1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 80 81 using namespace llvm; 82 83 // Print the liveset found at the insert location 84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 85 cl::init(false)); 86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 87 cl::init(false)); 88 89 // Print out the base pointers for debugging 90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 91 cl::init(false)); 92 93 // Cost threshold measuring when it is profitable to rematerialize value instead 94 // of relocating it 95 static cl::opt<unsigned> 96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 97 cl::init(6)); 98 99 #ifdef EXPENSIVE_CHECKS 100 static bool ClobberNonLive = true; 101 #else 102 static bool ClobberNonLive = false; 103 #endif 104 105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 106 cl::location(ClobberNonLive), 107 cl::Hidden); 108 109 static cl::opt<bool> 110 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 111 cl::Hidden, cl::init(true)); 112 113 /// The IR fed into RewriteStatepointsForGC may have had attributes and 114 /// metadata implying dereferenceability that are no longer valid/correct after 115 /// RewriteStatepointsForGC has run. This is because semantically, after 116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 117 /// heap. stripNonValidData (conservatively) restores 118 /// correctness by erasing all attributes in the module that externally imply 119 /// dereferenceability. Similar reasoning also applies to the noalias 120 /// attributes and metadata. gc.statepoint can touch the entire heap including 121 /// noalias objects. 122 /// Apart from attributes and metadata, we also remove instructions that imply 123 /// constant physical memory: llvm.invariant.start. 124 static void stripNonValidData(Module &M); 125 126 static bool shouldRewriteStatepointsIn(Function &F); 127 128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 129 ModuleAnalysisManager &AM) { 130 bool Changed = false; 131 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 132 for (Function &F : M) { 133 // Nothing to do for declarations. 134 if (F.isDeclaration() || F.empty()) 135 continue; 136 137 // Policy choice says not to rewrite - the most common reason is that we're 138 // compiling code without a GCStrategy. 139 if (!shouldRewriteStatepointsIn(F)) 140 continue; 141 142 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 143 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 144 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 145 Changed |= runOnFunction(F, DT, TTI, TLI); 146 } 147 if (!Changed) 148 return PreservedAnalyses::all(); 149 150 // stripNonValidData asserts that shouldRewriteStatepointsIn 151 // returns true for at least one function in the module. Since at least 152 // one function changed, we know that the precondition is satisfied. 153 stripNonValidData(M); 154 155 PreservedAnalyses PA; 156 PA.preserve<TargetIRAnalysis>(); 157 PA.preserve<TargetLibraryAnalysis>(); 158 return PA; 159 } 160 161 namespace { 162 163 class RewriteStatepointsForGCLegacyPass : public ModulePass { 164 RewriteStatepointsForGC Impl; 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 170 initializeRewriteStatepointsForGCLegacyPassPass( 171 *PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnModule(Module &M) override { 175 bool Changed = false; 176 for (Function &F : M) { 177 // Nothing to do for declarations. 178 if (F.isDeclaration() || F.empty()) 179 continue; 180 181 // Policy choice says not to rewrite - the most common reason is that 182 // we're compiling code without a GCStrategy. 183 if (!shouldRewriteStatepointsIn(F)) 184 continue; 185 186 TargetTransformInfo &TTI = 187 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 188 const TargetLibraryInfo &TLI = 189 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 190 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 191 192 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 193 } 194 195 if (!Changed) 196 return false; 197 198 // stripNonValidData asserts that shouldRewriteStatepointsIn 199 // returns true for at least one function in the module. Since at least 200 // one function changed, we know that the precondition is satisfied. 201 stripNonValidData(M); 202 return true; 203 } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 // We add and rewrite a bunch of instructions, but don't really do much 207 // else. We could in theory preserve a lot more analyses here. 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetTransformInfoWrapperPass>(); 210 AU.addRequired<TargetLibraryInfoWrapperPass>(); 211 } 212 }; 213 214 } // end anonymous namespace 215 216 char RewriteStatepointsForGCLegacyPass::ID = 0; 217 218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 219 return new RewriteStatepointsForGCLegacyPass(); 220 } 221 222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 223 "rewrite-statepoints-for-gc", 224 "Make relocations explicit at statepoints", false, false) 225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 228 "rewrite-statepoints-for-gc", 229 "Make relocations explicit at statepoints", false, false) 230 231 namespace { 232 233 struct GCPtrLivenessData { 234 /// Values defined in this block. 235 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 236 237 /// Values used in this block (and thus live); does not included values 238 /// killed within this block. 239 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 240 241 /// Values live into this basic block (i.e. used by any 242 /// instruction in this basic block or ones reachable from here) 243 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 244 245 /// Values live out of this basic block (i.e. live into 246 /// any successor block) 247 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 248 }; 249 250 // The type of the internal cache used inside the findBasePointers family 251 // of functions. From the callers perspective, this is an opaque type and 252 // should not be inspected. 253 // 254 // In the actual implementation this caches two relations: 255 // - The base relation itself (i.e. this pointer is based on that one) 256 // - The base defining value relation (i.e. before base_phi insertion) 257 // Generally, after the execution of a full findBasePointer call, only the 258 // base relation will remain. Internally, we add a mixture of the two 259 // types, then update all the second type to the first type 260 using DefiningValueMapTy = MapVector<Value *, Value *>; 261 using PointerToBaseTy = MapVector<Value *, Value *>; 262 using StatepointLiveSetTy = SetVector<Value *>; 263 using RematerializedValueMapTy = 264 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 265 266 struct PartiallyConstructedSafepointRecord { 267 /// The set of values known to be live across this safepoint 268 StatepointLiveSetTy LiveSet; 269 270 /// The *new* gc.statepoint instruction itself. This produces the token 271 /// that normal path gc.relocates and the gc.result are tied to. 272 GCStatepointInst *StatepointToken; 273 274 /// Instruction to which exceptional gc relocates are attached 275 /// Makes it easier to iterate through them during relocationViaAlloca. 276 Instruction *UnwindToken; 277 278 /// Record live values we are rematerialized instead of relocating. 279 /// They are not included into 'LiveSet' field. 280 /// Maps rematerialized copy to it's original value. 281 RematerializedValueMapTy RematerializedValues; 282 }; 283 284 } // end anonymous namespace 285 286 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 287 Optional<OperandBundleUse> DeoptBundle = 288 Call->getOperandBundle(LLVMContext::OB_deopt); 289 290 if (!DeoptBundle.hasValue()) { 291 assert(AllowStatepointWithNoDeoptInfo && 292 "Found non-leaf call without deopt info!"); 293 return None; 294 } 295 296 return DeoptBundle.getValue().Inputs; 297 } 298 299 /// Compute the live-in set for every basic block in the function 300 static void computeLiveInValues(DominatorTree &DT, Function &F, 301 GCPtrLivenessData &Data); 302 303 /// Given results from the dataflow liveness computation, find the set of live 304 /// Values at a particular instruction. 305 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 306 StatepointLiveSetTy &out); 307 308 // TODO: Once we can get to the GCStrategy, this becomes 309 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 310 311 static bool isGCPointerType(Type *T) { 312 if (auto *PT = dyn_cast<PointerType>(T)) 313 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 314 // GC managed heap. We know that a pointer into this heap needs to be 315 // updated and that no other pointer does. 316 return PT->getAddressSpace() == 1; 317 return false; 318 } 319 320 // Return true if this type is one which a) is a gc pointer or contains a GC 321 // pointer and b) is of a type this code expects to encounter as a live value. 322 // (The insertion code will assert that a type which matches (a) and not (b) 323 // is not encountered.) 324 static bool isHandledGCPointerType(Type *T) { 325 // We fully support gc pointers 326 if (isGCPointerType(T)) 327 return true; 328 // We partially support vectors of gc pointers. The code will assert if it 329 // can't handle something. 330 if (auto VT = dyn_cast<VectorType>(T)) 331 if (isGCPointerType(VT->getElementType())) 332 return true; 333 return false; 334 } 335 336 #ifndef NDEBUG 337 /// Returns true if this type contains a gc pointer whether we know how to 338 /// handle that type or not. 339 static bool containsGCPtrType(Type *Ty) { 340 if (isGCPointerType(Ty)) 341 return true; 342 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 343 return isGCPointerType(VT->getScalarType()); 344 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 345 return containsGCPtrType(AT->getElementType()); 346 if (StructType *ST = dyn_cast<StructType>(Ty)) 347 return llvm::any_of(ST->elements(), containsGCPtrType); 348 return false; 349 } 350 351 // Returns true if this is a type which a) is a gc pointer or contains a GC 352 // pointer and b) is of a type which the code doesn't expect (i.e. first class 353 // aggregates). Used to trip assertions. 354 static bool isUnhandledGCPointerType(Type *Ty) { 355 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 356 } 357 #endif 358 359 // Return the name of the value suffixed with the provided value, or if the 360 // value didn't have a name, the default value specified. 361 static std::string suffixed_name_or(Value *V, StringRef Suffix, 362 StringRef DefaultName) { 363 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 364 } 365 366 // Conservatively identifies any definitions which might be live at the 367 // given instruction. The analysis is performed immediately before the 368 // given instruction. Values defined by that instruction are not considered 369 // live. Values used by that instruction are considered live. 370 static void analyzeParsePointLiveness( 371 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 372 PartiallyConstructedSafepointRecord &Result) { 373 StatepointLiveSetTy LiveSet; 374 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); 375 376 if (PrintLiveSet) { 377 dbgs() << "Live Variables:\n"; 378 for (Value *V : LiveSet) 379 dbgs() << " " << V->getName() << " " << *V << "\n"; 380 } 381 if (PrintLiveSetSize) { 382 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 383 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 384 } 385 Result.LiveSet = LiveSet; 386 } 387 388 // Returns true is V is a knownBaseResult. 389 static bool isKnownBaseResult(Value *V); 390 391 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is 392 // not created by the findBasePointers algorithm. 393 static bool isOriginalBaseResult(Value *V); 394 395 namespace { 396 397 /// A single base defining value - An immediate base defining value for an 398 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 399 /// For instructions which have multiple pointer [vector] inputs or that 400 /// transition between vector and scalar types, there is no immediate base 401 /// defining value. The 'base defining value' for 'Def' is the transitive 402 /// closure of this relation stopping at the first instruction which has no 403 /// immediate base defining value. The b.d.v. might itself be a base pointer, 404 /// but it can also be an arbitrary derived pointer. 405 struct BaseDefiningValueResult { 406 /// Contains the value which is the base defining value. 407 Value * const BDV; 408 409 /// True if the base defining value is also known to be an actual base 410 /// pointer. 411 const bool IsKnownBase; 412 413 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 414 : BDV(BDV), IsKnownBase(IsKnownBase) { 415 #ifndef NDEBUG 416 // Check consistency between new and old means of checking whether a BDV is 417 // a base. 418 bool MustBeBase = isKnownBaseResult(BDV); 419 assert(!MustBeBase || MustBeBase == IsKnownBase); 420 #endif 421 } 422 }; 423 424 } // end anonymous namespace 425 426 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 427 428 /// Return a base defining value for the 'Index' element of the given vector 429 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 430 /// 'I'. As an optimization, this method will try to determine when the 431 /// element is known to already be a base pointer. If this can be established, 432 /// the second value in the returned pair will be true. Note that either a 433 /// vector or a pointer typed value can be returned. For the former, the 434 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 435 /// If the later, the return pointer is a BDV (or possibly a base) for the 436 /// particular element in 'I'. 437 static BaseDefiningValueResult 438 findBaseDefiningValueOfVector(Value *I) { 439 // Each case parallels findBaseDefiningValue below, see that code for 440 // detailed motivation. 441 442 if (isa<Argument>(I)) 443 // An incoming argument to the function is a base pointer 444 return BaseDefiningValueResult(I, true); 445 446 if (isa<Constant>(I)) 447 // Base of constant vector consists only of constant null pointers. 448 // For reasoning see similar case inside 'findBaseDefiningValue' function. 449 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 450 true); 451 452 if (isa<LoadInst>(I)) 453 return BaseDefiningValueResult(I, true); 454 455 if (isa<InsertElementInst>(I)) 456 // We don't know whether this vector contains entirely base pointers or 457 // not. To be conservatively correct, we treat it as a BDV and will 458 // duplicate code as needed to construct a parallel vector of bases. 459 return BaseDefiningValueResult(I, false); 460 461 if (isa<ShuffleVectorInst>(I)) 462 // We don't know whether this vector contains entirely base pointers or 463 // not. To be conservatively correct, we treat it as a BDV and will 464 // duplicate code as needed to construct a parallel vector of bases. 465 // TODO: There a number of local optimizations which could be applied here 466 // for particular sufflevector patterns. 467 return BaseDefiningValueResult(I, false); 468 469 // The behavior of getelementptr instructions is the same for vector and 470 // non-vector data types. 471 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 472 return findBaseDefiningValue(GEP->getPointerOperand()); 473 474 // If the pointer comes through a bitcast of a vector of pointers to 475 // a vector of another type of pointer, then look through the bitcast 476 if (auto *BC = dyn_cast<BitCastInst>(I)) 477 return findBaseDefiningValue(BC->getOperand(0)); 478 479 // We assume that functions in the source language only return base 480 // pointers. This should probably be generalized via attributes to support 481 // both source language and internal functions. 482 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 483 return BaseDefiningValueResult(I, true); 484 485 // A PHI or Select is a base defining value. The outer findBasePointer 486 // algorithm is responsible for constructing a base value for this BDV. 487 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 488 "unknown vector instruction - no base found for vector element"); 489 return BaseDefiningValueResult(I, false); 490 } 491 492 /// Helper function for findBasePointer - Will return a value which either a) 493 /// defines the base pointer for the input, b) blocks the simple search 494 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 495 /// from pointer to vector type or back. 496 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 497 assert(I->getType()->isPtrOrPtrVectorTy() && 498 "Illegal to ask for the base pointer of a non-pointer type"); 499 500 if (I->getType()->isVectorTy()) 501 return findBaseDefiningValueOfVector(I); 502 503 if (isa<Argument>(I)) 504 // An incoming argument to the function is a base pointer 505 // We should have never reached here if this argument isn't an gc value 506 return BaseDefiningValueResult(I, true); 507 508 if (isa<Constant>(I)) { 509 // We assume that objects with a constant base (e.g. a global) can't move 510 // and don't need to be reported to the collector because they are always 511 // live. Besides global references, all kinds of constants (e.g. undef, 512 // constant expressions, null pointers) can be introduced by the inliner or 513 // the optimizer, especially on dynamically dead paths. 514 // Here we treat all of them as having single null base. By doing this we 515 // trying to avoid problems reporting various conflicts in a form of 516 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 517 // See constant.ll file for relevant test cases. 518 519 return BaseDefiningValueResult( 520 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 521 } 522 523 // inttoptrs in an integral address space are currently ill-defined. We 524 // treat them as defining base pointers here for consistency with the 525 // constant rule above and because we don't really have a better semantic 526 // to give them. Note that the optimizer is always free to insert undefined 527 // behavior on dynamically dead paths as well. 528 if (isa<IntToPtrInst>(I)) 529 return BaseDefiningValueResult(I, true); 530 531 if (CastInst *CI = dyn_cast<CastInst>(I)) { 532 Value *Def = CI->stripPointerCasts(); 533 // If stripping pointer casts changes the address space there is an 534 // addrspacecast in between. 535 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 536 cast<PointerType>(CI->getType())->getAddressSpace() && 537 "unsupported addrspacecast"); 538 // If we find a cast instruction here, it means we've found a cast which is 539 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 540 // handle int->ptr conversion. 541 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 542 return findBaseDefiningValue(Def); 543 } 544 545 if (isa<LoadInst>(I)) 546 // The value loaded is an gc base itself 547 return BaseDefiningValueResult(I, true); 548 549 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 550 // The base of this GEP is the base 551 return findBaseDefiningValue(GEP->getPointerOperand()); 552 553 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 554 switch (II->getIntrinsicID()) { 555 default: 556 // fall through to general call handling 557 break; 558 case Intrinsic::experimental_gc_statepoint: 559 llvm_unreachable("statepoints don't produce pointers"); 560 case Intrinsic::experimental_gc_relocate: 561 // Rerunning safepoint insertion after safepoints are already 562 // inserted is not supported. It could probably be made to work, 563 // but why are you doing this? There's no good reason. 564 llvm_unreachable("repeat safepoint insertion is not supported"); 565 case Intrinsic::gcroot: 566 // Currently, this mechanism hasn't been extended to work with gcroot. 567 // There's no reason it couldn't be, but I haven't thought about the 568 // implications much. 569 llvm_unreachable( 570 "interaction with the gcroot mechanism is not supported"); 571 case Intrinsic::experimental_gc_get_pointer_base: 572 return findBaseDefiningValue(II->getOperand(0)); 573 } 574 } 575 // We assume that functions in the source language only return base 576 // pointers. This should probably be generalized via attributes to support 577 // both source language and internal functions. 578 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 579 return BaseDefiningValueResult(I, true); 580 581 // TODO: I have absolutely no idea how to implement this part yet. It's not 582 // necessarily hard, I just haven't really looked at it yet. 583 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 584 585 if (isa<AtomicCmpXchgInst>(I)) 586 // A CAS is effectively a atomic store and load combined under a 587 // predicate. From the perspective of base pointers, we just treat it 588 // like a load. 589 return BaseDefiningValueResult(I, true); 590 591 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 592 "binary ops which don't apply to pointers"); 593 594 // The aggregate ops. Aggregates can either be in the heap or on the 595 // stack, but in either case, this is simply a field load. As a result, 596 // this is a defining definition of the base just like a load is. 597 if (isa<ExtractValueInst>(I)) 598 return BaseDefiningValueResult(I, true); 599 600 // We should never see an insert vector since that would require we be 601 // tracing back a struct value not a pointer value. 602 assert(!isa<InsertValueInst>(I) && 603 "Base pointer for a struct is meaningless"); 604 605 // This value might have been generated by findBasePointer() called when 606 // substituting gc.get.pointer.base() intrinsic. 607 bool IsKnownBase = 608 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 609 610 // An extractelement produces a base result exactly when it's input does. 611 // We may need to insert a parallel instruction to extract the appropriate 612 // element out of the base vector corresponding to the input. Given this, 613 // it's analogous to the phi and select case even though it's not a merge. 614 if (isa<ExtractElementInst>(I)) 615 // Note: There a lot of obvious peephole cases here. This are deliberately 616 // handled after the main base pointer inference algorithm to make writing 617 // test cases to exercise that code easier. 618 return BaseDefiningValueResult(I, IsKnownBase); 619 620 // The last two cases here don't return a base pointer. Instead, they 621 // return a value which dynamically selects from among several base 622 // derived pointers (each with it's own base potentially). It's the job of 623 // the caller to resolve these. 624 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 625 "missing instruction case in findBaseDefiningValing"); 626 return BaseDefiningValueResult(I, IsKnownBase); 627 } 628 629 /// Returns the base defining value for this value. 630 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 631 Value *&Cached = Cache[I]; 632 if (!Cached) { 633 Cached = findBaseDefiningValue(I).BDV; 634 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 635 << Cached->getName() << "\n"); 636 } 637 assert(Cache[I] != nullptr); 638 return Cached; 639 } 640 641 /// Return a base pointer for this value if known. Otherwise, return it's 642 /// base defining value. 643 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 644 Value *Def = findBaseDefiningValueCached(I, Cache); 645 auto Found = Cache.find(Def); 646 if (Found != Cache.end()) { 647 // Either a base-of relation, or a self reference. Caller must check. 648 return Found->second; 649 } 650 // Only a BDV available 651 return Def; 652 } 653 654 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 655 /// exists in the code. 656 static bool isOriginalBaseResult(Value *V) { 657 // no recursion possible 658 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 659 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 660 !isa<ShuffleVectorInst>(V); 661 } 662 663 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 664 /// is it known to be a base pointer? Or do we need to continue searching. 665 static bool isKnownBaseResult(Value *V) { 666 if (isOriginalBaseResult(V)) 667 return true; 668 if (isa<Instruction>(V) && 669 cast<Instruction>(V)->getMetadata("is_base_value")) { 670 // This is a previously inserted base phi or select. We know 671 // that this is a base value. 672 return true; 673 } 674 675 // We need to keep searching 676 return false; 677 } 678 679 // Returns true if First and Second values are both scalar or both vector. 680 static bool areBothVectorOrScalar(Value *First, Value *Second) { 681 return isa<VectorType>(First->getType()) == 682 isa<VectorType>(Second->getType()); 683 } 684 685 namespace { 686 687 /// Models the state of a single base defining value in the findBasePointer 688 /// algorithm for determining where a new instruction is needed to propagate 689 /// the base of this BDV. 690 class BDVState { 691 public: 692 enum StatusTy { 693 // Starting state of lattice 694 Unknown, 695 // Some specific base value -- does *not* mean that instruction 696 // propagates the base of the object 697 // ex: gep %arg, 16 -> %arg is the base value 698 Base, 699 // Need to insert a node to represent a merge. 700 Conflict 701 }; 702 703 BDVState() { 704 llvm_unreachable("missing state in map"); 705 } 706 707 explicit BDVState(Value *OriginalValue) 708 : OriginalValue(OriginalValue) {} 709 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 710 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 711 assert(Status != Base || BaseValue); 712 } 713 714 StatusTy getStatus() const { return Status; } 715 Value *getOriginalValue() const { return OriginalValue; } 716 Value *getBaseValue() const { return BaseValue; } 717 718 bool isBase() const { return getStatus() == Base; } 719 bool isUnknown() const { return getStatus() == Unknown; } 720 bool isConflict() const { return getStatus() == Conflict; } 721 722 // Values of type BDVState form a lattice, and this function implements the 723 // meet 724 // operation. 725 void meet(const BDVState &Other) { 726 auto markConflict = [&]() { 727 Status = BDVState::Conflict; 728 BaseValue = nullptr; 729 }; 730 // Conflict is a final state. 731 if (isConflict()) 732 return; 733 // if we are not known - just take other state. 734 if (isUnknown()) { 735 Status = Other.getStatus(); 736 BaseValue = Other.getBaseValue(); 737 return; 738 } 739 // We are base. 740 assert(isBase() && "Unknown state"); 741 // If other is unknown - just keep our state. 742 if (Other.isUnknown()) 743 return; 744 // If other is conflict - it is a final state. 745 if (Other.isConflict()) 746 return markConflict(); 747 // Other is base as well. 748 assert(Other.isBase() && "Unknown state"); 749 // If bases are different - Conflict. 750 if (getBaseValue() != Other.getBaseValue()) 751 return markConflict(); 752 // We are identical, do nothing. 753 } 754 755 bool operator==(const BDVState &Other) const { 756 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && 757 Status == Other.Status; 758 } 759 760 bool operator!=(const BDVState &other) const { return !(*this == other); } 761 762 LLVM_DUMP_METHOD 763 void dump() const { 764 print(dbgs()); 765 dbgs() << '\n'; 766 } 767 768 void print(raw_ostream &OS) const { 769 switch (getStatus()) { 770 case Unknown: 771 OS << "U"; 772 break; 773 case Base: 774 OS << "B"; 775 break; 776 case Conflict: 777 OS << "C"; 778 break; 779 } 780 OS << " (base " << getBaseValue() << " - " 781 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 782 << " for " << OriginalValue->getName() << ":"; 783 } 784 785 private: 786 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 787 StatusTy Status = Unknown; 788 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 789 }; 790 791 } // end anonymous namespace 792 793 #ifndef NDEBUG 794 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 795 State.print(OS); 796 return OS; 797 } 798 #endif 799 800 /// For a given value or instruction, figure out what base ptr its derived from. 801 /// For gc objects, this is simply itself. On success, returns a value which is 802 /// the base pointer. (This is reliable and can be used for relocation.) On 803 /// failure, returns nullptr. 804 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 805 Value *Def = findBaseOrBDV(I, Cache); 806 807 if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I)) 808 return Def; 809 810 // Here's the rough algorithm: 811 // - For every SSA value, construct a mapping to either an actual base 812 // pointer or a PHI which obscures the base pointer. 813 // - Construct a mapping from PHI to unknown TOP state. Use an 814 // optimistic algorithm to propagate base pointer information. Lattice 815 // looks like: 816 // UNKNOWN 817 // b1 b2 b3 b4 818 // CONFLICT 819 // When algorithm terminates, all PHIs will either have a single concrete 820 // base or be in a conflict state. 821 // - For every conflict, insert a dummy PHI node without arguments. Add 822 // these to the base[Instruction] = BasePtr mapping. For every 823 // non-conflict, add the actual base. 824 // - For every conflict, add arguments for the base[a] of each input 825 // arguments. 826 // 827 // Note: A simpler form of this would be to add the conflict form of all 828 // PHIs without running the optimistic algorithm. This would be 829 // analogous to pessimistic data flow and would likely lead to an 830 // overall worse solution. 831 832 #ifndef NDEBUG 833 auto isExpectedBDVType = [](Value *BDV) { 834 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 835 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 836 isa<ShuffleVectorInst>(BDV); 837 }; 838 #endif 839 840 // Once populated, will contain a mapping from each potentially non-base BDV 841 // to a lattice value (described above) which corresponds to that BDV. 842 // We use the order of insertion (DFS over the def/use graph) to provide a 843 // stable deterministic ordering for visiting DenseMaps (which are unordered) 844 // below. This is important for deterministic compilation. 845 MapVector<Value *, BDVState> States; 846 847 #ifndef NDEBUG 848 auto VerifyStates = [&]() { 849 for (auto &Entry : States) { 850 assert(Entry.first == Entry.second.getOriginalValue()); 851 } 852 }; 853 #endif 854 855 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 856 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 857 for (Value *InVal : PN->incoming_values()) 858 F(InVal); 859 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 860 F(SI->getTrueValue()); 861 F(SI->getFalseValue()); 862 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 863 F(EE->getVectorOperand()); 864 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 865 F(IE->getOperand(0)); 866 F(IE->getOperand(1)); 867 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 868 // For a canonical broadcast, ignore the undef argument 869 // (without this, we insert a parallel base shuffle for every broadcast) 870 F(SV->getOperand(0)); 871 if (!SV->isZeroEltSplat()) 872 F(SV->getOperand(1)); 873 } else { 874 llvm_unreachable("unexpected BDV type"); 875 } 876 }; 877 878 879 // Recursively fill in all base defining values reachable from the initial 880 // one for which we don't already know a definite base value for 881 /* scope */ { 882 SmallVector<Value*, 16> Worklist; 883 Worklist.push_back(Def); 884 States.insert({Def, BDVState(Def)}); 885 while (!Worklist.empty()) { 886 Value *Current = Worklist.pop_back_val(); 887 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 888 889 auto visitIncomingValue = [&](Value *InVal) { 890 Value *Base = findBaseOrBDV(InVal, Cache); 891 if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal)) 892 // Known bases won't need new instructions introduced and can be 893 // ignored safely. However, this can only be done when InVal and Base 894 // are both scalar or both vector. Otherwise, we need to find a 895 // correct BDV for InVal, by creating an entry in the lattice 896 // (States). 897 return; 898 assert(isExpectedBDVType(Base) && "the only non-base values " 899 "we see should be base defining values"); 900 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 901 Worklist.push_back(Base); 902 }; 903 904 visitBDVOperands(Current, visitIncomingValue); 905 } 906 } 907 908 #ifndef NDEBUG 909 VerifyStates(); 910 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 911 for (const auto &Pair : States) { 912 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 913 } 914 #endif 915 916 // Iterate forward through the value graph pruning any node from the state 917 // list where all of the inputs are base pointers. The purpose of this is to 918 // reuse existing values when the derived pointer we were asked to materialize 919 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 920 // feeding it does.) 921 SmallVector<Value *> ToRemove; 922 do { 923 ToRemove.clear(); 924 for (auto Pair : States) { 925 Value *BDV = Pair.first; 926 auto canPruneInput = [&](Value *V) { 927 Value *BDV = findBaseOrBDV(V, Cache); 928 if (V->stripPointerCasts() != BDV) 929 return false; 930 // The assumption is that anything not in the state list is 931 // propagates a base pointer. 932 return States.count(BDV) == 0; 933 }; 934 935 bool CanPrune = true; 936 visitBDVOperands(BDV, [&](Value *Op) { 937 CanPrune = CanPrune && canPruneInput(Op); 938 }); 939 if (CanPrune) 940 ToRemove.push_back(BDV); 941 } 942 for (Value *V : ToRemove) { 943 States.erase(V); 944 // Cache the fact V is it's own base for later usage. 945 Cache[V] = V; 946 } 947 } while (!ToRemove.empty()); 948 949 // Did we manage to prove that Def itself must be a base pointer? 950 if (!States.count(Def)) 951 return Def; 952 953 // Return a phi state for a base defining value. We'll generate a new 954 // base state for known bases and expect to find a cached state otherwise. 955 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 956 auto I = States.find(BaseValue); 957 if (I != States.end()) 958 return I->second; 959 assert(areBothVectorOrScalar(BaseValue, Input)); 960 return BDVState(BaseValue, BDVState::Base, BaseValue); 961 }; 962 963 bool Progress = true; 964 while (Progress) { 965 #ifndef NDEBUG 966 const size_t OldSize = States.size(); 967 #endif 968 Progress = false; 969 // We're only changing values in this loop, thus safe to keep iterators. 970 // Since this is computing a fixed point, the order of visit does not 971 // effect the result. TODO: We could use a worklist here and make this run 972 // much faster. 973 for (auto Pair : States) { 974 Value *BDV = Pair.first; 975 // Only values that do not have known bases or those that have differing 976 // type (scalar versus vector) from a possible known base should be in the 977 // lattice. 978 assert((!isKnownBaseResult(BDV) || 979 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 980 "why did it get added?"); 981 982 BDVState NewState(BDV); 983 visitBDVOperands(BDV, [&](Value *Op) { 984 Value *BDV = findBaseOrBDV(Op, Cache); 985 auto OpState = GetStateForBDV(BDV, Op); 986 NewState.meet(OpState); 987 }); 988 989 BDVState OldState = States[BDV]; 990 if (OldState != NewState) { 991 Progress = true; 992 States[BDV] = NewState; 993 } 994 } 995 996 assert(OldSize == States.size() && 997 "fixed point shouldn't be adding any new nodes to state"); 998 } 999 1000 #ifndef NDEBUG 1001 VerifyStates(); 1002 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 1003 for (const auto &Pair : States) { 1004 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 1005 } 1006 #endif 1007 1008 // Handle all instructions that have a vector BDV, but the instruction itself 1009 // is of scalar type. 1010 for (auto Pair : States) { 1011 Instruction *I = cast<Instruction>(Pair.first); 1012 BDVState State = Pair.second; 1013 auto *BaseValue = State.getBaseValue(); 1014 // Only values that do not have known bases or those that have differing 1015 // type (scalar versus vector) from a possible known base should be in the 1016 // lattice. 1017 assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) && 1018 "why did it get added?"); 1019 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1020 1021 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 1022 continue; 1023 // extractelement instructions are a bit special in that we may need to 1024 // insert an extract even when we know an exact base for the instruction. 1025 // The problem is that we need to convert from a vector base to a scalar 1026 // base for the particular indice we're interested in. 1027 if (isa<ExtractElementInst>(I)) { 1028 auto *EE = cast<ExtractElementInst>(I); 1029 // TODO: In many cases, the new instruction is just EE itself. We should 1030 // exploit this, but can't do it here since it would break the invariant 1031 // about the BDV not being known to be a base. 1032 auto *BaseInst = ExtractElementInst::Create( 1033 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 1034 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1035 States[I] = BDVState(I, BDVState::Base, BaseInst); 1036 } else if (!isa<VectorType>(I->getType())) { 1037 // We need to handle cases that have a vector base but the instruction is 1038 // a scalar type (these could be phis or selects or any instruction that 1039 // are of scalar type, but the base can be a vector type). We 1040 // conservatively set this as conflict. Setting the base value for these 1041 // conflicts is handled in the next loop which traverses States. 1042 States[I] = BDVState(I, BDVState::Conflict); 1043 } 1044 } 1045 1046 #ifndef NDEBUG 1047 VerifyStates(); 1048 #endif 1049 1050 // Insert Phis for all conflicts 1051 // TODO: adjust naming patterns to avoid this order of iteration dependency 1052 for (auto Pair : States) { 1053 Instruction *I = cast<Instruction>(Pair.first); 1054 BDVState State = Pair.second; 1055 // Only values that do not have known bases or those that have differing 1056 // type (scalar versus vector) from a possible known base should be in the 1057 // lattice. 1058 assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) && 1059 "why did it get added?"); 1060 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1061 1062 // Since we're joining a vector and scalar base, they can never be the 1063 // same. As a result, we should always see insert element having reached 1064 // the conflict state. 1065 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1066 1067 if (!State.isConflict()) 1068 continue; 1069 1070 auto getMangledName = [](Instruction *I) -> std::string { 1071 if (isa<PHINode>(I)) { 1072 return suffixed_name_or(I, ".base", "base_phi"); 1073 } else if (isa<SelectInst>(I)) { 1074 return suffixed_name_or(I, ".base", "base_select"); 1075 } else if (isa<ExtractElementInst>(I)) { 1076 return suffixed_name_or(I, ".base", "base_ee"); 1077 } else if (isa<InsertElementInst>(I)) { 1078 return suffixed_name_or(I, ".base", "base_ie"); 1079 } else { 1080 return suffixed_name_or(I, ".base", "base_sv"); 1081 } 1082 }; 1083 1084 Instruction *BaseInst = I->clone(); 1085 BaseInst->insertBefore(I); 1086 BaseInst->setName(getMangledName(I)); 1087 // Add metadata marking this as a base value 1088 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1089 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1090 } 1091 1092 #ifndef NDEBUG 1093 VerifyStates(); 1094 #endif 1095 1096 // Returns a instruction which produces the base pointer for a given 1097 // instruction. The instruction is assumed to be an input to one of the BDVs 1098 // seen in the inference algorithm above. As such, we must either already 1099 // know it's base defining value is a base, or have inserted a new 1100 // instruction to propagate the base of it's BDV and have entered that newly 1101 // introduced instruction into the state table. In either case, we are 1102 // assured to be able to determine an instruction which produces it's base 1103 // pointer. 1104 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1105 Value *BDV = findBaseOrBDV(Input, Cache); 1106 Value *Base = nullptr; 1107 if (!States.count(BDV)) { 1108 assert(areBothVectorOrScalar(BDV, Input)); 1109 Base = BDV; 1110 } else { 1111 // Either conflict or base. 1112 assert(States.count(BDV)); 1113 Base = States[BDV].getBaseValue(); 1114 } 1115 assert(Base && "Can't be null"); 1116 // The cast is needed since base traversal may strip away bitcasts 1117 if (Base->getType() != Input->getType() && InsertPt) 1118 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1119 return Base; 1120 }; 1121 1122 // Fixup all the inputs of the new PHIs. Visit order needs to be 1123 // deterministic and predictable because we're naming newly created 1124 // instructions. 1125 for (auto Pair : States) { 1126 Instruction *BDV = cast<Instruction>(Pair.first); 1127 BDVState State = Pair.second; 1128 1129 // Only values that do not have known bases or those that have differing 1130 // type (scalar versus vector) from a possible known base should be in the 1131 // lattice. 1132 assert((!isKnownBaseResult(BDV) || 1133 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1134 "why did it get added?"); 1135 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1136 if (!State.isConflict()) 1137 continue; 1138 1139 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1140 PHINode *PN = cast<PHINode>(BDV); 1141 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1142 1143 // The IR verifier requires phi nodes with multiple entries from the 1144 // same basic block to have the same incoming value for each of those 1145 // entries. Since we're inserting bitcasts in the loop, make sure we 1146 // do so at least once per incoming block. 1147 DenseMap<BasicBlock *, Value*> BlockToValue; 1148 for (unsigned i = 0; i < NumPHIValues; i++) { 1149 Value *InVal = PN->getIncomingValue(i); 1150 BasicBlock *InBB = PN->getIncomingBlock(i); 1151 if (!BlockToValue.count(InBB)) 1152 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1153 else { 1154 #ifndef NDEBUG 1155 Value *OldBase = BlockToValue[InBB]; 1156 Value *Base = getBaseForInput(InVal, nullptr); 1157 // In essence this assert states: the only way two values 1158 // incoming from the same basic block may be different is by 1159 // being different bitcasts of the same value. A cleanup 1160 // that remains TODO is changing findBaseOrBDV to return an 1161 // llvm::Value of the correct type (and still remain pure). 1162 // This will remove the need to add bitcasts. 1163 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1164 "findBaseOrBDV should be pure!"); 1165 #endif 1166 } 1167 Value *Base = BlockToValue[InBB]; 1168 BasePHI->setIncomingValue(i, Base); 1169 } 1170 } else if (SelectInst *BaseSI = 1171 dyn_cast<SelectInst>(State.getBaseValue())) { 1172 SelectInst *SI = cast<SelectInst>(BDV); 1173 1174 // Find the instruction which produces the base for each input. 1175 // We may need to insert a bitcast. 1176 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1177 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1178 } else if (auto *BaseEE = 1179 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1180 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1181 // Find the instruction which produces the base for each input. We may 1182 // need to insert a bitcast. 1183 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1184 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1185 auto *BdvIE = cast<InsertElementInst>(BDV); 1186 auto UpdateOperand = [&](int OperandIdx) { 1187 Value *InVal = BdvIE->getOperand(OperandIdx); 1188 Value *Base = getBaseForInput(InVal, BaseIE); 1189 BaseIE->setOperand(OperandIdx, Base); 1190 }; 1191 UpdateOperand(0); // vector operand 1192 UpdateOperand(1); // scalar operand 1193 } else { 1194 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1195 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1196 auto UpdateOperand = [&](int OperandIdx) { 1197 Value *InVal = BdvSV->getOperand(OperandIdx); 1198 Value *Base = getBaseForInput(InVal, BaseSV); 1199 BaseSV->setOperand(OperandIdx, Base); 1200 }; 1201 UpdateOperand(0); // vector operand 1202 if (!BdvSV->isZeroEltSplat()) 1203 UpdateOperand(1); // vector operand 1204 else { 1205 // Never read, so just use undef 1206 Value *InVal = BdvSV->getOperand(1); 1207 BaseSV->setOperand(1, UndefValue::get(InVal->getType())); 1208 } 1209 } 1210 } 1211 1212 #ifndef NDEBUG 1213 VerifyStates(); 1214 #endif 1215 1216 // Cache all of our results so we can cheaply reuse them 1217 // NOTE: This is actually two caches: one of the base defining value 1218 // relation and one of the base pointer relation! FIXME 1219 for (auto Pair : States) { 1220 auto *BDV = Pair.first; 1221 Value *Base = Pair.second.getBaseValue(); 1222 assert(BDV && Base); 1223 // Only values that do not have known bases or those that have differing 1224 // type (scalar versus vector) from a possible known base should be in the 1225 // lattice. 1226 assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) && 1227 "why did it get added?"); 1228 1229 LLVM_DEBUG( 1230 dbgs() << "Updating base value cache" 1231 << " for: " << BDV->getName() << " from: " 1232 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1233 << " to: " << Base->getName() << "\n"); 1234 1235 Cache[BDV] = Base; 1236 } 1237 assert(Cache.count(Def)); 1238 return Cache[Def]; 1239 } 1240 1241 // For a set of live pointers (base and/or derived), identify the base 1242 // pointer of the object which they are derived from. This routine will 1243 // mutate the IR graph as needed to make the 'base' pointer live at the 1244 // definition site of 'derived'. This ensures that any use of 'derived' can 1245 // also use 'base'. This may involve the insertion of a number of 1246 // additional PHI nodes. 1247 // 1248 // preconditions: live is a set of pointer type Values 1249 // 1250 // side effects: may insert PHI nodes into the existing CFG, will preserve 1251 // CFG, will not remove or mutate any existing nodes 1252 // 1253 // post condition: PointerToBase contains one (derived, base) pair for every 1254 // pointer in live. Note that derived can be equal to base if the original 1255 // pointer was a base pointer. 1256 static void findBasePointers(const StatepointLiveSetTy &live, 1257 PointerToBaseTy &PointerToBase, DominatorTree *DT, 1258 DefiningValueMapTy &DVCache) { 1259 for (Value *ptr : live) { 1260 Value *base = findBasePointer(ptr, DVCache); 1261 assert(base && "failed to find base pointer"); 1262 PointerToBase[ptr] = base; 1263 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1264 DT->dominates(cast<Instruction>(base)->getParent(), 1265 cast<Instruction>(ptr)->getParent())) && 1266 "The base we found better dominate the derived pointer"); 1267 } 1268 } 1269 1270 /// Find the required based pointers (and adjust the live set) for the given 1271 /// parse point. 1272 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1273 CallBase *Call, 1274 PartiallyConstructedSafepointRecord &result, 1275 PointerToBaseTy &PointerToBase) { 1276 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1277 // We assume that all pointers passed to deopt are base pointers; as an 1278 // optimization, we can use this to avoid seperately materializing the base 1279 // pointer graph. This is only relevant since we're very conservative about 1280 // generating new conflict nodes during base pointer insertion. If we were 1281 // smarter there, this would be irrelevant. 1282 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1283 for (Value *V : Opt->Inputs) { 1284 if (!PotentiallyDerivedPointers.count(V)) 1285 continue; 1286 PotentiallyDerivedPointers.remove(V); 1287 PointerToBase[V] = V; 1288 } 1289 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache); 1290 } 1291 1292 /// Given an updated version of the dataflow liveness results, update the 1293 /// liveset and base pointer maps for the call site CS. 1294 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1295 CallBase *Call, 1296 PartiallyConstructedSafepointRecord &result, 1297 PointerToBaseTy &PointerToBase); 1298 1299 static void recomputeLiveInValues( 1300 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1301 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 1302 PointerToBaseTy &PointerToBase) { 1303 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1304 // again. The old values are still live and will help it stabilize quickly. 1305 GCPtrLivenessData RevisedLivenessData; 1306 computeLiveInValues(DT, F, RevisedLivenessData); 1307 for (size_t i = 0; i < records.size(); i++) { 1308 struct PartiallyConstructedSafepointRecord &info = records[i]; 1309 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, 1310 PointerToBase); 1311 } 1312 } 1313 1314 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1315 // no uses of the original value / return value between the gc.statepoint and 1316 // the gc.relocate / gc.result call. One case which can arise is a phi node 1317 // starting one of the successor blocks. We also need to be able to insert the 1318 // gc.relocates only on the path which goes through the statepoint. We might 1319 // need to split an edge to make this possible. 1320 static BasicBlock * 1321 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1322 DominatorTree &DT) { 1323 BasicBlock *Ret = BB; 1324 if (!BB->getUniquePredecessor()) 1325 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1326 1327 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1328 // from it 1329 FoldSingleEntryPHINodes(Ret); 1330 assert(!isa<PHINode>(Ret->begin()) && 1331 "All PHI nodes should have been removed!"); 1332 1333 // At this point, we can safely insert a gc.relocate or gc.result as the first 1334 // instruction in Ret if needed. 1335 return Ret; 1336 } 1337 1338 // List of all function attributes which must be stripped when lowering from 1339 // abstract machine model to physical machine model. Essentially, these are 1340 // all the effects a safepoint might have which we ignored in the abstract 1341 // machine model for purposes of optimization. We have to strip these on 1342 // both function declarations and call sites. 1343 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1344 {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly, 1345 Attribute::ArgMemOnly, Attribute::InaccessibleMemOnly, 1346 Attribute::InaccessibleMemOrArgMemOnly, 1347 Attribute::NoSync, Attribute::NoFree}; 1348 1349 // Create new attribute set containing only attributes which can be transferred 1350 // from original call to the safepoint. 1351 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1352 AttributeList AL) { 1353 if (AL.isEmpty()) 1354 return AL; 1355 1356 // Remove the readonly, readnone, and statepoint function attributes. 1357 AttrBuilder FnAttrs(Ctx, AL.getFnAttrs()); 1358 for (auto Attr : FnAttrsToStrip) 1359 FnAttrs.removeAttribute(Attr); 1360 1361 for (Attribute A : AL.getFnAttrs()) { 1362 if (isStatepointDirectiveAttr(A)) 1363 FnAttrs.removeAttribute(A); 1364 } 1365 1366 // Just skip parameter and return attributes for now 1367 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1368 AttributeSet::get(Ctx, FnAttrs)); 1369 } 1370 1371 /// Helper function to place all gc relocates necessary for the given 1372 /// statepoint. 1373 /// Inputs: 1374 /// liveVariables - list of variables to be relocated. 1375 /// basePtrs - base pointers. 1376 /// statepointToken - statepoint instruction to which relocates should be 1377 /// bound. 1378 /// Builder - Llvm IR builder to be used to construct new calls. 1379 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1380 ArrayRef<Value *> BasePtrs, 1381 Instruction *StatepointToken, 1382 IRBuilder<> &Builder) { 1383 if (LiveVariables.empty()) 1384 return; 1385 1386 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1387 auto ValIt = llvm::find(LiveVec, Val); 1388 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1389 size_t Index = std::distance(LiveVec.begin(), ValIt); 1390 assert(Index < LiveVec.size() && "Bug in std::find?"); 1391 return Index; 1392 }; 1393 Module *M = StatepointToken->getModule(); 1394 1395 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1396 // element type is i8 addrspace(1)*). We originally generated unique 1397 // declarations for each pointer type, but this proved problematic because 1398 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1399 // towards a single unified pointer type anyways, we can just cast everything 1400 // to an i8* of the right address space. A bitcast is added later to convert 1401 // gc_relocate to the actual value's type. 1402 auto getGCRelocateDecl = [&] (Type *Ty) { 1403 assert(isHandledGCPointerType(Ty)); 1404 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1405 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1406 if (auto *VT = dyn_cast<VectorType>(Ty)) 1407 NewTy = FixedVectorType::get(NewTy, 1408 cast<FixedVectorType>(VT)->getNumElements()); 1409 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1410 {NewTy}); 1411 }; 1412 1413 // Lazily populated map from input types to the canonicalized form mentioned 1414 // in the comment above. This should probably be cached somewhere more 1415 // broadly. 1416 DenseMap<Type *, Function *> TypeToDeclMap; 1417 1418 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1419 // Generate the gc.relocate call and save the result 1420 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1421 Value *LiveIdx = Builder.getInt32(i); 1422 1423 Type *Ty = LiveVariables[i]->getType(); 1424 if (!TypeToDeclMap.count(Ty)) 1425 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1426 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1427 1428 // only specify a debug name if we can give a useful one 1429 CallInst *Reloc = Builder.CreateCall( 1430 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1431 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1432 // Trick CodeGen into thinking there are lots of free registers at this 1433 // fake call. 1434 Reloc->setCallingConv(CallingConv::Cold); 1435 } 1436 } 1437 1438 namespace { 1439 1440 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1441 /// avoids having to worry about keeping around dangling pointers to Values. 1442 class DeferredReplacement { 1443 AssertingVH<Instruction> Old; 1444 AssertingVH<Instruction> New; 1445 bool IsDeoptimize = false; 1446 1447 DeferredReplacement() = default; 1448 1449 public: 1450 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1451 assert(Old != New && Old && New && 1452 "Cannot RAUW equal values or to / from null!"); 1453 1454 DeferredReplacement D; 1455 D.Old = Old; 1456 D.New = New; 1457 return D; 1458 } 1459 1460 static DeferredReplacement createDelete(Instruction *ToErase) { 1461 DeferredReplacement D; 1462 D.Old = ToErase; 1463 return D; 1464 } 1465 1466 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1467 #ifndef NDEBUG 1468 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1469 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1470 "Only way to construct a deoptimize deferred replacement"); 1471 #endif 1472 DeferredReplacement D; 1473 D.Old = Old; 1474 D.IsDeoptimize = true; 1475 return D; 1476 } 1477 1478 /// Does the task represented by this instance. 1479 void doReplacement() { 1480 Instruction *OldI = Old; 1481 Instruction *NewI = New; 1482 1483 assert(OldI != NewI && "Disallowed at construction?!"); 1484 assert((!IsDeoptimize || !New) && 1485 "Deoptimize intrinsics are not replaced!"); 1486 1487 Old = nullptr; 1488 New = nullptr; 1489 1490 if (NewI) 1491 OldI->replaceAllUsesWith(NewI); 1492 1493 if (IsDeoptimize) { 1494 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1495 // not necessarily be followed by the matching return. 1496 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1497 new UnreachableInst(RI->getContext(), RI); 1498 RI->eraseFromParent(); 1499 } 1500 1501 OldI->eraseFromParent(); 1502 } 1503 }; 1504 1505 } // end anonymous namespace 1506 1507 static StringRef getDeoptLowering(CallBase *Call) { 1508 const char *DeoptLowering = "deopt-lowering"; 1509 if (Call->hasFnAttr(DeoptLowering)) { 1510 // FIXME: Calls have a *really* confusing interface around attributes 1511 // with values. 1512 const AttributeList &CSAS = Call->getAttributes(); 1513 if (CSAS.hasFnAttr(DeoptLowering)) 1514 return CSAS.getFnAttr(DeoptLowering).getValueAsString(); 1515 Function *F = Call->getCalledFunction(); 1516 assert(F && F->hasFnAttribute(DeoptLowering)); 1517 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1518 } 1519 return "live-through"; 1520 } 1521 1522 static void 1523 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1524 const SmallVectorImpl<Value *> &BasePtrs, 1525 const SmallVectorImpl<Value *> &LiveVariables, 1526 PartiallyConstructedSafepointRecord &Result, 1527 std::vector<DeferredReplacement> &Replacements, 1528 const PointerToBaseTy &PointerToBase) { 1529 assert(BasePtrs.size() == LiveVariables.size()); 1530 1531 // Then go ahead and use the builder do actually do the inserts. We insert 1532 // immediately before the previous instruction under the assumption that all 1533 // arguments will be available here. We can't insert afterwards since we may 1534 // be replacing a terminator. 1535 IRBuilder<> Builder(Call); 1536 1537 ArrayRef<Value *> GCArgs(LiveVariables); 1538 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1539 uint32_t NumPatchBytes = 0; 1540 uint32_t Flags = uint32_t(StatepointFlags::None); 1541 1542 SmallVector<Value *, 8> CallArgs(Call->args()); 1543 Optional<ArrayRef<Use>> DeoptArgs; 1544 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1545 DeoptArgs = Bundle->Inputs; 1546 Optional<ArrayRef<Use>> TransitionArgs; 1547 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1548 TransitionArgs = Bundle->Inputs; 1549 // TODO: This flag no longer serves a purpose and can be removed later 1550 Flags |= uint32_t(StatepointFlags::GCTransition); 1551 } 1552 1553 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1554 // with a return value, we lower then as never returning calls to 1555 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1556 bool IsDeoptimize = false; 1557 1558 StatepointDirectives SD = 1559 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1560 if (SD.NumPatchBytes) 1561 NumPatchBytes = *SD.NumPatchBytes; 1562 if (SD.StatepointID) 1563 StatepointID = *SD.StatepointID; 1564 1565 // Pass through the requested lowering if any. The default is live-through. 1566 StringRef DeoptLowering = getDeoptLowering(Call); 1567 if (DeoptLowering.equals("live-in")) 1568 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1569 else { 1570 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1571 } 1572 1573 Value *CallTarget = Call->getCalledOperand(); 1574 if (Function *F = dyn_cast<Function>(CallTarget)) { 1575 auto IID = F->getIntrinsicID(); 1576 if (IID == Intrinsic::experimental_deoptimize) { 1577 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1578 // __llvm_deoptimize symbol. We want to resolve this now, since the 1579 // verifier does not allow taking the address of an intrinsic function. 1580 1581 SmallVector<Type *, 8> DomainTy; 1582 for (Value *Arg : CallArgs) 1583 DomainTy.push_back(Arg->getType()); 1584 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1585 /* isVarArg = */ false); 1586 1587 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1588 // calls to @llvm.experimental.deoptimize with different argument types in 1589 // the same module. This is fine -- we assume the frontend knew what it 1590 // was doing when generating this kind of IR. 1591 CallTarget = F->getParent() 1592 ->getOrInsertFunction("__llvm_deoptimize", FTy) 1593 .getCallee(); 1594 1595 IsDeoptimize = true; 1596 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1597 IID == Intrinsic::memmove_element_unordered_atomic) { 1598 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1599 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1600 // Specifically, these calls should be lowered to the 1601 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1602 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1603 // verifier does not allow taking the address of an intrinsic function. 1604 // 1605 // Moreover we need to shuffle the arguments for the call in order to 1606 // accommodate GC. The underlying source and destination objects might be 1607 // relocated during copy operation should the GC occur. To relocate the 1608 // derived source and destination pointers the implementation of the 1609 // intrinsic should know the corresponding base pointers. 1610 // 1611 // To make the base pointers available pass them explicitly as arguments: 1612 // memcpy(dest_derived, source_derived, ...) => 1613 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1614 auto &Context = Call->getContext(); 1615 auto &DL = Call->getModule()->getDataLayout(); 1616 auto GetBaseAndOffset = [&](Value *Derived) { 1617 assert(PointerToBase.count(Derived)); 1618 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1619 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1620 Value *Base = PointerToBase.find(Derived)->second; 1621 Value *Base_int = Builder.CreatePtrToInt( 1622 Base, Type::getIntNTy(Context, IntPtrSize)); 1623 Value *Derived_int = Builder.CreatePtrToInt( 1624 Derived, Type::getIntNTy(Context, IntPtrSize)); 1625 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1626 }; 1627 1628 auto *Dest = CallArgs[0]; 1629 Value *DestBase, *DestOffset; 1630 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1631 1632 auto *Source = CallArgs[1]; 1633 Value *SourceBase, *SourceOffset; 1634 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1635 1636 auto *LengthInBytes = CallArgs[2]; 1637 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1638 1639 CallArgs.clear(); 1640 CallArgs.push_back(DestBase); 1641 CallArgs.push_back(DestOffset); 1642 CallArgs.push_back(SourceBase); 1643 CallArgs.push_back(SourceOffset); 1644 CallArgs.push_back(LengthInBytes); 1645 1646 SmallVector<Type *, 8> DomainTy; 1647 for (Value *Arg : CallArgs) 1648 DomainTy.push_back(Arg->getType()); 1649 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1650 /* isVarArg = */ false); 1651 1652 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1653 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1654 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1655 switch (ElementSize) { 1656 case 1: 1657 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1658 case 2: 1659 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1660 case 4: 1661 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1662 case 8: 1663 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1664 case 16: 1665 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1666 default: 1667 llvm_unreachable("unexpected element size!"); 1668 } 1669 } 1670 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1671 switch (ElementSize) { 1672 case 1: 1673 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1674 case 2: 1675 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1676 case 4: 1677 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1678 case 8: 1679 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1680 case 16: 1681 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1682 default: 1683 llvm_unreachable("unexpected element size!"); 1684 } 1685 }; 1686 1687 CallTarget = 1688 F->getParent() 1689 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy) 1690 .getCallee(); 1691 } 1692 } 1693 1694 // Create the statepoint given all the arguments 1695 GCStatepointInst *Token = nullptr; 1696 if (auto *CI = dyn_cast<CallInst>(Call)) { 1697 CallInst *SPCall = Builder.CreateGCStatepointCall( 1698 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1699 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1700 1701 SPCall->setTailCallKind(CI->getTailCallKind()); 1702 SPCall->setCallingConv(CI->getCallingConv()); 1703 1704 // Currently we will fail on parameter attributes and on certain 1705 // function attributes. In case if we can handle this set of attributes - 1706 // set up function attrs directly on statepoint and return attrs later for 1707 // gc_result intrinsic. 1708 SPCall->setAttributes( 1709 legalizeCallAttributes(CI->getContext(), CI->getAttributes())); 1710 1711 Token = cast<GCStatepointInst>(SPCall); 1712 1713 // Put the following gc_result and gc_relocate calls immediately after the 1714 // the old call (which we're about to delete) 1715 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1716 Builder.SetInsertPoint(CI->getNextNode()); 1717 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1718 } else { 1719 auto *II = cast<InvokeInst>(Call); 1720 1721 // Insert the new invoke into the old block. We'll remove the old one in a 1722 // moment at which point this will become the new terminator for the 1723 // original block. 1724 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1725 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1726 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1727 "statepoint_token"); 1728 1729 SPInvoke->setCallingConv(II->getCallingConv()); 1730 1731 // Currently we will fail on parameter attributes and on certain 1732 // function attributes. In case if we can handle this set of attributes - 1733 // set up function attrs directly on statepoint and return attrs later for 1734 // gc_result intrinsic. 1735 SPInvoke->setAttributes( 1736 legalizeCallAttributes(II->getContext(), II->getAttributes())); 1737 1738 Token = cast<GCStatepointInst>(SPInvoke); 1739 1740 // Generate gc relocates in exceptional path 1741 BasicBlock *UnwindBlock = II->getUnwindDest(); 1742 assert(!isa<PHINode>(UnwindBlock->begin()) && 1743 UnwindBlock->getUniquePredecessor() && 1744 "can't safely insert in this block!"); 1745 1746 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1747 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1748 1749 // Attach exceptional gc relocates to the landingpad. 1750 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1751 Result.UnwindToken = ExceptionalToken; 1752 1753 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder); 1754 1755 // Generate gc relocates and returns for normal block 1756 BasicBlock *NormalDest = II->getNormalDest(); 1757 assert(!isa<PHINode>(NormalDest->begin()) && 1758 NormalDest->getUniquePredecessor() && 1759 "can't safely insert in this block!"); 1760 1761 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1762 1763 // gc relocates will be generated later as if it were regular call 1764 // statepoint 1765 } 1766 assert(Token && "Should be set in one of the above branches!"); 1767 1768 if (IsDeoptimize) { 1769 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1770 // transform the tail-call like structure to a call to a void function 1771 // followed by unreachable to get better codegen. 1772 Replacements.push_back( 1773 DeferredReplacement::createDeoptimizeReplacement(Call)); 1774 } else { 1775 Token->setName("statepoint_token"); 1776 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1777 StringRef Name = Call->hasName() ? Call->getName() : ""; 1778 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1779 GCResult->setAttributes( 1780 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1781 Call->getAttributes().getRetAttrs())); 1782 1783 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1784 // live set of some other safepoint, in which case that safepoint's 1785 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1786 // llvm::Instruction. Instead, we defer the replacement and deletion to 1787 // after the live sets have been made explicit in the IR, and we no longer 1788 // have raw pointers to worry about. 1789 Replacements.emplace_back( 1790 DeferredReplacement::createRAUW(Call, GCResult)); 1791 } else { 1792 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1793 } 1794 } 1795 1796 Result.StatepointToken = Token; 1797 1798 // Second, create a gc.relocate for every live variable 1799 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder); 1800 } 1801 1802 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1803 // which make the relocations happening at this safepoint explicit. 1804 // 1805 // WARNING: Does not do any fixup to adjust users of the original live 1806 // values. That's the callers responsibility. 1807 static void 1808 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1809 PartiallyConstructedSafepointRecord &Result, 1810 std::vector<DeferredReplacement> &Replacements, 1811 const PointerToBaseTy &PointerToBase) { 1812 const auto &LiveSet = Result.LiveSet; 1813 1814 // Convert to vector for efficient cross referencing. 1815 SmallVector<Value *, 64> BaseVec, LiveVec; 1816 LiveVec.reserve(LiveSet.size()); 1817 BaseVec.reserve(LiveSet.size()); 1818 for (Value *L : LiveSet) { 1819 LiveVec.push_back(L); 1820 assert(PointerToBase.count(L)); 1821 Value *Base = PointerToBase.find(L)->second; 1822 BaseVec.push_back(Base); 1823 } 1824 assert(LiveVec.size() == BaseVec.size()); 1825 1826 // Do the actual rewriting and delete the old statepoint 1827 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements, 1828 PointerToBase); 1829 } 1830 1831 // Helper function for the relocationViaAlloca. 1832 // 1833 // It receives iterator to the statepoint gc relocates and emits a store to the 1834 // assigned location (via allocaMap) for the each one of them. It adds the 1835 // visited values into the visitedLiveValues set, which we will later use them 1836 // for validation checking. 1837 static void 1838 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1839 DenseMap<Value *, AllocaInst *> &AllocaMap, 1840 DenseSet<Value *> &VisitedLiveValues) { 1841 for (User *U : GCRelocs) { 1842 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1843 if (!Relocate) 1844 continue; 1845 1846 Value *OriginalValue = Relocate->getDerivedPtr(); 1847 assert(AllocaMap.count(OriginalValue)); 1848 Value *Alloca = AllocaMap[OriginalValue]; 1849 1850 // Emit store into the related alloca 1851 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1852 // the correct type according to alloca. 1853 assert(Relocate->getNextNode() && 1854 "Should always have one since it's not a terminator"); 1855 IRBuilder<> Builder(Relocate->getNextNode()); 1856 Value *CastedRelocatedValue = 1857 Builder.CreateBitCast(Relocate, 1858 cast<AllocaInst>(Alloca)->getAllocatedType(), 1859 suffixed_name_or(Relocate, ".casted", "")); 1860 1861 new StoreInst(CastedRelocatedValue, Alloca, 1862 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 1863 1864 #ifndef NDEBUG 1865 VisitedLiveValues.insert(OriginalValue); 1866 #endif 1867 } 1868 } 1869 1870 // Helper function for the "relocationViaAlloca". Similar to the 1871 // "insertRelocationStores" but works for rematerialized values. 1872 static void insertRematerializationStores( 1873 const RematerializedValueMapTy &RematerializedValues, 1874 DenseMap<Value *, AllocaInst *> &AllocaMap, 1875 DenseSet<Value *> &VisitedLiveValues) { 1876 for (auto RematerializedValuePair: RematerializedValues) { 1877 Instruction *RematerializedValue = RematerializedValuePair.first; 1878 Value *OriginalValue = RematerializedValuePair.second; 1879 1880 assert(AllocaMap.count(OriginalValue) && 1881 "Can not find alloca for rematerialized value"); 1882 Value *Alloca = AllocaMap[OriginalValue]; 1883 1884 new StoreInst(RematerializedValue, Alloca, 1885 RematerializedValue->getNextNode()); 1886 1887 #ifndef NDEBUG 1888 VisitedLiveValues.insert(OriginalValue); 1889 #endif 1890 } 1891 } 1892 1893 /// Do all the relocation update via allocas and mem2reg 1894 static void relocationViaAlloca( 1895 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1896 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1897 #ifndef NDEBUG 1898 // record initial number of (static) allocas; we'll check we have the same 1899 // number when we get done. 1900 int InitialAllocaNum = 0; 1901 for (Instruction &I : F.getEntryBlock()) 1902 if (isa<AllocaInst>(I)) 1903 InitialAllocaNum++; 1904 #endif 1905 1906 // TODO-PERF: change data structures, reserve 1907 DenseMap<Value *, AllocaInst *> AllocaMap; 1908 SmallVector<AllocaInst *, 200> PromotableAllocas; 1909 // Used later to chack that we have enough allocas to store all values 1910 std::size_t NumRematerializedValues = 0; 1911 PromotableAllocas.reserve(Live.size()); 1912 1913 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1914 // "PromotableAllocas" 1915 const DataLayout &DL = F.getParent()->getDataLayout(); 1916 auto emitAllocaFor = [&](Value *LiveValue) { 1917 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1918 DL.getAllocaAddrSpace(), "", 1919 F.getEntryBlock().getFirstNonPHI()); 1920 AllocaMap[LiveValue] = Alloca; 1921 PromotableAllocas.push_back(Alloca); 1922 }; 1923 1924 // Emit alloca for each live gc pointer 1925 for (Value *V : Live) 1926 emitAllocaFor(V); 1927 1928 // Emit allocas for rematerialized values 1929 for (const auto &Info : Records) 1930 for (auto RematerializedValuePair : Info.RematerializedValues) { 1931 Value *OriginalValue = RematerializedValuePair.second; 1932 if (AllocaMap.count(OriginalValue) != 0) 1933 continue; 1934 1935 emitAllocaFor(OriginalValue); 1936 ++NumRematerializedValues; 1937 } 1938 1939 // The next two loops are part of the same conceptual operation. We need to 1940 // insert a store to the alloca after the original def and at each 1941 // redefinition. We need to insert a load before each use. These are split 1942 // into distinct loops for performance reasons. 1943 1944 // Update gc pointer after each statepoint: either store a relocated value or 1945 // null (if no relocated value was found for this gc pointer and it is not a 1946 // gc_result). This must happen before we update the statepoint with load of 1947 // alloca otherwise we lose the link between statepoint and old def. 1948 for (const auto &Info : Records) { 1949 Value *Statepoint = Info.StatepointToken; 1950 1951 // This will be used for consistency check 1952 DenseSet<Value *> VisitedLiveValues; 1953 1954 // Insert stores for normal statepoint gc relocates 1955 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1956 1957 // In case if it was invoke statepoint 1958 // we will insert stores for exceptional path gc relocates. 1959 if (isa<InvokeInst>(Statepoint)) { 1960 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1961 VisitedLiveValues); 1962 } 1963 1964 // Do similar thing with rematerialized values 1965 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1966 VisitedLiveValues); 1967 1968 if (ClobberNonLive) { 1969 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1970 // the gc.statepoint. This will turn some subtle GC problems into 1971 // slightly easier to debug SEGVs. Note that on large IR files with 1972 // lots of gc.statepoints this is extremely costly both memory and time 1973 // wise. 1974 SmallVector<AllocaInst *, 64> ToClobber; 1975 for (auto Pair : AllocaMap) { 1976 Value *Def = Pair.first; 1977 AllocaInst *Alloca = Pair.second; 1978 1979 // This value was relocated 1980 if (VisitedLiveValues.count(Def)) { 1981 continue; 1982 } 1983 ToClobber.push_back(Alloca); 1984 } 1985 1986 auto InsertClobbersAt = [&](Instruction *IP) { 1987 for (auto *AI : ToClobber) { 1988 auto PT = cast<PointerType>(AI->getAllocatedType()); 1989 Constant *CPN = ConstantPointerNull::get(PT); 1990 new StoreInst(CPN, AI, IP); 1991 } 1992 }; 1993 1994 // Insert the clobbering stores. These may get intermixed with the 1995 // gc.results and gc.relocates, but that's fine. 1996 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1997 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1998 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1999 } else { 2000 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 2001 } 2002 } 2003 } 2004 2005 // Update use with load allocas and add store for gc_relocated. 2006 for (auto Pair : AllocaMap) { 2007 Value *Def = Pair.first; 2008 AllocaInst *Alloca = Pair.second; 2009 2010 // We pre-record the uses of allocas so that we dont have to worry about 2011 // later update that changes the user information.. 2012 2013 SmallVector<Instruction *, 20> Uses; 2014 // PERF: trade a linear scan for repeated reallocation 2015 Uses.reserve(Def->getNumUses()); 2016 for (User *U : Def->users()) { 2017 if (!isa<ConstantExpr>(U)) { 2018 // If the def has a ConstantExpr use, then the def is either a 2019 // ConstantExpr use itself or null. In either case 2020 // (recursively in the first, directly in the second), the oop 2021 // it is ultimately dependent on is null and this particular 2022 // use does not need to be fixed up. 2023 Uses.push_back(cast<Instruction>(U)); 2024 } 2025 } 2026 2027 llvm::sort(Uses); 2028 auto Last = std::unique(Uses.begin(), Uses.end()); 2029 Uses.erase(Last, Uses.end()); 2030 2031 for (Instruction *Use : Uses) { 2032 if (isa<PHINode>(Use)) { 2033 PHINode *Phi = cast<PHINode>(Use); 2034 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2035 if (Def == Phi->getIncomingValue(i)) { 2036 LoadInst *Load = 2037 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2038 Phi->getIncomingBlock(i)->getTerminator()); 2039 Phi->setIncomingValue(i, Load); 2040 } 2041 } 2042 } else { 2043 LoadInst *Load = 2044 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2045 Use->replaceUsesOfWith(Def, Load); 2046 } 2047 } 2048 2049 // Emit store for the initial gc value. Store must be inserted after load, 2050 // otherwise store will be in alloca's use list and an extra load will be 2051 // inserted before it. 2052 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2053 DL.getABITypeAlign(Def->getType())); 2054 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2055 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2056 // InvokeInst is a terminator so the store need to be inserted into its 2057 // normal destination block. 2058 BasicBlock *NormalDest = Invoke->getNormalDest(); 2059 Store->insertBefore(NormalDest->getFirstNonPHI()); 2060 } else { 2061 assert(!Inst->isTerminator() && 2062 "The only terminator that can produce a value is " 2063 "InvokeInst which is handled above."); 2064 Store->insertAfter(Inst); 2065 } 2066 } else { 2067 assert(isa<Argument>(Def)); 2068 Store->insertAfter(cast<Instruction>(Alloca)); 2069 } 2070 } 2071 2072 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2073 "we must have the same allocas with lives"); 2074 if (!PromotableAllocas.empty()) { 2075 // Apply mem2reg to promote alloca to SSA 2076 PromoteMemToReg(PromotableAllocas, DT); 2077 } 2078 2079 #ifndef NDEBUG 2080 for (auto &I : F.getEntryBlock()) 2081 if (isa<AllocaInst>(I)) 2082 InitialAllocaNum--; 2083 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2084 #endif 2085 } 2086 2087 /// Implement a unique function which doesn't require we sort the input 2088 /// vector. Doing so has the effect of changing the output of a couple of 2089 /// tests in ways which make them less useful in testing fused safepoints. 2090 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2091 SmallSet<T, 8> Seen; 2092 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2093 } 2094 2095 /// Insert holders so that each Value is obviously live through the entire 2096 /// lifetime of the call. 2097 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2098 SmallVectorImpl<CallInst *> &Holders) { 2099 if (Values.empty()) 2100 // No values to hold live, might as well not insert the empty holder 2101 return; 2102 2103 Module *M = Call->getModule(); 2104 // Use a dummy vararg function to actually hold the values live 2105 FunctionCallee Func = M->getOrInsertFunction( 2106 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2107 if (isa<CallInst>(Call)) { 2108 // For call safepoints insert dummy calls right after safepoint 2109 Holders.push_back( 2110 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2111 return; 2112 } 2113 // For invoke safepooints insert dummy calls both in normal and 2114 // exceptional destination blocks 2115 auto *II = cast<InvokeInst>(Call); 2116 Holders.push_back(CallInst::Create( 2117 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2118 Holders.push_back(CallInst::Create( 2119 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2120 } 2121 2122 static void findLiveReferences( 2123 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2124 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 2125 GCPtrLivenessData OriginalLivenessData; 2126 computeLiveInValues(DT, F, OriginalLivenessData); 2127 for (size_t i = 0; i < records.size(); i++) { 2128 struct PartiallyConstructedSafepointRecord &info = records[i]; 2129 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 2130 } 2131 } 2132 2133 // Helper function for the "rematerializeLiveValues". It walks use chain 2134 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2135 // the base or a value it cannot process. Only "simple" values are processed 2136 // (currently it is GEP's and casts). The returned root is examined by the 2137 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2138 // with all visited values. 2139 static Value* findRematerializableChainToBasePointer( 2140 SmallVectorImpl<Instruction*> &ChainToBase, 2141 Value *CurrentValue) { 2142 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2143 ChainToBase.push_back(GEP); 2144 return findRematerializableChainToBasePointer(ChainToBase, 2145 GEP->getPointerOperand()); 2146 } 2147 2148 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2149 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2150 return CI; 2151 2152 ChainToBase.push_back(CI); 2153 return findRematerializableChainToBasePointer(ChainToBase, 2154 CI->getOperand(0)); 2155 } 2156 2157 // We have reached the root of the chain, which is either equal to the base or 2158 // is the first unsupported value along the use chain. 2159 return CurrentValue; 2160 } 2161 2162 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2163 // chain we are going to rematerialize. 2164 static InstructionCost 2165 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2166 TargetTransformInfo &TTI) { 2167 InstructionCost Cost = 0; 2168 2169 for (Instruction *Instr : Chain) { 2170 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2171 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2172 "non noop cast is found during rematerialization"); 2173 2174 Type *SrcTy = CI->getOperand(0)->getType(); 2175 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2176 TTI::getCastContextHint(CI), 2177 TargetTransformInfo::TCK_SizeAndLatency, CI); 2178 2179 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2180 // Cost of the address calculation 2181 Type *ValTy = GEP->getSourceElementType(); 2182 Cost += TTI.getAddressComputationCost(ValTy); 2183 2184 // And cost of the GEP itself 2185 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2186 // allowed for the external usage) 2187 if (!GEP->hasAllConstantIndices()) 2188 Cost += 2; 2189 2190 } else { 2191 llvm_unreachable("unsupported instruction type during rematerialization"); 2192 } 2193 } 2194 2195 return Cost; 2196 } 2197 2198 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2199 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2200 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2201 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2202 return false; 2203 // Map of incoming values and their corresponding basic blocks of 2204 // OrigRootPhi. 2205 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2206 for (unsigned i = 0; i < PhiNum; i++) 2207 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2208 OrigRootPhi.getIncomingBlock(i); 2209 2210 // Both current and base PHIs should have same incoming values and 2211 // the same basic blocks corresponding to the incoming values. 2212 for (unsigned i = 0; i < PhiNum; i++) { 2213 auto CIVI = 2214 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2215 if (CIVI == CurrentIncomingValues.end()) 2216 return false; 2217 BasicBlock *CurrentIncomingBB = CIVI->second; 2218 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2219 return false; 2220 } 2221 return true; 2222 } 2223 2224 // From the statepoint live set pick values that are cheaper to recompute then 2225 // to relocate. Remove this values from the live set, rematerialize them after 2226 // statepoint and record them in "Info" structure. Note that similar to 2227 // relocated values we don't do any user adjustments here. 2228 static void rematerializeLiveValues(CallBase *Call, 2229 PartiallyConstructedSafepointRecord &Info, 2230 PointerToBaseTy &PointerToBase, 2231 TargetTransformInfo &TTI) { 2232 const unsigned int ChainLengthThreshold = 10; 2233 2234 // Record values we are going to delete from this statepoint live set. 2235 // We can not di this in following loop due to iterator invalidation. 2236 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2237 2238 for (Value *LiveValue: Info.LiveSet) { 2239 // For each live pointer find its defining chain 2240 SmallVector<Instruction *, 3> ChainToBase; 2241 assert(PointerToBase.count(LiveValue)); 2242 Value *RootOfChain = 2243 findRematerializableChainToBasePointer(ChainToBase, 2244 LiveValue); 2245 2246 // Nothing to do, or chain is too long 2247 if ( ChainToBase.size() == 0 || 2248 ChainToBase.size() > ChainLengthThreshold) 2249 continue; 2250 2251 // Handle the scenario where the RootOfChain is not equal to the 2252 // Base Value, but they are essentially the same phi values. 2253 if (RootOfChain != PointerToBase[LiveValue]) { 2254 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2255 PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[LiveValue]); 2256 if (!OrigRootPhi || !AlternateRootPhi) 2257 continue; 2258 // PHI nodes that have the same incoming values, and belonging to the same 2259 // basic blocks are essentially the same SSA value. When the original phi 2260 // has incoming values with different base pointers, the original phi is 2261 // marked as conflict, and an additional `AlternateRootPhi` with the same 2262 // incoming values get generated by the findBasePointer function. We need 2263 // to identify the newly generated AlternateRootPhi (.base version of phi) 2264 // and RootOfChain (the original phi node itself) are the same, so that we 2265 // can rematerialize the gep and casts. This is a workaround for the 2266 // deficiency in the findBasePointer algorithm. 2267 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2268 continue; 2269 // Now that the phi nodes are proved to be the same, assert that 2270 // findBasePointer's newly generated AlternateRootPhi is present in the 2271 // liveset of the call. 2272 assert(Info.LiveSet.count(AlternateRootPhi)); 2273 } 2274 // Compute cost of this chain 2275 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2276 // TODO: We can also account for cases when we will be able to remove some 2277 // of the rematerialized values by later optimization passes. I.e if 2278 // we rematerialized several intersecting chains. Or if original values 2279 // don't have any uses besides this statepoint. 2280 2281 // For invokes we need to rematerialize each chain twice - for normal and 2282 // for unwind basic blocks. Model this by multiplying cost by two. 2283 if (isa<InvokeInst>(Call)) { 2284 Cost *= 2; 2285 } 2286 // If it's too expensive - skip it 2287 if (Cost >= RematerializationThreshold) 2288 continue; 2289 2290 // Remove value from the live set 2291 LiveValuesToBeDeleted.push_back(LiveValue); 2292 2293 // Clone instructions and record them inside "Info" structure 2294 2295 // Walk backwards to visit top-most instructions first 2296 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2297 2298 // Utility function which clones all instructions from "ChainToBase" 2299 // and inserts them before "InsertBefore". Returns rematerialized value 2300 // which should be used after statepoint. 2301 auto rematerializeChain = [&ChainToBase]( 2302 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2303 Instruction *LastClonedValue = nullptr; 2304 Instruction *LastValue = nullptr; 2305 for (Instruction *Instr: ChainToBase) { 2306 // Only GEP's and casts are supported as we need to be careful to not 2307 // introduce any new uses of pointers not in the liveset. 2308 // Note that it's fine to introduce new uses of pointers which were 2309 // otherwise not used after this statepoint. 2310 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2311 2312 Instruction *ClonedValue = Instr->clone(); 2313 ClonedValue->insertBefore(InsertBefore); 2314 ClonedValue->setName(Instr->getName() + ".remat"); 2315 2316 // If it is not first instruction in the chain then it uses previously 2317 // cloned value. We should update it to use cloned value. 2318 if (LastClonedValue) { 2319 assert(LastValue); 2320 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2321 #ifndef NDEBUG 2322 for (auto OpValue : ClonedValue->operand_values()) { 2323 // Assert that cloned instruction does not use any instructions from 2324 // this chain other than LastClonedValue 2325 assert(!is_contained(ChainToBase, OpValue) && 2326 "incorrect use in rematerialization chain"); 2327 // Assert that the cloned instruction does not use the RootOfChain 2328 // or the AlternateLiveBase. 2329 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2330 } 2331 #endif 2332 } else { 2333 // For the first instruction, replace the use of unrelocated base i.e. 2334 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2335 // live set. They have been proved to be the same PHI nodes. Note 2336 // that the *only* use of the RootOfChain in the ChainToBase list is 2337 // the first Value in the list. 2338 if (RootOfChain != AlternateLiveBase) 2339 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2340 } 2341 2342 LastClonedValue = ClonedValue; 2343 LastValue = Instr; 2344 } 2345 assert(LastClonedValue); 2346 return LastClonedValue; 2347 }; 2348 2349 // Different cases for calls and invokes. For invokes we need to clone 2350 // instructions both on normal and unwind path. 2351 if (isa<CallInst>(Call)) { 2352 Instruction *InsertBefore = Call->getNextNode(); 2353 assert(InsertBefore); 2354 Instruction *RematerializedValue = rematerializeChain( 2355 InsertBefore, RootOfChain, PointerToBase[LiveValue]); 2356 Info.RematerializedValues[RematerializedValue] = LiveValue; 2357 } else { 2358 auto *Invoke = cast<InvokeInst>(Call); 2359 2360 Instruction *NormalInsertBefore = 2361 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2362 Instruction *UnwindInsertBefore = 2363 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2364 2365 Instruction *NormalRematerializedValue = rematerializeChain( 2366 NormalInsertBefore, RootOfChain, PointerToBase[LiveValue]); 2367 Instruction *UnwindRematerializedValue = rematerializeChain( 2368 UnwindInsertBefore, RootOfChain, PointerToBase[LiveValue]); 2369 2370 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2371 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2372 } 2373 } 2374 2375 // Remove rematerializaed values from the live set 2376 for (auto LiveValue: LiveValuesToBeDeleted) { 2377 Info.LiveSet.remove(LiveValue); 2378 } 2379 } 2380 2381 static bool inlineGetBaseAndOffset(Function &F, 2382 SmallVectorImpl<CallInst *> &Intrinsics, 2383 DefiningValueMapTy &DVCache) { 2384 auto &Context = F.getContext(); 2385 auto &DL = F.getParent()->getDataLayout(); 2386 bool Changed = false; 2387 2388 for (auto *Callsite : Intrinsics) 2389 switch (Callsite->getIntrinsicID()) { 2390 case Intrinsic::experimental_gc_get_pointer_base: { 2391 Changed = true; 2392 Value *Base = findBasePointer(Callsite->getOperand(0), DVCache); 2393 assert(!DVCache.count(Callsite)); 2394 auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast( 2395 Base, Callsite->getType(), suffixed_name_or(Base, ".cast", "")); 2396 if (BaseBC != Base) 2397 DVCache[BaseBC] = Base; 2398 Callsite->replaceAllUsesWith(BaseBC); 2399 if (!BaseBC->hasName()) 2400 BaseBC->takeName(Callsite); 2401 Callsite->eraseFromParent(); 2402 break; 2403 } 2404 case Intrinsic::experimental_gc_get_pointer_offset: { 2405 Changed = true; 2406 Value *Derived = Callsite->getOperand(0); 2407 Value *Base = findBasePointer(Derived, DVCache); 2408 assert(!DVCache.count(Callsite)); 2409 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2410 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2411 IRBuilder<> Builder(Callsite); 2412 Value *BaseInt = 2413 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2414 suffixed_name_or(Base, ".int", "")); 2415 Value *DerivedInt = 2416 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2417 suffixed_name_or(Derived, ".int", "")); 2418 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2419 Callsite->replaceAllUsesWith(Offset); 2420 Offset->takeName(Callsite); 2421 Callsite->eraseFromParent(); 2422 break; 2423 } 2424 default: 2425 llvm_unreachable("Unknown intrinsic"); 2426 } 2427 2428 return Changed; 2429 } 2430 2431 static bool insertParsePoints(Function &F, DominatorTree &DT, 2432 TargetTransformInfo &TTI, 2433 SmallVectorImpl<CallBase *> &ToUpdate, 2434 DefiningValueMapTy &DVCache) { 2435 #ifndef NDEBUG 2436 // Validate the input 2437 std::set<CallBase *> Uniqued; 2438 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2439 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2440 2441 for (CallBase *Call : ToUpdate) 2442 assert(Call->getFunction() == &F); 2443 #endif 2444 2445 // When inserting gc.relocates for invokes, we need to be able to insert at 2446 // the top of the successor blocks. See the comment on 2447 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2448 // may restructure the CFG. 2449 for (CallBase *Call : ToUpdate) { 2450 auto *II = dyn_cast<InvokeInst>(Call); 2451 if (!II) 2452 continue; 2453 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2454 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2455 } 2456 2457 // A list of dummy calls added to the IR to keep various values obviously 2458 // live in the IR. We'll remove all of these when done. 2459 SmallVector<CallInst *, 64> Holders; 2460 2461 // Insert a dummy call with all of the deopt operands we'll need for the 2462 // actual safepoint insertion as arguments. This ensures reference operands 2463 // in the deopt argument list are considered live through the safepoint (and 2464 // thus makes sure they get relocated.) 2465 for (CallBase *Call : ToUpdate) { 2466 SmallVector<Value *, 64> DeoptValues; 2467 2468 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2469 assert(!isUnhandledGCPointerType(Arg->getType()) && 2470 "support for FCA unimplemented"); 2471 if (isHandledGCPointerType(Arg->getType())) 2472 DeoptValues.push_back(Arg); 2473 } 2474 2475 insertUseHolderAfter(Call, DeoptValues, Holders); 2476 } 2477 2478 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2479 2480 // A) Identify all gc pointers which are statically live at the given call 2481 // site. 2482 findLiveReferences(F, DT, ToUpdate, Records); 2483 2484 /// Global mapping from live pointers to a base-defining-value. 2485 PointerToBaseTy PointerToBase; 2486 2487 // B) Find the base pointers for each live pointer 2488 for (size_t i = 0; i < Records.size(); i++) { 2489 PartiallyConstructedSafepointRecord &info = Records[i]; 2490 findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase); 2491 } 2492 if (PrintBasePointers) { 2493 errs() << "Base Pairs (w/o Relocation):\n"; 2494 for (auto &Pair : PointerToBase) { 2495 errs() << " derived "; 2496 Pair.first->printAsOperand(errs(), false); 2497 errs() << " base "; 2498 Pair.second->printAsOperand(errs(), false); 2499 errs() << "\n"; 2500 ; 2501 } 2502 } 2503 2504 // The base phi insertion logic (for any safepoint) may have inserted new 2505 // instructions which are now live at some safepoint. The simplest such 2506 // example is: 2507 // loop: 2508 // phi a <-- will be a new base_phi here 2509 // safepoint 1 <-- that needs to be live here 2510 // gep a + 1 2511 // safepoint 2 2512 // br loop 2513 // We insert some dummy calls after each safepoint to definitely hold live 2514 // the base pointers which were identified for that safepoint. We'll then 2515 // ask liveness for _every_ base inserted to see what is now live. Then we 2516 // remove the dummy calls. 2517 Holders.reserve(Holders.size() + Records.size()); 2518 for (size_t i = 0; i < Records.size(); i++) { 2519 PartiallyConstructedSafepointRecord &Info = Records[i]; 2520 2521 SmallVector<Value *, 128> Bases; 2522 for (auto *Derived : Info.LiveSet) { 2523 assert(PointerToBase.count(Derived) && "Missed base for derived pointer"); 2524 Bases.push_back(PointerToBase[Derived]); 2525 } 2526 2527 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2528 } 2529 2530 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2531 // need to rerun liveness. We may *also* have inserted new defs, but that's 2532 // not the key issue. 2533 recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase); 2534 2535 if (PrintBasePointers) { 2536 errs() << "Base Pairs: (w/Relocation)\n"; 2537 for (auto Pair : PointerToBase) { 2538 errs() << " derived "; 2539 Pair.first->printAsOperand(errs(), false); 2540 errs() << " base "; 2541 Pair.second->printAsOperand(errs(), false); 2542 errs() << "\n"; 2543 } 2544 } 2545 2546 // It is possible that non-constant live variables have a constant base. For 2547 // example, a GEP with a variable offset from a global. In this case we can 2548 // remove it from the liveset. We already don't add constants to the liveset 2549 // because we assume they won't move at runtime and the GC doesn't need to be 2550 // informed about them. The same reasoning applies if the base is constant. 2551 // Note that the relocation placement code relies on this filtering for 2552 // correctness as it expects the base to be in the liveset, which isn't true 2553 // if the base is constant. 2554 for (auto &Info : Records) { 2555 Info.LiveSet.remove_if([&](Value *LiveV) { 2556 assert(PointerToBase.count(LiveV) && "Missed base for derived pointer"); 2557 return isa<Constant>(PointerToBase[LiveV]); 2558 }); 2559 } 2560 2561 for (CallInst *CI : Holders) 2562 CI->eraseFromParent(); 2563 2564 Holders.clear(); 2565 2566 // In order to reduce live set of statepoint we might choose to rematerialize 2567 // some values instead of relocating them. This is purely an optimization and 2568 // does not influence correctness. 2569 for (size_t i = 0; i < Records.size(); i++) 2570 rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, TTI); 2571 2572 // We need this to safely RAUW and delete call or invoke return values that 2573 // may themselves be live over a statepoint. For details, please see usage in 2574 // makeStatepointExplicitImpl. 2575 std::vector<DeferredReplacement> Replacements; 2576 2577 // Now run through and replace the existing statepoints with new ones with 2578 // the live variables listed. We do not yet update uses of the values being 2579 // relocated. We have references to live variables that need to 2580 // survive to the last iteration of this loop. (By construction, the 2581 // previous statepoint can not be a live variable, thus we can and remove 2582 // the old statepoint calls as we go.) 2583 for (size_t i = 0; i < Records.size(); i++) 2584 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements, 2585 PointerToBase); 2586 2587 ToUpdate.clear(); // prevent accident use of invalid calls. 2588 2589 for (auto &PR : Replacements) 2590 PR.doReplacement(); 2591 2592 Replacements.clear(); 2593 2594 for (auto &Info : Records) { 2595 // These live sets may contain state Value pointers, since we replaced calls 2596 // with operand bundles with calls wrapped in gc.statepoint, and some of 2597 // those calls may have been def'ing live gc pointers. Clear these out to 2598 // avoid accidentally using them. 2599 // 2600 // TODO: We should create a separate data structure that does not contain 2601 // these live sets, and migrate to using that data structure from this point 2602 // onward. 2603 Info.LiveSet.clear(); 2604 } 2605 PointerToBase.clear(); 2606 2607 // Do all the fixups of the original live variables to their relocated selves 2608 SmallVector<Value *, 128> Live; 2609 for (size_t i = 0; i < Records.size(); i++) { 2610 PartiallyConstructedSafepointRecord &Info = Records[i]; 2611 2612 // We can't simply save the live set from the original insertion. One of 2613 // the live values might be the result of a call which needs a safepoint. 2614 // That Value* no longer exists and we need to use the new gc_result. 2615 // Thankfully, the live set is embedded in the statepoint (and updated), so 2616 // we just grab that. 2617 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2618 #ifndef NDEBUG 2619 // Do some basic validation checking on our liveness results before 2620 // performing relocation. Relocation can and will turn mistakes in liveness 2621 // results into non-sensical code which is must harder to debug. 2622 // TODO: It would be nice to test consistency as well 2623 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2624 "statepoint must be reachable or liveness is meaningless"); 2625 for (Value *V : Info.StatepointToken->gc_args()) { 2626 if (!isa<Instruction>(V)) 2627 // Non-instruction values trivial dominate all possible uses 2628 continue; 2629 auto *LiveInst = cast<Instruction>(V); 2630 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2631 "unreachable values should never be live"); 2632 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2633 "basic SSA liveness expectation violated by liveness analysis"); 2634 } 2635 #endif 2636 } 2637 unique_unsorted(Live); 2638 2639 #ifndef NDEBUG 2640 // Validation check 2641 for (auto *Ptr : Live) 2642 assert(isHandledGCPointerType(Ptr->getType()) && 2643 "must be a gc pointer type"); 2644 #endif 2645 2646 relocationViaAlloca(F, DT, Live, Records); 2647 return !Records.empty(); 2648 } 2649 2650 // List of all parameter and return attributes which must be stripped when 2651 // lowering from the abstract machine model. Note that we list attributes 2652 // here which aren't valid as return attributes, that is okay. 2653 static AttributeMask getParamAndReturnAttributesToRemove() { 2654 AttributeMask R; 2655 R.addAttribute(Attribute::Dereferenceable); 2656 R.addAttribute(Attribute::DereferenceableOrNull); 2657 R.addAttribute(Attribute::ReadNone); 2658 R.addAttribute(Attribute::ReadOnly); 2659 R.addAttribute(Attribute::WriteOnly); 2660 R.addAttribute(Attribute::NoAlias); 2661 R.addAttribute(Attribute::NoFree); 2662 return R; 2663 } 2664 2665 static void stripNonValidAttributesFromPrototype(Function &F) { 2666 LLVMContext &Ctx = F.getContext(); 2667 2668 // Intrinsics are very delicate. Lowering sometimes depends the presence 2669 // of certain attributes for correctness, but we may have also inferred 2670 // additional ones in the abstract machine model which need stripped. This 2671 // assumes that the attributes defined in Intrinsic.td are conservatively 2672 // correct for both physical and abstract model. 2673 if (Intrinsic::ID id = F.getIntrinsicID()) { 2674 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2675 return; 2676 } 2677 2678 AttributeMask R = getParamAndReturnAttributesToRemove(); 2679 for (Argument &A : F.args()) 2680 if (isa<PointerType>(A.getType())) 2681 F.removeParamAttrs(A.getArgNo(), R); 2682 2683 if (isa<PointerType>(F.getReturnType())) 2684 F.removeRetAttrs(R); 2685 2686 for (auto Attr : FnAttrsToStrip) 2687 F.removeFnAttr(Attr); 2688 } 2689 2690 /// Certain metadata on instructions are invalid after running RS4GC. 2691 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2692 /// optimize functions. We drop such metadata on the instruction. 2693 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2694 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2695 return; 2696 // These are the attributes that are still valid on loads and stores after 2697 // RS4GC. 2698 // The metadata implying dereferenceability and noalias are (conservatively) 2699 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2700 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2701 // touch the entire heap including noalias objects. Note: The reasoning is 2702 // same as stripping the dereferenceability and noalias attributes that are 2703 // analogous to the metadata counterparts. 2704 // We also drop the invariant.load metadata on the load because that metadata 2705 // implies the address operand to the load points to memory that is never 2706 // changed once it became dereferenceable. This is no longer true after RS4GC. 2707 // Similar reasoning applies to invariant.group metadata, which applies to 2708 // loads within a group. 2709 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2710 LLVMContext::MD_range, 2711 LLVMContext::MD_alias_scope, 2712 LLVMContext::MD_nontemporal, 2713 LLVMContext::MD_nonnull, 2714 LLVMContext::MD_align, 2715 LLVMContext::MD_type}; 2716 2717 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2718 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2719 } 2720 2721 static void stripNonValidDataFromBody(Function &F) { 2722 if (F.empty()) 2723 return; 2724 2725 LLVMContext &Ctx = F.getContext(); 2726 MDBuilder Builder(Ctx); 2727 2728 // Set of invariantstart instructions that we need to remove. 2729 // Use this to avoid invalidating the instruction iterator. 2730 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2731 2732 for (Instruction &I : instructions(F)) { 2733 // invariant.start on memory location implies that the referenced memory 2734 // location is constant and unchanging. This is no longer true after 2735 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2736 // which frees the entire heap and the presence of invariant.start allows 2737 // the optimizer to sink the load of a memory location past a statepoint, 2738 // which is incorrect. 2739 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2740 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2741 InvariantStartInstructions.push_back(II); 2742 continue; 2743 } 2744 2745 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2746 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2747 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2748 } 2749 2750 stripInvalidMetadataFromInstruction(I); 2751 2752 AttributeMask R = getParamAndReturnAttributesToRemove(); 2753 if (auto *Call = dyn_cast<CallBase>(&I)) { 2754 for (int i = 0, e = Call->arg_size(); i != e; i++) 2755 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2756 Call->removeParamAttrs(i, R); 2757 if (isa<PointerType>(Call->getType())) 2758 Call->removeRetAttrs(R); 2759 } 2760 } 2761 2762 // Delete the invariant.start instructions and RAUW undef. 2763 for (auto *II : InvariantStartInstructions) { 2764 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2765 II->eraseFromParent(); 2766 } 2767 } 2768 2769 /// Returns true if this function should be rewritten by this pass. The main 2770 /// point of this function is as an extension point for custom logic. 2771 static bool shouldRewriteStatepointsIn(Function &F) { 2772 // TODO: This should check the GCStrategy 2773 if (F.hasGC()) { 2774 const auto &FunctionGCName = F.getGC(); 2775 const StringRef StatepointExampleName("statepoint-example"); 2776 const StringRef CoreCLRName("coreclr"); 2777 return (StatepointExampleName == FunctionGCName) || 2778 (CoreCLRName == FunctionGCName); 2779 } else 2780 return false; 2781 } 2782 2783 static void stripNonValidData(Module &M) { 2784 #ifndef NDEBUG 2785 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2786 #endif 2787 2788 for (Function &F : M) 2789 stripNonValidAttributesFromPrototype(F); 2790 2791 for (Function &F : M) 2792 stripNonValidDataFromBody(F); 2793 } 2794 2795 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2796 TargetTransformInfo &TTI, 2797 const TargetLibraryInfo &TLI) { 2798 assert(!F.isDeclaration() && !F.empty() && 2799 "need function body to rewrite statepoints in"); 2800 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2801 2802 auto NeedsRewrite = [&TLI](Instruction &I) { 2803 if (const auto *Call = dyn_cast<CallBase>(&I)) { 2804 if (isa<GCStatepointInst>(Call)) 2805 return false; 2806 if (callsGCLeafFunction(Call, TLI)) 2807 return false; 2808 2809 // Normally it's up to the frontend to make sure that non-leaf calls also 2810 // have proper deopt state if it is required. We make an exception for 2811 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 2812 // these are non-leaf by default. They might be generated by the optimizer 2813 // which doesn't know how to produce a proper deopt state. So if we see a 2814 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 2815 // copy and don't produce a statepoint. 2816 if (!AllowStatepointWithNoDeoptInfo && 2817 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 2818 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 2819 "Don't expect any other calls here!"); 2820 return false; 2821 } 2822 return true; 2823 } 2824 return false; 2825 }; 2826 2827 // Delete any unreachable statepoints so that we don't have unrewritten 2828 // statepoints surviving this pass. This makes testing easier and the 2829 // resulting IR less confusing to human readers. 2830 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2831 bool MadeChange = removeUnreachableBlocks(F, &DTU); 2832 // Flush the Dominator Tree. 2833 DTU.getDomTree(); 2834 2835 // Gather all the statepoints which need rewritten. Be careful to only 2836 // consider those in reachable code since we need to ask dominance queries 2837 // when rewriting. We'll delete the unreachable ones in a moment. 2838 SmallVector<CallBase *, 64> ParsePointNeeded; 2839 SmallVector<CallInst *, 64> Intrinsics; 2840 for (Instruction &I : instructions(F)) { 2841 // TODO: only the ones with the flag set! 2842 if (NeedsRewrite(I)) { 2843 // NOTE removeUnreachableBlocks() is stronger than 2844 // DominatorTree::isReachableFromEntry(). In other words 2845 // removeUnreachableBlocks can remove some blocks for which 2846 // isReachableFromEntry() returns true. 2847 assert(DT.isReachableFromEntry(I.getParent()) && 2848 "no unreachable blocks expected"); 2849 ParsePointNeeded.push_back(cast<CallBase>(&I)); 2850 } 2851 if (auto *CI = dyn_cast<CallInst>(&I)) 2852 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 2853 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 2854 Intrinsics.emplace_back(CI); 2855 } 2856 2857 // Return early if no work to do. 2858 if (ParsePointNeeded.empty() && Intrinsics.empty()) 2859 return MadeChange; 2860 2861 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2862 // These are created by LCSSA. They have the effect of increasing the size 2863 // of liveness sets for no good reason. It may be harder to do this post 2864 // insertion since relocations and base phis can confuse things. 2865 for (BasicBlock &BB : F) 2866 if (BB.getUniquePredecessor()) 2867 MadeChange |= FoldSingleEntryPHINodes(&BB); 2868 2869 // Before we start introducing relocations, we want to tweak the IR a bit to 2870 // avoid unfortunate code generation effects. The main example is that we 2871 // want to try to make sure the comparison feeding a branch is after any 2872 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2873 // values feeding a branch after relocation. This is semantically correct, 2874 // but results in extra register pressure since both the pre-relocation and 2875 // post-relocation copies must be available in registers. For code without 2876 // relocations this is handled elsewhere, but teaching the scheduler to 2877 // reverse the transform we're about to do would be slightly complex. 2878 // Note: This may extend the live range of the inputs to the icmp and thus 2879 // increase the liveset of any statepoint we move over. This is profitable 2880 // as long as all statepoints are in rare blocks. If we had in-register 2881 // lowering for live values this would be a much safer transform. 2882 auto getConditionInst = [](Instruction *TI) -> Instruction * { 2883 if (auto *BI = dyn_cast<BranchInst>(TI)) 2884 if (BI->isConditional()) 2885 return dyn_cast<Instruction>(BI->getCondition()); 2886 // TODO: Extend this to handle switches 2887 return nullptr; 2888 }; 2889 for (BasicBlock &BB : F) { 2890 Instruction *TI = BB.getTerminator(); 2891 if (auto *Cond = getConditionInst(TI)) 2892 // TODO: Handle more than just ICmps here. We should be able to move 2893 // most instructions without side effects or memory access. 2894 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2895 MadeChange = true; 2896 Cond->moveBefore(TI); 2897 } 2898 } 2899 2900 // Nasty workaround - The base computation code in the main algorithm doesn't 2901 // consider the fact that a GEP can be used to convert a scalar to a vector. 2902 // The right fix for this is to integrate GEPs into the base rewriting 2903 // algorithm properly, this is just a short term workaround to prevent 2904 // crashes by canonicalizing such GEPs into fully vector GEPs. 2905 for (Instruction &I : instructions(F)) { 2906 if (!isa<GetElementPtrInst>(I)) 2907 continue; 2908 2909 unsigned VF = 0; 2910 for (unsigned i = 0; i < I.getNumOperands(); i++) 2911 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 2912 assert(VF == 0 || 2913 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 2914 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 2915 } 2916 2917 // It's the vector to scalar traversal through the pointer operand which 2918 // confuses base pointer rewriting, so limit ourselves to that case. 2919 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 2920 IRBuilder<> B(&I); 2921 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 2922 I.setOperand(0, Splat); 2923 MadeChange = true; 2924 } 2925 } 2926 2927 // Cache the 'defining value' relation used in the computation and 2928 // insertion of base phis and selects. This ensures that we don't insert 2929 // large numbers of duplicate base_phis. Use one cache for both 2930 // inlineGetBaseAndOffset() and insertParsePoints(). 2931 DefiningValueMapTy DVCache; 2932 2933 if (!Intrinsics.empty()) 2934 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 2935 // live references. 2936 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache); 2937 2938 if (!ParsePointNeeded.empty()) 2939 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache); 2940 2941 return MadeChange; 2942 } 2943 2944 // liveness computation via standard dataflow 2945 // ------------------------------------------------------------------- 2946 2947 // TODO: Consider using bitvectors for liveness, the set of potentially 2948 // interesting values should be small and easy to pre-compute. 2949 2950 /// Compute the live-in set for the location rbegin starting from 2951 /// the live-out set of the basic block 2952 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2953 BasicBlock::reverse_iterator End, 2954 SetVector<Value *> &LiveTmp) { 2955 for (auto &I : make_range(Begin, End)) { 2956 // KILL/Def - Remove this definition from LiveIn 2957 LiveTmp.remove(&I); 2958 2959 // Don't consider *uses* in PHI nodes, we handle their contribution to 2960 // predecessor blocks when we seed the LiveOut sets 2961 if (isa<PHINode>(I)) 2962 continue; 2963 2964 // USE - Add to the LiveIn set for this instruction 2965 for (Value *V : I.operands()) { 2966 assert(!isUnhandledGCPointerType(V->getType()) && 2967 "support for FCA unimplemented"); 2968 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2969 // The choice to exclude all things constant here is slightly subtle. 2970 // There are two independent reasons: 2971 // - We assume that things which are constant (from LLVM's definition) 2972 // do not move at runtime. For example, the address of a global 2973 // variable is fixed, even though it's contents may not be. 2974 // - Second, we can't disallow arbitrary inttoptr constants even 2975 // if the language frontend does. Optimization passes are free to 2976 // locally exploit facts without respect to global reachability. This 2977 // can create sections of code which are dynamically unreachable and 2978 // contain just about anything. (see constants.ll in tests) 2979 LiveTmp.insert(V); 2980 } 2981 } 2982 } 2983 } 2984 2985 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2986 for (BasicBlock *Succ : successors(BB)) { 2987 for (auto &I : *Succ) { 2988 PHINode *PN = dyn_cast<PHINode>(&I); 2989 if (!PN) 2990 break; 2991 2992 Value *V = PN->getIncomingValueForBlock(BB); 2993 assert(!isUnhandledGCPointerType(V->getType()) && 2994 "support for FCA unimplemented"); 2995 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2996 LiveTmp.insert(V); 2997 } 2998 } 2999 } 3000 3001 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 3002 SetVector<Value *> KillSet; 3003 for (Instruction &I : *BB) 3004 if (isHandledGCPointerType(I.getType())) 3005 KillSet.insert(&I); 3006 return KillSet; 3007 } 3008 3009 #ifndef NDEBUG 3010 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3011 /// validation check for the liveness computation. 3012 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3013 Instruction *TI, bool TermOkay = false) { 3014 for (Value *V : Live) { 3015 if (auto *I = dyn_cast<Instruction>(V)) { 3016 // The terminator can be a member of the LiveOut set. LLVM's definition 3017 // of instruction dominance states that V does not dominate itself. As 3018 // such, we need to special case this to allow it. 3019 if (TermOkay && TI == I) 3020 continue; 3021 assert(DT.dominates(I, TI) && 3022 "basic SSA liveness expectation violated by liveness analysis"); 3023 } 3024 } 3025 } 3026 3027 /// Check that all the liveness sets used during the computation of liveness 3028 /// obey basic SSA properties. This is useful for finding cases where we miss 3029 /// a def. 3030 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3031 BasicBlock &BB) { 3032 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3033 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3034 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3035 } 3036 #endif 3037 3038 static void computeLiveInValues(DominatorTree &DT, Function &F, 3039 GCPtrLivenessData &Data) { 3040 SmallSetVector<BasicBlock *, 32> Worklist; 3041 3042 // Seed the liveness for each individual block 3043 for (BasicBlock &BB : F) { 3044 Data.KillSet[&BB] = computeKillSet(&BB); 3045 Data.LiveSet[&BB].clear(); 3046 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 3047 3048 #ifndef NDEBUG 3049 for (Value *Kill : Data.KillSet[&BB]) 3050 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3051 #endif 3052 3053 Data.LiveOut[&BB] = SetVector<Value *>(); 3054 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 3055 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3056 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3057 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3058 if (!Data.LiveIn[&BB].empty()) 3059 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3060 } 3061 3062 // Propagate that liveness until stable 3063 while (!Worklist.empty()) { 3064 BasicBlock *BB = Worklist.pop_back_val(); 3065 3066 // Compute our new liveout set, then exit early if it hasn't changed despite 3067 // the contribution of our successor. 3068 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3069 const auto OldLiveOutSize = LiveOut.size(); 3070 for (BasicBlock *Succ : successors(BB)) { 3071 assert(Data.LiveIn.count(Succ)); 3072 LiveOut.set_union(Data.LiveIn[Succ]); 3073 } 3074 // assert OutLiveOut is a subset of LiveOut 3075 if (OldLiveOutSize == LiveOut.size()) { 3076 // If the sets are the same size, then we didn't actually add anything 3077 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3078 // hasn't changed. 3079 continue; 3080 } 3081 Data.LiveOut[BB] = LiveOut; 3082 3083 // Apply the effects of this basic block 3084 SetVector<Value *> LiveTmp = LiveOut; 3085 LiveTmp.set_union(Data.LiveSet[BB]); 3086 LiveTmp.set_subtract(Data.KillSet[BB]); 3087 3088 assert(Data.LiveIn.count(BB)); 3089 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3090 // assert: OldLiveIn is a subset of LiveTmp 3091 if (OldLiveIn.size() != LiveTmp.size()) { 3092 Data.LiveIn[BB] = LiveTmp; 3093 Worklist.insert(pred_begin(BB), pred_end(BB)); 3094 } 3095 } // while (!Worklist.empty()) 3096 3097 #ifndef NDEBUG 3098 // Verify our output against SSA properties. This helps catch any 3099 // missing kills during the above iteration. 3100 for (BasicBlock &BB : F) 3101 checkBasicSSA(DT, Data, BB); 3102 #endif 3103 } 3104 3105 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3106 StatepointLiveSetTy &Out) { 3107 BasicBlock *BB = Inst->getParent(); 3108 3109 // Note: The copy is intentional and required 3110 assert(Data.LiveOut.count(BB)); 3111 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3112 3113 // We want to handle the statepoint itself oddly. It's 3114 // call result is not live (normal), nor are it's arguments 3115 // (unless they're used again later). This adjustment is 3116 // specifically what we need to relocate 3117 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 3118 LiveOut); 3119 LiveOut.remove(Inst); 3120 Out.insert(LiveOut.begin(), LiveOut.end()); 3121 } 3122 3123 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3124 CallBase *Call, 3125 PartiallyConstructedSafepointRecord &Info, 3126 PointerToBaseTy &PointerToBase) { 3127 StatepointLiveSetTy Updated; 3128 findLiveSetAtInst(Call, RevisedLivenessData, Updated); 3129 3130 // We may have base pointers which are now live that weren't before. We need 3131 // to update the PointerToBase structure to reflect this. 3132 for (auto V : Updated) 3133 PointerToBase.insert({ V, V }); 3134 3135 Info.LiveSet = Updated; 3136 } 3137