xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision b1879975794772ee51f0b4865753364c7d7626c3)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/AttributeMask.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GCStrategy.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstIterator.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/Statepoint.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <iterator>
72 #include <optional>
73 #include <set>
74 #include <string>
75 #include <utility>
76 #include <vector>
77 
78 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
79 
80 using namespace llvm;
81 
82 // Print the liveset found at the insert location
83 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
84                                   cl::init(false));
85 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
86                                       cl::init(false));
87 
88 // Print out the base pointers for debugging
89 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
90                                        cl::init(false));
91 
92 // Cost threshold measuring when it is profitable to rematerialize value instead
93 // of relocating it
94 static cl::opt<unsigned>
95 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
96                            cl::init(6));
97 
98 #ifdef EXPENSIVE_CHECKS
99 static bool ClobberNonLive = true;
100 #else
101 static bool ClobberNonLive = false;
102 #endif
103 
104 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
105                                                   cl::location(ClobberNonLive),
106                                                   cl::Hidden);
107 
108 static cl::opt<bool>
109     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
110                                    cl::Hidden, cl::init(true));
111 
112 static cl::opt<bool> RematDerivedAtUses("rs4gc-remat-derived-at-uses",
113                                         cl::Hidden, cl::init(true));
114 
115 /// The IR fed into RewriteStatepointsForGC may have had attributes and
116 /// metadata implying dereferenceability that are no longer valid/correct after
117 /// RewriteStatepointsForGC has run. This is because semantically, after
118 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
119 /// heap. stripNonValidData (conservatively) restores
120 /// correctness by erasing all attributes in the module that externally imply
121 /// dereferenceability. Similar reasoning also applies to the noalias
122 /// attributes and metadata. gc.statepoint can touch the entire heap including
123 /// noalias objects.
124 /// Apart from attributes and metadata, we also remove instructions that imply
125 /// constant physical memory: llvm.invariant.start.
126 static void stripNonValidData(Module &M);
127 
128 // Find the GC strategy for a function, or null if it doesn't have one.
129 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F);
130 
131 static bool shouldRewriteStatepointsIn(Function &F);
132 
133 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
134                                                ModuleAnalysisManager &AM) {
135   bool Changed = false;
136   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
137   for (Function &F : M) {
138     // Nothing to do for declarations.
139     if (F.isDeclaration() || F.empty())
140       continue;
141 
142     // Policy choice says not to rewrite - the most common reason is that we're
143     // compiling code without a GCStrategy.
144     if (!shouldRewriteStatepointsIn(F))
145       continue;
146 
147     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
148     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
149     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
150     Changed |= runOnFunction(F, DT, TTI, TLI);
151   }
152   if (!Changed)
153     return PreservedAnalyses::all();
154 
155   // stripNonValidData asserts that shouldRewriteStatepointsIn
156   // returns true for at least one function in the module.  Since at least
157   // one function changed, we know that the precondition is satisfied.
158   stripNonValidData(M);
159 
160   PreservedAnalyses PA;
161   PA.preserve<TargetIRAnalysis>();
162   PA.preserve<TargetLibraryAnalysis>();
163   return PA;
164 }
165 
166 namespace {
167 
168 struct GCPtrLivenessData {
169   /// Values defined in this block.
170   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
171 
172   /// Values used in this block (and thus live); does not included values
173   /// killed within this block.
174   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
175 
176   /// Values live into this basic block (i.e. used by any
177   /// instruction in this basic block or ones reachable from here)
178   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
179 
180   /// Values live out of this basic block (i.e. live into
181   /// any successor block)
182   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
183 };
184 
185 // The type of the internal cache used inside the findBasePointers family
186 // of functions.  From the callers perspective, this is an opaque type and
187 // should not be inspected.
188 //
189 // In the actual implementation this caches two relations:
190 // - The base relation itself (i.e. this pointer is based on that one)
191 // - The base defining value relation (i.e. before base_phi insertion)
192 // Generally, after the execution of a full findBasePointer call, only the
193 // base relation will remain.  Internally, we add a mixture of the two
194 // types, then update all the second type to the first type
195 using DefiningValueMapTy = MapVector<Value *, Value *>;
196 using IsKnownBaseMapTy = MapVector<Value *, bool>;
197 using PointerToBaseTy = MapVector<Value *, Value *>;
198 using StatepointLiveSetTy = SetVector<Value *>;
199 using RematerializedValueMapTy =
200     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
201 
202 struct PartiallyConstructedSafepointRecord {
203   /// The set of values known to be live across this safepoint
204   StatepointLiveSetTy LiveSet;
205 
206   /// The *new* gc.statepoint instruction itself.  This produces the token
207   /// that normal path gc.relocates and the gc.result are tied to.
208   GCStatepointInst *StatepointToken;
209 
210   /// Instruction to which exceptional gc relocates are attached
211   /// Makes it easier to iterate through them during relocationViaAlloca.
212   Instruction *UnwindToken;
213 
214   /// Record live values we are rematerialized instead of relocating.
215   /// They are not included into 'LiveSet' field.
216   /// Maps rematerialized copy to it's original value.
217   RematerializedValueMapTy RematerializedValues;
218 };
219 
220 struct RematerizlizationCandidateRecord {
221   // Chain from derived pointer to base.
222   SmallVector<Instruction *, 3> ChainToBase;
223   // Original base.
224   Value *RootOfChain;
225   // Cost of chain.
226   InstructionCost Cost;
227 };
228 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>;
229 
230 } // end anonymous namespace
231 
232 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
233   std::optional<OperandBundleUse> DeoptBundle =
234       Call->getOperandBundle(LLVMContext::OB_deopt);
235 
236   if (!DeoptBundle) {
237     assert(AllowStatepointWithNoDeoptInfo &&
238            "Found non-leaf call without deopt info!");
239     return std::nullopt;
240   }
241 
242   return DeoptBundle->Inputs;
243 }
244 
245 /// Compute the live-in set for every basic block in the function
246 static void computeLiveInValues(DominatorTree &DT, Function &F,
247                                 GCPtrLivenessData &Data, GCStrategy *GC);
248 
249 /// Given results from the dataflow liveness computation, find the set of live
250 /// Values at a particular instruction.
251 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
252                               StatepointLiveSetTy &out, GCStrategy *GC);
253 
254 static bool isGCPointerType(Type *T, GCStrategy *GC) {
255   assert(GC && "GC Strategy for isGCPointerType cannot be null");
256 
257   if (!isa<PointerType>(T))
258     return false;
259 
260   // conservative - same as StatepointLowering
261   return GC->isGCManagedPointer(T).value_or(true);
262 }
263 
264 // Return true if this type is one which a) is a gc pointer or contains a GC
265 // pointer and b) is of a type this code expects to encounter as a live value.
266 // (The insertion code will assert that a type which matches (a) and not (b)
267 // is not encountered.)
268 static bool isHandledGCPointerType(Type *T, GCStrategy *GC) {
269   // We fully support gc pointers
270   if (isGCPointerType(T, GC))
271     return true;
272   // We partially support vectors of gc pointers. The code will assert if it
273   // can't handle something.
274   if (auto VT = dyn_cast<VectorType>(T))
275     if (isGCPointerType(VT->getElementType(), GC))
276       return true;
277   return false;
278 }
279 
280 #ifndef NDEBUG
281 /// Returns true if this type contains a gc pointer whether we know how to
282 /// handle that type or not.
283 static bool containsGCPtrType(Type *Ty, GCStrategy *GC) {
284   if (isGCPointerType(Ty, GC))
285     return true;
286   if (VectorType *VT = dyn_cast<VectorType>(Ty))
287     return isGCPointerType(VT->getScalarType(), GC);
288   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
289     return containsGCPtrType(AT->getElementType(), GC);
290   if (StructType *ST = dyn_cast<StructType>(Ty))
291     return llvm::any_of(ST->elements(),
292                         [GC](Type *Ty) { return containsGCPtrType(Ty, GC); });
293   return false;
294 }
295 
296 // Returns true if this is a type which a) is a gc pointer or contains a GC
297 // pointer and b) is of a type which the code doesn't expect (i.e. first class
298 // aggregates).  Used to trip assertions.
299 static bool isUnhandledGCPointerType(Type *Ty, GCStrategy *GC) {
300   return containsGCPtrType(Ty, GC) && !isHandledGCPointerType(Ty, GC);
301 }
302 #endif
303 
304 // Return the name of the value suffixed with the provided value, or if the
305 // value didn't have a name, the default value specified.
306 static std::string suffixed_name_or(Value *V, StringRef Suffix,
307                                     StringRef DefaultName) {
308   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
309 }
310 
311 // Conservatively identifies any definitions which might be live at the
312 // given instruction. The  analysis is performed immediately before the
313 // given instruction. Values defined by that instruction are not considered
314 // live.  Values used by that instruction are considered live.
315 static void analyzeParsePointLiveness(
316     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
317     PartiallyConstructedSafepointRecord &Result, GCStrategy *GC) {
318   StatepointLiveSetTy LiveSet;
319   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet, GC);
320 
321   if (PrintLiveSet) {
322     dbgs() << "Live Variables:\n";
323     for (Value *V : LiveSet)
324       dbgs() << " " << V->getName() << " " << *V << "\n";
325   }
326   if (PrintLiveSetSize) {
327     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
328     dbgs() << "Number live values: " << LiveSet.size() << "\n";
329   }
330   Result.LiveSet = LiveSet;
331 }
332 
333 /// Returns true if V is a known base.
334 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases);
335 
336 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present
337 /// in the cache before.
338 static void setKnownBase(Value *V, bool IsKnownBase,
339                          IsKnownBaseMapTy &KnownBases);
340 
341 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
342                                     IsKnownBaseMapTy &KnownBases);
343 
344 /// Return a base defining value for the 'Index' element of the given vector
345 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
346 /// 'I'.  As an optimization, this method will try to determine when the
347 /// element is known to already be a base pointer.  If this can be established,
348 /// the second value in the returned pair will be true.  Note that either a
349 /// vector or a pointer typed value can be returned.  For the former, the
350 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
351 /// If the later, the return pointer is a BDV (or possibly a base) for the
352 /// particular element in 'I'.
353 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache,
354                                             IsKnownBaseMapTy &KnownBases) {
355   // Each case parallels findBaseDefiningValue below, see that code for
356   // detailed motivation.
357 
358   auto Cached = Cache.find(I);
359   if (Cached != Cache.end())
360     return Cached->second;
361 
362   if (isa<Argument>(I)) {
363     // An incoming argument to the function is a base pointer
364     Cache[I] = I;
365     setKnownBase(I, /* IsKnownBase */true, KnownBases);
366     return I;
367   }
368 
369   if (isa<Constant>(I)) {
370     // Base of constant vector consists only of constant null pointers.
371     // For reasoning see similar case inside 'findBaseDefiningValue' function.
372     auto *CAZ = ConstantAggregateZero::get(I->getType());
373     Cache[I] = CAZ;
374     setKnownBase(CAZ, /* IsKnownBase */true, KnownBases);
375     return CAZ;
376   }
377 
378   if (isa<LoadInst>(I)) {
379     Cache[I] = I;
380     setKnownBase(I, /* IsKnownBase */true, KnownBases);
381     return I;
382   }
383 
384   if (isa<InsertElementInst>(I)) {
385     // We don't know whether this vector contains entirely base pointers or
386     // not.  To be conservatively correct, we treat it as a BDV and will
387     // duplicate code as needed to construct a parallel vector of bases.
388     Cache[I] = I;
389     setKnownBase(I, /* IsKnownBase */false, KnownBases);
390     return I;
391   }
392 
393   if (isa<ShuffleVectorInst>(I)) {
394     // We don't know whether this vector contains entirely base pointers or
395     // not.  To be conservatively correct, we treat it as a BDV and will
396     // duplicate code as needed to construct a parallel vector of bases.
397     // TODO: There a number of local optimizations which could be applied here
398     // for particular sufflevector patterns.
399     Cache[I] = I;
400     setKnownBase(I, /* IsKnownBase */false, KnownBases);
401     return I;
402   }
403 
404   // The behavior of getelementptr instructions is the same for vector and
405   // non-vector data types.
406   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
407     auto *BDV =
408         findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
409     Cache[GEP] = BDV;
410     return BDV;
411   }
412 
413   // The behavior of freeze instructions is the same for vector and
414   // non-vector data types.
415   if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
416     auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
417     Cache[Freeze] = BDV;
418     return BDV;
419   }
420 
421   // If the pointer comes through a bitcast of a vector of pointers to
422   // a vector of another type of pointer, then look through the bitcast
423   if (auto *BC = dyn_cast<BitCastInst>(I)) {
424     auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases);
425     Cache[BC] = BDV;
426     return BDV;
427   }
428 
429   // We assume that functions in the source language only return base
430   // pointers.  This should probably be generalized via attributes to support
431   // both source language and internal functions.
432   if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
433     Cache[I] = I;
434     setKnownBase(I, /* IsKnownBase */true, KnownBases);
435     return I;
436   }
437 
438   // A PHI or Select is a base defining value.  The outer findBasePointer
439   // algorithm is responsible for constructing a base value for this BDV.
440   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
441          "unknown vector instruction - no base found for vector element");
442   Cache[I] = I;
443   setKnownBase(I, /* IsKnownBase */false, KnownBases);
444   return I;
445 }
446 
447 /// Helper function for findBasePointer - Will return a value which either a)
448 /// defines the base pointer for the input, b) blocks the simple search
449 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
450 /// from pointer to vector type or back.
451 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
452                                     IsKnownBaseMapTy &KnownBases) {
453   assert(I->getType()->isPtrOrPtrVectorTy() &&
454          "Illegal to ask for the base pointer of a non-pointer type");
455   auto Cached = Cache.find(I);
456   if (Cached != Cache.end())
457     return Cached->second;
458 
459   if (I->getType()->isVectorTy())
460     return findBaseDefiningValueOfVector(I, Cache, KnownBases);
461 
462   if (isa<Argument>(I)) {
463     // An incoming argument to the function is a base pointer
464     // We should have never reached here if this argument isn't an gc value
465     Cache[I] = I;
466     setKnownBase(I, /* IsKnownBase */true, KnownBases);
467     return I;
468   }
469 
470   if (isa<Constant>(I)) {
471     // We assume that objects with a constant base (e.g. a global) can't move
472     // and don't need to be reported to the collector because they are always
473     // live. Besides global references, all kinds of constants (e.g. undef,
474     // constant expressions, null pointers) can be introduced by the inliner or
475     // the optimizer, especially on dynamically dead paths.
476     // Here we treat all of them as having single null base. By doing this we
477     // trying to avoid problems reporting various conflicts in a form of
478     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
479     // See constant.ll file for relevant test cases.
480 
481     auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType()));
482     Cache[I] = CPN;
483     setKnownBase(CPN, /* IsKnownBase */true, KnownBases);
484     return CPN;
485   }
486 
487   // inttoptrs in an integral address space are currently ill-defined.  We
488   // treat them as defining base pointers here for consistency with the
489   // constant rule above and because we don't really have a better semantic
490   // to give them.  Note that the optimizer is always free to insert undefined
491   // behavior on dynamically dead paths as well.
492   if (isa<IntToPtrInst>(I)) {
493     Cache[I] = I;
494     setKnownBase(I, /* IsKnownBase */true, KnownBases);
495     return I;
496   }
497 
498   if (CastInst *CI = dyn_cast<CastInst>(I)) {
499     Value *Def = CI->stripPointerCasts();
500     // If stripping pointer casts changes the address space there is an
501     // addrspacecast in between.
502     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
503                cast<PointerType>(CI->getType())->getAddressSpace() &&
504            "unsupported addrspacecast");
505     // If we find a cast instruction here, it means we've found a cast which is
506     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
507     // handle int->ptr conversion.
508     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
509     auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases);
510     Cache[CI] = BDV;
511     return BDV;
512   }
513 
514   if (isa<LoadInst>(I)) {
515     // The value loaded is an gc base itself
516     Cache[I] = I;
517     setKnownBase(I, /* IsKnownBase */true, KnownBases);
518     return I;
519   }
520 
521   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
522     // The base of this GEP is the base
523     auto *BDV =
524         findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
525     Cache[GEP] = BDV;
526     return BDV;
527   }
528 
529   if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
530     auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
531     Cache[Freeze] = BDV;
532     return BDV;
533   }
534 
535   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
536     switch (II->getIntrinsicID()) {
537     default:
538       // fall through to general call handling
539       break;
540     case Intrinsic::experimental_gc_statepoint:
541       llvm_unreachable("statepoints don't produce pointers");
542     case Intrinsic::experimental_gc_relocate:
543       // Rerunning safepoint insertion after safepoints are already
544       // inserted is not supported.  It could probably be made to work,
545       // but why are you doing this?  There's no good reason.
546       llvm_unreachable("repeat safepoint insertion is not supported");
547     case Intrinsic::gcroot:
548       // Currently, this mechanism hasn't been extended to work with gcroot.
549       // There's no reason it couldn't be, but I haven't thought about the
550       // implications much.
551       llvm_unreachable(
552           "interaction with the gcroot mechanism is not supported");
553     case Intrinsic::experimental_gc_get_pointer_base:
554       auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases);
555       Cache[II] = BDV;
556       return BDV;
557     }
558   }
559   // We assume that functions in the source language only return base
560   // pointers.  This should probably be generalized via attributes to support
561   // both source language and internal functions.
562   if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
563     Cache[I] = I;
564     setKnownBase(I, /* IsKnownBase */true, KnownBases);
565     return I;
566   }
567 
568   // TODO: I have absolutely no idea how to implement this part yet.  It's not
569   // necessarily hard, I just haven't really looked at it yet.
570   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
571 
572   if (isa<AtomicCmpXchgInst>(I)) {
573     // A CAS is effectively a atomic store and load combined under a
574     // predicate.  From the perspective of base pointers, we just treat it
575     // like a load.
576     Cache[I] = I;
577     setKnownBase(I, /* IsKnownBase */true, KnownBases);
578     return I;
579   }
580 
581   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
582                                    "binary ops which don't apply to pointers");
583 
584   // The aggregate ops.  Aggregates can either be in the heap or on the
585   // stack, but in either case, this is simply a field load.  As a result,
586   // this is a defining definition of the base just like a load is.
587   if (isa<ExtractValueInst>(I)) {
588     Cache[I] = I;
589     setKnownBase(I, /* IsKnownBase */true, KnownBases);
590     return I;
591   }
592 
593   // We should never see an insert vector since that would require we be
594   // tracing back a struct value not a pointer value.
595   assert(!isa<InsertValueInst>(I) &&
596          "Base pointer for a struct is meaningless");
597 
598   // This value might have been generated by findBasePointer() called when
599   // substituting gc.get.pointer.base() intrinsic.
600   bool IsKnownBase =
601       isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value");
602   setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases);
603   Cache[I] = I;
604 
605   // An extractelement produces a base result exactly when it's input does.
606   // We may need to insert a parallel instruction to extract the appropriate
607   // element out of the base vector corresponding to the input. Given this,
608   // it's analogous to the phi and select case even though it's not a merge.
609   if (isa<ExtractElementInst>(I))
610     // Note: There a lot of obvious peephole cases here.  This are deliberately
611     // handled after the main base pointer inference algorithm to make writing
612     // test cases to exercise that code easier.
613     return I;
614 
615   // The last two cases here don't return a base pointer.  Instead, they
616   // return a value which dynamically selects from among several base
617   // derived pointers (each with it's own base potentially).  It's the job of
618   // the caller to resolve these.
619   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
620          "missing instruction case in findBaseDefiningValue");
621   return I;
622 }
623 
624 /// Returns the base defining value for this value.
625 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache,
626                                           IsKnownBaseMapTy &KnownBases) {
627   if (!Cache.contains(I)) {
628     auto *BDV = findBaseDefiningValue(I, Cache, KnownBases);
629     Cache[I] = BDV;
630     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
631                       << Cache[I]->getName() << ", is known base = "
632                       << KnownBases[I] << "\n");
633   }
634   assert(Cache[I] != nullptr);
635   assert(KnownBases.contains(Cache[I]) &&
636          "Cached value must be present in known bases map");
637   return Cache[I];
638 }
639 
640 /// Return a base pointer for this value if known.  Otherwise, return it's
641 /// base defining value.
642 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache,
643                             IsKnownBaseMapTy &KnownBases) {
644   Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases);
645   auto Found = Cache.find(Def);
646   if (Found != Cache.end()) {
647     // Either a base-of relation, or a self reference.  Caller must check.
648     return Found->second;
649   }
650   // Only a BDV available
651   return Def;
652 }
653 
654 #ifndef NDEBUG
655 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
656 /// exists in the code.
657 static bool isOriginalBaseResult(Value *V) {
658   // no recursion possible
659   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
660          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
661          !isa<ShuffleVectorInst>(V);
662 }
663 #endif
664 
665 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) {
666   auto It = KnownBases.find(V);
667   assert(It != KnownBases.end() && "Value not present in the map");
668   return It->second;
669 }
670 
671 static void setKnownBase(Value *V, bool IsKnownBase,
672                          IsKnownBaseMapTy &KnownBases) {
673 #ifndef NDEBUG
674   auto It = KnownBases.find(V);
675   if (It != KnownBases.end())
676     assert(It->second == IsKnownBase && "Changing already present value");
677 #endif
678   KnownBases[V] = IsKnownBase;
679 }
680 
681 // Returns true if First and Second values are both scalar or both vector.
682 static bool areBothVectorOrScalar(Value *First, Value *Second) {
683   return isa<VectorType>(First->getType()) ==
684          isa<VectorType>(Second->getType());
685 }
686 
687 namespace {
688 
689 /// Models the state of a single base defining value in the findBasePointer
690 /// algorithm for determining where a new instruction is needed to propagate
691 /// the base of this BDV.
692 class BDVState {
693 public:
694   enum StatusTy {
695      // Starting state of lattice
696      Unknown,
697      // Some specific base value -- does *not* mean that instruction
698      // propagates the base of the object
699      // ex: gep %arg, 16 -> %arg is the base value
700      Base,
701      // Need to insert a node to represent a merge.
702      Conflict
703   };
704 
705   BDVState() {
706     llvm_unreachable("missing state in map");
707   }
708 
709   explicit BDVState(Value *OriginalValue)
710     : OriginalValue(OriginalValue) {}
711   explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
712     : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
713     assert(Status != Base || BaseValue);
714   }
715 
716   StatusTy getStatus() const { return Status; }
717   Value *getOriginalValue() const { return OriginalValue; }
718   Value *getBaseValue() const { return BaseValue; }
719 
720   bool isBase() const { return getStatus() == Base; }
721   bool isUnknown() const { return getStatus() == Unknown; }
722   bool isConflict() const { return getStatus() == Conflict; }
723 
724   // Values of type BDVState form a lattice, and this function implements the
725   // meet
726   // operation.
727   void meet(const BDVState &Other) {
728     auto markConflict = [&]() {
729       Status = BDVState::Conflict;
730       BaseValue = nullptr;
731     };
732     // Conflict is a final state.
733     if (isConflict())
734       return;
735     // if we are not known - just take other state.
736     if (isUnknown()) {
737       Status = Other.getStatus();
738       BaseValue = Other.getBaseValue();
739       return;
740     }
741     // We are base.
742     assert(isBase() && "Unknown state");
743     // If other is unknown - just keep our state.
744     if (Other.isUnknown())
745       return;
746     // If other is conflict - it is a final state.
747     if (Other.isConflict())
748       return markConflict();
749     // Other is base as well.
750     assert(Other.isBase() && "Unknown state");
751     // If bases are different - Conflict.
752     if (getBaseValue() != Other.getBaseValue())
753       return markConflict();
754     // We are identical, do nothing.
755   }
756 
757   bool operator==(const BDVState &Other) const {
758     return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue &&
759       Status == Other.Status;
760   }
761 
762   bool operator!=(const BDVState &other) const { return !(*this == other); }
763 
764   LLVM_DUMP_METHOD
765   void dump() const {
766     print(dbgs());
767     dbgs() << '\n';
768   }
769 
770   void print(raw_ostream &OS) const {
771     switch (getStatus()) {
772     case Unknown:
773       OS << "U";
774       break;
775     case Base:
776       OS << "B";
777       break;
778     case Conflict:
779       OS << "C";
780       break;
781     }
782     OS << " (base " << getBaseValue() << " - "
783        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
784        << " for  "  << OriginalValue->getName() << ":";
785   }
786 
787 private:
788   AssertingVH<Value> OriginalValue; // instruction this state corresponds to
789   StatusTy Status = Unknown;
790   AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
791 };
792 
793 } // end anonymous namespace
794 
795 #ifndef NDEBUG
796 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
797   State.print(OS);
798   return OS;
799 }
800 #endif
801 
802 /// For a given value or instruction, figure out what base ptr its derived from.
803 /// For gc objects, this is simply itself.  On success, returns a value which is
804 /// the base pointer.  (This is reliable and can be used for relocation.)  On
805 /// failure, returns nullptr.
806 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache,
807                               IsKnownBaseMapTy &KnownBases) {
808   Value *Def = findBaseOrBDV(I, Cache, KnownBases);
809 
810   if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I))
811     return Def;
812 
813   // Here's the rough algorithm:
814   // - For every SSA value, construct a mapping to either an actual base
815   //   pointer or a PHI which obscures the base pointer.
816   // - Construct a mapping from PHI to unknown TOP state.  Use an
817   //   optimistic algorithm to propagate base pointer information.  Lattice
818   //   looks like:
819   //   UNKNOWN
820   //   b1 b2 b3 b4
821   //   CONFLICT
822   //   When algorithm terminates, all PHIs will either have a single concrete
823   //   base or be in a conflict state.
824   // - For every conflict, insert a dummy PHI node without arguments.  Add
825   //   these to the base[Instruction] = BasePtr mapping.  For every
826   //   non-conflict, add the actual base.
827   //  - For every conflict, add arguments for the base[a] of each input
828   //   arguments.
829   //
830   // Note: A simpler form of this would be to add the conflict form of all
831   // PHIs without running the optimistic algorithm.  This would be
832   // analogous to pessimistic data flow and would likely lead to an
833   // overall worse solution.
834 
835 #ifndef NDEBUG
836   auto isExpectedBDVType = [](Value *BDV) {
837     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
838            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
839            isa<ShuffleVectorInst>(BDV);
840   };
841 #endif
842 
843   // Once populated, will contain a mapping from each potentially non-base BDV
844   // to a lattice value (described above) which corresponds to that BDV.
845   // We use the order of insertion (DFS over the def/use graph) to provide a
846   // stable deterministic ordering for visiting DenseMaps (which are unordered)
847   // below.  This is important for deterministic compilation.
848   MapVector<Value *, BDVState> States;
849 
850 #ifndef NDEBUG
851   auto VerifyStates = [&]() {
852     for (auto &Entry : States) {
853       assert(Entry.first == Entry.second.getOriginalValue());
854     }
855   };
856 #endif
857 
858   auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
859     if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
860       for (Value *InVal : PN->incoming_values())
861         F(InVal);
862     } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
863       F(SI->getTrueValue());
864       F(SI->getFalseValue());
865     } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
866       F(EE->getVectorOperand());
867     } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
868       F(IE->getOperand(0));
869       F(IE->getOperand(1));
870     } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
871       // For a canonical broadcast, ignore the undef argument
872       // (without this, we insert a parallel base shuffle for every broadcast)
873       F(SV->getOperand(0));
874       if (!SV->isZeroEltSplat())
875         F(SV->getOperand(1));
876     } else {
877       llvm_unreachable("unexpected BDV type");
878     }
879   };
880 
881 
882   // Recursively fill in all base defining values reachable from the initial
883   // one for which we don't already know a definite base value for
884   /* scope */ {
885     SmallVector<Value*, 16> Worklist;
886     Worklist.push_back(Def);
887     States.insert({Def, BDVState(Def)});
888     while (!Worklist.empty()) {
889       Value *Current = Worklist.pop_back_val();
890       assert(!isOriginalBaseResult(Current) && "why did it get added?");
891 
892       auto visitIncomingValue = [&](Value *InVal) {
893         Value *Base = findBaseOrBDV(InVal, Cache, KnownBases);
894         if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal))
895           // Known bases won't need new instructions introduced and can be
896           // ignored safely. However, this can only be done when InVal and Base
897           // are both scalar or both vector. Otherwise, we need to find a
898           // correct BDV for InVal, by creating an entry in the lattice
899           // (States).
900           return;
901         assert(isExpectedBDVType(Base) && "the only non-base values "
902                "we see should be base defining values");
903         if (States.insert(std::make_pair(Base, BDVState(Base))).second)
904           Worklist.push_back(Base);
905       };
906 
907       visitBDVOperands(Current, visitIncomingValue);
908     }
909   }
910 
911 #ifndef NDEBUG
912   VerifyStates();
913   LLVM_DEBUG(dbgs() << "States after initialization:\n");
914   for (const auto &Pair : States) {
915     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
916   }
917 #endif
918 
919   // Iterate forward through the value graph pruning any node from the state
920   // list where all of the inputs are base pointers.  The purpose of this is to
921   // reuse existing values when the derived pointer we were asked to materialize
922   // a base pointer for happens to be a base pointer itself.  (Or a sub-graph
923   // feeding it does.)
924   SmallVector<Value *> ToRemove;
925   do {
926     ToRemove.clear();
927     for (auto Pair : States) {
928       Value *BDV = Pair.first;
929       auto canPruneInput = [&](Value *V) {
930         // If the input of the BDV is the BDV itself we can prune it. This is
931         // only possible if the BDV is a PHI node.
932         if (V->stripPointerCasts() == BDV)
933           return true;
934         Value *VBDV = findBaseOrBDV(V, Cache, KnownBases);
935         if (V->stripPointerCasts() != VBDV)
936           return false;
937         // The assumption is that anything not in the state list is
938         // propagates a base pointer.
939         return States.count(VBDV) == 0;
940       };
941 
942       bool CanPrune = true;
943       visitBDVOperands(BDV, [&](Value *Op) {
944         CanPrune = CanPrune && canPruneInput(Op);
945       });
946       if (CanPrune)
947         ToRemove.push_back(BDV);
948     }
949     for (Value *V : ToRemove) {
950       States.erase(V);
951       // Cache the fact V is it's own base for later usage.
952       Cache[V] = V;
953     }
954   } while (!ToRemove.empty());
955 
956   // Did we manage to prove that Def itself must be a base pointer?
957   if (!States.count(Def))
958     return Def;
959 
960   // Return a phi state for a base defining value.  We'll generate a new
961   // base state for known bases and expect to find a cached state otherwise.
962   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
963     auto I = States.find(BaseValue);
964     if (I != States.end())
965       return I->second;
966     assert(areBothVectorOrScalar(BaseValue, Input));
967     return BDVState(BaseValue, BDVState::Base, BaseValue);
968   };
969 
970   // Even though we have identified a concrete base (or a conflict) for all live
971   // pointers at this point, there are cases where the base is of an
972   // incompatible type compared to the original instruction. We conservatively
973   // mark those as conflicts to ensure that corresponding BDVs will be generated
974   // in the next steps.
975 
976   // this is a rather explicit check for all cases where we should mark the
977   // state as a conflict to force the latter stages of the algorithm to emit
978   // the BDVs.
979   // TODO: in many cases the instructions emited for the conflicting states
980   // will be identical to the I itself (if the I's operate on their BDVs
981   // themselves). We should exploit this, but can't do it here since it would
982   // break the invariant about the BDVs not being known to be a base.
983   // TODO: the code also does not handle constants at all - the algorithm relies
984   // on all constants having the same BDV and therefore constant-only insns
985   // will never be in conflict, but this check is ignored here. If the
986   // constant conflicts will be to BDVs themselves, they will be identical
987   // instructions and will get optimized away (as in the above TODO)
988   auto MarkConflict = [&](Instruction *I, Value *BaseValue) {
989     // II and EE mixes vector & scalar so is always a conflict
990     if (isa<InsertElementInst>(I) || isa<ExtractElementInst>(I))
991       return true;
992     // Shuffle vector is always a conflict as it creates new vector from
993     // existing ones.
994     if (isa<ShuffleVectorInst>(I))
995       return true;
996     // Any  instructions where the computed base type differs from the
997     // instruction type. An example is where an extract instruction is used by a
998     // select. Here the select's BDV is a vector (because of extract's BDV),
999     // while the select itself is a scalar type. Note that the IE and EE
1000     // instruction check is not fully subsumed by the vector<->scalar check at
1001     // the end, this is due to the BDV algorithm being ignorant of BDV types at
1002     // this junction.
1003     if (!areBothVectorOrScalar(BaseValue, I))
1004       return true;
1005     return false;
1006   };
1007 
1008   bool Progress = true;
1009   while (Progress) {
1010 #ifndef NDEBUG
1011     const size_t OldSize = States.size();
1012 #endif
1013     Progress = false;
1014     // We're only changing values in this loop, thus safe to keep iterators.
1015     // Since this is computing a fixed point, the order of visit does not
1016     // effect the result.  TODO: We could use a worklist here and make this run
1017     // much faster.
1018     for (auto Pair : States) {
1019       Value *BDV = Pair.first;
1020       // Only values that do not have known bases or those that have differing
1021       // type (scalar versus vector) from a possible known base should be in the
1022       // lattice.
1023       assert((!isKnownBase(BDV, KnownBases) ||
1024              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
1025                  "why did it get added?");
1026 
1027       BDVState NewState(BDV);
1028       visitBDVOperands(BDV, [&](Value *Op) {
1029         Value *BDV = findBaseOrBDV(Op, Cache, KnownBases);
1030         auto OpState = GetStateForBDV(BDV, Op);
1031         NewState.meet(OpState);
1032       });
1033 
1034       // if the instruction has known base, but should in fact be marked as
1035       // conflict because of incompatible in/out types, we mark it as such
1036       // ensuring that it will propagate through the fixpoint iteration
1037       auto I = cast<Instruction>(BDV);
1038       auto BV = NewState.getBaseValue();
1039       if (BV && MarkConflict(I, BV))
1040         NewState = BDVState(I, BDVState::Conflict);
1041 
1042       BDVState OldState = Pair.second;
1043       if (OldState != NewState) {
1044         Progress = true;
1045         States[BDV] = NewState;
1046       }
1047     }
1048 
1049     assert(OldSize == States.size() &&
1050            "fixed point shouldn't be adding any new nodes to state");
1051   }
1052 
1053 #ifndef NDEBUG
1054   VerifyStates();
1055   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
1056   for (const auto &Pair : States) {
1057     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
1058   }
1059 
1060   // since we do the conflict marking as part of the fixpoint iteration this
1061   // loop only asserts that invariants are met
1062   for (auto Pair : States) {
1063     Instruction *I = cast<Instruction>(Pair.first);
1064     BDVState State = Pair.second;
1065     auto *BaseValue = State.getBaseValue();
1066     // Only values that do not have known bases or those that have differing
1067     // type (scalar versus vector) from a possible known base should be in the
1068     // lattice.
1069     assert(
1070         (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) &&
1071         "why did it get added?");
1072     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1073   }
1074 #endif
1075 
1076   // Insert Phis for all conflicts
1077   // TODO: adjust naming patterns to avoid this order of iteration dependency
1078   for (auto Pair : States) {
1079     Instruction *I = cast<Instruction>(Pair.first);
1080     BDVState State = Pair.second;
1081     // Only values that do not have known bases or those that have differing
1082     // type (scalar versus vector) from a possible known base should be in the
1083     // lattice.
1084     assert((!isKnownBase(I, KnownBases) ||
1085             !areBothVectorOrScalar(I, State.getBaseValue())) &&
1086            "why did it get added?");
1087     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1088 
1089     // Since we're joining a vector and scalar base, they can never be the
1090     // same.  As a result, we should always see insert element having reached
1091     // the conflict state.
1092     assert(!isa<InsertElementInst>(I) || State.isConflict());
1093 
1094     if (!State.isConflict())
1095       continue;
1096 
1097     auto getMangledName = [](Instruction *I) -> std::string {
1098       if (isa<PHINode>(I)) {
1099         return suffixed_name_or(I, ".base", "base_phi");
1100       } else if (isa<SelectInst>(I)) {
1101         return suffixed_name_or(I, ".base", "base_select");
1102       } else if (isa<ExtractElementInst>(I)) {
1103         return suffixed_name_or(I, ".base", "base_ee");
1104       } else if (isa<InsertElementInst>(I)) {
1105         return suffixed_name_or(I, ".base", "base_ie");
1106       } else {
1107         return suffixed_name_or(I, ".base", "base_sv");
1108       }
1109     };
1110 
1111     Instruction *BaseInst = I->clone();
1112     BaseInst->insertBefore(I);
1113     BaseInst->setName(getMangledName(I));
1114     // Add metadata marking this as a base value
1115     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1116     States[I] = BDVState(I, BDVState::Conflict, BaseInst);
1117     setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases);
1118   }
1119 
1120 #ifndef NDEBUG
1121   VerifyStates();
1122 #endif
1123 
1124   // Returns a instruction which produces the base pointer for a given
1125   // instruction.  The instruction is assumed to be an input to one of the BDVs
1126   // seen in the inference algorithm above.  As such, we must either already
1127   // know it's base defining value is a base, or have inserted a new
1128   // instruction to propagate the base of it's BDV and have entered that newly
1129   // introduced instruction into the state table.  In either case, we are
1130   // assured to be able to determine an instruction which produces it's base
1131   // pointer.
1132   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1133     Value *BDV = findBaseOrBDV(Input, Cache, KnownBases);
1134     Value *Base = nullptr;
1135     if (!States.count(BDV)) {
1136       assert(areBothVectorOrScalar(BDV, Input));
1137       Base = BDV;
1138     } else {
1139       // Either conflict or base.
1140       assert(States.count(BDV));
1141       Base = States[BDV].getBaseValue();
1142     }
1143     assert(Base && "Can't be null");
1144     // The cast is needed since base traversal may strip away bitcasts
1145     if (Base->getType() != Input->getType() && InsertPt)
1146       Base = new BitCastInst(Base, Input->getType(), "cast",
1147                              InsertPt->getIterator());
1148     return Base;
1149   };
1150 
1151   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1152   // deterministic and predictable because we're naming newly created
1153   // instructions.
1154   for (auto Pair : States) {
1155     Instruction *BDV = cast<Instruction>(Pair.first);
1156     BDVState State = Pair.second;
1157 
1158     // Only values that do not have known bases or those that have differing
1159     // type (scalar versus vector) from a possible known base should be in the
1160     // lattice.
1161     assert((!isKnownBase(BDV, KnownBases) ||
1162             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1163            "why did it get added?");
1164     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1165     if (!State.isConflict())
1166       continue;
1167 
1168     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1169       PHINode *PN = cast<PHINode>(BDV);
1170       const unsigned NumPHIValues = PN->getNumIncomingValues();
1171 
1172       // The IR verifier requires phi nodes with multiple entries from the
1173       // same basic block to have the same incoming value for each of those
1174       // entries.  Since we're inserting bitcasts in the loop, make sure we
1175       // do so at least once per incoming block.
1176       DenseMap<BasicBlock *, Value*> BlockToValue;
1177       for (unsigned i = 0; i < NumPHIValues; i++) {
1178         Value *InVal = PN->getIncomingValue(i);
1179         BasicBlock *InBB = PN->getIncomingBlock(i);
1180         if (!BlockToValue.count(InBB))
1181           BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
1182         else {
1183 #ifndef NDEBUG
1184           Value *OldBase = BlockToValue[InBB];
1185           Value *Base = getBaseForInput(InVal, nullptr);
1186 
1187           // We can't use `stripPointerCasts` instead of this function because
1188           // `stripPointerCasts` doesn't handle vectors of pointers.
1189           auto StripBitCasts = [](Value *V) -> Value * {
1190             while (auto *BC = dyn_cast<BitCastInst>(V))
1191               V = BC->getOperand(0);
1192             return V;
1193           };
1194           // In essence this assert states: the only way two values
1195           // incoming from the same basic block may be different is by
1196           // being different bitcasts of the same value.  A cleanup
1197           // that remains TODO is changing findBaseOrBDV to return an
1198           // llvm::Value of the correct type (and still remain pure).
1199           // This will remove the need to add bitcasts.
1200           assert(StripBitCasts(Base) == StripBitCasts(OldBase) &&
1201                  "findBaseOrBDV should be pure!");
1202 #endif
1203         }
1204         Value *Base = BlockToValue[InBB];
1205         BasePHI->setIncomingValue(i, Base);
1206       }
1207     } else if (SelectInst *BaseSI =
1208                    dyn_cast<SelectInst>(State.getBaseValue())) {
1209       SelectInst *SI = cast<SelectInst>(BDV);
1210 
1211       // Find the instruction which produces the base for each input.
1212       // We may need to insert a bitcast.
1213       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1214       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1215     } else if (auto *BaseEE =
1216                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1217       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1218       // Find the instruction which produces the base for each input.  We may
1219       // need to insert a bitcast.
1220       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1221     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1222       auto *BdvIE = cast<InsertElementInst>(BDV);
1223       auto UpdateOperand = [&](int OperandIdx) {
1224         Value *InVal = BdvIE->getOperand(OperandIdx);
1225         Value *Base = getBaseForInput(InVal, BaseIE);
1226         BaseIE->setOperand(OperandIdx, Base);
1227       };
1228       UpdateOperand(0); // vector operand
1229       UpdateOperand(1); // scalar operand
1230     } else {
1231       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1232       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1233       auto UpdateOperand = [&](int OperandIdx) {
1234         Value *InVal = BdvSV->getOperand(OperandIdx);
1235         Value *Base = getBaseForInput(InVal, BaseSV);
1236         BaseSV->setOperand(OperandIdx, Base);
1237       };
1238       UpdateOperand(0); // vector operand
1239       if (!BdvSV->isZeroEltSplat())
1240         UpdateOperand(1); // vector operand
1241       else {
1242         // Never read, so just use poison
1243         Value *InVal = BdvSV->getOperand(1);
1244         BaseSV->setOperand(1, PoisonValue::get(InVal->getType()));
1245       }
1246     }
1247   }
1248 
1249 #ifndef NDEBUG
1250   VerifyStates();
1251 #endif
1252 
1253   // get the data layout to compare the sizes of base/derived pointer values
1254   [[maybe_unused]] auto &DL =
1255       cast<llvm::Instruction>(Def)->getDataLayout();
1256   // Cache all of our results so we can cheaply reuse them
1257   // NOTE: This is actually two caches: one of the base defining value
1258   // relation and one of the base pointer relation!  FIXME
1259   for (auto Pair : States) {
1260     auto *BDV = Pair.first;
1261     Value *Base = Pair.second.getBaseValue();
1262     assert(BDV && Base);
1263     // Whenever we have a derived ptr(s), their base
1264     // ptr(s) must be of the same size, not necessarily the same type
1265     assert(DL.getTypeAllocSize(BDV->getType()) ==
1266                DL.getTypeAllocSize(Base->getType()) &&
1267            "Derived and base values should have same size");
1268     // Only values that do not have known bases or those that have differing
1269     // type (scalar versus vector) from a possible known base should be in the
1270     // lattice.
1271     assert(
1272         (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) &&
1273         "why did it get added?");
1274 
1275     LLVM_DEBUG(
1276         dbgs() << "Updating base value cache"
1277                << " for: " << BDV->getName() << " from: "
1278                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1279                << " to: " << Base->getName() << "\n");
1280 
1281     Cache[BDV] = Base;
1282   }
1283   assert(Cache.count(Def));
1284   return Cache[Def];
1285 }
1286 
1287 // For a set of live pointers (base and/or derived), identify the base
1288 // pointer of the object which they are derived from.  This routine will
1289 // mutate the IR graph as needed to make the 'base' pointer live at the
1290 // definition site of 'derived'.  This ensures that any use of 'derived' can
1291 // also use 'base'.  This may involve the insertion of a number of
1292 // additional PHI nodes.
1293 //
1294 // preconditions: live is a set of pointer type Values
1295 //
1296 // side effects: may insert PHI nodes into the existing CFG, will preserve
1297 // CFG, will not remove or mutate any existing nodes
1298 //
1299 // post condition: PointerToBase contains one (derived, base) pair for every
1300 // pointer in live.  Note that derived can be equal to base if the original
1301 // pointer was a base pointer.
1302 static void findBasePointers(const StatepointLiveSetTy &live,
1303                              PointerToBaseTy &PointerToBase, DominatorTree *DT,
1304                              DefiningValueMapTy &DVCache,
1305                              IsKnownBaseMapTy &KnownBases) {
1306   for (Value *ptr : live) {
1307     Value *base = findBasePointer(ptr, DVCache, KnownBases);
1308     assert(base && "failed to find base pointer");
1309     PointerToBase[ptr] = base;
1310     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1311             DT->dominates(cast<Instruction>(base)->getParent(),
1312                           cast<Instruction>(ptr)->getParent())) &&
1313            "The base we found better dominate the derived pointer");
1314   }
1315 }
1316 
1317 /// Find the required based pointers (and adjust the live set) for the given
1318 /// parse point.
1319 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1320                              CallBase *Call,
1321                              PartiallyConstructedSafepointRecord &result,
1322                              PointerToBaseTy &PointerToBase,
1323                              IsKnownBaseMapTy &KnownBases) {
1324   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1325   // We assume that all pointers passed to deopt are base pointers; as an
1326   // optimization, we can use this to avoid separately materializing the base
1327   // pointer graph.  This is only relevant since we're very conservative about
1328   // generating new conflict nodes during base pointer insertion.  If we were
1329   // smarter there, this would be irrelevant.
1330   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1331     for (Value *V : Opt->Inputs) {
1332       if (!PotentiallyDerivedPointers.count(V))
1333         continue;
1334       PotentiallyDerivedPointers.remove(V);
1335       PointerToBase[V] = V;
1336     }
1337   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache,
1338                    KnownBases);
1339 }
1340 
1341 /// Given an updated version of the dataflow liveness results, update the
1342 /// liveset and base pointer maps for the call site CS.
1343 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1344                                   CallBase *Call,
1345                                   PartiallyConstructedSafepointRecord &result,
1346                                   PointerToBaseTy &PointerToBase,
1347                                   GCStrategy *GC);
1348 
1349 static void recomputeLiveInValues(
1350     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1351     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records,
1352     PointerToBaseTy &PointerToBase, GCStrategy *GC) {
1353   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1354   // again.  The old values are still live and will help it stabilize quickly.
1355   GCPtrLivenessData RevisedLivenessData;
1356   computeLiveInValues(DT, F, RevisedLivenessData, GC);
1357   for (size_t i = 0; i < records.size(); i++) {
1358     struct PartiallyConstructedSafepointRecord &info = records[i];
1359     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, PointerToBase,
1360                           GC);
1361   }
1362 }
1363 
1364 // Utility function which clones all instructions from "ChainToBase"
1365 // and inserts them before "InsertBefore". Returns rematerialized value
1366 // which should be used after statepoint.
1367 static Instruction *rematerializeChain(ArrayRef<Instruction *> ChainToBase,
1368                                        Instruction *InsertBefore,
1369                                        Value *RootOfChain,
1370                                        Value *AlternateLiveBase) {
1371   Instruction *LastClonedValue = nullptr;
1372   Instruction *LastValue = nullptr;
1373   // Walk backwards to visit top-most instructions first.
1374   for (Instruction *Instr :
1375        make_range(ChainToBase.rbegin(), ChainToBase.rend())) {
1376     // Only GEP's and casts are supported as we need to be careful to not
1377     // introduce any new uses of pointers not in the liveset.
1378     // Note that it's fine to introduce new uses of pointers which were
1379     // otherwise not used after this statepoint.
1380     assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1381 
1382     Instruction *ClonedValue = Instr->clone();
1383     ClonedValue->insertBefore(InsertBefore);
1384     ClonedValue->setName(Instr->getName() + ".remat");
1385 
1386     // If it is not first instruction in the chain then it uses previously
1387     // cloned value. We should update it to use cloned value.
1388     if (LastClonedValue) {
1389       assert(LastValue);
1390       ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1391 #ifndef NDEBUG
1392       for (auto *OpValue : ClonedValue->operand_values()) {
1393         // Assert that cloned instruction does not use any instructions from
1394         // this chain other than LastClonedValue
1395         assert(!is_contained(ChainToBase, OpValue) &&
1396                "incorrect use in rematerialization chain");
1397         // Assert that the cloned instruction does not use the RootOfChain
1398         // or the AlternateLiveBase.
1399         assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
1400       }
1401 #endif
1402     } else {
1403       // For the first instruction, replace the use of unrelocated base i.e.
1404       // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
1405       // live set. They have been proved to be the same PHI nodes.  Note
1406       // that the *only* use of the RootOfChain in the ChainToBase list is
1407       // the first Value in the list.
1408       if (RootOfChain != AlternateLiveBase)
1409         ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
1410     }
1411 
1412     LastClonedValue = ClonedValue;
1413     LastValue = Instr;
1414   }
1415   assert(LastClonedValue);
1416   return LastClonedValue;
1417 }
1418 
1419 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1420 // no uses of the original value / return value between the gc.statepoint and
1421 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1422 // starting one of the successor blocks.  We also need to be able to insert the
1423 // gc.relocates only on the path which goes through the statepoint.  We might
1424 // need to split an edge to make this possible.
1425 static BasicBlock *
1426 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1427                             DominatorTree &DT) {
1428   BasicBlock *Ret = BB;
1429   if (!BB->getUniquePredecessor())
1430     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1431 
1432   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1433   // from it
1434   FoldSingleEntryPHINodes(Ret);
1435   assert(!isa<PHINode>(Ret->begin()) &&
1436          "All PHI nodes should have been removed!");
1437 
1438   // At this point, we can safely insert a gc.relocate or gc.result as the first
1439   // instruction in Ret if needed.
1440   return Ret;
1441 }
1442 
1443 // List of all function attributes which must be stripped when lowering from
1444 // abstract machine model to physical machine model.  Essentially, these are
1445 // all the effects a safepoint might have which we ignored in the abstract
1446 // machine model for purposes of optimization.  We have to strip these on
1447 // both function declarations and call sites.
1448 static constexpr Attribute::AttrKind FnAttrsToStrip[] =
1449   {Attribute::Memory, Attribute::NoSync, Attribute::NoFree};
1450 
1451 // Create new attribute set containing only attributes which can be transferred
1452 // from the original call to the safepoint.
1453 static AttributeList legalizeCallAttributes(CallBase *Call, bool IsMemIntrinsic,
1454                                             AttributeList StatepointAL) {
1455   AttributeList OrigAL = Call->getAttributes();
1456   if (OrigAL.isEmpty())
1457     return StatepointAL;
1458 
1459   // Remove the readonly, readnone, and statepoint function attributes.
1460   LLVMContext &Ctx = Call->getContext();
1461   AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs());
1462   for (auto Attr : FnAttrsToStrip)
1463     FnAttrs.removeAttribute(Attr);
1464 
1465   for (Attribute A : OrigAL.getFnAttrs()) {
1466     if (isStatepointDirectiveAttr(A))
1467       FnAttrs.removeAttribute(A);
1468   }
1469 
1470   StatepointAL = StatepointAL.addFnAttributes(Ctx, FnAttrs);
1471 
1472   // The memory intrinsics do not have a 1:1 correspondence of the original
1473   // call arguments to the produced statepoint. Do not transfer the argument
1474   // attributes to avoid putting them on incorrect arguments.
1475   if (IsMemIntrinsic)
1476     return StatepointAL;
1477 
1478   // Attach the argument attributes from the original call at the corresponding
1479   // arguments in the statepoint. Note that any argument attributes that are
1480   // invalid after lowering are stripped in stripNonValidDataFromBody.
1481   for (unsigned I : llvm::seq(Call->arg_size()))
1482     StatepointAL = StatepointAL.addParamAttributes(
1483         Ctx, GCStatepointInst::CallArgsBeginPos + I,
1484         AttrBuilder(Ctx, OrigAL.getParamAttrs(I)));
1485 
1486   // Return attributes are later attached to the gc.result intrinsic.
1487   return StatepointAL;
1488 }
1489 
1490 /// Helper function to place all gc relocates necessary for the given
1491 /// statepoint.
1492 /// Inputs:
1493 ///   liveVariables - list of variables to be relocated.
1494 ///   basePtrs - base pointers.
1495 ///   statepointToken - statepoint instruction to which relocates should be
1496 ///   bound.
1497 ///   Builder - Llvm IR builder to be used to construct new calls.
1498 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1499                               ArrayRef<Value *> BasePtrs,
1500                               Instruction *StatepointToken,
1501                               IRBuilder<> &Builder, GCStrategy *GC) {
1502   if (LiveVariables.empty())
1503     return;
1504 
1505   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1506     auto ValIt = llvm::find(LiveVec, Val);
1507     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1508     size_t Index = std::distance(LiveVec.begin(), ValIt);
1509     assert(Index < LiveVec.size() && "Bug in std::find?");
1510     return Index;
1511   };
1512   Module *M = StatepointToken->getModule();
1513 
1514   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1515   // element type is i8 addrspace(1)*). We originally generated unique
1516   // declarations for each pointer type, but this proved problematic because
1517   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1518   // towards a single unified pointer type anyways, we can just cast everything
1519   // to an i8* of the right address space.  A bitcast is added later to convert
1520   // gc_relocate to the actual value's type.
1521   auto getGCRelocateDecl = [&](Type *Ty) {
1522     assert(isHandledGCPointerType(Ty, GC));
1523     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1524     Type *NewTy = PointerType::get(M->getContext(), AS);
1525     if (auto *VT = dyn_cast<VectorType>(Ty))
1526       NewTy = FixedVectorType::get(NewTy,
1527                                    cast<FixedVectorType>(VT)->getNumElements());
1528     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1529                                      {NewTy});
1530   };
1531 
1532   // Lazily populated map from input types to the canonicalized form mentioned
1533   // in the comment above.  This should probably be cached somewhere more
1534   // broadly.
1535   DenseMap<Type *, Function *> TypeToDeclMap;
1536 
1537   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1538     // Generate the gc.relocate call and save the result
1539     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1540     Value *LiveIdx = Builder.getInt32(i);
1541 
1542     Type *Ty = LiveVariables[i]->getType();
1543     if (!TypeToDeclMap.count(Ty))
1544       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1545     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1546 
1547     // only specify a debug name if we can give a useful one
1548     CallInst *Reloc = Builder.CreateCall(
1549         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1550         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1551     // Trick CodeGen into thinking there are lots of free registers at this
1552     // fake call.
1553     Reloc->setCallingConv(CallingConv::Cold);
1554   }
1555 }
1556 
1557 namespace {
1558 
1559 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1560 /// avoids having to worry about keeping around dangling pointers to Values.
1561 class DeferredReplacement {
1562   AssertingVH<Instruction> Old;
1563   AssertingVH<Instruction> New;
1564   bool IsDeoptimize = false;
1565 
1566   DeferredReplacement() = default;
1567 
1568 public:
1569   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1570     assert(Old != New && Old && New &&
1571            "Cannot RAUW equal values or to / from null!");
1572 
1573     DeferredReplacement D;
1574     D.Old = Old;
1575     D.New = New;
1576     return D;
1577   }
1578 
1579   static DeferredReplacement createDelete(Instruction *ToErase) {
1580     DeferredReplacement D;
1581     D.Old = ToErase;
1582     return D;
1583   }
1584 
1585   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1586 #ifndef NDEBUG
1587     auto *F = cast<CallInst>(Old)->getCalledFunction();
1588     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1589            "Only way to construct a deoptimize deferred replacement");
1590 #endif
1591     DeferredReplacement D;
1592     D.Old = Old;
1593     D.IsDeoptimize = true;
1594     return D;
1595   }
1596 
1597   /// Does the task represented by this instance.
1598   void doReplacement() {
1599     Instruction *OldI = Old;
1600     Instruction *NewI = New;
1601 
1602     assert(OldI != NewI && "Disallowed at construction?!");
1603     assert((!IsDeoptimize || !New) &&
1604            "Deoptimize intrinsics are not replaced!");
1605 
1606     Old = nullptr;
1607     New = nullptr;
1608 
1609     if (NewI)
1610       OldI->replaceAllUsesWith(NewI);
1611 
1612     if (IsDeoptimize) {
1613       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1614       // not necessarily be followed by the matching return.
1615       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1616       new UnreachableInst(RI->getContext(), RI->getIterator());
1617       RI->eraseFromParent();
1618     }
1619 
1620     OldI->eraseFromParent();
1621   }
1622 };
1623 
1624 } // end anonymous namespace
1625 
1626 static StringRef getDeoptLowering(CallBase *Call) {
1627   const char *DeoptLowering = "deopt-lowering";
1628   if (Call->hasFnAttr(DeoptLowering)) {
1629     // FIXME: Calls have a *really* confusing interface around attributes
1630     // with values.
1631     const AttributeList &CSAS = Call->getAttributes();
1632     if (CSAS.hasFnAttr(DeoptLowering))
1633       return CSAS.getFnAttr(DeoptLowering).getValueAsString();
1634     Function *F = Call->getCalledFunction();
1635     assert(F && F->hasFnAttribute(DeoptLowering));
1636     return F->getFnAttribute(DeoptLowering).getValueAsString();
1637   }
1638   return "live-through";
1639 }
1640 
1641 static void
1642 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1643                            const SmallVectorImpl<Value *> &BasePtrs,
1644                            const SmallVectorImpl<Value *> &LiveVariables,
1645                            PartiallyConstructedSafepointRecord &Result,
1646                            std::vector<DeferredReplacement> &Replacements,
1647                            const PointerToBaseTy &PointerToBase,
1648                            GCStrategy *GC) {
1649   assert(BasePtrs.size() == LiveVariables.size());
1650 
1651   // Then go ahead and use the builder do actually do the inserts.  We insert
1652   // immediately before the previous instruction under the assumption that all
1653   // arguments will be available here.  We can't insert afterwards since we may
1654   // be replacing a terminator.
1655   IRBuilder<> Builder(Call);
1656 
1657   ArrayRef<Value *> GCArgs(LiveVariables);
1658   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1659   uint32_t NumPatchBytes = 0;
1660   uint32_t Flags = uint32_t(StatepointFlags::None);
1661 
1662   SmallVector<Value *, 8> CallArgs(Call->args());
1663   std::optional<ArrayRef<Use>> DeoptArgs;
1664   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1665     DeoptArgs = Bundle->Inputs;
1666   std::optional<ArrayRef<Use>> TransitionArgs;
1667   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1668     TransitionArgs = Bundle->Inputs;
1669     // TODO: This flag no longer serves a purpose and can be removed later
1670     Flags |= uint32_t(StatepointFlags::GCTransition);
1671   }
1672 
1673   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1674   // with a return value, we lower then as never returning calls to
1675   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1676   bool IsDeoptimize = false;
1677   bool IsMemIntrinsic = false;
1678 
1679   StatepointDirectives SD =
1680       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1681   if (SD.NumPatchBytes)
1682     NumPatchBytes = *SD.NumPatchBytes;
1683   if (SD.StatepointID)
1684     StatepointID = *SD.StatepointID;
1685 
1686   // Pass through the requested lowering if any.  The default is live-through.
1687   StringRef DeoptLowering = getDeoptLowering(Call);
1688   if (DeoptLowering == "live-in")
1689     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1690   else {
1691     assert(DeoptLowering == "live-through" && "Unsupported value!");
1692   }
1693 
1694   FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand());
1695   if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) {
1696     auto IID = F->getIntrinsicID();
1697     if (IID == Intrinsic::experimental_deoptimize) {
1698       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1699       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1700       // verifier does not allow taking the address of an intrinsic function.
1701 
1702       SmallVector<Type *, 8> DomainTy;
1703       for (Value *Arg : CallArgs)
1704         DomainTy.push_back(Arg->getType());
1705       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1706                                     /* isVarArg = */ false);
1707 
1708       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1709       // calls to @llvm.experimental.deoptimize with different argument types in
1710       // the same module.  This is fine -- we assume the frontend knew what it
1711       // was doing when generating this kind of IR.
1712       CallTarget = F->getParent()
1713                        ->getOrInsertFunction("__llvm_deoptimize", FTy);
1714 
1715       IsDeoptimize = true;
1716     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1717                IID == Intrinsic::memmove_element_unordered_atomic) {
1718       IsMemIntrinsic = true;
1719 
1720       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1721       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1722       // Specifically, these calls should be lowered to the
1723       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1724       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1725       // verifier does not allow taking the address of an intrinsic function.
1726       //
1727       // Moreover we need to shuffle the arguments for the call in order to
1728       // accommodate GC. The underlying source and destination objects might be
1729       // relocated during copy operation should the GC occur. To relocate the
1730       // derived source and destination pointers the implementation of the
1731       // intrinsic should know the corresponding base pointers.
1732       //
1733       // To make the base pointers available pass them explicitly as arguments:
1734       //   memcpy(dest_derived, source_derived, ...) =>
1735       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1736       auto &Context = Call->getContext();
1737       auto &DL = Call->getDataLayout();
1738       auto GetBaseAndOffset = [&](Value *Derived) {
1739         Value *Base = nullptr;
1740         // Optimizations in unreachable code might substitute the real pointer
1741         // with undef, poison or null-derived constant. Return null base for
1742         // them to be consistent with the handling in the main algorithm in
1743         // findBaseDefiningValue.
1744         if (isa<Constant>(Derived))
1745           Base =
1746               ConstantPointerNull::get(cast<PointerType>(Derived->getType()));
1747         else {
1748           assert(PointerToBase.count(Derived));
1749           Base = PointerToBase.find(Derived)->second;
1750         }
1751         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1752         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1753         Value *Base_int = Builder.CreatePtrToInt(
1754             Base, Type::getIntNTy(Context, IntPtrSize));
1755         Value *Derived_int = Builder.CreatePtrToInt(
1756             Derived, Type::getIntNTy(Context, IntPtrSize));
1757         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1758       };
1759 
1760       auto *Dest = CallArgs[0];
1761       Value *DestBase, *DestOffset;
1762       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1763 
1764       auto *Source = CallArgs[1];
1765       Value *SourceBase, *SourceOffset;
1766       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1767 
1768       auto *LengthInBytes = CallArgs[2];
1769       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1770 
1771       CallArgs.clear();
1772       CallArgs.push_back(DestBase);
1773       CallArgs.push_back(DestOffset);
1774       CallArgs.push_back(SourceBase);
1775       CallArgs.push_back(SourceOffset);
1776       CallArgs.push_back(LengthInBytes);
1777 
1778       SmallVector<Type *, 8> DomainTy;
1779       for (Value *Arg : CallArgs)
1780         DomainTy.push_back(Arg->getType());
1781       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1782                                     /* isVarArg = */ false);
1783 
1784       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1785         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1786         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1787           switch (ElementSize) {
1788           case 1:
1789             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1790           case 2:
1791             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1792           case 4:
1793             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1794           case 8:
1795             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1796           case 16:
1797             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1798           default:
1799             llvm_unreachable("unexpected element size!");
1800           }
1801         }
1802         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1803         switch (ElementSize) {
1804         case 1:
1805           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1806         case 2:
1807           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1808         case 4:
1809           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1810         case 8:
1811           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1812         case 16:
1813           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1814         default:
1815           llvm_unreachable("unexpected element size!");
1816         }
1817       };
1818 
1819       CallTarget =
1820           F->getParent()
1821               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy);
1822     }
1823   }
1824 
1825   // Create the statepoint given all the arguments
1826   GCStatepointInst *Token = nullptr;
1827   if (auto *CI = dyn_cast<CallInst>(Call)) {
1828     CallInst *SPCall = Builder.CreateGCStatepointCall(
1829         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1830         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1831 
1832     SPCall->setTailCallKind(CI->getTailCallKind());
1833     SPCall->setCallingConv(CI->getCallingConv());
1834 
1835     // Set up function attrs directly on statepoint and return attrs later for
1836     // gc_result intrinsic.
1837     SPCall->setAttributes(
1838         legalizeCallAttributes(CI, IsMemIntrinsic, SPCall->getAttributes()));
1839 
1840     Token = cast<GCStatepointInst>(SPCall);
1841 
1842     // Put the following gc_result and gc_relocate calls immediately after the
1843     // the old call (which we're about to delete)
1844     assert(CI->getNextNode() && "Not a terminator, must have next!");
1845     Builder.SetInsertPoint(CI->getNextNode());
1846     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1847   } else {
1848     auto *II = cast<InvokeInst>(Call);
1849 
1850     // Insert the new invoke into the old block.  We'll remove the old one in a
1851     // moment at which point this will become the new terminator for the
1852     // original block.
1853     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1854         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1855         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1856         "statepoint_token");
1857 
1858     SPInvoke->setCallingConv(II->getCallingConv());
1859 
1860     // Set up function attrs directly on statepoint and return attrs later for
1861     // gc_result intrinsic.
1862     SPInvoke->setAttributes(
1863         legalizeCallAttributes(II, IsMemIntrinsic, SPInvoke->getAttributes()));
1864 
1865     Token = cast<GCStatepointInst>(SPInvoke);
1866 
1867     // Generate gc relocates in exceptional path
1868     BasicBlock *UnwindBlock = II->getUnwindDest();
1869     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1870            UnwindBlock->getUniquePredecessor() &&
1871            "can't safely insert in this block!");
1872 
1873     Builder.SetInsertPoint(UnwindBlock, UnwindBlock->getFirstInsertionPt());
1874     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1875 
1876     // Attach exceptional gc relocates to the landingpad.
1877     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1878     Result.UnwindToken = ExceptionalToken;
1879 
1880     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder, GC);
1881 
1882     // Generate gc relocates and returns for normal block
1883     BasicBlock *NormalDest = II->getNormalDest();
1884     assert(!isa<PHINode>(NormalDest->begin()) &&
1885            NormalDest->getUniquePredecessor() &&
1886            "can't safely insert in this block!");
1887 
1888     Builder.SetInsertPoint(NormalDest, NormalDest->getFirstInsertionPt());
1889 
1890     // gc relocates will be generated later as if it were regular call
1891     // statepoint
1892   }
1893   assert(Token && "Should be set in one of the above branches!");
1894 
1895   if (IsDeoptimize) {
1896     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1897     // transform the tail-call like structure to a call to a void function
1898     // followed by unreachable to get better codegen.
1899     Replacements.push_back(
1900         DeferredReplacement::createDeoptimizeReplacement(Call));
1901   } else {
1902     Token->setName("statepoint_token");
1903     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1904       StringRef Name = Call->hasName() ? Call->getName() : "";
1905       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1906       GCResult->setAttributes(
1907           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1908                              Call->getAttributes().getRetAttrs()));
1909 
1910       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1911       // live set of some other safepoint, in which case that safepoint's
1912       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1913       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1914       // after the live sets have been made explicit in the IR, and we no longer
1915       // have raw pointers to worry about.
1916       Replacements.emplace_back(
1917           DeferredReplacement::createRAUW(Call, GCResult));
1918     } else {
1919       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1920     }
1921   }
1922 
1923   Result.StatepointToken = Token;
1924 
1925   // Second, create a gc.relocate for every live variable
1926   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder, GC);
1927 }
1928 
1929 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1930 // which make the relocations happening at this safepoint explicit.
1931 //
1932 // WARNING: Does not do any fixup to adjust users of the original live
1933 // values.  That's the callers responsibility.
1934 static void
1935 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1936                        PartiallyConstructedSafepointRecord &Result,
1937                        std::vector<DeferredReplacement> &Replacements,
1938                        const PointerToBaseTy &PointerToBase, GCStrategy *GC) {
1939   const auto &LiveSet = Result.LiveSet;
1940 
1941   // Convert to vector for efficient cross referencing.
1942   SmallVector<Value *, 64> BaseVec, LiveVec;
1943   LiveVec.reserve(LiveSet.size());
1944   BaseVec.reserve(LiveSet.size());
1945   for (Value *L : LiveSet) {
1946     LiveVec.push_back(L);
1947     assert(PointerToBase.count(L));
1948     Value *Base = PointerToBase.find(L)->second;
1949     BaseVec.push_back(Base);
1950   }
1951   assert(LiveVec.size() == BaseVec.size());
1952 
1953   // Do the actual rewriting and delete the old statepoint
1954   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements,
1955                              PointerToBase, GC);
1956 }
1957 
1958 // Helper function for the relocationViaAlloca.
1959 //
1960 // It receives iterator to the statepoint gc relocates and emits a store to the
1961 // assigned location (via allocaMap) for the each one of them.  It adds the
1962 // visited values into the visitedLiveValues set, which we will later use them
1963 // for validation checking.
1964 static void
1965 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1966                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1967                        DenseSet<Value *> &VisitedLiveValues) {
1968   for (User *U : GCRelocs) {
1969     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1970     if (!Relocate)
1971       continue;
1972 
1973     Value *OriginalValue = Relocate->getDerivedPtr();
1974     assert(AllocaMap.count(OriginalValue));
1975     Value *Alloca = AllocaMap[OriginalValue];
1976 
1977     // Emit store into the related alloca.
1978     assert(Relocate->getNextNode() &&
1979            "Should always have one since it's not a terminator");
1980     new StoreInst(Relocate, Alloca, std::next(Relocate->getIterator()));
1981 
1982 #ifndef NDEBUG
1983     VisitedLiveValues.insert(OriginalValue);
1984 #endif
1985   }
1986 }
1987 
1988 // Helper function for the "relocationViaAlloca". Similar to the
1989 // "insertRelocationStores" but works for rematerialized values.
1990 static void insertRematerializationStores(
1991     const RematerializedValueMapTy &RematerializedValues,
1992     DenseMap<Value *, AllocaInst *> &AllocaMap,
1993     DenseSet<Value *> &VisitedLiveValues) {
1994   for (auto RematerializedValuePair: RematerializedValues) {
1995     Instruction *RematerializedValue = RematerializedValuePair.first;
1996     Value *OriginalValue = RematerializedValuePair.second;
1997 
1998     assert(AllocaMap.count(OriginalValue) &&
1999            "Can not find alloca for rematerialized value");
2000     Value *Alloca = AllocaMap[OriginalValue];
2001 
2002     new StoreInst(RematerializedValue, Alloca,
2003                   std::next(RematerializedValue->getIterator()));
2004 
2005 #ifndef NDEBUG
2006     VisitedLiveValues.insert(OriginalValue);
2007 #endif
2008   }
2009 }
2010 
2011 /// Do all the relocation update via allocas and mem2reg
2012 static void relocationViaAlloca(
2013     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
2014     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
2015 #ifndef NDEBUG
2016   // record initial number of (static) allocas; we'll check we have the same
2017   // number when we get done.
2018   int InitialAllocaNum = 0;
2019   for (Instruction &I : F.getEntryBlock())
2020     if (isa<AllocaInst>(I))
2021       InitialAllocaNum++;
2022 #endif
2023 
2024   // TODO-PERF: change data structures, reserve
2025   DenseMap<Value *, AllocaInst *> AllocaMap;
2026   SmallVector<AllocaInst *, 200> PromotableAllocas;
2027   // Used later to chack that we have enough allocas to store all values
2028   std::size_t NumRematerializedValues = 0;
2029   PromotableAllocas.reserve(Live.size());
2030 
2031   // Emit alloca for "LiveValue" and record it in "allocaMap" and
2032   // "PromotableAllocas"
2033   const DataLayout &DL = F.getDataLayout();
2034   auto emitAllocaFor = [&](Value *LiveValue) {
2035     AllocaInst *Alloca =
2036         new AllocaInst(LiveValue->getType(), DL.getAllocaAddrSpace(), "",
2037                        F.getEntryBlock().getFirstNonPHIIt());
2038     AllocaMap[LiveValue] = Alloca;
2039     PromotableAllocas.push_back(Alloca);
2040   };
2041 
2042   // Emit alloca for each live gc pointer
2043   for (Value *V : Live)
2044     emitAllocaFor(V);
2045 
2046   // Emit allocas for rematerialized values
2047   for (const auto &Info : Records)
2048     for (auto RematerializedValuePair : Info.RematerializedValues) {
2049       Value *OriginalValue = RematerializedValuePair.second;
2050       if (AllocaMap.contains(OriginalValue))
2051         continue;
2052 
2053       emitAllocaFor(OriginalValue);
2054       ++NumRematerializedValues;
2055     }
2056 
2057   // The next two loops are part of the same conceptual operation.  We need to
2058   // insert a store to the alloca after the original def and at each
2059   // redefinition.  We need to insert a load before each use.  These are split
2060   // into distinct loops for performance reasons.
2061 
2062   // Update gc pointer after each statepoint: either store a relocated value or
2063   // null (if no relocated value was found for this gc pointer and it is not a
2064   // gc_result).  This must happen before we update the statepoint with load of
2065   // alloca otherwise we lose the link between statepoint and old def.
2066   for (const auto &Info : Records) {
2067     Value *Statepoint = Info.StatepointToken;
2068 
2069     // This will be used for consistency check
2070     DenseSet<Value *> VisitedLiveValues;
2071 
2072     // Insert stores for normal statepoint gc relocates
2073     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
2074 
2075     // In case if it was invoke statepoint
2076     // we will insert stores for exceptional path gc relocates.
2077     if (isa<InvokeInst>(Statepoint)) {
2078       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
2079                              VisitedLiveValues);
2080     }
2081 
2082     // Do similar thing with rematerialized values
2083     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
2084                                   VisitedLiveValues);
2085 
2086     if (ClobberNonLive) {
2087       // As a debugging aid, pretend that an unrelocated pointer becomes null at
2088       // the gc.statepoint.  This will turn some subtle GC problems into
2089       // slightly easier to debug SEGVs.  Note that on large IR files with
2090       // lots of gc.statepoints this is extremely costly both memory and time
2091       // wise.
2092       SmallVector<AllocaInst *, 64> ToClobber;
2093       for (auto Pair : AllocaMap) {
2094         Value *Def = Pair.first;
2095         AllocaInst *Alloca = Pair.second;
2096 
2097         // This value was relocated
2098         if (VisitedLiveValues.count(Def)) {
2099           continue;
2100         }
2101         ToClobber.push_back(Alloca);
2102       }
2103 
2104       auto InsertClobbersAt = [&](BasicBlock::iterator IP) {
2105         for (auto *AI : ToClobber) {
2106           auto AT = AI->getAllocatedType();
2107           Constant *CPN;
2108           if (AT->isVectorTy())
2109             CPN = ConstantAggregateZero::get(AT);
2110           else
2111             CPN = ConstantPointerNull::get(cast<PointerType>(AT));
2112           new StoreInst(CPN, AI, IP);
2113         }
2114       };
2115 
2116       // Insert the clobbering stores.  These may get intermixed with the
2117       // gc.results and gc.relocates, but that's fine.
2118       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
2119         InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
2120         InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
2121       } else {
2122         InsertClobbersAt(
2123             std::next(cast<Instruction>(Statepoint)->getIterator()));
2124       }
2125     }
2126   }
2127 
2128   // Update use with load allocas and add store for gc_relocated.
2129   for (auto Pair : AllocaMap) {
2130     Value *Def = Pair.first;
2131     AllocaInst *Alloca = Pair.second;
2132 
2133     // We pre-record the uses of allocas so that we dont have to worry about
2134     // later update that changes the user information..
2135 
2136     SmallVector<Instruction *, 20> Uses;
2137     // PERF: trade a linear scan for repeated reallocation
2138     Uses.reserve(Def->getNumUses());
2139     for (User *U : Def->users()) {
2140       if (!isa<ConstantExpr>(U)) {
2141         // If the def has a ConstantExpr use, then the def is either a
2142         // ConstantExpr use itself or null.  In either case
2143         // (recursively in the first, directly in the second), the oop
2144         // it is ultimately dependent on is null and this particular
2145         // use does not need to be fixed up.
2146         Uses.push_back(cast<Instruction>(U));
2147       }
2148     }
2149 
2150     llvm::sort(Uses);
2151     auto Last = llvm::unique(Uses);
2152     Uses.erase(Last, Uses.end());
2153 
2154     for (Instruction *Use : Uses) {
2155       if (isa<PHINode>(Use)) {
2156         PHINode *Phi = cast<PHINode>(Use);
2157         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
2158           if (Def == Phi->getIncomingValue(i)) {
2159             LoadInst *Load = new LoadInst(
2160                 Alloca->getAllocatedType(), Alloca, "",
2161                 Phi->getIncomingBlock(i)->getTerminator()->getIterator());
2162             Phi->setIncomingValue(i, Load);
2163           }
2164         }
2165       } else {
2166         LoadInst *Load = new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2167                                       Use->getIterator());
2168         Use->replaceUsesOfWith(Def, Load);
2169       }
2170     }
2171 
2172     // Emit store for the initial gc value.  Store must be inserted after load,
2173     // otherwise store will be in alloca's use list and an extra load will be
2174     // inserted before it.
2175     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2176                                      DL.getABITypeAlign(Def->getType()));
2177     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2178       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2179         // InvokeInst is a terminator so the store need to be inserted into its
2180         // normal destination block.
2181         BasicBlock *NormalDest = Invoke->getNormalDest();
2182         Store->insertBefore(NormalDest->getFirstNonPHI());
2183       } else {
2184         assert(!Inst->isTerminator() &&
2185                "The only terminator that can produce a value is "
2186                "InvokeInst which is handled above.");
2187         Store->insertAfter(Inst);
2188       }
2189     } else {
2190       assert(isa<Argument>(Def));
2191       Store->insertAfter(cast<Instruction>(Alloca));
2192     }
2193   }
2194 
2195   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2196          "we must have the same allocas with lives");
2197   (void) NumRematerializedValues;
2198   if (!PromotableAllocas.empty()) {
2199     // Apply mem2reg to promote alloca to SSA
2200     PromoteMemToReg(PromotableAllocas, DT);
2201   }
2202 
2203 #ifndef NDEBUG
2204   for (auto &I : F.getEntryBlock())
2205     if (isa<AllocaInst>(I))
2206       InitialAllocaNum--;
2207   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2208 #endif
2209 }
2210 
2211 /// Implement a unique function which doesn't require we sort the input
2212 /// vector.  Doing so has the effect of changing the output of a couple of
2213 /// tests in ways which make them less useful in testing fused safepoints.
2214 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2215   SmallSet<T, 8> Seen;
2216   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2217 }
2218 
2219 /// Insert holders so that each Value is obviously live through the entire
2220 /// lifetime of the call.
2221 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2222                                  SmallVectorImpl<CallInst *> &Holders) {
2223   if (Values.empty())
2224     // No values to hold live, might as well not insert the empty holder
2225     return;
2226 
2227   Module *M = Call->getModule();
2228   // Use a dummy vararg function to actually hold the values live
2229   FunctionCallee Func = M->getOrInsertFunction(
2230       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2231   if (isa<CallInst>(Call)) {
2232     // For call safepoints insert dummy calls right after safepoint
2233     Holders.push_back(
2234         CallInst::Create(Func, Values, "", std::next(Call->getIterator())));
2235     return;
2236   }
2237   // For invoke safepooints insert dummy calls both in normal and
2238   // exceptional destination blocks
2239   auto *II = cast<InvokeInst>(Call);
2240   Holders.push_back(CallInst::Create(
2241       Func, Values, "", II->getNormalDest()->getFirstInsertionPt()));
2242   Holders.push_back(CallInst::Create(
2243       Func, Values, "", II->getUnwindDest()->getFirstInsertionPt()));
2244 }
2245 
2246 static void findLiveReferences(
2247     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2248     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records,
2249     GCStrategy *GC) {
2250   GCPtrLivenessData OriginalLivenessData;
2251   computeLiveInValues(DT, F, OriginalLivenessData, GC);
2252   for (size_t i = 0; i < records.size(); i++) {
2253     struct PartiallyConstructedSafepointRecord &info = records[i];
2254     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info, GC);
2255   }
2256 }
2257 
2258 // Helper function for the "rematerializeLiveValues". It walks use chain
2259 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2260 // the base or a value it cannot process. Only "simple" values are processed
2261 // (currently it is GEP's and casts). The returned root is  examined by the
2262 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2263 // with all visited values.
2264 static Value* findRematerializableChainToBasePointer(
2265   SmallVectorImpl<Instruction*> &ChainToBase,
2266   Value *CurrentValue) {
2267   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2268     ChainToBase.push_back(GEP);
2269     return findRematerializableChainToBasePointer(ChainToBase,
2270                                                   GEP->getPointerOperand());
2271   }
2272 
2273   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2274     if (!CI->isNoopCast(CI->getDataLayout()))
2275       return CI;
2276 
2277     ChainToBase.push_back(CI);
2278     return findRematerializableChainToBasePointer(ChainToBase,
2279                                                   CI->getOperand(0));
2280   }
2281 
2282   // We have reached the root of the chain, which is either equal to the base or
2283   // is the first unsupported value along the use chain.
2284   return CurrentValue;
2285 }
2286 
2287 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2288 // chain we are going to rematerialize.
2289 static InstructionCost
2290 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2291                        TargetTransformInfo &TTI) {
2292   InstructionCost Cost = 0;
2293 
2294   for (Instruction *Instr : Chain) {
2295     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2296       assert(CI->isNoopCast(CI->getDataLayout()) &&
2297              "non noop cast is found during rematerialization");
2298 
2299       Type *SrcTy = CI->getOperand(0)->getType();
2300       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2301                                    TTI::getCastContextHint(CI),
2302                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2303 
2304     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2305       // Cost of the address calculation
2306       Type *ValTy = GEP->getSourceElementType();
2307       Cost += TTI.getAddressComputationCost(ValTy);
2308 
2309       // And cost of the GEP itself
2310       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2311       //       allowed for the external usage)
2312       if (!GEP->hasAllConstantIndices())
2313         Cost += 2;
2314 
2315     } else {
2316       llvm_unreachable("unsupported instruction type during rematerialization");
2317     }
2318   }
2319 
2320   return Cost;
2321 }
2322 
2323 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2324   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2325   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2326       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2327     return false;
2328   // Map of incoming values and their corresponding basic blocks of
2329   // OrigRootPhi.
2330   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2331   for (unsigned i = 0; i < PhiNum; i++)
2332     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2333         OrigRootPhi.getIncomingBlock(i);
2334 
2335   // Both current and base PHIs should have same incoming values and
2336   // the same basic blocks corresponding to the incoming values.
2337   for (unsigned i = 0; i < PhiNum; i++) {
2338     auto CIVI =
2339         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2340     if (CIVI == CurrentIncomingValues.end())
2341       return false;
2342     BasicBlock *CurrentIncomingBB = CIVI->second;
2343     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2344       return false;
2345   }
2346   return true;
2347 }
2348 
2349 // Find derived pointers that can be recomputed cheap enough and fill
2350 // RematerizationCandidates with such candidates.
2351 static void
2352 findRematerializationCandidates(PointerToBaseTy PointerToBase,
2353                                 RematCandTy &RematerizationCandidates,
2354                                 TargetTransformInfo &TTI) {
2355   const unsigned int ChainLengthThreshold = 10;
2356 
2357   for (auto P2B : PointerToBase) {
2358     auto *Derived = P2B.first;
2359     auto *Base = P2B.second;
2360     // Consider only derived pointers.
2361     if (Derived == Base)
2362       continue;
2363 
2364     // For each live pointer find its defining chain.
2365     SmallVector<Instruction *, 3> ChainToBase;
2366     Value *RootOfChain =
2367         findRematerializableChainToBasePointer(ChainToBase, Derived);
2368 
2369     // Nothing to do, or chain is too long
2370     if ( ChainToBase.size() == 0 ||
2371         ChainToBase.size() > ChainLengthThreshold)
2372       continue;
2373 
2374     // Handle the scenario where the RootOfChain is not equal to the
2375     // Base Value, but they are essentially the same phi values.
2376     if (RootOfChain != PointerToBase[Derived]) {
2377       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2378       PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]);
2379       if (!OrigRootPhi || !AlternateRootPhi)
2380         continue;
2381       // PHI nodes that have the same incoming values, and belonging to the same
2382       // basic blocks are essentially the same SSA value.  When the original phi
2383       // has incoming values with different base pointers, the original phi is
2384       // marked as conflict, and an additional `AlternateRootPhi` with the same
2385       // incoming values get generated by the findBasePointer function. We need
2386       // to identify the newly generated AlternateRootPhi (.base version of phi)
2387       // and RootOfChain (the original phi node itself) are the same, so that we
2388       // can rematerialize the gep and casts. This is a workaround for the
2389       // deficiency in the findBasePointer algorithm.
2390       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2391         continue;
2392     }
2393     // Compute cost of this chain.
2394     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2395     // TODO: We can also account for cases when we will be able to remove some
2396     //       of the rematerialized values by later optimization passes. I.e if
2397     //       we rematerialized several intersecting chains. Or if original values
2398     //       don't have any uses besides this statepoint.
2399 
2400     // Ok, there is a candidate.
2401     RematerizlizationCandidateRecord Record;
2402     Record.ChainToBase = ChainToBase;
2403     Record.RootOfChain = RootOfChain;
2404     Record.Cost = Cost;
2405     RematerizationCandidates.insert({ Derived, Record });
2406   }
2407 }
2408 
2409 // Try to rematerialize derived pointers immediately before their uses
2410 // (instead of rematerializing after every statepoint it is live through).
2411 // This can be beneficial when derived pointer is live across many
2412 // statepoints, but uses are rare.
2413 static void rematerializeLiveValuesAtUses(
2414     RematCandTy &RematerizationCandidates,
2415     MutableArrayRef<PartiallyConstructedSafepointRecord> Records,
2416     PointerToBaseTy &PointerToBase) {
2417   if (!RematDerivedAtUses)
2418     return;
2419 
2420   SmallVector<Instruction *, 32> LiveValuesToBeDeleted;
2421 
2422   LLVM_DEBUG(dbgs() << "Rematerialize derived pointers at uses, "
2423                     << "Num statepoints: " << Records.size() << '\n');
2424 
2425   for (auto &It : RematerizationCandidates) {
2426     Instruction *Cand = cast<Instruction>(It.first);
2427     auto &Record = It.second;
2428 
2429     if (Record.Cost >= RematerializationThreshold)
2430       continue;
2431 
2432     if (Cand->user_empty())
2433       continue;
2434 
2435     if (Cand->hasOneUse())
2436       if (auto *U = dyn_cast<Instruction>(Cand->getUniqueUndroppableUser()))
2437         if (U->getParent() == Cand->getParent())
2438           continue;
2439 
2440     // Rematerialization before PHI nodes is not implemented.
2441     if (llvm::any_of(Cand->users(),
2442                      [](const auto *U) { return isa<PHINode>(U); }))
2443       continue;
2444 
2445     LLVM_DEBUG(dbgs() << "Trying cand " << *Cand << " ... ");
2446 
2447     // Count of rematerialization instructions we introduce is equal to number
2448     // of candidate uses.
2449     // Count of rematerialization instructions we eliminate is equal to number
2450     // of statepoints it is live through.
2451     // Consider transformation profitable if latter is greater than former
2452     // (in other words, we create less than eliminate).
2453     unsigned NumLiveStatepoints = llvm::count_if(
2454         Records, [Cand](const auto &R) { return R.LiveSet.contains(Cand); });
2455     unsigned NumUses = Cand->getNumUses();
2456 
2457     LLVM_DEBUG(dbgs() << "Num uses: " << NumUses << " Num live statepoints: "
2458                       << NumLiveStatepoints << " ");
2459 
2460     if (NumLiveStatepoints < NumUses) {
2461       LLVM_DEBUG(dbgs() << "not profitable\n");
2462       continue;
2463     }
2464 
2465     // If rematerialization is 'free', then favor rematerialization at
2466     // uses as it generally shortens live ranges.
2467     // TODO: Short (size ==1) chains only?
2468     if (NumLiveStatepoints == NumUses && Record.Cost > 0) {
2469       LLVM_DEBUG(dbgs() << "not profitable\n");
2470       continue;
2471     }
2472 
2473     LLVM_DEBUG(dbgs() << "looks profitable\n");
2474 
2475     // ChainToBase may contain another remat candidate (as a sub chain) which
2476     // has been rewritten by now. Need to recollect chain to have up to date
2477     // value.
2478     // TODO: sort records in findRematerializationCandidates() in
2479     // decreasing chain size order?
2480     if (Record.ChainToBase.size() > 1) {
2481       Record.ChainToBase.clear();
2482       findRematerializableChainToBasePointer(Record.ChainToBase, Cand);
2483     }
2484 
2485     // Current rematerialization algorithm is very simple: we rematerialize
2486     // immediately before EVERY use, even if there are several uses in same
2487     // block or if use is local to Cand Def. The reason is that this allows
2488     // us to avoid recomputing liveness without complicated analysis:
2489     // - If we did not eliminate all uses of original Candidate, we do not
2490     //   know exaclty in what BBs it is still live.
2491     // - If we rematerialize once per BB, we need to find proper insertion
2492     //   place (first use in block, but after Def) and analyze if there is
2493     //   statepoint between uses in the block.
2494     while (!Cand->user_empty()) {
2495       Instruction *UserI = cast<Instruction>(*Cand->user_begin());
2496       Instruction *RematChain = rematerializeChain(
2497           Record.ChainToBase, UserI, Record.RootOfChain, PointerToBase[Cand]);
2498       UserI->replaceUsesOfWith(Cand, RematChain);
2499       PointerToBase[RematChain] = PointerToBase[Cand];
2500     }
2501     LiveValuesToBeDeleted.push_back(Cand);
2502   }
2503 
2504   LLVM_DEBUG(dbgs() << "Rematerialized " << LiveValuesToBeDeleted.size()
2505                     << " derived pointers\n");
2506   for (auto *Cand : LiveValuesToBeDeleted) {
2507     assert(Cand->use_empty() && "Unexpected user remain");
2508     RematerizationCandidates.erase(Cand);
2509     for (auto &R : Records) {
2510       assert(!R.LiveSet.contains(Cand) ||
2511              R.LiveSet.contains(PointerToBase[Cand]));
2512       R.LiveSet.remove(Cand);
2513     }
2514   }
2515 
2516   // Recollect not rematerialized chains - we might have rewritten
2517   // their sub-chains.
2518   if (!LiveValuesToBeDeleted.empty()) {
2519     for (auto &P : RematerizationCandidates) {
2520       auto &R = P.second;
2521       if (R.ChainToBase.size() > 1) {
2522         R.ChainToBase.clear();
2523         findRematerializableChainToBasePointer(R.ChainToBase, P.first);
2524       }
2525     }
2526   }
2527 }
2528 
2529 // From the statepoint live set pick values that are cheaper to recompute then
2530 // to relocate. Remove this values from the live set, rematerialize them after
2531 // statepoint and record them in "Info" structure. Note that similar to
2532 // relocated values we don't do any user adjustments here.
2533 static void rematerializeLiveValues(CallBase *Call,
2534                                     PartiallyConstructedSafepointRecord &Info,
2535                                     PointerToBaseTy &PointerToBase,
2536                                     RematCandTy &RematerizationCandidates,
2537                                     TargetTransformInfo &TTI) {
2538   // Record values we are going to delete from this statepoint live set.
2539   // We can not di this in following loop due to iterator invalidation.
2540   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2541 
2542   for (Value *LiveValue : Info.LiveSet) {
2543     auto It = RematerizationCandidates.find(LiveValue);
2544     if (It == RematerizationCandidates.end())
2545       continue;
2546 
2547     RematerizlizationCandidateRecord &Record = It->second;
2548 
2549     InstructionCost Cost = Record.Cost;
2550     // For invokes we need to rematerialize each chain twice - for normal and
2551     // for unwind basic blocks. Model this by multiplying cost by two.
2552     if (isa<InvokeInst>(Call))
2553       Cost *= 2;
2554 
2555     // If it's too expensive - skip it.
2556     if (Cost >= RematerializationThreshold)
2557       continue;
2558 
2559     // Remove value from the live set
2560     LiveValuesToBeDeleted.push_back(LiveValue);
2561 
2562     // Clone instructions and record them inside "Info" structure.
2563 
2564     // Different cases for calls and invokes. For invokes we need to clone
2565     // instructions both on normal and unwind path.
2566     if (isa<CallInst>(Call)) {
2567       Instruction *InsertBefore = Call->getNextNode();
2568       assert(InsertBefore);
2569       Instruction *RematerializedValue =
2570           rematerializeChain(Record.ChainToBase, InsertBefore,
2571                              Record.RootOfChain, PointerToBase[LiveValue]);
2572       Info.RematerializedValues[RematerializedValue] = LiveValue;
2573     } else {
2574       auto *Invoke = cast<InvokeInst>(Call);
2575 
2576       Instruction *NormalInsertBefore =
2577           &*Invoke->getNormalDest()->getFirstInsertionPt();
2578       Instruction *UnwindInsertBefore =
2579           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2580 
2581       Instruction *NormalRematerializedValue =
2582           rematerializeChain(Record.ChainToBase, NormalInsertBefore,
2583                              Record.RootOfChain, PointerToBase[LiveValue]);
2584       Instruction *UnwindRematerializedValue =
2585           rematerializeChain(Record.ChainToBase, UnwindInsertBefore,
2586                              Record.RootOfChain, PointerToBase[LiveValue]);
2587 
2588       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2589       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2590     }
2591   }
2592 
2593   // Remove rematerialized values from the live set.
2594   for (auto *LiveValue: LiveValuesToBeDeleted) {
2595     Info.LiveSet.remove(LiveValue);
2596   }
2597 }
2598 
2599 static bool inlineGetBaseAndOffset(Function &F,
2600                                    SmallVectorImpl<CallInst *> &Intrinsics,
2601                                    DefiningValueMapTy &DVCache,
2602                                    IsKnownBaseMapTy &KnownBases) {
2603   auto &Context = F.getContext();
2604   auto &DL = F.getDataLayout();
2605   bool Changed = false;
2606 
2607   for (auto *Callsite : Intrinsics)
2608     switch (Callsite->getIntrinsicID()) {
2609     case Intrinsic::experimental_gc_get_pointer_base: {
2610       Changed = true;
2611       Value *Base =
2612           findBasePointer(Callsite->getOperand(0), DVCache, KnownBases);
2613       assert(!DVCache.count(Callsite));
2614       Callsite->replaceAllUsesWith(Base);
2615       if (!Base->hasName())
2616         Base->takeName(Callsite);
2617       Callsite->eraseFromParent();
2618       break;
2619     }
2620     case Intrinsic::experimental_gc_get_pointer_offset: {
2621       Changed = true;
2622       Value *Derived = Callsite->getOperand(0);
2623       Value *Base = findBasePointer(Derived, DVCache, KnownBases);
2624       assert(!DVCache.count(Callsite));
2625       unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
2626       unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
2627       IRBuilder<> Builder(Callsite);
2628       Value *BaseInt =
2629           Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize),
2630                                  suffixed_name_or(Base, ".int", ""));
2631       Value *DerivedInt =
2632           Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize),
2633                                  suffixed_name_or(Derived, ".int", ""));
2634       Value *Offset = Builder.CreateSub(DerivedInt, BaseInt);
2635       Callsite->replaceAllUsesWith(Offset);
2636       Offset->takeName(Callsite);
2637       Callsite->eraseFromParent();
2638       break;
2639     }
2640     default:
2641       llvm_unreachable("Unknown intrinsic");
2642     }
2643 
2644   return Changed;
2645 }
2646 
2647 static bool insertParsePoints(Function &F, DominatorTree &DT,
2648                               TargetTransformInfo &TTI,
2649                               SmallVectorImpl<CallBase *> &ToUpdate,
2650                               DefiningValueMapTy &DVCache,
2651                               IsKnownBaseMapTy &KnownBases) {
2652   std::unique_ptr<GCStrategy> GC = findGCStrategy(F);
2653 
2654 #ifndef NDEBUG
2655   // Validate the input
2656   std::set<CallBase *> Uniqued;
2657   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2658   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2659 
2660   for (CallBase *Call : ToUpdate)
2661     assert(Call->getFunction() == &F);
2662 #endif
2663 
2664   // When inserting gc.relocates for invokes, we need to be able to insert at
2665   // the top of the successor blocks.  See the comment on
2666   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2667   // may restructure the CFG.
2668   for (CallBase *Call : ToUpdate) {
2669     auto *II = dyn_cast<InvokeInst>(Call);
2670     if (!II)
2671       continue;
2672     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2673     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2674   }
2675 
2676   // A list of dummy calls added to the IR to keep various values obviously
2677   // live in the IR.  We'll remove all of these when done.
2678   SmallVector<CallInst *, 64> Holders;
2679 
2680   // Insert a dummy call with all of the deopt operands we'll need for the
2681   // actual safepoint insertion as arguments.  This ensures reference operands
2682   // in the deopt argument list are considered live through the safepoint (and
2683   // thus makes sure they get relocated.)
2684   for (CallBase *Call : ToUpdate) {
2685     SmallVector<Value *, 64> DeoptValues;
2686 
2687     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2688       assert(!isUnhandledGCPointerType(Arg->getType(), GC.get()) &&
2689              "support for FCA unimplemented");
2690       if (isHandledGCPointerType(Arg->getType(), GC.get()))
2691         DeoptValues.push_back(Arg);
2692     }
2693 
2694     insertUseHolderAfter(Call, DeoptValues, Holders);
2695   }
2696 
2697   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2698 
2699   // A) Identify all gc pointers which are statically live at the given call
2700   // site.
2701   findLiveReferences(F, DT, ToUpdate, Records, GC.get());
2702 
2703   /// Global mapping from live pointers to a base-defining-value.
2704   PointerToBaseTy PointerToBase;
2705 
2706   // B) Find the base pointers for each live pointer
2707   for (size_t i = 0; i < Records.size(); i++) {
2708     PartiallyConstructedSafepointRecord &info = Records[i];
2709     findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases);
2710   }
2711   if (PrintBasePointers) {
2712     errs() << "Base Pairs (w/o Relocation):\n";
2713     for (auto &Pair : PointerToBase) {
2714       errs() << " derived ";
2715       Pair.first->printAsOperand(errs(), false);
2716       errs() << " base ";
2717       Pair.second->printAsOperand(errs(), false);
2718       errs() << "\n";
2719       ;
2720     }
2721   }
2722 
2723   // The base phi insertion logic (for any safepoint) may have inserted new
2724   // instructions which are now live at some safepoint.  The simplest such
2725   // example is:
2726   // loop:
2727   //   phi a  <-- will be a new base_phi here
2728   //   safepoint 1 <-- that needs to be live here
2729   //   gep a + 1
2730   //   safepoint 2
2731   //   br loop
2732   // We insert some dummy calls after each safepoint to definitely hold live
2733   // the base pointers which were identified for that safepoint.  We'll then
2734   // ask liveness for _every_ base inserted to see what is now live.  Then we
2735   // remove the dummy calls.
2736   Holders.reserve(Holders.size() + Records.size());
2737   for (size_t i = 0; i < Records.size(); i++) {
2738     PartiallyConstructedSafepointRecord &Info = Records[i];
2739 
2740     SmallVector<Value *, 128> Bases;
2741     for (auto *Derived : Info.LiveSet) {
2742       assert(PointerToBase.count(Derived) && "Missed base for derived pointer");
2743       Bases.push_back(PointerToBase[Derived]);
2744     }
2745 
2746     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2747   }
2748 
2749   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2750   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2751   // not the key issue.
2752   recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase, GC.get());
2753 
2754   if (PrintBasePointers) {
2755     errs() << "Base Pairs: (w/Relocation)\n";
2756     for (auto Pair : PointerToBase) {
2757       errs() << " derived ";
2758       Pair.first->printAsOperand(errs(), false);
2759       errs() << " base ";
2760       Pair.second->printAsOperand(errs(), false);
2761       errs() << "\n";
2762     }
2763   }
2764 
2765   // It is possible that non-constant live variables have a constant base.  For
2766   // example, a GEP with a variable offset from a global.  In this case we can
2767   // remove it from the liveset.  We already don't add constants to the liveset
2768   // because we assume they won't move at runtime and the GC doesn't need to be
2769   // informed about them.  The same reasoning applies if the base is constant.
2770   // Note that the relocation placement code relies on this filtering for
2771   // correctness as it expects the base to be in the liveset, which isn't true
2772   // if the base is constant.
2773   for (auto &Info : Records) {
2774     Info.LiveSet.remove_if([&](Value *LiveV) {
2775       assert(PointerToBase.count(LiveV) && "Missed base for derived pointer");
2776       return isa<Constant>(PointerToBase[LiveV]);
2777     });
2778   }
2779 
2780   for (CallInst *CI : Holders)
2781     CI->eraseFromParent();
2782 
2783   Holders.clear();
2784 
2785   // Compute the cost of possible re-materialization of derived pointers.
2786   RematCandTy RematerizationCandidates;
2787   findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI);
2788 
2789   // In order to reduce live set of statepoint we might choose to rematerialize
2790   // some values instead of relocating them. This is purely an optimization and
2791   // does not influence correctness.
2792   // First try rematerialization at uses, then after statepoints.
2793   rematerializeLiveValuesAtUses(RematerizationCandidates, Records,
2794                                 PointerToBase);
2795   for (size_t i = 0; i < Records.size(); i++)
2796     rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase,
2797                             RematerizationCandidates, TTI);
2798 
2799   // We need this to safely RAUW and delete call or invoke return values that
2800   // may themselves be live over a statepoint.  For details, please see usage in
2801   // makeStatepointExplicitImpl.
2802   std::vector<DeferredReplacement> Replacements;
2803 
2804   // Now run through and replace the existing statepoints with new ones with
2805   // the live variables listed.  We do not yet update uses of the values being
2806   // relocated. We have references to live variables that need to
2807   // survive to the last iteration of this loop.  (By construction, the
2808   // previous statepoint can not be a live variable, thus we can and remove
2809   // the old statepoint calls as we go.)
2810   for (size_t i = 0; i < Records.size(); i++)
2811     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements,
2812                            PointerToBase, GC.get());
2813 
2814   ToUpdate.clear(); // prevent accident use of invalid calls.
2815 
2816   for (auto &PR : Replacements)
2817     PR.doReplacement();
2818 
2819   Replacements.clear();
2820 
2821   for (auto &Info : Records) {
2822     // These live sets may contain state Value pointers, since we replaced calls
2823     // with operand bundles with calls wrapped in gc.statepoint, and some of
2824     // those calls may have been def'ing live gc pointers.  Clear these out to
2825     // avoid accidentally using them.
2826     //
2827     // TODO: We should create a separate data structure that does not contain
2828     // these live sets, and migrate to using that data structure from this point
2829     // onward.
2830     Info.LiveSet.clear();
2831   }
2832   PointerToBase.clear();
2833 
2834   // Do all the fixups of the original live variables to their relocated selves
2835   SmallVector<Value *, 128> Live;
2836   for (const PartiallyConstructedSafepointRecord &Info : Records) {
2837     // We can't simply save the live set from the original insertion.  One of
2838     // the live values might be the result of a call which needs a safepoint.
2839     // That Value* no longer exists and we need to use the new gc_result.
2840     // Thankfully, the live set is embedded in the statepoint (and updated), so
2841     // we just grab that.
2842     llvm::append_range(Live, Info.StatepointToken->gc_args());
2843 #ifndef NDEBUG
2844     // Do some basic validation checking on our liveness results before
2845     // performing relocation.  Relocation can and will turn mistakes in liveness
2846     // results into non-sensical code which is must harder to debug.
2847     // TODO: It would be nice to test consistency as well
2848     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2849            "statepoint must be reachable or liveness is meaningless");
2850     for (Value *V : Info.StatepointToken->gc_args()) {
2851       if (!isa<Instruction>(V))
2852         // Non-instruction values trivial dominate all possible uses
2853         continue;
2854       auto *LiveInst = cast<Instruction>(V);
2855       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2856              "unreachable values should never be live");
2857       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2858              "basic SSA liveness expectation violated by liveness analysis");
2859     }
2860 #endif
2861   }
2862   unique_unsorted(Live);
2863 
2864 #ifndef NDEBUG
2865   // Validation check
2866   for (auto *Ptr : Live)
2867     assert(isHandledGCPointerType(Ptr->getType(), GC.get()) &&
2868            "must be a gc pointer type");
2869 #endif
2870 
2871   relocationViaAlloca(F, DT, Live, Records);
2872   return !Records.empty();
2873 }
2874 
2875 // List of all parameter and return attributes which must be stripped when
2876 // lowering from the abstract machine model.  Note that we list attributes
2877 // here which aren't valid as return attributes, that is okay.
2878 static AttributeMask getParamAndReturnAttributesToRemove() {
2879   AttributeMask R;
2880   R.addAttribute(Attribute::Dereferenceable);
2881   R.addAttribute(Attribute::DereferenceableOrNull);
2882   R.addAttribute(Attribute::ReadNone);
2883   R.addAttribute(Attribute::ReadOnly);
2884   R.addAttribute(Attribute::WriteOnly);
2885   R.addAttribute(Attribute::NoAlias);
2886   R.addAttribute(Attribute::NoFree);
2887   return R;
2888 }
2889 
2890 static void stripNonValidAttributesFromPrototype(Function &F) {
2891   LLVMContext &Ctx = F.getContext();
2892 
2893   // Intrinsics are very delicate.  Lowering sometimes depends the presence
2894   // of certain attributes for correctness, but we may have also inferred
2895   // additional ones in the abstract machine model which need stripped.  This
2896   // assumes that the attributes defined in Intrinsic.td are conservatively
2897   // correct for both physical and abstract model.
2898   if (Intrinsic::ID id = F.getIntrinsicID()) {
2899     F.setAttributes(Intrinsic::getAttributes(Ctx, id));
2900     return;
2901   }
2902 
2903   AttributeMask R = getParamAndReturnAttributesToRemove();
2904   for (Argument &A : F.args())
2905     if (isa<PointerType>(A.getType()))
2906       F.removeParamAttrs(A.getArgNo(), R);
2907 
2908   if (isa<PointerType>(F.getReturnType()))
2909     F.removeRetAttrs(R);
2910 
2911   for (auto Attr : FnAttrsToStrip)
2912     F.removeFnAttr(Attr);
2913 }
2914 
2915 /// Certain metadata on instructions are invalid after running RS4GC.
2916 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2917 /// optimize functions. We drop such metadata on the instruction.
2918 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2919   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2920     return;
2921   // These are the attributes that are still valid on loads and stores after
2922   // RS4GC.
2923   // The metadata implying dereferenceability and noalias are (conservatively)
2924   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2925   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2926   // touch the entire heap including noalias objects. Note: The reasoning is
2927   // same as stripping the dereferenceability and noalias attributes that are
2928   // analogous to the metadata counterparts.
2929   // We also drop the invariant.load metadata on the load because that metadata
2930   // implies the address operand to the load points to memory that is never
2931   // changed once it became dereferenceable. This is no longer true after RS4GC.
2932   // Similar reasoning applies to invariant.group metadata, which applies to
2933   // loads within a group.
2934   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2935                          LLVMContext::MD_range,
2936                          LLVMContext::MD_alias_scope,
2937                          LLVMContext::MD_nontemporal,
2938                          LLVMContext::MD_nonnull,
2939                          LLVMContext::MD_align,
2940                          LLVMContext::MD_type};
2941 
2942   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2943   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2944 }
2945 
2946 static void stripNonValidDataFromBody(Function &F) {
2947   if (F.empty())
2948     return;
2949 
2950   LLVMContext &Ctx = F.getContext();
2951   MDBuilder Builder(Ctx);
2952 
2953   // Set of invariantstart instructions that we need to remove.
2954   // Use this to avoid invalidating the instruction iterator.
2955   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2956 
2957   for (Instruction &I : instructions(F)) {
2958     // invariant.start on memory location implies that the referenced memory
2959     // location is constant and unchanging. This is no longer true after
2960     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2961     // which frees the entire heap and the presence of invariant.start allows
2962     // the optimizer to sink the load of a memory location past a statepoint,
2963     // which is incorrect.
2964     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2965       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2966         InvariantStartInstructions.push_back(II);
2967         continue;
2968       }
2969 
2970     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2971       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2972       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2973     }
2974 
2975     stripInvalidMetadataFromInstruction(I);
2976 
2977     AttributeMask R = getParamAndReturnAttributesToRemove();
2978     if (auto *Call = dyn_cast<CallBase>(&I)) {
2979       for (int i = 0, e = Call->arg_size(); i != e; i++)
2980         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2981           Call->removeParamAttrs(i, R);
2982       if (isa<PointerType>(Call->getType()))
2983         Call->removeRetAttrs(R);
2984     }
2985   }
2986 
2987   // Delete the invariant.start instructions and RAUW poison.
2988   for (auto *II : InvariantStartInstructions) {
2989     II->replaceAllUsesWith(PoisonValue::get(II->getType()));
2990     II->eraseFromParent();
2991   }
2992 }
2993 
2994 /// Looks up the GC strategy for a given function, returning null if the
2995 /// function doesn't have a GC tag. The strategy is stored in the cache.
2996 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F) {
2997   if (!F.hasGC())
2998     return nullptr;
2999 
3000   return getGCStrategy(F.getGC());
3001 }
3002 
3003 /// Returns true if this function should be rewritten by this pass.  The main
3004 /// point of this function is as an extension point for custom logic.
3005 static bool shouldRewriteStatepointsIn(Function &F) {
3006   if (!F.hasGC())
3007     return false;
3008 
3009   std::unique_ptr<GCStrategy> Strategy = findGCStrategy(F);
3010 
3011   assert(Strategy && "GC strategy is required by function, but was not found");
3012 
3013   return Strategy->useRS4GC();
3014 }
3015 
3016 static void stripNonValidData(Module &M) {
3017 #ifndef NDEBUG
3018   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
3019 #endif
3020 
3021   for (Function &F : M)
3022     stripNonValidAttributesFromPrototype(F);
3023 
3024   for (Function &F : M)
3025     stripNonValidDataFromBody(F);
3026 }
3027 
3028 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
3029                                             TargetTransformInfo &TTI,
3030                                             const TargetLibraryInfo &TLI) {
3031   assert(!F.isDeclaration() && !F.empty() &&
3032          "need function body to rewrite statepoints in");
3033   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
3034 
3035   auto NeedsRewrite = [&TLI](Instruction &I) {
3036     if (const auto *Call = dyn_cast<CallBase>(&I)) {
3037       if (isa<GCStatepointInst>(Call))
3038         return false;
3039       if (callsGCLeafFunction(Call, TLI))
3040         return false;
3041 
3042       // Normally it's up to the frontend to make sure that non-leaf calls also
3043       // have proper deopt state if it is required. We make an exception for
3044       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
3045       // these are non-leaf by default. They might be generated by the optimizer
3046       // which doesn't know how to produce a proper deopt state. So if we see a
3047       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
3048       // copy and don't produce a statepoint.
3049       if (!AllowStatepointWithNoDeoptInfo && !Call->hasDeoptState()) {
3050         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
3051                "Don't expect any other calls here!");
3052         return false;
3053       }
3054       return true;
3055     }
3056     return false;
3057   };
3058 
3059   // Delete any unreachable statepoints so that we don't have unrewritten
3060   // statepoints surviving this pass.  This makes testing easier and the
3061   // resulting IR less confusing to human readers.
3062   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
3063   bool MadeChange = removeUnreachableBlocks(F, &DTU);
3064   // Flush the Dominator Tree.
3065   DTU.getDomTree();
3066 
3067   // Gather all the statepoints which need rewritten.  Be careful to only
3068   // consider those in reachable code since we need to ask dominance queries
3069   // when rewriting.  We'll delete the unreachable ones in a moment.
3070   SmallVector<CallBase *, 64> ParsePointNeeded;
3071   SmallVector<CallInst *, 64> Intrinsics;
3072   for (Instruction &I : instructions(F)) {
3073     // TODO: only the ones with the flag set!
3074     if (NeedsRewrite(I)) {
3075       // NOTE removeUnreachableBlocks() is stronger than
3076       // DominatorTree::isReachableFromEntry(). In other words
3077       // removeUnreachableBlocks can remove some blocks for which
3078       // isReachableFromEntry() returns true.
3079       assert(DT.isReachableFromEntry(I.getParent()) &&
3080             "no unreachable blocks expected");
3081       ParsePointNeeded.push_back(cast<CallBase>(&I));
3082     }
3083     if (auto *CI = dyn_cast<CallInst>(&I))
3084       if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base ||
3085           CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset)
3086         Intrinsics.emplace_back(CI);
3087   }
3088 
3089   // Return early if no work to do.
3090   if (ParsePointNeeded.empty() && Intrinsics.empty())
3091     return MadeChange;
3092 
3093   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
3094   // These are created by LCSSA.  They have the effect of increasing the size
3095   // of liveness sets for no good reason.  It may be harder to do this post
3096   // insertion since relocations and base phis can confuse things.
3097   for (BasicBlock &BB : F)
3098     if (BB.getUniquePredecessor())
3099       MadeChange |= FoldSingleEntryPHINodes(&BB);
3100 
3101   // Before we start introducing relocations, we want to tweak the IR a bit to
3102   // avoid unfortunate code generation effects.  The main example is that we
3103   // want to try to make sure the comparison feeding a branch is after any
3104   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
3105   // values feeding a branch after relocation.  This is semantically correct,
3106   // but results in extra register pressure since both the pre-relocation and
3107   // post-relocation copies must be available in registers.  For code without
3108   // relocations this is handled elsewhere, but teaching the scheduler to
3109   // reverse the transform we're about to do would be slightly complex.
3110   // Note: This may extend the live range of the inputs to the icmp and thus
3111   // increase the liveset of any statepoint we move over.  This is profitable
3112   // as long as all statepoints are in rare blocks.  If we had in-register
3113   // lowering for live values this would be a much safer transform.
3114   auto getConditionInst = [](Instruction *TI) -> Instruction * {
3115     if (auto *BI = dyn_cast<BranchInst>(TI))
3116       if (BI->isConditional())
3117         return dyn_cast<Instruction>(BI->getCondition());
3118     // TODO: Extend this to handle switches
3119     return nullptr;
3120   };
3121   for (BasicBlock &BB : F) {
3122     Instruction *TI = BB.getTerminator();
3123     if (auto *Cond = getConditionInst(TI))
3124       // TODO: Handle more than just ICmps here.  We should be able to move
3125       // most instructions without side effects or memory access.
3126       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
3127         MadeChange = true;
3128         Cond->moveBefore(TI);
3129       }
3130   }
3131 
3132   // Nasty workaround - The base computation code in the main algorithm doesn't
3133   // consider the fact that a GEP can be used to convert a scalar to a vector.
3134   // The right fix for this is to integrate GEPs into the base rewriting
3135   // algorithm properly, this is just a short term workaround to prevent
3136   // crashes by canonicalizing such GEPs into fully vector GEPs.
3137   for (Instruction &I : instructions(F)) {
3138     if (!isa<GetElementPtrInst>(I))
3139       continue;
3140 
3141     unsigned VF = 0;
3142     for (unsigned i = 0; i < I.getNumOperands(); i++)
3143       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
3144         assert(VF == 0 ||
3145                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
3146         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
3147       }
3148 
3149     // It's the vector to scalar traversal through the pointer operand which
3150     // confuses base pointer rewriting, so limit ourselves to that case.
3151     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
3152       IRBuilder<> B(&I);
3153       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
3154       I.setOperand(0, Splat);
3155       MadeChange = true;
3156     }
3157   }
3158 
3159   // Cache the 'defining value' relation used in the computation and
3160   // insertion of base phis and selects.  This ensures that we don't insert
3161   // large numbers of duplicate base_phis. Use one cache for both
3162   // inlineGetBaseAndOffset() and insertParsePoints().
3163   DefiningValueMapTy DVCache;
3164 
3165   // Mapping between a base values and a flag indicating whether it's a known
3166   // base or not.
3167   IsKnownBaseMapTy KnownBases;
3168 
3169   if (!Intrinsics.empty())
3170     // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding
3171     // live references.
3172     MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases);
3173 
3174   if (!ParsePointNeeded.empty())
3175     MadeChange |=
3176         insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases);
3177 
3178   return MadeChange;
3179 }
3180 
3181 // liveness computation via standard dataflow
3182 // -------------------------------------------------------------------
3183 
3184 // TODO: Consider using bitvectors for liveness, the set of potentially
3185 // interesting values should be small and easy to pre-compute.
3186 
3187 /// Compute the live-in set for the location rbegin starting from
3188 /// the live-out set of the basic block
3189 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
3190                                 BasicBlock::reverse_iterator End,
3191                                 SetVector<Value *> &LiveTmp, GCStrategy *GC) {
3192   for (auto &I : make_range(Begin, End)) {
3193     // KILL/Def - Remove this definition from LiveIn
3194     LiveTmp.remove(&I);
3195 
3196     // Don't consider *uses* in PHI nodes, we handle their contribution to
3197     // predecessor blocks when we seed the LiveOut sets
3198     if (isa<PHINode>(I))
3199       continue;
3200 
3201     // USE - Add to the LiveIn set for this instruction
3202     for (Value *V : I.operands()) {
3203       assert(!isUnhandledGCPointerType(V->getType(), GC) &&
3204              "support for FCA unimplemented");
3205       if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) {
3206         // The choice to exclude all things constant here is slightly subtle.
3207         // There are two independent reasons:
3208         // - We assume that things which are constant (from LLVM's definition)
3209         // do not move at runtime.  For example, the address of a global
3210         // variable is fixed, even though it's contents may not be.
3211         // - Second, we can't disallow arbitrary inttoptr constants even
3212         // if the language frontend does.  Optimization passes are free to
3213         // locally exploit facts without respect to global reachability.  This
3214         // can create sections of code which are dynamically unreachable and
3215         // contain just about anything.  (see constants.ll in tests)
3216         LiveTmp.insert(V);
3217       }
3218     }
3219   }
3220 }
3221 
3222 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp,
3223                                GCStrategy *GC) {
3224   for (BasicBlock *Succ : successors(BB)) {
3225     for (auto &I : *Succ) {
3226       PHINode *PN = dyn_cast<PHINode>(&I);
3227       if (!PN)
3228         break;
3229 
3230       Value *V = PN->getIncomingValueForBlock(BB);
3231       assert(!isUnhandledGCPointerType(V->getType(), GC) &&
3232              "support for FCA unimplemented");
3233       if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V))
3234         LiveTmp.insert(V);
3235     }
3236   }
3237 }
3238 
3239 static SetVector<Value *> computeKillSet(BasicBlock *BB, GCStrategy *GC) {
3240   SetVector<Value *> KillSet;
3241   for (Instruction &I : *BB)
3242     if (isHandledGCPointerType(I.getType(), GC))
3243       KillSet.insert(&I);
3244   return KillSet;
3245 }
3246 
3247 #ifndef NDEBUG
3248 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
3249 /// validation check for the liveness computation.
3250 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
3251                           Instruction *TI, bool TermOkay = false) {
3252   for (Value *V : Live) {
3253     if (auto *I = dyn_cast<Instruction>(V)) {
3254       // The terminator can be a member of the LiveOut set.  LLVM's definition
3255       // of instruction dominance states that V does not dominate itself.  As
3256       // such, we need to special case this to allow it.
3257       if (TermOkay && TI == I)
3258         continue;
3259       assert(DT.dominates(I, TI) &&
3260              "basic SSA liveness expectation violated by liveness analysis");
3261     }
3262   }
3263 }
3264 
3265 /// Check that all the liveness sets used during the computation of liveness
3266 /// obey basic SSA properties.  This is useful for finding cases where we miss
3267 /// a def.
3268 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
3269                           BasicBlock &BB) {
3270   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
3271   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
3272   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
3273 }
3274 #endif
3275 
3276 static void computeLiveInValues(DominatorTree &DT, Function &F,
3277                                 GCPtrLivenessData &Data, GCStrategy *GC) {
3278   SmallSetVector<BasicBlock *, 32> Worklist;
3279 
3280   // Seed the liveness for each individual block
3281   for (BasicBlock &BB : F) {
3282     Data.KillSet[&BB] = computeKillSet(&BB, GC);
3283     Data.LiveSet[&BB].clear();
3284     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB], GC);
3285 
3286 #ifndef NDEBUG
3287     for (Value *Kill : Data.KillSet[&BB])
3288       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
3289 #endif
3290 
3291     Data.LiveOut[&BB] = SetVector<Value *>();
3292     computeLiveOutSeed(&BB, Data.LiveOut[&BB], GC);
3293     Data.LiveIn[&BB] = Data.LiveSet[&BB];
3294     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
3295     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
3296     if (!Data.LiveIn[&BB].empty())
3297       Worklist.insert(pred_begin(&BB), pred_end(&BB));
3298   }
3299 
3300   // Propagate that liveness until stable
3301   while (!Worklist.empty()) {
3302     BasicBlock *BB = Worklist.pop_back_val();
3303 
3304     // Compute our new liveout set, then exit early if it hasn't changed despite
3305     // the contribution of our successor.
3306     SetVector<Value *> LiveOut = Data.LiveOut[BB];
3307     const auto OldLiveOutSize = LiveOut.size();
3308     for (BasicBlock *Succ : successors(BB)) {
3309       assert(Data.LiveIn.count(Succ));
3310       LiveOut.set_union(Data.LiveIn[Succ]);
3311     }
3312     // assert OutLiveOut is a subset of LiveOut
3313     if (OldLiveOutSize == LiveOut.size()) {
3314       // If the sets are the same size, then we didn't actually add anything
3315       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
3316       // hasn't changed.
3317       continue;
3318     }
3319     Data.LiveOut[BB] = LiveOut;
3320 
3321     // Apply the effects of this basic block
3322     SetVector<Value *> LiveTmp = LiveOut;
3323     LiveTmp.set_union(Data.LiveSet[BB]);
3324     LiveTmp.set_subtract(Data.KillSet[BB]);
3325 
3326     assert(Data.LiveIn.count(BB));
3327     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
3328     // assert: OldLiveIn is a subset of LiveTmp
3329     if (OldLiveIn.size() != LiveTmp.size()) {
3330       Data.LiveIn[BB] = LiveTmp;
3331       Worklist.insert(pred_begin(BB), pred_end(BB));
3332     }
3333   } // while (!Worklist.empty())
3334 
3335 #ifndef NDEBUG
3336   // Verify our output against SSA properties.  This helps catch any
3337   // missing kills during the above iteration.
3338   for (BasicBlock &BB : F)
3339     checkBasicSSA(DT, Data, BB);
3340 #endif
3341 }
3342 
3343 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
3344                               StatepointLiveSetTy &Out, GCStrategy *GC) {
3345   BasicBlock *BB = Inst->getParent();
3346 
3347   // Note: The copy is intentional and required
3348   assert(Data.LiveOut.count(BB));
3349   SetVector<Value *> LiveOut = Data.LiveOut[BB];
3350 
3351   // We want to handle the statepoint itself oddly.  It's
3352   // call result is not live (normal), nor are it's arguments
3353   // (unless they're used again later).  This adjustment is
3354   // specifically what we need to relocate
3355   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), LiveOut,
3356                       GC);
3357   LiveOut.remove(Inst);
3358   Out.insert(LiveOut.begin(), LiveOut.end());
3359 }
3360 
3361 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
3362                                   CallBase *Call,
3363                                   PartiallyConstructedSafepointRecord &Info,
3364                                   PointerToBaseTy &PointerToBase,
3365                                   GCStrategy *GC) {
3366   StatepointLiveSetTy Updated;
3367   findLiveSetAtInst(Call, RevisedLivenessData, Updated, GC);
3368 
3369   // We may have base pointers which are now live that weren't before.  We need
3370   // to update the PointerToBase structure to reflect this.
3371   for (auto *V : Updated)
3372     PointerToBase.insert({ V, V });
3373 
3374   Info.LiveSet = Updated;
3375 }
3376