xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   GCStatepointInst *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 // Returns true is V is a knownBaseResult.
391 static bool isKnownBaseResult(Value *V);
392 
393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
394 // not created by the findBasePointers algorithm.
395 static bool isOriginalBaseResult(Value *V);
396 
397 namespace {
398 
399 /// A single base defining value - An immediate base defining value for an
400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
401 /// For instructions which have multiple pointer [vector] inputs or that
402 /// transition between vector and scalar types, there is no immediate base
403 /// defining value.  The 'base defining value' for 'Def' is the transitive
404 /// closure of this relation stopping at the first instruction which has no
405 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
406 /// but it can also be an arbitrary derived pointer.
407 struct BaseDefiningValueResult {
408   /// Contains the value which is the base defining value.
409   Value * const BDV;
410 
411   /// True if the base defining value is also known to be an actual base
412   /// pointer.
413   const bool IsKnownBase;
414 
415   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
416     : BDV(BDV), IsKnownBase(IsKnownBase) {
417 #ifndef NDEBUG
418     // Check consistency between new and old means of checking whether a BDV is
419     // a base.
420     bool MustBeBase = isKnownBaseResult(BDV);
421     assert(!MustBeBase || MustBeBase == IsKnownBase);
422 #endif
423   }
424 };
425 
426 } // end anonymous namespace
427 
428 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
429 
430 /// Return a base defining value for the 'Index' element of the given vector
431 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
432 /// 'I'.  As an optimization, this method will try to determine when the
433 /// element is known to already be a base pointer.  If this can be established,
434 /// the second value in the returned pair will be true.  Note that either a
435 /// vector or a pointer typed value can be returned.  For the former, the
436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
437 /// If the later, the return pointer is a BDV (or possibly a base) for the
438 /// particular element in 'I'.
439 static BaseDefiningValueResult
440 findBaseDefiningValueOfVector(Value *I) {
441   // Each case parallels findBaseDefiningValue below, see that code for
442   // detailed motivation.
443 
444   if (isa<Argument>(I))
445     // An incoming argument to the function is a base pointer
446     return BaseDefiningValueResult(I, true);
447 
448   if (isa<Constant>(I))
449     // Base of constant vector consists only of constant null pointers.
450     // For reasoning see similar case inside 'findBaseDefiningValue' function.
451     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
452                                    true);
453 
454   if (isa<LoadInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   if (isa<InsertElementInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     return BaseDefiningValueResult(I, false);
462 
463   if (isa<ShuffleVectorInst>(I))
464     // We don't know whether this vector contains entirely base pointers or
465     // not.  To be conservatively correct, we treat it as a BDV and will
466     // duplicate code as needed to construct a parallel vector of bases.
467     // TODO: There a number of local optimizations which could be applied here
468     // for particular sufflevector patterns.
469     return BaseDefiningValueResult(I, false);
470 
471   // The behavior of getelementptr instructions is the same for vector and
472   // non-vector data types.
473   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
474     return findBaseDefiningValue(GEP->getPointerOperand());
475 
476   // If the pointer comes through a bitcast of a vector of pointers to
477   // a vector of another type of pointer, then look through the bitcast
478   if (auto *BC = dyn_cast<BitCastInst>(I))
479     return findBaseDefiningValue(BC->getOperand(0));
480 
481   // We assume that functions in the source language only return base
482   // pointers.  This should probably be generalized via attributes to support
483   // both source language and internal functions.
484   if (isa<CallInst>(I) || isa<InvokeInst>(I))
485     return BaseDefiningValueResult(I, true);
486 
487   // A PHI or Select is a base defining value.  The outer findBasePointer
488   // algorithm is responsible for constructing a base value for this BDV.
489   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
490          "unknown vector instruction - no base found for vector element");
491   return BaseDefiningValueResult(I, false);
492 }
493 
494 /// Helper function for findBasePointer - Will return a value which either a)
495 /// defines the base pointer for the input, b) blocks the simple search
496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
497 /// from pointer to vector type or back.
498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
499   assert(I->getType()->isPtrOrPtrVectorTy() &&
500          "Illegal to ask for the base pointer of a non-pointer type");
501 
502   if (I->getType()->isVectorTy())
503     return findBaseDefiningValueOfVector(I);
504 
505   if (isa<Argument>(I))
506     // An incoming argument to the function is a base pointer
507     // We should have never reached here if this argument isn't an gc value
508     return BaseDefiningValueResult(I, true);
509 
510   if (isa<Constant>(I)) {
511     // We assume that objects with a constant base (e.g. a global) can't move
512     // and don't need to be reported to the collector because they are always
513     // live. Besides global references, all kinds of constants (e.g. undef,
514     // constant expressions, null pointers) can be introduced by the inliner or
515     // the optimizer, especially on dynamically dead paths.
516     // Here we treat all of them as having single null base. By doing this we
517     // trying to avoid problems reporting various conflicts in a form of
518     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
519     // See constant.ll file for relevant test cases.
520 
521     return BaseDefiningValueResult(
522         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
523   }
524 
525   if (CastInst *CI = dyn_cast<CastInst>(I)) {
526     Value *Def = CI->stripPointerCasts();
527     // If stripping pointer casts changes the address space there is an
528     // addrspacecast in between.
529     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
530                cast<PointerType>(CI->getType())->getAddressSpace() &&
531            "unsupported addrspacecast");
532     // If we find a cast instruction here, it means we've found a cast which is
533     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
534     // handle int->ptr conversion.
535     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
536     return findBaseDefiningValue(Def);
537   }
538 
539   if (isa<LoadInst>(I))
540     // The value loaded is an gc base itself
541     return BaseDefiningValueResult(I, true);
542 
543   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
544     // The base of this GEP is the base
545     return findBaseDefiningValue(GEP->getPointerOperand());
546 
547   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
548     switch (II->getIntrinsicID()) {
549     default:
550       // fall through to general call handling
551       break;
552     case Intrinsic::experimental_gc_statepoint:
553       llvm_unreachable("statepoints don't produce pointers");
554     case Intrinsic::experimental_gc_relocate:
555       // Rerunning safepoint insertion after safepoints are already
556       // inserted is not supported.  It could probably be made to work,
557       // but why are you doing this?  There's no good reason.
558       llvm_unreachable("repeat safepoint insertion is not supported");
559     case Intrinsic::gcroot:
560       // Currently, this mechanism hasn't been extended to work with gcroot.
561       // There's no reason it couldn't be, but I haven't thought about the
562       // implications much.
563       llvm_unreachable(
564           "interaction with the gcroot mechanism is not supported");
565     }
566   }
567   // We assume that functions in the source language only return base
568   // pointers.  This should probably be generalized via attributes to support
569   // both source language and internal functions.
570   if (isa<CallInst>(I) || isa<InvokeInst>(I))
571     return BaseDefiningValueResult(I, true);
572 
573   // TODO: I have absolutely no idea how to implement this part yet.  It's not
574   // necessarily hard, I just haven't really looked at it yet.
575   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
576 
577   if (isa<AtomicCmpXchgInst>(I))
578     // A CAS is effectively a atomic store and load combined under a
579     // predicate.  From the perspective of base pointers, we just treat it
580     // like a load.
581     return BaseDefiningValueResult(I, true);
582 
583   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
584                                    "binary ops which don't apply to pointers");
585 
586   // The aggregate ops.  Aggregates can either be in the heap or on the
587   // stack, but in either case, this is simply a field load.  As a result,
588   // this is a defining definition of the base just like a load is.
589   if (isa<ExtractValueInst>(I))
590     return BaseDefiningValueResult(I, true);
591 
592   // We should never see an insert vector since that would require we be
593   // tracing back a struct value not a pointer value.
594   assert(!isa<InsertValueInst>(I) &&
595          "Base pointer for a struct is meaningless");
596 
597   // An extractelement produces a base result exactly when it's input does.
598   // We may need to insert a parallel instruction to extract the appropriate
599   // element out of the base vector corresponding to the input. Given this,
600   // it's analogous to the phi and select case even though it's not a merge.
601   if (isa<ExtractElementInst>(I))
602     // Note: There a lot of obvious peephole cases here.  This are deliberately
603     // handled after the main base pointer inference algorithm to make writing
604     // test cases to exercise that code easier.
605     return BaseDefiningValueResult(I, false);
606 
607   // The last two cases here don't return a base pointer.  Instead, they
608   // return a value which dynamically selects from among several base
609   // derived pointers (each with it's own base potentially).  It's the job of
610   // the caller to resolve these.
611   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
612          "missing instruction case in findBaseDefiningValing");
613   return BaseDefiningValueResult(I, false);
614 }
615 
616 /// Returns the base defining value for this value.
617 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
618   Value *&Cached = Cache[I];
619   if (!Cached) {
620     Cached = findBaseDefiningValue(I).BDV;
621     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
622                       << Cached->getName() << "\n");
623   }
624   assert(Cache[I] != nullptr);
625   return Cached;
626 }
627 
628 /// Return a base pointer for this value if known.  Otherwise, return it's
629 /// base defining value.
630 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
631   Value *Def = findBaseDefiningValueCached(I, Cache);
632   auto Found = Cache.find(Def);
633   if (Found != Cache.end()) {
634     // Either a base-of relation, or a self reference.  Caller must check.
635     return Found->second;
636   }
637   // Only a BDV available
638   return Def;
639 }
640 
641 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
642 /// exists in the code.
643 static bool isOriginalBaseResult(Value *V) {
644   // no recursion possible
645   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
646          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
647          !isa<ShuffleVectorInst>(V);
648 }
649 
650 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
651 /// is it known to be a base pointer?  Or do we need to continue searching.
652 static bool isKnownBaseResult(Value *V) {
653   if (isOriginalBaseResult(V))
654     return true;
655   if (isa<Instruction>(V) &&
656       cast<Instruction>(V)->getMetadata("is_base_value")) {
657     // This is a previously inserted base phi or select.  We know
658     // that this is a base value.
659     return true;
660   }
661 
662   // We need to keep searching
663   return false;
664 }
665 
666 // Returns true if First and Second values are both scalar or both vector.
667 static bool areBothVectorOrScalar(Value *First, Value *Second) {
668   return isa<VectorType>(First->getType()) ==
669          isa<VectorType>(Second->getType());
670 }
671 
672 namespace {
673 
674 /// Models the state of a single base defining value in the findBasePointer
675 /// algorithm for determining where a new instruction is needed to propagate
676 /// the base of this BDV.
677 class BDVState {
678 public:
679   enum Status { Unknown, Base, Conflict };
680 
681   BDVState() : BaseValue(nullptr) {}
682 
683   explicit BDVState(Status Status, Value *BaseValue = nullptr)
684       : Status(Status), BaseValue(BaseValue) {
685     assert(Status != Base || BaseValue);
686   }
687 
688   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
689 
690   Status getStatus() const { return Status; }
691   Value *getBaseValue() const { return BaseValue; }
692 
693   bool isBase() const { return getStatus() == Base; }
694   bool isUnknown() const { return getStatus() == Unknown; }
695   bool isConflict() const { return getStatus() == Conflict; }
696 
697   bool operator==(const BDVState &Other) const {
698     return BaseValue == Other.BaseValue && Status == Other.Status;
699   }
700 
701   bool operator!=(const BDVState &other) const { return !(*this == other); }
702 
703   LLVM_DUMP_METHOD
704   void dump() const {
705     print(dbgs());
706     dbgs() << '\n';
707   }
708 
709   void print(raw_ostream &OS) const {
710     switch (getStatus()) {
711     case Unknown:
712       OS << "U";
713       break;
714     case Base:
715       OS << "B";
716       break;
717     case Conflict:
718       OS << "C";
719       break;
720     }
721     OS << " (" << getBaseValue() << " - "
722        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
723   }
724 
725 private:
726   Status Status = Unknown;
727   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
728 };
729 
730 } // end anonymous namespace
731 
732 #ifndef NDEBUG
733 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
734   State.print(OS);
735   return OS;
736 }
737 #endif
738 
739 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
740   switch (LHS.getStatus()) {
741   case BDVState::Unknown:
742     return RHS;
743 
744   case BDVState::Base:
745     assert(LHS.getBaseValue() && "can't be null");
746     if (RHS.isUnknown())
747       return LHS;
748 
749     if (RHS.isBase()) {
750       if (LHS.getBaseValue() == RHS.getBaseValue()) {
751         assert(LHS == RHS && "equality broken!");
752         return LHS;
753       }
754       return BDVState(BDVState::Conflict);
755     }
756     assert(RHS.isConflict() && "only three states!");
757     return BDVState(BDVState::Conflict);
758 
759   case BDVState::Conflict:
760     return LHS;
761   }
762   llvm_unreachable("only three states!");
763 }
764 
765 // Values of type BDVState form a lattice, and this function implements the meet
766 // operation.
767 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
768   BDVState Result = meetBDVStateImpl(LHS, RHS);
769   assert(Result == meetBDVStateImpl(RHS, LHS) &&
770          "Math is wrong: meet does not commute!");
771   return Result;
772 }
773 
774 /// For a given value or instruction, figure out what base ptr its derived from.
775 /// For gc objects, this is simply itself.  On success, returns a value which is
776 /// the base pointer.  (This is reliable and can be used for relocation.)  On
777 /// failure, returns nullptr.
778 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
779   Value *Def = findBaseOrBDV(I, Cache);
780 
781   if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
782     return Def;
783 
784   // Here's the rough algorithm:
785   // - For every SSA value, construct a mapping to either an actual base
786   //   pointer or a PHI which obscures the base pointer.
787   // - Construct a mapping from PHI to unknown TOP state.  Use an
788   //   optimistic algorithm to propagate base pointer information.  Lattice
789   //   looks like:
790   //   UNKNOWN
791   //   b1 b2 b3 b4
792   //   CONFLICT
793   //   When algorithm terminates, all PHIs will either have a single concrete
794   //   base or be in a conflict state.
795   // - For every conflict, insert a dummy PHI node without arguments.  Add
796   //   these to the base[Instruction] = BasePtr mapping.  For every
797   //   non-conflict, add the actual base.
798   //  - For every conflict, add arguments for the base[a] of each input
799   //   arguments.
800   //
801   // Note: A simpler form of this would be to add the conflict form of all
802   // PHIs without running the optimistic algorithm.  This would be
803   // analogous to pessimistic data flow and would likely lead to an
804   // overall worse solution.
805 
806 #ifndef NDEBUG
807   auto isExpectedBDVType = [](Value *BDV) {
808     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
809            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
810            isa<ShuffleVectorInst>(BDV);
811   };
812 #endif
813 
814   // Once populated, will contain a mapping from each potentially non-base BDV
815   // to a lattice value (described above) which corresponds to that BDV.
816   // We use the order of insertion (DFS over the def/use graph) to provide a
817   // stable deterministic ordering for visiting DenseMaps (which are unordered)
818   // below.  This is important for deterministic compilation.
819   MapVector<Value *, BDVState> States;
820 
821   // Recursively fill in all base defining values reachable from the initial
822   // one for which we don't already know a definite base value for
823   /* scope */ {
824     SmallVector<Value*, 16> Worklist;
825     Worklist.push_back(Def);
826     States.insert({Def, BDVState()});
827     while (!Worklist.empty()) {
828       Value *Current = Worklist.pop_back_val();
829       assert(!isOriginalBaseResult(Current) && "why did it get added?");
830 
831       auto visitIncomingValue = [&](Value *InVal) {
832         Value *Base = findBaseOrBDV(InVal, Cache);
833         if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
834           // Known bases won't need new instructions introduced and can be
835           // ignored safely. However, this can only be done when InVal and Base
836           // are both scalar or both vector. Otherwise, we need to find a
837           // correct BDV for InVal, by creating an entry in the lattice
838           // (States).
839           return;
840         assert(isExpectedBDVType(Base) && "the only non-base values "
841                "we see should be base defining values");
842         if (States.insert(std::make_pair(Base, BDVState())).second)
843           Worklist.push_back(Base);
844       };
845       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
846         for (Value *InVal : PN->incoming_values())
847           visitIncomingValue(InVal);
848       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
849         visitIncomingValue(SI->getTrueValue());
850         visitIncomingValue(SI->getFalseValue());
851       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
852         visitIncomingValue(EE->getVectorOperand());
853       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
854         visitIncomingValue(IE->getOperand(0)); // vector operand
855         visitIncomingValue(IE->getOperand(1)); // scalar operand
856       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
857         visitIncomingValue(SV->getOperand(0));
858         visitIncomingValue(SV->getOperand(1));
859       }
860       else {
861         llvm_unreachable("Unimplemented instruction case");
862       }
863     }
864   }
865 
866 #ifndef NDEBUG
867   LLVM_DEBUG(dbgs() << "States after initialization:\n");
868   for (auto Pair : States) {
869     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
870   }
871 #endif
872 
873   // Return a phi state for a base defining value.  We'll generate a new
874   // base state for known bases and expect to find a cached state otherwise.
875   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
876     if (isKnownBaseResult(BaseValue) && areBothVectorOrScalar(BaseValue, Input))
877       return BDVState(BaseValue);
878     auto I = States.find(BaseValue);
879     assert(I != States.end() && "lookup failed!");
880     return I->second;
881   };
882 
883   bool Progress = true;
884   while (Progress) {
885 #ifndef NDEBUG
886     const size_t OldSize = States.size();
887 #endif
888     Progress = false;
889     // We're only changing values in this loop, thus safe to keep iterators.
890     // Since this is computing a fixed point, the order of visit does not
891     // effect the result.  TODO: We could use a worklist here and make this run
892     // much faster.
893     for (auto Pair : States) {
894       Value *BDV = Pair.first;
895       // Only values that do not have known bases or those that have differing
896       // type (scalar versus vector) from a possible known base should be in the
897       // lattice.
898       assert((!isKnownBaseResult(BDV) ||
899              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
900                  "why did it get added?");
901 
902       // Given an input value for the current instruction, return a BDVState
903       // instance which represents the BDV of that value.
904       auto getStateForInput = [&](Value *V) mutable {
905         Value *BDV = findBaseOrBDV(V, Cache);
906         return GetStateForBDV(BDV, V);
907       };
908 
909       BDVState NewState;
910       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
911         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
912         NewState =
913             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
914       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
915         for (Value *Val : PN->incoming_values())
916           NewState = meetBDVState(NewState, getStateForInput(Val));
917       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
918         // The 'meet' for an extractelement is slightly trivial, but it's still
919         // useful in that it drives us to conflict if our input is.
920         NewState =
921             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
922       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
923         // Given there's a inherent type mismatch between the operands, will
924         // *always* produce Conflict.
925         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
926         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
927       } else {
928         // The only instance this does not return a Conflict is when both the
929         // vector operands are the same vector.
930         auto *SV = cast<ShuffleVectorInst>(BDV);
931         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
932         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
933       }
934 
935       BDVState OldState = States[BDV];
936       if (OldState != NewState) {
937         Progress = true;
938         States[BDV] = NewState;
939       }
940     }
941 
942     assert(OldSize == States.size() &&
943            "fixed point shouldn't be adding any new nodes to state");
944   }
945 
946 #ifndef NDEBUG
947   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
948   for (auto Pair : States) {
949     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
950   }
951 #endif
952 
953   // Handle all instructions that have a vector BDV, but the instruction itself
954   // is of scalar type.
955   for (auto Pair : States) {
956     Instruction *I = cast<Instruction>(Pair.first);
957     BDVState State = Pair.second;
958     auto *BaseValue = State.getBaseValue();
959     // Only values that do not have known bases or those that have differing
960     // type (scalar versus vector) from a possible known base should be in the
961     // lattice.
962     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
963            "why did it get added?");
964     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
965 
966     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
967       continue;
968     // extractelement instructions are a bit special in that we may need to
969     // insert an extract even when we know an exact base for the instruction.
970     // The problem is that we need to convert from a vector base to a scalar
971     // base for the particular indice we're interested in.
972     if (isa<ExtractElementInst>(I)) {
973       auto *EE = cast<ExtractElementInst>(I);
974       // TODO: In many cases, the new instruction is just EE itself.  We should
975       // exploit this, but can't do it here since it would break the invariant
976       // about the BDV not being known to be a base.
977       auto *BaseInst = ExtractElementInst::Create(
978           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
979       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
980       States[I] = BDVState(BDVState::Base, BaseInst);
981     } else if (!isa<VectorType>(I->getType())) {
982       // We need to handle cases that have a vector base but the instruction is
983       // a scalar type (these could be phis or selects or any instruction that
984       // are of scalar type, but the base can be a vector type).  We
985       // conservatively set this as conflict.  Setting the base value for these
986       // conflicts is handled in the next loop which traverses States.
987       States[I] = BDVState(BDVState::Conflict);
988     }
989   }
990 
991   // Insert Phis for all conflicts
992   // TODO: adjust naming patterns to avoid this order of iteration dependency
993   for (auto Pair : States) {
994     Instruction *I = cast<Instruction>(Pair.first);
995     BDVState State = Pair.second;
996     // Only values that do not have known bases or those that have differing
997     // type (scalar versus vector) from a possible known base should be in the
998     // lattice.
999     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
1000            "why did it get added?");
1001     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1002 
1003     // Since we're joining a vector and scalar base, they can never be the
1004     // same.  As a result, we should always see insert element having reached
1005     // the conflict state.
1006     assert(!isa<InsertElementInst>(I) || State.isConflict());
1007 
1008     if (!State.isConflict())
1009       continue;
1010 
1011     /// Create and insert a new instruction which will represent the base of
1012     /// the given instruction 'I'.
1013     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
1014       if (isa<PHINode>(I)) {
1015         BasicBlock *BB = I->getParent();
1016         int NumPreds = pred_size(BB);
1017         assert(NumPreds > 0 && "how did we reach here");
1018         std::string Name = suffixed_name_or(I, ".base", "base_phi");
1019         return PHINode::Create(I->getType(), NumPreds, Name, I);
1020       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
1021         // The undef will be replaced later
1022         UndefValue *Undef = UndefValue::get(SI->getType());
1023         std::string Name = suffixed_name_or(I, ".base", "base_select");
1024         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
1025       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
1026         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
1027         std::string Name = suffixed_name_or(I, ".base", "base_ee");
1028         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
1029                                           EE);
1030       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
1031         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
1032         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
1033         std::string Name = suffixed_name_or(I, ".base", "base_ie");
1034         return InsertElementInst::Create(VecUndef, ScalarUndef,
1035                                          IE->getOperand(2), Name, IE);
1036       } else {
1037         auto *SV = cast<ShuffleVectorInst>(I);
1038         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
1039         std::string Name = suffixed_name_or(I, ".base", "base_sv");
1040         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getShuffleMask(),
1041                                      Name, SV);
1042       }
1043     };
1044     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
1045     // Add metadata marking this as a base value
1046     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1047     States[I] = BDVState(BDVState::Conflict, BaseInst);
1048   }
1049 
1050   // Returns a instruction which produces the base pointer for a given
1051   // instruction.  The instruction is assumed to be an input to one of the BDVs
1052   // seen in the inference algorithm above.  As such, we must either already
1053   // know it's base defining value is a base, or have inserted a new
1054   // instruction to propagate the base of it's BDV and have entered that newly
1055   // introduced instruction into the state table.  In either case, we are
1056   // assured to be able to determine an instruction which produces it's base
1057   // pointer.
1058   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1059     Value *BDV = findBaseOrBDV(Input, Cache);
1060     Value *Base = nullptr;
1061     if (isKnownBaseResult(BDV) && areBothVectorOrScalar(BDV, Input)) {
1062       Base = BDV;
1063     } else {
1064       // Either conflict or base.
1065       assert(States.count(BDV));
1066       Base = States[BDV].getBaseValue();
1067     }
1068     assert(Base && "Can't be null");
1069     // The cast is needed since base traversal may strip away bitcasts
1070     if (Base->getType() != Input->getType() && InsertPt)
1071       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1072     return Base;
1073   };
1074 
1075   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1076   // deterministic and predictable because we're naming newly created
1077   // instructions.
1078   for (auto Pair : States) {
1079     Instruction *BDV = cast<Instruction>(Pair.first);
1080     BDVState State = Pair.second;
1081 
1082     // Only values that do not have known bases or those that have differing
1083     // type (scalar versus vector) from a possible known base should be in the
1084     // lattice.
1085     assert((!isKnownBaseResult(BDV) ||
1086             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1087            "why did it get added?");
1088     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1089     if (!State.isConflict())
1090       continue;
1091 
1092     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1093       PHINode *PN = cast<PHINode>(BDV);
1094       unsigned NumPHIValues = PN->getNumIncomingValues();
1095       for (unsigned i = 0; i < NumPHIValues; i++) {
1096         Value *InVal = PN->getIncomingValue(i);
1097         BasicBlock *InBB = PN->getIncomingBlock(i);
1098 
1099         // If we've already seen InBB, add the same incoming value
1100         // we added for it earlier.  The IR verifier requires phi
1101         // nodes with multiple entries from the same basic block
1102         // to have the same incoming value for each of those
1103         // entries.  If we don't do this check here and basephi
1104         // has a different type than base, we'll end up adding two
1105         // bitcasts (and hence two distinct values) as incoming
1106         // values for the same basic block.
1107 
1108         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1109         if (BlockIndex != -1) {
1110           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1111           BasePHI->addIncoming(OldBase, InBB);
1112 
1113 #ifndef NDEBUG
1114           Value *Base = getBaseForInput(InVal, nullptr);
1115           // In essence this assert states: the only way two values
1116           // incoming from the same basic block may be different is by
1117           // being different bitcasts of the same value.  A cleanup
1118           // that remains TODO is changing findBaseOrBDV to return an
1119           // llvm::Value of the correct type (and still remain pure).
1120           // This will remove the need to add bitcasts.
1121           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1122                  "Sanity -- findBaseOrBDV should be pure!");
1123 #endif
1124           continue;
1125         }
1126 
1127         // Find the instruction which produces the base for each input.  We may
1128         // need to insert a bitcast in the incoming block.
1129         // TODO: Need to split critical edges if insertion is needed
1130         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1131         BasePHI->addIncoming(Base, InBB);
1132       }
1133       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1134     } else if (SelectInst *BaseSI =
1135                    dyn_cast<SelectInst>(State.getBaseValue())) {
1136       SelectInst *SI = cast<SelectInst>(BDV);
1137 
1138       // Find the instruction which produces the base for each input.
1139       // We may need to insert a bitcast.
1140       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1141       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1142     } else if (auto *BaseEE =
1143                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1144       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1145       // Find the instruction which produces the base for each input.  We may
1146       // need to insert a bitcast.
1147       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1148     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1149       auto *BdvIE = cast<InsertElementInst>(BDV);
1150       auto UpdateOperand = [&](int OperandIdx) {
1151         Value *InVal = BdvIE->getOperand(OperandIdx);
1152         Value *Base = getBaseForInput(InVal, BaseIE);
1153         BaseIE->setOperand(OperandIdx, Base);
1154       };
1155       UpdateOperand(0); // vector operand
1156       UpdateOperand(1); // scalar operand
1157     } else {
1158       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1159       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1160       auto UpdateOperand = [&](int OperandIdx) {
1161         Value *InVal = BdvSV->getOperand(OperandIdx);
1162         Value *Base = getBaseForInput(InVal, BaseSV);
1163         BaseSV->setOperand(OperandIdx, Base);
1164       };
1165       UpdateOperand(0); // vector operand
1166       UpdateOperand(1); // vector operand
1167     }
1168   }
1169 
1170   // Cache all of our results so we can cheaply reuse them
1171   // NOTE: This is actually two caches: one of the base defining value
1172   // relation and one of the base pointer relation!  FIXME
1173   for (auto Pair : States) {
1174     auto *BDV = Pair.first;
1175     Value *Base = Pair.second.getBaseValue();
1176     assert(BDV && Base);
1177     // Only values that do not have known bases or those that have differing
1178     // type (scalar versus vector) from a possible known base should be in the
1179     // lattice.
1180     assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
1181            "why did it get added?");
1182 
1183     LLVM_DEBUG(
1184         dbgs() << "Updating base value cache"
1185                << " for: " << BDV->getName() << " from: "
1186                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1187                << " to: " << Base->getName() << "\n");
1188 
1189     if (Cache.count(BDV)) {
1190       assert(isKnownBaseResult(Base) &&
1191              "must be something we 'know' is a base pointer");
1192       // Once we transition from the BDV relation being store in the Cache to
1193       // the base relation being stored, it must be stable
1194       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1195              "base relation should be stable");
1196     }
1197     Cache[BDV] = Base;
1198   }
1199   assert(Cache.count(Def));
1200   return Cache[Def];
1201 }
1202 
1203 // For a set of live pointers (base and/or derived), identify the base
1204 // pointer of the object which they are derived from.  This routine will
1205 // mutate the IR graph as needed to make the 'base' pointer live at the
1206 // definition site of 'derived'.  This ensures that any use of 'derived' can
1207 // also use 'base'.  This may involve the insertion of a number of
1208 // additional PHI nodes.
1209 //
1210 // preconditions: live is a set of pointer type Values
1211 //
1212 // side effects: may insert PHI nodes into the existing CFG, will preserve
1213 // CFG, will not remove or mutate any existing nodes
1214 //
1215 // post condition: PointerToBase contains one (derived, base) pair for every
1216 // pointer in live.  Note that derived can be equal to base if the original
1217 // pointer was a base pointer.
1218 static void
1219 findBasePointers(const StatepointLiveSetTy &live,
1220                  MapVector<Value *, Value *> &PointerToBase,
1221                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1222   for (Value *ptr : live) {
1223     Value *base = findBasePointer(ptr, DVCache);
1224     assert(base && "failed to find base pointer");
1225     PointerToBase[ptr] = base;
1226     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1227             DT->dominates(cast<Instruction>(base)->getParent(),
1228                           cast<Instruction>(ptr)->getParent())) &&
1229            "The base we found better dominate the derived pointer");
1230   }
1231 }
1232 
1233 /// Find the required based pointers (and adjust the live set) for the given
1234 /// parse point.
1235 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1236                              CallBase *Call,
1237                              PartiallyConstructedSafepointRecord &result) {
1238   MapVector<Value *, Value *> PointerToBase;
1239   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1240 
1241   if (PrintBasePointers) {
1242     errs() << "Base Pairs (w/o Relocation):\n";
1243     for (auto &Pair : PointerToBase) {
1244       errs() << " derived ";
1245       Pair.first->printAsOperand(errs(), false);
1246       errs() << " base ";
1247       Pair.second->printAsOperand(errs(), false);
1248       errs() << "\n";;
1249     }
1250   }
1251 
1252   result.PointerToBase = PointerToBase;
1253 }
1254 
1255 /// Given an updated version of the dataflow liveness results, update the
1256 /// liveset and base pointer maps for the call site CS.
1257 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1258                                   CallBase *Call,
1259                                   PartiallyConstructedSafepointRecord &result);
1260 
1261 static void recomputeLiveInValues(
1262     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1263     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1264   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1265   // again.  The old values are still live and will help it stabilize quickly.
1266   GCPtrLivenessData RevisedLivenessData;
1267   computeLiveInValues(DT, F, RevisedLivenessData);
1268   for (size_t i = 0; i < records.size(); i++) {
1269     struct PartiallyConstructedSafepointRecord &info = records[i];
1270     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1271   }
1272 }
1273 
1274 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1275 // no uses of the original value / return value between the gc.statepoint and
1276 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1277 // starting one of the successor blocks.  We also need to be able to insert the
1278 // gc.relocates only on the path which goes through the statepoint.  We might
1279 // need to split an edge to make this possible.
1280 static BasicBlock *
1281 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1282                             DominatorTree &DT) {
1283   BasicBlock *Ret = BB;
1284   if (!BB->getUniquePredecessor())
1285     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1286 
1287   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1288   // from it
1289   FoldSingleEntryPHINodes(Ret);
1290   assert(!isa<PHINode>(Ret->begin()) &&
1291          "All PHI nodes should have been removed!");
1292 
1293   // At this point, we can safely insert a gc.relocate or gc.result as the first
1294   // instruction in Ret if needed.
1295   return Ret;
1296 }
1297 
1298 // Create new attribute set containing only attributes which can be transferred
1299 // from original call to the safepoint.
1300 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1301                                             AttributeList AL) {
1302   if (AL.isEmpty())
1303     return AL;
1304 
1305   // Remove the readonly, readnone, and statepoint function attributes.
1306   AttrBuilder FnAttrs = AL.getFnAttributes();
1307   FnAttrs.removeAttribute(Attribute::ReadNone);
1308   FnAttrs.removeAttribute(Attribute::ReadOnly);
1309   for (Attribute A : AL.getFnAttributes()) {
1310     if (isStatepointDirectiveAttr(A))
1311       FnAttrs.remove(A);
1312   }
1313 
1314   // Just skip parameter and return attributes for now
1315   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1316                             AttributeSet::get(Ctx, FnAttrs));
1317 }
1318 
1319 /// Helper function to place all gc relocates necessary for the given
1320 /// statepoint.
1321 /// Inputs:
1322 ///   liveVariables - list of variables to be relocated.
1323 ///   basePtrs - base pointers.
1324 ///   statepointToken - statepoint instruction to which relocates should be
1325 ///   bound.
1326 ///   Builder - Llvm IR builder to be used to construct new calls.
1327 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1328                               ArrayRef<Value *> BasePtrs,
1329                               Instruction *StatepointToken,
1330                               IRBuilder<> &Builder) {
1331   if (LiveVariables.empty())
1332     return;
1333 
1334   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1335     auto ValIt = llvm::find(LiveVec, Val);
1336     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1337     size_t Index = std::distance(LiveVec.begin(), ValIt);
1338     assert(Index < LiveVec.size() && "Bug in std::find?");
1339     return Index;
1340   };
1341   Module *M = StatepointToken->getModule();
1342 
1343   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1344   // element type is i8 addrspace(1)*). We originally generated unique
1345   // declarations for each pointer type, but this proved problematic because
1346   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1347   // towards a single unified pointer type anyways, we can just cast everything
1348   // to an i8* of the right address space.  A bitcast is added later to convert
1349   // gc_relocate to the actual value's type.
1350   auto getGCRelocateDecl = [&] (Type *Ty) {
1351     assert(isHandledGCPointerType(Ty));
1352     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1353     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1354     if (auto *VT = dyn_cast<VectorType>(Ty))
1355       NewTy = FixedVectorType::get(NewTy,
1356                                    cast<FixedVectorType>(VT)->getNumElements());
1357     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1358                                      {NewTy});
1359   };
1360 
1361   // Lazily populated map from input types to the canonicalized form mentioned
1362   // in the comment above.  This should probably be cached somewhere more
1363   // broadly.
1364   DenseMap<Type *, Function *> TypeToDeclMap;
1365 
1366   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1367     // Generate the gc.relocate call and save the result
1368     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1369     Value *LiveIdx = Builder.getInt32(i);
1370 
1371     Type *Ty = LiveVariables[i]->getType();
1372     if (!TypeToDeclMap.count(Ty))
1373       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1374     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1375 
1376     // only specify a debug name if we can give a useful one
1377     CallInst *Reloc = Builder.CreateCall(
1378         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1379         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1380     // Trick CodeGen into thinking there are lots of free registers at this
1381     // fake call.
1382     Reloc->setCallingConv(CallingConv::Cold);
1383   }
1384 }
1385 
1386 namespace {
1387 
1388 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1389 /// avoids having to worry about keeping around dangling pointers to Values.
1390 class DeferredReplacement {
1391   AssertingVH<Instruction> Old;
1392   AssertingVH<Instruction> New;
1393   bool IsDeoptimize = false;
1394 
1395   DeferredReplacement() = default;
1396 
1397 public:
1398   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1399     assert(Old != New && Old && New &&
1400            "Cannot RAUW equal values or to / from null!");
1401 
1402     DeferredReplacement D;
1403     D.Old = Old;
1404     D.New = New;
1405     return D;
1406   }
1407 
1408   static DeferredReplacement createDelete(Instruction *ToErase) {
1409     DeferredReplacement D;
1410     D.Old = ToErase;
1411     return D;
1412   }
1413 
1414   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1415 #ifndef NDEBUG
1416     auto *F = cast<CallInst>(Old)->getCalledFunction();
1417     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1418            "Only way to construct a deoptimize deferred replacement");
1419 #endif
1420     DeferredReplacement D;
1421     D.Old = Old;
1422     D.IsDeoptimize = true;
1423     return D;
1424   }
1425 
1426   /// Does the task represented by this instance.
1427   void doReplacement() {
1428     Instruction *OldI = Old;
1429     Instruction *NewI = New;
1430 
1431     assert(OldI != NewI && "Disallowed at construction?!");
1432     assert((!IsDeoptimize || !New) &&
1433            "Deoptimize intrinsics are not replaced!");
1434 
1435     Old = nullptr;
1436     New = nullptr;
1437 
1438     if (NewI)
1439       OldI->replaceAllUsesWith(NewI);
1440 
1441     if (IsDeoptimize) {
1442       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1443       // not necessarily be followed by the matching return.
1444       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1445       new UnreachableInst(RI->getContext(), RI);
1446       RI->eraseFromParent();
1447     }
1448 
1449     OldI->eraseFromParent();
1450   }
1451 };
1452 
1453 } // end anonymous namespace
1454 
1455 static StringRef getDeoptLowering(CallBase *Call) {
1456   const char *DeoptLowering = "deopt-lowering";
1457   if (Call->hasFnAttr(DeoptLowering)) {
1458     // FIXME: Calls have a *really* confusing interface around attributes
1459     // with values.
1460     const AttributeList &CSAS = Call->getAttributes();
1461     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1462       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1463           .getValueAsString();
1464     Function *F = Call->getCalledFunction();
1465     assert(F && F->hasFnAttribute(DeoptLowering));
1466     return F->getFnAttribute(DeoptLowering).getValueAsString();
1467   }
1468   return "live-through";
1469 }
1470 
1471 static void
1472 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1473                            const SmallVectorImpl<Value *> &BasePtrs,
1474                            const SmallVectorImpl<Value *> &LiveVariables,
1475                            PartiallyConstructedSafepointRecord &Result,
1476                            std::vector<DeferredReplacement> &Replacements) {
1477   assert(BasePtrs.size() == LiveVariables.size());
1478 
1479   // Then go ahead and use the builder do actually do the inserts.  We insert
1480   // immediately before the previous instruction under the assumption that all
1481   // arguments will be available here.  We can't insert afterwards since we may
1482   // be replacing a terminator.
1483   IRBuilder<> Builder(Call);
1484 
1485   ArrayRef<Value *> GCArgs(LiveVariables);
1486   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1487   uint32_t NumPatchBytes = 0;
1488   uint32_t Flags = uint32_t(StatepointFlags::None);
1489 
1490   SmallVector<Value *, 8> CallArgs(Call->args());
1491   Optional<ArrayRef<Use>> DeoptArgs;
1492   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1493     DeoptArgs = Bundle->Inputs;
1494   Optional<ArrayRef<Use>> TransitionArgs;
1495   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1496     TransitionArgs = Bundle->Inputs;
1497     // TODO: This flag no longer serves a purpose and can be removed later
1498     Flags |= uint32_t(StatepointFlags::GCTransition);
1499   }
1500 
1501   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1502   // with a return value, we lower then as never returning calls to
1503   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1504   bool IsDeoptimize = false;
1505 
1506   StatepointDirectives SD =
1507       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1508   if (SD.NumPatchBytes)
1509     NumPatchBytes = *SD.NumPatchBytes;
1510   if (SD.StatepointID)
1511     StatepointID = *SD.StatepointID;
1512 
1513   // Pass through the requested lowering if any.  The default is live-through.
1514   StringRef DeoptLowering = getDeoptLowering(Call);
1515   if (DeoptLowering.equals("live-in"))
1516     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1517   else {
1518     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1519   }
1520 
1521   Value *CallTarget = Call->getCalledOperand();
1522   if (Function *F = dyn_cast<Function>(CallTarget)) {
1523     auto IID = F->getIntrinsicID();
1524     if (IID == Intrinsic::experimental_deoptimize) {
1525       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1526       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1527       // verifier does not allow taking the address of an intrinsic function.
1528 
1529       SmallVector<Type *, 8> DomainTy;
1530       for (Value *Arg : CallArgs)
1531         DomainTy.push_back(Arg->getType());
1532       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1533                                     /* isVarArg = */ false);
1534 
1535       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1536       // calls to @llvm.experimental.deoptimize with different argument types in
1537       // the same module.  This is fine -- we assume the frontend knew what it
1538       // was doing when generating this kind of IR.
1539       CallTarget = F->getParent()
1540                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1541                        .getCallee();
1542 
1543       IsDeoptimize = true;
1544     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1545                IID == Intrinsic::memmove_element_unordered_atomic) {
1546       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1547       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1548       // Specifically, these calls should be lowered to the
1549       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1550       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1551       // verifier does not allow taking the address of an intrinsic function.
1552       //
1553       // Moreover we need to shuffle the arguments for the call in order to
1554       // accommodate GC. The underlying source and destination objects might be
1555       // relocated during copy operation should the GC occur. To relocate the
1556       // derived source and destination pointers the implementation of the
1557       // intrinsic should know the corresponding base pointers.
1558       //
1559       // To make the base pointers available pass them explicitly as arguments:
1560       //   memcpy(dest_derived, source_derived, ...) =>
1561       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1562       auto &Context = Call->getContext();
1563       auto &DL = Call->getModule()->getDataLayout();
1564       auto GetBaseAndOffset = [&](Value *Derived) {
1565         assert(Result.PointerToBase.count(Derived));
1566         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1567         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1568         Value *Base = Result.PointerToBase.find(Derived)->second;
1569         Value *Base_int = Builder.CreatePtrToInt(
1570             Base, Type::getIntNTy(Context, IntPtrSize));
1571         Value *Derived_int = Builder.CreatePtrToInt(
1572             Derived, Type::getIntNTy(Context, IntPtrSize));
1573         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1574       };
1575 
1576       auto *Dest = CallArgs[0];
1577       Value *DestBase, *DestOffset;
1578       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1579 
1580       auto *Source = CallArgs[1];
1581       Value *SourceBase, *SourceOffset;
1582       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1583 
1584       auto *LengthInBytes = CallArgs[2];
1585       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1586 
1587       CallArgs.clear();
1588       CallArgs.push_back(DestBase);
1589       CallArgs.push_back(DestOffset);
1590       CallArgs.push_back(SourceBase);
1591       CallArgs.push_back(SourceOffset);
1592       CallArgs.push_back(LengthInBytes);
1593 
1594       SmallVector<Type *, 8> DomainTy;
1595       for (Value *Arg : CallArgs)
1596         DomainTy.push_back(Arg->getType());
1597       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1598                                     /* isVarArg = */ false);
1599 
1600       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1601         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1602         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1603           switch (ElementSize) {
1604           case 1:
1605             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1606           case 2:
1607             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1608           case 4:
1609             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1610           case 8:
1611             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1612           case 16:
1613             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1614           default:
1615             llvm_unreachable("unexpected element size!");
1616           }
1617         }
1618         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1619         switch (ElementSize) {
1620         case 1:
1621           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1622         case 2:
1623           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1624         case 4:
1625           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1626         case 8:
1627           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1628         case 16:
1629           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1630         default:
1631           llvm_unreachable("unexpected element size!");
1632         }
1633       };
1634 
1635       CallTarget =
1636           F->getParent()
1637               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
1638               .getCallee();
1639     }
1640   }
1641 
1642   // Create the statepoint given all the arguments
1643   GCStatepointInst *Token = nullptr;
1644   if (auto *CI = dyn_cast<CallInst>(Call)) {
1645     CallInst *SPCall = Builder.CreateGCStatepointCall(
1646         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1647         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1648 
1649     SPCall->setTailCallKind(CI->getTailCallKind());
1650     SPCall->setCallingConv(CI->getCallingConv());
1651 
1652     // Currently we will fail on parameter attributes and on certain
1653     // function attributes.  In case if we can handle this set of attributes -
1654     // set up function attrs directly on statepoint and return attrs later for
1655     // gc_result intrinsic.
1656     SPCall->setAttributes(
1657         legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
1658 
1659     Token = cast<GCStatepointInst>(SPCall);
1660 
1661     // Put the following gc_result and gc_relocate calls immediately after the
1662     // the old call (which we're about to delete)
1663     assert(CI->getNextNode() && "Not a terminator, must have next!");
1664     Builder.SetInsertPoint(CI->getNextNode());
1665     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1666   } else {
1667     auto *II = cast<InvokeInst>(Call);
1668 
1669     // Insert the new invoke into the old block.  We'll remove the old one in a
1670     // moment at which point this will become the new terminator for the
1671     // original block.
1672     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1673         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1674         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1675         "statepoint_token");
1676 
1677     SPInvoke->setCallingConv(II->getCallingConv());
1678 
1679     // Currently we will fail on parameter attributes and on certain
1680     // function attributes.  In case if we can handle this set of attributes -
1681     // set up function attrs directly on statepoint and return attrs later for
1682     // gc_result intrinsic.
1683     SPInvoke->setAttributes(
1684         legalizeCallAttributes(II->getContext(), II->getAttributes()));
1685 
1686     Token = cast<GCStatepointInst>(SPInvoke);
1687 
1688     // Generate gc relocates in exceptional path
1689     BasicBlock *UnwindBlock = II->getUnwindDest();
1690     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1691            UnwindBlock->getUniquePredecessor() &&
1692            "can't safely insert in this block!");
1693 
1694     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1695     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1696 
1697     // Attach exceptional gc relocates to the landingpad.
1698     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1699     Result.UnwindToken = ExceptionalToken;
1700 
1701     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1702 
1703     // Generate gc relocates and returns for normal block
1704     BasicBlock *NormalDest = II->getNormalDest();
1705     assert(!isa<PHINode>(NormalDest->begin()) &&
1706            NormalDest->getUniquePredecessor() &&
1707            "can't safely insert in this block!");
1708 
1709     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1710 
1711     // gc relocates will be generated later as if it were regular call
1712     // statepoint
1713   }
1714   assert(Token && "Should be set in one of the above branches!");
1715 
1716   if (IsDeoptimize) {
1717     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1718     // transform the tail-call like structure to a call to a void function
1719     // followed by unreachable to get better codegen.
1720     Replacements.push_back(
1721         DeferredReplacement::createDeoptimizeReplacement(Call));
1722   } else {
1723     Token->setName("statepoint_token");
1724     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1725       StringRef Name = Call->hasName() ? Call->getName() : "";
1726       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1727       GCResult->setAttributes(
1728           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1729                              Call->getAttributes().getRetAttributes()));
1730 
1731       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1732       // live set of some other safepoint, in which case that safepoint's
1733       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1734       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1735       // after the live sets have been made explicit in the IR, and we no longer
1736       // have raw pointers to worry about.
1737       Replacements.emplace_back(
1738           DeferredReplacement::createRAUW(Call, GCResult));
1739     } else {
1740       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1741     }
1742   }
1743 
1744   Result.StatepointToken = Token;
1745 
1746   // Second, create a gc.relocate for every live variable
1747   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1748 }
1749 
1750 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1751 // which make the relocations happening at this safepoint explicit.
1752 //
1753 // WARNING: Does not do any fixup to adjust users of the original live
1754 // values.  That's the callers responsibility.
1755 static void
1756 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1757                        PartiallyConstructedSafepointRecord &Result,
1758                        std::vector<DeferredReplacement> &Replacements) {
1759   const auto &LiveSet = Result.LiveSet;
1760   const auto &PointerToBase = Result.PointerToBase;
1761 
1762   // Convert to vector for efficient cross referencing.
1763   SmallVector<Value *, 64> BaseVec, LiveVec;
1764   LiveVec.reserve(LiveSet.size());
1765   BaseVec.reserve(LiveSet.size());
1766   for (Value *L : LiveSet) {
1767     LiveVec.push_back(L);
1768     assert(PointerToBase.count(L));
1769     Value *Base = PointerToBase.find(L)->second;
1770     BaseVec.push_back(Base);
1771   }
1772   assert(LiveVec.size() == BaseVec.size());
1773 
1774   // Do the actual rewriting and delete the old statepoint
1775   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1776 }
1777 
1778 // Helper function for the relocationViaAlloca.
1779 //
1780 // It receives iterator to the statepoint gc relocates and emits a store to the
1781 // assigned location (via allocaMap) for the each one of them.  It adds the
1782 // visited values into the visitedLiveValues set, which we will later use them
1783 // for sanity checking.
1784 static void
1785 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1786                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1787                        DenseSet<Value *> &VisitedLiveValues) {
1788   for (User *U : GCRelocs) {
1789     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1790     if (!Relocate)
1791       continue;
1792 
1793     Value *OriginalValue = Relocate->getDerivedPtr();
1794     assert(AllocaMap.count(OriginalValue));
1795     Value *Alloca = AllocaMap[OriginalValue];
1796 
1797     // Emit store into the related alloca
1798     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1799     // the correct type according to alloca.
1800     assert(Relocate->getNextNode() &&
1801            "Should always have one since it's not a terminator");
1802     IRBuilder<> Builder(Relocate->getNextNode());
1803     Value *CastedRelocatedValue =
1804       Builder.CreateBitCast(Relocate,
1805                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1806                             suffixed_name_or(Relocate, ".casted", ""));
1807 
1808     new StoreInst(CastedRelocatedValue, Alloca,
1809                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
1810 
1811 #ifndef NDEBUG
1812     VisitedLiveValues.insert(OriginalValue);
1813 #endif
1814   }
1815 }
1816 
1817 // Helper function for the "relocationViaAlloca". Similar to the
1818 // "insertRelocationStores" but works for rematerialized values.
1819 static void insertRematerializationStores(
1820     const RematerializedValueMapTy &RematerializedValues,
1821     DenseMap<Value *, AllocaInst *> &AllocaMap,
1822     DenseSet<Value *> &VisitedLiveValues) {
1823   for (auto RematerializedValuePair: RematerializedValues) {
1824     Instruction *RematerializedValue = RematerializedValuePair.first;
1825     Value *OriginalValue = RematerializedValuePair.second;
1826 
1827     assert(AllocaMap.count(OriginalValue) &&
1828            "Can not find alloca for rematerialized value");
1829     Value *Alloca = AllocaMap[OriginalValue];
1830 
1831     new StoreInst(RematerializedValue, Alloca,
1832                   RematerializedValue->getNextNode());
1833 
1834 #ifndef NDEBUG
1835     VisitedLiveValues.insert(OriginalValue);
1836 #endif
1837   }
1838 }
1839 
1840 /// Do all the relocation update via allocas and mem2reg
1841 static void relocationViaAlloca(
1842     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1843     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1844 #ifndef NDEBUG
1845   // record initial number of (static) allocas; we'll check we have the same
1846   // number when we get done.
1847   int InitialAllocaNum = 0;
1848   for (Instruction &I : F.getEntryBlock())
1849     if (isa<AllocaInst>(I))
1850       InitialAllocaNum++;
1851 #endif
1852 
1853   // TODO-PERF: change data structures, reserve
1854   DenseMap<Value *, AllocaInst *> AllocaMap;
1855   SmallVector<AllocaInst *, 200> PromotableAllocas;
1856   // Used later to chack that we have enough allocas to store all values
1857   std::size_t NumRematerializedValues = 0;
1858   PromotableAllocas.reserve(Live.size());
1859 
1860   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1861   // "PromotableAllocas"
1862   const DataLayout &DL = F.getParent()->getDataLayout();
1863   auto emitAllocaFor = [&](Value *LiveValue) {
1864     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1865                                         DL.getAllocaAddrSpace(), "",
1866                                         F.getEntryBlock().getFirstNonPHI());
1867     AllocaMap[LiveValue] = Alloca;
1868     PromotableAllocas.push_back(Alloca);
1869   };
1870 
1871   // Emit alloca for each live gc pointer
1872   for (Value *V : Live)
1873     emitAllocaFor(V);
1874 
1875   // Emit allocas for rematerialized values
1876   for (const auto &Info : Records)
1877     for (auto RematerializedValuePair : Info.RematerializedValues) {
1878       Value *OriginalValue = RematerializedValuePair.second;
1879       if (AllocaMap.count(OriginalValue) != 0)
1880         continue;
1881 
1882       emitAllocaFor(OriginalValue);
1883       ++NumRematerializedValues;
1884     }
1885 
1886   // The next two loops are part of the same conceptual operation.  We need to
1887   // insert a store to the alloca after the original def and at each
1888   // redefinition.  We need to insert a load before each use.  These are split
1889   // into distinct loops for performance reasons.
1890 
1891   // Update gc pointer after each statepoint: either store a relocated value or
1892   // null (if no relocated value was found for this gc pointer and it is not a
1893   // gc_result).  This must happen before we update the statepoint with load of
1894   // alloca otherwise we lose the link between statepoint and old def.
1895   for (const auto &Info : Records) {
1896     Value *Statepoint = Info.StatepointToken;
1897 
1898     // This will be used for consistency check
1899     DenseSet<Value *> VisitedLiveValues;
1900 
1901     // Insert stores for normal statepoint gc relocates
1902     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1903 
1904     // In case if it was invoke statepoint
1905     // we will insert stores for exceptional path gc relocates.
1906     if (isa<InvokeInst>(Statepoint)) {
1907       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1908                              VisitedLiveValues);
1909     }
1910 
1911     // Do similar thing with rematerialized values
1912     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1913                                   VisitedLiveValues);
1914 
1915     if (ClobberNonLive) {
1916       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1917       // the gc.statepoint.  This will turn some subtle GC problems into
1918       // slightly easier to debug SEGVs.  Note that on large IR files with
1919       // lots of gc.statepoints this is extremely costly both memory and time
1920       // wise.
1921       SmallVector<AllocaInst *, 64> ToClobber;
1922       for (auto Pair : AllocaMap) {
1923         Value *Def = Pair.first;
1924         AllocaInst *Alloca = Pair.second;
1925 
1926         // This value was relocated
1927         if (VisitedLiveValues.count(Def)) {
1928           continue;
1929         }
1930         ToClobber.push_back(Alloca);
1931       }
1932 
1933       auto InsertClobbersAt = [&](Instruction *IP) {
1934         for (auto *AI : ToClobber) {
1935           auto PT = cast<PointerType>(AI->getAllocatedType());
1936           Constant *CPN = ConstantPointerNull::get(PT);
1937           new StoreInst(CPN, AI, IP);
1938         }
1939       };
1940 
1941       // Insert the clobbering stores.  These may get intermixed with the
1942       // gc.results and gc.relocates, but that's fine.
1943       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1944         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1945         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1946       } else {
1947         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1948       }
1949     }
1950   }
1951 
1952   // Update use with load allocas and add store for gc_relocated.
1953   for (auto Pair : AllocaMap) {
1954     Value *Def = Pair.first;
1955     AllocaInst *Alloca = Pair.second;
1956 
1957     // We pre-record the uses of allocas so that we dont have to worry about
1958     // later update that changes the user information..
1959 
1960     SmallVector<Instruction *, 20> Uses;
1961     // PERF: trade a linear scan for repeated reallocation
1962     Uses.reserve(Def->getNumUses());
1963     for (User *U : Def->users()) {
1964       if (!isa<ConstantExpr>(U)) {
1965         // If the def has a ConstantExpr use, then the def is either a
1966         // ConstantExpr use itself or null.  In either case
1967         // (recursively in the first, directly in the second), the oop
1968         // it is ultimately dependent on is null and this particular
1969         // use does not need to be fixed up.
1970         Uses.push_back(cast<Instruction>(U));
1971       }
1972     }
1973 
1974     llvm::sort(Uses);
1975     auto Last = std::unique(Uses.begin(), Uses.end());
1976     Uses.erase(Last, Uses.end());
1977 
1978     for (Instruction *Use : Uses) {
1979       if (isa<PHINode>(Use)) {
1980         PHINode *Phi = cast<PHINode>(Use);
1981         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1982           if (Def == Phi->getIncomingValue(i)) {
1983             LoadInst *Load =
1984                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
1985                              Phi->getIncomingBlock(i)->getTerminator());
1986             Phi->setIncomingValue(i, Load);
1987           }
1988         }
1989       } else {
1990         LoadInst *Load =
1991             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
1992         Use->replaceUsesOfWith(Def, Load);
1993       }
1994     }
1995 
1996     // Emit store for the initial gc value.  Store must be inserted after load,
1997     // otherwise store will be in alloca's use list and an extra load will be
1998     // inserted before it.
1999     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2000                                      DL.getABITypeAlign(Def->getType()));
2001     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2002       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2003         // InvokeInst is a terminator so the store need to be inserted into its
2004         // normal destination block.
2005         BasicBlock *NormalDest = Invoke->getNormalDest();
2006         Store->insertBefore(NormalDest->getFirstNonPHI());
2007       } else {
2008         assert(!Inst->isTerminator() &&
2009                "The only terminator that can produce a value is "
2010                "InvokeInst which is handled above.");
2011         Store->insertAfter(Inst);
2012       }
2013     } else {
2014       assert(isa<Argument>(Def));
2015       Store->insertAfter(cast<Instruction>(Alloca));
2016     }
2017   }
2018 
2019   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2020          "we must have the same allocas with lives");
2021   if (!PromotableAllocas.empty()) {
2022     // Apply mem2reg to promote alloca to SSA
2023     PromoteMemToReg(PromotableAllocas, DT);
2024   }
2025 
2026 #ifndef NDEBUG
2027   for (auto &I : F.getEntryBlock())
2028     if (isa<AllocaInst>(I))
2029       InitialAllocaNum--;
2030   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2031 #endif
2032 }
2033 
2034 /// Implement a unique function which doesn't require we sort the input
2035 /// vector.  Doing so has the effect of changing the output of a couple of
2036 /// tests in ways which make them less useful in testing fused safepoints.
2037 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2038   SmallSet<T, 8> Seen;
2039   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2040 }
2041 
2042 /// Insert holders so that each Value is obviously live through the entire
2043 /// lifetime of the call.
2044 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2045                                  SmallVectorImpl<CallInst *> &Holders) {
2046   if (Values.empty())
2047     // No values to hold live, might as well not insert the empty holder
2048     return;
2049 
2050   Module *M = Call->getModule();
2051   // Use a dummy vararg function to actually hold the values live
2052   FunctionCallee Func = M->getOrInsertFunction(
2053       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2054   if (isa<CallInst>(Call)) {
2055     // For call safepoints insert dummy calls right after safepoint
2056     Holders.push_back(
2057         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2058     return;
2059   }
2060   // For invoke safepooints insert dummy calls both in normal and
2061   // exceptional destination blocks
2062   auto *II = cast<InvokeInst>(Call);
2063   Holders.push_back(CallInst::Create(
2064       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2065   Holders.push_back(CallInst::Create(
2066       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2067 }
2068 
2069 static void findLiveReferences(
2070     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2071     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2072   GCPtrLivenessData OriginalLivenessData;
2073   computeLiveInValues(DT, F, OriginalLivenessData);
2074   for (size_t i = 0; i < records.size(); i++) {
2075     struct PartiallyConstructedSafepointRecord &info = records[i];
2076     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2077   }
2078 }
2079 
2080 // Helper function for the "rematerializeLiveValues". It walks use chain
2081 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2082 // the base or a value it cannot process. Only "simple" values are processed
2083 // (currently it is GEP's and casts). The returned root is  examined by the
2084 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2085 // with all visited values.
2086 static Value* findRematerializableChainToBasePointer(
2087   SmallVectorImpl<Instruction*> &ChainToBase,
2088   Value *CurrentValue) {
2089   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2090     ChainToBase.push_back(GEP);
2091     return findRematerializableChainToBasePointer(ChainToBase,
2092                                                   GEP->getPointerOperand());
2093   }
2094 
2095   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2096     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2097       return CI;
2098 
2099     ChainToBase.push_back(CI);
2100     return findRematerializableChainToBasePointer(ChainToBase,
2101                                                   CI->getOperand(0));
2102   }
2103 
2104   // We have reached the root of the chain, which is either equal to the base or
2105   // is the first unsupported value along the use chain.
2106   return CurrentValue;
2107 }
2108 
2109 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2110 // chain we are going to rematerialize.
2111 static InstructionCost
2112 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2113                        TargetTransformInfo &TTI) {
2114   InstructionCost Cost = 0;
2115 
2116   for (Instruction *Instr : Chain) {
2117     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2118       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2119              "non noop cast is found during rematerialization");
2120 
2121       Type *SrcTy = CI->getOperand(0)->getType();
2122       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2123                                    TTI::getCastContextHint(CI),
2124                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2125 
2126     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2127       // Cost of the address calculation
2128       Type *ValTy = GEP->getSourceElementType();
2129       Cost += TTI.getAddressComputationCost(ValTy);
2130 
2131       // And cost of the GEP itself
2132       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2133       //       allowed for the external usage)
2134       if (!GEP->hasAllConstantIndices())
2135         Cost += 2;
2136 
2137     } else {
2138       llvm_unreachable("unsupported instruction type during rematerialization");
2139     }
2140   }
2141 
2142   return Cost;
2143 }
2144 
2145 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2146   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2147   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2148       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2149     return false;
2150   // Map of incoming values and their corresponding basic blocks of
2151   // OrigRootPhi.
2152   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2153   for (unsigned i = 0; i < PhiNum; i++)
2154     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2155         OrigRootPhi.getIncomingBlock(i);
2156 
2157   // Both current and base PHIs should have same incoming values and
2158   // the same basic blocks corresponding to the incoming values.
2159   for (unsigned i = 0; i < PhiNum; i++) {
2160     auto CIVI =
2161         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2162     if (CIVI == CurrentIncomingValues.end())
2163       return false;
2164     BasicBlock *CurrentIncomingBB = CIVI->second;
2165     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2166       return false;
2167   }
2168   return true;
2169 }
2170 
2171 // From the statepoint live set pick values that are cheaper to recompute then
2172 // to relocate. Remove this values from the live set, rematerialize them after
2173 // statepoint and record them in "Info" structure. Note that similar to
2174 // relocated values we don't do any user adjustments here.
2175 static void rematerializeLiveValues(CallBase *Call,
2176                                     PartiallyConstructedSafepointRecord &Info,
2177                                     TargetTransformInfo &TTI) {
2178   const unsigned int ChainLengthThreshold = 10;
2179 
2180   // Record values we are going to delete from this statepoint live set.
2181   // We can not di this in following loop due to iterator invalidation.
2182   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2183 
2184   for (Value *LiveValue: Info.LiveSet) {
2185     // For each live pointer find its defining chain
2186     SmallVector<Instruction *, 3> ChainToBase;
2187     assert(Info.PointerToBase.count(LiveValue));
2188     Value *RootOfChain =
2189       findRematerializableChainToBasePointer(ChainToBase,
2190                                              LiveValue);
2191 
2192     // Nothing to do, or chain is too long
2193     if ( ChainToBase.size() == 0 ||
2194         ChainToBase.size() > ChainLengthThreshold)
2195       continue;
2196 
2197     // Handle the scenario where the RootOfChain is not equal to the
2198     // Base Value, but they are essentially the same phi values.
2199     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2200       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2201       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2202       if (!OrigRootPhi || !AlternateRootPhi)
2203         continue;
2204       // PHI nodes that have the same incoming values, and belonging to the same
2205       // basic blocks are essentially the same SSA value.  When the original phi
2206       // has incoming values with different base pointers, the original phi is
2207       // marked as conflict, and an additional `AlternateRootPhi` with the same
2208       // incoming values get generated by the findBasePointer function. We need
2209       // to identify the newly generated AlternateRootPhi (.base version of phi)
2210       // and RootOfChain (the original phi node itself) are the same, so that we
2211       // can rematerialize the gep and casts. This is a workaround for the
2212       // deficiency in the findBasePointer algorithm.
2213       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2214         continue;
2215       // Now that the phi nodes are proved to be the same, assert that
2216       // findBasePointer's newly generated AlternateRootPhi is present in the
2217       // liveset of the call.
2218       assert(Info.LiveSet.count(AlternateRootPhi));
2219     }
2220     // Compute cost of this chain
2221     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2222     // TODO: We can also account for cases when we will be able to remove some
2223     //       of the rematerialized values by later optimization passes. I.e if
2224     //       we rematerialized several intersecting chains. Or if original values
2225     //       don't have any uses besides this statepoint.
2226 
2227     // For invokes we need to rematerialize each chain twice - for normal and
2228     // for unwind basic blocks. Model this by multiplying cost by two.
2229     if (isa<InvokeInst>(Call)) {
2230       Cost *= 2;
2231     }
2232     // If it's too expensive - skip it
2233     if (Cost >= RematerializationThreshold)
2234       continue;
2235 
2236     // Remove value from the live set
2237     LiveValuesToBeDeleted.push_back(LiveValue);
2238 
2239     // Clone instructions and record them inside "Info" structure
2240 
2241     // Walk backwards to visit top-most instructions first
2242     std::reverse(ChainToBase.begin(), ChainToBase.end());
2243 
2244     // Utility function which clones all instructions from "ChainToBase"
2245     // and inserts them before "InsertBefore". Returns rematerialized value
2246     // which should be used after statepoint.
2247     auto rematerializeChain = [&ChainToBase](
2248         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2249       Instruction *LastClonedValue = nullptr;
2250       Instruction *LastValue = nullptr;
2251       for (Instruction *Instr: ChainToBase) {
2252         // Only GEP's and casts are supported as we need to be careful to not
2253         // introduce any new uses of pointers not in the liveset.
2254         // Note that it's fine to introduce new uses of pointers which were
2255         // otherwise not used after this statepoint.
2256         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2257 
2258         Instruction *ClonedValue = Instr->clone();
2259         ClonedValue->insertBefore(InsertBefore);
2260         ClonedValue->setName(Instr->getName() + ".remat");
2261 
2262         // If it is not first instruction in the chain then it uses previously
2263         // cloned value. We should update it to use cloned value.
2264         if (LastClonedValue) {
2265           assert(LastValue);
2266           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2267 #ifndef NDEBUG
2268           for (auto OpValue : ClonedValue->operand_values()) {
2269             // Assert that cloned instruction does not use any instructions from
2270             // this chain other than LastClonedValue
2271             assert(!is_contained(ChainToBase, OpValue) &&
2272                    "incorrect use in rematerialization chain");
2273             // Assert that the cloned instruction does not use the RootOfChain
2274             // or the AlternateLiveBase.
2275             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2276           }
2277 #endif
2278         } else {
2279           // For the first instruction, replace the use of unrelocated base i.e.
2280           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2281           // live set. They have been proved to be the same PHI nodes.  Note
2282           // that the *only* use of the RootOfChain in the ChainToBase list is
2283           // the first Value in the list.
2284           if (RootOfChain != AlternateLiveBase)
2285             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2286         }
2287 
2288         LastClonedValue = ClonedValue;
2289         LastValue = Instr;
2290       }
2291       assert(LastClonedValue);
2292       return LastClonedValue;
2293     };
2294 
2295     // Different cases for calls and invokes. For invokes we need to clone
2296     // instructions both on normal and unwind path.
2297     if (isa<CallInst>(Call)) {
2298       Instruction *InsertBefore = Call->getNextNode();
2299       assert(InsertBefore);
2300       Instruction *RematerializedValue = rematerializeChain(
2301           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2302       Info.RematerializedValues[RematerializedValue] = LiveValue;
2303     } else {
2304       auto *Invoke = cast<InvokeInst>(Call);
2305 
2306       Instruction *NormalInsertBefore =
2307           &*Invoke->getNormalDest()->getFirstInsertionPt();
2308       Instruction *UnwindInsertBefore =
2309           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2310 
2311       Instruction *NormalRematerializedValue = rematerializeChain(
2312           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2313       Instruction *UnwindRematerializedValue = rematerializeChain(
2314           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2315 
2316       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2317       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2318     }
2319   }
2320 
2321   // Remove rematerializaed values from the live set
2322   for (auto LiveValue: LiveValuesToBeDeleted) {
2323     Info.LiveSet.remove(LiveValue);
2324   }
2325 }
2326 
2327 static bool insertParsePoints(Function &F, DominatorTree &DT,
2328                               TargetTransformInfo &TTI,
2329                               SmallVectorImpl<CallBase *> &ToUpdate) {
2330 #ifndef NDEBUG
2331   // sanity check the input
2332   std::set<CallBase *> Uniqued;
2333   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2334   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2335 
2336   for (CallBase *Call : ToUpdate)
2337     assert(Call->getFunction() == &F);
2338 #endif
2339 
2340   // When inserting gc.relocates for invokes, we need to be able to insert at
2341   // the top of the successor blocks.  See the comment on
2342   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2343   // may restructure the CFG.
2344   for (CallBase *Call : ToUpdate) {
2345     auto *II = dyn_cast<InvokeInst>(Call);
2346     if (!II)
2347       continue;
2348     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2349     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2350   }
2351 
2352   // A list of dummy calls added to the IR to keep various values obviously
2353   // live in the IR.  We'll remove all of these when done.
2354   SmallVector<CallInst *, 64> Holders;
2355 
2356   // Insert a dummy call with all of the deopt operands we'll need for the
2357   // actual safepoint insertion as arguments.  This ensures reference operands
2358   // in the deopt argument list are considered live through the safepoint (and
2359   // thus makes sure they get relocated.)
2360   for (CallBase *Call : ToUpdate) {
2361     SmallVector<Value *, 64> DeoptValues;
2362 
2363     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2364       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2365              "support for FCA unimplemented");
2366       if (isHandledGCPointerType(Arg->getType()))
2367         DeoptValues.push_back(Arg);
2368     }
2369 
2370     insertUseHolderAfter(Call, DeoptValues, Holders);
2371   }
2372 
2373   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2374 
2375   // A) Identify all gc pointers which are statically live at the given call
2376   // site.
2377   findLiveReferences(F, DT, ToUpdate, Records);
2378 
2379   // B) Find the base pointers for each live pointer
2380   /* scope for caching */ {
2381     // Cache the 'defining value' relation used in the computation and
2382     // insertion of base phis and selects.  This ensures that we don't insert
2383     // large numbers of duplicate base_phis.
2384     DefiningValueMapTy DVCache;
2385 
2386     for (size_t i = 0; i < Records.size(); i++) {
2387       PartiallyConstructedSafepointRecord &info = Records[i];
2388       findBasePointers(DT, DVCache, ToUpdate[i], info);
2389     }
2390   } // end of cache scope
2391 
2392   // The base phi insertion logic (for any safepoint) may have inserted new
2393   // instructions which are now live at some safepoint.  The simplest such
2394   // example is:
2395   // loop:
2396   //   phi a  <-- will be a new base_phi here
2397   //   safepoint 1 <-- that needs to be live here
2398   //   gep a + 1
2399   //   safepoint 2
2400   //   br loop
2401   // We insert some dummy calls after each safepoint to definitely hold live
2402   // the base pointers which were identified for that safepoint.  We'll then
2403   // ask liveness for _every_ base inserted to see what is now live.  Then we
2404   // remove the dummy calls.
2405   Holders.reserve(Holders.size() + Records.size());
2406   for (size_t i = 0; i < Records.size(); i++) {
2407     PartiallyConstructedSafepointRecord &Info = Records[i];
2408 
2409     SmallVector<Value *, 128> Bases;
2410     for (auto Pair : Info.PointerToBase)
2411       Bases.push_back(Pair.second);
2412 
2413     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2414   }
2415 
2416   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2417   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2418   // not the key issue.
2419   recomputeLiveInValues(F, DT, ToUpdate, Records);
2420 
2421   if (PrintBasePointers) {
2422     for (auto &Info : Records) {
2423       errs() << "Base Pairs: (w/Relocation)\n";
2424       for (auto Pair : Info.PointerToBase) {
2425         errs() << " derived ";
2426         Pair.first->printAsOperand(errs(), false);
2427         errs() << " base ";
2428         Pair.second->printAsOperand(errs(), false);
2429         errs() << "\n";
2430       }
2431     }
2432   }
2433 
2434   // It is possible that non-constant live variables have a constant base.  For
2435   // example, a GEP with a variable offset from a global.  In this case we can
2436   // remove it from the liveset.  We already don't add constants to the liveset
2437   // because we assume they won't move at runtime and the GC doesn't need to be
2438   // informed about them.  The same reasoning applies if the base is constant.
2439   // Note that the relocation placement code relies on this filtering for
2440   // correctness as it expects the base to be in the liveset, which isn't true
2441   // if the base is constant.
2442   for (auto &Info : Records)
2443     for (auto &BasePair : Info.PointerToBase)
2444       if (isa<Constant>(BasePair.second))
2445         Info.LiveSet.remove(BasePair.first);
2446 
2447   for (CallInst *CI : Holders)
2448     CI->eraseFromParent();
2449 
2450   Holders.clear();
2451 
2452   // In order to reduce live set of statepoint we might choose to rematerialize
2453   // some values instead of relocating them. This is purely an optimization and
2454   // does not influence correctness.
2455   for (size_t i = 0; i < Records.size(); i++)
2456     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2457 
2458   // We need this to safely RAUW and delete call or invoke return values that
2459   // may themselves be live over a statepoint.  For details, please see usage in
2460   // makeStatepointExplicitImpl.
2461   std::vector<DeferredReplacement> Replacements;
2462 
2463   // Now run through and replace the existing statepoints with new ones with
2464   // the live variables listed.  We do not yet update uses of the values being
2465   // relocated. We have references to live variables that need to
2466   // survive to the last iteration of this loop.  (By construction, the
2467   // previous statepoint can not be a live variable, thus we can and remove
2468   // the old statepoint calls as we go.)
2469   for (size_t i = 0; i < Records.size(); i++)
2470     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2471 
2472   ToUpdate.clear(); // prevent accident use of invalid calls.
2473 
2474   for (auto &PR : Replacements)
2475     PR.doReplacement();
2476 
2477   Replacements.clear();
2478 
2479   for (auto &Info : Records) {
2480     // These live sets may contain state Value pointers, since we replaced calls
2481     // with operand bundles with calls wrapped in gc.statepoint, and some of
2482     // those calls may have been def'ing live gc pointers.  Clear these out to
2483     // avoid accidentally using them.
2484     //
2485     // TODO: We should create a separate data structure that does not contain
2486     // these live sets, and migrate to using that data structure from this point
2487     // onward.
2488     Info.LiveSet.clear();
2489     Info.PointerToBase.clear();
2490   }
2491 
2492   // Do all the fixups of the original live variables to their relocated selves
2493   SmallVector<Value *, 128> Live;
2494   for (size_t i = 0; i < Records.size(); i++) {
2495     PartiallyConstructedSafepointRecord &Info = Records[i];
2496 
2497     // We can't simply save the live set from the original insertion.  One of
2498     // the live values might be the result of a call which needs a safepoint.
2499     // That Value* no longer exists and we need to use the new gc_result.
2500     // Thankfully, the live set is embedded in the statepoint (and updated), so
2501     // we just grab that.
2502     llvm::append_range(Live, Info.StatepointToken->gc_args());
2503 #ifndef NDEBUG
2504     // Do some basic sanity checks on our liveness results before performing
2505     // relocation.  Relocation can and will turn mistakes in liveness results
2506     // into non-sensical code which is must harder to debug.
2507     // TODO: It would be nice to test consistency as well
2508     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2509            "statepoint must be reachable or liveness is meaningless");
2510     for (Value *V : Info.StatepointToken->gc_args()) {
2511       if (!isa<Instruction>(V))
2512         // Non-instruction values trivial dominate all possible uses
2513         continue;
2514       auto *LiveInst = cast<Instruction>(V);
2515       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2516              "unreachable values should never be live");
2517       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2518              "basic SSA liveness expectation violated by liveness analysis");
2519     }
2520 #endif
2521   }
2522   unique_unsorted(Live);
2523 
2524 #ifndef NDEBUG
2525   // sanity check
2526   for (auto *Ptr : Live)
2527     assert(isHandledGCPointerType(Ptr->getType()) &&
2528            "must be a gc pointer type");
2529 #endif
2530 
2531   relocationViaAlloca(F, DT, Live, Records);
2532   return !Records.empty();
2533 }
2534 
2535 // Handles both return values and arguments for Functions and calls.
2536 template <typename AttrHolder>
2537 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2538                                       unsigned Index) {
2539   AttrBuilder R;
2540   if (AH.getDereferenceableBytes(Index))
2541     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2542                                   AH.getDereferenceableBytes(Index)));
2543   if (AH.getDereferenceableOrNullBytes(Index))
2544     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2545                                   AH.getDereferenceableOrNullBytes(Index)));
2546   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2547     R.addAttribute(Attribute::NoAlias);
2548 
2549   if (!R.empty())
2550     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2551 }
2552 
2553 static void stripNonValidAttributesFromPrototype(Function &F) {
2554   LLVMContext &Ctx = F.getContext();
2555 
2556   for (Argument &A : F.args())
2557     if (isa<PointerType>(A.getType()))
2558       RemoveNonValidAttrAtIndex(Ctx, F,
2559                                 A.getArgNo() + AttributeList::FirstArgIndex);
2560 
2561   if (isa<PointerType>(F.getReturnType()))
2562     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2563 }
2564 
2565 /// Certain metadata on instructions are invalid after running RS4GC.
2566 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2567 /// optimize functions. We drop such metadata on the instruction.
2568 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2569   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2570     return;
2571   // These are the attributes that are still valid on loads and stores after
2572   // RS4GC.
2573   // The metadata implying dereferenceability and noalias are (conservatively)
2574   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2575   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2576   // touch the entire heap including noalias objects. Note: The reasoning is
2577   // same as stripping the dereferenceability and noalias attributes that are
2578   // analogous to the metadata counterparts.
2579   // We also drop the invariant.load metadata on the load because that metadata
2580   // implies the address operand to the load points to memory that is never
2581   // changed once it became dereferenceable. This is no longer true after RS4GC.
2582   // Similar reasoning applies to invariant.group metadata, which applies to
2583   // loads within a group.
2584   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2585                          LLVMContext::MD_range,
2586                          LLVMContext::MD_alias_scope,
2587                          LLVMContext::MD_nontemporal,
2588                          LLVMContext::MD_nonnull,
2589                          LLVMContext::MD_align,
2590                          LLVMContext::MD_type};
2591 
2592   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2593   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2594 }
2595 
2596 static void stripNonValidDataFromBody(Function &F) {
2597   if (F.empty())
2598     return;
2599 
2600   LLVMContext &Ctx = F.getContext();
2601   MDBuilder Builder(Ctx);
2602 
2603   // Set of invariantstart instructions that we need to remove.
2604   // Use this to avoid invalidating the instruction iterator.
2605   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2606 
2607   for (Instruction &I : instructions(F)) {
2608     // invariant.start on memory location implies that the referenced memory
2609     // location is constant and unchanging. This is no longer true after
2610     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2611     // which frees the entire heap and the presence of invariant.start allows
2612     // the optimizer to sink the load of a memory location past a statepoint,
2613     // which is incorrect.
2614     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2615       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2616         InvariantStartInstructions.push_back(II);
2617         continue;
2618       }
2619 
2620     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2621       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2622       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2623     }
2624 
2625     stripInvalidMetadataFromInstruction(I);
2626 
2627     if (auto *Call = dyn_cast<CallBase>(&I)) {
2628       for (int i = 0, e = Call->arg_size(); i != e; i++)
2629         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2630           RemoveNonValidAttrAtIndex(Ctx, *Call,
2631                                     i + AttributeList::FirstArgIndex);
2632       if (isa<PointerType>(Call->getType()))
2633         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2634     }
2635   }
2636 
2637   // Delete the invariant.start instructions and RAUW undef.
2638   for (auto *II : InvariantStartInstructions) {
2639     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2640     II->eraseFromParent();
2641   }
2642 }
2643 
2644 /// Returns true if this function should be rewritten by this pass.  The main
2645 /// point of this function is as an extension point for custom logic.
2646 static bool shouldRewriteStatepointsIn(Function &F) {
2647   // TODO: This should check the GCStrategy
2648   if (F.hasGC()) {
2649     const auto &FunctionGCName = F.getGC();
2650     const StringRef StatepointExampleName("statepoint-example");
2651     const StringRef CoreCLRName("coreclr");
2652     return (StatepointExampleName == FunctionGCName) ||
2653            (CoreCLRName == FunctionGCName);
2654   } else
2655     return false;
2656 }
2657 
2658 static void stripNonValidData(Module &M) {
2659 #ifndef NDEBUG
2660   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2661 #endif
2662 
2663   for (Function &F : M)
2664     stripNonValidAttributesFromPrototype(F);
2665 
2666   for (Function &F : M)
2667     stripNonValidDataFromBody(F);
2668 }
2669 
2670 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2671                                             TargetTransformInfo &TTI,
2672                                             const TargetLibraryInfo &TLI) {
2673   assert(!F.isDeclaration() && !F.empty() &&
2674          "need function body to rewrite statepoints in");
2675   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2676 
2677   auto NeedsRewrite = [&TLI](Instruction &I) {
2678     if (const auto *Call = dyn_cast<CallBase>(&I)) {
2679       if (isa<GCStatepointInst>(Call))
2680         return false;
2681       if (callsGCLeafFunction(Call, TLI))
2682         return false;
2683 
2684       // Normally it's up to the frontend to make sure that non-leaf calls also
2685       // have proper deopt state if it is required. We make an exception for
2686       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
2687       // these are non-leaf by default. They might be generated by the optimizer
2688       // which doesn't know how to produce a proper deopt state. So if we see a
2689       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
2690       // copy and don't produce a statepoint.
2691       if (!AllowStatepointWithNoDeoptInfo &&
2692           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
2693         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
2694                "Don't expect any other calls here!");
2695         return false;
2696       }
2697       return true;
2698     }
2699     return false;
2700   };
2701 
2702   // Delete any unreachable statepoints so that we don't have unrewritten
2703   // statepoints surviving this pass.  This makes testing easier and the
2704   // resulting IR less confusing to human readers.
2705   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2706   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2707   // Flush the Dominator Tree.
2708   DTU.getDomTree();
2709 
2710   // Gather all the statepoints which need rewritten.  Be careful to only
2711   // consider those in reachable code since we need to ask dominance queries
2712   // when rewriting.  We'll delete the unreachable ones in a moment.
2713   SmallVector<CallBase *, 64> ParsePointNeeded;
2714   for (Instruction &I : instructions(F)) {
2715     // TODO: only the ones with the flag set!
2716     if (NeedsRewrite(I)) {
2717       // NOTE removeUnreachableBlocks() is stronger than
2718       // DominatorTree::isReachableFromEntry(). In other words
2719       // removeUnreachableBlocks can remove some blocks for which
2720       // isReachableFromEntry() returns true.
2721       assert(DT.isReachableFromEntry(I.getParent()) &&
2722             "no unreachable blocks expected");
2723       ParsePointNeeded.push_back(cast<CallBase>(&I));
2724     }
2725   }
2726 
2727   // Return early if no work to do.
2728   if (ParsePointNeeded.empty())
2729     return MadeChange;
2730 
2731   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2732   // These are created by LCSSA.  They have the effect of increasing the size
2733   // of liveness sets for no good reason.  It may be harder to do this post
2734   // insertion since relocations and base phis can confuse things.
2735   for (BasicBlock &BB : F)
2736     if (BB.getUniquePredecessor())
2737       MadeChange |= FoldSingleEntryPHINodes(&BB);
2738 
2739   // Before we start introducing relocations, we want to tweak the IR a bit to
2740   // avoid unfortunate code generation effects.  The main example is that we
2741   // want to try to make sure the comparison feeding a branch is after any
2742   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2743   // values feeding a branch after relocation.  This is semantically correct,
2744   // but results in extra register pressure since both the pre-relocation and
2745   // post-relocation copies must be available in registers.  For code without
2746   // relocations this is handled elsewhere, but teaching the scheduler to
2747   // reverse the transform we're about to do would be slightly complex.
2748   // Note: This may extend the live range of the inputs to the icmp and thus
2749   // increase the liveset of any statepoint we move over.  This is profitable
2750   // as long as all statepoints are in rare blocks.  If we had in-register
2751   // lowering for live values this would be a much safer transform.
2752   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2753     if (auto *BI = dyn_cast<BranchInst>(TI))
2754       if (BI->isConditional())
2755         return dyn_cast<Instruction>(BI->getCondition());
2756     // TODO: Extend this to handle switches
2757     return nullptr;
2758   };
2759   for (BasicBlock &BB : F) {
2760     Instruction *TI = BB.getTerminator();
2761     if (auto *Cond = getConditionInst(TI))
2762       // TODO: Handle more than just ICmps here.  We should be able to move
2763       // most instructions without side effects or memory access.
2764       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2765         MadeChange = true;
2766         Cond->moveBefore(TI);
2767       }
2768   }
2769 
2770   // Nasty workaround - The base computation code in the main algorithm doesn't
2771   // consider the fact that a GEP can be used to convert a scalar to a vector.
2772   // The right fix for this is to integrate GEPs into the base rewriting
2773   // algorithm properly, this is just a short term workaround to prevent
2774   // crashes by canonicalizing such GEPs into fully vector GEPs.
2775   for (Instruction &I : instructions(F)) {
2776     if (!isa<GetElementPtrInst>(I))
2777       continue;
2778 
2779     unsigned VF = 0;
2780     for (unsigned i = 0; i < I.getNumOperands(); i++)
2781       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
2782         assert(VF == 0 ||
2783                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
2784         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
2785       }
2786 
2787     // It's the vector to scalar traversal through the pointer operand which
2788     // confuses base pointer rewriting, so limit ourselves to that case.
2789     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2790       IRBuilder<> B(&I);
2791       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2792       I.setOperand(0, Splat);
2793       MadeChange = true;
2794     }
2795   }
2796 
2797   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2798   return MadeChange;
2799 }
2800 
2801 // liveness computation via standard dataflow
2802 // -------------------------------------------------------------------
2803 
2804 // TODO: Consider using bitvectors for liveness, the set of potentially
2805 // interesting values should be small and easy to pre-compute.
2806 
2807 /// Compute the live-in set for the location rbegin starting from
2808 /// the live-out set of the basic block
2809 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2810                                 BasicBlock::reverse_iterator End,
2811                                 SetVector<Value *> &LiveTmp) {
2812   for (auto &I : make_range(Begin, End)) {
2813     // KILL/Def - Remove this definition from LiveIn
2814     LiveTmp.remove(&I);
2815 
2816     // Don't consider *uses* in PHI nodes, we handle their contribution to
2817     // predecessor blocks when we seed the LiveOut sets
2818     if (isa<PHINode>(I))
2819       continue;
2820 
2821     // USE - Add to the LiveIn set for this instruction
2822     for (Value *V : I.operands()) {
2823       assert(!isUnhandledGCPointerType(V->getType()) &&
2824              "support for FCA unimplemented");
2825       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2826         // The choice to exclude all things constant here is slightly subtle.
2827         // There are two independent reasons:
2828         // - We assume that things which are constant (from LLVM's definition)
2829         // do not move at runtime.  For example, the address of a global
2830         // variable is fixed, even though it's contents may not be.
2831         // - Second, we can't disallow arbitrary inttoptr constants even
2832         // if the language frontend does.  Optimization passes are free to
2833         // locally exploit facts without respect to global reachability.  This
2834         // can create sections of code which are dynamically unreachable and
2835         // contain just about anything.  (see constants.ll in tests)
2836         LiveTmp.insert(V);
2837       }
2838     }
2839   }
2840 }
2841 
2842 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2843   for (BasicBlock *Succ : successors(BB)) {
2844     for (auto &I : *Succ) {
2845       PHINode *PN = dyn_cast<PHINode>(&I);
2846       if (!PN)
2847         break;
2848 
2849       Value *V = PN->getIncomingValueForBlock(BB);
2850       assert(!isUnhandledGCPointerType(V->getType()) &&
2851              "support for FCA unimplemented");
2852       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2853         LiveTmp.insert(V);
2854     }
2855   }
2856 }
2857 
2858 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2859   SetVector<Value *> KillSet;
2860   for (Instruction &I : *BB)
2861     if (isHandledGCPointerType(I.getType()))
2862       KillSet.insert(&I);
2863   return KillSet;
2864 }
2865 
2866 #ifndef NDEBUG
2867 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2868 /// sanity check for the liveness computation.
2869 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2870                           Instruction *TI, bool TermOkay = false) {
2871   for (Value *V : Live) {
2872     if (auto *I = dyn_cast<Instruction>(V)) {
2873       // The terminator can be a member of the LiveOut set.  LLVM's definition
2874       // of instruction dominance states that V does not dominate itself.  As
2875       // such, we need to special case this to allow it.
2876       if (TermOkay && TI == I)
2877         continue;
2878       assert(DT.dominates(I, TI) &&
2879              "basic SSA liveness expectation violated by liveness analysis");
2880     }
2881   }
2882 }
2883 
2884 /// Check that all the liveness sets used during the computation of liveness
2885 /// obey basic SSA properties.  This is useful for finding cases where we miss
2886 /// a def.
2887 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2888                           BasicBlock &BB) {
2889   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2890   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2891   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2892 }
2893 #endif
2894 
2895 static void computeLiveInValues(DominatorTree &DT, Function &F,
2896                                 GCPtrLivenessData &Data) {
2897   SmallSetVector<BasicBlock *, 32> Worklist;
2898 
2899   // Seed the liveness for each individual block
2900   for (BasicBlock &BB : F) {
2901     Data.KillSet[&BB] = computeKillSet(&BB);
2902     Data.LiveSet[&BB].clear();
2903     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2904 
2905 #ifndef NDEBUG
2906     for (Value *Kill : Data.KillSet[&BB])
2907       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2908 #endif
2909 
2910     Data.LiveOut[&BB] = SetVector<Value *>();
2911     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2912     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2913     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2914     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2915     if (!Data.LiveIn[&BB].empty())
2916       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2917   }
2918 
2919   // Propagate that liveness until stable
2920   while (!Worklist.empty()) {
2921     BasicBlock *BB = Worklist.pop_back_val();
2922 
2923     // Compute our new liveout set, then exit early if it hasn't changed despite
2924     // the contribution of our successor.
2925     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2926     const auto OldLiveOutSize = LiveOut.size();
2927     for (BasicBlock *Succ : successors(BB)) {
2928       assert(Data.LiveIn.count(Succ));
2929       LiveOut.set_union(Data.LiveIn[Succ]);
2930     }
2931     // assert OutLiveOut is a subset of LiveOut
2932     if (OldLiveOutSize == LiveOut.size()) {
2933       // If the sets are the same size, then we didn't actually add anything
2934       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2935       // hasn't changed.
2936       continue;
2937     }
2938     Data.LiveOut[BB] = LiveOut;
2939 
2940     // Apply the effects of this basic block
2941     SetVector<Value *> LiveTmp = LiveOut;
2942     LiveTmp.set_union(Data.LiveSet[BB]);
2943     LiveTmp.set_subtract(Data.KillSet[BB]);
2944 
2945     assert(Data.LiveIn.count(BB));
2946     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2947     // assert: OldLiveIn is a subset of LiveTmp
2948     if (OldLiveIn.size() != LiveTmp.size()) {
2949       Data.LiveIn[BB] = LiveTmp;
2950       Worklist.insert(pred_begin(BB), pred_end(BB));
2951     }
2952   } // while (!Worklist.empty())
2953 
2954 #ifndef NDEBUG
2955   // Sanity check our output against SSA properties.  This helps catch any
2956   // missing kills during the above iteration.
2957   for (BasicBlock &BB : F)
2958     checkBasicSSA(DT, Data, BB);
2959 #endif
2960 }
2961 
2962 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2963                               StatepointLiveSetTy &Out) {
2964   BasicBlock *BB = Inst->getParent();
2965 
2966   // Note: The copy is intentional and required
2967   assert(Data.LiveOut.count(BB));
2968   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2969 
2970   // We want to handle the statepoint itself oddly.  It's
2971   // call result is not live (normal), nor are it's arguments
2972   // (unless they're used again later).  This adjustment is
2973   // specifically what we need to relocate
2974   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2975                       LiveOut);
2976   LiveOut.remove(Inst);
2977   Out.insert(LiveOut.begin(), LiveOut.end());
2978 }
2979 
2980 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2981                                   CallBase *Call,
2982                                   PartiallyConstructedSafepointRecord &Info) {
2983   StatepointLiveSetTy Updated;
2984   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
2985 
2986   // We may have base pointers which are now live that weren't before.  We need
2987   // to update the PointerToBase structure to reflect this.
2988   for (auto V : Updated)
2989     if (Info.PointerToBase.insert({V, V}).second) {
2990       assert(isKnownBaseResult(V) &&
2991              "Can't find base for unexpected live value!");
2992       continue;
2993     }
2994 
2995 #ifndef NDEBUG
2996   for (auto V : Updated)
2997     assert(Info.PointerToBase.count(V) &&
2998            "Must be able to find base for live value!");
2999 #endif
3000 
3001   // Remove any stale base mappings - this can happen since our liveness is
3002   // more precise then the one inherent in the base pointer analysis.
3003   DenseSet<Value *> ToErase;
3004   for (auto KVPair : Info.PointerToBase)
3005     if (!Updated.count(KVPair.first))
3006       ToErase.insert(KVPair.first);
3007 
3008   for (auto *V : ToErase)
3009     Info.PointerToBase.erase(V);
3010 
3011 #ifndef NDEBUG
3012   for (auto KVPair : Info.PointerToBase)
3013     assert(Updated.count(KVPair.first) && "record for non-live value");
3014 #endif
3015 
3016   Info.LiveSet = Updated;
3017 }
3018