnsplittableLoads.count(LI); 3922 }), 3923 Loads.end()); 3924 3925 // If no loads or stores are left, there is no pre-splitting to be done for 3926 // this alloca. 3927 if (Loads.empty() && Stores.empty()) 3928 return false; 3929 3930 // From here on, we can't fail and will be building new accesses, so rig up 3931 // an IR builder. 3932 IRBuilderTy IRB(&AI); 3933 3934 // Collect the new slices which we will merge into the alloca slices. 3935 SmallVector<Slice, 4> NewSlices; 3936 3937 // Track any allocas we end up splitting loads and stores for so we iterate 3938 // on them. 3939 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 3940 3941 // At this point, we have collected all of the loads and stores we can 3942 // pre-split, and the specific splits needed for them. We actually do the 3943 // splitting in a specific order in order to handle when one of the loads in 3944 // the value operand to one of the stores. 3945 // 3946 // First, we rewrite all of the split loads, and just accumulate each split 3947 // load in a parallel structure. We also build the slices for them and append 3948 // them to the alloca slices. 3949 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 3950 std::vector<LoadInst *> SplitLoads; 3951 const DataLayout &DL = AI.getModule()->getDataLayout(); 3952 for (LoadInst *LI : Loads) { 3953 SplitLoads.clear(); 3954 3955 IntegerType *Ty = cast<IntegerType>(LI->getType()); 3956 uint64_t LoadSize = Ty->getBitWidth() / 8; 3957 assert(LoadSize > 0 && "Cannot have a zero-sized integer load!"); 3958 3959 auto &Offsets = SplitOffsetsMap[LI]; 3960 assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 3961 "Slice size should always match load size exactly!"); 3962 uint64_t BaseOffset = Offsets.S->beginOffset(); 3963 assert(BaseOffset + LoadSize > BaseOffset && 3964 "Cannot represent alloca access size using 64-bit integers!"); 3965 3966 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 3967 IRB.SetInsertPoint(LI); 3968 3969 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 3970 3971 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 3972 int Idx = 0, Size = Offsets.Splits.size(); 3973 for (;;) { 3974 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 3975 auto AS = LI->getPointerAddressSpace(); 3976 auto *PartPtrTy = PartTy->getPointerTo(AS); 3977 LoadInst *PLoad = IRB.CreateAlignedLoad( 3978 PartTy, 3979 getAdjustedPtr(IRB, DL, BasePtr, 3980 APInt(DL.getIndexSizeInBits(AS), PartOffset), 3981 PartPtrTy, BasePtr->getName() + "."), 3982 getAdjustedAlignment(LI, PartOffset), 3983 /*IsVolatile*/ false, LI->getName()); 3984 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 3985 LLVMContext::MD_access_group}); 3986 3987 // Append this load onto the list of split loads so we can find it later 3988 // to rewrite the stores. 3989 SplitLoads.push_back(PLoad); 3990 3991 // Now build a new slice for the alloca. 3992 NewSlices.push_back( 3993 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 3994 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 3995 /*IsSplittable*/ false)); 3996 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 3997 << ", " << NewSlices.back().endOffset() 3998 << "): " << *PLoad << "\n"); 3999 4000 // See if we've handled all the splits. 4001 if (Idx >= Size) 4002 break; 4003 4004 // Setup the next partition. 4005 PartOffset = Offsets.Splits[Idx]; 4006 ++Idx; 4007 PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset; 4008 } 4009 4010 // Now that we have the split loads, do the slow walk over all uses of the 4011 // load and rewrite them as split stores, or save the split loads to use 4012 // below if the store is going to be split there anyways. 4013 bool DeferredStores = false; 4014 for (User *LU : LI->users()) { 4015 StoreInst *SI = cast<StoreInst>(LU); 4016 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 4017 DeferredStores = true; 4018 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI 4019 << "\n"); 4020 continue; 4021 } 4022 4023 Value *StoreBasePtr = SI->getPointerOperand(); 4024 IRB.SetInsertPoint(SI); 4025 4026 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 4027 4028 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 4029 LoadInst *PLoad = SplitLoads[Idx]; 4030 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 4031 auto *PartPtrTy = 4032 PLoad->getType()->getPointerTo(SI->getPointerAddressSpace()); 4033 4034 auto AS = SI->getPointerAddressSpace(); 4035 StoreInst *PStore = IRB.CreateAlignedStore( 4036 PLoad, 4037 getAdjustedPtr(IRB, DL, StoreBasePtr, 4038 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4039 PartPtrTy, StoreBasePtr->getName() + "."), 4040 getAdjustedAlignment(SI, PartOffset), 4041 /*IsVolatile*/ false); 4042 PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4043 LLVMContext::MD_access_group}); 4044 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 4045 } 4046 4047 // We want to immediately iterate on any allocas impacted by splitting 4048 // this store, and we have to track any promotable alloca (indicated by 4049 // a direct store) as needing to be resplit because it is no longer 4050 // promotable. 4051 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 4052 ResplitPromotableAllocas.insert(OtherAI); 4053 Worklist.insert(OtherAI); 4054 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4055 StoreBasePtr->stripInBoundsOffsets())) { 4056 Worklist.insert(OtherAI); 4057 } 4058 4059 // Mark the original store as dead. 4060 DeadInsts.insert(SI); 4061 } 4062 4063 // Save the split loads if there are deferred stores among the users. 4064 if (DeferredStores) 4065 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 4066 4067 // Mark the original load as dead and kill the original slice. 4068 DeadInsts.insert(LI); 4069 Offsets.S->kill(); 4070 } 4071 4072 // Second, we rewrite all of the split stores. At this point, we know that 4073 // all loads from this alloca have been split already. For stores of such 4074 // loads, we can simply look up the pre-existing split loads. For stores of 4075 // other loads, we split those loads first and then write split stores of 4076 // them. 4077 for (StoreInst *SI : Stores) { 4078 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4079 IntegerType *Ty = cast<IntegerType>(LI->getType()); 4080 uint64_t StoreSize = Ty->getBitWidth() / 8; 4081 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 4082 4083 auto &Offsets = SplitOffsetsMap[SI]; 4084 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 4085 "Slice size should always match load size exactly!"); 4086 uint64_t BaseOffset = Offsets.S->beginOffset(); 4087 assert(BaseOffset + StoreSize > BaseOffset && 4088 "Cannot represent alloca access size using 64-bit integers!"); 4089 4090 Value *LoadBasePtr = LI->getPointerOperand(); 4091 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 4092 4093 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 4094 4095 // Check whether we have an already split load. 4096 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 4097 std::vector<LoadInst *> *SplitLoads = nullptr; 4098 if (SplitLoadsMapI != SplitLoadsMap.end()) { 4099 SplitLoads = &SplitLoadsMapI->second; 4100 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 4101 "Too few split loads for the number of splits in the store!"); 4102 } else { 4103 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); 4104 } 4105 4106 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4107 int Idx = 0, Size = Offsets.Splits.size(); 4108 for (;;) { 4109 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 4110 auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace()); 4111 auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace()); 4112 4113 // Either lookup a split load or create one. 4114 LoadInst *PLoad; 4115 if (SplitLoads) { 4116 PLoad = (*SplitLoads)[Idx]; 4117 } else { 4118 IRB.SetInsertPoint(LI); 4119 auto AS = LI->getPointerAddressSpace(); 4120 PLoad = IRB.CreateAlignedLoad( 4121 PartTy, 4122 getAdjustedPtr(IRB, DL, LoadBasePtr, 4123 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4124 LoadPartPtrTy, LoadBasePtr->getName() + "."), 4125 getAdjustedAlignment(LI, PartOffset), 4126 /*IsVolatile*/ false, LI->getName()); 4127 } 4128 4129 // And store this partition. 4130 IRB.SetInsertPoint(SI); 4131 auto AS = SI->getPointerAddressSpace(); 4132 StoreInst *PStore = IRB.CreateAlignedStore( 4133 PLoad, 4134 getAdjustedPtr(IRB, DL, StoreBasePtr, 4135 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4136 StorePartPtrTy, StoreBasePtr->getName() + "."), 4137 getAdjustedAlignment(SI, PartOffset), 4138 /*IsVolatile*/ false); 4139 4140 // Now build a new slice for the alloca. 4141 NewSlices.push_back( 4142 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4143 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 4144 /*IsSplittable*/ false)); 4145 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4146 << ", " << NewSlices.back().endOffset() 4147 << "): " << *PStore << "\n"); 4148 if (!SplitLoads) { 4149 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 4150 } 4151 4152 // See if we've finished all the splits. 4153 if (Idx >= Size) 4154 break; 4155 4156 // Setup the next partition. 4157 PartOffset = Offsets.Splits[Idx]; 4158 ++Idx; 4159 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 4160 } 4161 4162 // We want to immediately iterate on any allocas impacted by splitting 4163 // this load, which is only relevant if it isn't a load of this alloca and 4164 // thus we didn't already split the loads above. We also have to keep track 4165 // of any promotable allocas we split loads on as they can no longer be 4166 // promoted. 4167 if (!SplitLoads) { 4168 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 4169 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4170 ResplitPromotableAllocas.insert(OtherAI); 4171 Worklist.insert(OtherAI); 4172 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4173 LoadBasePtr->stripInBoundsOffsets())) { 4174 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4175 Worklist.insert(OtherAI); 4176 } 4177 } 4178 4179 // Mark the original store as dead now that we've split it up and kill its 4180 // slice. Note that we leave the original load in place unless this store 4181 // was its only use. It may in turn be split up if it is an alloca load 4182 // for some other alloca, but it may be a normal load. This may introduce 4183 // redundant loads, but where those can be merged the rest of the optimizer 4184 // should handle the merging, and this uncovers SSA splits which is more 4185 // important. In practice, the original loads will almost always be fully 4186 // split and removed eventually, and the splits will be merged by any 4187 // trivial CSE, including instcombine. 4188 if (LI->hasOneUse()) { 4189 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 4190 DeadInsts.insert(LI); 4191 } 4192 DeadInsts.insert(SI); 4193 Offsets.S->kill(); 4194 } 4195 4196 // Remove the killed slices that have ben pre-split. 4197 AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }), 4198 AS.end()); 4199 4200 // Insert our new slices. This will sort and merge them into the sorted 4201 // sequence. 4202 AS.insert(NewSlices); 4203 4204 LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); 4205 #ifndef NDEBUG 4206 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 4207 LLVM_DEBUG(AS.print(dbgs(), I, " ")); 4208 #endif 4209 4210 // Finally, don't try to promote any allocas that new require re-splitting. 4211 // They have already been added to the worklist above. 4212 PromotableAllocas.erase( 4213 llvm::remove_if( 4214 PromotableAllocas, 4215 [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }), 4216 PromotableAllocas.end()); 4217 4218 return true; 4219 } 4220 4221 /// Rewrite an alloca partition's users. 4222 /// 4223 /// This routine drives both of the rewriting goals of the SROA pass. It tries 4224 /// to rewrite uses of an alloca partition to be conducive for SSA value 4225 /// promotion. If the partition needs a new, more refined alloca, this will 4226 /// build that new alloca, preserving as much type information as possible, and 4227 /// rewrite the uses of the old alloca to point at the new one and have the 4228 /// appropriate new offsets. It also evaluates how successful the rewrite was 4229 /// at enabling promotion and if it was successful queues the alloca to be 4230 /// promoted. 4231 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 4232 Partition &P) { 4233 // Try to compute a friendly type for this partition of the alloca. This 4234 // won't always succeed, in which case we fall back to a legal integer type 4235 // or an i8 array of an appropriate size. 4236 Type *SliceTy = nullptr; 4237 const DataLayout &DL = AI.getModule()->getDataLayout(); 4238 if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset())) 4239 if (DL.getTypeAllocSize(CommonUseTy).getFixedSize() >= P.size()) 4240 SliceTy = CommonUseTy; 4241 if (!SliceTy) 4242 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4243 P.beginOffset(), P.size())) 4244 SliceTy = TypePartitionTy; 4245 if ((!SliceTy || (SliceTy->isArrayTy() && 4246 SliceTy->getArrayElementType()->isIntegerTy())) && 4247 DL.isLegalInteger(P.size() * 8)) 4248 SliceTy = Type::getIntNTy(*C, P.size() * 8); 4249 if (!SliceTy) 4250 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 4251 assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size()); 4252 4253 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 4254 4255 VectorType *VecTy = 4256 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 4257 if (VecTy) 4258 SliceTy = VecTy; 4259 4260 // Check for the case where we're going to rewrite to a new alloca of the 4261 // exact same type as the original, and with the same access offsets. In that 4262 // case, re-use the existing alloca, but still run through the rewriter to 4263 // perform phi and select speculation. 4264 // P.beginOffset() can be non-zero even with the same type in a case with 4265 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). 4266 AllocaInst *NewAI; 4267 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { 4268 NewAI = &AI; 4269 // FIXME: We should be able to bail at this point with "nothing changed". 4270 // FIXME: We might want to defer PHI speculation until after here. 4271 // FIXME: return nullptr; 4272 } else { 4273 // Make sure the alignment is compatible with P.beginOffset(). 4274 const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset()); 4275 // If we will get at least this much alignment from the type alone, leave 4276 // the alloca's alignment unconstrained. 4277 const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy); 4278 NewAI = new AllocaInst( 4279 SliceTy, AI.getType()->getAddressSpace(), nullptr, 4280 IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment, 4281 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI); 4282 // Copy the old AI debug location over to the new one. 4283 NewAI->setDebugLoc(AI.getDebugLoc()); 4284 ++NumNewAllocas; 4285 } 4286 4287 LLVM_DEBUG(dbgs() << "Rewriting alloca partition " 4288 << "[" << P.beginOffset() << "," << P.endOffset() 4289 << ") to: " << *NewAI << "\n"); 4290 4291 // Track the high watermark on the worklist as it is only relevant for 4292 // promoted allocas. We will reset it to this point if the alloca is not in 4293 // fact scheduled for promotion. 4294 unsigned PPWOldSize = PostPromotionWorklist.size(); 4295 unsigned NumUses = 0; 4296 SmallSetVector<PHINode *, 8> PHIUsers; 4297 SmallSetVector<SelectInst *, 8> SelectUsers; 4298 4299 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 4300 P.endOffset(), IsIntegerPromotable, VecTy, 4301 PHIUsers, SelectUsers); 4302 bool Promotable = true; 4303 for (Slice *S : P.splitSliceTails()) { 4304 Promotable &= Rewriter.visit(S); 4305 ++NumUses; 4306 } 4307 for (Slice &S : P) { 4308 Promotable &= Rewriter.visit(&S); 4309 ++NumUses; 4310 } 4311 4312 NumAllocaPartitionUses += NumUses; 4313 MaxUsesPerAllocaPartition.updateMax(NumUses); 4314 4315 // Now that we've processed all the slices in the new partition, check if any 4316 // PHIs or Selects would block promotion. 4317 for (PHINode *PHI : PHIUsers) 4318 if (!isSafePHIToSpeculate(*PHI)) { 4319 Promotable = false; 4320 PHIUsers.clear(); 4321 SelectUsers.clear(); 4322 break; 4323 } 4324 4325 for (SelectInst *Sel : SelectUsers) 4326 if (!isSafeSelectToSpeculate(*Sel)) { 4327 Promotable = false; 4328 PHIUsers.clear(); 4329 SelectUsers.clear(); 4330 break; 4331 } 4332 4333 if (Promotable) { 4334 if (PHIUsers.empty() && SelectUsers.empty()) { 4335 // Promote the alloca. 4336 PromotableAllocas.push_back(NewAI); 4337 } else { 4338 // If we have either PHIs or Selects to speculate, add them to those 4339 // worklists and re-queue the new alloca so that we promote in on the 4340 // next iteration. 4341 for (PHINode *PHIUser : PHIUsers) 4342 SpeculatablePHIs.insert(PHIUser); 4343 for (SelectInst *SelectUser : SelectUsers) 4344 SpeculatableSelects.insert(SelectUser); 4345 Worklist.insert(NewAI); 4346 } 4347 } else { 4348 // Drop any post-promotion work items if promotion didn't happen. 4349 while (PostPromotionWorklist.size() > PPWOldSize) 4350 PostPromotionWorklist.pop_back(); 4351 4352 // We couldn't promote and we didn't create a new partition, nothing 4353 // happened. 4354 if (NewAI == &AI) 4355 return nullptr; 4356 4357 // If we can't promote the alloca, iterate on it to check for new 4358 // refinements exposed by splitting the current alloca. Don't iterate on an 4359 // alloca which didn't actually change and didn't get promoted. 4360 Worklist.insert(NewAI); 4361 } 4362 4363 return NewAI; 4364 } 4365 4366 /// Walks the slices of an alloca and form partitions based on them, 4367 /// rewriting each of their uses. 4368 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 4369 if (AS.begin() == AS.end()) 4370 return false; 4371 4372 unsigned NumPartitions = 0; 4373 bool Changed = false; 4374 const DataLayout &DL = AI.getModule()->getDataLayout(); 4375 4376 // First try to pre-split loads and stores. 4377 Changed |= presplitLoadsAndStores(AI, AS); 4378 4379 // Now that we have identified any pre-splitting opportunities, 4380 // mark loads and stores unsplittable except for the following case. 4381 // We leave a slice splittable if all other slices are disjoint or fully 4382 // included in the slice, such as whole-alloca loads and stores. 4383 // If we fail to split these during pre-splitting, we want to force them 4384 // to be rewritten into a partition. 4385 bool IsSorted = true; 4386 4387 uint64_t AllocaSize = 4388 DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize(); 4389 const uint64_t MaxBitVectorSize = 1024; 4390 if (AllocaSize <= MaxBitVectorSize) { 4391 // If a byte boundary is included in any load or store, a slice starting or 4392 // ending at the boundary is not splittable. 4393 SmallBitVector SplittableOffset(AllocaSize + 1, true); 4394 for (Slice &S : AS) 4395 for (unsigned O = S.beginOffset() + 1; 4396 O < S.endOffset() && O < AllocaSize; O++) 4397 SplittableOffset.reset(O); 4398 4399 for (Slice &S : AS) { 4400 if (!S.isSplittable()) 4401 continue; 4402 4403 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && 4404 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) 4405 continue; 4406 4407 if (isa<LoadInst>(S.getUse()->getUser()) || 4408 isa<StoreInst>(S.getUse()->getUser())) { 4409 S.makeUnsplittable(); 4410 IsSorted = false; 4411 } 4412 } 4413 } 4414 else { 4415 // We only allow whole-alloca splittable loads and stores 4416 // for a large alloca to avoid creating too large BitVector. 4417 for (Slice &S : AS) { 4418 if (!S.isSplittable()) 4419 continue; 4420 4421 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) 4422 continue; 4423 4424 if (isa<LoadInst>(S.getUse()->getUser()) || 4425 isa<StoreInst>(S.getUse()->getUser())) { 4426 S.makeUnsplittable(); 4427 IsSorted = false; 4428 } 4429 } 4430 } 4431 4432 if (!IsSorted) 4433 llvm::sort(AS); 4434 4435 /// Describes the allocas introduced by rewritePartition in order to migrate 4436 /// the debug info. 4437 struct Fragment { 4438 AllocaInst *Alloca; 4439 uint64_t Offset; 4440 uint64_t Size; 4441 Fragment(AllocaInst *AI, uint64_t O, uint64_t S) 4442 : Alloca(AI), Offset(O), Size(S) {} 4443 }; 4444 SmallVector<Fragment, 4> Fragments; 4445 4446 // Rewrite each partition. 4447 for (auto &P : AS.partitions()) { 4448 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 4449 Changed = true; 4450 if (NewAI != &AI) { 4451 uint64_t SizeOfByte = 8; 4452 uint64_t AllocaSize = 4453 DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize(); 4454 // Don't include any padding. 4455 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 4456 Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); 4457 } 4458 } 4459 ++NumPartitions; 4460 } 4461 4462 NumAllocaPartitions += NumPartitions; 4463 MaxPartitionsPerAlloca.updateMax(NumPartitions); 4464 4465 // Migrate debug information from the old alloca to the new alloca(s) 4466 // and the individual partitions. 4467 TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI); 4468 if (!DbgDeclares.empty()) { 4469 auto *Var = DbgDeclares.front()->getVariable(); 4470 auto *Expr = DbgDeclares.front()->getExpression(); 4471 auto VarSize = Var->getSizeInBits(); 4472 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 4473 uint64_t AllocaSize = 4474 DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize(); 4475 for (auto Fragment : Fragments) { 4476 // Create a fragment expression describing the new partition or reuse AI's 4477 // expression if there is only one partition. 4478 auto *FragmentExpr = Expr; 4479 if (Fragment.Size < AllocaSize || Expr->isFragment()) { 4480 // If this alloca is already a scalar replacement of a larger aggregate, 4481 // Fragment.Offset describes the offset inside the scalar. 4482 auto ExprFragment = Expr->getFragmentInfo(); 4483 uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0; 4484 uint64_t Start = Offset + Fragment.Offset; 4485 uint64_t Size = Fragment.Size; 4486 if (ExprFragment) { 4487 uint64_t AbsEnd = 4488 ExprFragment->OffsetInBits + ExprFragment->SizeInBits; 4489 if (Start >= AbsEnd) 4490 // No need to describe a SROAed padding. 4491 continue; 4492 Size = std::min(Size, AbsEnd - Start); 4493 } 4494 // The new, smaller fragment is stenciled out from the old fragment. 4495 if (auto OrigFragment = FragmentExpr->getFragmentInfo()) { 4496 assert(Start >= OrigFragment->OffsetInBits && 4497 "new fragment is outside of original fragment"); 4498 Start -= OrigFragment->OffsetInBits; 4499 } 4500 4501 // The alloca may be larger than the variable. 4502 if (VarSize) { 4503 if (Size > *VarSize) 4504 Size = *VarSize; 4505 if (Size == 0 || Start + Size > *VarSize) 4506 continue; 4507 } 4508 4509 // Avoid creating a fragment expression that covers the entire variable. 4510 if (!VarSize || *VarSize != Size) { 4511 if (auto E = 4512 DIExpression::createFragmentExpression(Expr, Start, Size)) 4513 FragmentExpr = *E; 4514 else 4515 continue; 4516 } 4517 } 4518 4519 // Remove any existing intrinsics describing the same alloca. 4520 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) 4521 OldDII->eraseFromParent(); 4522 4523 DIB.insertDeclare(Fragment.Alloca, Var, FragmentExpr, 4524 DbgDeclares.front()->getDebugLoc(), &AI); 4525 } 4526 } 4527 return Changed; 4528 } 4529 4530 /// Clobber a use with undef, deleting the used value if it becomes dead. 4531 void SROA::clobberUse(Use &U) { 4532 Value *OldV = U; 4533 // Replace the use with an undef value. 4534 U = UndefValue::get(OldV->getType()); 4535 4536 // Check for this making an instruction dead. We have to garbage collect 4537 // all the dead instructions to ensure the uses of any alloca end up being 4538 // minimal. 4539 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 4540 if (isInstructionTriviallyDead(OldI)) { 4541 DeadInsts.insert(OldI); 4542 } 4543 } 4544 4545 /// Analyze an alloca for SROA. 4546 /// 4547 /// This analyzes the alloca to ensure we can reason about it, builds 4548 /// the slices of the alloca, and then hands it off to be split and 4549 /// rewritten as needed. 4550 bool SROA::runOnAlloca(AllocaInst &AI) { 4551 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 4552 ++NumAllocasAnalyzed; 4553 4554 // Special case dead allocas, as they're trivial. 4555 if (AI.use_empty()) { 4556 AI.eraseFromParent(); 4557 return true; 4558 } 4559 const DataLayout &DL = AI.getModule()->getDataLayout(); 4560 4561 // Skip alloca forms that this analysis can't handle. 4562 auto *AT = AI.getAllocatedType(); 4563 if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) || 4564 DL.getTypeAllocSize(AT).getFixedSize() == 0) 4565 return false; 4566 4567 bool Changed = false; 4568 4569 // First, split any FCA loads and stores touching this alloca to promote 4570 // better splitting and promotion opportunities. 4571 AggLoadStoreRewriter AggRewriter(DL); 4572 Changed |= AggRewriter.rewrite(AI); 4573 4574 // Build the slices using a recursive instruction-visiting builder. 4575 AllocaSlices AS(DL, AI); 4576 LLVM_DEBUG(AS.print(dbgs())); 4577 if (AS.isEscaped()) 4578 return Changed; 4579 4580 // Delete all the dead users of this alloca before splitting and rewriting it. 4581 for (Instruction *DeadUser : AS.getDeadUsers()) { 4582 // Free up everything used by this instruction. 4583 for (Use &DeadOp : DeadUser->operands()) 4584 clobberUse(DeadOp); 4585 4586 // Now replace the uses of this instruction. 4587 DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType())); 4588 4589 // And mark it for deletion. 4590 DeadInsts.insert(DeadUser); 4591 Changed = true; 4592 } 4593 for (Use *DeadOp : AS.getDeadOperands()) { 4594 clobberUse(*DeadOp); 4595 Changed = true; 4596 } 4597 4598 // No slices to split. Leave the dead alloca for a later pass to clean up. 4599 if (AS.begin() == AS.end()) 4600 return Changed; 4601 4602 Changed |= splitAlloca(AI, AS); 4603 4604 LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); 4605 while (!SpeculatablePHIs.empty()) 4606 speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val()); 4607 4608 LLVM_DEBUG(dbgs() << " Speculating Selects\n"); 4609 while (!SpeculatableSelects.empty()) 4610 speculateSelectInstLoads(*SpeculatableSelects.pop_back_val()); 4611 4612 return Changed; 4613 } 4614 4615 /// Delete the dead instructions accumulated in this run. 4616 /// 4617 /// Recursively deletes the dead instructions we've accumulated. This is done 4618 /// at the very end to maximize locality of the recursive delete and to 4619 /// minimize the problems of invalidated instruction pointers as such pointers 4620 /// are used heavily in the intermediate stages of the algorithm. 4621 /// 4622 /// We also record the alloca instructions deleted here so that they aren't 4623 /// subsequently handed to mem2reg to promote. 4624 bool SROA::deleteDeadInstructions( 4625 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 4626 bool Changed = false; 4627 while (!DeadInsts.empty()) { 4628 Instruction *I = DeadInsts.pop_back_val(); 4629 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 4630 4631 // If the instruction is an alloca, find the possible dbg.declare connected 4632 // to it, and remove it too. We must do this before calling RAUW or we will 4633 // not be able to find it. 4634 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4635 DeletedAllocas.insert(AI); 4636 for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI)) 4637 OldDII->eraseFromParent(); 4638 } 4639 4640 I->replaceAllUsesWith(UndefValue::get(I->getType())); 4641 4642 for (Use &Operand : I->operands()) 4643 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 4644 // Zero out the operand and see if it becomes trivially dead. 4645 Operand = nullptr; 4646 if (isInstructionTriviallyDead(U)) 4647 DeadInsts.insert(U); 4648 } 4649 4650 ++NumDeleted; 4651 I->eraseFromParent(); 4652 Changed = true; 4653 } 4654 return Changed; 4655 } 4656 4657 /// Promote the allocas, using the best available technique. 4658 /// 4659 /// This attempts to promote whatever allocas have been identified as viable in 4660 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 4661 /// This function returns whether any promotion occurred. 4662 bool SROA::promoteAllocas(Function &F) { 4663 if (PromotableAllocas.empty()) 4664 return false; 4665 4666 NumPromoted += PromotableAllocas.size(); 4667 4668 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 4669 PromoteMemToReg(PromotableAllocas, *DT, AC); 4670 PromotableAllocas.clear(); 4671 return true; 4672 } 4673 4674 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT, 4675 AssumptionCache &RunAC) { 4676 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 4677 C = &F.getContext(); 4678 DT = &RunDT; 4679 AC = &RunAC; 4680 4681 BasicBlock &EntryBB = F.getEntryBlock(); 4682 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 4683 I != E; ++I) { 4684 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 4685 if (isa<ScalableVectorType>(AI->getAllocatedType())) { 4686 if (isAllocaPromotable(AI)) 4687 PromotableAllocas.push_back(AI); 4688 } else { 4689 Worklist.insert(AI); 4690 } 4691 } 4692 } 4693 4694 bool Changed = false; 4695 // A set of deleted alloca instruction pointers which should be removed from 4696 // the list of promotable allocas. 4697 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 4698 4699 do { 4700 while (!Worklist.empty()) { 4701 Changed |= runOnAlloca(*Worklist.pop_back_val()); 4702 Changed |= deleteDeadInstructions(DeletedAllocas); 4703 4704 // Remove the deleted allocas from various lists so that we don't try to 4705 // continue processing them. 4706 if (!DeletedAllocas.empty()) { 4707 auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); }; 4708 Worklist.remove_if(IsInSet); 4709 PostPromotionWorklist.remove_if(IsInSet); 4710 PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet), 4711 PromotableAllocas.end()); 4712 DeletedAllocas.clear(); 4713 } 4714 } 4715 4716 Changed |= promoteAllocas(F); 4717 4718 Worklist = PostPromotionWorklist; 4719 PostPromotionWorklist.clear(); 4720 } while (!Worklist.empty()); 4721 4722 if (!Changed) 4723 return PreservedAnalyses::all(); 4724 4725 PreservedAnalyses PA; 4726 PA.preserveSet<CFGAnalyses>(); 4727 PA.preserve<GlobalsAA>(); 4728 return PA; 4729 } 4730 4731 PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) { 4732 return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F), 4733 AM.getResult<AssumptionAnalysis>(F)); 4734 } 4735 4736 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 4737 /// 4738 /// This is in the llvm namespace purely to allow it to be a friend of the \c 4739 /// SROA pass. 4740 class llvm::sroa::SROALegacyPass : public FunctionPass { 4741 /// The SROA implementation. 4742 SROA Impl; 4743 4744 public: 4745 static char ID; 4746 4747 SROALegacyPass() : FunctionPass(ID) { 4748 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 4749 } 4750 4751 bool runOnFunction(Function &F) override { 4752 if (skipFunction(F)) 4753 return false; 4754 4755 auto PA = Impl.runImpl( 4756 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4757 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 4758 return !PA.areAllPreserved(); 4759 } 4760 4761 void getAnalysisUsage(AnalysisUsage &AU) const override { 4762 AU.addRequired<AssumptionCacheTracker>(); 4763 AU.addRequired<DominatorTreeWrapperPass>(); 4764 AU.addPreserved<GlobalsAAWrapperPass>(); 4765 AU.setPreservesCFG(); 4766 } 4767 4768 StringRef getPassName() const override { return "SROA"; } 4769 }; 4770 4771 char SROALegacyPass::ID = 0; 4772 4773 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); } 4774 4775 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 4776 "Scalar Replacement Of Aggregates", false, false) 4777 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4778 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4779 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 4780 false, false) 4781