1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Sequence.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/AttributeMask.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GCStrategy.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/InstIterator.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/Statepoint.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueHandle.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <optional> 73 #include <set> 74 #include <string> 75 #include <utility> 76 #include <vector> 77 78 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 79 80 using namespace llvm; 81 82 // Print the liveset found at the insert location 83 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 84 cl::init(false)); 85 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 86 cl::init(false)); 87 88 // Print out the base pointers for debugging 89 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 90 cl::init(false)); 91 92 // Cost threshold measuring when it is profitable to rematerialize value instead 93 // of relocating it 94 static cl::opt<unsigned> 95 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 96 cl::init(6)); 97 98 #ifdef EXPENSIVE_CHECKS 99 static bool ClobberNonLive = true; 100 #else 101 static bool ClobberNonLive = false; 102 #endif 103 104 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 105 cl::location(ClobberNonLive), 106 cl::Hidden); 107 108 static cl::opt<bool> 109 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 110 cl::Hidden, cl::init(true)); 111 112 static cl::opt<bool> RematDerivedAtUses("rs4gc-remat-derived-at-uses", 113 cl::Hidden, cl::init(true)); 114 115 /// The IR fed into RewriteStatepointsForGC may have had attributes and 116 /// metadata implying dereferenceability that are no longer valid/correct after 117 /// RewriteStatepointsForGC has run. This is because semantically, after 118 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 119 /// heap. stripNonValidData (conservatively) restores 120 /// correctness by erasing all attributes in the module that externally imply 121 /// dereferenceability. Similar reasoning also applies to the noalias 122 /// attributes and metadata. gc.statepoint can touch the entire heap including 123 /// noalias objects. 124 /// Apart from attributes and metadata, we also remove instructions that imply 125 /// constant physical memory: llvm.invariant.start. 126 static void stripNonValidData(Module &M); 127 128 // Find the GC strategy for a function, or null if it doesn't have one. 129 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F); 130 131 static bool shouldRewriteStatepointsIn(Function &F); 132 133 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 134 ModuleAnalysisManager &AM) { 135 bool Changed = false; 136 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 137 for (Function &F : M) { 138 // Nothing to do for declarations. 139 if (F.isDeclaration() || F.empty()) 140 continue; 141 142 // Policy choice says not to rewrite - the most common reason is that we're 143 // compiling code without a GCStrategy. 144 if (!shouldRewriteStatepointsIn(F)) 145 continue; 146 147 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 148 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 149 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 150 Changed |= runOnFunction(F, DT, TTI, TLI); 151 } 152 if (!Changed) 153 return PreservedAnalyses::all(); 154 155 // stripNonValidData asserts that shouldRewriteStatepointsIn 156 // returns true for at least one function in the module. Since at least 157 // one function changed, we know that the precondition is satisfied. 158 stripNonValidData(M); 159 160 PreservedAnalyses PA; 161 PA.preserve<TargetIRAnalysis>(); 162 PA.preserve<TargetLibraryAnalysis>(); 163 return PA; 164 } 165 166 namespace { 167 168 struct GCPtrLivenessData { 169 /// Values defined in this block. 170 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 171 172 /// Values used in this block (and thus live); does not included values 173 /// killed within this block. 174 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 175 176 /// Values live into this basic block (i.e. used by any 177 /// instruction in this basic block or ones reachable from here) 178 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 179 180 /// Values live out of this basic block (i.e. live into 181 /// any successor block) 182 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 183 }; 184 185 // The type of the internal cache used inside the findBasePointers family 186 // of functions. From the callers perspective, this is an opaque type and 187 // should not be inspected. 188 // 189 // In the actual implementation this caches two relations: 190 // - The base relation itself (i.e. this pointer is based on that one) 191 // - The base defining value relation (i.e. before base_phi insertion) 192 // Generally, after the execution of a full findBasePointer call, only the 193 // base relation will remain. Internally, we add a mixture of the two 194 // types, then update all the second type to the first type 195 using DefiningValueMapTy = MapVector<Value *, Value *>; 196 using IsKnownBaseMapTy = MapVector<Value *, bool>; 197 using PointerToBaseTy = MapVector<Value *, Value *>; 198 using StatepointLiveSetTy = SetVector<Value *>; 199 using RematerializedValueMapTy = 200 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 201 202 struct PartiallyConstructedSafepointRecord { 203 /// The set of values known to be live across this safepoint 204 StatepointLiveSetTy LiveSet; 205 206 /// The *new* gc.statepoint instruction itself. This produces the token 207 /// that normal path gc.relocates and the gc.result are tied to. 208 GCStatepointInst *StatepointToken; 209 210 /// Instruction to which exceptional gc relocates are attached 211 /// Makes it easier to iterate through them during relocationViaAlloca. 212 Instruction *UnwindToken; 213 214 /// Record live values we are rematerialized instead of relocating. 215 /// They are not included into 'LiveSet' field. 216 /// Maps rematerialized copy to it's original value. 217 RematerializedValueMapTy RematerializedValues; 218 }; 219 220 struct RematerizlizationCandidateRecord { 221 // Chain from derived pointer to base. 222 SmallVector<Instruction *, 3> ChainToBase; 223 // Original base. 224 Value *RootOfChain; 225 // Cost of chain. 226 InstructionCost Cost; 227 }; 228 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>; 229 230 } // end anonymous namespace 231 232 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 233 std::optional<OperandBundleUse> DeoptBundle = 234 Call->getOperandBundle(LLVMContext::OB_deopt); 235 236 if (!DeoptBundle) { 237 assert(AllowStatepointWithNoDeoptInfo && 238 "Found non-leaf call without deopt info!"); 239 return std::nullopt; 240 } 241 242 return DeoptBundle->Inputs; 243 } 244 245 /// Compute the live-in set for every basic block in the function 246 static void computeLiveInValues(DominatorTree &DT, Function &F, 247 GCPtrLivenessData &Data, GCStrategy *GC); 248 249 /// Given results from the dataflow liveness computation, find the set of live 250 /// Values at a particular instruction. 251 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 252 StatepointLiveSetTy &out, GCStrategy *GC); 253 254 static bool isGCPointerType(Type *T, GCStrategy *GC) { 255 assert(GC && "GC Strategy for isGCPointerType cannot be null"); 256 257 if (!isa<PointerType>(T)) 258 return false; 259 260 // conservative - same as StatepointLowering 261 return GC->isGCManagedPointer(T).value_or(true); 262 } 263 264 // Return true if this type is one which a) is a gc pointer or contains a GC 265 // pointer and b) is of a type this code expects to encounter as a live value. 266 // (The insertion code will assert that a type which matches (a) and not (b) 267 // is not encountered.) 268 static bool isHandledGCPointerType(Type *T, GCStrategy *GC) { 269 // We fully support gc pointers 270 if (isGCPointerType(T, GC)) 271 return true; 272 // We partially support vectors of gc pointers. The code will assert if it 273 // can't handle something. 274 if (auto VT = dyn_cast<VectorType>(T)) 275 if (isGCPointerType(VT->getElementType(), GC)) 276 return true; 277 return false; 278 } 279 280 #ifndef NDEBUG 281 /// Returns true if this type contains a gc pointer whether we know how to 282 /// handle that type or not. 283 static bool containsGCPtrType(Type *Ty, GCStrategy *GC) { 284 if (isGCPointerType(Ty, GC)) 285 return true; 286 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 287 return isGCPointerType(VT->getScalarType(), GC); 288 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 289 return containsGCPtrType(AT->getElementType(), GC); 290 if (StructType *ST = dyn_cast<StructType>(Ty)) 291 return llvm::any_of(ST->elements(), 292 [GC](Type *Ty) { return containsGCPtrType(Ty, GC); }); 293 return false; 294 } 295 296 // Returns true if this is a type which a) is a gc pointer or contains a GC 297 // pointer and b) is of a type which the code doesn't expect (i.e. first class 298 // aggregates). Used to trip assertions. 299 static bool isUnhandledGCPointerType(Type *Ty, GCStrategy *GC) { 300 return containsGCPtrType(Ty, GC) && !isHandledGCPointerType(Ty, GC); 301 } 302 #endif 303 304 // Return the name of the value suffixed with the provided value, or if the 305 // value didn't have a name, the default value specified. 306 static std::string suffixed_name_or(Value *V, StringRef Suffix, 307 StringRef DefaultName) { 308 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 309 } 310 311 // Conservatively identifies any definitions which might be live at the 312 // given instruction. The analysis is performed immediately before the 313 // given instruction. Values defined by that instruction are not considered 314 // live. Values used by that instruction are considered live. 315 static void analyzeParsePointLiveness( 316 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 317 PartiallyConstructedSafepointRecord &Result, GCStrategy *GC) { 318 StatepointLiveSetTy LiveSet; 319 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet, GC); 320 321 if (PrintLiveSet) { 322 dbgs() << "Live Variables:\n"; 323 for (Value *V : LiveSet) 324 dbgs() << " " << V->getName() << " " << *V << "\n"; 325 } 326 if (PrintLiveSetSize) { 327 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 328 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 329 } 330 Result.LiveSet = LiveSet; 331 } 332 333 /// Returns true if V is a known base. 334 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases); 335 336 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present 337 /// in the cache before. 338 static void setKnownBase(Value *V, bool IsKnownBase, 339 IsKnownBaseMapTy &KnownBases); 340 341 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 342 IsKnownBaseMapTy &KnownBases); 343 344 /// Return a base defining value for the 'Index' element of the given vector 345 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 346 /// 'I'. As an optimization, this method will try to determine when the 347 /// element is known to already be a base pointer. If this can be established, 348 /// the second value in the returned pair will be true. Note that either a 349 /// vector or a pointer typed value can be returned. For the former, the 350 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 351 /// If the later, the return pointer is a BDV (or possibly a base) for the 352 /// particular element in 'I'. 353 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache, 354 IsKnownBaseMapTy &KnownBases) { 355 // Each case parallels findBaseDefiningValue below, see that code for 356 // detailed motivation. 357 358 auto Cached = Cache.find(I); 359 if (Cached != Cache.end()) 360 return Cached->second; 361 362 if (isa<Argument>(I)) { 363 // An incoming argument to the function is a base pointer 364 Cache[I] = I; 365 setKnownBase(I, /* IsKnownBase */true, KnownBases); 366 return I; 367 } 368 369 if (isa<Constant>(I)) { 370 // Base of constant vector consists only of constant null pointers. 371 // For reasoning see similar case inside 'findBaseDefiningValue' function. 372 auto *CAZ = ConstantAggregateZero::get(I->getType()); 373 Cache[I] = CAZ; 374 setKnownBase(CAZ, /* IsKnownBase */true, KnownBases); 375 return CAZ; 376 } 377 378 if (isa<LoadInst>(I)) { 379 Cache[I] = I; 380 setKnownBase(I, /* IsKnownBase */true, KnownBases); 381 return I; 382 } 383 384 if (isa<InsertElementInst>(I)) { 385 // We don't know whether this vector contains entirely base pointers or 386 // not. To be conservatively correct, we treat it as a BDV and will 387 // duplicate code as needed to construct a parallel vector of bases. 388 Cache[I] = I; 389 setKnownBase(I, /* IsKnownBase */false, KnownBases); 390 return I; 391 } 392 393 if (isa<ShuffleVectorInst>(I)) { 394 // We don't know whether this vector contains entirely base pointers or 395 // not. To be conservatively correct, we treat it as a BDV and will 396 // duplicate code as needed to construct a parallel vector of bases. 397 // TODO: There a number of local optimizations which could be applied here 398 // for particular sufflevector patterns. 399 Cache[I] = I; 400 setKnownBase(I, /* IsKnownBase */false, KnownBases); 401 return I; 402 } 403 404 // The behavior of getelementptr instructions is the same for vector and 405 // non-vector data types. 406 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 407 auto *BDV = 408 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 409 Cache[GEP] = BDV; 410 return BDV; 411 } 412 413 // The behavior of freeze instructions is the same for vector and 414 // non-vector data types. 415 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 416 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 417 Cache[Freeze] = BDV; 418 return BDV; 419 } 420 421 // If the pointer comes through a bitcast of a vector of pointers to 422 // a vector of another type of pointer, then look through the bitcast 423 if (auto *BC = dyn_cast<BitCastInst>(I)) { 424 auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases); 425 Cache[BC] = BDV; 426 return BDV; 427 } 428 429 // We assume that functions in the source language only return base 430 // pointers. This should probably be generalized via attributes to support 431 // both source language and internal functions. 432 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 433 Cache[I] = I; 434 setKnownBase(I, /* IsKnownBase */true, KnownBases); 435 return I; 436 } 437 438 // A PHI or Select is a base defining value. The outer findBasePointer 439 // algorithm is responsible for constructing a base value for this BDV. 440 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 441 "unknown vector instruction - no base found for vector element"); 442 Cache[I] = I; 443 setKnownBase(I, /* IsKnownBase */false, KnownBases); 444 return I; 445 } 446 447 /// Helper function for findBasePointer - Will return a value which either a) 448 /// defines the base pointer for the input, b) blocks the simple search 449 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 450 /// from pointer to vector type or back. 451 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 452 IsKnownBaseMapTy &KnownBases) { 453 assert(I->getType()->isPtrOrPtrVectorTy() && 454 "Illegal to ask for the base pointer of a non-pointer type"); 455 auto Cached = Cache.find(I); 456 if (Cached != Cache.end()) 457 return Cached->second; 458 459 if (I->getType()->isVectorTy()) 460 return findBaseDefiningValueOfVector(I, Cache, KnownBases); 461 462 if (isa<Argument>(I)) { 463 // An incoming argument to the function is a base pointer 464 // We should have never reached here if this argument isn't an gc value 465 Cache[I] = I; 466 setKnownBase(I, /* IsKnownBase */true, KnownBases); 467 return I; 468 } 469 470 if (isa<Constant>(I)) { 471 // We assume that objects with a constant base (e.g. a global) can't move 472 // and don't need to be reported to the collector because they are always 473 // live. Besides global references, all kinds of constants (e.g. undef, 474 // constant expressions, null pointers) can be introduced by the inliner or 475 // the optimizer, especially on dynamically dead paths. 476 // Here we treat all of them as having single null base. By doing this we 477 // trying to avoid problems reporting various conflicts in a form of 478 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 479 // See constant.ll file for relevant test cases. 480 481 auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType())); 482 Cache[I] = CPN; 483 setKnownBase(CPN, /* IsKnownBase */true, KnownBases); 484 return CPN; 485 } 486 487 // inttoptrs in an integral address space are currently ill-defined. We 488 // treat them as defining base pointers here for consistency with the 489 // constant rule above and because we don't really have a better semantic 490 // to give them. Note that the optimizer is always free to insert undefined 491 // behavior on dynamically dead paths as well. 492 if (isa<IntToPtrInst>(I)) { 493 Cache[I] = I; 494 setKnownBase(I, /* IsKnownBase */true, KnownBases); 495 return I; 496 } 497 498 if (CastInst *CI = dyn_cast<CastInst>(I)) { 499 Value *Def = CI->stripPointerCasts(); 500 // If stripping pointer casts changes the address space there is an 501 // addrspacecast in between. 502 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 503 cast<PointerType>(CI->getType())->getAddressSpace() && 504 "unsupported addrspacecast"); 505 // If we find a cast instruction here, it means we've found a cast which is 506 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 507 // handle int->ptr conversion. 508 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 509 auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases); 510 Cache[CI] = BDV; 511 return BDV; 512 } 513 514 if (isa<LoadInst>(I)) { 515 // The value loaded is an gc base itself 516 Cache[I] = I; 517 setKnownBase(I, /* IsKnownBase */true, KnownBases); 518 return I; 519 } 520 521 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 522 // The base of this GEP is the base 523 auto *BDV = 524 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 525 Cache[GEP] = BDV; 526 return BDV; 527 } 528 529 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 530 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 531 Cache[Freeze] = BDV; 532 return BDV; 533 } 534 535 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 536 switch (II->getIntrinsicID()) { 537 default: 538 // fall through to general call handling 539 break; 540 case Intrinsic::experimental_gc_statepoint: 541 llvm_unreachable("statepoints don't produce pointers"); 542 case Intrinsic::experimental_gc_relocate: 543 // Rerunning safepoint insertion after safepoints are already 544 // inserted is not supported. It could probably be made to work, 545 // but why are you doing this? There's no good reason. 546 llvm_unreachable("repeat safepoint insertion is not supported"); 547 case Intrinsic::gcroot: 548 // Currently, this mechanism hasn't been extended to work with gcroot. 549 // There's no reason it couldn't be, but I haven't thought about the 550 // implications much. 551 llvm_unreachable( 552 "interaction with the gcroot mechanism is not supported"); 553 case Intrinsic::experimental_gc_get_pointer_base: 554 auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases); 555 Cache[II] = BDV; 556 return BDV; 557 } 558 } 559 // We assume that functions in the source language only return base 560 // pointers. This should probably be generalized via attributes to support 561 // both source language and internal functions. 562 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 563 Cache[I] = I; 564 setKnownBase(I, /* IsKnownBase */true, KnownBases); 565 return I; 566 } 567 568 // TODO: I have absolutely no idea how to implement this part yet. It's not 569 // necessarily hard, I just haven't really looked at it yet. 570 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 571 572 if (isa<AtomicCmpXchgInst>(I)) { 573 // A CAS is effectively a atomic store and load combined under a 574 // predicate. From the perspective of base pointers, we just treat it 575 // like a load. 576 Cache[I] = I; 577 setKnownBase(I, /* IsKnownBase */true, KnownBases); 578 return I; 579 } 580 581 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 582 "binary ops which don't apply to pointers"); 583 584 // The aggregate ops. Aggregates can either be in the heap or on the 585 // stack, but in either case, this is simply a field load. As a result, 586 // this is a defining definition of the base just like a load is. 587 if (isa<ExtractValueInst>(I)) { 588 Cache[I] = I; 589 setKnownBase(I, /* IsKnownBase */true, KnownBases); 590 return I; 591 } 592 593 // We should never see an insert vector since that would require we be 594 // tracing back a struct value not a pointer value. 595 assert(!isa<InsertValueInst>(I) && 596 "Base pointer for a struct is meaningless"); 597 598 // This value might have been generated by findBasePointer() called when 599 // substituting gc.get.pointer.base() intrinsic. 600 bool IsKnownBase = 601 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 602 setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases); 603 Cache[I] = I; 604 605 // An extractelement produces a base result exactly when it's input does. 606 // We may need to insert a parallel instruction to extract the appropriate 607 // element out of the base vector corresponding to the input. Given this, 608 // it's analogous to the phi and select case even though it's not a merge. 609 if (isa<ExtractElementInst>(I)) 610 // Note: There a lot of obvious peephole cases here. This are deliberately 611 // handled after the main base pointer inference algorithm to make writing 612 // test cases to exercise that code easier. 613 return I; 614 615 // The last two cases here don't return a base pointer. Instead, they 616 // return a value which dynamically selects from among several base 617 // derived pointers (each with it's own base potentially). It's the job of 618 // the caller to resolve these. 619 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 620 "missing instruction case in findBaseDefiningValue"); 621 return I; 622 } 623 624 /// Returns the base defining value for this value. 625 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache, 626 IsKnownBaseMapTy &KnownBases) { 627 if (!Cache.contains(I)) { 628 auto *BDV = findBaseDefiningValue(I, Cache, KnownBases); 629 Cache[I] = BDV; 630 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 631 << Cache[I]->getName() << ", is known base = " 632 << KnownBases[I] << "\n"); 633 } 634 assert(Cache[I] != nullptr); 635 assert(KnownBases.contains(Cache[I]) && 636 "Cached value must be present in known bases map"); 637 return Cache[I]; 638 } 639 640 /// Return a base pointer for this value if known. Otherwise, return it's 641 /// base defining value. 642 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache, 643 IsKnownBaseMapTy &KnownBases) { 644 Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases); 645 auto Found = Cache.find(Def); 646 if (Found != Cache.end()) { 647 // Either a base-of relation, or a self reference. Caller must check. 648 return Found->second; 649 } 650 // Only a BDV available 651 return Def; 652 } 653 654 #ifndef NDEBUG 655 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 656 /// exists in the code. 657 static bool isOriginalBaseResult(Value *V) { 658 // no recursion possible 659 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 660 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 661 !isa<ShuffleVectorInst>(V); 662 } 663 #endif 664 665 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) { 666 auto It = KnownBases.find(V); 667 assert(It != KnownBases.end() && "Value not present in the map"); 668 return It->second; 669 } 670 671 static void setKnownBase(Value *V, bool IsKnownBase, 672 IsKnownBaseMapTy &KnownBases) { 673 #ifndef NDEBUG 674 auto It = KnownBases.find(V); 675 if (It != KnownBases.end()) 676 assert(It->second == IsKnownBase && "Changing already present value"); 677 #endif 678 KnownBases[V] = IsKnownBase; 679 } 680 681 // Returns true if First and Second values are both scalar or both vector. 682 static bool areBothVectorOrScalar(Value *First, Value *Second) { 683 return isa<VectorType>(First->getType()) == 684 isa<VectorType>(Second->getType()); 685 } 686 687 namespace { 688 689 /// Models the state of a single base defining value in the findBasePointer 690 /// algorithm for determining where a new instruction is needed to propagate 691 /// the base of this BDV. 692 class BDVState { 693 public: 694 enum StatusTy { 695 // Starting state of lattice 696 Unknown, 697 // Some specific base value -- does *not* mean that instruction 698 // propagates the base of the object 699 // ex: gep %arg, 16 -> %arg is the base value 700 Base, 701 // Need to insert a node to represent a merge. 702 Conflict 703 }; 704 705 BDVState() { 706 llvm_unreachable("missing state in map"); 707 } 708 709 explicit BDVState(Value *OriginalValue) 710 : OriginalValue(OriginalValue) {} 711 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 712 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 713 assert(Status != Base || BaseValue); 714 } 715 716 StatusTy getStatus() const { return Status; } 717 Value *getOriginalValue() const { return OriginalValue; } 718 Value *getBaseValue() const { return BaseValue; } 719 720 bool isBase() const { return getStatus() == Base; } 721 bool isUnknown() const { return getStatus() == Unknown; } 722 bool isConflict() const { return getStatus() == Conflict; } 723 724 // Values of type BDVState form a lattice, and this function implements the 725 // meet 726 // operation. 727 void meet(const BDVState &Other) { 728 auto markConflict = [&]() { 729 Status = BDVState::Conflict; 730 BaseValue = nullptr; 731 }; 732 // Conflict is a final state. 733 if (isConflict()) 734 return; 735 // if we are not known - just take other state. 736 if (isUnknown()) { 737 Status = Other.getStatus(); 738 BaseValue = Other.getBaseValue(); 739 return; 740 } 741 // We are base. 742 assert(isBase() && "Unknown state"); 743 // If other is unknown - just keep our state. 744 if (Other.isUnknown()) 745 return; 746 // If other is conflict - it is a final state. 747 if (Other.isConflict()) 748 return markConflict(); 749 // Other is base as well. 750 assert(Other.isBase() && "Unknown state"); 751 // If bases are different - Conflict. 752 if (getBaseValue() != Other.getBaseValue()) 753 return markConflict(); 754 // We are identical, do nothing. 755 } 756 757 bool operator==(const BDVState &Other) const { 758 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && 759 Status == Other.Status; 760 } 761 762 bool operator!=(const BDVState &other) const { return !(*this == other); } 763 764 LLVM_DUMP_METHOD 765 void dump() const { 766 print(dbgs()); 767 dbgs() << '\n'; 768 } 769 770 void print(raw_ostream &OS) const { 771 switch (getStatus()) { 772 case Unknown: 773 OS << "U"; 774 break; 775 case Base: 776 OS << "B"; 777 break; 778 case Conflict: 779 OS << "C"; 780 break; 781 } 782 OS << " (base " << getBaseValue() << " - " 783 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 784 << " for " << OriginalValue->getName() << ":"; 785 } 786 787 private: 788 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 789 StatusTy Status = Unknown; 790 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 791 }; 792 793 } // end anonymous namespace 794 795 #ifndef NDEBUG 796 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 797 State.print(OS); 798 return OS; 799 } 800 #endif 801 802 /// For a given value or instruction, figure out what base ptr its derived from. 803 /// For gc objects, this is simply itself. On success, returns a value which is 804 /// the base pointer. (This is reliable and can be used for relocation.) On 805 /// failure, returns nullptr. 806 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache, 807 IsKnownBaseMapTy &KnownBases) { 808 Value *Def = findBaseOrBDV(I, Cache, KnownBases); 809 810 if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I)) 811 return Def; 812 813 // Here's the rough algorithm: 814 // - For every SSA value, construct a mapping to either an actual base 815 // pointer or a PHI which obscures the base pointer. 816 // - Construct a mapping from PHI to unknown TOP state. Use an 817 // optimistic algorithm to propagate base pointer information. Lattice 818 // looks like: 819 // UNKNOWN 820 // b1 b2 b3 b4 821 // CONFLICT 822 // When algorithm terminates, all PHIs will either have a single concrete 823 // base or be in a conflict state. 824 // - For every conflict, insert a dummy PHI node without arguments. Add 825 // these to the base[Instruction] = BasePtr mapping. For every 826 // non-conflict, add the actual base. 827 // - For every conflict, add arguments for the base[a] of each input 828 // arguments. 829 // 830 // Note: A simpler form of this would be to add the conflict form of all 831 // PHIs without running the optimistic algorithm. This would be 832 // analogous to pessimistic data flow and would likely lead to an 833 // overall worse solution. 834 835 #ifndef NDEBUG 836 auto isExpectedBDVType = [](Value *BDV) { 837 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 838 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 839 isa<ShuffleVectorInst>(BDV); 840 }; 841 #endif 842 843 // Once populated, will contain a mapping from each potentially non-base BDV 844 // to a lattice value (described above) which corresponds to that BDV. 845 // We use the order of insertion (DFS over the def/use graph) to provide a 846 // stable deterministic ordering for visiting DenseMaps (which are unordered) 847 // below. This is important for deterministic compilation. 848 MapVector<Value *, BDVState> States; 849 850 #ifndef NDEBUG 851 auto VerifyStates = [&]() { 852 for (auto &Entry : States) { 853 assert(Entry.first == Entry.second.getOriginalValue()); 854 } 855 }; 856 #endif 857 858 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 859 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 860 for (Value *InVal : PN->incoming_values()) 861 F(InVal); 862 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 863 F(SI->getTrueValue()); 864 F(SI->getFalseValue()); 865 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 866 F(EE->getVectorOperand()); 867 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 868 F(IE->getOperand(0)); 869 F(IE->getOperand(1)); 870 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 871 // For a canonical broadcast, ignore the undef argument 872 // (without this, we insert a parallel base shuffle for every broadcast) 873 F(SV->getOperand(0)); 874 if (!SV->isZeroEltSplat()) 875 F(SV->getOperand(1)); 876 } else { 877 llvm_unreachable("unexpected BDV type"); 878 } 879 }; 880 881 882 // Recursively fill in all base defining values reachable from the initial 883 // one for which we don't already know a definite base value for 884 /* scope */ { 885 SmallVector<Value*, 16> Worklist; 886 Worklist.push_back(Def); 887 States.insert({Def, BDVState(Def)}); 888 while (!Worklist.empty()) { 889 Value *Current = Worklist.pop_back_val(); 890 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 891 892 auto visitIncomingValue = [&](Value *InVal) { 893 Value *Base = findBaseOrBDV(InVal, Cache, KnownBases); 894 if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal)) 895 // Known bases won't need new instructions introduced and can be 896 // ignored safely. However, this can only be done when InVal and Base 897 // are both scalar or both vector. Otherwise, we need to find a 898 // correct BDV for InVal, by creating an entry in the lattice 899 // (States). 900 return; 901 assert(isExpectedBDVType(Base) && "the only non-base values " 902 "we see should be base defining values"); 903 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 904 Worklist.push_back(Base); 905 }; 906 907 visitBDVOperands(Current, visitIncomingValue); 908 } 909 } 910 911 #ifndef NDEBUG 912 VerifyStates(); 913 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 914 for (const auto &Pair : States) { 915 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 916 } 917 #endif 918 919 // Iterate forward through the value graph pruning any node from the state 920 // list where all of the inputs are base pointers. The purpose of this is to 921 // reuse existing values when the derived pointer we were asked to materialize 922 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 923 // feeding it does.) 924 SmallVector<Value *> ToRemove; 925 do { 926 ToRemove.clear(); 927 for (auto Pair : States) { 928 Value *BDV = Pair.first; 929 auto canPruneInput = [&](Value *V) { 930 // If the input of the BDV is the BDV itself we can prune it. This is 931 // only possible if the BDV is a PHI node. 932 if (V->stripPointerCasts() == BDV) 933 return true; 934 Value *VBDV = findBaseOrBDV(V, Cache, KnownBases); 935 if (V->stripPointerCasts() != VBDV) 936 return false; 937 // The assumption is that anything not in the state list is 938 // propagates a base pointer. 939 return States.count(VBDV) == 0; 940 }; 941 942 bool CanPrune = true; 943 visitBDVOperands(BDV, [&](Value *Op) { 944 CanPrune = CanPrune && canPruneInput(Op); 945 }); 946 if (CanPrune) 947 ToRemove.push_back(BDV); 948 } 949 for (Value *V : ToRemove) { 950 States.erase(V); 951 // Cache the fact V is it's own base for later usage. 952 Cache[V] = V; 953 } 954 } while (!ToRemove.empty()); 955 956 // Did we manage to prove that Def itself must be a base pointer? 957 if (!States.count(Def)) 958 return Def; 959 960 // Return a phi state for a base defining value. We'll generate a new 961 // base state for known bases and expect to find a cached state otherwise. 962 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 963 auto I = States.find(BaseValue); 964 if (I != States.end()) 965 return I->second; 966 assert(areBothVectorOrScalar(BaseValue, Input)); 967 return BDVState(BaseValue, BDVState::Base, BaseValue); 968 }; 969 970 // Even though we have identified a concrete base (or a conflict) for all live 971 // pointers at this point, there are cases where the base is of an 972 // incompatible type compared to the original instruction. We conservatively 973 // mark those as conflicts to ensure that corresponding BDVs will be generated 974 // in the next steps. 975 976 // this is a rather explicit check for all cases where we should mark the 977 // state as a conflict to force the latter stages of the algorithm to emit 978 // the BDVs. 979 // TODO: in many cases the instructions emited for the conflicting states 980 // will be identical to the I itself (if the I's operate on their BDVs 981 // themselves). We should exploit this, but can't do it here since it would 982 // break the invariant about the BDVs not being known to be a base. 983 // TODO: the code also does not handle constants at all - the algorithm relies 984 // on all constants having the same BDV and therefore constant-only insns 985 // will never be in conflict, but this check is ignored here. If the 986 // constant conflicts will be to BDVs themselves, they will be identical 987 // instructions and will get optimized away (as in the above TODO) 988 auto MarkConflict = [&](Instruction *I, Value *BaseValue) { 989 // II and EE mixes vector & scalar so is always a conflict 990 if (isa<InsertElementInst>(I) || isa<ExtractElementInst>(I)) 991 return true; 992 // Shuffle vector is always a conflict as it creates new vector from 993 // existing ones. 994 if (isa<ShuffleVectorInst>(I)) 995 return true; 996 // Any instructions where the computed base type differs from the 997 // instruction type. An example is where an extract instruction is used by a 998 // select. Here the select's BDV is a vector (because of extract's BDV), 999 // while the select itself is a scalar type. Note that the IE and EE 1000 // instruction check is not fully subsumed by the vector<->scalar check at 1001 // the end, this is due to the BDV algorithm being ignorant of BDV types at 1002 // this junction. 1003 if (!areBothVectorOrScalar(BaseValue, I)) 1004 return true; 1005 return false; 1006 }; 1007 1008 bool Progress = true; 1009 while (Progress) { 1010 #ifndef NDEBUG 1011 const size_t OldSize = States.size(); 1012 #endif 1013 Progress = false; 1014 // We're only changing values in this loop, thus safe to keep iterators. 1015 // Since this is computing a fixed point, the order of visit does not 1016 // effect the result. TODO: We could use a worklist here and make this run 1017 // much faster. 1018 for (auto Pair : States) { 1019 Value *BDV = Pair.first; 1020 // Only values that do not have known bases or those that have differing 1021 // type (scalar versus vector) from a possible known base should be in the 1022 // lattice. 1023 assert((!isKnownBase(BDV, KnownBases) || 1024 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 1025 "why did it get added?"); 1026 1027 BDVState NewState(BDV); 1028 visitBDVOperands(BDV, [&](Value *Op) { 1029 Value *BDV = findBaseOrBDV(Op, Cache, KnownBases); 1030 auto OpState = GetStateForBDV(BDV, Op); 1031 NewState.meet(OpState); 1032 }); 1033 1034 // if the instruction has known base, but should in fact be marked as 1035 // conflict because of incompatible in/out types, we mark it as such 1036 // ensuring that it will propagate through the fixpoint iteration 1037 auto I = cast<Instruction>(BDV); 1038 auto BV = NewState.getBaseValue(); 1039 if (BV && MarkConflict(I, BV)) 1040 NewState = BDVState(I, BDVState::Conflict); 1041 1042 BDVState OldState = Pair.second; 1043 if (OldState != NewState) { 1044 Progress = true; 1045 States[BDV] = NewState; 1046 } 1047 } 1048 1049 assert(OldSize == States.size() && 1050 "fixed point shouldn't be adding any new nodes to state"); 1051 } 1052 1053 #ifndef NDEBUG 1054 VerifyStates(); 1055 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 1056 for (const auto &Pair : States) { 1057 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 1058 } 1059 1060 // since we do the conflict marking as part of the fixpoint iteration this 1061 // loop only asserts that invariants are met 1062 for (auto Pair : States) { 1063 Instruction *I = cast<Instruction>(Pair.first); 1064 BDVState State = Pair.second; 1065 auto *BaseValue = State.getBaseValue(); 1066 // Only values that do not have known bases or those that have differing 1067 // type (scalar versus vector) from a possible known base should be in the 1068 // lattice. 1069 assert( 1070 (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) && 1071 "why did it get added?"); 1072 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1073 } 1074 #endif 1075 1076 // Insert Phis for all conflicts 1077 // TODO: adjust naming patterns to avoid this order of iteration dependency 1078 for (auto Pair : States) { 1079 Instruction *I = cast<Instruction>(Pair.first); 1080 BDVState State = Pair.second; 1081 // Only values that do not have known bases or those that have differing 1082 // type (scalar versus vector) from a possible known base should be in the 1083 // lattice. 1084 assert((!isKnownBase(I, KnownBases) || 1085 !areBothVectorOrScalar(I, State.getBaseValue())) && 1086 "why did it get added?"); 1087 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1088 1089 // Since we're joining a vector and scalar base, they can never be the 1090 // same. As a result, we should always see insert element having reached 1091 // the conflict state. 1092 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1093 1094 if (!State.isConflict()) 1095 continue; 1096 1097 auto getMangledName = [](Instruction *I) -> std::string { 1098 if (isa<PHINode>(I)) { 1099 return suffixed_name_or(I, ".base", "base_phi"); 1100 } else if (isa<SelectInst>(I)) { 1101 return suffixed_name_or(I, ".base", "base_select"); 1102 } else if (isa<ExtractElementInst>(I)) { 1103 return suffixed_name_or(I, ".base", "base_ee"); 1104 } else if (isa<InsertElementInst>(I)) { 1105 return suffixed_name_or(I, ".base", "base_ie"); 1106 } else { 1107 return suffixed_name_or(I, ".base", "base_sv"); 1108 } 1109 }; 1110 1111 Instruction *BaseInst = I->clone(); 1112 BaseInst->insertBefore(I); 1113 BaseInst->setName(getMangledName(I)); 1114 // Add metadata marking this as a base value 1115 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1116 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1117 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1118 } 1119 1120 #ifndef NDEBUG 1121 VerifyStates(); 1122 #endif 1123 1124 // Returns a instruction which produces the base pointer for a given 1125 // instruction. The instruction is assumed to be an input to one of the BDVs 1126 // seen in the inference algorithm above. As such, we must either already 1127 // know it's base defining value is a base, or have inserted a new 1128 // instruction to propagate the base of it's BDV and have entered that newly 1129 // introduced instruction into the state table. In either case, we are 1130 // assured to be able to determine an instruction which produces it's base 1131 // pointer. 1132 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1133 Value *BDV = findBaseOrBDV(Input, Cache, KnownBases); 1134 Value *Base = nullptr; 1135 if (!States.count(BDV)) { 1136 assert(areBothVectorOrScalar(BDV, Input)); 1137 Base = BDV; 1138 } else { 1139 // Either conflict or base. 1140 assert(States.count(BDV)); 1141 Base = States[BDV].getBaseValue(); 1142 } 1143 assert(Base && "Can't be null"); 1144 // The cast is needed since base traversal may strip away bitcasts 1145 if (Base->getType() != Input->getType() && InsertPt) 1146 Base = new BitCastInst(Base, Input->getType(), "cast", 1147 InsertPt->getIterator()); 1148 return Base; 1149 }; 1150 1151 // Fixup all the inputs of the new PHIs. Visit order needs to be 1152 // deterministic and predictable because we're naming newly created 1153 // instructions. 1154 for (auto Pair : States) { 1155 Instruction *BDV = cast<Instruction>(Pair.first); 1156 BDVState State = Pair.second; 1157 1158 // Only values that do not have known bases or those that have differing 1159 // type (scalar versus vector) from a possible known base should be in the 1160 // lattice. 1161 assert((!isKnownBase(BDV, KnownBases) || 1162 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1163 "why did it get added?"); 1164 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1165 if (!State.isConflict()) 1166 continue; 1167 1168 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1169 PHINode *PN = cast<PHINode>(BDV); 1170 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1171 1172 // The IR verifier requires phi nodes with multiple entries from the 1173 // same basic block to have the same incoming value for each of those 1174 // entries. Since we're inserting bitcasts in the loop, make sure we 1175 // do so at least once per incoming block. 1176 DenseMap<BasicBlock *, Value*> BlockToValue; 1177 for (unsigned i = 0; i < NumPHIValues; i++) { 1178 Value *InVal = PN->getIncomingValue(i); 1179 BasicBlock *InBB = PN->getIncomingBlock(i); 1180 if (!BlockToValue.count(InBB)) 1181 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1182 else { 1183 #ifndef NDEBUG 1184 Value *OldBase = BlockToValue[InBB]; 1185 Value *Base = getBaseForInput(InVal, nullptr); 1186 1187 // We can't use `stripPointerCasts` instead of this function because 1188 // `stripPointerCasts` doesn't handle vectors of pointers. 1189 auto StripBitCasts = [](Value *V) -> Value * { 1190 while (auto *BC = dyn_cast<BitCastInst>(V)) 1191 V = BC->getOperand(0); 1192 return V; 1193 }; 1194 // In essence this assert states: the only way two values 1195 // incoming from the same basic block may be different is by 1196 // being different bitcasts of the same value. A cleanup 1197 // that remains TODO is changing findBaseOrBDV to return an 1198 // llvm::Value of the correct type (and still remain pure). 1199 // This will remove the need to add bitcasts. 1200 assert(StripBitCasts(Base) == StripBitCasts(OldBase) && 1201 "findBaseOrBDV should be pure!"); 1202 #endif 1203 } 1204 Value *Base = BlockToValue[InBB]; 1205 BasePHI->setIncomingValue(i, Base); 1206 } 1207 } else if (SelectInst *BaseSI = 1208 dyn_cast<SelectInst>(State.getBaseValue())) { 1209 SelectInst *SI = cast<SelectInst>(BDV); 1210 1211 // Find the instruction which produces the base for each input. 1212 // We may need to insert a bitcast. 1213 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1214 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1215 } else if (auto *BaseEE = 1216 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1217 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1218 // Find the instruction which produces the base for each input. We may 1219 // need to insert a bitcast. 1220 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1221 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1222 auto *BdvIE = cast<InsertElementInst>(BDV); 1223 auto UpdateOperand = [&](int OperandIdx) { 1224 Value *InVal = BdvIE->getOperand(OperandIdx); 1225 Value *Base = getBaseForInput(InVal, BaseIE); 1226 BaseIE->setOperand(OperandIdx, Base); 1227 }; 1228 UpdateOperand(0); // vector operand 1229 UpdateOperand(1); // scalar operand 1230 } else { 1231 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1232 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1233 auto UpdateOperand = [&](int OperandIdx) { 1234 Value *InVal = BdvSV->getOperand(OperandIdx); 1235 Value *Base = getBaseForInput(InVal, BaseSV); 1236 BaseSV->setOperand(OperandIdx, Base); 1237 }; 1238 UpdateOperand(0); // vector operand 1239 if (!BdvSV->isZeroEltSplat()) 1240 UpdateOperand(1); // vector operand 1241 else { 1242 // Never read, so just use poison 1243 Value *InVal = BdvSV->getOperand(1); 1244 BaseSV->setOperand(1, PoisonValue::get(InVal->getType())); 1245 } 1246 } 1247 } 1248 1249 #ifndef NDEBUG 1250 VerifyStates(); 1251 #endif 1252 1253 // get the data layout to compare the sizes of base/derived pointer values 1254 [[maybe_unused]] auto &DL = 1255 cast<llvm::Instruction>(Def)->getDataLayout(); 1256 // Cache all of our results so we can cheaply reuse them 1257 // NOTE: This is actually two caches: one of the base defining value 1258 // relation and one of the base pointer relation! FIXME 1259 for (auto Pair : States) { 1260 auto *BDV = Pair.first; 1261 Value *Base = Pair.second.getBaseValue(); 1262 assert(BDV && Base); 1263 // Whenever we have a derived ptr(s), their base 1264 // ptr(s) must be of the same size, not necessarily the same type 1265 assert(DL.getTypeAllocSize(BDV->getType()) == 1266 DL.getTypeAllocSize(Base->getType()) && 1267 "Derived and base values should have same size"); 1268 // Only values that do not have known bases or those that have differing 1269 // type (scalar versus vector) from a possible known base should be in the 1270 // lattice. 1271 assert( 1272 (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) && 1273 "why did it get added?"); 1274 1275 LLVM_DEBUG( 1276 dbgs() << "Updating base value cache" 1277 << " for: " << BDV->getName() << " from: " 1278 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1279 << " to: " << Base->getName() << "\n"); 1280 1281 Cache[BDV] = Base; 1282 } 1283 assert(Cache.count(Def)); 1284 return Cache[Def]; 1285 } 1286 1287 // For a set of live pointers (base and/or derived), identify the base 1288 // pointer of the object which they are derived from. This routine will 1289 // mutate the IR graph as needed to make the 'base' pointer live at the 1290 // definition site of 'derived'. This ensures that any use of 'derived' can 1291 // also use 'base'. This may involve the insertion of a number of 1292 // additional PHI nodes. 1293 // 1294 // preconditions: live is a set of pointer type Values 1295 // 1296 // side effects: may insert PHI nodes into the existing CFG, will preserve 1297 // CFG, will not remove or mutate any existing nodes 1298 // 1299 // post condition: PointerToBase contains one (derived, base) pair for every 1300 // pointer in live. Note that derived can be equal to base if the original 1301 // pointer was a base pointer. 1302 static void findBasePointers(const StatepointLiveSetTy &live, 1303 PointerToBaseTy &PointerToBase, DominatorTree *DT, 1304 DefiningValueMapTy &DVCache, 1305 IsKnownBaseMapTy &KnownBases) { 1306 for (Value *ptr : live) { 1307 Value *base = findBasePointer(ptr, DVCache, KnownBases); 1308 assert(base && "failed to find base pointer"); 1309 PointerToBase[ptr] = base; 1310 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1311 DT->dominates(cast<Instruction>(base)->getParent(), 1312 cast<Instruction>(ptr)->getParent())) && 1313 "The base we found better dominate the derived pointer"); 1314 } 1315 } 1316 1317 /// Find the required based pointers (and adjust the live set) for the given 1318 /// parse point. 1319 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1320 CallBase *Call, 1321 PartiallyConstructedSafepointRecord &result, 1322 PointerToBaseTy &PointerToBase, 1323 IsKnownBaseMapTy &KnownBases) { 1324 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1325 // We assume that all pointers passed to deopt are base pointers; as an 1326 // optimization, we can use this to avoid separately materializing the base 1327 // pointer graph. This is only relevant since we're very conservative about 1328 // generating new conflict nodes during base pointer insertion. If we were 1329 // smarter there, this would be irrelevant. 1330 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1331 for (Value *V : Opt->Inputs) { 1332 if (!PotentiallyDerivedPointers.count(V)) 1333 continue; 1334 PotentiallyDerivedPointers.remove(V); 1335 PointerToBase[V] = V; 1336 } 1337 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache, 1338 KnownBases); 1339 } 1340 1341 /// Given an updated version of the dataflow liveness results, update the 1342 /// liveset and base pointer maps for the call site CS. 1343 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1344 CallBase *Call, 1345 PartiallyConstructedSafepointRecord &result, 1346 PointerToBaseTy &PointerToBase, 1347 GCStrategy *GC); 1348 1349 static void recomputeLiveInValues( 1350 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1351 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 1352 PointerToBaseTy &PointerToBase, GCStrategy *GC) { 1353 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1354 // again. The old values are still live and will help it stabilize quickly. 1355 GCPtrLivenessData RevisedLivenessData; 1356 computeLiveInValues(DT, F, RevisedLivenessData, GC); 1357 for (size_t i = 0; i < records.size(); i++) { 1358 struct PartiallyConstructedSafepointRecord &info = records[i]; 1359 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, PointerToBase, 1360 GC); 1361 } 1362 } 1363 1364 // Utility function which clones all instructions from "ChainToBase" 1365 // and inserts them before "InsertBefore". Returns rematerialized value 1366 // which should be used after statepoint. 1367 static Instruction *rematerializeChain(ArrayRef<Instruction *> ChainToBase, 1368 Instruction *InsertBefore, 1369 Value *RootOfChain, 1370 Value *AlternateLiveBase) { 1371 Instruction *LastClonedValue = nullptr; 1372 Instruction *LastValue = nullptr; 1373 // Walk backwards to visit top-most instructions first. 1374 for (Instruction *Instr : 1375 make_range(ChainToBase.rbegin(), ChainToBase.rend())) { 1376 // Only GEP's and casts are supported as we need to be careful to not 1377 // introduce any new uses of pointers not in the liveset. 1378 // Note that it's fine to introduce new uses of pointers which were 1379 // otherwise not used after this statepoint. 1380 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1381 1382 Instruction *ClonedValue = Instr->clone(); 1383 ClonedValue->insertBefore(InsertBefore); 1384 ClonedValue->setName(Instr->getName() + ".remat"); 1385 1386 // If it is not first instruction in the chain then it uses previously 1387 // cloned value. We should update it to use cloned value. 1388 if (LastClonedValue) { 1389 assert(LastValue); 1390 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1391 #ifndef NDEBUG 1392 for (auto *OpValue : ClonedValue->operand_values()) { 1393 // Assert that cloned instruction does not use any instructions from 1394 // this chain other than LastClonedValue 1395 assert(!is_contained(ChainToBase, OpValue) && 1396 "incorrect use in rematerialization chain"); 1397 // Assert that the cloned instruction does not use the RootOfChain 1398 // or the AlternateLiveBase. 1399 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 1400 } 1401 #endif 1402 } else { 1403 // For the first instruction, replace the use of unrelocated base i.e. 1404 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 1405 // live set. They have been proved to be the same PHI nodes. Note 1406 // that the *only* use of the RootOfChain in the ChainToBase list is 1407 // the first Value in the list. 1408 if (RootOfChain != AlternateLiveBase) 1409 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 1410 } 1411 1412 LastClonedValue = ClonedValue; 1413 LastValue = Instr; 1414 } 1415 assert(LastClonedValue); 1416 return LastClonedValue; 1417 } 1418 1419 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1420 // no uses of the original value / return value between the gc.statepoint and 1421 // the gc.relocate / gc.result call. One case which can arise is a phi node 1422 // starting one of the successor blocks. We also need to be able to insert the 1423 // gc.relocates only on the path which goes through the statepoint. We might 1424 // need to split an edge to make this possible. 1425 static BasicBlock * 1426 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1427 DominatorTree &DT) { 1428 BasicBlock *Ret = BB; 1429 if (!BB->getUniquePredecessor()) 1430 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1431 1432 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1433 // from it 1434 FoldSingleEntryPHINodes(Ret); 1435 assert(!isa<PHINode>(Ret->begin()) && 1436 "All PHI nodes should have been removed!"); 1437 1438 // At this point, we can safely insert a gc.relocate or gc.result as the first 1439 // instruction in Ret if needed. 1440 return Ret; 1441 } 1442 1443 // List of all function attributes which must be stripped when lowering from 1444 // abstract machine model to physical machine model. Essentially, these are 1445 // all the effects a safepoint might have which we ignored in the abstract 1446 // machine model for purposes of optimization. We have to strip these on 1447 // both function declarations and call sites. 1448 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1449 {Attribute::Memory, Attribute::NoSync, Attribute::NoFree}; 1450 1451 // Create new attribute set containing only attributes which can be transferred 1452 // from the original call to the safepoint. 1453 static AttributeList legalizeCallAttributes(CallBase *Call, bool IsMemIntrinsic, 1454 AttributeList StatepointAL) { 1455 AttributeList OrigAL = Call->getAttributes(); 1456 if (OrigAL.isEmpty()) 1457 return StatepointAL; 1458 1459 // Remove the readonly, readnone, and statepoint function attributes. 1460 LLVMContext &Ctx = Call->getContext(); 1461 AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs()); 1462 for (auto Attr : FnAttrsToStrip) 1463 FnAttrs.removeAttribute(Attr); 1464 1465 for (Attribute A : OrigAL.getFnAttrs()) { 1466 if (isStatepointDirectiveAttr(A)) 1467 FnAttrs.removeAttribute(A); 1468 } 1469 1470 StatepointAL = StatepointAL.addFnAttributes(Ctx, FnAttrs); 1471 1472 // The memory intrinsics do not have a 1:1 correspondence of the original 1473 // call arguments to the produced statepoint. Do not transfer the argument 1474 // attributes to avoid putting them on incorrect arguments. 1475 if (IsMemIntrinsic) 1476 return StatepointAL; 1477 1478 // Attach the argument attributes from the original call at the corresponding 1479 // arguments in the statepoint. Note that any argument attributes that are 1480 // invalid after lowering are stripped in stripNonValidDataFromBody. 1481 for (unsigned I : llvm::seq(Call->arg_size())) 1482 StatepointAL = StatepointAL.addParamAttributes( 1483 Ctx, GCStatepointInst::CallArgsBeginPos + I, 1484 AttrBuilder(Ctx, OrigAL.getParamAttrs(I))); 1485 1486 // Return attributes are later attached to the gc.result intrinsic. 1487 return StatepointAL; 1488 } 1489 1490 /// Helper function to place all gc relocates necessary for the given 1491 /// statepoint. 1492 /// Inputs: 1493 /// liveVariables - list of variables to be relocated. 1494 /// basePtrs - base pointers. 1495 /// statepointToken - statepoint instruction to which relocates should be 1496 /// bound. 1497 /// Builder - Llvm IR builder to be used to construct new calls. 1498 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1499 ArrayRef<Value *> BasePtrs, 1500 Instruction *StatepointToken, 1501 IRBuilder<> &Builder, GCStrategy *GC) { 1502 if (LiveVariables.empty()) 1503 return; 1504 1505 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1506 auto ValIt = llvm::find(LiveVec, Val); 1507 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1508 size_t Index = std::distance(LiveVec.begin(), ValIt); 1509 assert(Index < LiveVec.size() && "Bug in std::find?"); 1510 return Index; 1511 }; 1512 Module *M = StatepointToken->getModule(); 1513 1514 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1515 // element type is i8 addrspace(1)*). We originally generated unique 1516 // declarations for each pointer type, but this proved problematic because 1517 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1518 // towards a single unified pointer type anyways, we can just cast everything 1519 // to an i8* of the right address space. A bitcast is added later to convert 1520 // gc_relocate to the actual value's type. 1521 auto getGCRelocateDecl = [&](Type *Ty) { 1522 assert(isHandledGCPointerType(Ty, GC)); 1523 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1524 Type *NewTy = PointerType::get(M->getContext(), AS); 1525 if (auto *VT = dyn_cast<VectorType>(Ty)) 1526 NewTy = FixedVectorType::get(NewTy, 1527 cast<FixedVectorType>(VT)->getNumElements()); 1528 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1529 {NewTy}); 1530 }; 1531 1532 // Lazily populated map from input types to the canonicalized form mentioned 1533 // in the comment above. This should probably be cached somewhere more 1534 // broadly. 1535 DenseMap<Type *, Function *> TypeToDeclMap; 1536 1537 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1538 // Generate the gc.relocate call and save the result 1539 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1540 Value *LiveIdx = Builder.getInt32(i); 1541 1542 Type *Ty = LiveVariables[i]->getType(); 1543 if (!TypeToDeclMap.count(Ty)) 1544 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1545 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1546 1547 // only specify a debug name if we can give a useful one 1548 CallInst *Reloc = Builder.CreateCall( 1549 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1550 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1551 // Trick CodeGen into thinking there are lots of free registers at this 1552 // fake call. 1553 Reloc->setCallingConv(CallingConv::Cold); 1554 } 1555 } 1556 1557 namespace { 1558 1559 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1560 /// avoids having to worry about keeping around dangling pointers to Values. 1561 class DeferredReplacement { 1562 AssertingVH<Instruction> Old; 1563 AssertingVH<Instruction> New; 1564 bool IsDeoptimize = false; 1565 1566 DeferredReplacement() = default; 1567 1568 public: 1569 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1570 assert(Old != New && Old && New && 1571 "Cannot RAUW equal values or to / from null!"); 1572 1573 DeferredReplacement D; 1574 D.Old = Old; 1575 D.New = New; 1576 return D; 1577 } 1578 1579 static DeferredReplacement createDelete(Instruction *ToErase) { 1580 DeferredReplacement D; 1581 D.Old = ToErase; 1582 return D; 1583 } 1584 1585 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1586 #ifndef NDEBUG 1587 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1588 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1589 "Only way to construct a deoptimize deferred replacement"); 1590 #endif 1591 DeferredReplacement D; 1592 D.Old = Old; 1593 D.IsDeoptimize = true; 1594 return D; 1595 } 1596 1597 /// Does the task represented by this instance. 1598 void doReplacement() { 1599 Instruction *OldI = Old; 1600 Instruction *NewI = New; 1601 1602 assert(OldI != NewI && "Disallowed at construction?!"); 1603 assert((!IsDeoptimize || !New) && 1604 "Deoptimize intrinsics are not replaced!"); 1605 1606 Old = nullptr; 1607 New = nullptr; 1608 1609 if (NewI) 1610 OldI->replaceAllUsesWith(NewI); 1611 1612 if (IsDeoptimize) { 1613 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1614 // not necessarily be followed by the matching return. 1615 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1616 new UnreachableInst(RI->getContext(), RI->getIterator()); 1617 RI->eraseFromParent(); 1618 } 1619 1620 OldI->eraseFromParent(); 1621 } 1622 }; 1623 1624 } // end anonymous namespace 1625 1626 static StringRef getDeoptLowering(CallBase *Call) { 1627 const char *DeoptLowering = "deopt-lowering"; 1628 if (Call->hasFnAttr(DeoptLowering)) { 1629 // FIXME: Calls have a *really* confusing interface around attributes 1630 // with values. 1631 const AttributeList &CSAS = Call->getAttributes(); 1632 if (CSAS.hasFnAttr(DeoptLowering)) 1633 return CSAS.getFnAttr(DeoptLowering).getValueAsString(); 1634 Function *F = Call->getCalledFunction(); 1635 assert(F && F->hasFnAttribute(DeoptLowering)); 1636 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1637 } 1638 return "live-through"; 1639 } 1640 1641 static void 1642 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1643 const SmallVectorImpl<Value *> &BasePtrs, 1644 const SmallVectorImpl<Value *> &LiveVariables, 1645 PartiallyConstructedSafepointRecord &Result, 1646 std::vector<DeferredReplacement> &Replacements, 1647 const PointerToBaseTy &PointerToBase, 1648 GCStrategy *GC) { 1649 assert(BasePtrs.size() == LiveVariables.size()); 1650 1651 // Then go ahead and use the builder do actually do the inserts. We insert 1652 // immediately before the previous instruction under the assumption that all 1653 // arguments will be available here. We can't insert afterwards since we may 1654 // be replacing a terminator. 1655 IRBuilder<> Builder(Call); 1656 1657 ArrayRef<Value *> GCArgs(LiveVariables); 1658 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1659 uint32_t NumPatchBytes = 0; 1660 uint32_t Flags = uint32_t(StatepointFlags::None); 1661 1662 SmallVector<Value *, 8> CallArgs(Call->args()); 1663 std::optional<ArrayRef<Use>> DeoptArgs; 1664 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1665 DeoptArgs = Bundle->Inputs; 1666 std::optional<ArrayRef<Use>> TransitionArgs; 1667 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1668 TransitionArgs = Bundle->Inputs; 1669 // TODO: This flag no longer serves a purpose and can be removed later 1670 Flags |= uint32_t(StatepointFlags::GCTransition); 1671 } 1672 1673 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1674 // with a return value, we lower then as never returning calls to 1675 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1676 bool IsDeoptimize = false; 1677 bool IsMemIntrinsic = false; 1678 1679 StatepointDirectives SD = 1680 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1681 if (SD.NumPatchBytes) 1682 NumPatchBytes = *SD.NumPatchBytes; 1683 if (SD.StatepointID) 1684 StatepointID = *SD.StatepointID; 1685 1686 // Pass through the requested lowering if any. The default is live-through. 1687 StringRef DeoptLowering = getDeoptLowering(Call); 1688 if (DeoptLowering == "live-in") 1689 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1690 else { 1691 assert(DeoptLowering == "live-through" && "Unsupported value!"); 1692 } 1693 1694 FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand()); 1695 if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) { 1696 auto IID = F->getIntrinsicID(); 1697 if (IID == Intrinsic::experimental_deoptimize) { 1698 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1699 // __llvm_deoptimize symbol. We want to resolve this now, since the 1700 // verifier does not allow taking the address of an intrinsic function. 1701 1702 SmallVector<Type *, 8> DomainTy; 1703 for (Value *Arg : CallArgs) 1704 DomainTy.push_back(Arg->getType()); 1705 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1706 /* isVarArg = */ false); 1707 1708 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1709 // calls to @llvm.experimental.deoptimize with different argument types in 1710 // the same module. This is fine -- we assume the frontend knew what it 1711 // was doing when generating this kind of IR. 1712 CallTarget = F->getParent() 1713 ->getOrInsertFunction("__llvm_deoptimize", FTy); 1714 1715 IsDeoptimize = true; 1716 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1717 IID == Intrinsic::memmove_element_unordered_atomic) { 1718 IsMemIntrinsic = true; 1719 1720 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1721 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1722 // Specifically, these calls should be lowered to the 1723 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1724 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1725 // verifier does not allow taking the address of an intrinsic function. 1726 // 1727 // Moreover we need to shuffle the arguments for the call in order to 1728 // accommodate GC. The underlying source and destination objects might be 1729 // relocated during copy operation should the GC occur. To relocate the 1730 // derived source and destination pointers the implementation of the 1731 // intrinsic should know the corresponding base pointers. 1732 // 1733 // To make the base pointers available pass them explicitly as arguments: 1734 // memcpy(dest_derived, source_derived, ...) => 1735 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1736 auto &Context = Call->getContext(); 1737 auto &DL = Call->getDataLayout(); 1738 auto GetBaseAndOffset = [&](Value *Derived) { 1739 Value *Base = nullptr; 1740 // Optimizations in unreachable code might substitute the real pointer 1741 // with undef, poison or null-derived constant. Return null base for 1742 // them to be consistent with the handling in the main algorithm in 1743 // findBaseDefiningValue. 1744 if (isa<Constant>(Derived)) 1745 Base = 1746 ConstantPointerNull::get(cast<PointerType>(Derived->getType())); 1747 else { 1748 assert(PointerToBase.count(Derived)); 1749 Base = PointerToBase.find(Derived)->second; 1750 } 1751 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1752 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1753 Value *Base_int = Builder.CreatePtrToInt( 1754 Base, Type::getIntNTy(Context, IntPtrSize)); 1755 Value *Derived_int = Builder.CreatePtrToInt( 1756 Derived, Type::getIntNTy(Context, IntPtrSize)); 1757 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1758 }; 1759 1760 auto *Dest = CallArgs[0]; 1761 Value *DestBase, *DestOffset; 1762 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1763 1764 auto *Source = CallArgs[1]; 1765 Value *SourceBase, *SourceOffset; 1766 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1767 1768 auto *LengthInBytes = CallArgs[2]; 1769 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1770 1771 CallArgs.clear(); 1772 CallArgs.push_back(DestBase); 1773 CallArgs.push_back(DestOffset); 1774 CallArgs.push_back(SourceBase); 1775 CallArgs.push_back(SourceOffset); 1776 CallArgs.push_back(LengthInBytes); 1777 1778 SmallVector<Type *, 8> DomainTy; 1779 for (Value *Arg : CallArgs) 1780 DomainTy.push_back(Arg->getType()); 1781 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1782 /* isVarArg = */ false); 1783 1784 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1785 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1786 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1787 switch (ElementSize) { 1788 case 1: 1789 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1790 case 2: 1791 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1792 case 4: 1793 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1794 case 8: 1795 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1796 case 16: 1797 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1798 default: 1799 llvm_unreachable("unexpected element size!"); 1800 } 1801 } 1802 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1803 switch (ElementSize) { 1804 case 1: 1805 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1806 case 2: 1807 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1808 case 4: 1809 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1810 case 8: 1811 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1812 case 16: 1813 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1814 default: 1815 llvm_unreachable("unexpected element size!"); 1816 } 1817 }; 1818 1819 CallTarget = 1820 F->getParent() 1821 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy); 1822 } 1823 } 1824 1825 // Create the statepoint given all the arguments 1826 GCStatepointInst *Token = nullptr; 1827 if (auto *CI = dyn_cast<CallInst>(Call)) { 1828 CallInst *SPCall = Builder.CreateGCStatepointCall( 1829 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1830 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1831 1832 SPCall->setTailCallKind(CI->getTailCallKind()); 1833 SPCall->setCallingConv(CI->getCallingConv()); 1834 1835 // Set up function attrs directly on statepoint and return attrs later for 1836 // gc_result intrinsic. 1837 SPCall->setAttributes( 1838 legalizeCallAttributes(CI, IsMemIntrinsic, SPCall->getAttributes())); 1839 1840 Token = cast<GCStatepointInst>(SPCall); 1841 1842 // Put the following gc_result and gc_relocate calls immediately after the 1843 // the old call (which we're about to delete) 1844 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1845 Builder.SetInsertPoint(CI->getNextNode()); 1846 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1847 } else { 1848 auto *II = cast<InvokeInst>(Call); 1849 1850 // Insert the new invoke into the old block. We'll remove the old one in a 1851 // moment at which point this will become the new terminator for the 1852 // original block. 1853 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1854 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1855 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1856 "statepoint_token"); 1857 1858 SPInvoke->setCallingConv(II->getCallingConv()); 1859 1860 // Set up function attrs directly on statepoint and return attrs later for 1861 // gc_result intrinsic. 1862 SPInvoke->setAttributes( 1863 legalizeCallAttributes(II, IsMemIntrinsic, SPInvoke->getAttributes())); 1864 1865 Token = cast<GCStatepointInst>(SPInvoke); 1866 1867 // Generate gc relocates in exceptional path 1868 BasicBlock *UnwindBlock = II->getUnwindDest(); 1869 assert(!isa<PHINode>(UnwindBlock->begin()) && 1870 UnwindBlock->getUniquePredecessor() && 1871 "can't safely insert in this block!"); 1872 1873 Builder.SetInsertPoint(UnwindBlock, UnwindBlock->getFirstInsertionPt()); 1874 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1875 1876 // Attach exceptional gc relocates to the landingpad. 1877 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1878 Result.UnwindToken = ExceptionalToken; 1879 1880 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder, GC); 1881 1882 // Generate gc relocates and returns for normal block 1883 BasicBlock *NormalDest = II->getNormalDest(); 1884 assert(!isa<PHINode>(NormalDest->begin()) && 1885 NormalDest->getUniquePredecessor() && 1886 "can't safely insert in this block!"); 1887 1888 Builder.SetInsertPoint(NormalDest, NormalDest->getFirstInsertionPt()); 1889 1890 // gc relocates will be generated later as if it were regular call 1891 // statepoint 1892 } 1893 assert(Token && "Should be set in one of the above branches!"); 1894 1895 if (IsDeoptimize) { 1896 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1897 // transform the tail-call like structure to a call to a void function 1898 // followed by unreachable to get better codegen. 1899 Replacements.push_back( 1900 DeferredReplacement::createDeoptimizeReplacement(Call)); 1901 } else { 1902 Token->setName("statepoint_token"); 1903 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1904 StringRef Name = Call->hasName() ? Call->getName() : ""; 1905 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1906 GCResult->setAttributes( 1907 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1908 Call->getAttributes().getRetAttrs())); 1909 1910 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1911 // live set of some other safepoint, in which case that safepoint's 1912 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1913 // llvm::Instruction. Instead, we defer the replacement and deletion to 1914 // after the live sets have been made explicit in the IR, and we no longer 1915 // have raw pointers to worry about. 1916 Replacements.emplace_back( 1917 DeferredReplacement::createRAUW(Call, GCResult)); 1918 } else { 1919 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1920 } 1921 } 1922 1923 Result.StatepointToken = Token; 1924 1925 // Second, create a gc.relocate for every live variable 1926 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder, GC); 1927 } 1928 1929 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1930 // which make the relocations happening at this safepoint explicit. 1931 // 1932 // WARNING: Does not do any fixup to adjust users of the original live 1933 // values. That's the callers responsibility. 1934 static void 1935 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1936 PartiallyConstructedSafepointRecord &Result, 1937 std::vector<DeferredReplacement> &Replacements, 1938 const PointerToBaseTy &PointerToBase, GCStrategy *GC) { 1939 const auto &LiveSet = Result.LiveSet; 1940 1941 // Convert to vector for efficient cross referencing. 1942 SmallVector<Value *, 64> BaseVec, LiveVec; 1943 LiveVec.reserve(LiveSet.size()); 1944 BaseVec.reserve(LiveSet.size()); 1945 for (Value *L : LiveSet) { 1946 LiveVec.push_back(L); 1947 assert(PointerToBase.count(L)); 1948 Value *Base = PointerToBase.find(L)->second; 1949 BaseVec.push_back(Base); 1950 } 1951 assert(LiveVec.size() == BaseVec.size()); 1952 1953 // Do the actual rewriting and delete the old statepoint 1954 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements, 1955 PointerToBase, GC); 1956 } 1957 1958 // Helper function for the relocationViaAlloca. 1959 // 1960 // It receives iterator to the statepoint gc relocates and emits a store to the 1961 // assigned location (via allocaMap) for the each one of them. It adds the 1962 // visited values into the visitedLiveValues set, which we will later use them 1963 // for validation checking. 1964 static void 1965 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1966 DenseMap<Value *, AllocaInst *> &AllocaMap, 1967 DenseSet<Value *> &VisitedLiveValues) { 1968 for (User *U : GCRelocs) { 1969 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1970 if (!Relocate) 1971 continue; 1972 1973 Value *OriginalValue = Relocate->getDerivedPtr(); 1974 assert(AllocaMap.count(OriginalValue)); 1975 Value *Alloca = AllocaMap[OriginalValue]; 1976 1977 // Emit store into the related alloca. 1978 assert(Relocate->getNextNode() && 1979 "Should always have one since it's not a terminator"); 1980 new StoreInst(Relocate, Alloca, std::next(Relocate->getIterator())); 1981 1982 #ifndef NDEBUG 1983 VisitedLiveValues.insert(OriginalValue); 1984 #endif 1985 } 1986 } 1987 1988 // Helper function for the "relocationViaAlloca". Similar to the 1989 // "insertRelocationStores" but works for rematerialized values. 1990 static void insertRematerializationStores( 1991 const RematerializedValueMapTy &RematerializedValues, 1992 DenseMap<Value *, AllocaInst *> &AllocaMap, 1993 DenseSet<Value *> &VisitedLiveValues) { 1994 for (auto RematerializedValuePair: RematerializedValues) { 1995 Instruction *RematerializedValue = RematerializedValuePair.first; 1996 Value *OriginalValue = RematerializedValuePair.second; 1997 1998 assert(AllocaMap.count(OriginalValue) && 1999 "Can not find alloca for rematerialized value"); 2000 Value *Alloca = AllocaMap[OriginalValue]; 2001 2002 new StoreInst(RematerializedValue, Alloca, 2003 std::next(RematerializedValue->getIterator())); 2004 2005 #ifndef NDEBUG 2006 VisitedLiveValues.insert(OriginalValue); 2007 #endif 2008 } 2009 } 2010 2011 /// Do all the relocation update via allocas and mem2reg 2012 static void relocationViaAlloca( 2013 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 2014 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 2015 #ifndef NDEBUG 2016 // record initial number of (static) allocas; we'll check we have the same 2017 // number when we get done. 2018 int InitialAllocaNum = 0; 2019 for (Instruction &I : F.getEntryBlock()) 2020 if (isa<AllocaInst>(I)) 2021 InitialAllocaNum++; 2022 #endif 2023 2024 // TODO-PERF: change data structures, reserve 2025 DenseMap<Value *, AllocaInst *> AllocaMap; 2026 SmallVector<AllocaInst *, 200> PromotableAllocas; 2027 // Used later to chack that we have enough allocas to store all values 2028 std::size_t NumRematerializedValues = 0; 2029 PromotableAllocas.reserve(Live.size()); 2030 2031 // Emit alloca for "LiveValue" and record it in "allocaMap" and 2032 // "PromotableAllocas" 2033 const DataLayout &DL = F.getDataLayout(); 2034 auto emitAllocaFor = [&](Value *LiveValue) { 2035 AllocaInst *Alloca = 2036 new AllocaInst(LiveValue->getType(), DL.getAllocaAddrSpace(), "", 2037 F.getEntryBlock().getFirstNonPHIIt()); 2038 AllocaMap[LiveValue] = Alloca; 2039 PromotableAllocas.push_back(Alloca); 2040 }; 2041 2042 // Emit alloca for each live gc pointer 2043 for (Value *V : Live) 2044 emitAllocaFor(V); 2045 2046 // Emit allocas for rematerialized values 2047 for (const auto &Info : Records) 2048 for (auto RematerializedValuePair : Info.RematerializedValues) { 2049 Value *OriginalValue = RematerializedValuePair.second; 2050 if (AllocaMap.contains(OriginalValue)) 2051 continue; 2052 2053 emitAllocaFor(OriginalValue); 2054 ++NumRematerializedValues; 2055 } 2056 2057 // The next two loops are part of the same conceptual operation. We need to 2058 // insert a store to the alloca after the original def and at each 2059 // redefinition. We need to insert a load before each use. These are split 2060 // into distinct loops for performance reasons. 2061 2062 // Update gc pointer after each statepoint: either store a relocated value or 2063 // null (if no relocated value was found for this gc pointer and it is not a 2064 // gc_result). This must happen before we update the statepoint with load of 2065 // alloca otherwise we lose the link between statepoint and old def. 2066 for (const auto &Info : Records) { 2067 Value *Statepoint = Info.StatepointToken; 2068 2069 // This will be used for consistency check 2070 DenseSet<Value *> VisitedLiveValues; 2071 2072 // Insert stores for normal statepoint gc relocates 2073 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 2074 2075 // In case if it was invoke statepoint 2076 // we will insert stores for exceptional path gc relocates. 2077 if (isa<InvokeInst>(Statepoint)) { 2078 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 2079 VisitedLiveValues); 2080 } 2081 2082 // Do similar thing with rematerialized values 2083 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 2084 VisitedLiveValues); 2085 2086 if (ClobberNonLive) { 2087 // As a debugging aid, pretend that an unrelocated pointer becomes null at 2088 // the gc.statepoint. This will turn some subtle GC problems into 2089 // slightly easier to debug SEGVs. Note that on large IR files with 2090 // lots of gc.statepoints this is extremely costly both memory and time 2091 // wise. 2092 SmallVector<AllocaInst *, 64> ToClobber; 2093 for (auto Pair : AllocaMap) { 2094 Value *Def = Pair.first; 2095 AllocaInst *Alloca = Pair.second; 2096 2097 // This value was relocated 2098 if (VisitedLiveValues.count(Def)) { 2099 continue; 2100 } 2101 ToClobber.push_back(Alloca); 2102 } 2103 2104 auto InsertClobbersAt = [&](BasicBlock::iterator IP) { 2105 for (auto *AI : ToClobber) { 2106 auto AT = AI->getAllocatedType(); 2107 Constant *CPN; 2108 if (AT->isVectorTy()) 2109 CPN = ConstantAggregateZero::get(AT); 2110 else 2111 CPN = ConstantPointerNull::get(cast<PointerType>(AT)); 2112 new StoreInst(CPN, AI, IP); 2113 } 2114 }; 2115 2116 // Insert the clobbering stores. These may get intermixed with the 2117 // gc.results and gc.relocates, but that's fine. 2118 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 2119 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); 2120 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); 2121 } else { 2122 InsertClobbersAt( 2123 std::next(cast<Instruction>(Statepoint)->getIterator())); 2124 } 2125 } 2126 } 2127 2128 // Update use with load allocas and add store for gc_relocated. 2129 for (auto Pair : AllocaMap) { 2130 Value *Def = Pair.first; 2131 AllocaInst *Alloca = Pair.second; 2132 2133 // We pre-record the uses of allocas so that we dont have to worry about 2134 // later update that changes the user information.. 2135 2136 SmallVector<Instruction *, 20> Uses; 2137 // PERF: trade a linear scan for repeated reallocation 2138 Uses.reserve(Def->getNumUses()); 2139 for (User *U : Def->users()) { 2140 if (!isa<ConstantExpr>(U)) { 2141 // If the def has a ConstantExpr use, then the def is either a 2142 // ConstantExpr use itself or null. In either case 2143 // (recursively in the first, directly in the second), the oop 2144 // it is ultimately dependent on is null and this particular 2145 // use does not need to be fixed up. 2146 Uses.push_back(cast<Instruction>(U)); 2147 } 2148 } 2149 2150 llvm::sort(Uses); 2151 auto Last = llvm::unique(Uses); 2152 Uses.erase(Last, Uses.end()); 2153 2154 for (Instruction *Use : Uses) { 2155 if (isa<PHINode>(Use)) { 2156 PHINode *Phi = cast<PHINode>(Use); 2157 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2158 if (Def == Phi->getIncomingValue(i)) { 2159 LoadInst *Load = new LoadInst( 2160 Alloca->getAllocatedType(), Alloca, "", 2161 Phi->getIncomingBlock(i)->getTerminator()->getIterator()); 2162 Phi->setIncomingValue(i, Load); 2163 } 2164 } 2165 } else { 2166 LoadInst *Load = new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2167 Use->getIterator()); 2168 Use->replaceUsesOfWith(Def, Load); 2169 } 2170 } 2171 2172 // Emit store for the initial gc value. Store must be inserted after load, 2173 // otherwise store will be in alloca's use list and an extra load will be 2174 // inserted before it. 2175 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2176 DL.getABITypeAlign(Def->getType())); 2177 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2178 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2179 // InvokeInst is a terminator so the store need to be inserted into its 2180 // normal destination block. 2181 BasicBlock *NormalDest = Invoke->getNormalDest(); 2182 Store->insertBefore(NormalDest->getFirstNonPHI()); 2183 } else { 2184 assert(!Inst->isTerminator() && 2185 "The only terminator that can produce a value is " 2186 "InvokeInst which is handled above."); 2187 Store->insertAfter(Inst); 2188 } 2189 } else { 2190 assert(isa<Argument>(Def)); 2191 Store->insertAfter(cast<Instruction>(Alloca)); 2192 } 2193 } 2194 2195 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2196 "we must have the same allocas with lives"); 2197 (void) NumRematerializedValues; 2198 if (!PromotableAllocas.empty()) { 2199 // Apply mem2reg to promote alloca to SSA 2200 PromoteMemToReg(PromotableAllocas, DT); 2201 } 2202 2203 #ifndef NDEBUG 2204 for (auto &I : F.getEntryBlock()) 2205 if (isa<AllocaInst>(I)) 2206 InitialAllocaNum--; 2207 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2208 #endif 2209 } 2210 2211 /// Implement a unique function which doesn't require we sort the input 2212 /// vector. Doing so has the effect of changing the output of a couple of 2213 /// tests in ways which make them less useful in testing fused safepoints. 2214 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2215 SmallSet<T, 8> Seen; 2216 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2217 } 2218 2219 /// Insert holders so that each Value is obviously live through the entire 2220 /// lifetime of the call. 2221 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2222 SmallVectorImpl<CallInst *> &Holders) { 2223 if (Values.empty()) 2224 // No values to hold live, might as well not insert the empty holder 2225 return; 2226 2227 Module *M = Call->getModule(); 2228 // Use a dummy vararg function to actually hold the values live 2229 FunctionCallee Func = M->getOrInsertFunction( 2230 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2231 if (isa<CallInst>(Call)) { 2232 // For call safepoints insert dummy calls right after safepoint 2233 Holders.push_back( 2234 CallInst::Create(Func, Values, "", std::next(Call->getIterator()))); 2235 return; 2236 } 2237 // For invoke safepooints insert dummy calls both in normal and 2238 // exceptional destination blocks 2239 auto *II = cast<InvokeInst>(Call); 2240 Holders.push_back(CallInst::Create( 2241 Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); 2242 Holders.push_back(CallInst::Create( 2243 Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); 2244 } 2245 2246 static void findLiveReferences( 2247 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2248 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 2249 GCStrategy *GC) { 2250 GCPtrLivenessData OriginalLivenessData; 2251 computeLiveInValues(DT, F, OriginalLivenessData, GC); 2252 for (size_t i = 0; i < records.size(); i++) { 2253 struct PartiallyConstructedSafepointRecord &info = records[i]; 2254 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info, GC); 2255 } 2256 } 2257 2258 // Helper function for the "rematerializeLiveValues". It walks use chain 2259 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2260 // the base or a value it cannot process. Only "simple" values are processed 2261 // (currently it is GEP's and casts). The returned root is examined by the 2262 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2263 // with all visited values. 2264 static Value* findRematerializableChainToBasePointer( 2265 SmallVectorImpl<Instruction*> &ChainToBase, 2266 Value *CurrentValue) { 2267 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2268 ChainToBase.push_back(GEP); 2269 return findRematerializableChainToBasePointer(ChainToBase, 2270 GEP->getPointerOperand()); 2271 } 2272 2273 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2274 if (!CI->isNoopCast(CI->getDataLayout())) 2275 return CI; 2276 2277 ChainToBase.push_back(CI); 2278 return findRematerializableChainToBasePointer(ChainToBase, 2279 CI->getOperand(0)); 2280 } 2281 2282 // We have reached the root of the chain, which is either equal to the base or 2283 // is the first unsupported value along the use chain. 2284 return CurrentValue; 2285 } 2286 2287 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2288 // chain we are going to rematerialize. 2289 static InstructionCost 2290 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2291 TargetTransformInfo &TTI) { 2292 InstructionCost Cost = 0; 2293 2294 for (Instruction *Instr : Chain) { 2295 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2296 assert(CI->isNoopCast(CI->getDataLayout()) && 2297 "non noop cast is found during rematerialization"); 2298 2299 Type *SrcTy = CI->getOperand(0)->getType(); 2300 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2301 TTI::getCastContextHint(CI), 2302 TargetTransformInfo::TCK_SizeAndLatency, CI); 2303 2304 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2305 // Cost of the address calculation 2306 Type *ValTy = GEP->getSourceElementType(); 2307 Cost += TTI.getAddressComputationCost(ValTy); 2308 2309 // And cost of the GEP itself 2310 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2311 // allowed for the external usage) 2312 if (!GEP->hasAllConstantIndices()) 2313 Cost += 2; 2314 2315 } else { 2316 llvm_unreachable("unsupported instruction type during rematerialization"); 2317 } 2318 } 2319 2320 return Cost; 2321 } 2322 2323 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2324 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2325 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2326 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2327 return false; 2328 // Map of incoming values and their corresponding basic blocks of 2329 // OrigRootPhi. 2330 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2331 for (unsigned i = 0; i < PhiNum; i++) 2332 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2333 OrigRootPhi.getIncomingBlock(i); 2334 2335 // Both current and base PHIs should have same incoming values and 2336 // the same basic blocks corresponding to the incoming values. 2337 for (unsigned i = 0; i < PhiNum; i++) { 2338 auto CIVI = 2339 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2340 if (CIVI == CurrentIncomingValues.end()) 2341 return false; 2342 BasicBlock *CurrentIncomingBB = CIVI->second; 2343 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2344 return false; 2345 } 2346 return true; 2347 } 2348 2349 // Find derived pointers that can be recomputed cheap enough and fill 2350 // RematerizationCandidates with such candidates. 2351 static void 2352 findRematerializationCandidates(PointerToBaseTy PointerToBase, 2353 RematCandTy &RematerizationCandidates, 2354 TargetTransformInfo &TTI) { 2355 const unsigned int ChainLengthThreshold = 10; 2356 2357 for (auto P2B : PointerToBase) { 2358 auto *Derived = P2B.first; 2359 auto *Base = P2B.second; 2360 // Consider only derived pointers. 2361 if (Derived == Base) 2362 continue; 2363 2364 // For each live pointer find its defining chain. 2365 SmallVector<Instruction *, 3> ChainToBase; 2366 Value *RootOfChain = 2367 findRematerializableChainToBasePointer(ChainToBase, Derived); 2368 2369 // Nothing to do, or chain is too long 2370 if ( ChainToBase.size() == 0 || 2371 ChainToBase.size() > ChainLengthThreshold) 2372 continue; 2373 2374 // Handle the scenario where the RootOfChain is not equal to the 2375 // Base Value, but they are essentially the same phi values. 2376 if (RootOfChain != PointerToBase[Derived]) { 2377 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2378 PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]); 2379 if (!OrigRootPhi || !AlternateRootPhi) 2380 continue; 2381 // PHI nodes that have the same incoming values, and belonging to the same 2382 // basic blocks are essentially the same SSA value. When the original phi 2383 // has incoming values with different base pointers, the original phi is 2384 // marked as conflict, and an additional `AlternateRootPhi` with the same 2385 // incoming values get generated by the findBasePointer function. We need 2386 // to identify the newly generated AlternateRootPhi (.base version of phi) 2387 // and RootOfChain (the original phi node itself) are the same, so that we 2388 // can rematerialize the gep and casts. This is a workaround for the 2389 // deficiency in the findBasePointer algorithm. 2390 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2391 continue; 2392 } 2393 // Compute cost of this chain. 2394 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2395 // TODO: We can also account for cases when we will be able to remove some 2396 // of the rematerialized values by later optimization passes. I.e if 2397 // we rematerialized several intersecting chains. Or if original values 2398 // don't have any uses besides this statepoint. 2399 2400 // Ok, there is a candidate. 2401 RematerizlizationCandidateRecord Record; 2402 Record.ChainToBase = ChainToBase; 2403 Record.RootOfChain = RootOfChain; 2404 Record.Cost = Cost; 2405 RematerizationCandidates.insert({ Derived, Record }); 2406 } 2407 } 2408 2409 // Try to rematerialize derived pointers immediately before their uses 2410 // (instead of rematerializing after every statepoint it is live through). 2411 // This can be beneficial when derived pointer is live across many 2412 // statepoints, but uses are rare. 2413 static void rematerializeLiveValuesAtUses( 2414 RematCandTy &RematerizationCandidates, 2415 MutableArrayRef<PartiallyConstructedSafepointRecord> Records, 2416 PointerToBaseTy &PointerToBase) { 2417 if (!RematDerivedAtUses) 2418 return; 2419 2420 SmallVector<Instruction *, 32> LiveValuesToBeDeleted; 2421 2422 LLVM_DEBUG(dbgs() << "Rematerialize derived pointers at uses, " 2423 << "Num statepoints: " << Records.size() << '\n'); 2424 2425 for (auto &It : RematerizationCandidates) { 2426 Instruction *Cand = cast<Instruction>(It.first); 2427 auto &Record = It.second; 2428 2429 if (Record.Cost >= RematerializationThreshold) 2430 continue; 2431 2432 if (Cand->user_empty()) 2433 continue; 2434 2435 if (Cand->hasOneUse()) 2436 if (auto *U = dyn_cast<Instruction>(Cand->getUniqueUndroppableUser())) 2437 if (U->getParent() == Cand->getParent()) 2438 continue; 2439 2440 // Rematerialization before PHI nodes is not implemented. 2441 if (llvm::any_of(Cand->users(), 2442 [](const auto *U) { return isa<PHINode>(U); })) 2443 continue; 2444 2445 LLVM_DEBUG(dbgs() << "Trying cand " << *Cand << " ... "); 2446 2447 // Count of rematerialization instructions we introduce is equal to number 2448 // of candidate uses. 2449 // Count of rematerialization instructions we eliminate is equal to number 2450 // of statepoints it is live through. 2451 // Consider transformation profitable if latter is greater than former 2452 // (in other words, we create less than eliminate). 2453 unsigned NumLiveStatepoints = llvm::count_if( 2454 Records, [Cand](const auto &R) { return R.LiveSet.contains(Cand); }); 2455 unsigned NumUses = Cand->getNumUses(); 2456 2457 LLVM_DEBUG(dbgs() << "Num uses: " << NumUses << " Num live statepoints: " 2458 << NumLiveStatepoints << " "); 2459 2460 if (NumLiveStatepoints < NumUses) { 2461 LLVM_DEBUG(dbgs() << "not profitable\n"); 2462 continue; 2463 } 2464 2465 // If rematerialization is 'free', then favor rematerialization at 2466 // uses as it generally shortens live ranges. 2467 // TODO: Short (size ==1) chains only? 2468 if (NumLiveStatepoints == NumUses && Record.Cost > 0) { 2469 LLVM_DEBUG(dbgs() << "not profitable\n"); 2470 continue; 2471 } 2472 2473 LLVM_DEBUG(dbgs() << "looks profitable\n"); 2474 2475 // ChainToBase may contain another remat candidate (as a sub chain) which 2476 // has been rewritten by now. Need to recollect chain to have up to date 2477 // value. 2478 // TODO: sort records in findRematerializationCandidates() in 2479 // decreasing chain size order? 2480 if (Record.ChainToBase.size() > 1) { 2481 Record.ChainToBase.clear(); 2482 findRematerializableChainToBasePointer(Record.ChainToBase, Cand); 2483 } 2484 2485 // Current rematerialization algorithm is very simple: we rematerialize 2486 // immediately before EVERY use, even if there are several uses in same 2487 // block or if use is local to Cand Def. The reason is that this allows 2488 // us to avoid recomputing liveness without complicated analysis: 2489 // - If we did not eliminate all uses of original Candidate, we do not 2490 // know exaclty in what BBs it is still live. 2491 // - If we rematerialize once per BB, we need to find proper insertion 2492 // place (first use in block, but after Def) and analyze if there is 2493 // statepoint between uses in the block. 2494 while (!Cand->user_empty()) { 2495 Instruction *UserI = cast<Instruction>(*Cand->user_begin()); 2496 Instruction *RematChain = rematerializeChain( 2497 Record.ChainToBase, UserI, Record.RootOfChain, PointerToBase[Cand]); 2498 UserI->replaceUsesOfWith(Cand, RematChain); 2499 PointerToBase[RematChain] = PointerToBase[Cand]; 2500 } 2501 LiveValuesToBeDeleted.push_back(Cand); 2502 } 2503 2504 LLVM_DEBUG(dbgs() << "Rematerialized " << LiveValuesToBeDeleted.size() 2505 << " derived pointers\n"); 2506 for (auto *Cand : LiveValuesToBeDeleted) { 2507 assert(Cand->use_empty() && "Unexpected user remain"); 2508 RematerizationCandidates.erase(Cand); 2509 for (auto &R : Records) { 2510 assert(!R.LiveSet.contains(Cand) || 2511 R.LiveSet.contains(PointerToBase[Cand])); 2512 R.LiveSet.remove(Cand); 2513 } 2514 } 2515 2516 // Recollect not rematerialized chains - we might have rewritten 2517 // their sub-chains. 2518 if (!LiveValuesToBeDeleted.empty()) { 2519 for (auto &P : RematerizationCandidates) { 2520 auto &R = P.second; 2521 if (R.ChainToBase.size() > 1) { 2522 R.ChainToBase.clear(); 2523 findRematerializableChainToBasePointer(R.ChainToBase, P.first); 2524 } 2525 } 2526 } 2527 } 2528 2529 // From the statepoint live set pick values that are cheaper to recompute then 2530 // to relocate. Remove this values from the live set, rematerialize them after 2531 // statepoint and record them in "Info" structure. Note that similar to 2532 // relocated values we don't do any user adjustments here. 2533 static void rematerializeLiveValues(CallBase *Call, 2534 PartiallyConstructedSafepointRecord &Info, 2535 PointerToBaseTy &PointerToBase, 2536 RematCandTy &RematerizationCandidates, 2537 TargetTransformInfo &TTI) { 2538 // Record values we are going to delete from this statepoint live set. 2539 // We can not di this in following loop due to iterator invalidation. 2540 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2541 2542 for (Value *LiveValue : Info.LiveSet) { 2543 auto It = RematerizationCandidates.find(LiveValue); 2544 if (It == RematerizationCandidates.end()) 2545 continue; 2546 2547 RematerizlizationCandidateRecord &Record = It->second; 2548 2549 InstructionCost Cost = Record.Cost; 2550 // For invokes we need to rematerialize each chain twice - for normal and 2551 // for unwind basic blocks. Model this by multiplying cost by two. 2552 if (isa<InvokeInst>(Call)) 2553 Cost *= 2; 2554 2555 // If it's too expensive - skip it. 2556 if (Cost >= RematerializationThreshold) 2557 continue; 2558 2559 // Remove value from the live set 2560 LiveValuesToBeDeleted.push_back(LiveValue); 2561 2562 // Clone instructions and record them inside "Info" structure. 2563 2564 // Different cases for calls and invokes. For invokes we need to clone 2565 // instructions both on normal and unwind path. 2566 if (isa<CallInst>(Call)) { 2567 Instruction *InsertBefore = Call->getNextNode(); 2568 assert(InsertBefore); 2569 Instruction *RematerializedValue = 2570 rematerializeChain(Record.ChainToBase, InsertBefore, 2571 Record.RootOfChain, PointerToBase[LiveValue]); 2572 Info.RematerializedValues[RematerializedValue] = LiveValue; 2573 } else { 2574 auto *Invoke = cast<InvokeInst>(Call); 2575 2576 Instruction *NormalInsertBefore = 2577 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2578 Instruction *UnwindInsertBefore = 2579 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2580 2581 Instruction *NormalRematerializedValue = 2582 rematerializeChain(Record.ChainToBase, NormalInsertBefore, 2583 Record.RootOfChain, PointerToBase[LiveValue]); 2584 Instruction *UnwindRematerializedValue = 2585 rematerializeChain(Record.ChainToBase, UnwindInsertBefore, 2586 Record.RootOfChain, PointerToBase[LiveValue]); 2587 2588 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2589 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2590 } 2591 } 2592 2593 // Remove rematerialized values from the live set. 2594 for (auto *LiveValue: LiveValuesToBeDeleted) { 2595 Info.LiveSet.remove(LiveValue); 2596 } 2597 } 2598 2599 static bool inlineGetBaseAndOffset(Function &F, 2600 SmallVectorImpl<CallInst *> &Intrinsics, 2601 DefiningValueMapTy &DVCache, 2602 IsKnownBaseMapTy &KnownBases) { 2603 auto &Context = F.getContext(); 2604 auto &DL = F.getDataLayout(); 2605 bool Changed = false; 2606 2607 for (auto *Callsite : Intrinsics) 2608 switch (Callsite->getIntrinsicID()) { 2609 case Intrinsic::experimental_gc_get_pointer_base: { 2610 Changed = true; 2611 Value *Base = 2612 findBasePointer(Callsite->getOperand(0), DVCache, KnownBases); 2613 assert(!DVCache.count(Callsite)); 2614 Callsite->replaceAllUsesWith(Base); 2615 if (!Base->hasName()) 2616 Base->takeName(Callsite); 2617 Callsite->eraseFromParent(); 2618 break; 2619 } 2620 case Intrinsic::experimental_gc_get_pointer_offset: { 2621 Changed = true; 2622 Value *Derived = Callsite->getOperand(0); 2623 Value *Base = findBasePointer(Derived, DVCache, KnownBases); 2624 assert(!DVCache.count(Callsite)); 2625 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2626 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2627 IRBuilder<> Builder(Callsite); 2628 Value *BaseInt = 2629 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2630 suffixed_name_or(Base, ".int", "")); 2631 Value *DerivedInt = 2632 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2633 suffixed_name_or(Derived, ".int", "")); 2634 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2635 Callsite->replaceAllUsesWith(Offset); 2636 Offset->takeName(Callsite); 2637 Callsite->eraseFromParent(); 2638 break; 2639 } 2640 default: 2641 llvm_unreachable("Unknown intrinsic"); 2642 } 2643 2644 return Changed; 2645 } 2646 2647 static bool insertParsePoints(Function &F, DominatorTree &DT, 2648 TargetTransformInfo &TTI, 2649 SmallVectorImpl<CallBase *> &ToUpdate, 2650 DefiningValueMapTy &DVCache, 2651 IsKnownBaseMapTy &KnownBases) { 2652 std::unique_ptr<GCStrategy> GC = findGCStrategy(F); 2653 2654 #ifndef NDEBUG 2655 // Validate the input 2656 std::set<CallBase *> Uniqued; 2657 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2658 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2659 2660 for (CallBase *Call : ToUpdate) 2661 assert(Call->getFunction() == &F); 2662 #endif 2663 2664 // When inserting gc.relocates for invokes, we need to be able to insert at 2665 // the top of the successor blocks. See the comment on 2666 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2667 // may restructure the CFG. 2668 for (CallBase *Call : ToUpdate) { 2669 auto *II = dyn_cast<InvokeInst>(Call); 2670 if (!II) 2671 continue; 2672 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2673 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2674 } 2675 2676 // A list of dummy calls added to the IR to keep various values obviously 2677 // live in the IR. We'll remove all of these when done. 2678 SmallVector<CallInst *, 64> Holders; 2679 2680 // Insert a dummy call with all of the deopt operands we'll need for the 2681 // actual safepoint insertion as arguments. This ensures reference operands 2682 // in the deopt argument list are considered live through the safepoint (and 2683 // thus makes sure they get relocated.) 2684 for (CallBase *Call : ToUpdate) { 2685 SmallVector<Value *, 64> DeoptValues; 2686 2687 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2688 assert(!isUnhandledGCPointerType(Arg->getType(), GC.get()) && 2689 "support for FCA unimplemented"); 2690 if (isHandledGCPointerType(Arg->getType(), GC.get())) 2691 DeoptValues.push_back(Arg); 2692 } 2693 2694 insertUseHolderAfter(Call, DeoptValues, Holders); 2695 } 2696 2697 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2698 2699 // A) Identify all gc pointers which are statically live at the given call 2700 // site. 2701 findLiveReferences(F, DT, ToUpdate, Records, GC.get()); 2702 2703 /// Global mapping from live pointers to a base-defining-value. 2704 PointerToBaseTy PointerToBase; 2705 2706 // B) Find the base pointers for each live pointer 2707 for (size_t i = 0; i < Records.size(); i++) { 2708 PartiallyConstructedSafepointRecord &info = Records[i]; 2709 findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases); 2710 } 2711 if (PrintBasePointers) { 2712 errs() << "Base Pairs (w/o Relocation):\n"; 2713 for (auto &Pair : PointerToBase) { 2714 errs() << " derived "; 2715 Pair.first->printAsOperand(errs(), false); 2716 errs() << " base "; 2717 Pair.second->printAsOperand(errs(), false); 2718 errs() << "\n"; 2719 ; 2720 } 2721 } 2722 2723 // The base phi insertion logic (for any safepoint) may have inserted new 2724 // instructions which are now live at some safepoint. The simplest such 2725 // example is: 2726 // loop: 2727 // phi a <-- will be a new base_phi here 2728 // safepoint 1 <-- that needs to be live here 2729 // gep a + 1 2730 // safepoint 2 2731 // br loop 2732 // We insert some dummy calls after each safepoint to definitely hold live 2733 // the base pointers which were identified for that safepoint. We'll then 2734 // ask liveness for _every_ base inserted to see what is now live. Then we 2735 // remove the dummy calls. 2736 Holders.reserve(Holders.size() + Records.size()); 2737 for (size_t i = 0; i < Records.size(); i++) { 2738 PartiallyConstructedSafepointRecord &Info = Records[i]; 2739 2740 SmallVector<Value *, 128> Bases; 2741 for (auto *Derived : Info.LiveSet) { 2742 assert(PointerToBase.count(Derived) && "Missed base for derived pointer"); 2743 Bases.push_back(PointerToBase[Derived]); 2744 } 2745 2746 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2747 } 2748 2749 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2750 // need to rerun liveness. We may *also* have inserted new defs, but that's 2751 // not the key issue. 2752 recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase, GC.get()); 2753 2754 if (PrintBasePointers) { 2755 errs() << "Base Pairs: (w/Relocation)\n"; 2756 for (auto Pair : PointerToBase) { 2757 errs() << " derived "; 2758 Pair.first->printAsOperand(errs(), false); 2759 errs() << " base "; 2760 Pair.second->printAsOperand(errs(), false); 2761 errs() << "\n"; 2762 } 2763 } 2764 2765 // It is possible that non-constant live variables have a constant base. For 2766 // example, a GEP with a variable offset from a global. In this case we can 2767 // remove it from the liveset. We already don't add constants to the liveset 2768 // because we assume they won't move at runtime and the GC doesn't need to be 2769 // informed about them. The same reasoning applies if the base is constant. 2770 // Note that the relocation placement code relies on this filtering for 2771 // correctness as it expects the base to be in the liveset, which isn't true 2772 // if the base is constant. 2773 for (auto &Info : Records) { 2774 Info.LiveSet.remove_if([&](Value *LiveV) { 2775 assert(PointerToBase.count(LiveV) && "Missed base for derived pointer"); 2776 return isa<Constant>(PointerToBase[LiveV]); 2777 }); 2778 } 2779 2780 for (CallInst *CI : Holders) 2781 CI->eraseFromParent(); 2782 2783 Holders.clear(); 2784 2785 // Compute the cost of possible re-materialization of derived pointers. 2786 RematCandTy RematerizationCandidates; 2787 findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI); 2788 2789 // In order to reduce live set of statepoint we might choose to rematerialize 2790 // some values instead of relocating them. This is purely an optimization and 2791 // does not influence correctness. 2792 // First try rematerialization at uses, then after statepoints. 2793 rematerializeLiveValuesAtUses(RematerizationCandidates, Records, 2794 PointerToBase); 2795 for (size_t i = 0; i < Records.size(); i++) 2796 rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, 2797 RematerizationCandidates, TTI); 2798 2799 // We need this to safely RAUW and delete call or invoke return values that 2800 // may themselves be live over a statepoint. For details, please see usage in 2801 // makeStatepointExplicitImpl. 2802 std::vector<DeferredReplacement> Replacements; 2803 2804 // Now run through and replace the existing statepoints with new ones with 2805 // the live variables listed. We do not yet update uses of the values being 2806 // relocated. We have references to live variables that need to 2807 // survive to the last iteration of this loop. (By construction, the 2808 // previous statepoint can not be a live variable, thus we can and remove 2809 // the old statepoint calls as we go.) 2810 for (size_t i = 0; i < Records.size(); i++) 2811 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements, 2812 PointerToBase, GC.get()); 2813 2814 ToUpdate.clear(); // prevent accident use of invalid calls. 2815 2816 for (auto &PR : Replacements) 2817 PR.doReplacement(); 2818 2819 Replacements.clear(); 2820 2821 for (auto &Info : Records) { 2822 // These live sets may contain state Value pointers, since we replaced calls 2823 // with operand bundles with calls wrapped in gc.statepoint, and some of 2824 // those calls may have been def'ing live gc pointers. Clear these out to 2825 // avoid accidentally using them. 2826 // 2827 // TODO: We should create a separate data structure that does not contain 2828 // these live sets, and migrate to using that data structure from this point 2829 // onward. 2830 Info.LiveSet.clear(); 2831 } 2832 PointerToBase.clear(); 2833 2834 // Do all the fixups of the original live variables to their relocated selves 2835 SmallVector<Value *, 128> Live; 2836 for (const PartiallyConstructedSafepointRecord &Info : Records) { 2837 // We can't simply save the live set from the original insertion. One of 2838 // the live values might be the result of a call which needs a safepoint. 2839 // That Value* no longer exists and we need to use the new gc_result. 2840 // Thankfully, the live set is embedded in the statepoint (and updated), so 2841 // we just grab that. 2842 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2843 #ifndef NDEBUG 2844 // Do some basic validation checking on our liveness results before 2845 // performing relocation. Relocation can and will turn mistakes in liveness 2846 // results into non-sensical code which is must harder to debug. 2847 // TODO: It would be nice to test consistency as well 2848 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2849 "statepoint must be reachable or liveness is meaningless"); 2850 for (Value *V : Info.StatepointToken->gc_args()) { 2851 if (!isa<Instruction>(V)) 2852 // Non-instruction values trivial dominate all possible uses 2853 continue; 2854 auto *LiveInst = cast<Instruction>(V); 2855 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2856 "unreachable values should never be live"); 2857 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2858 "basic SSA liveness expectation violated by liveness analysis"); 2859 } 2860 #endif 2861 } 2862 unique_unsorted(Live); 2863 2864 #ifndef NDEBUG 2865 // Validation check 2866 for (auto *Ptr : Live) 2867 assert(isHandledGCPointerType(Ptr->getType(), GC.get()) && 2868 "must be a gc pointer type"); 2869 #endif 2870 2871 relocationViaAlloca(F, DT, Live, Records); 2872 return !Records.empty(); 2873 } 2874 2875 // List of all parameter and return attributes which must be stripped when 2876 // lowering from the abstract machine model. Note that we list attributes 2877 // here which aren't valid as return attributes, that is okay. 2878 static AttributeMask getParamAndReturnAttributesToRemove() { 2879 AttributeMask R; 2880 R.addAttribute(Attribute::Dereferenceable); 2881 R.addAttribute(Attribute::DereferenceableOrNull); 2882 R.addAttribute(Attribute::ReadNone); 2883 R.addAttribute(Attribute::ReadOnly); 2884 R.addAttribute(Attribute::WriteOnly); 2885 R.addAttribute(Attribute::NoAlias); 2886 R.addAttribute(Attribute::NoFree); 2887 return R; 2888 } 2889 2890 static void stripNonValidAttributesFromPrototype(Function &F) { 2891 LLVMContext &Ctx = F.getContext(); 2892 2893 // Intrinsics are very delicate. Lowering sometimes depends the presence 2894 // of certain attributes for correctness, but we may have also inferred 2895 // additional ones in the abstract machine model which need stripped. This 2896 // assumes that the attributes defined in Intrinsic.td are conservatively 2897 // correct for both physical and abstract model. 2898 if (Intrinsic::ID id = F.getIntrinsicID()) { 2899 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2900 return; 2901 } 2902 2903 AttributeMask R = getParamAndReturnAttributesToRemove(); 2904 for (Argument &A : F.args()) 2905 if (isa<PointerType>(A.getType())) 2906 F.removeParamAttrs(A.getArgNo(), R); 2907 2908 if (isa<PointerType>(F.getReturnType())) 2909 F.removeRetAttrs(R); 2910 2911 for (auto Attr : FnAttrsToStrip) 2912 F.removeFnAttr(Attr); 2913 } 2914 2915 /// Certain metadata on instructions are invalid after running RS4GC. 2916 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2917 /// optimize functions. We drop such metadata on the instruction. 2918 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2919 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2920 return; 2921 // These are the attributes that are still valid on loads and stores after 2922 // RS4GC. 2923 // The metadata implying dereferenceability and noalias are (conservatively) 2924 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2925 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2926 // touch the entire heap including noalias objects. Note: The reasoning is 2927 // same as stripping the dereferenceability and noalias attributes that are 2928 // analogous to the metadata counterparts. 2929 // We also drop the invariant.load metadata on the load because that metadata 2930 // implies the address operand to the load points to memory that is never 2931 // changed once it became dereferenceable. This is no longer true after RS4GC. 2932 // Similar reasoning applies to invariant.group metadata, which applies to 2933 // loads within a group. 2934 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2935 LLVMContext::MD_range, 2936 LLVMContext::MD_alias_scope, 2937 LLVMContext::MD_nontemporal, 2938 LLVMContext::MD_nonnull, 2939 LLVMContext::MD_align, 2940 LLVMContext::MD_type}; 2941 2942 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2943 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2944 } 2945 2946 static void stripNonValidDataFromBody(Function &F) { 2947 if (F.empty()) 2948 return; 2949 2950 LLVMContext &Ctx = F.getContext(); 2951 MDBuilder Builder(Ctx); 2952 2953 // Set of invariantstart instructions that we need to remove. 2954 // Use this to avoid invalidating the instruction iterator. 2955 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2956 2957 for (Instruction &I : instructions(F)) { 2958 // invariant.start on memory location implies that the referenced memory 2959 // location is constant and unchanging. This is no longer true after 2960 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2961 // which frees the entire heap and the presence of invariant.start allows 2962 // the optimizer to sink the load of a memory location past a statepoint, 2963 // which is incorrect. 2964 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2965 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2966 InvariantStartInstructions.push_back(II); 2967 continue; 2968 } 2969 2970 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2971 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2972 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2973 } 2974 2975 stripInvalidMetadataFromInstruction(I); 2976 2977 AttributeMask R = getParamAndReturnAttributesToRemove(); 2978 if (auto *Call = dyn_cast<CallBase>(&I)) { 2979 for (int i = 0, e = Call->arg_size(); i != e; i++) 2980 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2981 Call->removeParamAttrs(i, R); 2982 if (isa<PointerType>(Call->getType())) 2983 Call->removeRetAttrs(R); 2984 } 2985 } 2986 2987 // Delete the invariant.start instructions and RAUW poison. 2988 for (auto *II : InvariantStartInstructions) { 2989 II->replaceAllUsesWith(PoisonValue::get(II->getType())); 2990 II->eraseFromParent(); 2991 } 2992 } 2993 2994 /// Looks up the GC strategy for a given function, returning null if the 2995 /// function doesn't have a GC tag. The strategy is stored in the cache. 2996 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F) { 2997 if (!F.hasGC()) 2998 return nullptr; 2999 3000 return getGCStrategy(F.getGC()); 3001 } 3002 3003 /// Returns true if this function should be rewritten by this pass. The main 3004 /// point of this function is as an extension point for custom logic. 3005 static bool shouldRewriteStatepointsIn(Function &F) { 3006 if (!F.hasGC()) 3007 return false; 3008 3009 std::unique_ptr<GCStrategy> Strategy = findGCStrategy(F); 3010 3011 assert(Strategy && "GC strategy is required by function, but was not found"); 3012 3013 return Strategy->useRS4GC(); 3014 } 3015 3016 static void stripNonValidData(Module &M) { 3017 #ifndef NDEBUG 3018 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 3019 #endif 3020 3021 for (Function &F : M) 3022 stripNonValidAttributesFromPrototype(F); 3023 3024 for (Function &F : M) 3025 stripNonValidDataFromBody(F); 3026 } 3027 3028 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 3029 TargetTransformInfo &TTI, 3030 const TargetLibraryInfo &TLI) { 3031 assert(!F.isDeclaration() && !F.empty() && 3032 "need function body to rewrite statepoints in"); 3033 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 3034 3035 auto NeedsRewrite = [&TLI](Instruction &I) { 3036 if (const auto *Call = dyn_cast<CallBase>(&I)) { 3037 if (isa<GCStatepointInst>(Call)) 3038 return false; 3039 if (callsGCLeafFunction(Call, TLI)) 3040 return false; 3041 3042 // Normally it's up to the frontend to make sure that non-leaf calls also 3043 // have proper deopt state if it is required. We make an exception for 3044 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 3045 // these are non-leaf by default. They might be generated by the optimizer 3046 // which doesn't know how to produce a proper deopt state. So if we see a 3047 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 3048 // copy and don't produce a statepoint. 3049 if (!AllowStatepointWithNoDeoptInfo && !Call->hasDeoptState()) { 3050 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 3051 "Don't expect any other calls here!"); 3052 return false; 3053 } 3054 return true; 3055 } 3056 return false; 3057 }; 3058 3059 // Delete any unreachable statepoints so that we don't have unrewritten 3060 // statepoints surviving this pass. This makes testing easier and the 3061 // resulting IR less confusing to human readers. 3062 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 3063 bool MadeChange = removeUnreachableBlocks(F, &DTU); 3064 // Flush the Dominator Tree. 3065 DTU.getDomTree(); 3066 3067 // Gather all the statepoints which need rewritten. Be careful to only 3068 // consider those in reachable code since we need to ask dominance queries 3069 // when rewriting. We'll delete the unreachable ones in a moment. 3070 SmallVector<CallBase *, 64> ParsePointNeeded; 3071 SmallVector<CallInst *, 64> Intrinsics; 3072 for (Instruction &I : instructions(F)) { 3073 // TODO: only the ones with the flag set! 3074 if (NeedsRewrite(I)) { 3075 // NOTE removeUnreachableBlocks() is stronger than 3076 // DominatorTree::isReachableFromEntry(). In other words 3077 // removeUnreachableBlocks can remove some blocks for which 3078 // isReachableFromEntry() returns true. 3079 assert(DT.isReachableFromEntry(I.getParent()) && 3080 "no unreachable blocks expected"); 3081 ParsePointNeeded.push_back(cast<CallBase>(&I)); 3082 } 3083 if (auto *CI = dyn_cast<CallInst>(&I)) 3084 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 3085 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 3086 Intrinsics.emplace_back(CI); 3087 } 3088 3089 // Return early if no work to do. 3090 if (ParsePointNeeded.empty() && Intrinsics.empty()) 3091 return MadeChange; 3092 3093 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 3094 // These are created by LCSSA. They have the effect of increasing the size 3095 // of liveness sets for no good reason. It may be harder to do this post 3096 // insertion since relocations and base phis can confuse things. 3097 for (BasicBlock &BB : F) 3098 if (BB.getUniquePredecessor()) 3099 MadeChange |= FoldSingleEntryPHINodes(&BB); 3100 3101 // Before we start introducing relocations, we want to tweak the IR a bit to 3102 // avoid unfortunate code generation effects. The main example is that we 3103 // want to try to make sure the comparison feeding a branch is after any 3104 // safepoints. Otherwise, we end up with a comparison of pre-relocation 3105 // values feeding a branch after relocation. This is semantically correct, 3106 // but results in extra register pressure since both the pre-relocation and 3107 // post-relocation copies must be available in registers. For code without 3108 // relocations this is handled elsewhere, but teaching the scheduler to 3109 // reverse the transform we're about to do would be slightly complex. 3110 // Note: This may extend the live range of the inputs to the icmp and thus 3111 // increase the liveset of any statepoint we move over. This is profitable 3112 // as long as all statepoints are in rare blocks. If we had in-register 3113 // lowering for live values this would be a much safer transform. 3114 auto getConditionInst = [](Instruction *TI) -> Instruction * { 3115 if (auto *BI = dyn_cast<BranchInst>(TI)) 3116 if (BI->isConditional()) 3117 return dyn_cast<Instruction>(BI->getCondition()); 3118 // TODO: Extend this to handle switches 3119 return nullptr; 3120 }; 3121 for (BasicBlock &BB : F) { 3122 Instruction *TI = BB.getTerminator(); 3123 if (auto *Cond = getConditionInst(TI)) 3124 // TODO: Handle more than just ICmps here. We should be able to move 3125 // most instructions without side effects or memory access. 3126 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 3127 MadeChange = true; 3128 Cond->moveBefore(TI); 3129 } 3130 } 3131 3132 // Nasty workaround - The base computation code in the main algorithm doesn't 3133 // consider the fact that a GEP can be used to convert a scalar to a vector. 3134 // The right fix for this is to integrate GEPs into the base rewriting 3135 // algorithm properly, this is just a short term workaround to prevent 3136 // crashes by canonicalizing such GEPs into fully vector GEPs. 3137 for (Instruction &I : instructions(F)) { 3138 if (!isa<GetElementPtrInst>(I)) 3139 continue; 3140 3141 unsigned VF = 0; 3142 for (unsigned i = 0; i < I.getNumOperands(); i++) 3143 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 3144 assert(VF == 0 || 3145 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 3146 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 3147 } 3148 3149 // It's the vector to scalar traversal through the pointer operand which 3150 // confuses base pointer rewriting, so limit ourselves to that case. 3151 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 3152 IRBuilder<> B(&I); 3153 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 3154 I.setOperand(0, Splat); 3155 MadeChange = true; 3156 } 3157 } 3158 3159 // Cache the 'defining value' relation used in the computation and 3160 // insertion of base phis and selects. This ensures that we don't insert 3161 // large numbers of duplicate base_phis. Use one cache for both 3162 // inlineGetBaseAndOffset() and insertParsePoints(). 3163 DefiningValueMapTy DVCache; 3164 3165 // Mapping between a base values and a flag indicating whether it's a known 3166 // base or not. 3167 IsKnownBaseMapTy KnownBases; 3168 3169 if (!Intrinsics.empty()) 3170 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 3171 // live references. 3172 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases); 3173 3174 if (!ParsePointNeeded.empty()) 3175 MadeChange |= 3176 insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases); 3177 3178 return MadeChange; 3179 } 3180 3181 // liveness computation via standard dataflow 3182 // ------------------------------------------------------------------- 3183 3184 // TODO: Consider using bitvectors for liveness, the set of potentially 3185 // interesting values should be small and easy to pre-compute. 3186 3187 /// Compute the live-in set for the location rbegin starting from 3188 /// the live-out set of the basic block 3189 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 3190 BasicBlock::reverse_iterator End, 3191 SetVector<Value *> &LiveTmp, GCStrategy *GC) { 3192 for (auto &I : make_range(Begin, End)) { 3193 // KILL/Def - Remove this definition from LiveIn 3194 LiveTmp.remove(&I); 3195 3196 // Don't consider *uses* in PHI nodes, we handle their contribution to 3197 // predecessor blocks when we seed the LiveOut sets 3198 if (isa<PHINode>(I)) 3199 continue; 3200 3201 // USE - Add to the LiveIn set for this instruction 3202 for (Value *V : I.operands()) { 3203 assert(!isUnhandledGCPointerType(V->getType(), GC) && 3204 "support for FCA unimplemented"); 3205 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) { 3206 // The choice to exclude all things constant here is slightly subtle. 3207 // There are two independent reasons: 3208 // - We assume that things which are constant (from LLVM's definition) 3209 // do not move at runtime. For example, the address of a global 3210 // variable is fixed, even though it's contents may not be. 3211 // - Second, we can't disallow arbitrary inttoptr constants even 3212 // if the language frontend does. Optimization passes are free to 3213 // locally exploit facts without respect to global reachability. This 3214 // can create sections of code which are dynamically unreachable and 3215 // contain just about anything. (see constants.ll in tests) 3216 LiveTmp.insert(V); 3217 } 3218 } 3219 } 3220 } 3221 3222 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp, 3223 GCStrategy *GC) { 3224 for (BasicBlock *Succ : successors(BB)) { 3225 for (auto &I : *Succ) { 3226 PHINode *PN = dyn_cast<PHINode>(&I); 3227 if (!PN) 3228 break; 3229 3230 Value *V = PN->getIncomingValueForBlock(BB); 3231 assert(!isUnhandledGCPointerType(V->getType(), GC) && 3232 "support for FCA unimplemented"); 3233 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) 3234 LiveTmp.insert(V); 3235 } 3236 } 3237 } 3238 3239 static SetVector<Value *> computeKillSet(BasicBlock *BB, GCStrategy *GC) { 3240 SetVector<Value *> KillSet; 3241 for (Instruction &I : *BB) 3242 if (isHandledGCPointerType(I.getType(), GC)) 3243 KillSet.insert(&I); 3244 return KillSet; 3245 } 3246 3247 #ifndef NDEBUG 3248 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3249 /// validation check for the liveness computation. 3250 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3251 Instruction *TI, bool TermOkay = false) { 3252 for (Value *V : Live) { 3253 if (auto *I = dyn_cast<Instruction>(V)) { 3254 // The terminator can be a member of the LiveOut set. LLVM's definition 3255 // of instruction dominance states that V does not dominate itself. As 3256 // such, we need to special case this to allow it. 3257 if (TermOkay && TI == I) 3258 continue; 3259 assert(DT.dominates(I, TI) && 3260 "basic SSA liveness expectation violated by liveness analysis"); 3261 } 3262 } 3263 } 3264 3265 /// Check that all the liveness sets used during the computation of liveness 3266 /// obey basic SSA properties. This is useful for finding cases where we miss 3267 /// a def. 3268 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3269 BasicBlock &BB) { 3270 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3271 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3272 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3273 } 3274 #endif 3275 3276 static void computeLiveInValues(DominatorTree &DT, Function &F, 3277 GCPtrLivenessData &Data, GCStrategy *GC) { 3278 SmallSetVector<BasicBlock *, 32> Worklist; 3279 3280 // Seed the liveness for each individual block 3281 for (BasicBlock &BB : F) { 3282 Data.KillSet[&BB] = computeKillSet(&BB, GC); 3283 Data.LiveSet[&BB].clear(); 3284 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB], GC); 3285 3286 #ifndef NDEBUG 3287 for (Value *Kill : Data.KillSet[&BB]) 3288 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3289 #endif 3290 3291 Data.LiveOut[&BB] = SetVector<Value *>(); 3292 computeLiveOutSeed(&BB, Data.LiveOut[&BB], GC); 3293 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3294 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3295 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3296 if (!Data.LiveIn[&BB].empty()) 3297 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3298 } 3299 3300 // Propagate that liveness until stable 3301 while (!Worklist.empty()) { 3302 BasicBlock *BB = Worklist.pop_back_val(); 3303 3304 // Compute our new liveout set, then exit early if it hasn't changed despite 3305 // the contribution of our successor. 3306 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3307 const auto OldLiveOutSize = LiveOut.size(); 3308 for (BasicBlock *Succ : successors(BB)) { 3309 assert(Data.LiveIn.count(Succ)); 3310 LiveOut.set_union(Data.LiveIn[Succ]); 3311 } 3312 // assert OutLiveOut is a subset of LiveOut 3313 if (OldLiveOutSize == LiveOut.size()) { 3314 // If the sets are the same size, then we didn't actually add anything 3315 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3316 // hasn't changed. 3317 continue; 3318 } 3319 Data.LiveOut[BB] = LiveOut; 3320 3321 // Apply the effects of this basic block 3322 SetVector<Value *> LiveTmp = LiveOut; 3323 LiveTmp.set_union(Data.LiveSet[BB]); 3324 LiveTmp.set_subtract(Data.KillSet[BB]); 3325 3326 assert(Data.LiveIn.count(BB)); 3327 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3328 // assert: OldLiveIn is a subset of LiveTmp 3329 if (OldLiveIn.size() != LiveTmp.size()) { 3330 Data.LiveIn[BB] = LiveTmp; 3331 Worklist.insert(pred_begin(BB), pred_end(BB)); 3332 } 3333 } // while (!Worklist.empty()) 3334 3335 #ifndef NDEBUG 3336 // Verify our output against SSA properties. This helps catch any 3337 // missing kills during the above iteration. 3338 for (BasicBlock &BB : F) 3339 checkBasicSSA(DT, Data, BB); 3340 #endif 3341 } 3342 3343 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3344 StatepointLiveSetTy &Out, GCStrategy *GC) { 3345 BasicBlock *BB = Inst->getParent(); 3346 3347 // Note: The copy is intentional and required 3348 assert(Data.LiveOut.count(BB)); 3349 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3350 3351 // We want to handle the statepoint itself oddly. It's 3352 // call result is not live (normal), nor are it's arguments 3353 // (unless they're used again later). This adjustment is 3354 // specifically what we need to relocate 3355 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), LiveOut, 3356 GC); 3357 LiveOut.remove(Inst); 3358 Out.insert(LiveOut.begin(), LiveOut.end()); 3359 } 3360 3361 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3362 CallBase *Call, 3363 PartiallyConstructedSafepointRecord &Info, 3364 PointerToBaseTy &PointerToBase, 3365 GCStrategy *GC) { 3366 StatepointLiveSetTy Updated; 3367 findLiveSetAtInst(Call, RevisedLivenessData, Updated, GC); 3368 3369 // We may have base pointers which are now live that weren't before. We need 3370 // to update the PointerToBase structure to reflect this. 3371 for (auto *V : Updated) 3372 PointerToBase.insert({ V, V }); 3373 3374 Info.LiveSet = Updated; 3375 } 3376