xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 7ef62cebc2f965b0f640263e179276928885e33d)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/IR/Argument.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/MDBuilder.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Statepoint.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <iterator>
72 #include <optional>
73 #include <set>
74 #include <string>
75 #include <utility>
76 #include <vector>
77 
78 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
79 
80 using namespace llvm;
81 
82 // Print the liveset found at the insert location
83 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
84                                   cl::init(false));
85 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
86                                       cl::init(false));
87 
88 // Print out the base pointers for debugging
89 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
90                                        cl::init(false));
91 
92 // Cost threshold measuring when it is profitable to rematerialize value instead
93 // of relocating it
94 static cl::opt<unsigned>
95 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
96                            cl::init(6));
97 
98 #ifdef EXPENSIVE_CHECKS
99 static bool ClobberNonLive = true;
100 #else
101 static bool ClobberNonLive = false;
102 #endif
103 
104 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
105                                                   cl::location(ClobberNonLive),
106                                                   cl::Hidden);
107 
108 static cl::opt<bool>
109     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
110                                    cl::Hidden, cl::init(true));
111 
112 static cl::opt<bool> RematDerivedAtUses("rs4gc-remat-derived-at-uses",
113                                         cl::Hidden, cl::init(true));
114 
115 /// The IR fed into RewriteStatepointsForGC may have had attributes and
116 /// metadata implying dereferenceability that are no longer valid/correct after
117 /// RewriteStatepointsForGC has run. This is because semantically, after
118 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
119 /// heap. stripNonValidData (conservatively) restores
120 /// correctness by erasing all attributes in the module that externally imply
121 /// dereferenceability. Similar reasoning also applies to the noalias
122 /// attributes and metadata. gc.statepoint can touch the entire heap including
123 /// noalias objects.
124 /// Apart from attributes and metadata, we also remove instructions that imply
125 /// constant physical memory: llvm.invariant.start.
126 static void stripNonValidData(Module &M);
127 
128 static bool shouldRewriteStatepointsIn(Function &F);
129 
130 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
131                                                ModuleAnalysisManager &AM) {
132   bool Changed = false;
133   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
134   for (Function &F : M) {
135     // Nothing to do for declarations.
136     if (F.isDeclaration() || F.empty())
137       continue;
138 
139     // Policy choice says not to rewrite - the most common reason is that we're
140     // compiling code without a GCStrategy.
141     if (!shouldRewriteStatepointsIn(F))
142       continue;
143 
144     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
145     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
146     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
147     Changed |= runOnFunction(F, DT, TTI, TLI);
148   }
149   if (!Changed)
150     return PreservedAnalyses::all();
151 
152   // stripNonValidData asserts that shouldRewriteStatepointsIn
153   // returns true for at least one function in the module.  Since at least
154   // one function changed, we know that the precondition is satisfied.
155   stripNonValidData(M);
156 
157   PreservedAnalyses PA;
158   PA.preserve<TargetIRAnalysis>();
159   PA.preserve<TargetLibraryAnalysis>();
160   return PA;
161 }
162 
163 namespace {
164 
165 class RewriteStatepointsForGCLegacyPass : public ModulePass {
166   RewriteStatepointsForGC Impl;
167 
168 public:
169   static char ID; // Pass identification, replacement for typeid
170 
171   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
172     initializeRewriteStatepointsForGCLegacyPassPass(
173         *PassRegistry::getPassRegistry());
174   }
175 
176   bool runOnModule(Module &M) override {
177     bool Changed = false;
178     for (Function &F : M) {
179       // Nothing to do for declarations.
180       if (F.isDeclaration() || F.empty())
181         continue;
182 
183       // Policy choice says not to rewrite - the most common reason is that
184       // we're compiling code without a GCStrategy.
185       if (!shouldRewriteStatepointsIn(F))
186         continue;
187 
188       TargetTransformInfo &TTI =
189           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
190       const TargetLibraryInfo &TLI =
191           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
192       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
193 
194       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
195     }
196 
197     if (!Changed)
198       return false;
199 
200     // stripNonValidData asserts that shouldRewriteStatepointsIn
201     // returns true for at least one function in the module.  Since at least
202     // one function changed, we know that the precondition is satisfied.
203     stripNonValidData(M);
204     return true;
205   }
206 
207   void getAnalysisUsage(AnalysisUsage &AU) const override {
208     // We add and rewrite a bunch of instructions, but don't really do much
209     // else.  We could in theory preserve a lot more analyses here.
210     AU.addRequired<DominatorTreeWrapperPass>();
211     AU.addRequired<TargetTransformInfoWrapperPass>();
212     AU.addRequired<TargetLibraryInfoWrapperPass>();
213   }
214 };
215 
216 } // end anonymous namespace
217 
218 char RewriteStatepointsForGCLegacyPass::ID = 0;
219 
220 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
221   return new RewriteStatepointsForGCLegacyPass();
222 }
223 
224 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
225                       "rewrite-statepoints-for-gc",
226                       "Make relocations explicit at statepoints", false, false)
227 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
228 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
229 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
230                     "rewrite-statepoints-for-gc",
231                     "Make relocations explicit at statepoints", false, false)
232 
233 namespace {
234 
235 struct GCPtrLivenessData {
236   /// Values defined in this block.
237   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
238 
239   /// Values used in this block (and thus live); does not included values
240   /// killed within this block.
241   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
242 
243   /// Values live into this basic block (i.e. used by any
244   /// instruction in this basic block or ones reachable from here)
245   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
246 
247   /// Values live out of this basic block (i.e. live into
248   /// any successor block)
249   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
250 };
251 
252 // The type of the internal cache used inside the findBasePointers family
253 // of functions.  From the callers perspective, this is an opaque type and
254 // should not be inspected.
255 //
256 // In the actual implementation this caches two relations:
257 // - The base relation itself (i.e. this pointer is based on that one)
258 // - The base defining value relation (i.e. before base_phi insertion)
259 // Generally, after the execution of a full findBasePointer call, only the
260 // base relation will remain.  Internally, we add a mixture of the two
261 // types, then update all the second type to the first type
262 using DefiningValueMapTy = MapVector<Value *, Value *>;
263 using IsKnownBaseMapTy = MapVector<Value *, bool>;
264 using PointerToBaseTy = MapVector<Value *, Value *>;
265 using StatepointLiveSetTy = SetVector<Value *>;
266 using RematerializedValueMapTy =
267     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
268 
269 struct PartiallyConstructedSafepointRecord {
270   /// The set of values known to be live across this safepoint
271   StatepointLiveSetTy LiveSet;
272 
273   /// The *new* gc.statepoint instruction itself.  This produces the token
274   /// that normal path gc.relocates and the gc.result are tied to.
275   GCStatepointInst *StatepointToken;
276 
277   /// Instruction to which exceptional gc relocates are attached
278   /// Makes it easier to iterate through them during relocationViaAlloca.
279   Instruction *UnwindToken;
280 
281   /// Record live values we are rematerialized instead of relocating.
282   /// They are not included into 'LiveSet' field.
283   /// Maps rematerialized copy to it's original value.
284   RematerializedValueMapTy RematerializedValues;
285 };
286 
287 struct RematerizlizationCandidateRecord {
288   // Chain from derived pointer to base.
289   SmallVector<Instruction *, 3> ChainToBase;
290   // Original base.
291   Value *RootOfChain;
292   // Cost of chain.
293   InstructionCost Cost;
294 };
295 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>;
296 
297 } // end anonymous namespace
298 
299 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
300   std::optional<OperandBundleUse> DeoptBundle =
301       Call->getOperandBundle(LLVMContext::OB_deopt);
302 
303   if (!DeoptBundle) {
304     assert(AllowStatepointWithNoDeoptInfo &&
305            "Found non-leaf call without deopt info!");
306     return std::nullopt;
307   }
308 
309   return DeoptBundle->Inputs;
310 }
311 
312 /// Compute the live-in set for every basic block in the function
313 static void computeLiveInValues(DominatorTree &DT, Function &F,
314                                 GCPtrLivenessData &Data);
315 
316 /// Given results from the dataflow liveness computation, find the set of live
317 /// Values at a particular instruction.
318 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
319                               StatepointLiveSetTy &out);
320 
321 // TODO: Once we can get to the GCStrategy, this becomes
322 // std::optional<bool> isGCManagedPointer(const Type *Ty) const override {
323 
324 static bool isGCPointerType(Type *T) {
325   if (auto *PT = dyn_cast<PointerType>(T))
326     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
327     // GC managed heap.  We know that a pointer into this heap needs to be
328     // updated and that no other pointer does.
329     return PT->getAddressSpace() == 1;
330   return false;
331 }
332 
333 // Return true if this type is one which a) is a gc pointer or contains a GC
334 // pointer and b) is of a type this code expects to encounter as a live value.
335 // (The insertion code will assert that a type which matches (a) and not (b)
336 // is not encountered.)
337 static bool isHandledGCPointerType(Type *T) {
338   // We fully support gc pointers
339   if (isGCPointerType(T))
340     return true;
341   // We partially support vectors of gc pointers. The code will assert if it
342   // can't handle something.
343   if (auto VT = dyn_cast<VectorType>(T))
344     if (isGCPointerType(VT->getElementType()))
345       return true;
346   return false;
347 }
348 
349 #ifndef NDEBUG
350 /// Returns true if this type contains a gc pointer whether we know how to
351 /// handle that type or not.
352 static bool containsGCPtrType(Type *Ty) {
353   if (isGCPointerType(Ty))
354     return true;
355   if (VectorType *VT = dyn_cast<VectorType>(Ty))
356     return isGCPointerType(VT->getScalarType());
357   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
358     return containsGCPtrType(AT->getElementType());
359   if (StructType *ST = dyn_cast<StructType>(Ty))
360     return llvm::any_of(ST->elements(), containsGCPtrType);
361   return false;
362 }
363 
364 // Returns true if this is a type which a) is a gc pointer or contains a GC
365 // pointer and b) is of a type which the code doesn't expect (i.e. first class
366 // aggregates).  Used to trip assertions.
367 static bool isUnhandledGCPointerType(Type *Ty) {
368   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
369 }
370 #endif
371 
372 // Return the name of the value suffixed with the provided value, or if the
373 // value didn't have a name, the default value specified.
374 static std::string suffixed_name_or(Value *V, StringRef Suffix,
375                                     StringRef DefaultName) {
376   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
377 }
378 
379 // Conservatively identifies any definitions which might be live at the
380 // given instruction. The  analysis is performed immediately before the
381 // given instruction. Values defined by that instruction are not considered
382 // live.  Values used by that instruction are considered live.
383 static void analyzeParsePointLiveness(
384     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
385     PartiallyConstructedSafepointRecord &Result) {
386   StatepointLiveSetTy LiveSet;
387   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
388 
389   if (PrintLiveSet) {
390     dbgs() << "Live Variables:\n";
391     for (Value *V : LiveSet)
392       dbgs() << " " << V->getName() << " " << *V << "\n";
393   }
394   if (PrintLiveSetSize) {
395     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
396     dbgs() << "Number live values: " << LiveSet.size() << "\n";
397   }
398   Result.LiveSet = LiveSet;
399 }
400 
401 /// Returns true if V is a known base.
402 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases);
403 
404 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present
405 /// in the cache before.
406 static void setKnownBase(Value *V, bool IsKnownBase,
407                          IsKnownBaseMapTy &KnownBases);
408 
409 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
410                                     IsKnownBaseMapTy &KnownBases);
411 
412 /// Return a base defining value for the 'Index' element of the given vector
413 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
414 /// 'I'.  As an optimization, this method will try to determine when the
415 /// element is known to already be a base pointer.  If this can be established,
416 /// the second value in the returned pair will be true.  Note that either a
417 /// vector or a pointer typed value can be returned.  For the former, the
418 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
419 /// If the later, the return pointer is a BDV (or possibly a base) for the
420 /// particular element in 'I'.
421 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache,
422                                             IsKnownBaseMapTy &KnownBases) {
423   // Each case parallels findBaseDefiningValue below, see that code for
424   // detailed motivation.
425 
426   auto Cached = Cache.find(I);
427   if (Cached != Cache.end())
428     return Cached->second;
429 
430   if (isa<Argument>(I)) {
431     // An incoming argument to the function is a base pointer
432     Cache[I] = I;
433     setKnownBase(I, /* IsKnownBase */true, KnownBases);
434     return I;
435   }
436 
437   if (isa<Constant>(I)) {
438     // Base of constant vector consists only of constant null pointers.
439     // For reasoning see similar case inside 'findBaseDefiningValue' function.
440     auto *CAZ = ConstantAggregateZero::get(I->getType());
441     Cache[I] = CAZ;
442     setKnownBase(CAZ, /* IsKnownBase */true, KnownBases);
443     return CAZ;
444   }
445 
446   if (isa<LoadInst>(I)) {
447     Cache[I] = I;
448     setKnownBase(I, /* IsKnownBase */true, KnownBases);
449     return I;
450   }
451 
452   if (isa<InsertElementInst>(I)) {
453     // We don't know whether this vector contains entirely base pointers or
454     // not.  To be conservatively correct, we treat it as a BDV and will
455     // duplicate code as needed to construct a parallel vector of bases.
456     Cache[I] = I;
457     setKnownBase(I, /* IsKnownBase */false, KnownBases);
458     return I;
459   }
460 
461   if (isa<ShuffleVectorInst>(I)) {
462     // We don't know whether this vector contains entirely base pointers or
463     // not.  To be conservatively correct, we treat it as a BDV and will
464     // duplicate code as needed to construct a parallel vector of bases.
465     // TODO: There a number of local optimizations which could be applied here
466     // for particular sufflevector patterns.
467     Cache[I] = I;
468     setKnownBase(I, /* IsKnownBase */false, KnownBases);
469     return I;
470   }
471 
472   // The behavior of getelementptr instructions is the same for vector and
473   // non-vector data types.
474   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
475     auto *BDV =
476         findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
477     Cache[GEP] = BDV;
478     return BDV;
479   }
480 
481   // The behavior of freeze instructions is the same for vector and
482   // non-vector data types.
483   if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
484     auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
485     Cache[Freeze] = BDV;
486     return BDV;
487   }
488 
489   // If the pointer comes through a bitcast of a vector of pointers to
490   // a vector of another type of pointer, then look through the bitcast
491   if (auto *BC = dyn_cast<BitCastInst>(I)) {
492     auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases);
493     Cache[BC] = BDV;
494     return BDV;
495   }
496 
497   // We assume that functions in the source language only return base
498   // pointers.  This should probably be generalized via attributes to support
499   // both source language and internal functions.
500   if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
501     Cache[I] = I;
502     setKnownBase(I, /* IsKnownBase */true, KnownBases);
503     return I;
504   }
505 
506   // A PHI or Select is a base defining value.  The outer findBasePointer
507   // algorithm is responsible for constructing a base value for this BDV.
508   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
509          "unknown vector instruction - no base found for vector element");
510   Cache[I] = I;
511   setKnownBase(I, /* IsKnownBase */false, KnownBases);
512   return I;
513 }
514 
515 /// Helper function for findBasePointer - Will return a value which either a)
516 /// defines the base pointer for the input, b) blocks the simple search
517 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
518 /// from pointer to vector type or back.
519 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache,
520                                     IsKnownBaseMapTy &KnownBases) {
521   assert(I->getType()->isPtrOrPtrVectorTy() &&
522          "Illegal to ask for the base pointer of a non-pointer type");
523   auto Cached = Cache.find(I);
524   if (Cached != Cache.end())
525     return Cached->second;
526 
527   if (I->getType()->isVectorTy())
528     return findBaseDefiningValueOfVector(I, Cache, KnownBases);
529 
530   if (isa<Argument>(I)) {
531     // An incoming argument to the function is a base pointer
532     // We should have never reached here if this argument isn't an gc value
533     Cache[I] = I;
534     setKnownBase(I, /* IsKnownBase */true, KnownBases);
535     return I;
536   }
537 
538   if (isa<Constant>(I)) {
539     // We assume that objects with a constant base (e.g. a global) can't move
540     // and don't need to be reported to the collector because they are always
541     // live. Besides global references, all kinds of constants (e.g. undef,
542     // constant expressions, null pointers) can be introduced by the inliner or
543     // the optimizer, especially on dynamically dead paths.
544     // Here we treat all of them as having single null base. By doing this we
545     // trying to avoid problems reporting various conflicts in a form of
546     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
547     // See constant.ll file for relevant test cases.
548 
549     auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType()));
550     Cache[I] = CPN;
551     setKnownBase(CPN, /* IsKnownBase */true, KnownBases);
552     return CPN;
553   }
554 
555   // inttoptrs in an integral address space are currently ill-defined.  We
556   // treat them as defining base pointers here for consistency with the
557   // constant rule above and because we don't really have a better semantic
558   // to give them.  Note that the optimizer is always free to insert undefined
559   // behavior on dynamically dead paths as well.
560   if (isa<IntToPtrInst>(I)) {
561     Cache[I] = I;
562     setKnownBase(I, /* IsKnownBase */true, KnownBases);
563     return I;
564   }
565 
566   if (CastInst *CI = dyn_cast<CastInst>(I)) {
567     Value *Def = CI->stripPointerCasts();
568     // If stripping pointer casts changes the address space there is an
569     // addrspacecast in between.
570     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
571                cast<PointerType>(CI->getType())->getAddressSpace() &&
572            "unsupported addrspacecast");
573     // If we find a cast instruction here, it means we've found a cast which is
574     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
575     // handle int->ptr conversion.
576     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
577     auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases);
578     Cache[CI] = BDV;
579     return BDV;
580   }
581 
582   if (isa<LoadInst>(I)) {
583     // The value loaded is an gc base itself
584     Cache[I] = I;
585     setKnownBase(I, /* IsKnownBase */true, KnownBases);
586     return I;
587   }
588 
589   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
590     // The base of this GEP is the base
591     auto *BDV =
592         findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases);
593     Cache[GEP] = BDV;
594     return BDV;
595   }
596 
597   if (auto *Freeze = dyn_cast<FreezeInst>(I)) {
598     auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases);
599     Cache[Freeze] = BDV;
600     return BDV;
601   }
602 
603   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
604     switch (II->getIntrinsicID()) {
605     default:
606       // fall through to general call handling
607       break;
608     case Intrinsic::experimental_gc_statepoint:
609       llvm_unreachable("statepoints don't produce pointers");
610     case Intrinsic::experimental_gc_relocate:
611       // Rerunning safepoint insertion after safepoints are already
612       // inserted is not supported.  It could probably be made to work,
613       // but why are you doing this?  There's no good reason.
614       llvm_unreachable("repeat safepoint insertion is not supported");
615     case Intrinsic::gcroot:
616       // Currently, this mechanism hasn't been extended to work with gcroot.
617       // There's no reason it couldn't be, but I haven't thought about the
618       // implications much.
619       llvm_unreachable(
620           "interaction with the gcroot mechanism is not supported");
621     case Intrinsic::experimental_gc_get_pointer_base:
622       auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases);
623       Cache[II] = BDV;
624       return BDV;
625     }
626   }
627   // We assume that functions in the source language only return base
628   // pointers.  This should probably be generalized via attributes to support
629   // both source language and internal functions.
630   if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
631     Cache[I] = I;
632     setKnownBase(I, /* IsKnownBase */true, KnownBases);
633     return I;
634   }
635 
636   // TODO: I have absolutely no idea how to implement this part yet.  It's not
637   // necessarily hard, I just haven't really looked at it yet.
638   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
639 
640   if (isa<AtomicCmpXchgInst>(I)) {
641     // A CAS is effectively a atomic store and load combined under a
642     // predicate.  From the perspective of base pointers, we just treat it
643     // like a load.
644     Cache[I] = I;
645     setKnownBase(I, /* IsKnownBase */true, KnownBases);
646     return I;
647   }
648 
649   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
650                                    "binary ops which don't apply to pointers");
651 
652   // The aggregate ops.  Aggregates can either be in the heap or on the
653   // stack, but in either case, this is simply a field load.  As a result,
654   // this is a defining definition of the base just like a load is.
655   if (isa<ExtractValueInst>(I)) {
656     Cache[I] = I;
657     setKnownBase(I, /* IsKnownBase */true, KnownBases);
658     return I;
659   }
660 
661   // We should never see an insert vector since that would require we be
662   // tracing back a struct value not a pointer value.
663   assert(!isa<InsertValueInst>(I) &&
664          "Base pointer for a struct is meaningless");
665 
666   // This value might have been generated by findBasePointer() called when
667   // substituting gc.get.pointer.base() intrinsic.
668   bool IsKnownBase =
669       isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value");
670   setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases);
671   Cache[I] = I;
672 
673   // An extractelement produces a base result exactly when it's input does.
674   // We may need to insert a parallel instruction to extract the appropriate
675   // element out of the base vector corresponding to the input. Given this,
676   // it's analogous to the phi and select case even though it's not a merge.
677   if (isa<ExtractElementInst>(I))
678     // Note: There a lot of obvious peephole cases here.  This are deliberately
679     // handled after the main base pointer inference algorithm to make writing
680     // test cases to exercise that code easier.
681     return I;
682 
683   // The last two cases here don't return a base pointer.  Instead, they
684   // return a value which dynamically selects from among several base
685   // derived pointers (each with it's own base potentially).  It's the job of
686   // the caller to resolve these.
687   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
688          "missing instruction case in findBaseDefiningValue");
689   return I;
690 }
691 
692 /// Returns the base defining value for this value.
693 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache,
694                                           IsKnownBaseMapTy &KnownBases) {
695   if (Cache.find(I) == Cache.end()) {
696     auto *BDV = findBaseDefiningValue(I, Cache, KnownBases);
697     Cache[I] = BDV;
698     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
699                       << Cache[I]->getName() << ", is known base = "
700                       << KnownBases[I] << "\n");
701   }
702   assert(Cache[I] != nullptr);
703   assert(KnownBases.find(Cache[I]) != KnownBases.end() &&
704          "Cached value must be present in known bases map");
705   return Cache[I];
706 }
707 
708 /// Return a base pointer for this value if known.  Otherwise, return it's
709 /// base defining value.
710 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache,
711                             IsKnownBaseMapTy &KnownBases) {
712   Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases);
713   auto Found = Cache.find(Def);
714   if (Found != Cache.end()) {
715     // Either a base-of relation, or a self reference.  Caller must check.
716     return Found->second;
717   }
718   // Only a BDV available
719   return Def;
720 }
721 
722 #ifndef NDEBUG
723 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
724 /// exists in the code.
725 static bool isOriginalBaseResult(Value *V) {
726   // no recursion possible
727   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
728          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
729          !isa<ShuffleVectorInst>(V);
730 }
731 #endif
732 
733 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) {
734   auto It = KnownBases.find(V);
735   assert(It != KnownBases.end() && "Value not present in the map");
736   return It->second;
737 }
738 
739 static void setKnownBase(Value *V, bool IsKnownBase,
740                          IsKnownBaseMapTy &KnownBases) {
741 #ifndef NDEBUG
742   auto It = KnownBases.find(V);
743   if (It != KnownBases.end())
744     assert(It->second == IsKnownBase && "Changing already present value");
745 #endif
746   KnownBases[V] = IsKnownBase;
747 }
748 
749 // Returns true if First and Second values are both scalar or both vector.
750 static bool areBothVectorOrScalar(Value *First, Value *Second) {
751   return isa<VectorType>(First->getType()) ==
752          isa<VectorType>(Second->getType());
753 }
754 
755 namespace {
756 
757 /// Models the state of a single base defining value in the findBasePointer
758 /// algorithm for determining where a new instruction is needed to propagate
759 /// the base of this BDV.
760 class BDVState {
761 public:
762   enum StatusTy {
763      // Starting state of lattice
764      Unknown,
765      // Some specific base value -- does *not* mean that instruction
766      // propagates the base of the object
767      // ex: gep %arg, 16 -> %arg is the base value
768      Base,
769      // Need to insert a node to represent a merge.
770      Conflict
771   };
772 
773   BDVState() {
774     llvm_unreachable("missing state in map");
775   }
776 
777   explicit BDVState(Value *OriginalValue)
778     : OriginalValue(OriginalValue) {}
779   explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
780     : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
781     assert(Status != Base || BaseValue);
782   }
783 
784   StatusTy getStatus() const { return Status; }
785   Value *getOriginalValue() const { return OriginalValue; }
786   Value *getBaseValue() const { return BaseValue; }
787 
788   bool isBase() const { return getStatus() == Base; }
789   bool isUnknown() const { return getStatus() == Unknown; }
790   bool isConflict() const { return getStatus() == Conflict; }
791 
792   // Values of type BDVState form a lattice, and this function implements the
793   // meet
794   // operation.
795   void meet(const BDVState &Other) {
796     auto markConflict = [&]() {
797       Status = BDVState::Conflict;
798       BaseValue = nullptr;
799     };
800     // Conflict is a final state.
801     if (isConflict())
802       return;
803     // if we are not known - just take other state.
804     if (isUnknown()) {
805       Status = Other.getStatus();
806       BaseValue = Other.getBaseValue();
807       return;
808     }
809     // We are base.
810     assert(isBase() && "Unknown state");
811     // If other is unknown - just keep our state.
812     if (Other.isUnknown())
813       return;
814     // If other is conflict - it is a final state.
815     if (Other.isConflict())
816       return markConflict();
817     // Other is base as well.
818     assert(Other.isBase() && "Unknown state");
819     // If bases are different - Conflict.
820     if (getBaseValue() != Other.getBaseValue())
821       return markConflict();
822     // We are identical, do nothing.
823   }
824 
825   bool operator==(const BDVState &Other) const {
826     return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue &&
827       Status == Other.Status;
828   }
829 
830   bool operator!=(const BDVState &other) const { return !(*this == other); }
831 
832   LLVM_DUMP_METHOD
833   void dump() const {
834     print(dbgs());
835     dbgs() << '\n';
836   }
837 
838   void print(raw_ostream &OS) const {
839     switch (getStatus()) {
840     case Unknown:
841       OS << "U";
842       break;
843     case Base:
844       OS << "B";
845       break;
846     case Conflict:
847       OS << "C";
848       break;
849     }
850     OS << " (base " << getBaseValue() << " - "
851        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
852        << " for  "  << OriginalValue->getName() << ":";
853   }
854 
855 private:
856   AssertingVH<Value> OriginalValue; // instruction this state corresponds to
857   StatusTy Status = Unknown;
858   AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
859 };
860 
861 } // end anonymous namespace
862 
863 #ifndef NDEBUG
864 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
865   State.print(OS);
866   return OS;
867 }
868 #endif
869 
870 /// For a given value or instruction, figure out what base ptr its derived from.
871 /// For gc objects, this is simply itself.  On success, returns a value which is
872 /// the base pointer.  (This is reliable and can be used for relocation.)  On
873 /// failure, returns nullptr.
874 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache,
875                               IsKnownBaseMapTy &KnownBases) {
876   Value *Def = findBaseOrBDV(I, Cache, KnownBases);
877 
878   if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I))
879     return Def;
880 
881   // Here's the rough algorithm:
882   // - For every SSA value, construct a mapping to either an actual base
883   //   pointer or a PHI which obscures the base pointer.
884   // - Construct a mapping from PHI to unknown TOP state.  Use an
885   //   optimistic algorithm to propagate base pointer information.  Lattice
886   //   looks like:
887   //   UNKNOWN
888   //   b1 b2 b3 b4
889   //   CONFLICT
890   //   When algorithm terminates, all PHIs will either have a single concrete
891   //   base or be in a conflict state.
892   // - For every conflict, insert a dummy PHI node without arguments.  Add
893   //   these to the base[Instruction] = BasePtr mapping.  For every
894   //   non-conflict, add the actual base.
895   //  - For every conflict, add arguments for the base[a] of each input
896   //   arguments.
897   //
898   // Note: A simpler form of this would be to add the conflict form of all
899   // PHIs without running the optimistic algorithm.  This would be
900   // analogous to pessimistic data flow and would likely lead to an
901   // overall worse solution.
902 
903 #ifndef NDEBUG
904   auto isExpectedBDVType = [](Value *BDV) {
905     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
906            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
907            isa<ShuffleVectorInst>(BDV);
908   };
909 #endif
910 
911   // Once populated, will contain a mapping from each potentially non-base BDV
912   // to a lattice value (described above) which corresponds to that BDV.
913   // We use the order of insertion (DFS over the def/use graph) to provide a
914   // stable deterministic ordering for visiting DenseMaps (which are unordered)
915   // below.  This is important for deterministic compilation.
916   MapVector<Value *, BDVState> States;
917 
918 #ifndef NDEBUG
919   auto VerifyStates = [&]() {
920     for (auto &Entry : States) {
921       assert(Entry.first == Entry.second.getOriginalValue());
922     }
923   };
924 #endif
925 
926   auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
927     if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
928       for (Value *InVal : PN->incoming_values())
929         F(InVal);
930     } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
931       F(SI->getTrueValue());
932       F(SI->getFalseValue());
933     } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
934       F(EE->getVectorOperand());
935     } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
936       F(IE->getOperand(0));
937       F(IE->getOperand(1));
938     } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
939       // For a canonical broadcast, ignore the undef argument
940       // (without this, we insert a parallel base shuffle for every broadcast)
941       F(SV->getOperand(0));
942       if (!SV->isZeroEltSplat())
943         F(SV->getOperand(1));
944     } else {
945       llvm_unreachable("unexpected BDV type");
946     }
947   };
948 
949 
950   // Recursively fill in all base defining values reachable from the initial
951   // one for which we don't already know a definite base value for
952   /* scope */ {
953     SmallVector<Value*, 16> Worklist;
954     Worklist.push_back(Def);
955     States.insert({Def, BDVState(Def)});
956     while (!Worklist.empty()) {
957       Value *Current = Worklist.pop_back_val();
958       assert(!isOriginalBaseResult(Current) && "why did it get added?");
959 
960       auto visitIncomingValue = [&](Value *InVal) {
961         Value *Base = findBaseOrBDV(InVal, Cache, KnownBases);
962         if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal))
963           // Known bases won't need new instructions introduced and can be
964           // ignored safely. However, this can only be done when InVal and Base
965           // are both scalar or both vector. Otherwise, we need to find a
966           // correct BDV for InVal, by creating an entry in the lattice
967           // (States).
968           return;
969         assert(isExpectedBDVType(Base) && "the only non-base values "
970                "we see should be base defining values");
971         if (States.insert(std::make_pair(Base, BDVState(Base))).second)
972           Worklist.push_back(Base);
973       };
974 
975       visitBDVOperands(Current, visitIncomingValue);
976     }
977   }
978 
979 #ifndef NDEBUG
980   VerifyStates();
981   LLVM_DEBUG(dbgs() << "States after initialization:\n");
982   for (const auto &Pair : States) {
983     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
984   }
985 #endif
986 
987   // Iterate forward through the value graph pruning any node from the state
988   // list where all of the inputs are base pointers.  The purpose of this is to
989   // reuse existing values when the derived pointer we were asked to materialize
990   // a base pointer for happens to be a base pointer itself.  (Or a sub-graph
991   // feeding it does.)
992   SmallVector<Value *> ToRemove;
993   do {
994     ToRemove.clear();
995     for (auto Pair : States) {
996       Value *BDV = Pair.first;
997       auto canPruneInput = [&](Value *V) {
998         // If the input of the BDV is the BDV itself we can prune it. This is
999         // only possible if the BDV is a PHI node.
1000         if (V->stripPointerCasts() == BDV)
1001           return true;
1002         Value *VBDV = findBaseOrBDV(V, Cache, KnownBases);
1003         if (V->stripPointerCasts() != VBDV)
1004           return false;
1005         // The assumption is that anything not in the state list is
1006         // propagates a base pointer.
1007         return States.count(VBDV) == 0;
1008       };
1009 
1010       bool CanPrune = true;
1011       visitBDVOperands(BDV, [&](Value *Op) {
1012         CanPrune = CanPrune && canPruneInput(Op);
1013       });
1014       if (CanPrune)
1015         ToRemove.push_back(BDV);
1016     }
1017     for (Value *V : ToRemove) {
1018       States.erase(V);
1019       // Cache the fact V is it's own base for later usage.
1020       Cache[V] = V;
1021     }
1022   } while (!ToRemove.empty());
1023 
1024   // Did we manage to prove that Def itself must be a base pointer?
1025   if (!States.count(Def))
1026     return Def;
1027 
1028   // Return a phi state for a base defining value.  We'll generate a new
1029   // base state for known bases and expect to find a cached state otherwise.
1030   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
1031     auto I = States.find(BaseValue);
1032     if (I != States.end())
1033       return I->second;
1034     assert(areBothVectorOrScalar(BaseValue, Input));
1035     return BDVState(BaseValue, BDVState::Base, BaseValue);
1036   };
1037 
1038   bool Progress = true;
1039   while (Progress) {
1040 #ifndef NDEBUG
1041     const size_t OldSize = States.size();
1042 #endif
1043     Progress = false;
1044     // We're only changing values in this loop, thus safe to keep iterators.
1045     // Since this is computing a fixed point, the order of visit does not
1046     // effect the result.  TODO: We could use a worklist here and make this run
1047     // much faster.
1048     for (auto Pair : States) {
1049       Value *BDV = Pair.first;
1050       // Only values that do not have known bases or those that have differing
1051       // type (scalar versus vector) from a possible known base should be in the
1052       // lattice.
1053       assert((!isKnownBase(BDV, KnownBases) ||
1054              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
1055                  "why did it get added?");
1056 
1057       BDVState NewState(BDV);
1058       visitBDVOperands(BDV, [&](Value *Op) {
1059         Value *BDV = findBaseOrBDV(Op, Cache, KnownBases);
1060         auto OpState = GetStateForBDV(BDV, Op);
1061         NewState.meet(OpState);
1062       });
1063 
1064       BDVState OldState = States[BDV];
1065       if (OldState != NewState) {
1066         Progress = true;
1067         States[BDV] = NewState;
1068       }
1069     }
1070 
1071     assert(OldSize == States.size() &&
1072            "fixed point shouldn't be adding any new nodes to state");
1073   }
1074 
1075 #ifndef NDEBUG
1076   VerifyStates();
1077   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
1078   for (const auto &Pair : States) {
1079     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
1080   }
1081 #endif
1082 
1083   // Handle all instructions that have a vector BDV, but the instruction itself
1084   // is of scalar type.
1085   for (auto Pair : States) {
1086     Instruction *I = cast<Instruction>(Pair.first);
1087     BDVState State = Pair.second;
1088     auto *BaseValue = State.getBaseValue();
1089     // Only values that do not have known bases or those that have differing
1090     // type (scalar versus vector) from a possible known base should be in the
1091     // lattice.
1092     assert(
1093         (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) &&
1094         "why did it get added?");
1095     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1096 
1097     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
1098       continue;
1099     // extractelement instructions are a bit special in that we may need to
1100     // insert an extract even when we know an exact base for the instruction.
1101     // The problem is that we need to convert from a vector base to a scalar
1102     // base for the particular indice we're interested in.
1103     if (isa<ExtractElementInst>(I)) {
1104       auto *EE = cast<ExtractElementInst>(I);
1105       // TODO: In many cases, the new instruction is just EE itself.  We should
1106       // exploit this, but can't do it here since it would break the invariant
1107       // about the BDV not being known to be a base.
1108       auto *BaseInst = ExtractElementInst::Create(
1109           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
1110       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1111       States[I] = BDVState(I, BDVState::Base, BaseInst);
1112       setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases);
1113     } else if (!isa<VectorType>(I->getType())) {
1114       // We need to handle cases that have a vector base but the instruction is
1115       // a scalar type (these could be phis or selects or any instruction that
1116       // are of scalar type, but the base can be a vector type).  We
1117       // conservatively set this as conflict.  Setting the base value for these
1118       // conflicts is handled in the next loop which traverses States.
1119       States[I] = BDVState(I, BDVState::Conflict);
1120     }
1121   }
1122 
1123 #ifndef NDEBUG
1124   VerifyStates();
1125 #endif
1126 
1127   // Insert Phis for all conflicts
1128   // TODO: adjust naming patterns to avoid this order of iteration dependency
1129   for (auto Pair : States) {
1130     Instruction *I = cast<Instruction>(Pair.first);
1131     BDVState State = Pair.second;
1132     // Only values that do not have known bases or those that have differing
1133     // type (scalar versus vector) from a possible known base should be in the
1134     // lattice.
1135     assert((!isKnownBase(I, KnownBases) ||
1136             !areBothVectorOrScalar(I, State.getBaseValue())) &&
1137            "why did it get added?");
1138     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1139 
1140     // Since we're joining a vector and scalar base, they can never be the
1141     // same.  As a result, we should always see insert element having reached
1142     // the conflict state.
1143     assert(!isa<InsertElementInst>(I) || State.isConflict());
1144 
1145     if (!State.isConflict())
1146       continue;
1147 
1148     auto getMangledName = [](Instruction *I) -> std::string {
1149       if (isa<PHINode>(I)) {
1150         return suffixed_name_or(I, ".base", "base_phi");
1151       } else if (isa<SelectInst>(I)) {
1152         return suffixed_name_or(I, ".base", "base_select");
1153       } else if (isa<ExtractElementInst>(I)) {
1154         return suffixed_name_or(I, ".base", "base_ee");
1155       } else if (isa<InsertElementInst>(I)) {
1156         return suffixed_name_or(I, ".base", "base_ie");
1157       } else {
1158         return suffixed_name_or(I, ".base", "base_sv");
1159       }
1160     };
1161 
1162     Instruction *BaseInst = I->clone();
1163     BaseInst->insertBefore(I);
1164     BaseInst->setName(getMangledName(I));
1165     // Add metadata marking this as a base value
1166     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1167     States[I] = BDVState(I, BDVState::Conflict, BaseInst);
1168     setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases);
1169   }
1170 
1171 #ifndef NDEBUG
1172   VerifyStates();
1173 #endif
1174 
1175   // Returns a instruction which produces the base pointer for a given
1176   // instruction.  The instruction is assumed to be an input to one of the BDVs
1177   // seen in the inference algorithm above.  As such, we must either already
1178   // know it's base defining value is a base, or have inserted a new
1179   // instruction to propagate the base of it's BDV and have entered that newly
1180   // introduced instruction into the state table.  In either case, we are
1181   // assured to be able to determine an instruction which produces it's base
1182   // pointer.
1183   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1184     Value *BDV = findBaseOrBDV(Input, Cache, KnownBases);
1185     Value *Base = nullptr;
1186     if (!States.count(BDV)) {
1187       assert(areBothVectorOrScalar(BDV, Input));
1188       Base = BDV;
1189     } else {
1190       // Either conflict or base.
1191       assert(States.count(BDV));
1192       Base = States[BDV].getBaseValue();
1193     }
1194     assert(Base && "Can't be null");
1195     // The cast is needed since base traversal may strip away bitcasts
1196     if (Base->getType() != Input->getType() && InsertPt)
1197       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1198     return Base;
1199   };
1200 
1201   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1202   // deterministic and predictable because we're naming newly created
1203   // instructions.
1204   for (auto Pair : States) {
1205     Instruction *BDV = cast<Instruction>(Pair.first);
1206     BDVState State = Pair.second;
1207 
1208     // Only values that do not have known bases or those that have differing
1209     // type (scalar versus vector) from a possible known base should be in the
1210     // lattice.
1211     assert((!isKnownBase(BDV, KnownBases) ||
1212             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1213            "why did it get added?");
1214     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1215     if (!State.isConflict())
1216       continue;
1217 
1218     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1219       PHINode *PN = cast<PHINode>(BDV);
1220       const unsigned NumPHIValues = PN->getNumIncomingValues();
1221 
1222       // The IR verifier requires phi nodes with multiple entries from the
1223       // same basic block to have the same incoming value for each of those
1224       // entries.  Since we're inserting bitcasts in the loop, make sure we
1225       // do so at least once per incoming block.
1226       DenseMap<BasicBlock *, Value*> BlockToValue;
1227       for (unsigned i = 0; i < NumPHIValues; i++) {
1228         Value *InVal = PN->getIncomingValue(i);
1229         BasicBlock *InBB = PN->getIncomingBlock(i);
1230         if (!BlockToValue.count(InBB))
1231           BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
1232         else {
1233 #ifndef NDEBUG
1234           Value *OldBase = BlockToValue[InBB];
1235           Value *Base = getBaseForInput(InVal, nullptr);
1236 
1237           // We can't use `stripPointerCasts` instead of this function because
1238           // `stripPointerCasts` doesn't handle vectors of pointers.
1239           auto StripBitCasts = [](Value *V) -> Value * {
1240             while (auto *BC = dyn_cast<BitCastInst>(V))
1241               V = BC->getOperand(0);
1242             return V;
1243           };
1244           // In essence this assert states: the only way two values
1245           // incoming from the same basic block may be different is by
1246           // being different bitcasts of the same value.  A cleanup
1247           // that remains TODO is changing findBaseOrBDV to return an
1248           // llvm::Value of the correct type (and still remain pure).
1249           // This will remove the need to add bitcasts.
1250           assert(StripBitCasts(Base) == StripBitCasts(OldBase) &&
1251                  "findBaseOrBDV should be pure!");
1252 #endif
1253         }
1254         Value *Base = BlockToValue[InBB];
1255         BasePHI->setIncomingValue(i, Base);
1256       }
1257     } else if (SelectInst *BaseSI =
1258                    dyn_cast<SelectInst>(State.getBaseValue())) {
1259       SelectInst *SI = cast<SelectInst>(BDV);
1260 
1261       // Find the instruction which produces the base for each input.
1262       // We may need to insert a bitcast.
1263       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1264       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1265     } else if (auto *BaseEE =
1266                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1267       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1268       // Find the instruction which produces the base for each input.  We may
1269       // need to insert a bitcast.
1270       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1271     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1272       auto *BdvIE = cast<InsertElementInst>(BDV);
1273       auto UpdateOperand = [&](int OperandIdx) {
1274         Value *InVal = BdvIE->getOperand(OperandIdx);
1275         Value *Base = getBaseForInput(InVal, BaseIE);
1276         BaseIE->setOperand(OperandIdx, Base);
1277       };
1278       UpdateOperand(0); // vector operand
1279       UpdateOperand(1); // scalar operand
1280     } else {
1281       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1282       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1283       auto UpdateOperand = [&](int OperandIdx) {
1284         Value *InVal = BdvSV->getOperand(OperandIdx);
1285         Value *Base = getBaseForInput(InVal, BaseSV);
1286         BaseSV->setOperand(OperandIdx, Base);
1287       };
1288       UpdateOperand(0); // vector operand
1289       if (!BdvSV->isZeroEltSplat())
1290         UpdateOperand(1); // vector operand
1291       else {
1292         // Never read, so just use undef
1293         Value *InVal = BdvSV->getOperand(1);
1294         BaseSV->setOperand(1, UndefValue::get(InVal->getType()));
1295       }
1296     }
1297   }
1298 
1299 #ifndef NDEBUG
1300   VerifyStates();
1301 #endif
1302 
1303   // Cache all of our results so we can cheaply reuse them
1304   // NOTE: This is actually two caches: one of the base defining value
1305   // relation and one of the base pointer relation!  FIXME
1306   for (auto Pair : States) {
1307     auto *BDV = Pair.first;
1308     Value *Base = Pair.second.getBaseValue();
1309     assert(BDV && Base);
1310     // Only values that do not have known bases or those that have differing
1311     // type (scalar versus vector) from a possible known base should be in the
1312     // lattice.
1313     assert(
1314         (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) &&
1315         "why did it get added?");
1316 
1317     LLVM_DEBUG(
1318         dbgs() << "Updating base value cache"
1319                << " for: " << BDV->getName() << " from: "
1320                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1321                << " to: " << Base->getName() << "\n");
1322 
1323     Cache[BDV] = Base;
1324   }
1325   assert(Cache.count(Def));
1326   return Cache[Def];
1327 }
1328 
1329 // For a set of live pointers (base and/or derived), identify the base
1330 // pointer of the object which they are derived from.  This routine will
1331 // mutate the IR graph as needed to make the 'base' pointer live at the
1332 // definition site of 'derived'.  This ensures that any use of 'derived' can
1333 // also use 'base'.  This may involve the insertion of a number of
1334 // additional PHI nodes.
1335 //
1336 // preconditions: live is a set of pointer type Values
1337 //
1338 // side effects: may insert PHI nodes into the existing CFG, will preserve
1339 // CFG, will not remove or mutate any existing nodes
1340 //
1341 // post condition: PointerToBase contains one (derived, base) pair for every
1342 // pointer in live.  Note that derived can be equal to base if the original
1343 // pointer was a base pointer.
1344 static void findBasePointers(const StatepointLiveSetTy &live,
1345                              PointerToBaseTy &PointerToBase, DominatorTree *DT,
1346                              DefiningValueMapTy &DVCache,
1347                              IsKnownBaseMapTy &KnownBases) {
1348   for (Value *ptr : live) {
1349     Value *base = findBasePointer(ptr, DVCache, KnownBases);
1350     assert(base && "failed to find base pointer");
1351     PointerToBase[ptr] = base;
1352     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1353             DT->dominates(cast<Instruction>(base)->getParent(),
1354                           cast<Instruction>(ptr)->getParent())) &&
1355            "The base we found better dominate the derived pointer");
1356   }
1357 }
1358 
1359 /// Find the required based pointers (and adjust the live set) for the given
1360 /// parse point.
1361 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1362                              CallBase *Call,
1363                              PartiallyConstructedSafepointRecord &result,
1364                              PointerToBaseTy &PointerToBase,
1365                              IsKnownBaseMapTy &KnownBases) {
1366   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1367   // We assume that all pointers passed to deopt are base pointers; as an
1368   // optimization, we can use this to avoid seperately materializing the base
1369   // pointer graph.  This is only relevant since we're very conservative about
1370   // generating new conflict nodes during base pointer insertion.  If we were
1371   // smarter there, this would be irrelevant.
1372   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1373     for (Value *V : Opt->Inputs) {
1374       if (!PotentiallyDerivedPointers.count(V))
1375         continue;
1376       PotentiallyDerivedPointers.remove(V);
1377       PointerToBase[V] = V;
1378     }
1379   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache,
1380                    KnownBases);
1381 }
1382 
1383 /// Given an updated version of the dataflow liveness results, update the
1384 /// liveset and base pointer maps for the call site CS.
1385 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1386                                   CallBase *Call,
1387                                   PartiallyConstructedSafepointRecord &result,
1388                                   PointerToBaseTy &PointerToBase);
1389 
1390 static void recomputeLiveInValues(
1391     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1392     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records,
1393     PointerToBaseTy &PointerToBase) {
1394   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1395   // again.  The old values are still live and will help it stabilize quickly.
1396   GCPtrLivenessData RevisedLivenessData;
1397   computeLiveInValues(DT, F, RevisedLivenessData);
1398   for (size_t i = 0; i < records.size(); i++) {
1399     struct PartiallyConstructedSafepointRecord &info = records[i];
1400     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info,
1401                           PointerToBase);
1402   }
1403 }
1404 
1405 // Utility function which clones all instructions from "ChainToBase"
1406 // and inserts them before "InsertBefore". Returns rematerialized value
1407 // which should be used after statepoint.
1408 static Instruction *rematerializeChain(ArrayRef<Instruction *> ChainToBase,
1409                                        Instruction *InsertBefore,
1410                                        Value *RootOfChain,
1411                                        Value *AlternateLiveBase) {
1412   Instruction *LastClonedValue = nullptr;
1413   Instruction *LastValue = nullptr;
1414   // Walk backwards to visit top-most instructions first.
1415   for (Instruction *Instr :
1416        make_range(ChainToBase.rbegin(), ChainToBase.rend())) {
1417     // Only GEP's and casts are supported as we need to be careful to not
1418     // introduce any new uses of pointers not in the liveset.
1419     // Note that it's fine to introduce new uses of pointers which were
1420     // otherwise not used after this statepoint.
1421     assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
1422 
1423     Instruction *ClonedValue = Instr->clone();
1424     ClonedValue->insertBefore(InsertBefore);
1425     ClonedValue->setName(Instr->getName() + ".remat");
1426 
1427     // If it is not first instruction in the chain then it uses previously
1428     // cloned value. We should update it to use cloned value.
1429     if (LastClonedValue) {
1430       assert(LastValue);
1431       ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
1432 #ifndef NDEBUG
1433       for (auto *OpValue : ClonedValue->operand_values()) {
1434         // Assert that cloned instruction does not use any instructions from
1435         // this chain other than LastClonedValue
1436         assert(!is_contained(ChainToBase, OpValue) &&
1437                "incorrect use in rematerialization chain");
1438         // Assert that the cloned instruction does not use the RootOfChain
1439         // or the AlternateLiveBase.
1440         assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
1441       }
1442 #endif
1443     } else {
1444       // For the first instruction, replace the use of unrelocated base i.e.
1445       // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
1446       // live set. They have been proved to be the same PHI nodes.  Note
1447       // that the *only* use of the RootOfChain in the ChainToBase list is
1448       // the first Value in the list.
1449       if (RootOfChain != AlternateLiveBase)
1450         ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
1451     }
1452 
1453     LastClonedValue = ClonedValue;
1454     LastValue = Instr;
1455   }
1456   assert(LastClonedValue);
1457   return LastClonedValue;
1458 }
1459 
1460 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1461 // no uses of the original value / return value between the gc.statepoint and
1462 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1463 // starting one of the successor blocks.  We also need to be able to insert the
1464 // gc.relocates only on the path which goes through the statepoint.  We might
1465 // need to split an edge to make this possible.
1466 static BasicBlock *
1467 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1468                             DominatorTree &DT) {
1469   BasicBlock *Ret = BB;
1470   if (!BB->getUniquePredecessor())
1471     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1472 
1473   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1474   // from it
1475   FoldSingleEntryPHINodes(Ret);
1476   assert(!isa<PHINode>(Ret->begin()) &&
1477          "All PHI nodes should have been removed!");
1478 
1479   // At this point, we can safely insert a gc.relocate or gc.result as the first
1480   // instruction in Ret if needed.
1481   return Ret;
1482 }
1483 
1484 // List of all function attributes which must be stripped when lowering from
1485 // abstract machine model to physical machine model.  Essentially, these are
1486 // all the effects a safepoint might have which we ignored in the abstract
1487 // machine model for purposes of optimization.  We have to strip these on
1488 // both function declarations and call sites.
1489 static constexpr Attribute::AttrKind FnAttrsToStrip[] =
1490   {Attribute::Memory, Attribute::NoSync, Attribute::NoFree};
1491 
1492 // Create new attribute set containing only attributes which can be transferred
1493 // from original call to the safepoint.
1494 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1495                                             AttributeList OrigAL,
1496                                             AttributeList StatepointAL) {
1497   if (OrigAL.isEmpty())
1498     return StatepointAL;
1499 
1500   // Remove the readonly, readnone, and statepoint function attributes.
1501   AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs());
1502   for (auto Attr : FnAttrsToStrip)
1503     FnAttrs.removeAttribute(Attr);
1504 
1505   for (Attribute A : OrigAL.getFnAttrs()) {
1506     if (isStatepointDirectiveAttr(A))
1507       FnAttrs.removeAttribute(A);
1508   }
1509 
1510   // Just skip parameter and return attributes for now
1511   return StatepointAL.addFnAttributes(Ctx, FnAttrs);
1512 }
1513 
1514 /// Helper function to place all gc relocates necessary for the given
1515 /// statepoint.
1516 /// Inputs:
1517 ///   liveVariables - list of variables to be relocated.
1518 ///   basePtrs - base pointers.
1519 ///   statepointToken - statepoint instruction to which relocates should be
1520 ///   bound.
1521 ///   Builder - Llvm IR builder to be used to construct new calls.
1522 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1523                               ArrayRef<Value *> BasePtrs,
1524                               Instruction *StatepointToken,
1525                               IRBuilder<> &Builder) {
1526   if (LiveVariables.empty())
1527     return;
1528 
1529   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1530     auto ValIt = llvm::find(LiveVec, Val);
1531     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1532     size_t Index = std::distance(LiveVec.begin(), ValIt);
1533     assert(Index < LiveVec.size() && "Bug in std::find?");
1534     return Index;
1535   };
1536   Module *M = StatepointToken->getModule();
1537 
1538   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1539   // element type is i8 addrspace(1)*). We originally generated unique
1540   // declarations for each pointer type, but this proved problematic because
1541   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1542   // towards a single unified pointer type anyways, we can just cast everything
1543   // to an i8* of the right address space.  A bitcast is added later to convert
1544   // gc_relocate to the actual value's type.
1545   auto getGCRelocateDecl = [&] (Type *Ty) {
1546     assert(isHandledGCPointerType(Ty));
1547     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1548     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1549     if (auto *VT = dyn_cast<VectorType>(Ty))
1550       NewTy = FixedVectorType::get(NewTy,
1551                                    cast<FixedVectorType>(VT)->getNumElements());
1552     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1553                                      {NewTy});
1554   };
1555 
1556   // Lazily populated map from input types to the canonicalized form mentioned
1557   // in the comment above.  This should probably be cached somewhere more
1558   // broadly.
1559   DenseMap<Type *, Function *> TypeToDeclMap;
1560 
1561   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1562     // Generate the gc.relocate call and save the result
1563     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1564     Value *LiveIdx = Builder.getInt32(i);
1565 
1566     Type *Ty = LiveVariables[i]->getType();
1567     if (!TypeToDeclMap.count(Ty))
1568       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1569     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1570 
1571     // only specify a debug name if we can give a useful one
1572     CallInst *Reloc = Builder.CreateCall(
1573         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1574         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1575     // Trick CodeGen into thinking there are lots of free registers at this
1576     // fake call.
1577     Reloc->setCallingConv(CallingConv::Cold);
1578   }
1579 }
1580 
1581 namespace {
1582 
1583 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1584 /// avoids having to worry about keeping around dangling pointers to Values.
1585 class DeferredReplacement {
1586   AssertingVH<Instruction> Old;
1587   AssertingVH<Instruction> New;
1588   bool IsDeoptimize = false;
1589 
1590   DeferredReplacement() = default;
1591 
1592 public:
1593   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1594     assert(Old != New && Old && New &&
1595            "Cannot RAUW equal values or to / from null!");
1596 
1597     DeferredReplacement D;
1598     D.Old = Old;
1599     D.New = New;
1600     return D;
1601   }
1602 
1603   static DeferredReplacement createDelete(Instruction *ToErase) {
1604     DeferredReplacement D;
1605     D.Old = ToErase;
1606     return D;
1607   }
1608 
1609   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1610 #ifndef NDEBUG
1611     auto *F = cast<CallInst>(Old)->getCalledFunction();
1612     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1613            "Only way to construct a deoptimize deferred replacement");
1614 #endif
1615     DeferredReplacement D;
1616     D.Old = Old;
1617     D.IsDeoptimize = true;
1618     return D;
1619   }
1620 
1621   /// Does the task represented by this instance.
1622   void doReplacement() {
1623     Instruction *OldI = Old;
1624     Instruction *NewI = New;
1625 
1626     assert(OldI != NewI && "Disallowed at construction?!");
1627     assert((!IsDeoptimize || !New) &&
1628            "Deoptimize intrinsics are not replaced!");
1629 
1630     Old = nullptr;
1631     New = nullptr;
1632 
1633     if (NewI)
1634       OldI->replaceAllUsesWith(NewI);
1635 
1636     if (IsDeoptimize) {
1637       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1638       // not necessarily be followed by the matching return.
1639       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1640       new UnreachableInst(RI->getContext(), RI);
1641       RI->eraseFromParent();
1642     }
1643 
1644     OldI->eraseFromParent();
1645   }
1646 };
1647 
1648 } // end anonymous namespace
1649 
1650 static StringRef getDeoptLowering(CallBase *Call) {
1651   const char *DeoptLowering = "deopt-lowering";
1652   if (Call->hasFnAttr(DeoptLowering)) {
1653     // FIXME: Calls have a *really* confusing interface around attributes
1654     // with values.
1655     const AttributeList &CSAS = Call->getAttributes();
1656     if (CSAS.hasFnAttr(DeoptLowering))
1657       return CSAS.getFnAttr(DeoptLowering).getValueAsString();
1658     Function *F = Call->getCalledFunction();
1659     assert(F && F->hasFnAttribute(DeoptLowering));
1660     return F->getFnAttribute(DeoptLowering).getValueAsString();
1661   }
1662   return "live-through";
1663 }
1664 
1665 static void
1666 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1667                            const SmallVectorImpl<Value *> &BasePtrs,
1668                            const SmallVectorImpl<Value *> &LiveVariables,
1669                            PartiallyConstructedSafepointRecord &Result,
1670                            std::vector<DeferredReplacement> &Replacements,
1671                            const PointerToBaseTy &PointerToBase) {
1672   assert(BasePtrs.size() == LiveVariables.size());
1673 
1674   // Then go ahead and use the builder do actually do the inserts.  We insert
1675   // immediately before the previous instruction under the assumption that all
1676   // arguments will be available here.  We can't insert afterwards since we may
1677   // be replacing a terminator.
1678   IRBuilder<> Builder(Call);
1679 
1680   ArrayRef<Value *> GCArgs(LiveVariables);
1681   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1682   uint32_t NumPatchBytes = 0;
1683   uint32_t Flags = uint32_t(StatepointFlags::None);
1684 
1685   SmallVector<Value *, 8> CallArgs(Call->args());
1686   std::optional<ArrayRef<Use>> DeoptArgs;
1687   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1688     DeoptArgs = Bundle->Inputs;
1689   std::optional<ArrayRef<Use>> TransitionArgs;
1690   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1691     TransitionArgs = Bundle->Inputs;
1692     // TODO: This flag no longer serves a purpose and can be removed later
1693     Flags |= uint32_t(StatepointFlags::GCTransition);
1694   }
1695 
1696   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1697   // with a return value, we lower then as never returning calls to
1698   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1699   bool IsDeoptimize = false;
1700 
1701   StatepointDirectives SD =
1702       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1703   if (SD.NumPatchBytes)
1704     NumPatchBytes = *SD.NumPatchBytes;
1705   if (SD.StatepointID)
1706     StatepointID = *SD.StatepointID;
1707 
1708   // Pass through the requested lowering if any.  The default is live-through.
1709   StringRef DeoptLowering = getDeoptLowering(Call);
1710   if (DeoptLowering.equals("live-in"))
1711     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1712   else {
1713     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1714   }
1715 
1716   FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand());
1717   if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) {
1718     auto IID = F->getIntrinsicID();
1719     if (IID == Intrinsic::experimental_deoptimize) {
1720       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1721       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1722       // verifier does not allow taking the address of an intrinsic function.
1723 
1724       SmallVector<Type *, 8> DomainTy;
1725       for (Value *Arg : CallArgs)
1726         DomainTy.push_back(Arg->getType());
1727       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1728                                     /* isVarArg = */ false);
1729 
1730       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1731       // calls to @llvm.experimental.deoptimize with different argument types in
1732       // the same module.  This is fine -- we assume the frontend knew what it
1733       // was doing when generating this kind of IR.
1734       CallTarget = F->getParent()
1735                        ->getOrInsertFunction("__llvm_deoptimize", FTy);
1736 
1737       IsDeoptimize = true;
1738     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1739                IID == Intrinsic::memmove_element_unordered_atomic) {
1740       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1741       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1742       // Specifically, these calls should be lowered to the
1743       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1744       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1745       // verifier does not allow taking the address of an intrinsic function.
1746       //
1747       // Moreover we need to shuffle the arguments for the call in order to
1748       // accommodate GC. The underlying source and destination objects might be
1749       // relocated during copy operation should the GC occur. To relocate the
1750       // derived source and destination pointers the implementation of the
1751       // intrinsic should know the corresponding base pointers.
1752       //
1753       // To make the base pointers available pass them explicitly as arguments:
1754       //   memcpy(dest_derived, source_derived, ...) =>
1755       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1756       auto &Context = Call->getContext();
1757       auto &DL = Call->getModule()->getDataLayout();
1758       auto GetBaseAndOffset = [&](Value *Derived) {
1759         Value *Base = nullptr;
1760         // Optimizations in unreachable code might substitute the real pointer
1761         // with undef, poison or null-derived constant. Return null base for
1762         // them to be consistent with the handling in the main algorithm in
1763         // findBaseDefiningValue.
1764         if (isa<Constant>(Derived))
1765           Base =
1766               ConstantPointerNull::get(cast<PointerType>(Derived->getType()));
1767         else {
1768           assert(PointerToBase.count(Derived));
1769           Base = PointerToBase.find(Derived)->second;
1770         }
1771         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1772         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1773         Value *Base_int = Builder.CreatePtrToInt(
1774             Base, Type::getIntNTy(Context, IntPtrSize));
1775         Value *Derived_int = Builder.CreatePtrToInt(
1776             Derived, Type::getIntNTy(Context, IntPtrSize));
1777         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1778       };
1779 
1780       auto *Dest = CallArgs[0];
1781       Value *DestBase, *DestOffset;
1782       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1783 
1784       auto *Source = CallArgs[1];
1785       Value *SourceBase, *SourceOffset;
1786       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1787 
1788       auto *LengthInBytes = CallArgs[2];
1789       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1790 
1791       CallArgs.clear();
1792       CallArgs.push_back(DestBase);
1793       CallArgs.push_back(DestOffset);
1794       CallArgs.push_back(SourceBase);
1795       CallArgs.push_back(SourceOffset);
1796       CallArgs.push_back(LengthInBytes);
1797 
1798       SmallVector<Type *, 8> DomainTy;
1799       for (Value *Arg : CallArgs)
1800         DomainTy.push_back(Arg->getType());
1801       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1802                                     /* isVarArg = */ false);
1803 
1804       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1805         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1806         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1807           switch (ElementSize) {
1808           case 1:
1809             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1810           case 2:
1811             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1812           case 4:
1813             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1814           case 8:
1815             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1816           case 16:
1817             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1818           default:
1819             llvm_unreachable("unexpected element size!");
1820           }
1821         }
1822         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1823         switch (ElementSize) {
1824         case 1:
1825           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1826         case 2:
1827           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1828         case 4:
1829           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1830         case 8:
1831           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1832         case 16:
1833           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1834         default:
1835           llvm_unreachable("unexpected element size!");
1836         }
1837       };
1838 
1839       CallTarget =
1840           F->getParent()
1841               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy);
1842     }
1843   }
1844 
1845   // Create the statepoint given all the arguments
1846   GCStatepointInst *Token = nullptr;
1847   if (auto *CI = dyn_cast<CallInst>(Call)) {
1848     CallInst *SPCall = Builder.CreateGCStatepointCall(
1849         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1850         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1851 
1852     SPCall->setTailCallKind(CI->getTailCallKind());
1853     SPCall->setCallingConv(CI->getCallingConv());
1854 
1855     // Currently we will fail on parameter attributes and on certain
1856     // function attributes.  In case if we can handle this set of attributes -
1857     // set up function attrs directly on statepoint and return attrs later for
1858     // gc_result intrinsic.
1859     SPCall->setAttributes(legalizeCallAttributes(
1860         CI->getContext(), CI->getAttributes(), SPCall->getAttributes()));
1861 
1862     Token = cast<GCStatepointInst>(SPCall);
1863 
1864     // Put the following gc_result and gc_relocate calls immediately after the
1865     // the old call (which we're about to delete)
1866     assert(CI->getNextNode() && "Not a terminator, must have next!");
1867     Builder.SetInsertPoint(CI->getNextNode());
1868     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1869   } else {
1870     auto *II = cast<InvokeInst>(Call);
1871 
1872     // Insert the new invoke into the old block.  We'll remove the old one in a
1873     // moment at which point this will become the new terminator for the
1874     // original block.
1875     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1876         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1877         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1878         "statepoint_token");
1879 
1880     SPInvoke->setCallingConv(II->getCallingConv());
1881 
1882     // Currently we will fail on parameter attributes and on certain
1883     // function attributes.  In case if we can handle this set of attributes -
1884     // set up function attrs directly on statepoint and return attrs later for
1885     // gc_result intrinsic.
1886     SPInvoke->setAttributes(legalizeCallAttributes(
1887         II->getContext(), II->getAttributes(), SPInvoke->getAttributes()));
1888 
1889     Token = cast<GCStatepointInst>(SPInvoke);
1890 
1891     // Generate gc relocates in exceptional path
1892     BasicBlock *UnwindBlock = II->getUnwindDest();
1893     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1894            UnwindBlock->getUniquePredecessor() &&
1895            "can't safely insert in this block!");
1896 
1897     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1898     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1899 
1900     // Attach exceptional gc relocates to the landingpad.
1901     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1902     Result.UnwindToken = ExceptionalToken;
1903 
1904     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1905 
1906     // Generate gc relocates and returns for normal block
1907     BasicBlock *NormalDest = II->getNormalDest();
1908     assert(!isa<PHINode>(NormalDest->begin()) &&
1909            NormalDest->getUniquePredecessor() &&
1910            "can't safely insert in this block!");
1911 
1912     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1913 
1914     // gc relocates will be generated later as if it were regular call
1915     // statepoint
1916   }
1917   assert(Token && "Should be set in one of the above branches!");
1918 
1919   if (IsDeoptimize) {
1920     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1921     // transform the tail-call like structure to a call to a void function
1922     // followed by unreachable to get better codegen.
1923     Replacements.push_back(
1924         DeferredReplacement::createDeoptimizeReplacement(Call));
1925   } else {
1926     Token->setName("statepoint_token");
1927     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1928       StringRef Name = Call->hasName() ? Call->getName() : "";
1929       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1930       GCResult->setAttributes(
1931           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1932                              Call->getAttributes().getRetAttrs()));
1933 
1934       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1935       // live set of some other safepoint, in which case that safepoint's
1936       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1937       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1938       // after the live sets have been made explicit in the IR, and we no longer
1939       // have raw pointers to worry about.
1940       Replacements.emplace_back(
1941           DeferredReplacement::createRAUW(Call, GCResult));
1942     } else {
1943       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1944     }
1945   }
1946 
1947   Result.StatepointToken = Token;
1948 
1949   // Second, create a gc.relocate for every live variable
1950   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1951 }
1952 
1953 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1954 // which make the relocations happening at this safepoint explicit.
1955 //
1956 // WARNING: Does not do any fixup to adjust users of the original live
1957 // values.  That's the callers responsibility.
1958 static void
1959 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1960                        PartiallyConstructedSafepointRecord &Result,
1961                        std::vector<DeferredReplacement> &Replacements,
1962                        const PointerToBaseTy &PointerToBase) {
1963   const auto &LiveSet = Result.LiveSet;
1964 
1965   // Convert to vector for efficient cross referencing.
1966   SmallVector<Value *, 64> BaseVec, LiveVec;
1967   LiveVec.reserve(LiveSet.size());
1968   BaseVec.reserve(LiveSet.size());
1969   for (Value *L : LiveSet) {
1970     LiveVec.push_back(L);
1971     assert(PointerToBase.count(L));
1972     Value *Base = PointerToBase.find(L)->second;
1973     BaseVec.push_back(Base);
1974   }
1975   assert(LiveVec.size() == BaseVec.size());
1976 
1977   // Do the actual rewriting and delete the old statepoint
1978   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements,
1979                              PointerToBase);
1980 }
1981 
1982 // Helper function for the relocationViaAlloca.
1983 //
1984 // It receives iterator to the statepoint gc relocates and emits a store to the
1985 // assigned location (via allocaMap) for the each one of them.  It adds the
1986 // visited values into the visitedLiveValues set, which we will later use them
1987 // for validation checking.
1988 static void
1989 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1990                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1991                        DenseSet<Value *> &VisitedLiveValues) {
1992   for (User *U : GCRelocs) {
1993     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1994     if (!Relocate)
1995       continue;
1996 
1997     Value *OriginalValue = Relocate->getDerivedPtr();
1998     assert(AllocaMap.count(OriginalValue));
1999     Value *Alloca = AllocaMap[OriginalValue];
2000 
2001     // Emit store into the related alloca
2002     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
2003     // the correct type according to alloca.
2004     assert(Relocate->getNextNode() &&
2005            "Should always have one since it's not a terminator");
2006     IRBuilder<> Builder(Relocate->getNextNode());
2007     Value *CastedRelocatedValue =
2008       Builder.CreateBitCast(Relocate,
2009                             cast<AllocaInst>(Alloca)->getAllocatedType(),
2010                             suffixed_name_or(Relocate, ".casted", ""));
2011 
2012     new StoreInst(CastedRelocatedValue, Alloca,
2013                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
2014 
2015 #ifndef NDEBUG
2016     VisitedLiveValues.insert(OriginalValue);
2017 #endif
2018   }
2019 }
2020 
2021 // Helper function for the "relocationViaAlloca". Similar to the
2022 // "insertRelocationStores" but works for rematerialized values.
2023 static void insertRematerializationStores(
2024     const RematerializedValueMapTy &RematerializedValues,
2025     DenseMap<Value *, AllocaInst *> &AllocaMap,
2026     DenseSet<Value *> &VisitedLiveValues) {
2027   for (auto RematerializedValuePair: RematerializedValues) {
2028     Instruction *RematerializedValue = RematerializedValuePair.first;
2029     Value *OriginalValue = RematerializedValuePair.second;
2030 
2031     assert(AllocaMap.count(OriginalValue) &&
2032            "Can not find alloca for rematerialized value");
2033     Value *Alloca = AllocaMap[OriginalValue];
2034 
2035     new StoreInst(RematerializedValue, Alloca,
2036                   RematerializedValue->getNextNode());
2037 
2038 #ifndef NDEBUG
2039     VisitedLiveValues.insert(OriginalValue);
2040 #endif
2041   }
2042 }
2043 
2044 /// Do all the relocation update via allocas and mem2reg
2045 static void relocationViaAlloca(
2046     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
2047     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
2048 #ifndef NDEBUG
2049   // record initial number of (static) allocas; we'll check we have the same
2050   // number when we get done.
2051   int InitialAllocaNum = 0;
2052   for (Instruction &I : F.getEntryBlock())
2053     if (isa<AllocaInst>(I))
2054       InitialAllocaNum++;
2055 #endif
2056 
2057   // TODO-PERF: change data structures, reserve
2058   DenseMap<Value *, AllocaInst *> AllocaMap;
2059   SmallVector<AllocaInst *, 200> PromotableAllocas;
2060   // Used later to chack that we have enough allocas to store all values
2061   std::size_t NumRematerializedValues = 0;
2062   PromotableAllocas.reserve(Live.size());
2063 
2064   // Emit alloca for "LiveValue" and record it in "allocaMap" and
2065   // "PromotableAllocas"
2066   const DataLayout &DL = F.getParent()->getDataLayout();
2067   auto emitAllocaFor = [&](Value *LiveValue) {
2068     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
2069                                         DL.getAllocaAddrSpace(), "",
2070                                         F.getEntryBlock().getFirstNonPHI());
2071     AllocaMap[LiveValue] = Alloca;
2072     PromotableAllocas.push_back(Alloca);
2073   };
2074 
2075   // Emit alloca for each live gc pointer
2076   for (Value *V : Live)
2077     emitAllocaFor(V);
2078 
2079   // Emit allocas for rematerialized values
2080   for (const auto &Info : Records)
2081     for (auto RematerializedValuePair : Info.RematerializedValues) {
2082       Value *OriginalValue = RematerializedValuePair.second;
2083       if (AllocaMap.count(OriginalValue) != 0)
2084         continue;
2085 
2086       emitAllocaFor(OriginalValue);
2087       ++NumRematerializedValues;
2088     }
2089 
2090   // The next two loops are part of the same conceptual operation.  We need to
2091   // insert a store to the alloca after the original def and at each
2092   // redefinition.  We need to insert a load before each use.  These are split
2093   // into distinct loops for performance reasons.
2094 
2095   // Update gc pointer after each statepoint: either store a relocated value or
2096   // null (if no relocated value was found for this gc pointer and it is not a
2097   // gc_result).  This must happen before we update the statepoint with load of
2098   // alloca otherwise we lose the link between statepoint and old def.
2099   for (const auto &Info : Records) {
2100     Value *Statepoint = Info.StatepointToken;
2101 
2102     // This will be used for consistency check
2103     DenseSet<Value *> VisitedLiveValues;
2104 
2105     // Insert stores for normal statepoint gc relocates
2106     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
2107 
2108     // In case if it was invoke statepoint
2109     // we will insert stores for exceptional path gc relocates.
2110     if (isa<InvokeInst>(Statepoint)) {
2111       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
2112                              VisitedLiveValues);
2113     }
2114 
2115     // Do similar thing with rematerialized values
2116     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
2117                                   VisitedLiveValues);
2118 
2119     if (ClobberNonLive) {
2120       // As a debugging aid, pretend that an unrelocated pointer becomes null at
2121       // the gc.statepoint.  This will turn some subtle GC problems into
2122       // slightly easier to debug SEGVs.  Note that on large IR files with
2123       // lots of gc.statepoints this is extremely costly both memory and time
2124       // wise.
2125       SmallVector<AllocaInst *, 64> ToClobber;
2126       for (auto Pair : AllocaMap) {
2127         Value *Def = Pair.first;
2128         AllocaInst *Alloca = Pair.second;
2129 
2130         // This value was relocated
2131         if (VisitedLiveValues.count(Def)) {
2132           continue;
2133         }
2134         ToClobber.push_back(Alloca);
2135       }
2136 
2137       auto InsertClobbersAt = [&](Instruction *IP) {
2138         for (auto *AI : ToClobber) {
2139           auto AT = AI->getAllocatedType();
2140           Constant *CPN;
2141           if (AT->isVectorTy())
2142             CPN = ConstantAggregateZero::get(AT);
2143           else
2144             CPN = ConstantPointerNull::get(cast<PointerType>(AT));
2145           new StoreInst(CPN, AI, IP);
2146         }
2147       };
2148 
2149       // Insert the clobbering stores.  These may get intermixed with the
2150       // gc.results and gc.relocates, but that's fine.
2151       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
2152         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
2153         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
2154       } else {
2155         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
2156       }
2157     }
2158   }
2159 
2160   // Update use with load allocas and add store for gc_relocated.
2161   for (auto Pair : AllocaMap) {
2162     Value *Def = Pair.first;
2163     AllocaInst *Alloca = Pair.second;
2164 
2165     // We pre-record the uses of allocas so that we dont have to worry about
2166     // later update that changes the user information..
2167 
2168     SmallVector<Instruction *, 20> Uses;
2169     // PERF: trade a linear scan for repeated reallocation
2170     Uses.reserve(Def->getNumUses());
2171     for (User *U : Def->users()) {
2172       if (!isa<ConstantExpr>(U)) {
2173         // If the def has a ConstantExpr use, then the def is either a
2174         // ConstantExpr use itself or null.  In either case
2175         // (recursively in the first, directly in the second), the oop
2176         // it is ultimately dependent on is null and this particular
2177         // use does not need to be fixed up.
2178         Uses.push_back(cast<Instruction>(U));
2179       }
2180     }
2181 
2182     llvm::sort(Uses);
2183     auto Last = std::unique(Uses.begin(), Uses.end());
2184     Uses.erase(Last, Uses.end());
2185 
2186     for (Instruction *Use : Uses) {
2187       if (isa<PHINode>(Use)) {
2188         PHINode *Phi = cast<PHINode>(Use);
2189         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
2190           if (Def == Phi->getIncomingValue(i)) {
2191             LoadInst *Load =
2192                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2193                              Phi->getIncomingBlock(i)->getTerminator());
2194             Phi->setIncomingValue(i, Load);
2195           }
2196         }
2197       } else {
2198         LoadInst *Load =
2199             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2200         Use->replaceUsesOfWith(Def, Load);
2201       }
2202     }
2203 
2204     // Emit store for the initial gc value.  Store must be inserted after load,
2205     // otherwise store will be in alloca's use list and an extra load will be
2206     // inserted before it.
2207     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2208                                      DL.getABITypeAlign(Def->getType()));
2209     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2210       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2211         // InvokeInst is a terminator so the store need to be inserted into its
2212         // normal destination block.
2213         BasicBlock *NormalDest = Invoke->getNormalDest();
2214         Store->insertBefore(NormalDest->getFirstNonPHI());
2215       } else {
2216         assert(!Inst->isTerminator() &&
2217                "The only terminator that can produce a value is "
2218                "InvokeInst which is handled above.");
2219         Store->insertAfter(Inst);
2220       }
2221     } else {
2222       assert(isa<Argument>(Def));
2223       Store->insertAfter(cast<Instruction>(Alloca));
2224     }
2225   }
2226 
2227   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2228          "we must have the same allocas with lives");
2229   (void) NumRematerializedValues;
2230   if (!PromotableAllocas.empty()) {
2231     // Apply mem2reg to promote alloca to SSA
2232     PromoteMemToReg(PromotableAllocas, DT);
2233   }
2234 
2235 #ifndef NDEBUG
2236   for (auto &I : F.getEntryBlock())
2237     if (isa<AllocaInst>(I))
2238       InitialAllocaNum--;
2239   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2240 #endif
2241 }
2242 
2243 /// Implement a unique function which doesn't require we sort the input
2244 /// vector.  Doing so has the effect of changing the output of a couple of
2245 /// tests in ways which make them less useful in testing fused safepoints.
2246 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2247   SmallSet<T, 8> Seen;
2248   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2249 }
2250 
2251 /// Insert holders so that each Value is obviously live through the entire
2252 /// lifetime of the call.
2253 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2254                                  SmallVectorImpl<CallInst *> &Holders) {
2255   if (Values.empty())
2256     // No values to hold live, might as well not insert the empty holder
2257     return;
2258 
2259   Module *M = Call->getModule();
2260   // Use a dummy vararg function to actually hold the values live
2261   FunctionCallee Func = M->getOrInsertFunction(
2262       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2263   if (isa<CallInst>(Call)) {
2264     // For call safepoints insert dummy calls right after safepoint
2265     Holders.push_back(
2266         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2267     return;
2268   }
2269   // For invoke safepooints insert dummy calls both in normal and
2270   // exceptional destination blocks
2271   auto *II = cast<InvokeInst>(Call);
2272   Holders.push_back(CallInst::Create(
2273       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2274   Holders.push_back(CallInst::Create(
2275       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2276 }
2277 
2278 static void findLiveReferences(
2279     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2280     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2281   GCPtrLivenessData OriginalLivenessData;
2282   computeLiveInValues(DT, F, OriginalLivenessData);
2283   for (size_t i = 0; i < records.size(); i++) {
2284     struct PartiallyConstructedSafepointRecord &info = records[i];
2285     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2286   }
2287 }
2288 
2289 // Helper function for the "rematerializeLiveValues". It walks use chain
2290 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2291 // the base or a value it cannot process. Only "simple" values are processed
2292 // (currently it is GEP's and casts). The returned root is  examined by the
2293 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2294 // with all visited values.
2295 static Value* findRematerializableChainToBasePointer(
2296   SmallVectorImpl<Instruction*> &ChainToBase,
2297   Value *CurrentValue) {
2298   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2299     ChainToBase.push_back(GEP);
2300     return findRematerializableChainToBasePointer(ChainToBase,
2301                                                   GEP->getPointerOperand());
2302   }
2303 
2304   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2305     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2306       return CI;
2307 
2308     ChainToBase.push_back(CI);
2309     return findRematerializableChainToBasePointer(ChainToBase,
2310                                                   CI->getOperand(0));
2311   }
2312 
2313   // We have reached the root of the chain, which is either equal to the base or
2314   // is the first unsupported value along the use chain.
2315   return CurrentValue;
2316 }
2317 
2318 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2319 // chain we are going to rematerialize.
2320 static InstructionCost
2321 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2322                        TargetTransformInfo &TTI) {
2323   InstructionCost Cost = 0;
2324 
2325   for (Instruction *Instr : Chain) {
2326     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2327       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2328              "non noop cast is found during rematerialization");
2329 
2330       Type *SrcTy = CI->getOperand(0)->getType();
2331       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2332                                    TTI::getCastContextHint(CI),
2333                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2334 
2335     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2336       // Cost of the address calculation
2337       Type *ValTy = GEP->getSourceElementType();
2338       Cost += TTI.getAddressComputationCost(ValTy);
2339 
2340       // And cost of the GEP itself
2341       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2342       //       allowed for the external usage)
2343       if (!GEP->hasAllConstantIndices())
2344         Cost += 2;
2345 
2346     } else {
2347       llvm_unreachable("unsupported instruction type during rematerialization");
2348     }
2349   }
2350 
2351   return Cost;
2352 }
2353 
2354 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2355   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2356   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2357       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2358     return false;
2359   // Map of incoming values and their corresponding basic blocks of
2360   // OrigRootPhi.
2361   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2362   for (unsigned i = 0; i < PhiNum; i++)
2363     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2364         OrigRootPhi.getIncomingBlock(i);
2365 
2366   // Both current and base PHIs should have same incoming values and
2367   // the same basic blocks corresponding to the incoming values.
2368   for (unsigned i = 0; i < PhiNum; i++) {
2369     auto CIVI =
2370         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2371     if (CIVI == CurrentIncomingValues.end())
2372       return false;
2373     BasicBlock *CurrentIncomingBB = CIVI->second;
2374     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2375       return false;
2376   }
2377   return true;
2378 }
2379 
2380 // Find derived pointers that can be recomputed cheap enough and fill
2381 // RematerizationCandidates with such candidates.
2382 static void
2383 findRematerializationCandidates(PointerToBaseTy PointerToBase,
2384                                 RematCandTy &RematerizationCandidates,
2385                                 TargetTransformInfo &TTI) {
2386   const unsigned int ChainLengthThreshold = 10;
2387 
2388   for (auto P2B : PointerToBase) {
2389     auto *Derived = P2B.first;
2390     auto *Base = P2B.second;
2391     // Consider only derived pointers.
2392     if (Derived == Base)
2393       continue;
2394 
2395     // For each live pointer find its defining chain.
2396     SmallVector<Instruction *, 3> ChainToBase;
2397     Value *RootOfChain =
2398         findRematerializableChainToBasePointer(ChainToBase, Derived);
2399 
2400     // Nothing to do, or chain is too long
2401     if ( ChainToBase.size() == 0 ||
2402         ChainToBase.size() > ChainLengthThreshold)
2403       continue;
2404 
2405     // Handle the scenario where the RootOfChain is not equal to the
2406     // Base Value, but they are essentially the same phi values.
2407     if (RootOfChain != PointerToBase[Derived]) {
2408       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2409       PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]);
2410       if (!OrigRootPhi || !AlternateRootPhi)
2411         continue;
2412       // PHI nodes that have the same incoming values, and belonging to the same
2413       // basic blocks are essentially the same SSA value.  When the original phi
2414       // has incoming values with different base pointers, the original phi is
2415       // marked as conflict, and an additional `AlternateRootPhi` with the same
2416       // incoming values get generated by the findBasePointer function. We need
2417       // to identify the newly generated AlternateRootPhi (.base version of phi)
2418       // and RootOfChain (the original phi node itself) are the same, so that we
2419       // can rematerialize the gep and casts. This is a workaround for the
2420       // deficiency in the findBasePointer algorithm.
2421       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2422         continue;
2423     }
2424     // Compute cost of this chain.
2425     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2426     // TODO: We can also account for cases when we will be able to remove some
2427     //       of the rematerialized values by later optimization passes. I.e if
2428     //       we rematerialized several intersecting chains. Or if original values
2429     //       don't have any uses besides this statepoint.
2430 
2431     // Ok, there is a candidate.
2432     RematerizlizationCandidateRecord Record;
2433     Record.ChainToBase = ChainToBase;
2434     Record.RootOfChain = RootOfChain;
2435     Record.Cost = Cost;
2436     RematerizationCandidates.insert({ Derived, Record });
2437   }
2438 }
2439 
2440 // Try to rematerialize derived pointers immediately before their uses
2441 // (instead of rematerializing after every statepoint it is live through).
2442 // This can be beneficial when derived pointer is live across many
2443 // statepoints, but uses are rare.
2444 static void rematerializeLiveValuesAtUses(
2445     RematCandTy &RematerizationCandidates,
2446     MutableArrayRef<PartiallyConstructedSafepointRecord> Records,
2447     PointerToBaseTy &PointerToBase) {
2448   if (!RematDerivedAtUses)
2449     return;
2450 
2451   SmallVector<Instruction *, 32> LiveValuesToBeDeleted;
2452 
2453   LLVM_DEBUG(dbgs() << "Rematerialize derived pointers at uses, "
2454                     << "Num statepoints: " << Records.size() << '\n');
2455 
2456   for (auto &It : RematerizationCandidates) {
2457     Instruction *Cand = cast<Instruction>(It.first);
2458     auto &Record = It.second;
2459 
2460     if (Record.Cost >= RematerializationThreshold)
2461       continue;
2462 
2463     if (Cand->user_empty())
2464       continue;
2465 
2466     if (Cand->hasOneUse())
2467       if (auto *U = dyn_cast<Instruction>(Cand->getUniqueUndroppableUser()))
2468         if (U->getParent() == Cand->getParent())
2469           continue;
2470 
2471     // Rematerialization before PHI nodes is not implemented.
2472     if (llvm::any_of(Cand->users(),
2473                      [](const auto *U) { return isa<PHINode>(U); }))
2474       continue;
2475 
2476     LLVM_DEBUG(dbgs() << "Trying cand " << *Cand << " ... ");
2477 
2478     // Count of rematerialization instructions we introduce is equal to number
2479     // of candidate uses.
2480     // Count of rematerialization instructions we eliminate is equal to number
2481     // of statepoints it is live through.
2482     // Consider transformation profitable if latter is greater than former
2483     // (in other words, we create less than eliminate).
2484     unsigned NumLiveStatepoints = llvm::count_if(
2485         Records, [Cand](const auto &R) { return R.LiveSet.contains(Cand); });
2486     unsigned NumUses = Cand->getNumUses();
2487 
2488     LLVM_DEBUG(dbgs() << "Num uses: " << NumUses << " Num live statepoints: "
2489                       << NumLiveStatepoints << " ");
2490 
2491     if (NumLiveStatepoints < NumUses) {
2492       LLVM_DEBUG(dbgs() << "not profitable\n");
2493       continue;
2494     }
2495 
2496     // If rematerialization is 'free', then favor rematerialization at
2497     // uses as it generally shortens live ranges.
2498     // TODO: Short (size ==1) chains only?
2499     if (NumLiveStatepoints == NumUses && Record.Cost > 0) {
2500       LLVM_DEBUG(dbgs() << "not profitable\n");
2501       continue;
2502     }
2503 
2504     LLVM_DEBUG(dbgs() << "looks profitable\n");
2505 
2506     // ChainToBase may contain another remat candidate (as a sub chain) which
2507     // has been rewritten by now. Need to recollect chain to have up to date
2508     // value.
2509     // TODO: sort records in findRematerializationCandidates() in
2510     // decreasing chain size order?
2511     if (Record.ChainToBase.size() > 1) {
2512       Record.ChainToBase.clear();
2513       findRematerializableChainToBasePointer(Record.ChainToBase, Cand);
2514     }
2515 
2516     // Current rematerialization algorithm is very simple: we rematerialize
2517     // immediately before EVERY use, even if there are several uses in same
2518     // block or if use is local to Cand Def. The reason is that this allows
2519     // us to avoid recomputing liveness without complicated analysis:
2520     // - If we did not eliminate all uses of original Candidate, we do not
2521     //   know exaclty in what BBs it is still live.
2522     // - If we rematerialize once per BB, we need to find proper insertion
2523     //   place (first use in block, but after Def) and analyze if there is
2524     //   statepoint between uses in the block.
2525     while (!Cand->user_empty()) {
2526       Instruction *UserI = cast<Instruction>(*Cand->user_begin());
2527       Instruction *RematChain = rematerializeChain(
2528           Record.ChainToBase, UserI, Record.RootOfChain, PointerToBase[Cand]);
2529       UserI->replaceUsesOfWith(Cand, RematChain);
2530       PointerToBase[RematChain] = PointerToBase[Cand];
2531     }
2532     LiveValuesToBeDeleted.push_back(Cand);
2533   }
2534 
2535   LLVM_DEBUG(dbgs() << "Rematerialized " << LiveValuesToBeDeleted.size()
2536                     << " derived pointers\n");
2537   for (auto *Cand : LiveValuesToBeDeleted) {
2538     assert(Cand->use_empty() && "Unexpected user remain");
2539     RematerizationCandidates.erase(Cand);
2540     for (auto &R : Records) {
2541       assert(!R.LiveSet.contains(Cand) ||
2542              R.LiveSet.contains(PointerToBase[Cand]));
2543       R.LiveSet.remove(Cand);
2544     }
2545   }
2546 
2547   // Recollect not rematerialized chains - we might have rewritten
2548   // their sub-chains.
2549   if (!LiveValuesToBeDeleted.empty()) {
2550     for (auto &P : RematerizationCandidates) {
2551       auto &R = P.second;
2552       if (R.ChainToBase.size() > 1) {
2553         R.ChainToBase.clear();
2554         findRematerializableChainToBasePointer(R.ChainToBase, P.first);
2555       }
2556     }
2557   }
2558 }
2559 
2560 // From the statepoint live set pick values that are cheaper to recompute then
2561 // to relocate. Remove this values from the live set, rematerialize them after
2562 // statepoint and record them in "Info" structure. Note that similar to
2563 // relocated values we don't do any user adjustments here.
2564 static void rematerializeLiveValues(CallBase *Call,
2565                                     PartiallyConstructedSafepointRecord &Info,
2566                                     PointerToBaseTy &PointerToBase,
2567                                     RematCandTy &RematerizationCandidates,
2568                                     TargetTransformInfo &TTI) {
2569   // Record values we are going to delete from this statepoint live set.
2570   // We can not di this in following loop due to iterator invalidation.
2571   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2572 
2573   for (Value *LiveValue : Info.LiveSet) {
2574     auto It = RematerizationCandidates.find(LiveValue);
2575     if (It == RematerizationCandidates.end())
2576       continue;
2577 
2578     RematerizlizationCandidateRecord &Record = It->second;
2579 
2580     InstructionCost Cost = Record.Cost;
2581     // For invokes we need to rematerialize each chain twice - for normal and
2582     // for unwind basic blocks. Model this by multiplying cost by two.
2583     if (isa<InvokeInst>(Call))
2584       Cost *= 2;
2585 
2586     // If it's too expensive - skip it.
2587     if (Cost >= RematerializationThreshold)
2588       continue;
2589 
2590     // Remove value from the live set
2591     LiveValuesToBeDeleted.push_back(LiveValue);
2592 
2593     // Clone instructions and record them inside "Info" structure.
2594 
2595     // Different cases for calls and invokes. For invokes we need to clone
2596     // instructions both on normal and unwind path.
2597     if (isa<CallInst>(Call)) {
2598       Instruction *InsertBefore = Call->getNextNode();
2599       assert(InsertBefore);
2600       Instruction *RematerializedValue =
2601           rematerializeChain(Record.ChainToBase, InsertBefore,
2602                              Record.RootOfChain, PointerToBase[LiveValue]);
2603       Info.RematerializedValues[RematerializedValue] = LiveValue;
2604     } else {
2605       auto *Invoke = cast<InvokeInst>(Call);
2606 
2607       Instruction *NormalInsertBefore =
2608           &*Invoke->getNormalDest()->getFirstInsertionPt();
2609       Instruction *UnwindInsertBefore =
2610           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2611 
2612       Instruction *NormalRematerializedValue =
2613           rematerializeChain(Record.ChainToBase, NormalInsertBefore,
2614                              Record.RootOfChain, PointerToBase[LiveValue]);
2615       Instruction *UnwindRematerializedValue =
2616           rematerializeChain(Record.ChainToBase, UnwindInsertBefore,
2617                              Record.RootOfChain, PointerToBase[LiveValue]);
2618 
2619       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2620       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2621     }
2622   }
2623 
2624   // Remove rematerialized values from the live set.
2625   for (auto *LiveValue: LiveValuesToBeDeleted) {
2626     Info.LiveSet.remove(LiveValue);
2627   }
2628 }
2629 
2630 static bool inlineGetBaseAndOffset(Function &F,
2631                                    SmallVectorImpl<CallInst *> &Intrinsics,
2632                                    DefiningValueMapTy &DVCache,
2633                                    IsKnownBaseMapTy &KnownBases) {
2634   auto &Context = F.getContext();
2635   auto &DL = F.getParent()->getDataLayout();
2636   bool Changed = false;
2637 
2638   for (auto *Callsite : Intrinsics)
2639     switch (Callsite->getIntrinsicID()) {
2640     case Intrinsic::experimental_gc_get_pointer_base: {
2641       Changed = true;
2642       Value *Base =
2643           findBasePointer(Callsite->getOperand(0), DVCache, KnownBases);
2644       assert(!DVCache.count(Callsite));
2645       auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast(
2646           Base, Callsite->getType(), suffixed_name_or(Base, ".cast", ""));
2647       if (BaseBC != Base)
2648         DVCache[BaseBC] = Base;
2649       Callsite->replaceAllUsesWith(BaseBC);
2650       if (!BaseBC->hasName())
2651         BaseBC->takeName(Callsite);
2652       Callsite->eraseFromParent();
2653       break;
2654     }
2655     case Intrinsic::experimental_gc_get_pointer_offset: {
2656       Changed = true;
2657       Value *Derived = Callsite->getOperand(0);
2658       Value *Base = findBasePointer(Derived, DVCache, KnownBases);
2659       assert(!DVCache.count(Callsite));
2660       unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
2661       unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
2662       IRBuilder<> Builder(Callsite);
2663       Value *BaseInt =
2664           Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize),
2665                                  suffixed_name_or(Base, ".int", ""));
2666       Value *DerivedInt =
2667           Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize),
2668                                  suffixed_name_or(Derived, ".int", ""));
2669       Value *Offset = Builder.CreateSub(DerivedInt, BaseInt);
2670       Callsite->replaceAllUsesWith(Offset);
2671       Offset->takeName(Callsite);
2672       Callsite->eraseFromParent();
2673       break;
2674     }
2675     default:
2676       llvm_unreachable("Unknown intrinsic");
2677     }
2678 
2679   return Changed;
2680 }
2681 
2682 static bool insertParsePoints(Function &F, DominatorTree &DT,
2683                               TargetTransformInfo &TTI,
2684                               SmallVectorImpl<CallBase *> &ToUpdate,
2685                               DefiningValueMapTy &DVCache,
2686                               IsKnownBaseMapTy &KnownBases) {
2687 #ifndef NDEBUG
2688   // Validate the input
2689   std::set<CallBase *> Uniqued;
2690   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2691   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2692 
2693   for (CallBase *Call : ToUpdate)
2694     assert(Call->getFunction() == &F);
2695 #endif
2696 
2697   // When inserting gc.relocates for invokes, we need to be able to insert at
2698   // the top of the successor blocks.  See the comment on
2699   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2700   // may restructure the CFG.
2701   for (CallBase *Call : ToUpdate) {
2702     auto *II = dyn_cast<InvokeInst>(Call);
2703     if (!II)
2704       continue;
2705     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2706     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2707   }
2708 
2709   // A list of dummy calls added to the IR to keep various values obviously
2710   // live in the IR.  We'll remove all of these when done.
2711   SmallVector<CallInst *, 64> Holders;
2712 
2713   // Insert a dummy call with all of the deopt operands we'll need for the
2714   // actual safepoint insertion as arguments.  This ensures reference operands
2715   // in the deopt argument list are considered live through the safepoint (and
2716   // thus makes sure they get relocated.)
2717   for (CallBase *Call : ToUpdate) {
2718     SmallVector<Value *, 64> DeoptValues;
2719 
2720     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2721       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2722              "support for FCA unimplemented");
2723       if (isHandledGCPointerType(Arg->getType()))
2724         DeoptValues.push_back(Arg);
2725     }
2726 
2727     insertUseHolderAfter(Call, DeoptValues, Holders);
2728   }
2729 
2730   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2731 
2732   // A) Identify all gc pointers which are statically live at the given call
2733   // site.
2734   findLiveReferences(F, DT, ToUpdate, Records);
2735 
2736   /// Global mapping from live pointers to a base-defining-value.
2737   PointerToBaseTy PointerToBase;
2738 
2739   // B) Find the base pointers for each live pointer
2740   for (size_t i = 0; i < Records.size(); i++) {
2741     PartiallyConstructedSafepointRecord &info = Records[i];
2742     findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases);
2743   }
2744   if (PrintBasePointers) {
2745     errs() << "Base Pairs (w/o Relocation):\n";
2746     for (auto &Pair : PointerToBase) {
2747       errs() << " derived ";
2748       Pair.first->printAsOperand(errs(), false);
2749       errs() << " base ";
2750       Pair.second->printAsOperand(errs(), false);
2751       errs() << "\n";
2752       ;
2753     }
2754   }
2755 
2756   // The base phi insertion logic (for any safepoint) may have inserted new
2757   // instructions which are now live at some safepoint.  The simplest such
2758   // example is:
2759   // loop:
2760   //   phi a  <-- will be a new base_phi here
2761   //   safepoint 1 <-- that needs to be live here
2762   //   gep a + 1
2763   //   safepoint 2
2764   //   br loop
2765   // We insert some dummy calls after each safepoint to definitely hold live
2766   // the base pointers which were identified for that safepoint.  We'll then
2767   // ask liveness for _every_ base inserted to see what is now live.  Then we
2768   // remove the dummy calls.
2769   Holders.reserve(Holders.size() + Records.size());
2770   for (size_t i = 0; i < Records.size(); i++) {
2771     PartiallyConstructedSafepointRecord &Info = Records[i];
2772 
2773     SmallVector<Value *, 128> Bases;
2774     for (auto *Derived : Info.LiveSet) {
2775       assert(PointerToBase.count(Derived) && "Missed base for derived pointer");
2776       Bases.push_back(PointerToBase[Derived]);
2777     }
2778 
2779     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2780   }
2781 
2782   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2783   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2784   // not the key issue.
2785   recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase);
2786 
2787   if (PrintBasePointers) {
2788     errs() << "Base Pairs: (w/Relocation)\n";
2789     for (auto Pair : PointerToBase) {
2790       errs() << " derived ";
2791       Pair.first->printAsOperand(errs(), false);
2792       errs() << " base ";
2793       Pair.second->printAsOperand(errs(), false);
2794       errs() << "\n";
2795     }
2796   }
2797 
2798   // It is possible that non-constant live variables have a constant base.  For
2799   // example, a GEP with a variable offset from a global.  In this case we can
2800   // remove it from the liveset.  We already don't add constants to the liveset
2801   // because we assume they won't move at runtime and the GC doesn't need to be
2802   // informed about them.  The same reasoning applies if the base is constant.
2803   // Note that the relocation placement code relies on this filtering for
2804   // correctness as it expects the base to be in the liveset, which isn't true
2805   // if the base is constant.
2806   for (auto &Info : Records) {
2807     Info.LiveSet.remove_if([&](Value *LiveV) {
2808       assert(PointerToBase.count(LiveV) && "Missed base for derived pointer");
2809       return isa<Constant>(PointerToBase[LiveV]);
2810     });
2811   }
2812 
2813   for (CallInst *CI : Holders)
2814     CI->eraseFromParent();
2815 
2816   Holders.clear();
2817 
2818   // Compute the cost of possible re-materialization of derived pointers.
2819   RematCandTy RematerizationCandidates;
2820   findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI);
2821 
2822   // In order to reduce live set of statepoint we might choose to rematerialize
2823   // some values instead of relocating them. This is purely an optimization and
2824   // does not influence correctness.
2825   // First try rematerialization at uses, then after statepoints.
2826   rematerializeLiveValuesAtUses(RematerizationCandidates, Records,
2827                                 PointerToBase);
2828   for (size_t i = 0; i < Records.size(); i++)
2829     rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase,
2830                             RematerizationCandidates, TTI);
2831 
2832   // We need this to safely RAUW and delete call or invoke return values that
2833   // may themselves be live over a statepoint.  For details, please see usage in
2834   // makeStatepointExplicitImpl.
2835   std::vector<DeferredReplacement> Replacements;
2836 
2837   // Now run through and replace the existing statepoints with new ones with
2838   // the live variables listed.  We do not yet update uses of the values being
2839   // relocated. We have references to live variables that need to
2840   // survive to the last iteration of this loop.  (By construction, the
2841   // previous statepoint can not be a live variable, thus we can and remove
2842   // the old statepoint calls as we go.)
2843   for (size_t i = 0; i < Records.size(); i++)
2844     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements,
2845                            PointerToBase);
2846 
2847   ToUpdate.clear(); // prevent accident use of invalid calls.
2848 
2849   for (auto &PR : Replacements)
2850     PR.doReplacement();
2851 
2852   Replacements.clear();
2853 
2854   for (auto &Info : Records) {
2855     // These live sets may contain state Value pointers, since we replaced calls
2856     // with operand bundles with calls wrapped in gc.statepoint, and some of
2857     // those calls may have been def'ing live gc pointers.  Clear these out to
2858     // avoid accidentally using them.
2859     //
2860     // TODO: We should create a separate data structure that does not contain
2861     // these live sets, and migrate to using that data structure from this point
2862     // onward.
2863     Info.LiveSet.clear();
2864   }
2865   PointerToBase.clear();
2866 
2867   // Do all the fixups of the original live variables to their relocated selves
2868   SmallVector<Value *, 128> Live;
2869   for (size_t i = 0; i < Records.size(); i++) {
2870     PartiallyConstructedSafepointRecord &Info = Records[i];
2871 
2872     // We can't simply save the live set from the original insertion.  One of
2873     // the live values might be the result of a call which needs a safepoint.
2874     // That Value* no longer exists and we need to use the new gc_result.
2875     // Thankfully, the live set is embedded in the statepoint (and updated), so
2876     // we just grab that.
2877     llvm::append_range(Live, Info.StatepointToken->gc_args());
2878 #ifndef NDEBUG
2879     // Do some basic validation checking on our liveness results before
2880     // performing relocation.  Relocation can and will turn mistakes in liveness
2881     // results into non-sensical code which is must harder to debug.
2882     // TODO: It would be nice to test consistency as well
2883     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2884            "statepoint must be reachable or liveness is meaningless");
2885     for (Value *V : Info.StatepointToken->gc_args()) {
2886       if (!isa<Instruction>(V))
2887         // Non-instruction values trivial dominate all possible uses
2888         continue;
2889       auto *LiveInst = cast<Instruction>(V);
2890       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2891              "unreachable values should never be live");
2892       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2893              "basic SSA liveness expectation violated by liveness analysis");
2894     }
2895 #endif
2896   }
2897   unique_unsorted(Live);
2898 
2899 #ifndef NDEBUG
2900   // Validation check
2901   for (auto *Ptr : Live)
2902     assert(isHandledGCPointerType(Ptr->getType()) &&
2903            "must be a gc pointer type");
2904 #endif
2905 
2906   relocationViaAlloca(F, DT, Live, Records);
2907   return !Records.empty();
2908 }
2909 
2910 // List of all parameter and return attributes which must be stripped when
2911 // lowering from the abstract machine model.  Note that we list attributes
2912 // here which aren't valid as return attributes, that is okay.
2913 static AttributeMask getParamAndReturnAttributesToRemove() {
2914   AttributeMask R;
2915   R.addAttribute(Attribute::Dereferenceable);
2916   R.addAttribute(Attribute::DereferenceableOrNull);
2917   R.addAttribute(Attribute::ReadNone);
2918   R.addAttribute(Attribute::ReadOnly);
2919   R.addAttribute(Attribute::WriteOnly);
2920   R.addAttribute(Attribute::NoAlias);
2921   R.addAttribute(Attribute::NoFree);
2922   return R;
2923 }
2924 
2925 static void stripNonValidAttributesFromPrototype(Function &F) {
2926   LLVMContext &Ctx = F.getContext();
2927 
2928   // Intrinsics are very delicate.  Lowering sometimes depends the presence
2929   // of certain attributes for correctness, but we may have also inferred
2930   // additional ones in the abstract machine model which need stripped.  This
2931   // assumes that the attributes defined in Intrinsic.td are conservatively
2932   // correct for both physical and abstract model.
2933   if (Intrinsic::ID id = F.getIntrinsicID()) {
2934     F.setAttributes(Intrinsic::getAttributes(Ctx, id));
2935     return;
2936   }
2937 
2938   AttributeMask R = getParamAndReturnAttributesToRemove();
2939   for (Argument &A : F.args())
2940     if (isa<PointerType>(A.getType()))
2941       F.removeParamAttrs(A.getArgNo(), R);
2942 
2943   if (isa<PointerType>(F.getReturnType()))
2944     F.removeRetAttrs(R);
2945 
2946   for (auto Attr : FnAttrsToStrip)
2947     F.removeFnAttr(Attr);
2948 }
2949 
2950 /// Certain metadata on instructions are invalid after running RS4GC.
2951 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2952 /// optimize functions. We drop such metadata on the instruction.
2953 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2954   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2955     return;
2956   // These are the attributes that are still valid on loads and stores after
2957   // RS4GC.
2958   // The metadata implying dereferenceability and noalias are (conservatively)
2959   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2960   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2961   // touch the entire heap including noalias objects. Note: The reasoning is
2962   // same as stripping the dereferenceability and noalias attributes that are
2963   // analogous to the metadata counterparts.
2964   // We also drop the invariant.load metadata on the load because that metadata
2965   // implies the address operand to the load points to memory that is never
2966   // changed once it became dereferenceable. This is no longer true after RS4GC.
2967   // Similar reasoning applies to invariant.group metadata, which applies to
2968   // loads within a group.
2969   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2970                          LLVMContext::MD_range,
2971                          LLVMContext::MD_alias_scope,
2972                          LLVMContext::MD_nontemporal,
2973                          LLVMContext::MD_nonnull,
2974                          LLVMContext::MD_align,
2975                          LLVMContext::MD_type};
2976 
2977   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2978   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2979 }
2980 
2981 static void stripNonValidDataFromBody(Function &F) {
2982   if (F.empty())
2983     return;
2984 
2985   LLVMContext &Ctx = F.getContext();
2986   MDBuilder Builder(Ctx);
2987 
2988   // Set of invariantstart instructions that we need to remove.
2989   // Use this to avoid invalidating the instruction iterator.
2990   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2991 
2992   for (Instruction &I : instructions(F)) {
2993     // invariant.start on memory location implies that the referenced memory
2994     // location is constant and unchanging. This is no longer true after
2995     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2996     // which frees the entire heap and the presence of invariant.start allows
2997     // the optimizer to sink the load of a memory location past a statepoint,
2998     // which is incorrect.
2999     if (auto *II = dyn_cast<IntrinsicInst>(&I))
3000       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
3001         InvariantStartInstructions.push_back(II);
3002         continue;
3003       }
3004 
3005     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
3006       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
3007       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
3008     }
3009 
3010     stripInvalidMetadataFromInstruction(I);
3011 
3012     AttributeMask R = getParamAndReturnAttributesToRemove();
3013     if (auto *Call = dyn_cast<CallBase>(&I)) {
3014       for (int i = 0, e = Call->arg_size(); i != e; i++)
3015         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
3016           Call->removeParamAttrs(i, R);
3017       if (isa<PointerType>(Call->getType()))
3018         Call->removeRetAttrs(R);
3019     }
3020   }
3021 
3022   // Delete the invariant.start instructions and RAUW undef.
3023   for (auto *II : InvariantStartInstructions) {
3024     II->replaceAllUsesWith(UndefValue::get(II->getType()));
3025     II->eraseFromParent();
3026   }
3027 }
3028 
3029 /// Returns true if this function should be rewritten by this pass.  The main
3030 /// point of this function is as an extension point for custom logic.
3031 static bool shouldRewriteStatepointsIn(Function &F) {
3032   // TODO: This should check the GCStrategy
3033   if (F.hasGC()) {
3034     const auto &FunctionGCName = F.getGC();
3035     const StringRef StatepointExampleName("statepoint-example");
3036     const StringRef CoreCLRName("coreclr");
3037     return (StatepointExampleName == FunctionGCName) ||
3038            (CoreCLRName == FunctionGCName);
3039   } else
3040     return false;
3041 }
3042 
3043 static void stripNonValidData(Module &M) {
3044 #ifndef NDEBUG
3045   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
3046 #endif
3047 
3048   for (Function &F : M)
3049     stripNonValidAttributesFromPrototype(F);
3050 
3051   for (Function &F : M)
3052     stripNonValidDataFromBody(F);
3053 }
3054 
3055 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
3056                                             TargetTransformInfo &TTI,
3057                                             const TargetLibraryInfo &TLI) {
3058   assert(!F.isDeclaration() && !F.empty() &&
3059          "need function body to rewrite statepoints in");
3060   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
3061 
3062   auto NeedsRewrite = [&TLI](Instruction &I) {
3063     if (const auto *Call = dyn_cast<CallBase>(&I)) {
3064       if (isa<GCStatepointInst>(Call))
3065         return false;
3066       if (callsGCLeafFunction(Call, TLI))
3067         return false;
3068 
3069       // Normally it's up to the frontend to make sure that non-leaf calls also
3070       // have proper deopt state if it is required. We make an exception for
3071       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
3072       // these are non-leaf by default. They might be generated by the optimizer
3073       // which doesn't know how to produce a proper deopt state. So if we see a
3074       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
3075       // copy and don't produce a statepoint.
3076       if (!AllowStatepointWithNoDeoptInfo &&
3077           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
3078         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
3079                "Don't expect any other calls here!");
3080         return false;
3081       }
3082       return true;
3083     }
3084     return false;
3085   };
3086 
3087   // Delete any unreachable statepoints so that we don't have unrewritten
3088   // statepoints surviving this pass.  This makes testing easier and the
3089   // resulting IR less confusing to human readers.
3090   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
3091   bool MadeChange = removeUnreachableBlocks(F, &DTU);
3092   // Flush the Dominator Tree.
3093   DTU.getDomTree();
3094 
3095   // Gather all the statepoints which need rewritten.  Be careful to only
3096   // consider those in reachable code since we need to ask dominance queries
3097   // when rewriting.  We'll delete the unreachable ones in a moment.
3098   SmallVector<CallBase *, 64> ParsePointNeeded;
3099   SmallVector<CallInst *, 64> Intrinsics;
3100   for (Instruction &I : instructions(F)) {
3101     // TODO: only the ones with the flag set!
3102     if (NeedsRewrite(I)) {
3103       // NOTE removeUnreachableBlocks() is stronger than
3104       // DominatorTree::isReachableFromEntry(). In other words
3105       // removeUnreachableBlocks can remove some blocks for which
3106       // isReachableFromEntry() returns true.
3107       assert(DT.isReachableFromEntry(I.getParent()) &&
3108             "no unreachable blocks expected");
3109       ParsePointNeeded.push_back(cast<CallBase>(&I));
3110     }
3111     if (auto *CI = dyn_cast<CallInst>(&I))
3112       if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base ||
3113           CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset)
3114         Intrinsics.emplace_back(CI);
3115   }
3116 
3117   // Return early if no work to do.
3118   if (ParsePointNeeded.empty() && Intrinsics.empty())
3119     return MadeChange;
3120 
3121   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
3122   // These are created by LCSSA.  They have the effect of increasing the size
3123   // of liveness sets for no good reason.  It may be harder to do this post
3124   // insertion since relocations and base phis can confuse things.
3125   for (BasicBlock &BB : F)
3126     if (BB.getUniquePredecessor())
3127       MadeChange |= FoldSingleEntryPHINodes(&BB);
3128 
3129   // Before we start introducing relocations, we want to tweak the IR a bit to
3130   // avoid unfortunate code generation effects.  The main example is that we
3131   // want to try to make sure the comparison feeding a branch is after any
3132   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
3133   // values feeding a branch after relocation.  This is semantically correct,
3134   // but results in extra register pressure since both the pre-relocation and
3135   // post-relocation copies must be available in registers.  For code without
3136   // relocations this is handled elsewhere, but teaching the scheduler to
3137   // reverse the transform we're about to do would be slightly complex.
3138   // Note: This may extend the live range of the inputs to the icmp and thus
3139   // increase the liveset of any statepoint we move over.  This is profitable
3140   // as long as all statepoints are in rare blocks.  If we had in-register
3141   // lowering for live values this would be a much safer transform.
3142   auto getConditionInst = [](Instruction *TI) -> Instruction * {
3143     if (auto *BI = dyn_cast<BranchInst>(TI))
3144       if (BI->isConditional())
3145         return dyn_cast<Instruction>(BI->getCondition());
3146     // TODO: Extend this to handle switches
3147     return nullptr;
3148   };
3149   for (BasicBlock &BB : F) {
3150     Instruction *TI = BB.getTerminator();
3151     if (auto *Cond = getConditionInst(TI))
3152       // TODO: Handle more than just ICmps here.  We should be able to move
3153       // most instructions without side effects or memory access.
3154       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
3155         MadeChange = true;
3156         Cond->moveBefore(TI);
3157       }
3158   }
3159 
3160   // Nasty workaround - The base computation code in the main algorithm doesn't
3161   // consider the fact that a GEP can be used to convert a scalar to a vector.
3162   // The right fix for this is to integrate GEPs into the base rewriting
3163   // algorithm properly, this is just a short term workaround to prevent
3164   // crashes by canonicalizing such GEPs into fully vector GEPs.
3165   for (Instruction &I : instructions(F)) {
3166     if (!isa<GetElementPtrInst>(I))
3167       continue;
3168 
3169     unsigned VF = 0;
3170     for (unsigned i = 0; i < I.getNumOperands(); i++)
3171       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
3172         assert(VF == 0 ||
3173                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
3174         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
3175       }
3176 
3177     // It's the vector to scalar traversal through the pointer operand which
3178     // confuses base pointer rewriting, so limit ourselves to that case.
3179     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
3180       IRBuilder<> B(&I);
3181       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
3182       I.setOperand(0, Splat);
3183       MadeChange = true;
3184     }
3185   }
3186 
3187   // Cache the 'defining value' relation used in the computation and
3188   // insertion of base phis and selects.  This ensures that we don't insert
3189   // large numbers of duplicate base_phis. Use one cache for both
3190   // inlineGetBaseAndOffset() and insertParsePoints().
3191   DefiningValueMapTy DVCache;
3192 
3193   // Mapping between a base values and a flag indicating whether it's a known
3194   // base or not.
3195   IsKnownBaseMapTy KnownBases;
3196 
3197   if (!Intrinsics.empty())
3198     // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding
3199     // live references.
3200     MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases);
3201 
3202   if (!ParsePointNeeded.empty())
3203     MadeChange |=
3204         insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases);
3205 
3206   return MadeChange;
3207 }
3208 
3209 // liveness computation via standard dataflow
3210 // -------------------------------------------------------------------
3211 
3212 // TODO: Consider using bitvectors for liveness, the set of potentially
3213 // interesting values should be small and easy to pre-compute.
3214 
3215 /// Compute the live-in set for the location rbegin starting from
3216 /// the live-out set of the basic block
3217 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
3218                                 BasicBlock::reverse_iterator End,
3219                                 SetVector<Value *> &LiveTmp) {
3220   for (auto &I : make_range(Begin, End)) {
3221     // KILL/Def - Remove this definition from LiveIn
3222     LiveTmp.remove(&I);
3223 
3224     // Don't consider *uses* in PHI nodes, we handle their contribution to
3225     // predecessor blocks when we seed the LiveOut sets
3226     if (isa<PHINode>(I))
3227       continue;
3228 
3229     // USE - Add to the LiveIn set for this instruction
3230     for (Value *V : I.operands()) {
3231       assert(!isUnhandledGCPointerType(V->getType()) &&
3232              "support for FCA unimplemented");
3233       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
3234         // The choice to exclude all things constant here is slightly subtle.
3235         // There are two independent reasons:
3236         // - We assume that things which are constant (from LLVM's definition)
3237         // do not move at runtime.  For example, the address of a global
3238         // variable is fixed, even though it's contents may not be.
3239         // - Second, we can't disallow arbitrary inttoptr constants even
3240         // if the language frontend does.  Optimization passes are free to
3241         // locally exploit facts without respect to global reachability.  This
3242         // can create sections of code which are dynamically unreachable and
3243         // contain just about anything.  (see constants.ll in tests)
3244         LiveTmp.insert(V);
3245       }
3246     }
3247   }
3248 }
3249 
3250 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
3251   for (BasicBlock *Succ : successors(BB)) {
3252     for (auto &I : *Succ) {
3253       PHINode *PN = dyn_cast<PHINode>(&I);
3254       if (!PN)
3255         break;
3256 
3257       Value *V = PN->getIncomingValueForBlock(BB);
3258       assert(!isUnhandledGCPointerType(V->getType()) &&
3259              "support for FCA unimplemented");
3260       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
3261         LiveTmp.insert(V);
3262     }
3263   }
3264 }
3265 
3266 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
3267   SetVector<Value *> KillSet;
3268   for (Instruction &I : *BB)
3269     if (isHandledGCPointerType(I.getType()))
3270       KillSet.insert(&I);
3271   return KillSet;
3272 }
3273 
3274 #ifndef NDEBUG
3275 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
3276 /// validation check for the liveness computation.
3277 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
3278                           Instruction *TI, bool TermOkay = false) {
3279   for (Value *V : Live) {
3280     if (auto *I = dyn_cast<Instruction>(V)) {
3281       // The terminator can be a member of the LiveOut set.  LLVM's definition
3282       // of instruction dominance states that V does not dominate itself.  As
3283       // such, we need to special case this to allow it.
3284       if (TermOkay && TI == I)
3285         continue;
3286       assert(DT.dominates(I, TI) &&
3287              "basic SSA liveness expectation violated by liveness analysis");
3288     }
3289   }
3290 }
3291 
3292 /// Check that all the liveness sets used during the computation of liveness
3293 /// obey basic SSA properties.  This is useful for finding cases where we miss
3294 /// a def.
3295 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
3296                           BasicBlock &BB) {
3297   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
3298   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
3299   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
3300 }
3301 #endif
3302 
3303 static void computeLiveInValues(DominatorTree &DT, Function &F,
3304                                 GCPtrLivenessData &Data) {
3305   SmallSetVector<BasicBlock *, 32> Worklist;
3306 
3307   // Seed the liveness for each individual block
3308   for (BasicBlock &BB : F) {
3309     Data.KillSet[&BB] = computeKillSet(&BB);
3310     Data.LiveSet[&BB].clear();
3311     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
3312 
3313 #ifndef NDEBUG
3314     for (Value *Kill : Data.KillSet[&BB])
3315       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
3316 #endif
3317 
3318     Data.LiveOut[&BB] = SetVector<Value *>();
3319     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
3320     Data.LiveIn[&BB] = Data.LiveSet[&BB];
3321     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
3322     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
3323     if (!Data.LiveIn[&BB].empty())
3324       Worklist.insert(pred_begin(&BB), pred_end(&BB));
3325   }
3326 
3327   // Propagate that liveness until stable
3328   while (!Worklist.empty()) {
3329     BasicBlock *BB = Worklist.pop_back_val();
3330 
3331     // Compute our new liveout set, then exit early if it hasn't changed despite
3332     // the contribution of our successor.
3333     SetVector<Value *> LiveOut = Data.LiveOut[BB];
3334     const auto OldLiveOutSize = LiveOut.size();
3335     for (BasicBlock *Succ : successors(BB)) {
3336       assert(Data.LiveIn.count(Succ));
3337       LiveOut.set_union(Data.LiveIn[Succ]);
3338     }
3339     // assert OutLiveOut is a subset of LiveOut
3340     if (OldLiveOutSize == LiveOut.size()) {
3341       // If the sets are the same size, then we didn't actually add anything
3342       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
3343       // hasn't changed.
3344       continue;
3345     }
3346     Data.LiveOut[BB] = LiveOut;
3347 
3348     // Apply the effects of this basic block
3349     SetVector<Value *> LiveTmp = LiveOut;
3350     LiveTmp.set_union(Data.LiveSet[BB]);
3351     LiveTmp.set_subtract(Data.KillSet[BB]);
3352 
3353     assert(Data.LiveIn.count(BB));
3354     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
3355     // assert: OldLiveIn is a subset of LiveTmp
3356     if (OldLiveIn.size() != LiveTmp.size()) {
3357       Data.LiveIn[BB] = LiveTmp;
3358       Worklist.insert(pred_begin(BB), pred_end(BB));
3359     }
3360   } // while (!Worklist.empty())
3361 
3362 #ifndef NDEBUG
3363   // Verify our output against SSA properties.  This helps catch any
3364   // missing kills during the above iteration.
3365   for (BasicBlock &BB : F)
3366     checkBasicSSA(DT, Data, BB);
3367 #endif
3368 }
3369 
3370 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
3371                               StatepointLiveSetTy &Out) {
3372   BasicBlock *BB = Inst->getParent();
3373 
3374   // Note: The copy is intentional and required
3375   assert(Data.LiveOut.count(BB));
3376   SetVector<Value *> LiveOut = Data.LiveOut[BB];
3377 
3378   // We want to handle the statepoint itself oddly.  It's
3379   // call result is not live (normal), nor are it's arguments
3380   // (unless they're used again later).  This adjustment is
3381   // specifically what we need to relocate
3382   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
3383                       LiveOut);
3384   LiveOut.remove(Inst);
3385   Out.insert(LiveOut.begin(), LiveOut.end());
3386 }
3387 
3388 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
3389                                   CallBase *Call,
3390                                   PartiallyConstructedSafepointRecord &Info,
3391                                   PointerToBaseTy &PointerToBase) {
3392   StatepointLiveSetTy Updated;
3393   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
3394 
3395   // We may have base pointers which are now live that weren't before.  We need
3396   // to update the PointerToBase structure to reflect this.
3397   for (auto *V : Updated)
3398     PointerToBase.insert({ V, V });
3399 
3400   Info.LiveSet = Updated;
3401 }
3402