1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 80 81 using namespace llvm; 82 83 // Print the liveset found at the insert location 84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 85 cl::init(false)); 86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 87 cl::init(false)); 88 89 // Print out the base pointers for debugging 90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 91 cl::init(false)); 92 93 // Cost threshold measuring when it is profitable to rematerialize value instead 94 // of relocating it 95 static cl::opt<unsigned> 96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 97 cl::init(6)); 98 99 #ifdef EXPENSIVE_CHECKS 100 static bool ClobberNonLive = true; 101 #else 102 static bool ClobberNonLive = false; 103 #endif 104 105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 106 cl::location(ClobberNonLive), 107 cl::Hidden); 108 109 static cl::opt<bool> 110 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 111 cl::Hidden, cl::init(true)); 112 113 /// The IR fed into RewriteStatepointsForGC may have had attributes and 114 /// metadata implying dereferenceability that are no longer valid/correct after 115 /// RewriteStatepointsForGC has run. This is because semantically, after 116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 117 /// heap. stripNonValidData (conservatively) restores 118 /// correctness by erasing all attributes in the module that externally imply 119 /// dereferenceability. Similar reasoning also applies to the noalias 120 /// attributes and metadata. gc.statepoint can touch the entire heap including 121 /// noalias objects. 122 /// Apart from attributes and metadata, we also remove instructions that imply 123 /// constant physical memory: llvm.invariant.start. 124 static void stripNonValidData(Module &M); 125 126 static bool shouldRewriteStatepointsIn(Function &F); 127 128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 129 ModuleAnalysisManager &AM) { 130 bool Changed = false; 131 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 132 for (Function &F : M) { 133 // Nothing to do for declarations. 134 if (F.isDeclaration() || F.empty()) 135 continue; 136 137 // Policy choice says not to rewrite - the most common reason is that we're 138 // compiling code without a GCStrategy. 139 if (!shouldRewriteStatepointsIn(F)) 140 continue; 141 142 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 143 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 144 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 145 Changed |= runOnFunction(F, DT, TTI, TLI); 146 } 147 if (!Changed) 148 return PreservedAnalyses::all(); 149 150 // stripNonValidData asserts that shouldRewriteStatepointsIn 151 // returns true for at least one function in the module. Since at least 152 // one function changed, we know that the precondition is satisfied. 153 stripNonValidData(M); 154 155 PreservedAnalyses PA; 156 PA.preserve<TargetIRAnalysis>(); 157 PA.preserve<TargetLibraryAnalysis>(); 158 return PA; 159 } 160 161 namespace { 162 163 class RewriteStatepointsForGCLegacyPass : public ModulePass { 164 RewriteStatepointsForGC Impl; 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 170 initializeRewriteStatepointsForGCLegacyPassPass( 171 *PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnModule(Module &M) override { 175 bool Changed = false; 176 for (Function &F : M) { 177 // Nothing to do for declarations. 178 if (F.isDeclaration() || F.empty()) 179 continue; 180 181 // Policy choice says not to rewrite - the most common reason is that 182 // we're compiling code without a GCStrategy. 183 if (!shouldRewriteStatepointsIn(F)) 184 continue; 185 186 TargetTransformInfo &TTI = 187 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 188 const TargetLibraryInfo &TLI = 189 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 190 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 191 192 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 193 } 194 195 if (!Changed) 196 return false; 197 198 // stripNonValidData asserts that shouldRewriteStatepointsIn 199 // returns true for at least one function in the module. Since at least 200 // one function changed, we know that the precondition is satisfied. 201 stripNonValidData(M); 202 return true; 203 } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 // We add and rewrite a bunch of instructions, but don't really do much 207 // else. We could in theory preserve a lot more analyses here. 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetTransformInfoWrapperPass>(); 210 AU.addRequired<TargetLibraryInfoWrapperPass>(); 211 } 212 }; 213 214 } // end anonymous namespace 215 216 char RewriteStatepointsForGCLegacyPass::ID = 0; 217 218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 219 return new RewriteStatepointsForGCLegacyPass(); 220 } 221 222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 223 "rewrite-statepoints-for-gc", 224 "Make relocations explicit at statepoints", false, false) 225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 228 "rewrite-statepoints-for-gc", 229 "Make relocations explicit at statepoints", false, false) 230 231 namespace { 232 233 struct GCPtrLivenessData { 234 /// Values defined in this block. 235 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 236 237 /// Values used in this block (and thus live); does not included values 238 /// killed within this block. 239 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 240 241 /// Values live into this basic block (i.e. used by any 242 /// instruction in this basic block or ones reachable from here) 243 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 244 245 /// Values live out of this basic block (i.e. live into 246 /// any successor block) 247 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 248 }; 249 250 // The type of the internal cache used inside the findBasePointers family 251 // of functions. From the callers perspective, this is an opaque type and 252 // should not be inspected. 253 // 254 // In the actual implementation this caches two relations: 255 // - The base relation itself (i.e. this pointer is based on that one) 256 // - The base defining value relation (i.e. before base_phi insertion) 257 // Generally, after the execution of a full findBasePointer call, only the 258 // base relation will remain. Internally, we add a mixture of the two 259 // types, then update all the second type to the first type 260 using DefiningValueMapTy = MapVector<Value *, Value *>; 261 using IsKnownBaseMapTy = MapVector<Value *, bool>; 262 using PointerToBaseTy = MapVector<Value *, Value *>; 263 using StatepointLiveSetTy = SetVector<Value *>; 264 using RematerializedValueMapTy = 265 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 266 267 struct PartiallyConstructedSafepointRecord { 268 /// The set of values known to be live across this safepoint 269 StatepointLiveSetTy LiveSet; 270 271 /// The *new* gc.statepoint instruction itself. This produces the token 272 /// that normal path gc.relocates and the gc.result are tied to. 273 GCStatepointInst *StatepointToken; 274 275 /// Instruction to which exceptional gc relocates are attached 276 /// Makes it easier to iterate through them during relocationViaAlloca. 277 Instruction *UnwindToken; 278 279 /// Record live values we are rematerialized instead of relocating. 280 /// They are not included into 'LiveSet' field. 281 /// Maps rematerialized copy to it's original value. 282 RematerializedValueMapTy RematerializedValues; 283 }; 284 285 struct RematerizlizationCandidateRecord { 286 // Chain from derived pointer to base. 287 SmallVector<Instruction *, 3> ChainToBase; 288 // Original base. 289 Value *RootOfChain; 290 // Cost of chain. 291 InstructionCost Cost; 292 }; 293 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>; 294 295 } // end anonymous namespace 296 297 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 298 Optional<OperandBundleUse> DeoptBundle = 299 Call->getOperandBundle(LLVMContext::OB_deopt); 300 301 if (!DeoptBundle) { 302 assert(AllowStatepointWithNoDeoptInfo && 303 "Found non-leaf call without deopt info!"); 304 return None; 305 } 306 307 return DeoptBundle->Inputs; 308 } 309 310 /// Compute the live-in set for every basic block in the function 311 static void computeLiveInValues(DominatorTree &DT, Function &F, 312 GCPtrLivenessData &Data); 313 314 /// Given results from the dataflow liveness computation, find the set of live 315 /// Values at a particular instruction. 316 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 317 StatepointLiveSetTy &out); 318 319 // TODO: Once we can get to the GCStrategy, this becomes 320 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 321 322 static bool isGCPointerType(Type *T) { 323 if (auto *PT = dyn_cast<PointerType>(T)) 324 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 325 // GC managed heap. We know that a pointer into this heap needs to be 326 // updated and that no other pointer does. 327 return PT->getAddressSpace() == 1; 328 return false; 329 } 330 331 // Return true if this type is one which a) is a gc pointer or contains a GC 332 // pointer and b) is of a type this code expects to encounter as a live value. 333 // (The insertion code will assert that a type which matches (a) and not (b) 334 // is not encountered.) 335 static bool isHandledGCPointerType(Type *T) { 336 // We fully support gc pointers 337 if (isGCPointerType(T)) 338 return true; 339 // We partially support vectors of gc pointers. The code will assert if it 340 // can't handle something. 341 if (auto VT = dyn_cast<VectorType>(T)) 342 if (isGCPointerType(VT->getElementType())) 343 return true; 344 return false; 345 } 346 347 #ifndef NDEBUG 348 /// Returns true if this type contains a gc pointer whether we know how to 349 /// handle that type or not. 350 static bool containsGCPtrType(Type *Ty) { 351 if (isGCPointerType(Ty)) 352 return true; 353 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 354 return isGCPointerType(VT->getScalarType()); 355 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 356 return containsGCPtrType(AT->getElementType()); 357 if (StructType *ST = dyn_cast<StructType>(Ty)) 358 return llvm::any_of(ST->elements(), containsGCPtrType); 359 return false; 360 } 361 362 // Returns true if this is a type which a) is a gc pointer or contains a GC 363 // pointer and b) is of a type which the code doesn't expect (i.e. first class 364 // aggregates). Used to trip assertions. 365 static bool isUnhandledGCPointerType(Type *Ty) { 366 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 367 } 368 #endif 369 370 // Return the name of the value suffixed with the provided value, or if the 371 // value didn't have a name, the default value specified. 372 static std::string suffixed_name_or(Value *V, StringRef Suffix, 373 StringRef DefaultName) { 374 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 375 } 376 377 // Conservatively identifies any definitions which might be live at the 378 // given instruction. The analysis is performed immediately before the 379 // given instruction. Values defined by that instruction are not considered 380 // live. Values used by that instruction are considered live. 381 static void analyzeParsePointLiveness( 382 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 383 PartiallyConstructedSafepointRecord &Result) { 384 StatepointLiveSetTy LiveSet; 385 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); 386 387 if (PrintLiveSet) { 388 dbgs() << "Live Variables:\n"; 389 for (Value *V : LiveSet) 390 dbgs() << " " << V->getName() << " " << *V << "\n"; 391 } 392 if (PrintLiveSetSize) { 393 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 394 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 395 } 396 Result.LiveSet = LiveSet; 397 } 398 399 /// Returns true if V is a known base. 400 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases); 401 402 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present 403 /// in the cache before. 404 static void setKnownBase(Value *V, bool IsKnownBase, 405 IsKnownBaseMapTy &KnownBases); 406 407 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 408 IsKnownBaseMapTy &KnownBases); 409 410 /// Return a base defining value for the 'Index' element of the given vector 411 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 412 /// 'I'. As an optimization, this method will try to determine when the 413 /// element is known to already be a base pointer. If this can be established, 414 /// the second value in the returned pair will be true. Note that either a 415 /// vector or a pointer typed value can be returned. For the former, the 416 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 417 /// If the later, the return pointer is a BDV (or possibly a base) for the 418 /// particular element in 'I'. 419 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache, 420 IsKnownBaseMapTy &KnownBases) { 421 // Each case parallels findBaseDefiningValue below, see that code for 422 // detailed motivation. 423 424 auto Cached = Cache.find(I); 425 if (Cached != Cache.end()) 426 return Cached->second; 427 428 if (isa<Argument>(I)) { 429 // An incoming argument to the function is a base pointer 430 Cache[I] = I; 431 setKnownBase(I, /* IsKnownBase */true, KnownBases); 432 return I; 433 } 434 435 if (isa<Constant>(I)) { 436 // Base of constant vector consists only of constant null pointers. 437 // For reasoning see similar case inside 'findBaseDefiningValue' function. 438 auto *CAZ = ConstantAggregateZero::get(I->getType()); 439 Cache[I] = CAZ; 440 setKnownBase(CAZ, /* IsKnownBase */true, KnownBases); 441 return CAZ; 442 } 443 444 if (isa<LoadInst>(I)) { 445 Cache[I] = I; 446 setKnownBase(I, /* IsKnownBase */true, KnownBases); 447 return I; 448 } 449 450 if (isa<InsertElementInst>(I)) { 451 // We don't know whether this vector contains entirely base pointers or 452 // not. To be conservatively correct, we treat it as a BDV and will 453 // duplicate code as needed to construct a parallel vector of bases. 454 Cache[I] = I; 455 setKnownBase(I, /* IsKnownBase */false, KnownBases); 456 return I; 457 } 458 459 if (isa<ShuffleVectorInst>(I)) { 460 // We don't know whether this vector contains entirely base pointers or 461 // not. To be conservatively correct, we treat it as a BDV and will 462 // duplicate code as needed to construct a parallel vector of bases. 463 // TODO: There a number of local optimizations which could be applied here 464 // for particular sufflevector patterns. 465 Cache[I] = I; 466 setKnownBase(I, /* IsKnownBase */false, KnownBases); 467 return I; 468 } 469 470 // The behavior of getelementptr instructions is the same for vector and 471 // non-vector data types. 472 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 473 auto *BDV = 474 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 475 Cache[GEP] = BDV; 476 return BDV; 477 } 478 479 // The behavior of freeze instructions is the same for vector and 480 // non-vector data types. 481 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 482 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 483 Cache[Freeze] = BDV; 484 return BDV; 485 } 486 487 // If the pointer comes through a bitcast of a vector of pointers to 488 // a vector of another type of pointer, then look through the bitcast 489 if (auto *BC = dyn_cast<BitCastInst>(I)) { 490 auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases); 491 Cache[BC] = BDV; 492 return BDV; 493 } 494 495 // We assume that functions in the source language only return base 496 // pointers. This should probably be generalized via attributes to support 497 // both source language and internal functions. 498 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 499 Cache[I] = I; 500 setKnownBase(I, /* IsKnownBase */true, KnownBases); 501 return I; 502 } 503 504 // A PHI or Select is a base defining value. The outer findBasePointer 505 // algorithm is responsible for constructing a base value for this BDV. 506 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 507 "unknown vector instruction - no base found for vector element"); 508 Cache[I] = I; 509 setKnownBase(I, /* IsKnownBase */false, KnownBases); 510 return I; 511 } 512 513 /// Helper function for findBasePointer - Will return a value which either a) 514 /// defines the base pointer for the input, b) blocks the simple search 515 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 516 /// from pointer to vector type or back. 517 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 518 IsKnownBaseMapTy &KnownBases) { 519 assert(I->getType()->isPtrOrPtrVectorTy() && 520 "Illegal to ask for the base pointer of a non-pointer type"); 521 auto Cached = Cache.find(I); 522 if (Cached != Cache.end()) 523 return Cached->second; 524 525 if (I->getType()->isVectorTy()) 526 return findBaseDefiningValueOfVector(I, Cache, KnownBases); 527 528 if (isa<Argument>(I)) { 529 // An incoming argument to the function is a base pointer 530 // We should have never reached here if this argument isn't an gc value 531 Cache[I] = I; 532 setKnownBase(I, /* IsKnownBase */true, KnownBases); 533 return I; 534 } 535 536 if (isa<Constant>(I)) { 537 // We assume that objects with a constant base (e.g. a global) can't move 538 // and don't need to be reported to the collector because they are always 539 // live. Besides global references, all kinds of constants (e.g. undef, 540 // constant expressions, null pointers) can be introduced by the inliner or 541 // the optimizer, especially on dynamically dead paths. 542 // Here we treat all of them as having single null base. By doing this we 543 // trying to avoid problems reporting various conflicts in a form of 544 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 545 // See constant.ll file for relevant test cases. 546 547 auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType())); 548 Cache[I] = CPN; 549 setKnownBase(CPN, /* IsKnownBase */true, KnownBases); 550 return CPN; 551 } 552 553 // inttoptrs in an integral address space are currently ill-defined. We 554 // treat them as defining base pointers here for consistency with the 555 // constant rule above and because we don't really have a better semantic 556 // to give them. Note that the optimizer is always free to insert undefined 557 // behavior on dynamically dead paths as well. 558 if (isa<IntToPtrInst>(I)) { 559 Cache[I] = I; 560 setKnownBase(I, /* IsKnownBase */true, KnownBases); 561 return I; 562 } 563 564 if (CastInst *CI = dyn_cast<CastInst>(I)) { 565 Value *Def = CI->stripPointerCasts(); 566 // If stripping pointer casts changes the address space there is an 567 // addrspacecast in between. 568 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 569 cast<PointerType>(CI->getType())->getAddressSpace() && 570 "unsupported addrspacecast"); 571 // If we find a cast instruction here, it means we've found a cast which is 572 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 573 // handle int->ptr conversion. 574 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 575 auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases); 576 Cache[CI] = BDV; 577 return BDV; 578 } 579 580 if (isa<LoadInst>(I)) { 581 // The value loaded is an gc base itself 582 Cache[I] = I; 583 setKnownBase(I, /* IsKnownBase */true, KnownBases); 584 return I; 585 } 586 587 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 588 // The base of this GEP is the base 589 auto *BDV = 590 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 591 Cache[GEP] = BDV; 592 return BDV; 593 } 594 595 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 596 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 597 Cache[Freeze] = BDV; 598 return BDV; 599 } 600 601 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 602 switch (II->getIntrinsicID()) { 603 default: 604 // fall through to general call handling 605 break; 606 case Intrinsic::experimental_gc_statepoint: 607 llvm_unreachable("statepoints don't produce pointers"); 608 case Intrinsic::experimental_gc_relocate: 609 // Rerunning safepoint insertion after safepoints are already 610 // inserted is not supported. It could probably be made to work, 611 // but why are you doing this? There's no good reason. 612 llvm_unreachable("repeat safepoint insertion is not supported"); 613 case Intrinsic::gcroot: 614 // Currently, this mechanism hasn't been extended to work with gcroot. 615 // There's no reason it couldn't be, but I haven't thought about the 616 // implications much. 617 llvm_unreachable( 618 "interaction with the gcroot mechanism is not supported"); 619 case Intrinsic::experimental_gc_get_pointer_base: 620 auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases); 621 Cache[II] = BDV; 622 return BDV; 623 } 624 } 625 // We assume that functions in the source language only return base 626 // pointers. This should probably be generalized via attributes to support 627 // both source language and internal functions. 628 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 629 Cache[I] = I; 630 setKnownBase(I, /* IsKnownBase */true, KnownBases); 631 return I; 632 } 633 634 // TODO: I have absolutely no idea how to implement this part yet. It's not 635 // necessarily hard, I just haven't really looked at it yet. 636 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 637 638 if (isa<AtomicCmpXchgInst>(I)) { 639 // A CAS is effectively a atomic store and load combined under a 640 // predicate. From the perspective of base pointers, we just treat it 641 // like a load. 642 Cache[I] = I; 643 setKnownBase(I, /* IsKnownBase */true, KnownBases); 644 return I; 645 } 646 647 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 648 "binary ops which don't apply to pointers"); 649 650 // The aggregate ops. Aggregates can either be in the heap or on the 651 // stack, but in either case, this is simply a field load. As a result, 652 // this is a defining definition of the base just like a load is. 653 if (isa<ExtractValueInst>(I)) { 654 Cache[I] = I; 655 setKnownBase(I, /* IsKnownBase */true, KnownBases); 656 return I; 657 } 658 659 // We should never see an insert vector since that would require we be 660 // tracing back a struct value not a pointer value. 661 assert(!isa<InsertValueInst>(I) && 662 "Base pointer for a struct is meaningless"); 663 664 // This value might have been generated by findBasePointer() called when 665 // substituting gc.get.pointer.base() intrinsic. 666 bool IsKnownBase = 667 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 668 setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases); 669 Cache[I] = I; 670 671 // An extractelement produces a base result exactly when it's input does. 672 // We may need to insert a parallel instruction to extract the appropriate 673 // element out of the base vector corresponding to the input. Given this, 674 // it's analogous to the phi and select case even though it's not a merge. 675 if (isa<ExtractElementInst>(I)) 676 // Note: There a lot of obvious peephole cases here. This are deliberately 677 // handled after the main base pointer inference algorithm to make writing 678 // test cases to exercise that code easier. 679 return I; 680 681 // The last two cases here don't return a base pointer. Instead, they 682 // return a value which dynamically selects from among several base 683 // derived pointers (each with it's own base potentially). It's the job of 684 // the caller to resolve these. 685 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 686 "missing instruction case in findBaseDefiningValue"); 687 return I; 688 } 689 690 /// Returns the base defining value for this value. 691 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache, 692 IsKnownBaseMapTy &KnownBases) { 693 if (Cache.find(I) == Cache.end()) { 694 auto *BDV = findBaseDefiningValue(I, Cache, KnownBases); 695 Cache[I] = BDV; 696 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 697 << Cache[I]->getName() << ", is known base = " 698 << KnownBases[I] << "\n"); 699 } 700 assert(Cache[I] != nullptr); 701 assert(KnownBases.find(Cache[I]) != KnownBases.end() && 702 "Cached value must be present in known bases map"); 703 return Cache[I]; 704 } 705 706 /// Return a base pointer for this value if known. Otherwise, return it's 707 /// base defining value. 708 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache, 709 IsKnownBaseMapTy &KnownBases) { 710 Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases); 711 auto Found = Cache.find(Def); 712 if (Found != Cache.end()) { 713 // Either a base-of relation, or a self reference. Caller must check. 714 return Found->second; 715 } 716 // Only a BDV available 717 return Def; 718 } 719 720 #ifndef NDEBUG 721 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 722 /// exists in the code. 723 static bool isOriginalBaseResult(Value *V) { 724 // no recursion possible 725 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 726 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 727 !isa<ShuffleVectorInst>(V); 728 } 729 #endif 730 731 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) { 732 auto It = KnownBases.find(V); 733 assert(It != KnownBases.end() && "Value not present in the map"); 734 return It->second; 735 } 736 737 static void setKnownBase(Value *V, bool IsKnownBase, 738 IsKnownBaseMapTy &KnownBases) { 739 #ifndef NDEBUG 740 auto It = KnownBases.find(V); 741 if (It != KnownBases.end()) 742 assert(It->second == IsKnownBase && "Changing already present value"); 743 #endif 744 KnownBases[V] = IsKnownBase; 745 } 746 747 // Returns true if First and Second values are both scalar or both vector. 748 static bool areBothVectorOrScalar(Value *First, Value *Second) { 749 return isa<VectorType>(First->getType()) == 750 isa<VectorType>(Second->getType()); 751 } 752 753 namespace { 754 755 /// Models the state of a single base defining value in the findBasePointer 756 /// algorithm for determining where a new instruction is needed to propagate 757 /// the base of this BDV. 758 class BDVState { 759 public: 760 enum StatusTy { 761 // Starting state of lattice 762 Unknown, 763 // Some specific base value -- does *not* mean that instruction 764 // propagates the base of the object 765 // ex: gep %arg, 16 -> %arg is the base value 766 Base, 767 // Need to insert a node to represent a merge. 768 Conflict 769 }; 770 771 BDVState() { 772 llvm_unreachable("missing state in map"); 773 } 774 775 explicit BDVState(Value *OriginalValue) 776 : OriginalValue(OriginalValue) {} 777 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 778 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 779 assert(Status != Base || BaseValue); 780 } 781 782 StatusTy getStatus() const { return Status; } 783 Value *getOriginalValue() const { return OriginalValue; } 784 Value *getBaseValue() const { return BaseValue; } 785 786 bool isBase() const { return getStatus() == Base; } 787 bool isUnknown() const { return getStatus() == Unknown; } 788 bool isConflict() const { return getStatus() == Conflict; } 789 790 // Values of type BDVState form a lattice, and this function implements the 791 // meet 792 // operation. 793 void meet(const BDVState &Other) { 794 auto markConflict = [&]() { 795 Status = BDVState::Conflict; 796 BaseValue = nullptr; 797 }; 798 // Conflict is a final state. 799 if (isConflict()) 800 return; 801 // if we are not known - just take other state. 802 if (isUnknown()) { 803 Status = Other.getStatus(); 804 BaseValue = Other.getBaseValue(); 805 return; 806 } 807 // We are base. 808 assert(isBase() && "Unknown state"); 809 // If other is unknown - just keep our state. 810 if (Other.isUnknown()) 811 return; 812 // If other is conflict - it is a final state. 813 if (Other.isConflict()) 814 return markConflict(); 815 // Other is base as well. 816 assert(Other.isBase() && "Unknown state"); 817 // If bases are different - Conflict. 818 if (getBaseValue() != Other.getBaseValue()) 819 return markConflict(); 820 // We are identical, do nothing. 821 } 822 823 bool operator==(const BDVState &Other) const { 824 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && 825 Status == Other.Status; 826 } 827 828 bool operator!=(const BDVState &other) const { return !(*this == other); } 829 830 LLVM_DUMP_METHOD 831 void dump() const { 832 print(dbgs()); 833 dbgs() << '\n'; 834 } 835 836 void print(raw_ostream &OS) const { 837 switch (getStatus()) { 838 case Unknown: 839 OS << "U"; 840 break; 841 case Base: 842 OS << "B"; 843 break; 844 case Conflict: 845 OS << "C"; 846 break; 847 } 848 OS << " (base " << getBaseValue() << " - " 849 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 850 << " for " << OriginalValue->getName() << ":"; 851 } 852 853 private: 854 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 855 StatusTy Status = Unknown; 856 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 857 }; 858 859 } // end anonymous namespace 860 861 #ifndef NDEBUG 862 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 863 State.print(OS); 864 return OS; 865 } 866 #endif 867 868 /// For a given value or instruction, figure out what base ptr its derived from. 869 /// For gc objects, this is simply itself. On success, returns a value which is 870 /// the base pointer. (This is reliable and can be used for relocation.) On 871 /// failure, returns nullptr. 872 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache, 873 IsKnownBaseMapTy &KnownBases) { 874 Value *Def = findBaseOrBDV(I, Cache, KnownBases); 875 876 if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I)) 877 return Def; 878 879 // Here's the rough algorithm: 880 // - For every SSA value, construct a mapping to either an actual base 881 // pointer or a PHI which obscures the base pointer. 882 // - Construct a mapping from PHI to unknown TOP state. Use an 883 // optimistic algorithm to propagate base pointer information. Lattice 884 // looks like: 885 // UNKNOWN 886 // b1 b2 b3 b4 887 // CONFLICT 888 // When algorithm terminates, all PHIs will either have a single concrete 889 // base or be in a conflict state. 890 // - For every conflict, insert a dummy PHI node without arguments. Add 891 // these to the base[Instruction] = BasePtr mapping. For every 892 // non-conflict, add the actual base. 893 // - For every conflict, add arguments for the base[a] of each input 894 // arguments. 895 // 896 // Note: A simpler form of this would be to add the conflict form of all 897 // PHIs without running the optimistic algorithm. This would be 898 // analogous to pessimistic data flow and would likely lead to an 899 // overall worse solution. 900 901 #ifndef NDEBUG 902 auto isExpectedBDVType = [](Value *BDV) { 903 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 904 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 905 isa<ShuffleVectorInst>(BDV); 906 }; 907 #endif 908 909 // Once populated, will contain a mapping from each potentially non-base BDV 910 // to a lattice value (described above) which corresponds to that BDV. 911 // We use the order of insertion (DFS over the def/use graph) to provide a 912 // stable deterministic ordering for visiting DenseMaps (which are unordered) 913 // below. This is important for deterministic compilation. 914 MapVector<Value *, BDVState> States; 915 916 #ifndef NDEBUG 917 auto VerifyStates = [&]() { 918 for (auto &Entry : States) { 919 assert(Entry.first == Entry.second.getOriginalValue()); 920 } 921 }; 922 #endif 923 924 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 925 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 926 for (Value *InVal : PN->incoming_values()) 927 F(InVal); 928 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 929 F(SI->getTrueValue()); 930 F(SI->getFalseValue()); 931 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 932 F(EE->getVectorOperand()); 933 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 934 F(IE->getOperand(0)); 935 F(IE->getOperand(1)); 936 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 937 // For a canonical broadcast, ignore the undef argument 938 // (without this, we insert a parallel base shuffle for every broadcast) 939 F(SV->getOperand(0)); 940 if (!SV->isZeroEltSplat()) 941 F(SV->getOperand(1)); 942 } else { 943 llvm_unreachable("unexpected BDV type"); 944 } 945 }; 946 947 948 // Recursively fill in all base defining values reachable from the initial 949 // one for which we don't already know a definite base value for 950 /* scope */ { 951 SmallVector<Value*, 16> Worklist; 952 Worklist.push_back(Def); 953 States.insert({Def, BDVState(Def)}); 954 while (!Worklist.empty()) { 955 Value *Current = Worklist.pop_back_val(); 956 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 957 958 auto visitIncomingValue = [&](Value *InVal) { 959 Value *Base = findBaseOrBDV(InVal, Cache, KnownBases); 960 if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal)) 961 // Known bases won't need new instructions introduced and can be 962 // ignored safely. However, this can only be done when InVal and Base 963 // are both scalar or both vector. Otherwise, we need to find a 964 // correct BDV for InVal, by creating an entry in the lattice 965 // (States). 966 return; 967 assert(isExpectedBDVType(Base) && "the only non-base values " 968 "we see should be base defining values"); 969 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 970 Worklist.push_back(Base); 971 }; 972 973 visitBDVOperands(Current, visitIncomingValue); 974 } 975 } 976 977 #ifndef NDEBUG 978 VerifyStates(); 979 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 980 for (const auto &Pair : States) { 981 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 982 } 983 #endif 984 985 // Iterate forward through the value graph pruning any node from the state 986 // list where all of the inputs are base pointers. The purpose of this is to 987 // reuse existing values when the derived pointer we were asked to materialize 988 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 989 // feeding it does.) 990 SmallVector<Value *> ToRemove; 991 do { 992 ToRemove.clear(); 993 for (auto Pair : States) { 994 Value *BDV = Pair.first; 995 auto canPruneInput = [&](Value *V) { 996 // If the input of the BDV is the BDV itself we can prune it. This is 997 // only possible if the BDV is a PHI node. 998 if (V->stripPointerCasts() == BDV) 999 return true; 1000 Value *VBDV = findBaseOrBDV(V, Cache, KnownBases); 1001 if (V->stripPointerCasts() != VBDV) 1002 return false; 1003 // The assumption is that anything not in the state list is 1004 // propagates a base pointer. 1005 return States.count(VBDV) == 0; 1006 }; 1007 1008 bool CanPrune = true; 1009 visitBDVOperands(BDV, [&](Value *Op) { 1010 CanPrune = CanPrune && canPruneInput(Op); 1011 }); 1012 if (CanPrune) 1013 ToRemove.push_back(BDV); 1014 } 1015 for (Value *V : ToRemove) { 1016 States.erase(V); 1017 // Cache the fact V is it's own base for later usage. 1018 Cache[V] = V; 1019 } 1020 } while (!ToRemove.empty()); 1021 1022 // Did we manage to prove that Def itself must be a base pointer? 1023 if (!States.count(Def)) 1024 return Def; 1025 1026 // Return a phi state for a base defining value. We'll generate a new 1027 // base state for known bases and expect to find a cached state otherwise. 1028 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 1029 auto I = States.find(BaseValue); 1030 if (I != States.end()) 1031 return I->second; 1032 assert(areBothVectorOrScalar(BaseValue, Input)); 1033 return BDVState(BaseValue, BDVState::Base, BaseValue); 1034 }; 1035 1036 bool Progress = true; 1037 while (Progress) { 1038 #ifndef NDEBUG 1039 const size_t OldSize = States.size(); 1040 #endif 1041 Progress = false; 1042 // We're only changing values in this loop, thus safe to keep iterators. 1043 // Since this is computing a fixed point, the order of visit does not 1044 // effect the result. TODO: We could use a worklist here and make this run 1045 // much faster. 1046 for (auto Pair : States) { 1047 Value *BDV = Pair.first; 1048 // Only values that do not have known bases or those that have differing 1049 // type (scalar versus vector) from a possible known base should be in the 1050 // lattice. 1051 assert((!isKnownBase(BDV, KnownBases) || 1052 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 1053 "why did it get added?"); 1054 1055 BDVState NewState(BDV); 1056 visitBDVOperands(BDV, [&](Value *Op) { 1057 Value *BDV = findBaseOrBDV(Op, Cache, KnownBases); 1058 auto OpState = GetStateForBDV(BDV, Op); 1059 NewState.meet(OpState); 1060 }); 1061 1062 BDVState OldState = States[BDV]; 1063 if (OldState != NewState) { 1064 Progress = true; 1065 States[BDV] = NewState; 1066 } 1067 } 1068 1069 assert(OldSize == States.size() && 1070 "fixed point shouldn't be adding any new nodes to state"); 1071 } 1072 1073 #ifndef NDEBUG 1074 VerifyStates(); 1075 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 1076 for (const auto &Pair : States) { 1077 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 1078 } 1079 #endif 1080 1081 // Handle all instructions that have a vector BDV, but the instruction itself 1082 // is of scalar type. 1083 for (auto Pair : States) { 1084 Instruction *I = cast<Instruction>(Pair.first); 1085 BDVState State = Pair.second; 1086 auto *BaseValue = State.getBaseValue(); 1087 // Only values that do not have known bases or those that have differing 1088 // type (scalar versus vector) from a possible known base should be in the 1089 // lattice. 1090 assert( 1091 (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) && 1092 "why did it get added?"); 1093 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1094 1095 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 1096 continue; 1097 // extractelement instructions are a bit special in that we may need to 1098 // insert an extract even when we know an exact base for the instruction. 1099 // The problem is that we need to convert from a vector base to a scalar 1100 // base for the particular indice we're interested in. 1101 if (isa<ExtractElementInst>(I)) { 1102 auto *EE = cast<ExtractElementInst>(I); 1103 // TODO: In many cases, the new instruction is just EE itself. We should 1104 // exploit this, but can't do it here since it would break the invariant 1105 // about the BDV not being known to be a base. 1106 auto *BaseInst = ExtractElementInst::Create( 1107 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 1108 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1109 States[I] = BDVState(I, BDVState::Base, BaseInst); 1110 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1111 } else if (!isa<VectorType>(I->getType())) { 1112 // We need to handle cases that have a vector base but the instruction is 1113 // a scalar type (these could be phis or selects or any instruction that 1114 // are of scalar type, but the base can be a vector type). We 1115 // conservatively set this as conflict. Setting the base value for these 1116 // conflicts is handled in the next loop which traverses States. 1117 States[I] = BDVState(I, BDVState::Conflict); 1118 } 1119 } 1120 1121 #ifndef NDEBUG 1122 VerifyStates(); 1123 #endif 1124 1125 // Insert Phis for all conflicts 1126 // TODO: adjust naming patterns to avoid this order of iteration dependency 1127 for (auto Pair : States) { 1128 Instruction *I = cast<Instruction>(Pair.first); 1129 BDVState State = Pair.second; 1130 // Only values that do not have known bases or those that have differing 1131 // type (scalar versus vector) from a possible known base should be in the 1132 // lattice. 1133 assert((!isKnownBase(I, KnownBases) || 1134 !areBothVectorOrScalar(I, State.getBaseValue())) && 1135 "why did it get added?"); 1136 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1137 1138 // Since we're joining a vector and scalar base, they can never be the 1139 // same. As a result, we should always see insert element having reached 1140 // the conflict state. 1141 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1142 1143 if (!State.isConflict()) 1144 continue; 1145 1146 auto getMangledName = [](Instruction *I) -> std::string { 1147 if (isa<PHINode>(I)) { 1148 return suffixed_name_or(I, ".base", "base_phi"); 1149 } else if (isa<SelectInst>(I)) { 1150 return suffixed_name_or(I, ".base", "base_select"); 1151 } else if (isa<ExtractElementInst>(I)) { 1152 return suffixed_name_or(I, ".base", "base_ee"); 1153 } else if (isa<InsertElementInst>(I)) { 1154 return suffixed_name_or(I, ".base", "base_ie"); 1155 } else { 1156 return suffixed_name_or(I, ".base", "base_sv"); 1157 } 1158 }; 1159 1160 Instruction *BaseInst = I->clone(); 1161 BaseInst->insertBefore(I); 1162 BaseInst->setName(getMangledName(I)); 1163 // Add metadata marking this as a base value 1164 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1165 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1166 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1167 } 1168 1169 #ifndef NDEBUG 1170 VerifyStates(); 1171 #endif 1172 1173 // Returns a instruction which produces the base pointer for a given 1174 // instruction. The instruction is assumed to be an input to one of the BDVs 1175 // seen in the inference algorithm above. As such, we must either already 1176 // know it's base defining value is a base, or have inserted a new 1177 // instruction to propagate the base of it's BDV and have entered that newly 1178 // introduced instruction into the state table. In either case, we are 1179 // assured to be able to determine an instruction which produces it's base 1180 // pointer. 1181 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1182 Value *BDV = findBaseOrBDV(Input, Cache, KnownBases); 1183 Value *Base = nullptr; 1184 if (!States.count(BDV)) { 1185 assert(areBothVectorOrScalar(BDV, Input)); 1186 Base = BDV; 1187 } else { 1188 // Either conflict or base. 1189 assert(States.count(BDV)); 1190 Base = States[BDV].getBaseValue(); 1191 } 1192 assert(Base && "Can't be null"); 1193 // The cast is needed since base traversal may strip away bitcasts 1194 if (Base->getType() != Input->getType() && InsertPt) 1195 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1196 return Base; 1197 }; 1198 1199 // Fixup all the inputs of the new PHIs. Visit order needs to be 1200 // deterministic and predictable because we're naming newly created 1201 // instructions. 1202 for (auto Pair : States) { 1203 Instruction *BDV = cast<Instruction>(Pair.first); 1204 BDVState State = Pair.second; 1205 1206 // Only values that do not have known bases or those that have differing 1207 // type (scalar versus vector) from a possible known base should be in the 1208 // lattice. 1209 assert((!isKnownBase(BDV, KnownBases) || 1210 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1211 "why did it get added?"); 1212 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1213 if (!State.isConflict()) 1214 continue; 1215 1216 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1217 PHINode *PN = cast<PHINode>(BDV); 1218 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1219 1220 // The IR verifier requires phi nodes with multiple entries from the 1221 // same basic block to have the same incoming value for each of those 1222 // entries. Since we're inserting bitcasts in the loop, make sure we 1223 // do so at least once per incoming block. 1224 DenseMap<BasicBlock *, Value*> BlockToValue; 1225 for (unsigned i = 0; i < NumPHIValues; i++) { 1226 Value *InVal = PN->getIncomingValue(i); 1227 BasicBlock *InBB = PN->getIncomingBlock(i); 1228 if (!BlockToValue.count(InBB)) 1229 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1230 else { 1231 #ifndef NDEBUG 1232 Value *OldBase = BlockToValue[InBB]; 1233 Value *Base = getBaseForInput(InVal, nullptr); 1234 1235 // We can't use `stripPointerCasts` instead of this function because 1236 // `stripPointerCasts` doesn't handle vectors of pointers. 1237 auto StripBitCasts = [](Value *V) -> Value * { 1238 while (auto *BC = dyn_cast<BitCastInst>(V)) 1239 V = BC->getOperand(0); 1240 return V; 1241 }; 1242 // In essence this assert states: the only way two values 1243 // incoming from the same basic block may be different is by 1244 // being different bitcasts of the same value. A cleanup 1245 // that remains TODO is changing findBaseOrBDV to return an 1246 // llvm::Value of the correct type (and still remain pure). 1247 // This will remove the need to add bitcasts. 1248 assert(StripBitCasts(Base) == StripBitCasts(OldBase) && 1249 "findBaseOrBDV should be pure!"); 1250 #endif 1251 } 1252 Value *Base = BlockToValue[InBB]; 1253 BasePHI->setIncomingValue(i, Base); 1254 } 1255 } else if (SelectInst *BaseSI = 1256 dyn_cast<SelectInst>(State.getBaseValue())) { 1257 SelectInst *SI = cast<SelectInst>(BDV); 1258 1259 // Find the instruction which produces the base for each input. 1260 // We may need to insert a bitcast. 1261 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1262 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1263 } else if (auto *BaseEE = 1264 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1265 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1266 // Find the instruction which produces the base for each input. We may 1267 // need to insert a bitcast. 1268 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1269 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1270 auto *BdvIE = cast<InsertElementInst>(BDV); 1271 auto UpdateOperand = [&](int OperandIdx) { 1272 Value *InVal = BdvIE->getOperand(OperandIdx); 1273 Value *Base = getBaseForInput(InVal, BaseIE); 1274 BaseIE->setOperand(OperandIdx, Base); 1275 }; 1276 UpdateOperand(0); // vector operand 1277 UpdateOperand(1); // scalar operand 1278 } else { 1279 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1280 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1281 auto UpdateOperand = [&](int OperandIdx) { 1282 Value *InVal = BdvSV->getOperand(OperandIdx); 1283 Value *Base = getBaseForInput(InVal, BaseSV); 1284 BaseSV->setOperand(OperandIdx, Base); 1285 }; 1286 UpdateOperand(0); // vector operand 1287 if (!BdvSV->isZeroEltSplat()) 1288 UpdateOperand(1); // vector operand 1289 else { 1290 // Never read, so just use undef 1291 Value *InVal = BdvSV->getOperand(1); 1292 BaseSV->setOperand(1, UndefValue::get(InVal->getType())); 1293 } 1294 } 1295 } 1296 1297 #ifndef NDEBUG 1298 VerifyStates(); 1299 #endif 1300 1301 // Cache all of our results so we can cheaply reuse them 1302 // NOTE: This is actually two caches: one of the base defining value 1303 // relation and one of the base pointer relation! FIXME 1304 for (auto Pair : States) { 1305 auto *BDV = Pair.first; 1306 Value *Base = Pair.second.getBaseValue(); 1307 assert(BDV && Base); 1308 // Only values that do not have known bases or those that have differing 1309 // type (scalar versus vector) from a possible known base should be in the 1310 // lattice. 1311 assert( 1312 (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) && 1313 "why did it get added?"); 1314 1315 LLVM_DEBUG( 1316 dbgs() << "Updating base value cache" 1317 << " for: " << BDV->getName() << " from: " 1318 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1319 << " to: " << Base->getName() << "\n"); 1320 1321 Cache[BDV] = Base; 1322 } 1323 assert(Cache.count(Def)); 1324 return Cache[Def]; 1325 } 1326 1327 // For a set of live pointers (base and/or derived), identify the base 1328 // pointer of the object which they are derived from. This routine will 1329 // mutate the IR graph as needed to make the 'base' pointer live at the 1330 // definition site of 'derived'. This ensures that any use of 'derived' can 1331 // also use 'base'. This may involve the insertion of a number of 1332 // additional PHI nodes. 1333 // 1334 // preconditions: live is a set of pointer type Values 1335 // 1336 // side effects: may insert PHI nodes into the existing CFG, will preserve 1337 // CFG, will not remove or mutate any existing nodes 1338 // 1339 // post condition: PointerToBase contains one (derived, base) pair for every 1340 // pointer in live. Note that derived can be equal to base if the original 1341 // pointer was a base pointer. 1342 static void findBasePointers(const StatepointLiveSetTy &live, 1343 PointerToBaseTy &PointerToBase, DominatorTree *DT, 1344 DefiningValueMapTy &DVCache, 1345 IsKnownBaseMapTy &KnownBases) { 1346 for (Value *ptr : live) { 1347 Value *base = findBasePointer(ptr, DVCache, KnownBases); 1348 assert(base && "failed to find base pointer"); 1349 PointerToBase[ptr] = base; 1350 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1351 DT->dominates(cast<Instruction>(base)->getParent(), 1352 cast<Instruction>(ptr)->getParent())) && 1353 "The base we found better dominate the derived pointer"); 1354 } 1355 } 1356 1357 /// Find the required based pointers (and adjust the live set) for the given 1358 /// parse point. 1359 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1360 CallBase *Call, 1361 PartiallyConstructedSafepointRecord &result, 1362 PointerToBaseTy &PointerToBase, 1363 IsKnownBaseMapTy &KnownBases) { 1364 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1365 // We assume that all pointers passed to deopt are base pointers; as an 1366 // optimization, we can use this to avoid seperately materializing the base 1367 // pointer graph. This is only relevant since we're very conservative about 1368 // generating new conflict nodes during base pointer insertion. If we were 1369 // smarter there, this would be irrelevant. 1370 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1371 for (Value *V : Opt->Inputs) { 1372 if (!PotentiallyDerivedPointers.count(V)) 1373 continue; 1374 PotentiallyDerivedPointers.remove(V); 1375 PointerToBase[V] = V; 1376 } 1377 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache, 1378 KnownBases); 1379 } 1380 1381 /// Given an updated version of the dataflow liveness results, update the 1382 /// liveset and base pointer maps for the call site CS. 1383 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1384 CallBase *Call, 1385 PartiallyConstructedSafepointRecord &result, 1386 PointerToBaseTy &PointerToBase); 1387 1388 static void recomputeLiveInValues( 1389 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1390 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 1391 PointerToBaseTy &PointerToBase) { 1392 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1393 // again. The old values are still live and will help it stabilize quickly. 1394 GCPtrLivenessData RevisedLivenessData; 1395 computeLiveInValues(DT, F, RevisedLivenessData); 1396 for (size_t i = 0; i < records.size(); i++) { 1397 struct PartiallyConstructedSafepointRecord &info = records[i]; 1398 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, 1399 PointerToBase); 1400 } 1401 } 1402 1403 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1404 // no uses of the original value / return value between the gc.statepoint and 1405 // the gc.relocate / gc.result call. One case which can arise is a phi node 1406 // starting one of the successor blocks. We also need to be able to insert the 1407 // gc.relocates only on the path which goes through the statepoint. We might 1408 // need to split an edge to make this possible. 1409 static BasicBlock * 1410 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1411 DominatorTree &DT) { 1412 BasicBlock *Ret = BB; 1413 if (!BB->getUniquePredecessor()) 1414 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1415 1416 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1417 // from it 1418 FoldSingleEntryPHINodes(Ret); 1419 assert(!isa<PHINode>(Ret->begin()) && 1420 "All PHI nodes should have been removed!"); 1421 1422 // At this point, we can safely insert a gc.relocate or gc.result as the first 1423 // instruction in Ret if needed. 1424 return Ret; 1425 } 1426 1427 // List of all function attributes which must be stripped when lowering from 1428 // abstract machine model to physical machine model. Essentially, these are 1429 // all the effects a safepoint might have which we ignored in the abstract 1430 // machine model for purposes of optimization. We have to strip these on 1431 // both function declarations and call sites. 1432 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1433 {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly, 1434 Attribute::ArgMemOnly, Attribute::InaccessibleMemOnly, 1435 Attribute::InaccessibleMemOrArgMemOnly, 1436 Attribute::NoSync, Attribute::NoFree}; 1437 1438 // Create new attribute set containing only attributes which can be transferred 1439 // from original call to the safepoint. 1440 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1441 AttributeList OrigAL, 1442 AttributeList StatepointAL) { 1443 if (OrigAL.isEmpty()) 1444 return StatepointAL; 1445 1446 // Remove the readonly, readnone, and statepoint function attributes. 1447 AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs()); 1448 for (auto Attr : FnAttrsToStrip) 1449 FnAttrs.removeAttribute(Attr); 1450 1451 for (Attribute A : OrigAL.getFnAttrs()) { 1452 if (isStatepointDirectiveAttr(A)) 1453 FnAttrs.removeAttribute(A); 1454 } 1455 1456 // Just skip parameter and return attributes for now 1457 return StatepointAL.addFnAttributes(Ctx, FnAttrs); 1458 } 1459 1460 /// Helper function to place all gc relocates necessary for the given 1461 /// statepoint. 1462 /// Inputs: 1463 /// liveVariables - list of variables to be relocated. 1464 /// basePtrs - base pointers. 1465 /// statepointToken - statepoint instruction to which relocates should be 1466 /// bound. 1467 /// Builder - Llvm IR builder to be used to construct new calls. 1468 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1469 ArrayRef<Value *> BasePtrs, 1470 Instruction *StatepointToken, 1471 IRBuilder<> &Builder) { 1472 if (LiveVariables.empty()) 1473 return; 1474 1475 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1476 auto ValIt = llvm::find(LiveVec, Val); 1477 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1478 size_t Index = std::distance(LiveVec.begin(), ValIt); 1479 assert(Index < LiveVec.size() && "Bug in std::find?"); 1480 return Index; 1481 }; 1482 Module *M = StatepointToken->getModule(); 1483 1484 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1485 // element type is i8 addrspace(1)*). We originally generated unique 1486 // declarations for each pointer type, but this proved problematic because 1487 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1488 // towards a single unified pointer type anyways, we can just cast everything 1489 // to an i8* of the right address space. A bitcast is added later to convert 1490 // gc_relocate to the actual value's type. 1491 auto getGCRelocateDecl = [&] (Type *Ty) { 1492 assert(isHandledGCPointerType(Ty)); 1493 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1494 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1495 if (auto *VT = dyn_cast<VectorType>(Ty)) 1496 NewTy = FixedVectorType::get(NewTy, 1497 cast<FixedVectorType>(VT)->getNumElements()); 1498 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1499 {NewTy}); 1500 }; 1501 1502 // Lazily populated map from input types to the canonicalized form mentioned 1503 // in the comment above. This should probably be cached somewhere more 1504 // broadly. 1505 DenseMap<Type *, Function *> TypeToDeclMap; 1506 1507 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1508 // Generate the gc.relocate call and save the result 1509 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1510 Value *LiveIdx = Builder.getInt32(i); 1511 1512 Type *Ty = LiveVariables[i]->getType(); 1513 if (!TypeToDeclMap.count(Ty)) 1514 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1515 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1516 1517 // only specify a debug name if we can give a useful one 1518 CallInst *Reloc = Builder.CreateCall( 1519 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1520 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1521 // Trick CodeGen into thinking there are lots of free registers at this 1522 // fake call. 1523 Reloc->setCallingConv(CallingConv::Cold); 1524 } 1525 } 1526 1527 namespace { 1528 1529 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1530 /// avoids having to worry about keeping around dangling pointers to Values. 1531 class DeferredReplacement { 1532 AssertingVH<Instruction> Old; 1533 AssertingVH<Instruction> New; 1534 bool IsDeoptimize = false; 1535 1536 DeferredReplacement() = default; 1537 1538 public: 1539 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1540 assert(Old != New && Old && New && 1541 "Cannot RAUW equal values or to / from null!"); 1542 1543 DeferredReplacement D; 1544 D.Old = Old; 1545 D.New = New; 1546 return D; 1547 } 1548 1549 static DeferredReplacement createDelete(Instruction *ToErase) { 1550 DeferredReplacement D; 1551 D.Old = ToErase; 1552 return D; 1553 } 1554 1555 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1556 #ifndef NDEBUG 1557 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1558 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1559 "Only way to construct a deoptimize deferred replacement"); 1560 #endif 1561 DeferredReplacement D; 1562 D.Old = Old; 1563 D.IsDeoptimize = true; 1564 return D; 1565 } 1566 1567 /// Does the task represented by this instance. 1568 void doReplacement() { 1569 Instruction *OldI = Old; 1570 Instruction *NewI = New; 1571 1572 assert(OldI != NewI && "Disallowed at construction?!"); 1573 assert((!IsDeoptimize || !New) && 1574 "Deoptimize intrinsics are not replaced!"); 1575 1576 Old = nullptr; 1577 New = nullptr; 1578 1579 if (NewI) 1580 OldI->replaceAllUsesWith(NewI); 1581 1582 if (IsDeoptimize) { 1583 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1584 // not necessarily be followed by the matching return. 1585 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1586 new UnreachableInst(RI->getContext(), RI); 1587 RI->eraseFromParent(); 1588 } 1589 1590 OldI->eraseFromParent(); 1591 } 1592 }; 1593 1594 } // end anonymous namespace 1595 1596 static StringRef getDeoptLowering(CallBase *Call) { 1597 const char *DeoptLowering = "deopt-lowering"; 1598 if (Call->hasFnAttr(DeoptLowering)) { 1599 // FIXME: Calls have a *really* confusing interface around attributes 1600 // with values. 1601 const AttributeList &CSAS = Call->getAttributes(); 1602 if (CSAS.hasFnAttr(DeoptLowering)) 1603 return CSAS.getFnAttr(DeoptLowering).getValueAsString(); 1604 Function *F = Call->getCalledFunction(); 1605 assert(F && F->hasFnAttribute(DeoptLowering)); 1606 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1607 } 1608 return "live-through"; 1609 } 1610 1611 static void 1612 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1613 const SmallVectorImpl<Value *> &BasePtrs, 1614 const SmallVectorImpl<Value *> &LiveVariables, 1615 PartiallyConstructedSafepointRecord &Result, 1616 std::vector<DeferredReplacement> &Replacements, 1617 const PointerToBaseTy &PointerToBase) { 1618 assert(BasePtrs.size() == LiveVariables.size()); 1619 1620 // Then go ahead and use the builder do actually do the inserts. We insert 1621 // immediately before the previous instruction under the assumption that all 1622 // arguments will be available here. We can't insert afterwards since we may 1623 // be replacing a terminator. 1624 IRBuilder<> Builder(Call); 1625 1626 ArrayRef<Value *> GCArgs(LiveVariables); 1627 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1628 uint32_t NumPatchBytes = 0; 1629 uint32_t Flags = uint32_t(StatepointFlags::None); 1630 1631 SmallVector<Value *, 8> CallArgs(Call->args()); 1632 Optional<ArrayRef<Use>> DeoptArgs; 1633 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1634 DeoptArgs = Bundle->Inputs; 1635 Optional<ArrayRef<Use>> TransitionArgs; 1636 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1637 TransitionArgs = Bundle->Inputs; 1638 // TODO: This flag no longer serves a purpose and can be removed later 1639 Flags |= uint32_t(StatepointFlags::GCTransition); 1640 } 1641 1642 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1643 // with a return value, we lower then as never returning calls to 1644 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1645 bool IsDeoptimize = false; 1646 1647 StatepointDirectives SD = 1648 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1649 if (SD.NumPatchBytes) 1650 NumPatchBytes = *SD.NumPatchBytes; 1651 if (SD.StatepointID) 1652 StatepointID = *SD.StatepointID; 1653 1654 // Pass through the requested lowering if any. The default is live-through. 1655 StringRef DeoptLowering = getDeoptLowering(Call); 1656 if (DeoptLowering.equals("live-in")) 1657 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1658 else { 1659 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1660 } 1661 1662 FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand()); 1663 if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) { 1664 auto IID = F->getIntrinsicID(); 1665 if (IID == Intrinsic::experimental_deoptimize) { 1666 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1667 // __llvm_deoptimize symbol. We want to resolve this now, since the 1668 // verifier does not allow taking the address of an intrinsic function. 1669 1670 SmallVector<Type *, 8> DomainTy; 1671 for (Value *Arg : CallArgs) 1672 DomainTy.push_back(Arg->getType()); 1673 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1674 /* isVarArg = */ false); 1675 1676 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1677 // calls to @llvm.experimental.deoptimize with different argument types in 1678 // the same module. This is fine -- we assume the frontend knew what it 1679 // was doing when generating this kind of IR. 1680 CallTarget = F->getParent() 1681 ->getOrInsertFunction("__llvm_deoptimize", FTy); 1682 1683 IsDeoptimize = true; 1684 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1685 IID == Intrinsic::memmove_element_unordered_atomic) { 1686 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1687 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1688 // Specifically, these calls should be lowered to the 1689 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1690 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1691 // verifier does not allow taking the address of an intrinsic function. 1692 // 1693 // Moreover we need to shuffle the arguments for the call in order to 1694 // accommodate GC. The underlying source and destination objects might be 1695 // relocated during copy operation should the GC occur. To relocate the 1696 // derived source and destination pointers the implementation of the 1697 // intrinsic should know the corresponding base pointers. 1698 // 1699 // To make the base pointers available pass them explicitly as arguments: 1700 // memcpy(dest_derived, source_derived, ...) => 1701 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1702 auto &Context = Call->getContext(); 1703 auto &DL = Call->getModule()->getDataLayout(); 1704 auto GetBaseAndOffset = [&](Value *Derived) { 1705 Value *Base = nullptr; 1706 // Optimizations in unreachable code might substitute the real pointer 1707 // with undef, poison or null-derived constant. Return null base for 1708 // them to be consistent with the handling in the main algorithm in 1709 // findBaseDefiningValue. 1710 if (isa<Constant>(Derived)) 1711 Base = 1712 ConstantPointerNull::get(cast<PointerType>(Derived->getType())); 1713 else { 1714 assert(PointerToBase.count(Derived)); 1715 Base = PointerToBase.find(Derived)->second; 1716 } 1717 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1718 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1719 Value *Base_int = Builder.CreatePtrToInt( 1720 Base, Type::getIntNTy(Context, IntPtrSize)); 1721 Value *Derived_int = Builder.CreatePtrToInt( 1722 Derived, Type::getIntNTy(Context, IntPtrSize)); 1723 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1724 }; 1725 1726 auto *Dest = CallArgs[0]; 1727 Value *DestBase, *DestOffset; 1728 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1729 1730 auto *Source = CallArgs[1]; 1731 Value *SourceBase, *SourceOffset; 1732 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1733 1734 auto *LengthInBytes = CallArgs[2]; 1735 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1736 1737 CallArgs.clear(); 1738 CallArgs.push_back(DestBase); 1739 CallArgs.push_back(DestOffset); 1740 CallArgs.push_back(SourceBase); 1741 CallArgs.push_back(SourceOffset); 1742 CallArgs.push_back(LengthInBytes); 1743 1744 SmallVector<Type *, 8> DomainTy; 1745 for (Value *Arg : CallArgs) 1746 DomainTy.push_back(Arg->getType()); 1747 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1748 /* isVarArg = */ false); 1749 1750 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1751 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1752 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1753 switch (ElementSize) { 1754 case 1: 1755 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1756 case 2: 1757 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1758 case 4: 1759 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1760 case 8: 1761 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1762 case 16: 1763 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1764 default: 1765 llvm_unreachable("unexpected element size!"); 1766 } 1767 } 1768 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1769 switch (ElementSize) { 1770 case 1: 1771 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1772 case 2: 1773 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1774 case 4: 1775 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1776 case 8: 1777 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1778 case 16: 1779 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1780 default: 1781 llvm_unreachable("unexpected element size!"); 1782 } 1783 }; 1784 1785 CallTarget = 1786 F->getParent() 1787 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy); 1788 } 1789 } 1790 1791 // Create the statepoint given all the arguments 1792 GCStatepointInst *Token = nullptr; 1793 if (auto *CI = dyn_cast<CallInst>(Call)) { 1794 CallInst *SPCall = Builder.CreateGCStatepointCall( 1795 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1796 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1797 1798 SPCall->setTailCallKind(CI->getTailCallKind()); 1799 SPCall->setCallingConv(CI->getCallingConv()); 1800 1801 // Currently we will fail on parameter attributes and on certain 1802 // function attributes. In case if we can handle this set of attributes - 1803 // set up function attrs directly on statepoint and return attrs later for 1804 // gc_result intrinsic. 1805 SPCall->setAttributes(legalizeCallAttributes( 1806 CI->getContext(), CI->getAttributes(), SPCall->getAttributes())); 1807 1808 Token = cast<GCStatepointInst>(SPCall); 1809 1810 // Put the following gc_result and gc_relocate calls immediately after the 1811 // the old call (which we're about to delete) 1812 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1813 Builder.SetInsertPoint(CI->getNextNode()); 1814 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1815 } else { 1816 auto *II = cast<InvokeInst>(Call); 1817 1818 // Insert the new invoke into the old block. We'll remove the old one in a 1819 // moment at which point this will become the new terminator for the 1820 // original block. 1821 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1822 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1823 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1824 "statepoint_token"); 1825 1826 SPInvoke->setCallingConv(II->getCallingConv()); 1827 1828 // Currently we will fail on parameter attributes and on certain 1829 // function attributes. In case if we can handle this set of attributes - 1830 // set up function attrs directly on statepoint and return attrs later for 1831 // gc_result intrinsic. 1832 SPInvoke->setAttributes(legalizeCallAttributes( 1833 II->getContext(), II->getAttributes(), SPInvoke->getAttributes())); 1834 1835 Token = cast<GCStatepointInst>(SPInvoke); 1836 1837 // Generate gc relocates in exceptional path 1838 BasicBlock *UnwindBlock = II->getUnwindDest(); 1839 assert(!isa<PHINode>(UnwindBlock->begin()) && 1840 UnwindBlock->getUniquePredecessor() && 1841 "can't safely insert in this block!"); 1842 1843 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1844 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1845 1846 // Attach exceptional gc relocates to the landingpad. 1847 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1848 Result.UnwindToken = ExceptionalToken; 1849 1850 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder); 1851 1852 // Generate gc relocates and returns for normal block 1853 BasicBlock *NormalDest = II->getNormalDest(); 1854 assert(!isa<PHINode>(NormalDest->begin()) && 1855 NormalDest->getUniquePredecessor() && 1856 "can't safely insert in this block!"); 1857 1858 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1859 1860 // gc relocates will be generated later as if it were regular call 1861 // statepoint 1862 } 1863 assert(Token && "Should be set in one of the above branches!"); 1864 1865 if (IsDeoptimize) { 1866 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1867 // transform the tail-call like structure to a call to a void function 1868 // followed by unreachable to get better codegen. 1869 Replacements.push_back( 1870 DeferredReplacement::createDeoptimizeReplacement(Call)); 1871 } else { 1872 Token->setName("statepoint_token"); 1873 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1874 StringRef Name = Call->hasName() ? Call->getName() : ""; 1875 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1876 GCResult->setAttributes( 1877 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1878 Call->getAttributes().getRetAttrs())); 1879 1880 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1881 // live set of some other safepoint, in which case that safepoint's 1882 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1883 // llvm::Instruction. Instead, we defer the replacement and deletion to 1884 // after the live sets have been made explicit in the IR, and we no longer 1885 // have raw pointers to worry about. 1886 Replacements.emplace_back( 1887 DeferredReplacement::createRAUW(Call, GCResult)); 1888 } else { 1889 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1890 } 1891 } 1892 1893 Result.StatepointToken = Token; 1894 1895 // Second, create a gc.relocate for every live variable 1896 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder); 1897 } 1898 1899 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1900 // which make the relocations happening at this safepoint explicit. 1901 // 1902 // WARNING: Does not do any fixup to adjust users of the original live 1903 // values. That's the callers responsibility. 1904 static void 1905 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1906 PartiallyConstructedSafepointRecord &Result, 1907 std::vector<DeferredReplacement> &Replacements, 1908 const PointerToBaseTy &PointerToBase) { 1909 const auto &LiveSet = Result.LiveSet; 1910 1911 // Convert to vector for efficient cross referencing. 1912 SmallVector<Value *, 64> BaseVec, LiveVec; 1913 LiveVec.reserve(LiveSet.size()); 1914 BaseVec.reserve(LiveSet.size()); 1915 for (Value *L : LiveSet) { 1916 LiveVec.push_back(L); 1917 assert(PointerToBase.count(L)); 1918 Value *Base = PointerToBase.find(L)->second; 1919 BaseVec.push_back(Base); 1920 } 1921 assert(LiveVec.size() == BaseVec.size()); 1922 1923 // Do the actual rewriting and delete the old statepoint 1924 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements, 1925 PointerToBase); 1926 } 1927 1928 // Helper function for the relocationViaAlloca. 1929 // 1930 // It receives iterator to the statepoint gc relocates and emits a store to the 1931 // assigned location (via allocaMap) for the each one of them. It adds the 1932 // visited values into the visitedLiveValues set, which we will later use them 1933 // for validation checking. 1934 static void 1935 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1936 DenseMap<Value *, AllocaInst *> &AllocaMap, 1937 DenseSet<Value *> &VisitedLiveValues) { 1938 for (User *U : GCRelocs) { 1939 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1940 if (!Relocate) 1941 continue; 1942 1943 Value *OriginalValue = Relocate->getDerivedPtr(); 1944 assert(AllocaMap.count(OriginalValue)); 1945 Value *Alloca = AllocaMap[OriginalValue]; 1946 1947 // Emit store into the related alloca 1948 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1949 // the correct type according to alloca. 1950 assert(Relocate->getNextNode() && 1951 "Should always have one since it's not a terminator"); 1952 IRBuilder<> Builder(Relocate->getNextNode()); 1953 Value *CastedRelocatedValue = 1954 Builder.CreateBitCast(Relocate, 1955 cast<AllocaInst>(Alloca)->getAllocatedType(), 1956 suffixed_name_or(Relocate, ".casted", "")); 1957 1958 new StoreInst(CastedRelocatedValue, Alloca, 1959 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 1960 1961 #ifndef NDEBUG 1962 VisitedLiveValues.insert(OriginalValue); 1963 #endif 1964 } 1965 } 1966 1967 // Helper function for the "relocationViaAlloca". Similar to the 1968 // "insertRelocationStores" but works for rematerialized values. 1969 static void insertRematerializationStores( 1970 const RematerializedValueMapTy &RematerializedValues, 1971 DenseMap<Value *, AllocaInst *> &AllocaMap, 1972 DenseSet<Value *> &VisitedLiveValues) { 1973 for (auto RematerializedValuePair: RematerializedValues) { 1974 Instruction *RematerializedValue = RematerializedValuePair.first; 1975 Value *OriginalValue = RematerializedValuePair.second; 1976 1977 assert(AllocaMap.count(OriginalValue) && 1978 "Can not find alloca for rematerialized value"); 1979 Value *Alloca = AllocaMap[OriginalValue]; 1980 1981 new StoreInst(RematerializedValue, Alloca, 1982 RematerializedValue->getNextNode()); 1983 1984 #ifndef NDEBUG 1985 VisitedLiveValues.insert(OriginalValue); 1986 #endif 1987 } 1988 } 1989 1990 /// Do all the relocation update via allocas and mem2reg 1991 static void relocationViaAlloca( 1992 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1993 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1994 #ifndef NDEBUG 1995 // record initial number of (static) allocas; we'll check we have the same 1996 // number when we get done. 1997 int InitialAllocaNum = 0; 1998 for (Instruction &I : F.getEntryBlock()) 1999 if (isa<AllocaInst>(I)) 2000 InitialAllocaNum++; 2001 #endif 2002 2003 // TODO-PERF: change data structures, reserve 2004 DenseMap<Value *, AllocaInst *> AllocaMap; 2005 SmallVector<AllocaInst *, 200> PromotableAllocas; 2006 // Used later to chack that we have enough allocas to store all values 2007 std::size_t NumRematerializedValues = 0; 2008 PromotableAllocas.reserve(Live.size()); 2009 2010 // Emit alloca for "LiveValue" and record it in "allocaMap" and 2011 // "PromotableAllocas" 2012 const DataLayout &DL = F.getParent()->getDataLayout(); 2013 auto emitAllocaFor = [&](Value *LiveValue) { 2014 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 2015 DL.getAllocaAddrSpace(), "", 2016 F.getEntryBlock().getFirstNonPHI()); 2017 AllocaMap[LiveValue] = Alloca; 2018 PromotableAllocas.push_back(Alloca); 2019 }; 2020 2021 // Emit alloca for each live gc pointer 2022 for (Value *V : Live) 2023 emitAllocaFor(V); 2024 2025 // Emit allocas for rematerialized values 2026 for (const auto &Info : Records) 2027 for (auto RematerializedValuePair : Info.RematerializedValues) { 2028 Value *OriginalValue = RematerializedValuePair.second; 2029 if (AllocaMap.count(OriginalValue) != 0) 2030 continue; 2031 2032 emitAllocaFor(OriginalValue); 2033 ++NumRematerializedValues; 2034 } 2035 2036 // The next two loops are part of the same conceptual operation. We need to 2037 // insert a store to the alloca after the original def and at each 2038 // redefinition. We need to insert a load before each use. These are split 2039 // into distinct loops for performance reasons. 2040 2041 // Update gc pointer after each statepoint: either store a relocated value or 2042 // null (if no relocated value was found for this gc pointer and it is not a 2043 // gc_result). This must happen before we update the statepoint with load of 2044 // alloca otherwise we lose the link between statepoint and old def. 2045 for (const auto &Info : Records) { 2046 Value *Statepoint = Info.StatepointToken; 2047 2048 // This will be used for consistency check 2049 DenseSet<Value *> VisitedLiveValues; 2050 2051 // Insert stores for normal statepoint gc relocates 2052 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 2053 2054 // In case if it was invoke statepoint 2055 // we will insert stores for exceptional path gc relocates. 2056 if (isa<InvokeInst>(Statepoint)) { 2057 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 2058 VisitedLiveValues); 2059 } 2060 2061 // Do similar thing with rematerialized values 2062 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 2063 VisitedLiveValues); 2064 2065 if (ClobberNonLive) { 2066 // As a debugging aid, pretend that an unrelocated pointer becomes null at 2067 // the gc.statepoint. This will turn some subtle GC problems into 2068 // slightly easier to debug SEGVs. Note that on large IR files with 2069 // lots of gc.statepoints this is extremely costly both memory and time 2070 // wise. 2071 SmallVector<AllocaInst *, 64> ToClobber; 2072 for (auto Pair : AllocaMap) { 2073 Value *Def = Pair.first; 2074 AllocaInst *Alloca = Pair.second; 2075 2076 // This value was relocated 2077 if (VisitedLiveValues.count(Def)) { 2078 continue; 2079 } 2080 ToClobber.push_back(Alloca); 2081 } 2082 2083 auto InsertClobbersAt = [&](Instruction *IP) { 2084 for (auto *AI : ToClobber) { 2085 auto PT = cast<PointerType>(AI->getAllocatedType()); 2086 Constant *CPN = ConstantPointerNull::get(PT); 2087 new StoreInst(CPN, AI, IP); 2088 } 2089 }; 2090 2091 // Insert the clobbering stores. These may get intermixed with the 2092 // gc.results and gc.relocates, but that's fine. 2093 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 2094 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 2095 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 2096 } else { 2097 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 2098 } 2099 } 2100 } 2101 2102 // Update use with load allocas and add store for gc_relocated. 2103 for (auto Pair : AllocaMap) { 2104 Value *Def = Pair.first; 2105 AllocaInst *Alloca = Pair.second; 2106 2107 // We pre-record the uses of allocas so that we dont have to worry about 2108 // later update that changes the user information.. 2109 2110 SmallVector<Instruction *, 20> Uses; 2111 // PERF: trade a linear scan for repeated reallocation 2112 Uses.reserve(Def->getNumUses()); 2113 for (User *U : Def->users()) { 2114 if (!isa<ConstantExpr>(U)) { 2115 // If the def has a ConstantExpr use, then the def is either a 2116 // ConstantExpr use itself or null. In either case 2117 // (recursively in the first, directly in the second), the oop 2118 // it is ultimately dependent on is null and this particular 2119 // use does not need to be fixed up. 2120 Uses.push_back(cast<Instruction>(U)); 2121 } 2122 } 2123 2124 llvm::sort(Uses); 2125 auto Last = std::unique(Uses.begin(), Uses.end()); 2126 Uses.erase(Last, Uses.end()); 2127 2128 for (Instruction *Use : Uses) { 2129 if (isa<PHINode>(Use)) { 2130 PHINode *Phi = cast<PHINode>(Use); 2131 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2132 if (Def == Phi->getIncomingValue(i)) { 2133 LoadInst *Load = 2134 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2135 Phi->getIncomingBlock(i)->getTerminator()); 2136 Phi->setIncomingValue(i, Load); 2137 } 2138 } 2139 } else { 2140 LoadInst *Load = 2141 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2142 Use->replaceUsesOfWith(Def, Load); 2143 } 2144 } 2145 2146 // Emit store for the initial gc value. Store must be inserted after load, 2147 // otherwise store will be in alloca's use list and an extra load will be 2148 // inserted before it. 2149 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2150 DL.getABITypeAlign(Def->getType())); 2151 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2152 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2153 // InvokeInst is a terminator so the store need to be inserted into its 2154 // normal destination block. 2155 BasicBlock *NormalDest = Invoke->getNormalDest(); 2156 Store->insertBefore(NormalDest->getFirstNonPHI()); 2157 } else { 2158 assert(!Inst->isTerminator() && 2159 "The only terminator that can produce a value is " 2160 "InvokeInst which is handled above."); 2161 Store->insertAfter(Inst); 2162 } 2163 } else { 2164 assert(isa<Argument>(Def)); 2165 Store->insertAfter(cast<Instruction>(Alloca)); 2166 } 2167 } 2168 2169 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2170 "we must have the same allocas with lives"); 2171 (void) NumRematerializedValues; 2172 if (!PromotableAllocas.empty()) { 2173 // Apply mem2reg to promote alloca to SSA 2174 PromoteMemToReg(PromotableAllocas, DT); 2175 } 2176 2177 #ifndef NDEBUG 2178 for (auto &I : F.getEntryBlock()) 2179 if (isa<AllocaInst>(I)) 2180 InitialAllocaNum--; 2181 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2182 #endif 2183 } 2184 2185 /// Implement a unique function which doesn't require we sort the input 2186 /// vector. Doing so has the effect of changing the output of a couple of 2187 /// tests in ways which make them less useful in testing fused safepoints. 2188 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2189 SmallSet<T, 8> Seen; 2190 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2191 } 2192 2193 /// Insert holders so that each Value is obviously live through the entire 2194 /// lifetime of the call. 2195 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2196 SmallVectorImpl<CallInst *> &Holders) { 2197 if (Values.empty()) 2198 // No values to hold live, might as well not insert the empty holder 2199 return; 2200 2201 Module *M = Call->getModule(); 2202 // Use a dummy vararg function to actually hold the values live 2203 FunctionCallee Func = M->getOrInsertFunction( 2204 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2205 if (isa<CallInst>(Call)) { 2206 // For call safepoints insert dummy calls right after safepoint 2207 Holders.push_back( 2208 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2209 return; 2210 } 2211 // For invoke safepooints insert dummy calls both in normal and 2212 // exceptional destination blocks 2213 auto *II = cast<InvokeInst>(Call); 2214 Holders.push_back(CallInst::Create( 2215 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2216 Holders.push_back(CallInst::Create( 2217 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2218 } 2219 2220 static void findLiveReferences( 2221 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2222 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 2223 GCPtrLivenessData OriginalLivenessData; 2224 computeLiveInValues(DT, F, OriginalLivenessData); 2225 for (size_t i = 0; i < records.size(); i++) { 2226 struct PartiallyConstructedSafepointRecord &info = records[i]; 2227 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 2228 } 2229 } 2230 2231 // Helper function for the "rematerializeLiveValues". It walks use chain 2232 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2233 // the base or a value it cannot process. Only "simple" values are processed 2234 // (currently it is GEP's and casts). The returned root is examined by the 2235 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2236 // with all visited values. 2237 static Value* findRematerializableChainToBasePointer( 2238 SmallVectorImpl<Instruction*> &ChainToBase, 2239 Value *CurrentValue) { 2240 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2241 ChainToBase.push_back(GEP); 2242 return findRematerializableChainToBasePointer(ChainToBase, 2243 GEP->getPointerOperand()); 2244 } 2245 2246 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2247 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2248 return CI; 2249 2250 ChainToBase.push_back(CI); 2251 return findRematerializableChainToBasePointer(ChainToBase, 2252 CI->getOperand(0)); 2253 } 2254 2255 // We have reached the root of the chain, which is either equal to the base or 2256 // is the first unsupported value along the use chain. 2257 return CurrentValue; 2258 } 2259 2260 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2261 // chain we are going to rematerialize. 2262 static InstructionCost 2263 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2264 TargetTransformInfo &TTI) { 2265 InstructionCost Cost = 0; 2266 2267 for (Instruction *Instr : Chain) { 2268 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2269 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2270 "non noop cast is found during rematerialization"); 2271 2272 Type *SrcTy = CI->getOperand(0)->getType(); 2273 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2274 TTI::getCastContextHint(CI), 2275 TargetTransformInfo::TCK_SizeAndLatency, CI); 2276 2277 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2278 // Cost of the address calculation 2279 Type *ValTy = GEP->getSourceElementType(); 2280 Cost += TTI.getAddressComputationCost(ValTy); 2281 2282 // And cost of the GEP itself 2283 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2284 // allowed for the external usage) 2285 if (!GEP->hasAllConstantIndices()) 2286 Cost += 2; 2287 2288 } else { 2289 llvm_unreachable("unsupported instruction type during rematerialization"); 2290 } 2291 } 2292 2293 return Cost; 2294 } 2295 2296 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2297 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2298 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2299 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2300 return false; 2301 // Map of incoming values and their corresponding basic blocks of 2302 // OrigRootPhi. 2303 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2304 for (unsigned i = 0; i < PhiNum; i++) 2305 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2306 OrigRootPhi.getIncomingBlock(i); 2307 2308 // Both current and base PHIs should have same incoming values and 2309 // the same basic blocks corresponding to the incoming values. 2310 for (unsigned i = 0; i < PhiNum; i++) { 2311 auto CIVI = 2312 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2313 if (CIVI == CurrentIncomingValues.end()) 2314 return false; 2315 BasicBlock *CurrentIncomingBB = CIVI->second; 2316 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2317 return false; 2318 } 2319 return true; 2320 } 2321 2322 // Find derived pointers that can be recomputed cheap enough and fill 2323 // RematerizationCandidates with such candidates. 2324 static void 2325 findRematerializationCandidates(PointerToBaseTy PointerToBase, 2326 RematCandTy &RematerizationCandidates, 2327 TargetTransformInfo &TTI) { 2328 const unsigned int ChainLengthThreshold = 10; 2329 2330 for (auto P2B : PointerToBase) { 2331 auto *Derived = P2B.first; 2332 auto *Base = P2B.second; 2333 // Consider only derived pointers. 2334 if (Derived == Base) 2335 continue; 2336 2337 // For each live pointer find its defining chain. 2338 SmallVector<Instruction *, 3> ChainToBase; 2339 Value *RootOfChain = 2340 findRematerializableChainToBasePointer(ChainToBase, Derived); 2341 2342 // Nothing to do, or chain is too long 2343 if ( ChainToBase.size() == 0 || 2344 ChainToBase.size() > ChainLengthThreshold) 2345 continue; 2346 2347 // Handle the scenario where the RootOfChain is not equal to the 2348 // Base Value, but they are essentially the same phi values. 2349 if (RootOfChain != PointerToBase[Derived]) { 2350 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2351 PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]); 2352 if (!OrigRootPhi || !AlternateRootPhi) 2353 continue; 2354 // PHI nodes that have the same incoming values, and belonging to the same 2355 // basic blocks are essentially the same SSA value. When the original phi 2356 // has incoming values with different base pointers, the original phi is 2357 // marked as conflict, and an additional `AlternateRootPhi` with the same 2358 // incoming values get generated by the findBasePointer function. We need 2359 // to identify the newly generated AlternateRootPhi (.base version of phi) 2360 // and RootOfChain (the original phi node itself) are the same, so that we 2361 // can rematerialize the gep and casts. This is a workaround for the 2362 // deficiency in the findBasePointer algorithm. 2363 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2364 continue; 2365 } 2366 // Compute cost of this chain. 2367 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2368 // TODO: We can also account for cases when we will be able to remove some 2369 // of the rematerialized values by later optimization passes. I.e if 2370 // we rematerialized several intersecting chains. Or if original values 2371 // don't have any uses besides this statepoint. 2372 2373 // Ok, there is a candidate. 2374 RematerizlizationCandidateRecord Record; 2375 Record.ChainToBase = ChainToBase; 2376 Record.RootOfChain = RootOfChain; 2377 Record.Cost = Cost; 2378 RematerizationCandidates.insert({ Derived, Record }); 2379 } 2380 } 2381 2382 // From the statepoint live set pick values that are cheaper to recompute then 2383 // to relocate. Remove this values from the live set, rematerialize them after 2384 // statepoint and record them in "Info" structure. Note that similar to 2385 // relocated values we don't do any user adjustments here. 2386 static void rematerializeLiveValues(CallBase *Call, 2387 PartiallyConstructedSafepointRecord &Info, 2388 PointerToBaseTy &PointerToBase, 2389 RematCandTy &RematerizationCandidates, 2390 TargetTransformInfo &TTI) { 2391 // Record values we are going to delete from this statepoint live set. 2392 // We can not di this in following loop due to iterator invalidation. 2393 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2394 2395 for (Value *LiveValue : Info.LiveSet) { 2396 auto It = RematerizationCandidates.find(LiveValue); 2397 if (It == RematerizationCandidates.end()) 2398 continue; 2399 2400 RematerizlizationCandidateRecord &Record = It->second; 2401 2402 InstructionCost Cost = Record.Cost; 2403 // For invokes we need to rematerialize each chain twice - for normal and 2404 // for unwind basic blocks. Model this by multiplying cost by two. 2405 if (isa<InvokeInst>(Call)) 2406 Cost *= 2; 2407 2408 // If it's too expensive - skip it. 2409 if (Cost >= RematerializationThreshold) 2410 continue; 2411 2412 // Remove value from the live set 2413 LiveValuesToBeDeleted.push_back(LiveValue); 2414 2415 // Clone instructions and record them inside "Info" structure. 2416 2417 // For each live pointer find get its defining chain. 2418 SmallVector<Instruction *, 3> ChainToBase = Record.ChainToBase; 2419 // Walk backwards to visit top-most instructions first. 2420 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2421 2422 // Utility function which clones all instructions from "ChainToBase" 2423 // and inserts them before "InsertBefore". Returns rematerialized value 2424 // which should be used after statepoint. 2425 auto rematerializeChain = [&ChainToBase]( 2426 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2427 Instruction *LastClonedValue = nullptr; 2428 Instruction *LastValue = nullptr; 2429 for (Instruction *Instr: ChainToBase) { 2430 // Only GEP's and casts are supported as we need to be careful to not 2431 // introduce any new uses of pointers not in the liveset. 2432 // Note that it's fine to introduce new uses of pointers which were 2433 // otherwise not used after this statepoint. 2434 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2435 2436 Instruction *ClonedValue = Instr->clone(); 2437 ClonedValue->insertBefore(InsertBefore); 2438 ClonedValue->setName(Instr->getName() + ".remat"); 2439 2440 // If it is not first instruction in the chain then it uses previously 2441 // cloned value. We should update it to use cloned value. 2442 if (LastClonedValue) { 2443 assert(LastValue); 2444 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2445 #ifndef NDEBUG 2446 for (auto OpValue : ClonedValue->operand_values()) { 2447 // Assert that cloned instruction does not use any instructions from 2448 // this chain other than LastClonedValue 2449 assert(!is_contained(ChainToBase, OpValue) && 2450 "incorrect use in rematerialization chain"); 2451 // Assert that the cloned instruction does not use the RootOfChain 2452 // or the AlternateLiveBase. 2453 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2454 } 2455 #endif 2456 } else { 2457 // For the first instruction, replace the use of unrelocated base i.e. 2458 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2459 // live set. They have been proved to be the same PHI nodes. Note 2460 // that the *only* use of the RootOfChain in the ChainToBase list is 2461 // the first Value in the list. 2462 if (RootOfChain != AlternateLiveBase) 2463 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2464 } 2465 2466 LastClonedValue = ClonedValue; 2467 LastValue = Instr; 2468 } 2469 assert(LastClonedValue); 2470 return LastClonedValue; 2471 }; 2472 2473 // Different cases for calls and invokes. For invokes we need to clone 2474 // instructions both on normal and unwind path. 2475 if (isa<CallInst>(Call)) { 2476 Instruction *InsertBefore = Call->getNextNode(); 2477 assert(InsertBefore); 2478 Instruction *RematerializedValue = rematerializeChain( 2479 InsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); 2480 Info.RematerializedValues[RematerializedValue] = LiveValue; 2481 } else { 2482 auto *Invoke = cast<InvokeInst>(Call); 2483 2484 Instruction *NormalInsertBefore = 2485 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2486 Instruction *UnwindInsertBefore = 2487 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2488 2489 Instruction *NormalRematerializedValue = rematerializeChain( 2490 NormalInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); 2491 Instruction *UnwindRematerializedValue = rematerializeChain( 2492 UnwindInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); 2493 2494 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2495 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2496 } 2497 } 2498 2499 // Remove rematerializaed values from the live set 2500 for (auto LiveValue: LiveValuesToBeDeleted) { 2501 Info.LiveSet.remove(LiveValue); 2502 } 2503 } 2504 2505 static bool inlineGetBaseAndOffset(Function &F, 2506 SmallVectorImpl<CallInst *> &Intrinsics, 2507 DefiningValueMapTy &DVCache, 2508 IsKnownBaseMapTy &KnownBases) { 2509 auto &Context = F.getContext(); 2510 auto &DL = F.getParent()->getDataLayout(); 2511 bool Changed = false; 2512 2513 for (auto *Callsite : Intrinsics) 2514 switch (Callsite->getIntrinsicID()) { 2515 case Intrinsic::experimental_gc_get_pointer_base: { 2516 Changed = true; 2517 Value *Base = 2518 findBasePointer(Callsite->getOperand(0), DVCache, KnownBases); 2519 assert(!DVCache.count(Callsite)); 2520 auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast( 2521 Base, Callsite->getType(), suffixed_name_or(Base, ".cast", "")); 2522 if (BaseBC != Base) 2523 DVCache[BaseBC] = Base; 2524 Callsite->replaceAllUsesWith(BaseBC); 2525 if (!BaseBC->hasName()) 2526 BaseBC->takeName(Callsite); 2527 Callsite->eraseFromParent(); 2528 break; 2529 } 2530 case Intrinsic::experimental_gc_get_pointer_offset: { 2531 Changed = true; 2532 Value *Derived = Callsite->getOperand(0); 2533 Value *Base = findBasePointer(Derived, DVCache, KnownBases); 2534 assert(!DVCache.count(Callsite)); 2535 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2536 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2537 IRBuilder<> Builder(Callsite); 2538 Value *BaseInt = 2539 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2540 suffixed_name_or(Base, ".int", "")); 2541 Value *DerivedInt = 2542 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2543 suffixed_name_or(Derived, ".int", "")); 2544 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2545 Callsite->replaceAllUsesWith(Offset); 2546 Offset->takeName(Callsite); 2547 Callsite->eraseFromParent(); 2548 break; 2549 } 2550 default: 2551 llvm_unreachable("Unknown intrinsic"); 2552 } 2553 2554 return Changed; 2555 } 2556 2557 static bool insertParsePoints(Function &F, DominatorTree &DT, 2558 TargetTransformInfo &TTI, 2559 SmallVectorImpl<CallBase *> &ToUpdate, 2560 DefiningValueMapTy &DVCache, 2561 IsKnownBaseMapTy &KnownBases) { 2562 #ifndef NDEBUG 2563 // Validate the input 2564 std::set<CallBase *> Uniqued; 2565 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2566 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2567 2568 for (CallBase *Call : ToUpdate) 2569 assert(Call->getFunction() == &F); 2570 #endif 2571 2572 // When inserting gc.relocates for invokes, we need to be able to insert at 2573 // the top of the successor blocks. See the comment on 2574 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2575 // may restructure the CFG. 2576 for (CallBase *Call : ToUpdate) { 2577 auto *II = dyn_cast<InvokeInst>(Call); 2578 if (!II) 2579 continue; 2580 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2581 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2582 } 2583 2584 // A list of dummy calls added to the IR to keep various values obviously 2585 // live in the IR. We'll remove all of these when done. 2586 SmallVector<CallInst *, 64> Holders; 2587 2588 // Insert a dummy call with all of the deopt operands we'll need for the 2589 // actual safepoint insertion as arguments. This ensures reference operands 2590 // in the deopt argument list are considered live through the safepoint (and 2591 // thus makes sure they get relocated.) 2592 for (CallBase *Call : ToUpdate) { 2593 SmallVector<Value *, 64> DeoptValues; 2594 2595 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2596 assert(!isUnhandledGCPointerType(Arg->getType()) && 2597 "support for FCA unimplemented"); 2598 if (isHandledGCPointerType(Arg->getType())) 2599 DeoptValues.push_back(Arg); 2600 } 2601 2602 insertUseHolderAfter(Call, DeoptValues, Holders); 2603 } 2604 2605 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2606 2607 // A) Identify all gc pointers which are statically live at the given call 2608 // site. 2609 findLiveReferences(F, DT, ToUpdate, Records); 2610 2611 /// Global mapping from live pointers to a base-defining-value. 2612 PointerToBaseTy PointerToBase; 2613 2614 // B) Find the base pointers for each live pointer 2615 for (size_t i = 0; i < Records.size(); i++) { 2616 PartiallyConstructedSafepointRecord &info = Records[i]; 2617 findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases); 2618 } 2619 if (PrintBasePointers) { 2620 errs() << "Base Pairs (w/o Relocation):\n"; 2621 for (auto &Pair : PointerToBase) { 2622 errs() << " derived "; 2623 Pair.first->printAsOperand(errs(), false); 2624 errs() << " base "; 2625 Pair.second->printAsOperand(errs(), false); 2626 errs() << "\n"; 2627 ; 2628 } 2629 } 2630 2631 // The base phi insertion logic (for any safepoint) may have inserted new 2632 // instructions which are now live at some safepoint. The simplest such 2633 // example is: 2634 // loop: 2635 // phi a <-- will be a new base_phi here 2636 // safepoint 1 <-- that needs to be live here 2637 // gep a + 1 2638 // safepoint 2 2639 // br loop 2640 // We insert some dummy calls after each safepoint to definitely hold live 2641 // the base pointers which were identified for that safepoint. We'll then 2642 // ask liveness for _every_ base inserted to see what is now live. Then we 2643 // remove the dummy calls. 2644 Holders.reserve(Holders.size() + Records.size()); 2645 for (size_t i = 0; i < Records.size(); i++) { 2646 PartiallyConstructedSafepointRecord &Info = Records[i]; 2647 2648 SmallVector<Value *, 128> Bases; 2649 for (auto *Derived : Info.LiveSet) { 2650 assert(PointerToBase.count(Derived) && "Missed base for derived pointer"); 2651 Bases.push_back(PointerToBase[Derived]); 2652 } 2653 2654 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2655 } 2656 2657 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2658 // need to rerun liveness. We may *also* have inserted new defs, but that's 2659 // not the key issue. 2660 recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase); 2661 2662 if (PrintBasePointers) { 2663 errs() << "Base Pairs: (w/Relocation)\n"; 2664 for (auto Pair : PointerToBase) { 2665 errs() << " derived "; 2666 Pair.first->printAsOperand(errs(), false); 2667 errs() << " base "; 2668 Pair.second->printAsOperand(errs(), false); 2669 errs() << "\n"; 2670 } 2671 } 2672 2673 // It is possible that non-constant live variables have a constant base. For 2674 // example, a GEP with a variable offset from a global. In this case we can 2675 // remove it from the liveset. We already don't add constants to the liveset 2676 // because we assume they won't move at runtime and the GC doesn't need to be 2677 // informed about them. The same reasoning applies if the base is constant. 2678 // Note that the relocation placement code relies on this filtering for 2679 // correctness as it expects the base to be in the liveset, which isn't true 2680 // if the base is constant. 2681 for (auto &Info : Records) { 2682 Info.LiveSet.remove_if([&](Value *LiveV) { 2683 assert(PointerToBase.count(LiveV) && "Missed base for derived pointer"); 2684 return isa<Constant>(PointerToBase[LiveV]); 2685 }); 2686 } 2687 2688 for (CallInst *CI : Holders) 2689 CI->eraseFromParent(); 2690 2691 Holders.clear(); 2692 2693 // Compute the cost of possible re-materialization of derived pointers. 2694 RematCandTy RematerizationCandidates; 2695 findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI); 2696 2697 // In order to reduce live set of statepoint we might choose to rematerialize 2698 // some values instead of relocating them. This is purely an optimization and 2699 // does not influence correctness. 2700 for (size_t i = 0; i < Records.size(); i++) 2701 rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, 2702 RematerizationCandidates, TTI); 2703 2704 // We need this to safely RAUW and delete call or invoke return values that 2705 // may themselves be live over a statepoint. For details, please see usage in 2706 // makeStatepointExplicitImpl. 2707 std::vector<DeferredReplacement> Replacements; 2708 2709 // Now run through and replace the existing statepoints with new ones with 2710 // the live variables listed. We do not yet update uses of the values being 2711 // relocated. We have references to live variables that need to 2712 // survive to the last iteration of this loop. (By construction, the 2713 // previous statepoint can not be a live variable, thus we can and remove 2714 // the old statepoint calls as we go.) 2715 for (size_t i = 0; i < Records.size(); i++) 2716 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements, 2717 PointerToBase); 2718 2719 ToUpdate.clear(); // prevent accident use of invalid calls. 2720 2721 for (auto &PR : Replacements) 2722 PR.doReplacement(); 2723 2724 Replacements.clear(); 2725 2726 for (auto &Info : Records) { 2727 // These live sets may contain state Value pointers, since we replaced calls 2728 // with operand bundles with calls wrapped in gc.statepoint, and some of 2729 // those calls may have been def'ing live gc pointers. Clear these out to 2730 // avoid accidentally using them. 2731 // 2732 // TODO: We should create a separate data structure that does not contain 2733 // these live sets, and migrate to using that data structure from this point 2734 // onward. 2735 Info.LiveSet.clear(); 2736 } 2737 PointerToBase.clear(); 2738 2739 // Do all the fixups of the original live variables to their relocated selves 2740 SmallVector<Value *, 128> Live; 2741 for (size_t i = 0; i < Records.size(); i++) { 2742 PartiallyConstructedSafepointRecord &Info = Records[i]; 2743 2744 // We can't simply save the live set from the original insertion. One of 2745 // the live values might be the result of a call which needs a safepoint. 2746 // That Value* no longer exists and we need to use the new gc_result. 2747 // Thankfully, the live set is embedded in the statepoint (and updated), so 2748 // we just grab that. 2749 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2750 #ifndef NDEBUG 2751 // Do some basic validation checking on our liveness results before 2752 // performing relocation. Relocation can and will turn mistakes in liveness 2753 // results into non-sensical code which is must harder to debug. 2754 // TODO: It would be nice to test consistency as well 2755 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2756 "statepoint must be reachable or liveness is meaningless"); 2757 for (Value *V : Info.StatepointToken->gc_args()) { 2758 if (!isa<Instruction>(V)) 2759 // Non-instruction values trivial dominate all possible uses 2760 continue; 2761 auto *LiveInst = cast<Instruction>(V); 2762 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2763 "unreachable values should never be live"); 2764 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2765 "basic SSA liveness expectation violated by liveness analysis"); 2766 } 2767 #endif 2768 } 2769 unique_unsorted(Live); 2770 2771 #ifndef NDEBUG 2772 // Validation check 2773 for (auto *Ptr : Live) 2774 assert(isHandledGCPointerType(Ptr->getType()) && 2775 "must be a gc pointer type"); 2776 #endif 2777 2778 relocationViaAlloca(F, DT, Live, Records); 2779 return !Records.empty(); 2780 } 2781 2782 // List of all parameter and return attributes which must be stripped when 2783 // lowering from the abstract machine model. Note that we list attributes 2784 // here which aren't valid as return attributes, that is okay. 2785 static AttributeMask getParamAndReturnAttributesToRemove() { 2786 AttributeMask R; 2787 R.addAttribute(Attribute::Dereferenceable); 2788 R.addAttribute(Attribute::DereferenceableOrNull); 2789 R.addAttribute(Attribute::ReadNone); 2790 R.addAttribute(Attribute::ReadOnly); 2791 R.addAttribute(Attribute::WriteOnly); 2792 R.addAttribute(Attribute::NoAlias); 2793 R.addAttribute(Attribute::NoFree); 2794 return R; 2795 } 2796 2797 static void stripNonValidAttributesFromPrototype(Function &F) { 2798 LLVMContext &Ctx = F.getContext(); 2799 2800 // Intrinsics are very delicate. Lowering sometimes depends the presence 2801 // of certain attributes for correctness, but we may have also inferred 2802 // additional ones in the abstract machine model which need stripped. This 2803 // assumes that the attributes defined in Intrinsic.td are conservatively 2804 // correct for both physical and abstract model. 2805 if (Intrinsic::ID id = F.getIntrinsicID()) { 2806 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2807 return; 2808 } 2809 2810 AttributeMask R = getParamAndReturnAttributesToRemove(); 2811 for (Argument &A : F.args()) 2812 if (isa<PointerType>(A.getType())) 2813 F.removeParamAttrs(A.getArgNo(), R); 2814 2815 if (isa<PointerType>(F.getReturnType())) 2816 F.removeRetAttrs(R); 2817 2818 for (auto Attr : FnAttrsToStrip) 2819 F.removeFnAttr(Attr); 2820 } 2821 2822 /// Certain metadata on instructions are invalid after running RS4GC. 2823 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2824 /// optimize functions. We drop such metadata on the instruction. 2825 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2826 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2827 return; 2828 // These are the attributes that are still valid on loads and stores after 2829 // RS4GC. 2830 // The metadata implying dereferenceability and noalias are (conservatively) 2831 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2832 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2833 // touch the entire heap including noalias objects. Note: The reasoning is 2834 // same as stripping the dereferenceability and noalias attributes that are 2835 // analogous to the metadata counterparts. 2836 // We also drop the invariant.load metadata on the load because that metadata 2837 // implies the address operand to the load points to memory that is never 2838 // changed once it became dereferenceable. This is no longer true after RS4GC. 2839 // Similar reasoning applies to invariant.group metadata, which applies to 2840 // loads within a group. 2841 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2842 LLVMContext::MD_range, 2843 LLVMContext::MD_alias_scope, 2844 LLVMContext::MD_nontemporal, 2845 LLVMContext::MD_nonnull, 2846 LLVMContext::MD_align, 2847 LLVMContext::MD_type}; 2848 2849 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2850 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2851 } 2852 2853 static void stripNonValidDataFromBody(Function &F) { 2854 if (F.empty()) 2855 return; 2856 2857 LLVMContext &Ctx = F.getContext(); 2858 MDBuilder Builder(Ctx); 2859 2860 // Set of invariantstart instructions that we need to remove. 2861 // Use this to avoid invalidating the instruction iterator. 2862 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2863 2864 for (Instruction &I : instructions(F)) { 2865 // invariant.start on memory location implies that the referenced memory 2866 // location is constant and unchanging. This is no longer true after 2867 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2868 // which frees the entire heap and the presence of invariant.start allows 2869 // the optimizer to sink the load of a memory location past a statepoint, 2870 // which is incorrect. 2871 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2872 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2873 InvariantStartInstructions.push_back(II); 2874 continue; 2875 } 2876 2877 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2878 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2879 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2880 } 2881 2882 stripInvalidMetadataFromInstruction(I); 2883 2884 AttributeMask R = getParamAndReturnAttributesToRemove(); 2885 if (auto *Call = dyn_cast<CallBase>(&I)) { 2886 for (int i = 0, e = Call->arg_size(); i != e; i++) 2887 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2888 Call->removeParamAttrs(i, R); 2889 if (isa<PointerType>(Call->getType())) 2890 Call->removeRetAttrs(R); 2891 } 2892 } 2893 2894 // Delete the invariant.start instructions and RAUW undef. 2895 for (auto *II : InvariantStartInstructions) { 2896 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2897 II->eraseFromParent(); 2898 } 2899 } 2900 2901 /// Returns true if this function should be rewritten by this pass. The main 2902 /// point of this function is as an extension point for custom logic. 2903 static bool shouldRewriteStatepointsIn(Function &F) { 2904 // TODO: This should check the GCStrategy 2905 if (F.hasGC()) { 2906 const auto &FunctionGCName = F.getGC(); 2907 const StringRef StatepointExampleName("statepoint-example"); 2908 const StringRef CoreCLRName("coreclr"); 2909 return (StatepointExampleName == FunctionGCName) || 2910 (CoreCLRName == FunctionGCName); 2911 } else 2912 return false; 2913 } 2914 2915 static void stripNonValidData(Module &M) { 2916 #ifndef NDEBUG 2917 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2918 #endif 2919 2920 for (Function &F : M) 2921 stripNonValidAttributesFromPrototype(F); 2922 2923 for (Function &F : M) 2924 stripNonValidDataFromBody(F); 2925 } 2926 2927 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2928 TargetTransformInfo &TTI, 2929 const TargetLibraryInfo &TLI) { 2930 assert(!F.isDeclaration() && !F.empty() && 2931 "need function body to rewrite statepoints in"); 2932 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2933 2934 auto NeedsRewrite = [&TLI](Instruction &I) { 2935 if (const auto *Call = dyn_cast<CallBase>(&I)) { 2936 if (isa<GCStatepointInst>(Call)) 2937 return false; 2938 if (callsGCLeafFunction(Call, TLI)) 2939 return false; 2940 2941 // Normally it's up to the frontend to make sure that non-leaf calls also 2942 // have proper deopt state if it is required. We make an exception for 2943 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 2944 // these are non-leaf by default. They might be generated by the optimizer 2945 // which doesn't know how to produce a proper deopt state. So if we see a 2946 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 2947 // copy and don't produce a statepoint. 2948 if (!AllowStatepointWithNoDeoptInfo && 2949 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 2950 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 2951 "Don't expect any other calls here!"); 2952 return false; 2953 } 2954 return true; 2955 } 2956 return false; 2957 }; 2958 2959 // Delete any unreachable statepoints so that we don't have unrewritten 2960 // statepoints surviving this pass. This makes testing easier and the 2961 // resulting IR less confusing to human readers. 2962 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2963 bool MadeChange = removeUnreachableBlocks(F, &DTU); 2964 // Flush the Dominator Tree. 2965 DTU.getDomTree(); 2966 2967 // Gather all the statepoints which need rewritten. Be careful to only 2968 // consider those in reachable code since we need to ask dominance queries 2969 // when rewriting. We'll delete the unreachable ones in a moment. 2970 SmallVector<CallBase *, 64> ParsePointNeeded; 2971 SmallVector<CallInst *, 64> Intrinsics; 2972 for (Instruction &I : instructions(F)) { 2973 // TODO: only the ones with the flag set! 2974 if (NeedsRewrite(I)) { 2975 // NOTE removeUnreachableBlocks() is stronger than 2976 // DominatorTree::isReachableFromEntry(). In other words 2977 // removeUnreachableBlocks can remove some blocks for which 2978 // isReachableFromEntry() returns true. 2979 assert(DT.isReachableFromEntry(I.getParent()) && 2980 "no unreachable blocks expected"); 2981 ParsePointNeeded.push_back(cast<CallBase>(&I)); 2982 } 2983 if (auto *CI = dyn_cast<CallInst>(&I)) 2984 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 2985 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 2986 Intrinsics.emplace_back(CI); 2987 } 2988 2989 // Return early if no work to do. 2990 if (ParsePointNeeded.empty() && Intrinsics.empty()) 2991 return MadeChange; 2992 2993 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2994 // These are created by LCSSA. They have the effect of increasing the size 2995 // of liveness sets for no good reason. It may be harder to do this post 2996 // insertion since relocations and base phis can confuse things. 2997 for (BasicBlock &BB : F) 2998 if (BB.getUniquePredecessor()) 2999 MadeChange |= FoldSingleEntryPHINodes(&BB); 3000 3001 // Before we start introducing relocations, we want to tweak the IR a bit to 3002 // avoid unfortunate code generation effects. The main example is that we 3003 // want to try to make sure the comparison feeding a branch is after any 3004 // safepoints. Otherwise, we end up with a comparison of pre-relocation 3005 // values feeding a branch after relocation. This is semantically correct, 3006 // but results in extra register pressure since both the pre-relocation and 3007 // post-relocation copies must be available in registers. For code without 3008 // relocations this is handled elsewhere, but teaching the scheduler to 3009 // reverse the transform we're about to do would be slightly complex. 3010 // Note: This may extend the live range of the inputs to the icmp and thus 3011 // increase the liveset of any statepoint we move over. This is profitable 3012 // as long as all statepoints are in rare blocks. If we had in-register 3013 // lowering for live values this would be a much safer transform. 3014 auto getConditionInst = [](Instruction *TI) -> Instruction * { 3015 if (auto *BI = dyn_cast<BranchInst>(TI)) 3016 if (BI->isConditional()) 3017 return dyn_cast<Instruction>(BI->getCondition()); 3018 // TODO: Extend this to handle switches 3019 return nullptr; 3020 }; 3021 for (BasicBlock &BB : F) { 3022 Instruction *TI = BB.getTerminator(); 3023 if (auto *Cond = getConditionInst(TI)) 3024 // TODO: Handle more than just ICmps here. We should be able to move 3025 // most instructions without side effects or memory access. 3026 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 3027 MadeChange = true; 3028 Cond->moveBefore(TI); 3029 } 3030 } 3031 3032 // Nasty workaround - The base computation code in the main algorithm doesn't 3033 // consider the fact that a GEP can be used to convert a scalar to a vector. 3034 // The right fix for this is to integrate GEPs into the base rewriting 3035 // algorithm properly, this is just a short term workaround to prevent 3036 // crashes by canonicalizing such GEPs into fully vector GEPs. 3037 for (Instruction &I : instructions(F)) { 3038 if (!isa<GetElementPtrInst>(I)) 3039 continue; 3040 3041 unsigned VF = 0; 3042 for (unsigned i = 0; i < I.getNumOperands(); i++) 3043 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 3044 assert(VF == 0 || 3045 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 3046 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 3047 } 3048 3049 // It's the vector to scalar traversal through the pointer operand which 3050 // confuses base pointer rewriting, so limit ourselves to that case. 3051 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 3052 IRBuilder<> B(&I); 3053 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 3054 I.setOperand(0, Splat); 3055 MadeChange = true; 3056 } 3057 } 3058 3059 // Cache the 'defining value' relation used in the computation and 3060 // insertion of base phis and selects. This ensures that we don't insert 3061 // large numbers of duplicate base_phis. Use one cache for both 3062 // inlineGetBaseAndOffset() and insertParsePoints(). 3063 DefiningValueMapTy DVCache; 3064 3065 // Mapping between a base values and a flag indicating whether it's a known 3066 // base or not. 3067 IsKnownBaseMapTy KnownBases; 3068 3069 if (!Intrinsics.empty()) 3070 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 3071 // live references. 3072 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases); 3073 3074 if (!ParsePointNeeded.empty()) 3075 MadeChange |= 3076 insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases); 3077 3078 return MadeChange; 3079 } 3080 3081 // liveness computation via standard dataflow 3082 // ------------------------------------------------------------------- 3083 3084 // TODO: Consider using bitvectors for liveness, the set of potentially 3085 // interesting values should be small and easy to pre-compute. 3086 3087 /// Compute the live-in set for the location rbegin starting from 3088 /// the live-out set of the basic block 3089 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 3090 BasicBlock::reverse_iterator End, 3091 SetVector<Value *> &LiveTmp) { 3092 for (auto &I : make_range(Begin, End)) { 3093 // KILL/Def - Remove this definition from LiveIn 3094 LiveTmp.remove(&I); 3095 3096 // Don't consider *uses* in PHI nodes, we handle their contribution to 3097 // predecessor blocks when we seed the LiveOut sets 3098 if (isa<PHINode>(I)) 3099 continue; 3100 3101 // USE - Add to the LiveIn set for this instruction 3102 for (Value *V : I.operands()) { 3103 assert(!isUnhandledGCPointerType(V->getType()) && 3104 "support for FCA unimplemented"); 3105 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 3106 // The choice to exclude all things constant here is slightly subtle. 3107 // There are two independent reasons: 3108 // - We assume that things which are constant (from LLVM's definition) 3109 // do not move at runtime. For example, the address of a global 3110 // variable is fixed, even though it's contents may not be. 3111 // - Second, we can't disallow arbitrary inttoptr constants even 3112 // if the language frontend does. Optimization passes are free to 3113 // locally exploit facts without respect to global reachability. This 3114 // can create sections of code which are dynamically unreachable and 3115 // contain just about anything. (see constants.ll in tests) 3116 LiveTmp.insert(V); 3117 } 3118 } 3119 } 3120 } 3121 3122 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 3123 for (BasicBlock *Succ : successors(BB)) { 3124 for (auto &I : *Succ) { 3125 PHINode *PN = dyn_cast<PHINode>(&I); 3126 if (!PN) 3127 break; 3128 3129 Value *V = PN->getIncomingValueForBlock(BB); 3130 assert(!isUnhandledGCPointerType(V->getType()) && 3131 "support for FCA unimplemented"); 3132 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 3133 LiveTmp.insert(V); 3134 } 3135 } 3136 } 3137 3138 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 3139 SetVector<Value *> KillSet; 3140 for (Instruction &I : *BB) 3141 if (isHandledGCPointerType(I.getType())) 3142 KillSet.insert(&I); 3143 return KillSet; 3144 } 3145 3146 #ifndef NDEBUG 3147 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3148 /// validation check for the liveness computation. 3149 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3150 Instruction *TI, bool TermOkay = false) { 3151 for (Value *V : Live) { 3152 if (auto *I = dyn_cast<Instruction>(V)) { 3153 // The terminator can be a member of the LiveOut set. LLVM's definition 3154 // of instruction dominance states that V does not dominate itself. As 3155 // such, we need to special case this to allow it. 3156 if (TermOkay && TI == I) 3157 continue; 3158 assert(DT.dominates(I, TI) && 3159 "basic SSA liveness expectation violated by liveness analysis"); 3160 } 3161 } 3162 } 3163 3164 /// Check that all the liveness sets used during the computation of liveness 3165 /// obey basic SSA properties. This is useful for finding cases where we miss 3166 /// a def. 3167 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3168 BasicBlock &BB) { 3169 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3170 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3171 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3172 } 3173 #endif 3174 3175 static void computeLiveInValues(DominatorTree &DT, Function &F, 3176 GCPtrLivenessData &Data) { 3177 SmallSetVector<BasicBlock *, 32> Worklist; 3178 3179 // Seed the liveness for each individual block 3180 for (BasicBlock &BB : F) { 3181 Data.KillSet[&BB] = computeKillSet(&BB); 3182 Data.LiveSet[&BB].clear(); 3183 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 3184 3185 #ifndef NDEBUG 3186 for (Value *Kill : Data.KillSet[&BB]) 3187 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3188 #endif 3189 3190 Data.LiveOut[&BB] = SetVector<Value *>(); 3191 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 3192 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3193 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3194 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3195 if (!Data.LiveIn[&BB].empty()) 3196 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3197 } 3198 3199 // Propagate that liveness until stable 3200 while (!Worklist.empty()) { 3201 BasicBlock *BB = Worklist.pop_back_val(); 3202 3203 // Compute our new liveout set, then exit early if it hasn't changed despite 3204 // the contribution of our successor. 3205 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3206 const auto OldLiveOutSize = LiveOut.size(); 3207 for (BasicBlock *Succ : successors(BB)) { 3208 assert(Data.LiveIn.count(Succ)); 3209 LiveOut.set_union(Data.LiveIn[Succ]); 3210 } 3211 // assert OutLiveOut is a subset of LiveOut 3212 if (OldLiveOutSize == LiveOut.size()) { 3213 // If the sets are the same size, then we didn't actually add anything 3214 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3215 // hasn't changed. 3216 continue; 3217 } 3218 Data.LiveOut[BB] = LiveOut; 3219 3220 // Apply the effects of this basic block 3221 SetVector<Value *> LiveTmp = LiveOut; 3222 LiveTmp.set_union(Data.LiveSet[BB]); 3223 LiveTmp.set_subtract(Data.KillSet[BB]); 3224 3225 assert(Data.LiveIn.count(BB)); 3226 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3227 // assert: OldLiveIn is a subset of LiveTmp 3228 if (OldLiveIn.size() != LiveTmp.size()) { 3229 Data.LiveIn[BB] = LiveTmp; 3230 Worklist.insert(pred_begin(BB), pred_end(BB)); 3231 } 3232 } // while (!Worklist.empty()) 3233 3234 #ifndef NDEBUG 3235 // Verify our output against SSA properties. This helps catch any 3236 // missing kills during the above iteration. 3237 for (BasicBlock &BB : F) 3238 checkBasicSSA(DT, Data, BB); 3239 #endif 3240 } 3241 3242 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3243 StatepointLiveSetTy &Out) { 3244 BasicBlock *BB = Inst->getParent(); 3245 3246 // Note: The copy is intentional and required 3247 assert(Data.LiveOut.count(BB)); 3248 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3249 3250 // We want to handle the statepoint itself oddly. It's 3251 // call result is not live (normal), nor are it's arguments 3252 // (unless they're used again later). This adjustment is 3253 // specifically what we need to relocate 3254 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 3255 LiveOut); 3256 LiveOut.remove(Inst); 3257 Out.insert(LiveOut.begin(), LiveOut.end()); 3258 } 3259 3260 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3261 CallBase *Call, 3262 PartiallyConstructedSafepointRecord &Info, 3263 PointerToBaseTy &PointerToBase) { 3264 StatepointLiveSetTy Updated; 3265 findLiveSetAtInst(Call, RevisedLivenessData, Updated); 3266 3267 // We may have base pointers which are now live that weren't before. We need 3268 // to update the PointerToBase structure to reflect this. 3269 for (auto V : Updated) 3270 PointerToBase.insert({ V, V }); 3271 3272 Info.LiveSet = Updated; 3273 } 3274