xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/SCCP.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sparse conditional constant propagation and merging:
10 //
11 // Specifically, this:
12 //   * Assumes values are constant unless proven otherwise
13 //   * Assumes BasicBlocks are dead unless proven otherwise
14 //   * Proves values to be constant, and replaces them with constants
15 //   * Proves conditional branches to be unconditional
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Scalar/SCCP.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/GlobalsModRef.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueLattice.h"
34 #include "llvm/Analysis/ValueLatticeUtils.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstVisitor.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/PredicateInfo.h"
59 #include <cassert>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "sccp"
66 
67 STATISTIC(NumInstRemoved, "Number of instructions removed");
68 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
69 
70 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
71 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
72 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
73 
74 namespace {
75 
76 /// LatticeVal class - This class represents the different lattice values that
77 /// an LLVM value may occupy.  It is a simple class with value semantics.
78 ///
79 class LatticeVal {
80   enum LatticeValueTy {
81     /// unknown - This LLVM Value has no known value yet.
82     unknown,
83 
84     /// constant - This LLVM Value has a specific constant value.
85     constant,
86 
87     /// forcedconstant - This LLVM Value was thought to be undef until
88     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
89     /// with another (different) constant, it goes to overdefined, instead of
90     /// asserting.
91     forcedconstant,
92 
93     /// overdefined - This instruction is not known to be constant, and we know
94     /// it has a value.
95     overdefined
96   };
97 
98   /// Val: This stores the current lattice value along with the Constant* for
99   /// the constant if this is a 'constant' or 'forcedconstant' value.
100   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
101 
102   LatticeValueTy getLatticeValue() const {
103     return Val.getInt();
104   }
105 
106 public:
107   LatticeVal() : Val(nullptr, unknown) {}
108 
109   bool isUnknown() const { return getLatticeValue() == unknown; }
110 
111   bool isConstant() const {
112     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
113   }
114 
115   bool isOverdefined() const { return getLatticeValue() == overdefined; }
116 
117   Constant *getConstant() const {
118     assert(isConstant() && "Cannot get the constant of a non-constant!");
119     return Val.getPointer();
120   }
121 
122   /// markOverdefined - Return true if this is a change in status.
123   bool markOverdefined() {
124     if (isOverdefined())
125       return false;
126 
127     Val.setInt(overdefined);
128     return true;
129   }
130 
131   /// markConstant - Return true if this is a change in status.
132   bool markConstant(Constant *V) {
133     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
134       assert(getConstant() == V && "Marking constant with different value");
135       return false;
136     }
137 
138     if (isUnknown()) {
139       Val.setInt(constant);
140       assert(V && "Marking constant with NULL");
141       Val.setPointer(V);
142     } else {
143       assert(getLatticeValue() == forcedconstant &&
144              "Cannot move from overdefined to constant!");
145       // Stay at forcedconstant if the constant is the same.
146       if (V == getConstant()) return false;
147 
148       // Otherwise, we go to overdefined.  Assumptions made based on the
149       // forced value are possibly wrong.  Assuming this is another constant
150       // could expose a contradiction.
151       Val.setInt(overdefined);
152     }
153     return true;
154   }
155 
156   /// getConstantInt - If this is a constant with a ConstantInt value, return it
157   /// otherwise return null.
158   ConstantInt *getConstantInt() const {
159     if (isConstant())
160       return dyn_cast<ConstantInt>(getConstant());
161     return nullptr;
162   }
163 
164   /// getBlockAddress - If this is a constant with a BlockAddress value, return
165   /// it, otherwise return null.
166   BlockAddress *getBlockAddress() const {
167     if (isConstant())
168       return dyn_cast<BlockAddress>(getConstant());
169     return nullptr;
170   }
171 
172   void markForcedConstant(Constant *V) {
173     assert(isUnknown() && "Can't force a defined value!");
174     Val.setInt(forcedconstant);
175     Val.setPointer(V);
176   }
177 
178   ValueLatticeElement toValueLattice() const {
179     if (isOverdefined())
180       return ValueLatticeElement::getOverdefined();
181     if (isConstant())
182       return ValueLatticeElement::get(getConstant());
183     return ValueLatticeElement();
184   }
185 };
186 
187 //===----------------------------------------------------------------------===//
188 //
189 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
190 /// Constant Propagation.
191 ///
192 class SCCPSolver : public InstVisitor<SCCPSolver> {
193   const DataLayout &DL;
194   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
195   SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
196   DenseMap<Value *, LatticeVal> ValueState;  // The state each value is in.
197   // The state each parameter is in.
198   DenseMap<Value *, ValueLatticeElement> ParamState;
199 
200   /// StructValueState - This maintains ValueState for values that have
201   /// StructType, for example for formal arguments, calls, insertelement, etc.
202   DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState;
203 
204   /// GlobalValue - If we are tracking any values for the contents of a global
205   /// variable, we keep a mapping from the constant accessor to the element of
206   /// the global, to the currently known value.  If the value becomes
207   /// overdefined, it's entry is simply removed from this map.
208   DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals;
209 
210   /// TrackedRetVals - If we are tracking arguments into and the return
211   /// value out of a function, it will have an entry in this map, indicating
212   /// what the known return value for the function is.
213   MapVector<Function *, LatticeVal> TrackedRetVals;
214 
215   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
216   /// that return multiple values.
217   MapVector<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals;
218 
219   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
220   /// represented here for efficient lookup.
221   SmallPtrSet<Function *, 16> MRVFunctionsTracked;
222 
223   /// MustTailFunctions - Each function here is a callee of non-removable
224   /// musttail call site.
225   SmallPtrSet<Function *, 16> MustTailCallees;
226 
227   /// TrackingIncomingArguments - This is the set of functions for whose
228   /// arguments we make optimistic assumptions about and try to prove as
229   /// constants.
230   SmallPtrSet<Function *, 16> TrackingIncomingArguments;
231 
232   /// The reason for two worklists is that overdefined is the lowest state
233   /// on the lattice, and moving things to overdefined as fast as possible
234   /// makes SCCP converge much faster.
235   ///
236   /// By having a separate worklist, we accomplish this because everything
237   /// possibly overdefined will become overdefined at the soonest possible
238   /// point.
239   SmallVector<Value *, 64> OverdefinedInstWorkList;
240   SmallVector<Value *, 64> InstWorkList;
241 
242   // The BasicBlock work list
243   SmallVector<BasicBlock *, 64>  BBWorkList;
244 
245   /// KnownFeasibleEdges - Entries in this set are edges which have already had
246   /// PHI nodes retriggered.
247   using Edge = std::pair<BasicBlock *, BasicBlock *>;
248   DenseSet<Edge> KnownFeasibleEdges;
249 
250   DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
251   DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
252 
253 public:
254   void addAnalysis(Function &F, AnalysisResultsForFn A) {
255     AnalysisResults.insert({&F, std::move(A)});
256   }
257 
258   const PredicateBase *getPredicateInfoFor(Instruction *I) {
259     auto A = AnalysisResults.find(I->getParent()->getParent());
260     if (A == AnalysisResults.end())
261       return nullptr;
262     return A->second.PredInfo->getPredicateInfoFor(I);
263   }
264 
265   DomTreeUpdater getDTU(Function &F) {
266     auto A = AnalysisResults.find(&F);
267     assert(A != AnalysisResults.end() && "Need analysis results for function.");
268     return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
269   }
270 
271   SCCPSolver(const DataLayout &DL,
272              std::function<const TargetLibraryInfo &(Function &)> GetTLI)
273       : DL(DL), GetTLI(std::move(GetTLI)) {}
274 
275   /// MarkBlockExecutable - This method can be used by clients to mark all of
276   /// the blocks that are known to be intrinsically live in the processed unit.
277   ///
278   /// This returns true if the block was not considered live before.
279   bool MarkBlockExecutable(BasicBlock *BB) {
280     if (!BBExecutable.insert(BB).second)
281       return false;
282     LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
283     BBWorkList.push_back(BB);  // Add the block to the work list!
284     return true;
285   }
286 
287   /// TrackValueOfGlobalVariable - Clients can use this method to
288   /// inform the SCCPSolver that it should track loads and stores to the
289   /// specified global variable if it can.  This is only legal to call if
290   /// performing Interprocedural SCCP.
291   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
292     // We only track the contents of scalar globals.
293     if (GV->getValueType()->isSingleValueType()) {
294       LatticeVal &IV = TrackedGlobals[GV];
295       if (!isa<UndefValue>(GV->getInitializer()))
296         IV.markConstant(GV->getInitializer());
297     }
298   }
299 
300   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
301   /// and out of the specified function (which cannot have its address taken),
302   /// this method must be called.
303   void AddTrackedFunction(Function *F) {
304     // Add an entry, F -> undef.
305     if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
306       MRVFunctionsTracked.insert(F);
307       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
308         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
309                                                      LatticeVal()));
310     } else
311       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
312   }
313 
314   /// AddMustTailCallee - If the SCCP solver finds that this function is called
315   /// from non-removable musttail call site.
316   void AddMustTailCallee(Function *F) {
317     MustTailCallees.insert(F);
318   }
319 
320   /// Returns true if the given function is called from non-removable musttail
321   /// call site.
322   bool isMustTailCallee(Function *F) {
323     return MustTailCallees.count(F);
324   }
325 
326   void AddArgumentTrackedFunction(Function *F) {
327     TrackingIncomingArguments.insert(F);
328   }
329 
330   /// Returns true if the given function is in the solver's set of
331   /// argument-tracked functions.
332   bool isArgumentTrackedFunction(Function *F) {
333     return TrackingIncomingArguments.count(F);
334   }
335 
336   /// Solve - Solve for constants and executable blocks.
337   void Solve();
338 
339   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
340   /// that branches on undef values cannot reach any of their successors.
341   /// However, this is not a safe assumption.  After we solve dataflow, this
342   /// method should be use to handle this.  If this returns true, the solver
343   /// should be rerun.
344   bool ResolvedUndefsIn(Function &F);
345 
346   bool isBlockExecutable(BasicBlock *BB) const {
347     return BBExecutable.count(BB);
348   }
349 
350   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
351   // block to the 'To' basic block is currently feasible.
352   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
353 
354   std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
355     std::vector<LatticeVal> StructValues;
356     auto *STy = dyn_cast<StructType>(V->getType());
357     assert(STy && "getStructLatticeValueFor() can be called only on structs");
358     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
359       auto I = StructValueState.find(std::make_pair(V, i));
360       assert(I != StructValueState.end() && "Value not in valuemap!");
361       StructValues.push_back(I->second);
362     }
363     return StructValues;
364   }
365 
366   const LatticeVal &getLatticeValueFor(Value *V) const {
367     assert(!V->getType()->isStructTy() &&
368            "Should use getStructLatticeValueFor");
369     DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V);
370     assert(I != ValueState.end() &&
371            "V not found in ValueState nor Paramstate map!");
372     return I->second;
373   }
374 
375   /// getTrackedRetVals - Get the inferred return value map.
376   const MapVector<Function*, LatticeVal> &getTrackedRetVals() {
377     return TrackedRetVals;
378   }
379 
380   /// getTrackedGlobals - Get and return the set of inferred initializers for
381   /// global variables.
382   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
383     return TrackedGlobals;
384   }
385 
386   /// getMRVFunctionsTracked - Get the set of functions which return multiple
387   /// values tracked by the pass.
388   const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
389     return MRVFunctionsTracked;
390   }
391 
392   /// getMustTailCallees - Get the set of functions which are called
393   /// from non-removable musttail call sites.
394   const SmallPtrSet<Function *, 16> getMustTailCallees() {
395     return MustTailCallees;
396   }
397 
398   /// markOverdefined - Mark the specified value overdefined.  This
399   /// works with both scalars and structs.
400   void markOverdefined(Value *V) {
401     if (auto *STy = dyn_cast<StructType>(V->getType()))
402       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
403         markOverdefined(getStructValueState(V, i), V);
404     else
405       markOverdefined(ValueState[V], V);
406   }
407 
408   // isStructLatticeConstant - Return true if all the lattice values
409   // corresponding to elements of the structure are not overdefined,
410   // false otherwise.
411   bool isStructLatticeConstant(Function *F, StructType *STy) {
412     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
413       const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
414       assert(It != TrackedMultipleRetVals.end());
415       LatticeVal LV = It->second;
416       if (LV.isOverdefined())
417         return false;
418     }
419     return true;
420   }
421 
422 private:
423   // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined
424   void pushToWorkList(LatticeVal &IV, Value *V) {
425     if (IV.isOverdefined())
426       return OverdefinedInstWorkList.push_back(V);
427     InstWorkList.push_back(V);
428   }
429 
430   // markConstant - Make a value be marked as "constant".  If the value
431   // is not already a constant, add it to the instruction work list so that
432   // the users of the instruction are updated later.
433   bool markConstant(LatticeVal &IV, Value *V, Constant *C) {
434     if (!IV.markConstant(C)) return false;
435     LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
436     pushToWorkList(IV, V);
437     return true;
438   }
439 
440   bool markConstant(Value *V, Constant *C) {
441     assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
442     return markConstant(ValueState[V], V, C);
443   }
444 
445   void markForcedConstant(Value *V, Constant *C) {
446     assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
447     LatticeVal &IV = ValueState[V];
448     IV.markForcedConstant(C);
449     LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
450     pushToWorkList(IV, V);
451   }
452 
453   // markOverdefined - Make a value be marked as "overdefined". If the
454   // value is not already overdefined, add it to the overdefined instruction
455   // work list so that the users of the instruction are updated later.
456   bool markOverdefined(LatticeVal &IV, Value *V) {
457     if (!IV.markOverdefined()) return false;
458 
459     LLVM_DEBUG(dbgs() << "markOverdefined: ";
460                if (auto *F = dyn_cast<Function>(V)) dbgs()
461                << "Function '" << F->getName() << "'\n";
462                else dbgs() << *V << '\n');
463     // Only instructions go on the work list
464     pushToWorkList(IV, V);
465     return true;
466   }
467 
468   bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
469     if (IV.isOverdefined() || MergeWithV.isUnknown())
470       return false; // Noop.
471     if (MergeWithV.isOverdefined())
472       return markOverdefined(IV, V);
473     if (IV.isUnknown())
474       return markConstant(IV, V, MergeWithV.getConstant());
475     if (IV.getConstant() != MergeWithV.getConstant())
476       return markOverdefined(IV, V);
477     return false;
478   }
479 
480   bool mergeInValue(Value *V, LatticeVal MergeWithV) {
481     assert(!V->getType()->isStructTy() &&
482            "non-structs should use markConstant");
483     return mergeInValue(ValueState[V], V, MergeWithV);
484   }
485 
486   /// getValueState - Return the LatticeVal object that corresponds to the
487   /// value.  This function handles the case when the value hasn't been seen yet
488   /// by properly seeding constants etc.
489   LatticeVal &getValueState(Value *V) {
490     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
491 
492     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
493       ValueState.insert(std::make_pair(V, LatticeVal()));
494     LatticeVal &LV = I.first->second;
495 
496     if (!I.second)
497       return LV;  // Common case, already in the map.
498 
499     if (auto *C = dyn_cast<Constant>(V)) {
500       // Undef values remain unknown.
501       if (!isa<UndefValue>(V))
502         LV.markConstant(C);          // Constants are constant
503     }
504 
505     // All others are underdefined by default.
506     return LV;
507   }
508 
509   ValueLatticeElement &getParamState(Value *V) {
510     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
511 
512     std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool>
513         PI = ParamState.insert(std::make_pair(V, ValueLatticeElement()));
514     ValueLatticeElement &LV = PI.first->second;
515     if (PI.second)
516       LV = getValueState(V).toValueLattice();
517 
518     return LV;
519   }
520 
521   /// getStructValueState - Return the LatticeVal object that corresponds to the
522   /// value/field pair.  This function handles the case when the value hasn't
523   /// been seen yet by properly seeding constants etc.
524   LatticeVal &getStructValueState(Value *V, unsigned i) {
525     assert(V->getType()->isStructTy() && "Should use getValueState");
526     assert(i < cast<StructType>(V->getType())->getNumElements() &&
527            "Invalid element #");
528 
529     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
530               bool> I = StructValueState.insert(
531                         std::make_pair(std::make_pair(V, i), LatticeVal()));
532     LatticeVal &LV = I.first->second;
533 
534     if (!I.second)
535       return LV;  // Common case, already in the map.
536 
537     if (auto *C = dyn_cast<Constant>(V)) {
538       Constant *Elt = C->getAggregateElement(i);
539 
540       if (!Elt)
541         LV.markOverdefined();      // Unknown sort of constant.
542       else if (isa<UndefValue>(Elt))
543         ; // Undef values remain unknown.
544       else
545         LV.markConstant(Elt);      // Constants are constant.
546     }
547 
548     // All others are underdefined by default.
549     return LV;
550   }
551 
552   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
553   /// work list if it is not already executable.
554   bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
555     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
556       return false;  // This edge is already known to be executable!
557 
558     if (!MarkBlockExecutable(Dest)) {
559       // If the destination is already executable, we just made an *edge*
560       // feasible that wasn't before.  Revisit the PHI nodes in the block
561       // because they have potentially new operands.
562       LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
563                         << " -> " << Dest->getName() << '\n');
564 
565       for (PHINode &PN : Dest->phis())
566         visitPHINode(PN);
567     }
568     return true;
569   }
570 
571   // getFeasibleSuccessors - Return a vector of booleans to indicate which
572   // successors are reachable from a given terminator instruction.
573   void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
574 
575   // OperandChangedState - This method is invoked on all of the users of an
576   // instruction that was just changed state somehow.  Based on this
577   // information, we need to update the specified user of this instruction.
578   void OperandChangedState(Instruction *I) {
579     if (BBExecutable.count(I->getParent()))   // Inst is executable?
580       visit(*I);
581   }
582 
583   // Add U as additional user of V.
584   void addAdditionalUser(Value *V, User *U) {
585     auto Iter = AdditionalUsers.insert({V, {}});
586     Iter.first->second.insert(U);
587   }
588 
589   // Mark I's users as changed, including AdditionalUsers.
590   void markUsersAsChanged(Value *I) {
591     for (User *U : I->users())
592       if (auto *UI = dyn_cast<Instruction>(U))
593         OperandChangedState(UI);
594 
595     auto Iter = AdditionalUsers.find(I);
596     if (Iter != AdditionalUsers.end()) {
597       for (User *U : Iter->second)
598         if (auto *UI = dyn_cast<Instruction>(U))
599           OperandChangedState(UI);
600     }
601   }
602 
603 private:
604   friend class InstVisitor<SCCPSolver>;
605 
606   // visit implementations - Something changed in this instruction.  Either an
607   // operand made a transition, or the instruction is newly executable.  Change
608   // the value type of I to reflect these changes if appropriate.
609   void visitPHINode(PHINode &I);
610 
611   // Terminators
612 
613   void visitReturnInst(ReturnInst &I);
614   void visitTerminator(Instruction &TI);
615 
616   void visitCastInst(CastInst &I);
617   void visitSelectInst(SelectInst &I);
618   void visitUnaryOperator(Instruction &I);
619   void visitBinaryOperator(Instruction &I);
620   void visitCmpInst(CmpInst &I);
621   void visitExtractValueInst(ExtractValueInst &EVI);
622   void visitInsertValueInst(InsertValueInst &IVI);
623 
624   void visitCatchSwitchInst(CatchSwitchInst &CPI) {
625     markOverdefined(&CPI);
626     visitTerminator(CPI);
627   }
628 
629   // Instructions that cannot be folded away.
630 
631   void visitStoreInst     (StoreInst &I);
632   void visitLoadInst      (LoadInst &I);
633   void visitGetElementPtrInst(GetElementPtrInst &I);
634 
635   void visitCallInst      (CallInst &I) {
636     visitCallSite(&I);
637   }
638 
639   void visitInvokeInst    (InvokeInst &II) {
640     visitCallSite(&II);
641     visitTerminator(II);
642   }
643 
644   void visitCallBrInst    (CallBrInst &CBI) {
645     visitCallSite(&CBI);
646     visitTerminator(CBI);
647   }
648 
649   void visitCallSite      (CallSite CS);
650   void visitResumeInst    (ResumeInst &I) { /*returns void*/ }
651   void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
652   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
653 
654   void visitInstruction(Instruction &I) {
655     // All the instructions we don't do any special handling for just
656     // go to overdefined.
657     LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
658     markOverdefined(&I);
659   }
660 };
661 
662 } // end anonymous namespace
663 
664 // getFeasibleSuccessors - Return a vector of booleans to indicate which
665 // successors are reachable from a given terminator instruction.
666 void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
667                                        SmallVectorImpl<bool> &Succs) {
668   Succs.resize(TI.getNumSuccessors());
669   if (auto *BI = dyn_cast<BranchInst>(&TI)) {
670     if (BI->isUnconditional()) {
671       Succs[0] = true;
672       return;
673     }
674 
675     LatticeVal BCValue = getValueState(BI->getCondition());
676     ConstantInt *CI = BCValue.getConstantInt();
677     if (!CI) {
678       // Overdefined condition variables, and branches on unfoldable constant
679       // conditions, mean the branch could go either way.
680       if (!BCValue.isUnknown())
681         Succs[0] = Succs[1] = true;
682       return;
683     }
684 
685     // Constant condition variables mean the branch can only go a single way.
686     Succs[CI->isZero()] = true;
687     return;
688   }
689 
690   // Unwinding instructions successors are always executable.
691   if (TI.isExceptionalTerminator()) {
692     Succs.assign(TI.getNumSuccessors(), true);
693     return;
694   }
695 
696   if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
697     if (!SI->getNumCases()) {
698       Succs[0] = true;
699       return;
700     }
701     LatticeVal SCValue = getValueState(SI->getCondition());
702     ConstantInt *CI = SCValue.getConstantInt();
703 
704     if (!CI) {   // Overdefined or unknown condition?
705       // All destinations are executable!
706       if (!SCValue.isUnknown())
707         Succs.assign(TI.getNumSuccessors(), true);
708       return;
709     }
710 
711     Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
712     return;
713   }
714 
715   // In case of indirect branch and its address is a blockaddress, we mark
716   // the target as executable.
717   if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
718     // Casts are folded by visitCastInst.
719     LatticeVal IBRValue = getValueState(IBR->getAddress());
720     BlockAddress *Addr = IBRValue.getBlockAddress();
721     if (!Addr) {   // Overdefined or unknown condition?
722       // All destinations are executable!
723       if (!IBRValue.isUnknown())
724         Succs.assign(TI.getNumSuccessors(), true);
725       return;
726     }
727 
728     BasicBlock* T = Addr->getBasicBlock();
729     assert(Addr->getFunction() == T->getParent() &&
730            "Block address of a different function ?");
731     for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
732       // This is the target.
733       if (IBR->getDestination(i) == T) {
734         Succs[i] = true;
735         return;
736       }
737     }
738 
739     // If we didn't find our destination in the IBR successor list, then we
740     // have undefined behavior. Its ok to assume no successor is executable.
741     return;
742   }
743 
744   // In case of callbr, we pessimistically assume that all successors are
745   // feasible.
746   if (isa<CallBrInst>(&TI)) {
747     Succs.assign(TI.getNumSuccessors(), true);
748     return;
749   }
750 
751   LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
752   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
753 }
754 
755 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
756 // block to the 'To' basic block is currently feasible.
757 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
758   // Check if we've called markEdgeExecutable on the edge yet. (We could
759   // be more aggressive and try to consider edges which haven't been marked
760   // yet, but there isn't any need.)
761   return KnownFeasibleEdges.count(Edge(From, To));
762 }
763 
764 // visit Implementations - Something changed in this instruction, either an
765 // operand made a transition, or the instruction is newly executable.  Change
766 // the value type of I to reflect these changes if appropriate.  This method
767 // makes sure to do the following actions:
768 //
769 // 1. If a phi node merges two constants in, and has conflicting value coming
770 //    from different branches, or if the PHI node merges in an overdefined
771 //    value, then the PHI node becomes overdefined.
772 // 2. If a phi node merges only constants in, and they all agree on value, the
773 //    PHI node becomes a constant value equal to that.
774 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
775 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
776 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
777 // 6. If a conditional branch has a value that is constant, make the selected
778 //    destination executable
779 // 7. If a conditional branch has a value that is overdefined, make all
780 //    successors executable.
781 void SCCPSolver::visitPHINode(PHINode &PN) {
782   // If this PN returns a struct, just mark the result overdefined.
783   // TODO: We could do a lot better than this if code actually uses this.
784   if (PN.getType()->isStructTy())
785     return (void)markOverdefined(&PN);
786 
787   if (getValueState(&PN).isOverdefined())
788     return;  // Quick exit
789 
790   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
791   // and slow us down a lot.  Just mark them overdefined.
792   if (PN.getNumIncomingValues() > 64)
793     return (void)markOverdefined(&PN);
794 
795   // Look at all of the executable operands of the PHI node.  If any of them
796   // are overdefined, the PHI becomes overdefined as well.  If they are all
797   // constant, and they agree with each other, the PHI becomes the identical
798   // constant.  If they are constant and don't agree, the PHI is overdefined.
799   // If there are no executable operands, the PHI remains unknown.
800   Constant *OperandVal = nullptr;
801   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
802     LatticeVal IV = getValueState(PN.getIncomingValue(i));
803     if (IV.isUnknown()) continue;  // Doesn't influence PHI node.
804 
805     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
806       continue;
807 
808     if (IV.isOverdefined())    // PHI node becomes overdefined!
809       return (void)markOverdefined(&PN);
810 
811     if (!OperandVal) {   // Grab the first value.
812       OperandVal = IV.getConstant();
813       continue;
814     }
815 
816     // There is already a reachable operand.  If we conflict with it,
817     // then the PHI node becomes overdefined.  If we agree with it, we
818     // can continue on.
819 
820     // Check to see if there are two different constants merging, if so, the PHI
821     // node is overdefined.
822     if (IV.getConstant() != OperandVal)
823       return (void)markOverdefined(&PN);
824   }
825 
826   // If we exited the loop, this means that the PHI node only has constant
827   // arguments that agree with each other(and OperandVal is the constant) or
828   // OperandVal is null because there are no defined incoming arguments.  If
829   // this is the case, the PHI remains unknown.
830   if (OperandVal)
831     markConstant(&PN, OperandVal);      // Acquire operand value
832 }
833 
834 void SCCPSolver::visitReturnInst(ReturnInst &I) {
835   if (I.getNumOperands() == 0) return;  // ret void
836 
837   Function *F = I.getParent()->getParent();
838   Value *ResultOp = I.getOperand(0);
839 
840   // If we are tracking the return value of this function, merge it in.
841   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
842     MapVector<Function*, LatticeVal>::iterator TFRVI =
843       TrackedRetVals.find(F);
844     if (TFRVI != TrackedRetVals.end()) {
845       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
846       return;
847     }
848   }
849 
850   // Handle functions that return multiple values.
851   if (!TrackedMultipleRetVals.empty()) {
852     if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
853       if (MRVFunctionsTracked.count(F))
854         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
855           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
856                        getStructValueState(ResultOp, i));
857   }
858 }
859 
860 void SCCPSolver::visitTerminator(Instruction &TI) {
861   SmallVector<bool, 16> SuccFeasible;
862   getFeasibleSuccessors(TI, SuccFeasible);
863 
864   BasicBlock *BB = TI.getParent();
865 
866   // Mark all feasible successors executable.
867   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
868     if (SuccFeasible[i])
869       markEdgeExecutable(BB, TI.getSuccessor(i));
870 }
871 
872 void SCCPSolver::visitCastInst(CastInst &I) {
873   LatticeVal OpSt = getValueState(I.getOperand(0));
874   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
875     markOverdefined(&I);
876   else if (OpSt.isConstant()) {
877     // Fold the constant as we build.
878     Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
879                                           I.getType(), DL);
880     if (isa<UndefValue>(C))
881       return;
882     // Propagate constant value
883     markConstant(&I, C);
884   }
885 }
886 
887 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
888   // If this returns a struct, mark all elements over defined, we don't track
889   // structs in structs.
890   if (EVI.getType()->isStructTy())
891     return (void)markOverdefined(&EVI);
892 
893   // If this is extracting from more than one level of struct, we don't know.
894   if (EVI.getNumIndices() != 1)
895     return (void)markOverdefined(&EVI);
896 
897   Value *AggVal = EVI.getAggregateOperand();
898   if (AggVal->getType()->isStructTy()) {
899     unsigned i = *EVI.idx_begin();
900     LatticeVal EltVal = getStructValueState(AggVal, i);
901     mergeInValue(getValueState(&EVI), &EVI, EltVal);
902   } else {
903     // Otherwise, must be extracting from an array.
904     return (void)markOverdefined(&EVI);
905   }
906 }
907 
908 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
909   auto *STy = dyn_cast<StructType>(IVI.getType());
910   if (!STy)
911     return (void)markOverdefined(&IVI);
912 
913   // If this has more than one index, we can't handle it, drive all results to
914   // undef.
915   if (IVI.getNumIndices() != 1)
916     return (void)markOverdefined(&IVI);
917 
918   Value *Aggr = IVI.getAggregateOperand();
919   unsigned Idx = *IVI.idx_begin();
920 
921   // Compute the result based on what we're inserting.
922   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
923     // This passes through all values that aren't the inserted element.
924     if (i != Idx) {
925       LatticeVal EltVal = getStructValueState(Aggr, i);
926       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
927       continue;
928     }
929 
930     Value *Val = IVI.getInsertedValueOperand();
931     if (Val->getType()->isStructTy())
932       // We don't track structs in structs.
933       markOverdefined(getStructValueState(&IVI, i), &IVI);
934     else {
935       LatticeVal InVal = getValueState(Val);
936       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
937     }
938   }
939 }
940 
941 void SCCPSolver::visitSelectInst(SelectInst &I) {
942   // If this select returns a struct, just mark the result overdefined.
943   // TODO: We could do a lot better than this if code actually uses this.
944   if (I.getType()->isStructTy())
945     return (void)markOverdefined(&I);
946 
947   LatticeVal CondValue = getValueState(I.getCondition());
948   if (CondValue.isUnknown())
949     return;
950 
951   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
952     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
953     mergeInValue(&I, getValueState(OpVal));
954     return;
955   }
956 
957   // Otherwise, the condition is overdefined or a constant we can't evaluate.
958   // See if we can produce something better than overdefined based on the T/F
959   // value.
960   LatticeVal TVal = getValueState(I.getTrueValue());
961   LatticeVal FVal = getValueState(I.getFalseValue());
962 
963   // select ?, C, C -> C.
964   if (TVal.isConstant() && FVal.isConstant() &&
965       TVal.getConstant() == FVal.getConstant())
966     return (void)markConstant(&I, FVal.getConstant());
967 
968   if (TVal.isUnknown())   // select ?, undef, X -> X.
969     return (void)mergeInValue(&I, FVal);
970   if (FVal.isUnknown())   // select ?, X, undef -> X.
971     return (void)mergeInValue(&I, TVal);
972   markOverdefined(&I);
973 }
974 
975 // Handle Unary Operators.
976 void SCCPSolver::visitUnaryOperator(Instruction &I) {
977   LatticeVal V0State = getValueState(I.getOperand(0));
978 
979   LatticeVal &IV = ValueState[&I];
980   if (IV.isOverdefined()) return;
981 
982   if (V0State.isConstant()) {
983     Constant *C = ConstantExpr::get(I.getOpcode(), V0State.getConstant());
984 
985     // op Y -> undef.
986     if (isa<UndefValue>(C))
987       return;
988     return (void)markConstant(IV, &I, C);
989   }
990 
991   // If something is undef, wait for it to resolve.
992   if (!V0State.isOverdefined())
993     return;
994 
995   markOverdefined(&I);
996 }
997 
998 // Handle Binary Operators.
999 void SCCPSolver::visitBinaryOperator(Instruction &I) {
1000   LatticeVal V1State = getValueState(I.getOperand(0));
1001   LatticeVal V2State = getValueState(I.getOperand(1));
1002 
1003   LatticeVal &IV = ValueState[&I];
1004   if (IV.isOverdefined()) return;
1005 
1006   if (V1State.isConstant() && V2State.isConstant()) {
1007     Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
1008                                     V2State.getConstant());
1009     // X op Y -> undef.
1010     if (isa<UndefValue>(C))
1011       return;
1012     return (void)markConstant(IV, &I, C);
1013   }
1014 
1015   // If something is undef, wait for it to resolve.
1016   if (!V1State.isOverdefined() && !V2State.isOverdefined())
1017     return;
1018 
1019   // Otherwise, one of our operands is overdefined.  Try to produce something
1020   // better than overdefined with some tricks.
1021   // If this is 0 / Y, it doesn't matter that the second operand is
1022   // overdefined, and we can replace it with zero.
1023   if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv)
1024     if (V1State.isConstant() && V1State.getConstant()->isNullValue())
1025       return (void)markConstant(IV, &I, V1State.getConstant());
1026 
1027   // If this is:
1028   // -> AND/MUL with 0
1029   // -> OR with -1
1030   // it doesn't matter that the other operand is overdefined.
1031   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul ||
1032       I.getOpcode() == Instruction::Or) {
1033     LatticeVal *NonOverdefVal = nullptr;
1034     if (!V1State.isOverdefined())
1035       NonOverdefVal = &V1State;
1036     else if (!V2State.isOverdefined())
1037       NonOverdefVal = &V2State;
1038 
1039     if (NonOverdefVal) {
1040       if (NonOverdefVal->isUnknown())
1041         return;
1042 
1043       if (I.getOpcode() == Instruction::And ||
1044           I.getOpcode() == Instruction::Mul) {
1045         // X and 0 = 0
1046         // X * 0 = 0
1047         if (NonOverdefVal->getConstant()->isNullValue())
1048           return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
1049       } else {
1050         // X or -1 = -1
1051         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
1052           if (CI->isMinusOne())
1053             return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
1054       }
1055     }
1056   }
1057 
1058   markOverdefined(&I);
1059 }
1060 
1061 // Handle ICmpInst instruction.
1062 void SCCPSolver::visitCmpInst(CmpInst &I) {
1063   // Do not cache this lookup, getValueState calls later in the function might
1064   // invalidate the reference.
1065   if (ValueState[&I].isOverdefined()) return;
1066 
1067   Value *Op1 = I.getOperand(0);
1068   Value *Op2 = I.getOperand(1);
1069 
1070   // For parameters, use ParamState which includes constant range info if
1071   // available.
1072   auto V1Param = ParamState.find(Op1);
1073   ValueLatticeElement V1State = (V1Param != ParamState.end())
1074                                     ? V1Param->second
1075                                     : getValueState(Op1).toValueLattice();
1076 
1077   auto V2Param = ParamState.find(Op2);
1078   ValueLatticeElement V2State = V2Param != ParamState.end()
1079                                     ? V2Param->second
1080                                     : getValueState(Op2).toValueLattice();
1081 
1082   Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
1083   if (C) {
1084     if (isa<UndefValue>(C))
1085       return;
1086     LatticeVal CV;
1087     CV.markConstant(C);
1088     mergeInValue(&I, CV);
1089     return;
1090   }
1091 
1092   // If operands are still unknown, wait for it to resolve.
1093   if (!V1State.isOverdefined() && !V2State.isOverdefined() &&
1094       !ValueState[&I].isConstant())
1095     return;
1096 
1097   markOverdefined(&I);
1098 }
1099 
1100 // Handle getelementptr instructions.  If all operands are constants then we
1101 // can turn this into a getelementptr ConstantExpr.
1102 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1103   if (ValueState[&I].isOverdefined()) return;
1104 
1105   SmallVector<Constant*, 8> Operands;
1106   Operands.reserve(I.getNumOperands());
1107 
1108   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1109     LatticeVal State = getValueState(I.getOperand(i));
1110     if (State.isUnknown())
1111       return;  // Operands are not resolved yet.
1112 
1113     if (State.isOverdefined())
1114       return (void)markOverdefined(&I);
1115 
1116     assert(State.isConstant() && "Unknown state!");
1117     Operands.push_back(State.getConstant());
1118   }
1119 
1120   Constant *Ptr = Operands[0];
1121   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1122   Constant *C =
1123       ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1124   if (isa<UndefValue>(C))
1125       return;
1126   markConstant(&I, C);
1127 }
1128 
1129 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1130   // If this store is of a struct, ignore it.
1131   if (SI.getOperand(0)->getType()->isStructTy())
1132     return;
1133 
1134   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1135     return;
1136 
1137   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1138   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1139   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1140 
1141   // Get the value we are storing into the global, then merge it.
1142   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1143   if (I->second.isOverdefined())
1144     TrackedGlobals.erase(I);      // No need to keep tracking this!
1145 }
1146 
1147 // Handle load instructions.  If the operand is a constant pointer to a constant
1148 // global, we can replace the load with the loaded constant value!
1149 void SCCPSolver::visitLoadInst(LoadInst &I) {
1150   // If this load is of a struct, just mark the result overdefined.
1151   if (I.getType()->isStructTy())
1152     return (void)markOverdefined(&I);
1153 
1154   LatticeVal PtrVal = getValueState(I.getOperand(0));
1155   if (PtrVal.isUnknown()) return;   // The pointer is not resolved yet!
1156 
1157   LatticeVal &IV = ValueState[&I];
1158   if (IV.isOverdefined()) return;
1159 
1160   if (!PtrVal.isConstant() || I.isVolatile())
1161     return (void)markOverdefined(IV, &I);
1162 
1163   Constant *Ptr = PtrVal.getConstant();
1164 
1165   // load null is undefined.
1166   if (isa<ConstantPointerNull>(Ptr)) {
1167     if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1168       return (void)markOverdefined(IV, &I);
1169     else
1170       return;
1171   }
1172 
1173   // Transform load (constant global) into the value loaded.
1174   if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1175     if (!TrackedGlobals.empty()) {
1176       // If we are tracking this global, merge in the known value for it.
1177       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1178         TrackedGlobals.find(GV);
1179       if (It != TrackedGlobals.end()) {
1180         mergeInValue(IV, &I, It->second);
1181         return;
1182       }
1183     }
1184   }
1185 
1186   // Transform load from a constant into a constant if possible.
1187   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
1188     if (isa<UndefValue>(C))
1189       return;
1190     return (void)markConstant(IV, &I, C);
1191   }
1192 
1193   // Otherwise we cannot say for certain what value this load will produce.
1194   // Bail out.
1195   markOverdefined(IV, &I);
1196 }
1197 
1198 void SCCPSolver::visitCallSite(CallSite CS) {
1199   Function *F = CS.getCalledFunction();
1200   Instruction *I = CS.getInstruction();
1201 
1202   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1203     if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1204       if (ValueState[I].isOverdefined())
1205         return;
1206 
1207       auto *PI = getPredicateInfoFor(I);
1208       if (!PI)
1209         return;
1210 
1211       Value *CopyOf = I->getOperand(0);
1212       auto *PBranch = dyn_cast<PredicateBranch>(PI);
1213       if (!PBranch) {
1214         mergeInValue(ValueState[I], I, getValueState(CopyOf));
1215         return;
1216       }
1217 
1218       Value *Cond = PBranch->Condition;
1219 
1220       // Everything below relies on the condition being a comparison.
1221       auto *Cmp = dyn_cast<CmpInst>(Cond);
1222       if (!Cmp) {
1223         mergeInValue(ValueState[I], I, getValueState(CopyOf));
1224         return;
1225       }
1226 
1227       Value *CmpOp0 = Cmp->getOperand(0);
1228       Value *CmpOp1 = Cmp->getOperand(1);
1229       if (CopyOf != CmpOp0 && CopyOf != CmpOp1) {
1230         mergeInValue(ValueState[I], I, getValueState(CopyOf));
1231         return;
1232       }
1233 
1234       if (CmpOp0 != CopyOf)
1235         std::swap(CmpOp0, CmpOp1);
1236 
1237       LatticeVal OriginalVal = getValueState(CopyOf);
1238       LatticeVal EqVal = getValueState(CmpOp1);
1239       LatticeVal &IV = ValueState[I];
1240       if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) {
1241         addAdditionalUser(CmpOp1, I);
1242         if (OriginalVal.isConstant())
1243           mergeInValue(IV, I, OriginalVal);
1244         else
1245           mergeInValue(IV, I, EqVal);
1246         return;
1247       }
1248       if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) {
1249         addAdditionalUser(CmpOp1, I);
1250         if (OriginalVal.isConstant())
1251           mergeInValue(IV, I, OriginalVal);
1252         else
1253           mergeInValue(IV, I, EqVal);
1254         return;
1255       }
1256 
1257       return (void)mergeInValue(IV, I, getValueState(CopyOf));
1258     }
1259   }
1260 
1261   // The common case is that we aren't tracking the callee, either because we
1262   // are not doing interprocedural analysis or the callee is indirect, or is
1263   // external.  Handle these cases first.
1264   if (!F || F->isDeclaration()) {
1265 CallOverdefined:
1266     // Void return and not tracking callee, just bail.
1267     if (I->getType()->isVoidTy()) return;
1268 
1269     // Otherwise, if we have a single return value case, and if the function is
1270     // a declaration, maybe we can constant fold it.
1271     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1272         canConstantFoldCallTo(cast<CallBase>(CS.getInstruction()), F)) {
1273       SmallVector<Constant*, 8> Operands;
1274       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1275            AI != E; ++AI) {
1276         if (AI->get()->getType()->isStructTy())
1277           return markOverdefined(I); // Can't handle struct args.
1278         LatticeVal State = getValueState(*AI);
1279 
1280         if (State.isUnknown())
1281           return;  // Operands are not resolved yet.
1282         if (State.isOverdefined())
1283           return (void)markOverdefined(I);
1284         assert(State.isConstant() && "Unknown state!");
1285         Operands.push_back(State.getConstant());
1286       }
1287 
1288       if (getValueState(I).isOverdefined())
1289         return;
1290 
1291       // If we can constant fold this, mark the result of the call as a
1292       // constant.
1293       if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()), F,
1294                                          Operands, &GetTLI(*F))) {
1295         // call -> undef.
1296         if (isa<UndefValue>(C))
1297           return;
1298         return (void)markConstant(I, C);
1299       }
1300     }
1301 
1302     // Otherwise, we don't know anything about this call, mark it overdefined.
1303     return (void)markOverdefined(I);
1304   }
1305 
1306   // If this is a local function that doesn't have its address taken, mark its
1307   // entry block executable and merge in the actual arguments to the call into
1308   // the formal arguments of the function.
1309   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1310     MarkBlockExecutable(&F->front());
1311 
1312     // Propagate information from this call site into the callee.
1313     CallSite::arg_iterator CAI = CS.arg_begin();
1314     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1315          AI != E; ++AI, ++CAI) {
1316       // If this argument is byval, and if the function is not readonly, there
1317       // will be an implicit copy formed of the input aggregate.
1318       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1319         markOverdefined(&*AI);
1320         continue;
1321       }
1322 
1323       if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1324         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1325           LatticeVal CallArg = getStructValueState(*CAI, i);
1326           mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
1327         }
1328       } else {
1329         // Most other parts of the Solver still only use the simpler value
1330         // lattice, so we propagate changes for parameters to both lattices.
1331         LatticeVal ConcreteArgument = getValueState(*CAI);
1332         bool ParamChanged =
1333             getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL);
1334          bool ValueChanged = mergeInValue(&*AI, ConcreteArgument);
1335         // Add argument to work list, if the state of a parameter changes but
1336         // ValueState does not change (because it is already overdefined there),
1337         // We have to take changes in ParamState into account, as it is used
1338         // when evaluating Cmp instructions.
1339         if (!ValueChanged && ParamChanged)
1340           pushToWorkList(ValueState[&*AI], &*AI);
1341       }
1342     }
1343   }
1344 
1345   // If this is a single/zero retval case, see if we're tracking the function.
1346   if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1347     if (!MRVFunctionsTracked.count(F))
1348       goto CallOverdefined;  // Not tracking this callee.
1349 
1350     // If we are tracking this callee, propagate the result of the function
1351     // into this call site.
1352     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1353       mergeInValue(getStructValueState(I, i), I,
1354                    TrackedMultipleRetVals[std::make_pair(F, i)]);
1355   } else {
1356     MapVector<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1357     if (TFRVI == TrackedRetVals.end())
1358       goto CallOverdefined;  // Not tracking this callee.
1359 
1360     // If so, propagate the return value of the callee into this call result.
1361     mergeInValue(I, TFRVI->second);
1362   }
1363 }
1364 
1365 void SCCPSolver::Solve() {
1366   // Process the work lists until they are empty!
1367   while (!BBWorkList.empty() || !InstWorkList.empty() ||
1368          !OverdefinedInstWorkList.empty()) {
1369     // Process the overdefined instruction's work list first, which drives other
1370     // things to overdefined more quickly.
1371     while (!OverdefinedInstWorkList.empty()) {
1372       Value *I = OverdefinedInstWorkList.pop_back_val();
1373 
1374       LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1375 
1376       // "I" got into the work list because it either made the transition from
1377       // bottom to constant, or to overdefined.
1378       //
1379       // Anything on this worklist that is overdefined need not be visited
1380       // since all of its users will have already been marked as overdefined
1381       // Update all of the users of this instruction's value.
1382       //
1383       markUsersAsChanged(I);
1384     }
1385 
1386     // Process the instruction work list.
1387     while (!InstWorkList.empty()) {
1388       Value *I = InstWorkList.pop_back_val();
1389 
1390       LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1391 
1392       // "I" got into the work list because it made the transition from undef to
1393       // constant.
1394       //
1395       // Anything on this worklist that is overdefined need not be visited
1396       // since all of its users will have already been marked as overdefined.
1397       // Update all of the users of this instruction's value.
1398       //
1399       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1400         markUsersAsChanged(I);
1401     }
1402 
1403     // Process the basic block work list.
1404     while (!BBWorkList.empty()) {
1405       BasicBlock *BB = BBWorkList.back();
1406       BBWorkList.pop_back();
1407 
1408       LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1409 
1410       // Notify all instructions in this basic block that they are newly
1411       // executable.
1412       visit(BB);
1413     }
1414   }
1415 }
1416 
1417 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1418 /// that branches on undef values cannot reach any of their successors.
1419 /// However, this is not a safe assumption.  After we solve dataflow, this
1420 /// method should be use to handle this.  If this returns true, the solver
1421 /// should be rerun.
1422 ///
1423 /// This method handles this by finding an unresolved branch and marking it one
1424 /// of the edges from the block as being feasible, even though the condition
1425 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1426 /// CFG and only slightly pessimizes the analysis results (by marking one,
1427 /// potentially infeasible, edge feasible).  This cannot usefully modify the
1428 /// constraints on the condition of the branch, as that would impact other users
1429 /// of the value.
1430 ///
1431 /// This scan also checks for values that use undefs, whose results are actually
1432 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1433 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1434 /// even if X isn't defined.
1435 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1436   for (BasicBlock &BB : F) {
1437     if (!BBExecutable.count(&BB))
1438       continue;
1439 
1440     for (Instruction &I : BB) {
1441       // Look for instructions which produce undef values.
1442       if (I.getType()->isVoidTy()) continue;
1443 
1444       if (auto *STy = dyn_cast<StructType>(I.getType())) {
1445         // Only a few things that can be structs matter for undef.
1446 
1447         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1448         if (CallSite CS = CallSite(&I))
1449           if (Function *F = CS.getCalledFunction())
1450             if (MRVFunctionsTracked.count(F))
1451               continue;
1452 
1453         // extractvalue and insertvalue don't need to be marked; they are
1454         // tracked as precisely as their operands.
1455         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1456           continue;
1457 
1458         // Send the results of everything else to overdefined.  We could be
1459         // more precise than this but it isn't worth bothering.
1460         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1461           LatticeVal &LV = getStructValueState(&I, i);
1462           if (LV.isUnknown())
1463             markOverdefined(LV, &I);
1464         }
1465         continue;
1466       }
1467 
1468       LatticeVal &LV = getValueState(&I);
1469       if (!LV.isUnknown())
1470         continue;
1471 
1472       // There are two reasons a call can have an undef result
1473       // 1. It could be tracked.
1474       // 2. It could be constant-foldable.
1475       // Because of the way we solve return values, tracked calls must
1476       // never be marked overdefined in ResolvedUndefsIn.
1477       if (CallSite CS = CallSite(&I)) {
1478         if (Function *F = CS.getCalledFunction())
1479           if (TrackedRetVals.count(F))
1480             continue;
1481 
1482         // If the call is constant-foldable, we mark it overdefined because
1483         // we do not know what return values are valid.
1484         markOverdefined(&I);
1485         return true;
1486       }
1487 
1488       // extractvalue is safe; check here because the argument is a struct.
1489       if (isa<ExtractValueInst>(I))
1490         continue;
1491 
1492       // Compute the operand LatticeVals, for convenience below.
1493       // Anything taking a struct is conservatively assumed to require
1494       // overdefined markings.
1495       if (I.getOperand(0)->getType()->isStructTy()) {
1496         markOverdefined(&I);
1497         return true;
1498       }
1499       LatticeVal Op0LV = getValueState(I.getOperand(0));
1500       LatticeVal Op1LV;
1501       if (I.getNumOperands() == 2) {
1502         if (I.getOperand(1)->getType()->isStructTy()) {
1503           markOverdefined(&I);
1504           return true;
1505         }
1506 
1507         Op1LV = getValueState(I.getOperand(1));
1508       }
1509       // If this is an instructions whose result is defined even if the input is
1510       // not fully defined, propagate the information.
1511       Type *ITy = I.getType();
1512       switch (I.getOpcode()) {
1513       case Instruction::Add:
1514       case Instruction::Sub:
1515       case Instruction::Trunc:
1516       case Instruction::FPTrunc:
1517       case Instruction::BitCast:
1518         break; // Any undef -> undef
1519       case Instruction::FSub:
1520       case Instruction::FAdd:
1521       case Instruction::FMul:
1522       case Instruction::FDiv:
1523       case Instruction::FRem:
1524         // Floating-point binary operation: be conservative.
1525         if (Op0LV.isUnknown() && Op1LV.isUnknown())
1526           markForcedConstant(&I, Constant::getNullValue(ITy));
1527         else
1528           markOverdefined(&I);
1529         return true;
1530       case Instruction::FNeg:
1531         break; // fneg undef -> undef
1532       case Instruction::ZExt:
1533       case Instruction::SExt:
1534       case Instruction::FPToUI:
1535       case Instruction::FPToSI:
1536       case Instruction::FPExt:
1537       case Instruction::PtrToInt:
1538       case Instruction::IntToPtr:
1539       case Instruction::SIToFP:
1540       case Instruction::UIToFP:
1541         // undef -> 0; some outputs are impossible
1542         markForcedConstant(&I, Constant::getNullValue(ITy));
1543         return true;
1544       case Instruction::Mul:
1545       case Instruction::And:
1546         // Both operands undef -> undef
1547         if (Op0LV.isUnknown() && Op1LV.isUnknown())
1548           break;
1549         // undef * X -> 0.   X could be zero.
1550         // undef & X -> 0.   X could be zero.
1551         markForcedConstant(&I, Constant::getNullValue(ITy));
1552         return true;
1553       case Instruction::Or:
1554         // Both operands undef -> undef
1555         if (Op0LV.isUnknown() && Op1LV.isUnknown())
1556           break;
1557         // undef | X -> -1.   X could be -1.
1558         markForcedConstant(&I, Constant::getAllOnesValue(ITy));
1559         return true;
1560       case Instruction::Xor:
1561         // undef ^ undef -> 0; strictly speaking, this is not strictly
1562         // necessary, but we try to be nice to people who expect this
1563         // behavior in simple cases
1564         if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
1565           markForcedConstant(&I, Constant::getNullValue(ITy));
1566           return true;
1567         }
1568         // undef ^ X -> undef
1569         break;
1570       case Instruction::SDiv:
1571       case Instruction::UDiv:
1572       case Instruction::SRem:
1573       case Instruction::URem:
1574         // X / undef -> undef.  No change.
1575         // X % undef -> undef.  No change.
1576         if (Op1LV.isUnknown()) break;
1577 
1578         // X / 0 -> undef.  No change.
1579         // X % 0 -> undef.  No change.
1580         if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
1581           break;
1582 
1583         // undef / X -> 0.   X could be maxint.
1584         // undef % X -> 0.   X could be 1.
1585         markForcedConstant(&I, Constant::getNullValue(ITy));
1586         return true;
1587       case Instruction::AShr:
1588         // X >>a undef -> undef.
1589         if (Op1LV.isUnknown()) break;
1590 
1591         // Shifting by the bitwidth or more is undefined.
1592         if (Op1LV.isConstant()) {
1593           if (auto *ShiftAmt = Op1LV.getConstantInt())
1594             if (ShiftAmt->getLimitedValue() >=
1595                 ShiftAmt->getType()->getScalarSizeInBits())
1596               break;
1597         }
1598 
1599         // undef >>a X -> 0
1600         markForcedConstant(&I, Constant::getNullValue(ITy));
1601         return true;
1602       case Instruction::LShr:
1603       case Instruction::Shl:
1604         // X << undef -> undef.
1605         // X >> undef -> undef.
1606         if (Op1LV.isUnknown()) break;
1607 
1608         // Shifting by the bitwidth or more is undefined.
1609         if (Op1LV.isConstant()) {
1610           if (auto *ShiftAmt = Op1LV.getConstantInt())
1611             if (ShiftAmt->getLimitedValue() >=
1612                 ShiftAmt->getType()->getScalarSizeInBits())
1613               break;
1614         }
1615 
1616         // undef << X -> 0
1617         // undef >> X -> 0
1618         markForcedConstant(&I, Constant::getNullValue(ITy));
1619         return true;
1620       case Instruction::Select:
1621         Op1LV = getValueState(I.getOperand(1));
1622         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1623         if (Op0LV.isUnknown()) {
1624           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1625             Op1LV = getValueState(I.getOperand(2));
1626         } else if (Op1LV.isUnknown()) {
1627           // c ? undef : undef -> undef.  No change.
1628           Op1LV = getValueState(I.getOperand(2));
1629           if (Op1LV.isUnknown())
1630             break;
1631           // Otherwise, c ? undef : x -> x.
1632         } else {
1633           // Leave Op1LV as Operand(1)'s LatticeValue.
1634         }
1635 
1636         if (Op1LV.isConstant())
1637           markForcedConstant(&I, Op1LV.getConstant());
1638         else
1639           markOverdefined(&I);
1640         return true;
1641       case Instruction::Load:
1642         // A load here means one of two things: a load of undef from a global,
1643         // a load from an unknown pointer.  Either way, having it return undef
1644         // is okay.
1645         break;
1646       case Instruction::ICmp:
1647         // X == undef -> undef.  Other comparisons get more complicated.
1648         Op0LV = getValueState(I.getOperand(0));
1649         Op1LV = getValueState(I.getOperand(1));
1650 
1651         if ((Op0LV.isUnknown() || Op1LV.isUnknown()) &&
1652             cast<ICmpInst>(&I)->isEquality())
1653           break;
1654         markOverdefined(&I);
1655         return true;
1656       case Instruction::Call:
1657       case Instruction::Invoke:
1658       case Instruction::CallBr:
1659         llvm_unreachable("Call-like instructions should have be handled early");
1660       default:
1661         // If we don't know what should happen here, conservatively mark it
1662         // overdefined.
1663         markOverdefined(&I);
1664         return true;
1665       }
1666     }
1667 
1668     // Check to see if we have a branch or switch on an undefined value.  If so
1669     // we force the branch to go one way or the other to make the successor
1670     // values live.  It doesn't really matter which way we force it.
1671     Instruction *TI = BB.getTerminator();
1672     if (auto *BI = dyn_cast<BranchInst>(TI)) {
1673       if (!BI->isConditional()) continue;
1674       if (!getValueState(BI->getCondition()).isUnknown())
1675         continue;
1676 
1677       // If the input to SCCP is actually branch on undef, fix the undef to
1678       // false.
1679       if (isa<UndefValue>(BI->getCondition())) {
1680         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1681         markEdgeExecutable(&BB, TI->getSuccessor(1));
1682         return true;
1683       }
1684 
1685       // Otherwise, it is a branch on a symbolic value which is currently
1686       // considered to be undef.  Make sure some edge is executable, so a
1687       // branch on "undef" always flows somewhere.
1688       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1689       BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
1690       if (markEdgeExecutable(&BB, DefaultSuccessor))
1691         return true;
1692 
1693       continue;
1694     }
1695 
1696    if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
1697       // Indirect branch with no successor ?. Its ok to assume it branches
1698       // to no target.
1699       if (IBR->getNumSuccessors() < 1)
1700         continue;
1701 
1702       if (!getValueState(IBR->getAddress()).isUnknown())
1703         continue;
1704 
1705       // If the input to SCCP is actually branch on undef, fix the undef to
1706       // the first successor of the indirect branch.
1707       if (isa<UndefValue>(IBR->getAddress())) {
1708         IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
1709         markEdgeExecutable(&BB, IBR->getSuccessor(0));
1710         return true;
1711       }
1712 
1713       // Otherwise, it is a branch on a symbolic value which is currently
1714       // considered to be undef.  Make sure some edge is executable, so a
1715       // branch on "undef" always flows somewhere.
1716       // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
1717       // we can assume the branch has undefined behavior instead.
1718       BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
1719       if (markEdgeExecutable(&BB, DefaultSuccessor))
1720         return true;
1721 
1722       continue;
1723     }
1724 
1725     if (auto *SI = dyn_cast<SwitchInst>(TI)) {
1726       if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown())
1727         continue;
1728 
1729       // If the input to SCCP is actually switch on undef, fix the undef to
1730       // the first constant.
1731       if (isa<UndefValue>(SI->getCondition())) {
1732         SI->setCondition(SI->case_begin()->getCaseValue());
1733         markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
1734         return true;
1735       }
1736 
1737       // Otherwise, it is a branch on a symbolic value which is currently
1738       // considered to be undef.  Make sure some edge is executable, so a
1739       // branch on "undef" always flows somewhere.
1740       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1741       BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
1742       if (markEdgeExecutable(&BB, DefaultSuccessor))
1743         return true;
1744 
1745       continue;
1746     }
1747   }
1748 
1749   return false;
1750 }
1751 
1752 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
1753   Constant *Const = nullptr;
1754   if (V->getType()->isStructTy()) {
1755     std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
1756     if (llvm::any_of(IVs,
1757                      [](const LatticeVal &LV) { return LV.isOverdefined(); }))
1758       return false;
1759     std::vector<Constant *> ConstVals;
1760     auto *ST = cast<StructType>(V->getType());
1761     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1762       LatticeVal V = IVs[i];
1763       ConstVals.push_back(V.isConstant()
1764                               ? V.getConstant()
1765                               : UndefValue::get(ST->getElementType(i)));
1766     }
1767     Const = ConstantStruct::get(ST, ConstVals);
1768   } else {
1769     const LatticeVal &IV = Solver.getLatticeValueFor(V);
1770     if (IV.isOverdefined())
1771       return false;
1772 
1773     Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
1774   }
1775   assert(Const && "Constant is nullptr here!");
1776 
1777   // Replacing `musttail` instructions with constant breaks `musttail` invariant
1778   // unless the call itself can be removed
1779   CallInst *CI = dyn_cast<CallInst>(V);
1780   if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
1781     CallSite CS(CI);
1782     Function *F = CS.getCalledFunction();
1783 
1784     // Don't zap returns of the callee
1785     if (F)
1786       Solver.AddMustTailCallee(F);
1787 
1788     LLVM_DEBUG(dbgs() << "  Can\'t treat the result of musttail call : " << *CI
1789                       << " as a constant\n");
1790     return false;
1791   }
1792 
1793   LLVM_DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n');
1794 
1795   // Replaces all of the uses of a variable with uses of the constant.
1796   V->replaceAllUsesWith(Const);
1797   return true;
1798 }
1799 
1800 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
1801 // and return true if the function was modified.
1802 static bool runSCCP(Function &F, const DataLayout &DL,
1803                     const TargetLibraryInfo *TLI) {
1804   LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1805   SCCPSolver Solver(
1806       DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; });
1807 
1808   // Mark the first block of the function as being executable.
1809   Solver.MarkBlockExecutable(&F.front());
1810 
1811   // Mark all arguments to the function as being overdefined.
1812   for (Argument &AI : F.args())
1813     Solver.markOverdefined(&AI);
1814 
1815   // Solve for constants.
1816   bool ResolvedUndefs = true;
1817   while (ResolvedUndefs) {
1818     Solver.Solve();
1819     LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1820     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1821   }
1822 
1823   bool MadeChanges = false;
1824 
1825   // If we decided that there are basic blocks that are dead in this function,
1826   // delete their contents now.  Note that we cannot actually delete the blocks,
1827   // as we cannot modify the CFG of the function.
1828 
1829   for (BasicBlock &BB : F) {
1830     if (!Solver.isBlockExecutable(&BB)) {
1831       LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
1832 
1833       ++NumDeadBlocks;
1834       NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);
1835 
1836       MadeChanges = true;
1837       continue;
1838     }
1839 
1840     // Iterate over all of the instructions in a function, replacing them with
1841     // constants if we have found them to be of constant values.
1842     for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
1843       Instruction *Inst = &*BI++;
1844       if (Inst->getType()->isVoidTy() || Inst->isTerminator())
1845         continue;
1846 
1847       if (tryToReplaceWithConstant(Solver, Inst)) {
1848         if (isInstructionTriviallyDead(Inst))
1849           Inst->eraseFromParent();
1850         // Hey, we just changed something!
1851         MadeChanges = true;
1852         ++NumInstRemoved;
1853       }
1854     }
1855   }
1856 
1857   return MadeChanges;
1858 }
1859 
1860 PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
1861   const DataLayout &DL = F.getParent()->getDataLayout();
1862   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1863   if (!runSCCP(F, DL, &TLI))
1864     return PreservedAnalyses::all();
1865 
1866   auto PA = PreservedAnalyses();
1867   PA.preserve<GlobalsAA>();
1868   PA.preserveSet<CFGAnalyses>();
1869   return PA;
1870 }
1871 
1872 namespace {
1873 
1874 //===--------------------------------------------------------------------===//
1875 //
1876 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1877 /// Sparse Conditional Constant Propagator.
1878 ///
1879 class SCCPLegacyPass : public FunctionPass {
1880 public:
1881   // Pass identification, replacement for typeid
1882   static char ID;
1883 
1884   SCCPLegacyPass() : FunctionPass(ID) {
1885     initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
1886   }
1887 
1888   void getAnalysisUsage(AnalysisUsage &AU) const override {
1889     AU.addRequired<TargetLibraryInfoWrapperPass>();
1890     AU.addPreserved<GlobalsAAWrapperPass>();
1891     AU.setPreservesCFG();
1892   }
1893 
1894   // runOnFunction - Run the Sparse Conditional Constant Propagation
1895   // algorithm, and return true if the function was modified.
1896   bool runOnFunction(Function &F) override {
1897     if (skipFunction(F))
1898       return false;
1899     const DataLayout &DL = F.getParent()->getDataLayout();
1900     const TargetLibraryInfo *TLI =
1901         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1902     return runSCCP(F, DL, TLI);
1903   }
1904 };
1905 
1906 } // end anonymous namespace
1907 
1908 char SCCPLegacyPass::ID = 0;
1909 
1910 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
1911                       "Sparse Conditional Constant Propagation", false, false)
1912 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1913 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
1914                     "Sparse Conditional Constant Propagation", false, false)
1915 
1916 // createSCCPPass - This is the public interface to this file.
1917 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
1918 
1919 static void findReturnsToZap(Function &F,
1920                              SmallVector<ReturnInst *, 8> &ReturnsToZap,
1921                              SCCPSolver &Solver) {
1922   // We can only do this if we know that nothing else can call the function.
1923   if (!Solver.isArgumentTrackedFunction(&F))
1924     return;
1925 
1926   // There is a non-removable musttail call site of this function. Zapping
1927   // returns is not allowed.
1928   if (Solver.isMustTailCallee(&F)) {
1929     LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
1930                       << " due to present musttail call of it\n");
1931     return;
1932   }
1933 
1934   assert(
1935       all_of(F.users(),
1936              [&Solver](User *U) {
1937                if (isa<Instruction>(U) &&
1938                    !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
1939                  return true;
1940                // Non-callsite uses are not impacted by zapping. Also, constant
1941                // uses (like blockaddresses) could stuck around, without being
1942                // used in the underlying IR, meaning we do not have lattice
1943                // values for them.
1944                if (!CallSite(U))
1945                  return true;
1946                if (U->getType()->isStructTy()) {
1947                  return all_of(
1948                      Solver.getStructLatticeValueFor(U),
1949                      [](const LatticeVal &LV) { return !LV.isOverdefined(); });
1950                }
1951                return !Solver.getLatticeValueFor(U).isOverdefined();
1952              }) &&
1953       "We can only zap functions where all live users have a concrete value");
1954 
1955   for (BasicBlock &BB : F) {
1956     if (CallInst *CI = BB.getTerminatingMustTailCall()) {
1957       LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
1958                         << "musttail call : " << *CI << "\n");
1959       (void)CI;
1960       return;
1961     }
1962 
1963     if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1964       if (!isa<UndefValue>(RI->getOperand(0)))
1965         ReturnsToZap.push_back(RI);
1966   }
1967 }
1968 
1969 // Update the condition for terminators that are branching on indeterminate
1970 // values, forcing them to use a specific edge.
1971 static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) {
1972   BasicBlock *Dest = nullptr;
1973   Constant *C = nullptr;
1974   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1975     if (!isa<ConstantInt>(SI->getCondition())) {
1976       // Indeterminate switch; use first case value.
1977       Dest = SI->case_begin()->getCaseSuccessor();
1978       C = SI->case_begin()->getCaseValue();
1979     }
1980   } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1981     if (!isa<ConstantInt>(BI->getCondition())) {
1982       // Indeterminate branch; use false.
1983       Dest = BI->getSuccessor(1);
1984       C = ConstantInt::getFalse(BI->getContext());
1985     }
1986   } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) {
1987     if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) {
1988       // Indeterminate indirectbr; use successor 0.
1989       Dest = IBR->getSuccessor(0);
1990       C = BlockAddress::get(IBR->getSuccessor(0));
1991     }
1992   } else {
1993     llvm_unreachable("Unexpected terminator instruction");
1994   }
1995   if (C) {
1996     assert(Solver.isEdgeFeasible(I->getParent(), Dest) &&
1997            "Didn't find feasible edge?");
1998     (void)Dest;
1999 
2000     I->setOperand(0, C);
2001   }
2002 }
2003 
2004 bool llvm::runIPSCCP(
2005     Module &M, const DataLayout &DL,
2006     std::function<const TargetLibraryInfo &(Function &)> GetTLI,
2007     function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
2008   SCCPSolver Solver(DL, GetTLI);
2009 
2010   // Loop over all functions, marking arguments to those with their addresses
2011   // taken or that are external as overdefined.
2012   for (Function &F : M) {
2013     if (F.isDeclaration())
2014       continue;
2015 
2016     Solver.addAnalysis(F, getAnalysis(F));
2017 
2018     // Determine if we can track the function's return values. If so, add the
2019     // function to the solver's set of return-tracked functions.
2020     if (canTrackReturnsInterprocedurally(&F))
2021       Solver.AddTrackedFunction(&F);
2022 
2023     // Determine if we can track the function's arguments. If so, add the
2024     // function to the solver's set of argument-tracked functions.
2025     if (canTrackArgumentsInterprocedurally(&F)) {
2026       Solver.AddArgumentTrackedFunction(&F);
2027       continue;
2028     }
2029 
2030     // Assume the function is called.
2031     Solver.MarkBlockExecutable(&F.front());
2032 
2033     // Assume nothing about the incoming arguments.
2034     for (Argument &AI : F.args())
2035       Solver.markOverdefined(&AI);
2036   }
2037 
2038   // Determine if we can track any of the module's global variables. If so, add
2039   // the global variables we can track to the solver's set of tracked global
2040   // variables.
2041   for (GlobalVariable &G : M.globals()) {
2042     G.removeDeadConstantUsers();
2043     if (canTrackGlobalVariableInterprocedurally(&G))
2044       Solver.TrackValueOfGlobalVariable(&G);
2045   }
2046 
2047   // Solve for constants.
2048   bool ResolvedUndefs = true;
2049   Solver.Solve();
2050   while (ResolvedUndefs) {
2051     LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
2052     ResolvedUndefs = false;
2053     for (Function &F : M)
2054       if (Solver.ResolvedUndefsIn(F)) {
2055         // We run Solve() after we resolved an undef in a function, because
2056         // we might deduce a fact that eliminates an undef in another function.
2057         Solver.Solve();
2058         ResolvedUndefs = true;
2059       }
2060   }
2061 
2062   bool MadeChanges = false;
2063 
2064   // Iterate over all of the instructions in the module, replacing them with
2065   // constants if we have found them to be of constant values.
2066 
2067   for (Function &F : M) {
2068     if (F.isDeclaration())
2069       continue;
2070 
2071     SmallVector<BasicBlock *, 512> BlocksToErase;
2072 
2073     if (Solver.isBlockExecutable(&F.front()))
2074       for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
2075            ++AI) {
2076         if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) {
2077           ++IPNumArgsElimed;
2078           continue;
2079         }
2080       }
2081 
2082     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2083       if (!Solver.isBlockExecutable(&*BB)) {
2084         LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
2085         ++NumDeadBlocks;
2086 
2087         MadeChanges = true;
2088 
2089         if (&*BB != &F.front())
2090           BlocksToErase.push_back(&*BB);
2091         continue;
2092       }
2093 
2094       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
2095         Instruction *Inst = &*BI++;
2096         if (Inst->getType()->isVoidTy())
2097           continue;
2098         if (tryToReplaceWithConstant(Solver, Inst)) {
2099           if (Inst->isSafeToRemove())
2100             Inst->eraseFromParent();
2101           // Hey, we just changed something!
2102           MadeChanges = true;
2103           ++IPNumInstRemoved;
2104         }
2105       }
2106     }
2107 
2108     DomTreeUpdater DTU = Solver.getDTU(F);
2109     // Change dead blocks to unreachable. We do it after replacing constants
2110     // in all executable blocks, because changeToUnreachable may remove PHI
2111     // nodes in executable blocks we found values for. The function's entry
2112     // block is not part of BlocksToErase, so we have to handle it separately.
2113     for (BasicBlock *BB : BlocksToErase) {
2114       NumInstRemoved +=
2115           changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
2116                               /*PreserveLCSSA=*/false, &DTU);
2117     }
2118     if (!Solver.isBlockExecutable(&F.front()))
2119       NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
2120                                             /*UseLLVMTrap=*/false,
2121                                             /*PreserveLCSSA=*/false, &DTU);
2122 
2123     // Now that all instructions in the function are constant folded,
2124     // use ConstantFoldTerminator to get rid of in-edges, record DT updates and
2125     // delete dead BBs.
2126     for (BasicBlock *DeadBB : BlocksToErase) {
2127       // If there are any PHI nodes in this successor, drop entries for BB now.
2128       for (Value::user_iterator UI = DeadBB->user_begin(),
2129                                 UE = DeadBB->user_end();
2130            UI != UE;) {
2131         // Grab the user and then increment the iterator early, as the user
2132         // will be deleted. Step past all adjacent uses from the same user.
2133         auto *I = dyn_cast<Instruction>(*UI);
2134         do { ++UI; } while (UI != UE && *UI == I);
2135 
2136         // Ignore blockaddress users; BasicBlock's dtor will handle them.
2137         if (!I) continue;
2138 
2139         // If we have forced an edge for an indeterminate value, then force the
2140         // terminator to fold to that edge.
2141         forceIndeterminateEdge(I, Solver);
2142         BasicBlock *InstBB = I->getParent();
2143         bool Folded = ConstantFoldTerminator(InstBB,
2144                                              /*DeleteDeadConditions=*/false,
2145                                              /*TLI=*/nullptr, &DTU);
2146         assert(Folded &&
2147               "Expect TermInst on constantint or blockaddress to be folded");
2148         (void) Folded;
2149         // If we folded the terminator to an unconditional branch to another
2150         // dead block, replace it with Unreachable, to avoid trying to fold that
2151         // branch again.
2152         BranchInst *BI = cast<BranchInst>(InstBB->getTerminator());
2153         if (BI && BI->isUnconditional() &&
2154             !Solver.isBlockExecutable(BI->getSuccessor(0))) {
2155           InstBB->getTerminator()->eraseFromParent();
2156           new UnreachableInst(InstBB->getContext(), InstBB);
2157         }
2158       }
2159       // Mark dead BB for deletion.
2160       DTU.deleteBB(DeadBB);
2161     }
2162 
2163     for (BasicBlock &BB : F) {
2164       for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
2165         Instruction *Inst = &*BI++;
2166         if (Solver.getPredicateInfoFor(Inst)) {
2167           if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
2168             if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
2169               Value *Op = II->getOperand(0);
2170               Inst->replaceAllUsesWith(Op);
2171               Inst->eraseFromParent();
2172             }
2173           }
2174         }
2175       }
2176     }
2177   }
2178 
2179   // If we inferred constant or undef return values for a function, we replaced
2180   // all call uses with the inferred value.  This means we don't need to bother
2181   // actually returning anything from the function.  Replace all return
2182   // instructions with return undef.
2183   //
2184   // Do this in two stages: first identify the functions we should process, then
2185   // actually zap their returns.  This is important because we can only do this
2186   // if the address of the function isn't taken.  In cases where a return is the
2187   // last use of a function, the order of processing functions would affect
2188   // whether other functions are optimizable.
2189   SmallVector<ReturnInst*, 8> ReturnsToZap;
2190 
2191   const MapVector<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
2192   for (const auto &I : RV) {
2193     Function *F = I.first;
2194     if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
2195       continue;
2196     findReturnsToZap(*F, ReturnsToZap, Solver);
2197   }
2198 
2199   for (const auto &F : Solver.getMRVFunctionsTracked()) {
2200     assert(F->getReturnType()->isStructTy() &&
2201            "The return type should be a struct");
2202     StructType *STy = cast<StructType>(F->getReturnType());
2203     if (Solver.isStructLatticeConstant(F, STy))
2204       findReturnsToZap(*F, ReturnsToZap, Solver);
2205   }
2206 
2207   // Zap all returns which we've identified as zap to change.
2208   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
2209     Function *F = ReturnsToZap[i]->getParent()->getParent();
2210     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
2211   }
2212 
2213   // If we inferred constant or undef values for globals variables, we can
2214   // delete the global and any stores that remain to it.
2215   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
2216   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
2217          E = TG.end(); I != E; ++I) {
2218     GlobalVariable *GV = I->first;
2219     assert(!I->second.isOverdefined() &&
2220            "Overdefined values should have been taken out of the map!");
2221     LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
2222                       << "' is constant!\n");
2223     while (!GV->use_empty()) {
2224       StoreInst *SI = cast<StoreInst>(GV->user_back());
2225       SI->eraseFromParent();
2226     }
2227     M.getGlobalList().erase(GV);
2228     ++IPNumGlobalConst;
2229   }
2230 
2231   return MadeChanges;
2232 }
2233