1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/InitializePasses.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Compiler.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 69 #include <algorithm> 70 #include <cassert> 71 #include <cstddef> 72 #include <cstdint> 73 #include <iterator> 74 #include <set> 75 #include <string> 76 #include <utility> 77 #include <vector> 78 79 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 80 81 using namespace llvm; 82 83 // Print the liveset found at the insert location 84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 85 cl::init(false)); 86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 87 cl::init(false)); 88 89 // Print out the base pointers for debugging 90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 91 cl::init(false)); 92 93 // Cost threshold measuring when it is profitable to rematerialize value instead 94 // of relocating it 95 static cl::opt<unsigned> 96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 97 cl::init(6)); 98 99 #ifdef EXPENSIVE_CHECKS 100 static bool ClobberNonLive = true; 101 #else 102 static bool ClobberNonLive = false; 103 #endif 104 105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 106 cl::location(ClobberNonLive), 107 cl::Hidden); 108 109 static cl::opt<bool> 110 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 111 cl::Hidden, cl::init(true)); 112 113 /// The IR fed into RewriteStatepointsForGC may have had attributes and 114 /// metadata implying dereferenceability that are no longer valid/correct after 115 /// RewriteStatepointsForGC has run. This is because semantically, after 116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 117 /// heap. stripNonValidData (conservatively) restores 118 /// correctness by erasing all attributes in the module that externally imply 119 /// dereferenceability. Similar reasoning also applies to the noalias 120 /// attributes and metadata. gc.statepoint can touch the entire heap including 121 /// noalias objects. 122 /// Apart from attributes and metadata, we also remove instructions that imply 123 /// constant physical memory: llvm.invariant.start. 124 static void stripNonValidData(Module &M); 125 126 static bool shouldRewriteStatepointsIn(Function &F); 127 128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 129 ModuleAnalysisManager &AM) { 130 bool Changed = false; 131 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 132 for (Function &F : M) { 133 // Nothing to do for declarations. 134 if (F.isDeclaration() || F.empty()) 135 continue; 136 137 // Policy choice says not to rewrite - the most common reason is that we're 138 // compiling code without a GCStrategy. 139 if (!shouldRewriteStatepointsIn(F)) 140 continue; 141 142 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 143 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 144 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 145 Changed |= runOnFunction(F, DT, TTI, TLI); 146 } 147 if (!Changed) 148 return PreservedAnalyses::all(); 149 150 // stripNonValidData asserts that shouldRewriteStatepointsIn 151 // returns true for at least one function in the module. Since at least 152 // one function changed, we know that the precondition is satisfied. 153 stripNonValidData(M); 154 155 PreservedAnalyses PA; 156 PA.preserve<TargetIRAnalysis>(); 157 PA.preserve<TargetLibraryAnalysis>(); 158 return PA; 159 } 160 161 namespace { 162 163 class RewriteStatepointsForGCLegacyPass : public ModulePass { 164 RewriteStatepointsForGC Impl; 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 170 initializeRewriteStatepointsForGCLegacyPassPass( 171 *PassRegistry::getPassRegistry()); 172 } 173 174 bool runOnModule(Module &M) override { 175 bool Changed = false; 176 for (Function &F : M) { 177 // Nothing to do for declarations. 178 if (F.isDeclaration() || F.empty()) 179 continue; 180 181 // Policy choice says not to rewrite - the most common reason is that 182 // we're compiling code without a GCStrategy. 183 if (!shouldRewriteStatepointsIn(F)) 184 continue; 185 186 TargetTransformInfo &TTI = 187 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 188 const TargetLibraryInfo &TLI = 189 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 190 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 191 192 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 193 } 194 195 if (!Changed) 196 return false; 197 198 // stripNonValidData asserts that shouldRewriteStatepointsIn 199 // returns true for at least one function in the module. Since at least 200 // one function changed, we know that the precondition is satisfied. 201 stripNonValidData(M); 202 return true; 203 } 204 205 void getAnalysisUsage(AnalysisUsage &AU) const override { 206 // We add and rewrite a bunch of instructions, but don't really do much 207 // else. We could in theory preserve a lot more analyses here. 208 AU.addRequired<DominatorTreeWrapperPass>(); 209 AU.addRequired<TargetTransformInfoWrapperPass>(); 210 AU.addRequired<TargetLibraryInfoWrapperPass>(); 211 } 212 }; 213 214 } // end anonymous namespace 215 216 char RewriteStatepointsForGCLegacyPass::ID = 0; 217 218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 219 return new RewriteStatepointsForGCLegacyPass(); 220 } 221 222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 223 "rewrite-statepoints-for-gc", 224 "Make relocations explicit at statepoints", false, false) 225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 228 "rewrite-statepoints-for-gc", 229 "Make relocations explicit at statepoints", false, false) 230 231 namespace { 232 233 struct GCPtrLivenessData { 234 /// Values defined in this block. 235 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 236 237 /// Values used in this block (and thus live); does not included values 238 /// killed within this block. 239 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 240 241 /// Values live into this basic block (i.e. used by any 242 /// instruction in this basic block or ones reachable from here) 243 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 244 245 /// Values live out of this basic block (i.e. live into 246 /// any successor block) 247 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 248 }; 249 250 // The type of the internal cache used inside the findBasePointers family 251 // of functions. From the callers perspective, this is an opaque type and 252 // should not be inspected. 253 // 254 // In the actual implementation this caches two relations: 255 // - The base relation itself (i.e. this pointer is based on that one) 256 // - The base defining value relation (i.e. before base_phi insertion) 257 // Generally, after the execution of a full findBasePointer call, only the 258 // base relation will remain. Internally, we add a mixture of the two 259 // types, then update all the second type to the first type 260 using DefiningValueMapTy = MapVector<Value *, Value *>; 261 using StatepointLiveSetTy = SetVector<Value *>; 262 using RematerializedValueMapTy = 263 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 264 265 struct PartiallyConstructedSafepointRecord { 266 /// The set of values known to be live across this safepoint 267 StatepointLiveSetTy LiveSet; 268 269 /// Mapping from live pointers to a base-defining-value 270 MapVector<Value *, Value *> PointerToBase; 271 272 /// The *new* gc.statepoint instruction itself. This produces the token 273 /// that normal path gc.relocates and the gc.result are tied to. 274 GCStatepointInst *StatepointToken; 275 276 /// Instruction to which exceptional gc relocates are attached 277 /// Makes it easier to iterate through them during relocationViaAlloca. 278 Instruction *UnwindToken; 279 280 /// Record live values we are rematerialized instead of relocating. 281 /// They are not included into 'LiveSet' field. 282 /// Maps rematerialized copy to it's original value. 283 RematerializedValueMapTy RematerializedValues; 284 }; 285 286 } // end anonymous namespace 287 288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 289 Optional<OperandBundleUse> DeoptBundle = 290 Call->getOperandBundle(LLVMContext::OB_deopt); 291 292 if (!DeoptBundle.hasValue()) { 293 assert(AllowStatepointWithNoDeoptInfo && 294 "Found non-leaf call without deopt info!"); 295 return None; 296 } 297 298 return DeoptBundle.getValue().Inputs; 299 } 300 301 /// Compute the live-in set for every basic block in the function 302 static void computeLiveInValues(DominatorTree &DT, Function &F, 303 GCPtrLivenessData &Data); 304 305 /// Given results from the dataflow liveness computation, find the set of live 306 /// Values at a particular instruction. 307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 308 StatepointLiveSetTy &out); 309 310 // TODO: Once we can get to the GCStrategy, this becomes 311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 312 313 static bool isGCPointerType(Type *T) { 314 if (auto *PT = dyn_cast<PointerType>(T)) 315 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 316 // GC managed heap. We know that a pointer into this heap needs to be 317 // updated and that no other pointer does. 318 return PT->getAddressSpace() == 1; 319 return false; 320 } 321 322 // Return true if this type is one which a) is a gc pointer or contains a GC 323 // pointer and b) is of a type this code expects to encounter as a live value. 324 // (The insertion code will assert that a type which matches (a) and not (b) 325 // is not encountered.) 326 static bool isHandledGCPointerType(Type *T) { 327 // We fully support gc pointers 328 if (isGCPointerType(T)) 329 return true; 330 // We partially support vectors of gc pointers. The code will assert if it 331 // can't handle something. 332 if (auto VT = dyn_cast<VectorType>(T)) 333 if (isGCPointerType(VT->getElementType())) 334 return true; 335 return false; 336 } 337 338 #ifndef NDEBUG 339 /// Returns true if this type contains a gc pointer whether we know how to 340 /// handle that type or not. 341 static bool containsGCPtrType(Type *Ty) { 342 if (isGCPointerType(Ty)) 343 return true; 344 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 345 return isGCPointerType(VT->getScalarType()); 346 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 347 return containsGCPtrType(AT->getElementType()); 348 if (StructType *ST = dyn_cast<StructType>(Ty)) 349 return llvm::any_of(ST->elements(), containsGCPtrType); 350 return false; 351 } 352 353 // Returns true if this is a type which a) is a gc pointer or contains a GC 354 // pointer and b) is of a type which the code doesn't expect (i.e. first class 355 // aggregates). Used to trip assertions. 356 static bool isUnhandledGCPointerType(Type *Ty) { 357 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 358 } 359 #endif 360 361 // Return the name of the value suffixed with the provided value, or if the 362 // value didn't have a name, the default value specified. 363 static std::string suffixed_name_or(Value *V, StringRef Suffix, 364 StringRef DefaultName) { 365 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 366 } 367 368 // Conservatively identifies any definitions which might be live at the 369 // given instruction. The analysis is performed immediately before the 370 // given instruction. Values defined by that instruction are not considered 371 // live. Values used by that instruction are considered live. 372 static void analyzeParsePointLiveness( 373 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 374 PartiallyConstructedSafepointRecord &Result) { 375 StatepointLiveSetTy LiveSet; 376 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); 377 378 if (PrintLiveSet) { 379 dbgs() << "Live Variables:\n"; 380 for (Value *V : LiveSet) 381 dbgs() << " " << V->getName() << " " << *V << "\n"; 382 } 383 if (PrintLiveSetSize) { 384 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 385 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 386 } 387 Result.LiveSet = LiveSet; 388 } 389 390 // Returns true is V is a knownBaseResult. 391 static bool isKnownBaseResult(Value *V); 392 393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is 394 // not created by the findBasePointers algorithm. 395 static bool isOriginalBaseResult(Value *V); 396 397 namespace { 398 399 /// A single base defining value - An immediate base defining value for an 400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 401 /// For instructions which have multiple pointer [vector] inputs or that 402 /// transition between vector and scalar types, there is no immediate base 403 /// defining value. The 'base defining value' for 'Def' is the transitive 404 /// closure of this relation stopping at the first instruction which has no 405 /// immediate base defining value. The b.d.v. might itself be a base pointer, 406 /// but it can also be an arbitrary derived pointer. 407 struct BaseDefiningValueResult { 408 /// Contains the value which is the base defining value. 409 Value * const BDV; 410 411 /// True if the base defining value is also known to be an actual base 412 /// pointer. 413 const bool IsKnownBase; 414 415 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 416 : BDV(BDV), IsKnownBase(IsKnownBase) { 417 #ifndef NDEBUG 418 // Check consistency between new and old means of checking whether a BDV is 419 // a base. 420 bool MustBeBase = isKnownBaseResult(BDV); 421 assert(!MustBeBase || MustBeBase == IsKnownBase); 422 #endif 423 } 424 }; 425 426 } // end anonymous namespace 427 428 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 429 430 /// Return a base defining value for the 'Index' element of the given vector 431 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 432 /// 'I'. As an optimization, this method will try to determine when the 433 /// element is known to already be a base pointer. If this can be established, 434 /// the second value in the returned pair will be true. Note that either a 435 /// vector or a pointer typed value can be returned. For the former, the 436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 437 /// If the later, the return pointer is a BDV (or possibly a base) for the 438 /// particular element in 'I'. 439 static BaseDefiningValueResult 440 findBaseDefiningValueOfVector(Value *I) { 441 // Each case parallels findBaseDefiningValue below, see that code for 442 // detailed motivation. 443 444 if (isa<Argument>(I)) 445 // An incoming argument to the function is a base pointer 446 return BaseDefiningValueResult(I, true); 447 448 if (isa<Constant>(I)) 449 // Base of constant vector consists only of constant null pointers. 450 // For reasoning see similar case inside 'findBaseDefiningValue' function. 451 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 452 true); 453 454 if (isa<LoadInst>(I)) 455 return BaseDefiningValueResult(I, true); 456 457 if (isa<InsertElementInst>(I)) 458 // We don't know whether this vector contains entirely base pointers or 459 // not. To be conservatively correct, we treat it as a BDV and will 460 // duplicate code as needed to construct a parallel vector of bases. 461 return BaseDefiningValueResult(I, false); 462 463 if (isa<ShuffleVectorInst>(I)) 464 // We don't know whether this vector contains entirely base pointers or 465 // not. To be conservatively correct, we treat it as a BDV and will 466 // duplicate code as needed to construct a parallel vector of bases. 467 // TODO: There a number of local optimizations which could be applied here 468 // for particular sufflevector patterns. 469 return BaseDefiningValueResult(I, false); 470 471 // The behavior of getelementptr instructions is the same for vector and 472 // non-vector data types. 473 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 474 return findBaseDefiningValue(GEP->getPointerOperand()); 475 476 // If the pointer comes through a bitcast of a vector of pointers to 477 // a vector of another type of pointer, then look through the bitcast 478 if (auto *BC = dyn_cast<BitCastInst>(I)) 479 return findBaseDefiningValue(BC->getOperand(0)); 480 481 // We assume that functions in the source language only return base 482 // pointers. This should probably be generalized via attributes to support 483 // both source language and internal functions. 484 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 485 return BaseDefiningValueResult(I, true); 486 487 // A PHI or Select is a base defining value. The outer findBasePointer 488 // algorithm is responsible for constructing a base value for this BDV. 489 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 490 "unknown vector instruction - no base found for vector element"); 491 return BaseDefiningValueResult(I, false); 492 } 493 494 /// Helper function for findBasePointer - Will return a value which either a) 495 /// defines the base pointer for the input, b) blocks the simple search 496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 497 /// from pointer to vector type or back. 498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 499 assert(I->getType()->isPtrOrPtrVectorTy() && 500 "Illegal to ask for the base pointer of a non-pointer type"); 501 502 if (I->getType()->isVectorTy()) 503 return findBaseDefiningValueOfVector(I); 504 505 if (isa<Argument>(I)) 506 // An incoming argument to the function is a base pointer 507 // We should have never reached here if this argument isn't an gc value 508 return BaseDefiningValueResult(I, true); 509 510 if (isa<Constant>(I)) { 511 // We assume that objects with a constant base (e.g. a global) can't move 512 // and don't need to be reported to the collector because they are always 513 // live. Besides global references, all kinds of constants (e.g. undef, 514 // constant expressions, null pointers) can be introduced by the inliner or 515 // the optimizer, especially on dynamically dead paths. 516 // Here we treat all of them as having single null base. By doing this we 517 // trying to avoid problems reporting various conflicts in a form of 518 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 519 // See constant.ll file for relevant test cases. 520 521 return BaseDefiningValueResult( 522 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 523 } 524 525 // inttoptrs in an integral address space are currently ill-defined. We 526 // treat them as defining base pointers here for consistency with the 527 // constant rule above and because we don't really have a better semantic 528 // to give them. Note that the optimizer is always free to insert undefined 529 // behavior on dynamically dead paths as well. 530 if (isa<IntToPtrInst>(I)) 531 return BaseDefiningValueResult(I, true); 532 533 if (CastInst *CI = dyn_cast<CastInst>(I)) { 534 Value *Def = CI->stripPointerCasts(); 535 // If stripping pointer casts changes the address space there is an 536 // addrspacecast in between. 537 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 538 cast<PointerType>(CI->getType())->getAddressSpace() && 539 "unsupported addrspacecast"); 540 // If we find a cast instruction here, it means we've found a cast which is 541 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 542 // handle int->ptr conversion. 543 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 544 return findBaseDefiningValue(Def); 545 } 546 547 if (isa<LoadInst>(I)) 548 // The value loaded is an gc base itself 549 return BaseDefiningValueResult(I, true); 550 551 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 552 // The base of this GEP is the base 553 return findBaseDefiningValue(GEP->getPointerOperand()); 554 555 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 556 switch (II->getIntrinsicID()) { 557 default: 558 // fall through to general call handling 559 break; 560 case Intrinsic::experimental_gc_statepoint: 561 llvm_unreachable("statepoints don't produce pointers"); 562 case Intrinsic::experimental_gc_relocate: 563 // Rerunning safepoint insertion after safepoints are already 564 // inserted is not supported. It could probably be made to work, 565 // but why are you doing this? There's no good reason. 566 llvm_unreachable("repeat safepoint insertion is not supported"); 567 case Intrinsic::gcroot: 568 // Currently, this mechanism hasn't been extended to work with gcroot. 569 // There's no reason it couldn't be, but I haven't thought about the 570 // implications much. 571 llvm_unreachable( 572 "interaction with the gcroot mechanism is not supported"); 573 case Intrinsic::experimental_gc_get_pointer_base: 574 return findBaseDefiningValue(II->getOperand(0)); 575 } 576 } 577 // We assume that functions in the source language only return base 578 // pointers. This should probably be generalized via attributes to support 579 // both source language and internal functions. 580 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 581 return BaseDefiningValueResult(I, true); 582 583 // TODO: I have absolutely no idea how to implement this part yet. It's not 584 // necessarily hard, I just haven't really looked at it yet. 585 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 586 587 if (isa<AtomicCmpXchgInst>(I)) 588 // A CAS is effectively a atomic store and load combined under a 589 // predicate. From the perspective of base pointers, we just treat it 590 // like a load. 591 return BaseDefiningValueResult(I, true); 592 593 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 594 "binary ops which don't apply to pointers"); 595 596 // The aggregate ops. Aggregates can either be in the heap or on the 597 // stack, but in either case, this is simply a field load. As a result, 598 // this is a defining definition of the base just like a load is. 599 if (isa<ExtractValueInst>(I)) 600 return BaseDefiningValueResult(I, true); 601 602 // We should never see an insert vector since that would require we be 603 // tracing back a struct value not a pointer value. 604 assert(!isa<InsertValueInst>(I) && 605 "Base pointer for a struct is meaningless"); 606 607 // This value might have been generated by findBasePointer() called when 608 // substituting gc.get.pointer.base() intrinsic. 609 bool IsKnownBase = 610 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 611 612 // An extractelement produces a base result exactly when it's input does. 613 // We may need to insert a parallel instruction to extract the appropriate 614 // element out of the base vector corresponding to the input. Given this, 615 // it's analogous to the phi and select case even though it's not a merge. 616 if (isa<ExtractElementInst>(I)) 617 // Note: There a lot of obvious peephole cases here. This are deliberately 618 // handled after the main base pointer inference algorithm to make writing 619 // test cases to exercise that code easier. 620 return BaseDefiningValueResult(I, IsKnownBase); 621 622 // The last two cases here don't return a base pointer. Instead, they 623 // return a value which dynamically selects from among several base 624 // derived pointers (each with it's own base potentially). It's the job of 625 // the caller to resolve these. 626 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 627 "missing instruction case in findBaseDefiningValing"); 628 return BaseDefiningValueResult(I, IsKnownBase); 629 } 630 631 /// Returns the base defining value for this value. 632 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 633 Value *&Cached = Cache[I]; 634 if (!Cached) { 635 Cached = findBaseDefiningValue(I).BDV; 636 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 637 << Cached->getName() << "\n"); 638 } 639 assert(Cache[I] != nullptr); 640 return Cached; 641 } 642 643 /// Return a base pointer for this value if known. Otherwise, return it's 644 /// base defining value. 645 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 646 Value *Def = findBaseDefiningValueCached(I, Cache); 647 auto Found = Cache.find(Def); 648 if (Found != Cache.end()) { 649 // Either a base-of relation, or a self reference. Caller must check. 650 return Found->second; 651 } 652 // Only a BDV available 653 return Def; 654 } 655 656 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 657 /// exists in the code. 658 static bool isOriginalBaseResult(Value *V) { 659 // no recursion possible 660 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 661 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 662 !isa<ShuffleVectorInst>(V); 663 } 664 665 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 666 /// is it known to be a base pointer? Or do we need to continue searching. 667 static bool isKnownBaseResult(Value *V) { 668 if (isOriginalBaseResult(V)) 669 return true; 670 if (isa<Instruction>(V) && 671 cast<Instruction>(V)->getMetadata("is_base_value")) { 672 // This is a previously inserted base phi or select. We know 673 // that this is a base value. 674 return true; 675 } 676 677 // We need to keep searching 678 return false; 679 } 680 681 // Returns true if First and Second values are both scalar or both vector. 682 static bool areBothVectorOrScalar(Value *First, Value *Second) { 683 return isa<VectorType>(First->getType()) == 684 isa<VectorType>(Second->getType()); 685 } 686 687 namespace { 688 689 /// Models the state of a single base defining value in the findBasePointer 690 /// algorithm for determining where a new instruction is needed to propagate 691 /// the base of this BDV. 692 class BDVState { 693 public: 694 enum StatusTy { 695 // Starting state of lattice 696 Unknown, 697 // Some specific base value -- does *not* mean that instruction 698 // propagates the base of the object 699 // ex: gep %arg, 16 -> %arg is the base value 700 Base, 701 // Need to insert a node to represent a merge. 702 Conflict 703 }; 704 705 BDVState() { 706 llvm_unreachable("missing state in map"); 707 } 708 709 explicit BDVState(Value *OriginalValue) 710 : OriginalValue(OriginalValue) {} 711 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 712 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 713 assert(Status != Base || BaseValue); 714 } 715 716 StatusTy getStatus() const { return Status; } 717 Value *getOriginalValue() const { return OriginalValue; } 718 Value *getBaseValue() const { return BaseValue; } 719 720 bool isBase() const { return getStatus() == Base; } 721 bool isUnknown() const { return getStatus() == Unknown; } 722 bool isConflict() const { return getStatus() == Conflict; } 723 724 // Values of type BDVState form a lattice, and this function implements the 725 // meet 726 // operation. 727 void meet(const BDVState &Other) { 728 auto markConflict = [&]() { 729 Status = BDVState::Conflict; 730 BaseValue = nullptr; 731 }; 732 // Conflict is a final state. 733 if (isConflict()) 734 return; 735 // if we are not known - just take other state. 736 if (isUnknown()) { 737 Status = Other.getStatus(); 738 BaseValue = Other.getBaseValue(); 739 return; 740 } 741 // We are base. 742 assert(isBase() && "Unknown state"); 743 // If other is unknown - just keep our state. 744 if (Other.isUnknown()) 745 return; 746 // If other is conflict - it is a final state. 747 if (Other.isConflict()) 748 return markConflict(); 749 // Other is base as well. 750 assert(Other.isBase() && "Unknown state"); 751 // If bases are different - Conflict. 752 if (getBaseValue() != Other.getBaseValue()) 753 return markConflict(); 754 // We are identical, do nothing. 755 } 756 757 bool operator==(const BDVState &Other) const { 758 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && 759 Status == Other.Status; 760 } 761 762 bool operator!=(const BDVState &other) const { return !(*this == other); } 763 764 LLVM_DUMP_METHOD 765 void dump() const { 766 print(dbgs()); 767 dbgs() << '\n'; 768 } 769 770 void print(raw_ostream &OS) const { 771 switch (getStatus()) { 772 case Unknown: 773 OS << "U"; 774 break; 775 case Base: 776 OS << "B"; 777 break; 778 case Conflict: 779 OS << "C"; 780 break; 781 } 782 OS << " (base " << getBaseValue() << " - " 783 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 784 << " for " << OriginalValue->getName() << ":"; 785 } 786 787 private: 788 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 789 StatusTy Status = Unknown; 790 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 791 }; 792 793 } // end anonymous namespace 794 795 #ifndef NDEBUG 796 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 797 State.print(OS); 798 return OS; 799 } 800 #endif 801 802 /// For a given value or instruction, figure out what base ptr its derived from. 803 /// For gc objects, this is simply itself. On success, returns a value which is 804 /// the base pointer. (This is reliable and can be used for relocation.) On 805 /// failure, returns nullptr. 806 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 807 Value *Def = findBaseOrBDV(I, Cache); 808 809 if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I)) 810 return Def; 811 812 // Here's the rough algorithm: 813 // - For every SSA value, construct a mapping to either an actual base 814 // pointer or a PHI which obscures the base pointer. 815 // - Construct a mapping from PHI to unknown TOP state. Use an 816 // optimistic algorithm to propagate base pointer information. Lattice 817 // looks like: 818 // UNKNOWN 819 // b1 b2 b3 b4 820 // CONFLICT 821 // When algorithm terminates, all PHIs will either have a single concrete 822 // base or be in a conflict state. 823 // - For every conflict, insert a dummy PHI node without arguments. Add 824 // these to the base[Instruction] = BasePtr mapping. For every 825 // non-conflict, add the actual base. 826 // - For every conflict, add arguments for the base[a] of each input 827 // arguments. 828 // 829 // Note: A simpler form of this would be to add the conflict form of all 830 // PHIs without running the optimistic algorithm. This would be 831 // analogous to pessimistic data flow and would likely lead to an 832 // overall worse solution. 833 834 #ifndef NDEBUG 835 auto isExpectedBDVType = [](Value *BDV) { 836 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 837 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 838 isa<ShuffleVectorInst>(BDV); 839 }; 840 #endif 841 842 // Once populated, will contain a mapping from each potentially non-base BDV 843 // to a lattice value (described above) which corresponds to that BDV. 844 // We use the order of insertion (DFS over the def/use graph) to provide a 845 // stable deterministic ordering for visiting DenseMaps (which are unordered) 846 // below. This is important for deterministic compilation. 847 MapVector<Value *, BDVState> States; 848 849 #ifndef NDEBUG 850 auto VerifyStates = [&]() { 851 for (auto &Entry : States) { 852 assert(Entry.first == Entry.second.getOriginalValue()); 853 } 854 }; 855 #endif 856 857 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 858 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 859 for (Value *InVal : PN->incoming_values()) 860 F(InVal); 861 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 862 F(SI->getTrueValue()); 863 F(SI->getFalseValue()); 864 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 865 F(EE->getVectorOperand()); 866 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 867 F(IE->getOperand(0)); 868 F(IE->getOperand(1)); 869 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 870 // For a canonical broadcast, ignore the undef argument 871 // (without this, we insert a parallel base shuffle for every broadcast) 872 F(SV->getOperand(0)); 873 if (!SV->isZeroEltSplat()) 874 F(SV->getOperand(1)); 875 } else { 876 llvm_unreachable("unexpected BDV type"); 877 } 878 }; 879 880 881 // Recursively fill in all base defining values reachable from the initial 882 // one for which we don't already know a definite base value for 883 /* scope */ { 884 SmallVector<Value*, 16> Worklist; 885 Worklist.push_back(Def); 886 States.insert({Def, BDVState(Def)}); 887 while (!Worklist.empty()) { 888 Value *Current = Worklist.pop_back_val(); 889 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 890 891 auto visitIncomingValue = [&](Value *InVal) { 892 Value *Base = findBaseOrBDV(InVal, Cache); 893 if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal)) 894 // Known bases won't need new instructions introduced and can be 895 // ignored safely. However, this can only be done when InVal and Base 896 // are both scalar or both vector. Otherwise, we need to find a 897 // correct BDV for InVal, by creating an entry in the lattice 898 // (States). 899 return; 900 assert(isExpectedBDVType(Base) && "the only non-base values " 901 "we see should be base defining values"); 902 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 903 Worklist.push_back(Base); 904 }; 905 906 visitBDVOperands(Current, visitIncomingValue); 907 } 908 } 909 910 #ifndef NDEBUG 911 VerifyStates(); 912 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 913 for (const auto &Pair : States) { 914 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 915 } 916 #endif 917 918 // Iterate forward through the value graph pruning any node from the state 919 // list where all of the inputs are base pointers. The purpose of this is to 920 // reuse existing values when the derived pointer we were asked to materialize 921 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 922 // feeding it does.) 923 SmallVector<Value *> ToRemove; 924 do { 925 ToRemove.clear(); 926 for (auto Pair : States) { 927 Value *BDV = Pair.first; 928 auto canPruneInput = [&](Value *V) { 929 Value *BDV = findBaseOrBDV(V, Cache); 930 if (V->stripPointerCasts() != BDV) 931 return false; 932 // The assumption is that anything not in the state list is 933 // propagates a base pointer. 934 return States.count(BDV) == 0; 935 }; 936 937 bool CanPrune = true; 938 visitBDVOperands(BDV, [&](Value *Op) { 939 CanPrune = CanPrune && canPruneInput(Op); 940 }); 941 if (CanPrune) 942 ToRemove.push_back(BDV); 943 } 944 for (Value *V : ToRemove) { 945 States.erase(V); 946 // Cache the fact V is it's own base for later usage. 947 Cache[V] = V; 948 } 949 } while (!ToRemove.empty()); 950 951 // Did we manage to prove that Def itself must be a base pointer? 952 if (!States.count(Def)) 953 return Def; 954 955 // Return a phi state for a base defining value. We'll generate a new 956 // base state for known bases and expect to find a cached state otherwise. 957 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 958 auto I = States.find(BaseValue); 959 if (I != States.end()) 960 return I->second; 961 assert(areBothVectorOrScalar(BaseValue, Input)); 962 return BDVState(BaseValue, BDVState::Base, BaseValue); 963 }; 964 965 bool Progress = true; 966 while (Progress) { 967 #ifndef NDEBUG 968 const size_t OldSize = States.size(); 969 #endif 970 Progress = false; 971 // We're only changing values in this loop, thus safe to keep iterators. 972 // Since this is computing a fixed point, the order of visit does not 973 // effect the result. TODO: We could use a worklist here and make this run 974 // much faster. 975 for (auto Pair : States) { 976 Value *BDV = Pair.first; 977 // Only values that do not have known bases or those that have differing 978 // type (scalar versus vector) from a possible known base should be in the 979 // lattice. 980 assert((!isKnownBaseResult(BDV) || 981 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 982 "why did it get added?"); 983 984 BDVState NewState(BDV); 985 visitBDVOperands(BDV, [&](Value *Op) { 986 Value *BDV = findBaseOrBDV(Op, Cache); 987 auto OpState = GetStateForBDV(BDV, Op); 988 NewState.meet(OpState); 989 }); 990 991 BDVState OldState = States[BDV]; 992 if (OldState != NewState) { 993 Progress = true; 994 States[BDV] = NewState; 995 } 996 } 997 998 assert(OldSize == States.size() && 999 "fixed point shouldn't be adding any new nodes to state"); 1000 } 1001 1002 #ifndef NDEBUG 1003 VerifyStates(); 1004 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 1005 for (const auto &Pair : States) { 1006 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 1007 } 1008 #endif 1009 1010 // Handle all instructions that have a vector BDV, but the instruction itself 1011 // is of scalar type. 1012 for (auto Pair : States) { 1013 Instruction *I = cast<Instruction>(Pair.first); 1014 BDVState State = Pair.second; 1015 auto *BaseValue = State.getBaseValue(); 1016 // Only values that do not have known bases or those that have differing 1017 // type (scalar versus vector) from a possible known base should be in the 1018 // lattice. 1019 assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) && 1020 "why did it get added?"); 1021 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1022 1023 if (!State.isBase() || !isa<VectorType>(BaseValue->getType())) 1024 continue; 1025 // extractelement instructions are a bit special in that we may need to 1026 // insert an extract even when we know an exact base for the instruction. 1027 // The problem is that we need to convert from a vector base to a scalar 1028 // base for the particular indice we're interested in. 1029 if (isa<ExtractElementInst>(I)) { 1030 auto *EE = cast<ExtractElementInst>(I); 1031 // TODO: In many cases, the new instruction is just EE itself. We should 1032 // exploit this, but can't do it here since it would break the invariant 1033 // about the BDV not being known to be a base. 1034 auto *BaseInst = ExtractElementInst::Create( 1035 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 1036 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1037 States[I] = BDVState(I, BDVState::Base, BaseInst); 1038 } else if (!isa<VectorType>(I->getType())) { 1039 // We need to handle cases that have a vector base but the instruction is 1040 // a scalar type (these could be phis or selects or any instruction that 1041 // are of scalar type, but the base can be a vector type). We 1042 // conservatively set this as conflict. Setting the base value for these 1043 // conflicts is handled in the next loop which traverses States. 1044 States[I] = BDVState(I, BDVState::Conflict); 1045 } 1046 } 1047 1048 #ifndef NDEBUG 1049 VerifyStates(); 1050 #endif 1051 1052 // Insert Phis for all conflicts 1053 // TODO: adjust naming patterns to avoid this order of iteration dependency 1054 for (auto Pair : States) { 1055 Instruction *I = cast<Instruction>(Pair.first); 1056 BDVState State = Pair.second; 1057 // Only values that do not have known bases or those that have differing 1058 // type (scalar versus vector) from a possible known base should be in the 1059 // lattice. 1060 assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) && 1061 "why did it get added?"); 1062 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1063 1064 // Since we're joining a vector and scalar base, they can never be the 1065 // same. As a result, we should always see insert element having reached 1066 // the conflict state. 1067 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1068 1069 if (!State.isConflict()) 1070 continue; 1071 1072 auto getMangledName = [](Instruction *I) -> std::string { 1073 if (isa<PHINode>(I)) { 1074 return suffixed_name_or(I, ".base", "base_phi"); 1075 } else if (isa<SelectInst>(I)) { 1076 return suffixed_name_or(I, ".base", "base_select"); 1077 } else if (isa<ExtractElementInst>(I)) { 1078 return suffixed_name_or(I, ".base", "base_ee"); 1079 } else if (isa<InsertElementInst>(I)) { 1080 return suffixed_name_or(I, ".base", "base_ie"); 1081 } else { 1082 return suffixed_name_or(I, ".base", "base_sv"); 1083 } 1084 }; 1085 1086 Instruction *BaseInst = I->clone(); 1087 BaseInst->insertBefore(I); 1088 BaseInst->setName(getMangledName(I)); 1089 // Add metadata marking this as a base value 1090 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1091 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1092 } 1093 1094 #ifndef NDEBUG 1095 VerifyStates(); 1096 #endif 1097 1098 // Returns a instruction which produces the base pointer for a given 1099 // instruction. The instruction is assumed to be an input to one of the BDVs 1100 // seen in the inference algorithm above. As such, we must either already 1101 // know it's base defining value is a base, or have inserted a new 1102 // instruction to propagate the base of it's BDV and have entered that newly 1103 // introduced instruction into the state table. In either case, we are 1104 // assured to be able to determine an instruction which produces it's base 1105 // pointer. 1106 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1107 Value *BDV = findBaseOrBDV(Input, Cache); 1108 Value *Base = nullptr; 1109 if (!States.count(BDV)) { 1110 assert(areBothVectorOrScalar(BDV, Input)); 1111 Base = BDV; 1112 } else { 1113 // Either conflict or base. 1114 assert(States.count(BDV)); 1115 Base = States[BDV].getBaseValue(); 1116 } 1117 assert(Base && "Can't be null"); 1118 // The cast is needed since base traversal may strip away bitcasts 1119 if (Base->getType() != Input->getType() && InsertPt) 1120 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1121 return Base; 1122 }; 1123 1124 // Fixup all the inputs of the new PHIs. Visit order needs to be 1125 // deterministic and predictable because we're naming newly created 1126 // instructions. 1127 for (auto Pair : States) { 1128 Instruction *BDV = cast<Instruction>(Pair.first); 1129 BDVState State = Pair.second; 1130 1131 // Only values that do not have known bases or those that have differing 1132 // type (scalar versus vector) from a possible known base should be in the 1133 // lattice. 1134 assert((!isKnownBaseResult(BDV) || 1135 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1136 "why did it get added?"); 1137 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1138 if (!State.isConflict()) 1139 continue; 1140 1141 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1142 PHINode *PN = cast<PHINode>(BDV); 1143 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1144 1145 // The IR verifier requires phi nodes with multiple entries from the 1146 // same basic block to have the same incoming value for each of those 1147 // entries. Since we're inserting bitcasts in the loop, make sure we 1148 // do so at least once per incoming block. 1149 DenseMap<BasicBlock *, Value*> BlockToValue; 1150 for (unsigned i = 0; i < NumPHIValues; i++) { 1151 Value *InVal = PN->getIncomingValue(i); 1152 BasicBlock *InBB = PN->getIncomingBlock(i); 1153 if (!BlockToValue.count(InBB)) 1154 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1155 else { 1156 #ifndef NDEBUG 1157 Value *OldBase = BlockToValue[InBB]; 1158 Value *Base = getBaseForInput(InVal, nullptr); 1159 // In essence this assert states: the only way two values 1160 // incoming from the same basic block may be different is by 1161 // being different bitcasts of the same value. A cleanup 1162 // that remains TODO is changing findBaseOrBDV to return an 1163 // llvm::Value of the correct type (and still remain pure). 1164 // This will remove the need to add bitcasts. 1165 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1166 "findBaseOrBDV should be pure!"); 1167 #endif 1168 } 1169 Value *Base = BlockToValue[InBB]; 1170 BasePHI->setIncomingValue(i, Base); 1171 } 1172 } else if (SelectInst *BaseSI = 1173 dyn_cast<SelectInst>(State.getBaseValue())) { 1174 SelectInst *SI = cast<SelectInst>(BDV); 1175 1176 // Find the instruction which produces the base for each input. 1177 // We may need to insert a bitcast. 1178 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1179 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1180 } else if (auto *BaseEE = 1181 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1182 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1183 // Find the instruction which produces the base for each input. We may 1184 // need to insert a bitcast. 1185 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1186 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1187 auto *BdvIE = cast<InsertElementInst>(BDV); 1188 auto UpdateOperand = [&](int OperandIdx) { 1189 Value *InVal = BdvIE->getOperand(OperandIdx); 1190 Value *Base = getBaseForInput(InVal, BaseIE); 1191 BaseIE->setOperand(OperandIdx, Base); 1192 }; 1193 UpdateOperand(0); // vector operand 1194 UpdateOperand(1); // scalar operand 1195 } else { 1196 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1197 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1198 auto UpdateOperand = [&](int OperandIdx) { 1199 Value *InVal = BdvSV->getOperand(OperandIdx); 1200 Value *Base = getBaseForInput(InVal, BaseSV); 1201 BaseSV->setOperand(OperandIdx, Base); 1202 }; 1203 UpdateOperand(0); // vector operand 1204 if (!BdvSV->isZeroEltSplat()) 1205 UpdateOperand(1); // vector operand 1206 else { 1207 // Never read, so just use undef 1208 Value *InVal = BdvSV->getOperand(1); 1209 BaseSV->setOperand(1, UndefValue::get(InVal->getType())); 1210 } 1211 } 1212 } 1213 1214 #ifndef NDEBUG 1215 VerifyStates(); 1216 #endif 1217 1218 // Cache all of our results so we can cheaply reuse them 1219 // NOTE: This is actually two caches: one of the base defining value 1220 // relation and one of the base pointer relation! FIXME 1221 for (auto Pair : States) { 1222 auto *BDV = Pair.first; 1223 Value *Base = Pair.second.getBaseValue(); 1224 assert(BDV && Base); 1225 // Only values that do not have known bases or those that have differing 1226 // type (scalar versus vector) from a possible known base should be in the 1227 // lattice. 1228 assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) && 1229 "why did it get added?"); 1230 1231 LLVM_DEBUG( 1232 dbgs() << "Updating base value cache" 1233 << " for: " << BDV->getName() << " from: " 1234 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1235 << " to: " << Base->getName() << "\n"); 1236 1237 Cache[BDV] = Base; 1238 } 1239 assert(Cache.count(Def)); 1240 return Cache[Def]; 1241 } 1242 1243 // For a set of live pointers (base and/or derived), identify the base 1244 // pointer of the object which they are derived from. This routine will 1245 // mutate the IR graph as needed to make the 'base' pointer live at the 1246 // definition site of 'derived'. This ensures that any use of 'derived' can 1247 // also use 'base'. This may involve the insertion of a number of 1248 // additional PHI nodes. 1249 // 1250 // preconditions: live is a set of pointer type Values 1251 // 1252 // side effects: may insert PHI nodes into the existing CFG, will preserve 1253 // CFG, will not remove or mutate any existing nodes 1254 // 1255 // post condition: PointerToBase contains one (derived, base) pair for every 1256 // pointer in live. Note that derived can be equal to base if the original 1257 // pointer was a base pointer. 1258 static void 1259 findBasePointers(const StatepointLiveSetTy &live, 1260 MapVector<Value *, Value *> &PointerToBase, 1261 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1262 for (Value *ptr : live) { 1263 Value *base = findBasePointer(ptr, DVCache); 1264 assert(base && "failed to find base pointer"); 1265 PointerToBase[ptr] = base; 1266 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1267 DT->dominates(cast<Instruction>(base)->getParent(), 1268 cast<Instruction>(ptr)->getParent())) && 1269 "The base we found better dominate the derived pointer"); 1270 } 1271 } 1272 1273 /// Find the required based pointers (and adjust the live set) for the given 1274 /// parse point. 1275 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1276 CallBase *Call, 1277 PartiallyConstructedSafepointRecord &result) { 1278 MapVector<Value *, Value *> PointerToBase; 1279 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1280 // We assume that all pointers passed to deopt are base pointers; as an 1281 // optimization, we can use this to avoid seperately materializing the base 1282 // pointer graph. This is only relevant since we're very conservative about 1283 // generating new conflict nodes during base pointer insertion. If we were 1284 // smarter there, this would be irrelevant. 1285 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1286 for (Value *V : Opt->Inputs) { 1287 if (!PotentiallyDerivedPointers.count(V)) 1288 continue; 1289 PotentiallyDerivedPointers.remove(V); 1290 PointerToBase[V] = V; 1291 } 1292 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache); 1293 1294 if (PrintBasePointers) { 1295 errs() << "Base Pairs (w/o Relocation):\n"; 1296 for (auto &Pair : PointerToBase) { 1297 errs() << " derived "; 1298 Pair.first->printAsOperand(errs(), false); 1299 errs() << " base "; 1300 Pair.second->printAsOperand(errs(), false); 1301 errs() << "\n";; 1302 } 1303 } 1304 1305 result.PointerToBase = PointerToBase; 1306 } 1307 1308 /// Given an updated version of the dataflow liveness results, update the 1309 /// liveset and base pointer maps for the call site CS. 1310 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1311 CallBase *Call, 1312 PartiallyConstructedSafepointRecord &result); 1313 1314 static void recomputeLiveInValues( 1315 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1316 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1317 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1318 // again. The old values are still live and will help it stabilize quickly. 1319 GCPtrLivenessData RevisedLivenessData; 1320 computeLiveInValues(DT, F, RevisedLivenessData); 1321 for (size_t i = 0; i < records.size(); i++) { 1322 struct PartiallyConstructedSafepointRecord &info = records[i]; 1323 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1324 } 1325 } 1326 1327 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1328 // no uses of the original value / return value between the gc.statepoint and 1329 // the gc.relocate / gc.result call. One case which can arise is a phi node 1330 // starting one of the successor blocks. We also need to be able to insert the 1331 // gc.relocates only on the path which goes through the statepoint. We might 1332 // need to split an edge to make this possible. 1333 static BasicBlock * 1334 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1335 DominatorTree &DT) { 1336 BasicBlock *Ret = BB; 1337 if (!BB->getUniquePredecessor()) 1338 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1339 1340 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1341 // from it 1342 FoldSingleEntryPHINodes(Ret); 1343 assert(!isa<PHINode>(Ret->begin()) && 1344 "All PHI nodes should have been removed!"); 1345 1346 // At this point, we can safely insert a gc.relocate or gc.result as the first 1347 // instruction in Ret if needed. 1348 return Ret; 1349 } 1350 1351 // List of all function attributes which must be stripped when lowering from 1352 // abstract machine model to physical machine model. Essentially, these are 1353 // all the effects a safepoint might have which we ignored in the abstract 1354 // machine model for purposes of optimization. We have to strip these on 1355 // both function declarations and call sites. 1356 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1357 {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly, 1358 Attribute::ArgMemOnly, Attribute::InaccessibleMemOnly, 1359 Attribute::InaccessibleMemOrArgMemOnly, 1360 Attribute::NoSync, Attribute::NoFree}; 1361 1362 // List of all parameter and return attributes which must be stripped when 1363 // lowering from the abstract machine model. Note that we list attributes 1364 // here which aren't valid as return attributes, that is okay. There are 1365 // also some additional attributes with arguments which are handled 1366 // explicitly and are not in this list. 1367 static constexpr Attribute::AttrKind ParamAttrsToStrip[] = 1368 {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly, 1369 Attribute::NoAlias, Attribute::NoFree}; 1370 1371 1372 // Create new attribute set containing only attributes which can be transferred 1373 // from original call to the safepoint. 1374 static AttributeList legalizeCallAttributes(LLVMContext &Ctx, 1375 AttributeList AL) { 1376 if (AL.isEmpty()) 1377 return AL; 1378 1379 // Remove the readonly, readnone, and statepoint function attributes. 1380 AttrBuilder FnAttrs = AL.getFnAttrs(); 1381 for (auto Attr : FnAttrsToStrip) 1382 FnAttrs.removeAttribute(Attr); 1383 1384 for (Attribute A : AL.getFnAttrs()) { 1385 if (isStatepointDirectiveAttr(A)) 1386 FnAttrs.remove(A); 1387 } 1388 1389 // Just skip parameter and return attributes for now 1390 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1391 AttributeSet::get(Ctx, FnAttrs)); 1392 } 1393 1394 /// Helper function to place all gc relocates necessary for the given 1395 /// statepoint. 1396 /// Inputs: 1397 /// liveVariables - list of variables to be relocated. 1398 /// basePtrs - base pointers. 1399 /// statepointToken - statepoint instruction to which relocates should be 1400 /// bound. 1401 /// Builder - Llvm IR builder to be used to construct new calls. 1402 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1403 ArrayRef<Value *> BasePtrs, 1404 Instruction *StatepointToken, 1405 IRBuilder<> &Builder) { 1406 if (LiveVariables.empty()) 1407 return; 1408 1409 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1410 auto ValIt = llvm::find(LiveVec, Val); 1411 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1412 size_t Index = std::distance(LiveVec.begin(), ValIt); 1413 assert(Index < LiveVec.size() && "Bug in std::find?"); 1414 return Index; 1415 }; 1416 Module *M = StatepointToken->getModule(); 1417 1418 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1419 // element type is i8 addrspace(1)*). We originally generated unique 1420 // declarations for each pointer type, but this proved problematic because 1421 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1422 // towards a single unified pointer type anyways, we can just cast everything 1423 // to an i8* of the right address space. A bitcast is added later to convert 1424 // gc_relocate to the actual value's type. 1425 auto getGCRelocateDecl = [&] (Type *Ty) { 1426 assert(isHandledGCPointerType(Ty)); 1427 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1428 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1429 if (auto *VT = dyn_cast<VectorType>(Ty)) 1430 NewTy = FixedVectorType::get(NewTy, 1431 cast<FixedVectorType>(VT)->getNumElements()); 1432 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1433 {NewTy}); 1434 }; 1435 1436 // Lazily populated map from input types to the canonicalized form mentioned 1437 // in the comment above. This should probably be cached somewhere more 1438 // broadly. 1439 DenseMap<Type *, Function *> TypeToDeclMap; 1440 1441 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1442 // Generate the gc.relocate call and save the result 1443 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1444 Value *LiveIdx = Builder.getInt32(i); 1445 1446 Type *Ty = LiveVariables[i]->getType(); 1447 if (!TypeToDeclMap.count(Ty)) 1448 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1449 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1450 1451 // only specify a debug name if we can give a useful one 1452 CallInst *Reloc = Builder.CreateCall( 1453 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1454 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1455 // Trick CodeGen into thinking there are lots of free registers at this 1456 // fake call. 1457 Reloc->setCallingConv(CallingConv::Cold); 1458 } 1459 } 1460 1461 namespace { 1462 1463 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1464 /// avoids having to worry about keeping around dangling pointers to Values. 1465 class DeferredReplacement { 1466 AssertingVH<Instruction> Old; 1467 AssertingVH<Instruction> New; 1468 bool IsDeoptimize = false; 1469 1470 DeferredReplacement() = default; 1471 1472 public: 1473 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1474 assert(Old != New && Old && New && 1475 "Cannot RAUW equal values or to / from null!"); 1476 1477 DeferredReplacement D; 1478 D.Old = Old; 1479 D.New = New; 1480 return D; 1481 } 1482 1483 static DeferredReplacement createDelete(Instruction *ToErase) { 1484 DeferredReplacement D; 1485 D.Old = ToErase; 1486 return D; 1487 } 1488 1489 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1490 #ifndef NDEBUG 1491 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1492 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1493 "Only way to construct a deoptimize deferred replacement"); 1494 #endif 1495 DeferredReplacement D; 1496 D.Old = Old; 1497 D.IsDeoptimize = true; 1498 return D; 1499 } 1500 1501 /// Does the task represented by this instance. 1502 void doReplacement() { 1503 Instruction *OldI = Old; 1504 Instruction *NewI = New; 1505 1506 assert(OldI != NewI && "Disallowed at construction?!"); 1507 assert((!IsDeoptimize || !New) && 1508 "Deoptimize intrinsics are not replaced!"); 1509 1510 Old = nullptr; 1511 New = nullptr; 1512 1513 if (NewI) 1514 OldI->replaceAllUsesWith(NewI); 1515 1516 if (IsDeoptimize) { 1517 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1518 // not necessarily be followed by the matching return. 1519 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1520 new UnreachableInst(RI->getContext(), RI); 1521 RI->eraseFromParent(); 1522 } 1523 1524 OldI->eraseFromParent(); 1525 } 1526 }; 1527 1528 } // end anonymous namespace 1529 1530 static StringRef getDeoptLowering(CallBase *Call) { 1531 const char *DeoptLowering = "deopt-lowering"; 1532 if (Call->hasFnAttr(DeoptLowering)) { 1533 // FIXME: Calls have a *really* confusing interface around attributes 1534 // with values. 1535 const AttributeList &CSAS = Call->getAttributes(); 1536 if (CSAS.hasFnAttr(DeoptLowering)) 1537 return CSAS.getFnAttr(DeoptLowering).getValueAsString(); 1538 Function *F = Call->getCalledFunction(); 1539 assert(F && F->hasFnAttribute(DeoptLowering)); 1540 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1541 } 1542 return "live-through"; 1543 } 1544 1545 static void 1546 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1547 const SmallVectorImpl<Value *> &BasePtrs, 1548 const SmallVectorImpl<Value *> &LiveVariables, 1549 PartiallyConstructedSafepointRecord &Result, 1550 std::vector<DeferredReplacement> &Replacements) { 1551 assert(BasePtrs.size() == LiveVariables.size()); 1552 1553 // Then go ahead and use the builder do actually do the inserts. We insert 1554 // immediately before the previous instruction under the assumption that all 1555 // arguments will be available here. We can't insert afterwards since we may 1556 // be replacing a terminator. 1557 IRBuilder<> Builder(Call); 1558 1559 ArrayRef<Value *> GCArgs(LiveVariables); 1560 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1561 uint32_t NumPatchBytes = 0; 1562 uint32_t Flags = uint32_t(StatepointFlags::None); 1563 1564 SmallVector<Value *, 8> CallArgs(Call->args()); 1565 Optional<ArrayRef<Use>> DeoptArgs; 1566 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1567 DeoptArgs = Bundle->Inputs; 1568 Optional<ArrayRef<Use>> TransitionArgs; 1569 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1570 TransitionArgs = Bundle->Inputs; 1571 // TODO: This flag no longer serves a purpose and can be removed later 1572 Flags |= uint32_t(StatepointFlags::GCTransition); 1573 } 1574 1575 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1576 // with a return value, we lower then as never returning calls to 1577 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1578 bool IsDeoptimize = false; 1579 1580 StatepointDirectives SD = 1581 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1582 if (SD.NumPatchBytes) 1583 NumPatchBytes = *SD.NumPatchBytes; 1584 if (SD.StatepointID) 1585 StatepointID = *SD.StatepointID; 1586 1587 // Pass through the requested lowering if any. The default is live-through. 1588 StringRef DeoptLowering = getDeoptLowering(Call); 1589 if (DeoptLowering.equals("live-in")) 1590 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1591 else { 1592 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1593 } 1594 1595 Value *CallTarget = Call->getCalledOperand(); 1596 if (Function *F = dyn_cast<Function>(CallTarget)) { 1597 auto IID = F->getIntrinsicID(); 1598 if (IID == Intrinsic::experimental_deoptimize) { 1599 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1600 // __llvm_deoptimize symbol. We want to resolve this now, since the 1601 // verifier does not allow taking the address of an intrinsic function. 1602 1603 SmallVector<Type *, 8> DomainTy; 1604 for (Value *Arg : CallArgs) 1605 DomainTy.push_back(Arg->getType()); 1606 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1607 /* isVarArg = */ false); 1608 1609 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1610 // calls to @llvm.experimental.deoptimize with different argument types in 1611 // the same module. This is fine -- we assume the frontend knew what it 1612 // was doing when generating this kind of IR. 1613 CallTarget = F->getParent() 1614 ->getOrInsertFunction("__llvm_deoptimize", FTy) 1615 .getCallee(); 1616 1617 IsDeoptimize = true; 1618 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1619 IID == Intrinsic::memmove_element_unordered_atomic) { 1620 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1621 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1622 // Specifically, these calls should be lowered to the 1623 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1624 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1625 // verifier does not allow taking the address of an intrinsic function. 1626 // 1627 // Moreover we need to shuffle the arguments for the call in order to 1628 // accommodate GC. The underlying source and destination objects might be 1629 // relocated during copy operation should the GC occur. To relocate the 1630 // derived source and destination pointers the implementation of the 1631 // intrinsic should know the corresponding base pointers. 1632 // 1633 // To make the base pointers available pass them explicitly as arguments: 1634 // memcpy(dest_derived, source_derived, ...) => 1635 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1636 auto &Context = Call->getContext(); 1637 auto &DL = Call->getModule()->getDataLayout(); 1638 auto GetBaseAndOffset = [&](Value *Derived) { 1639 assert(Result.PointerToBase.count(Derived)); 1640 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1641 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1642 Value *Base = Result.PointerToBase.find(Derived)->second; 1643 Value *Base_int = Builder.CreatePtrToInt( 1644 Base, Type::getIntNTy(Context, IntPtrSize)); 1645 Value *Derived_int = Builder.CreatePtrToInt( 1646 Derived, Type::getIntNTy(Context, IntPtrSize)); 1647 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1648 }; 1649 1650 auto *Dest = CallArgs[0]; 1651 Value *DestBase, *DestOffset; 1652 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1653 1654 auto *Source = CallArgs[1]; 1655 Value *SourceBase, *SourceOffset; 1656 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1657 1658 auto *LengthInBytes = CallArgs[2]; 1659 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1660 1661 CallArgs.clear(); 1662 CallArgs.push_back(DestBase); 1663 CallArgs.push_back(DestOffset); 1664 CallArgs.push_back(SourceBase); 1665 CallArgs.push_back(SourceOffset); 1666 CallArgs.push_back(LengthInBytes); 1667 1668 SmallVector<Type *, 8> DomainTy; 1669 for (Value *Arg : CallArgs) 1670 DomainTy.push_back(Arg->getType()); 1671 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1672 /* isVarArg = */ false); 1673 1674 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1675 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1676 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1677 switch (ElementSize) { 1678 case 1: 1679 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1680 case 2: 1681 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1682 case 4: 1683 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1684 case 8: 1685 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1686 case 16: 1687 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1688 default: 1689 llvm_unreachable("unexpected element size!"); 1690 } 1691 } 1692 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1693 switch (ElementSize) { 1694 case 1: 1695 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1696 case 2: 1697 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1698 case 4: 1699 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1700 case 8: 1701 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1702 case 16: 1703 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1704 default: 1705 llvm_unreachable("unexpected element size!"); 1706 } 1707 }; 1708 1709 CallTarget = 1710 F->getParent() 1711 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy) 1712 .getCallee(); 1713 } 1714 } 1715 1716 // Create the statepoint given all the arguments 1717 GCStatepointInst *Token = nullptr; 1718 if (auto *CI = dyn_cast<CallInst>(Call)) { 1719 CallInst *SPCall = Builder.CreateGCStatepointCall( 1720 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1721 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1722 1723 SPCall->setTailCallKind(CI->getTailCallKind()); 1724 SPCall->setCallingConv(CI->getCallingConv()); 1725 1726 // Currently we will fail on parameter attributes and on certain 1727 // function attributes. In case if we can handle this set of attributes - 1728 // set up function attrs directly on statepoint and return attrs later for 1729 // gc_result intrinsic. 1730 SPCall->setAttributes( 1731 legalizeCallAttributes(CI->getContext(), CI->getAttributes())); 1732 1733 Token = cast<GCStatepointInst>(SPCall); 1734 1735 // Put the following gc_result and gc_relocate calls immediately after the 1736 // the old call (which we're about to delete) 1737 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1738 Builder.SetInsertPoint(CI->getNextNode()); 1739 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1740 } else { 1741 auto *II = cast<InvokeInst>(Call); 1742 1743 // Insert the new invoke into the old block. We'll remove the old one in a 1744 // moment at which point this will become the new terminator for the 1745 // original block. 1746 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1747 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1748 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1749 "statepoint_token"); 1750 1751 SPInvoke->setCallingConv(II->getCallingConv()); 1752 1753 // Currently we will fail on parameter attributes and on certain 1754 // function attributes. In case if we can handle this set of attributes - 1755 // set up function attrs directly on statepoint and return attrs later for 1756 // gc_result intrinsic. 1757 SPInvoke->setAttributes( 1758 legalizeCallAttributes(II->getContext(), II->getAttributes())); 1759 1760 Token = cast<GCStatepointInst>(SPInvoke); 1761 1762 // Generate gc relocates in exceptional path 1763 BasicBlock *UnwindBlock = II->getUnwindDest(); 1764 assert(!isa<PHINode>(UnwindBlock->begin()) && 1765 UnwindBlock->getUniquePredecessor() && 1766 "can't safely insert in this block!"); 1767 1768 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1769 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1770 1771 // Attach exceptional gc relocates to the landingpad. 1772 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1773 Result.UnwindToken = ExceptionalToken; 1774 1775 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder); 1776 1777 // Generate gc relocates and returns for normal block 1778 BasicBlock *NormalDest = II->getNormalDest(); 1779 assert(!isa<PHINode>(NormalDest->begin()) && 1780 NormalDest->getUniquePredecessor() && 1781 "can't safely insert in this block!"); 1782 1783 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1784 1785 // gc relocates will be generated later as if it were regular call 1786 // statepoint 1787 } 1788 assert(Token && "Should be set in one of the above branches!"); 1789 1790 if (IsDeoptimize) { 1791 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1792 // transform the tail-call like structure to a call to a void function 1793 // followed by unreachable to get better codegen. 1794 Replacements.push_back( 1795 DeferredReplacement::createDeoptimizeReplacement(Call)); 1796 } else { 1797 Token->setName("statepoint_token"); 1798 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1799 StringRef Name = Call->hasName() ? Call->getName() : ""; 1800 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1801 GCResult->setAttributes( 1802 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1803 Call->getAttributes().getRetAttrs())); 1804 1805 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1806 // live set of some other safepoint, in which case that safepoint's 1807 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1808 // llvm::Instruction. Instead, we defer the replacement and deletion to 1809 // after the live sets have been made explicit in the IR, and we no longer 1810 // have raw pointers to worry about. 1811 Replacements.emplace_back( 1812 DeferredReplacement::createRAUW(Call, GCResult)); 1813 } else { 1814 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1815 } 1816 } 1817 1818 Result.StatepointToken = Token; 1819 1820 // Second, create a gc.relocate for every live variable 1821 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder); 1822 } 1823 1824 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1825 // which make the relocations happening at this safepoint explicit. 1826 // 1827 // WARNING: Does not do any fixup to adjust users of the original live 1828 // values. That's the callers responsibility. 1829 static void 1830 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1831 PartiallyConstructedSafepointRecord &Result, 1832 std::vector<DeferredReplacement> &Replacements) { 1833 const auto &LiveSet = Result.LiveSet; 1834 const auto &PointerToBase = Result.PointerToBase; 1835 1836 // Convert to vector for efficient cross referencing. 1837 SmallVector<Value *, 64> BaseVec, LiveVec; 1838 LiveVec.reserve(LiveSet.size()); 1839 BaseVec.reserve(LiveSet.size()); 1840 for (Value *L : LiveSet) { 1841 LiveVec.push_back(L); 1842 assert(PointerToBase.count(L)); 1843 Value *Base = PointerToBase.find(L)->second; 1844 BaseVec.push_back(Base); 1845 } 1846 assert(LiveVec.size() == BaseVec.size()); 1847 1848 // Do the actual rewriting and delete the old statepoint 1849 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements); 1850 } 1851 1852 // Helper function for the relocationViaAlloca. 1853 // 1854 // It receives iterator to the statepoint gc relocates and emits a store to the 1855 // assigned location (via allocaMap) for the each one of them. It adds the 1856 // visited values into the visitedLiveValues set, which we will later use them 1857 // for validation checking. 1858 static void 1859 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1860 DenseMap<Value *, AllocaInst *> &AllocaMap, 1861 DenseSet<Value *> &VisitedLiveValues) { 1862 for (User *U : GCRelocs) { 1863 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1864 if (!Relocate) 1865 continue; 1866 1867 Value *OriginalValue = Relocate->getDerivedPtr(); 1868 assert(AllocaMap.count(OriginalValue)); 1869 Value *Alloca = AllocaMap[OriginalValue]; 1870 1871 // Emit store into the related alloca 1872 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1873 // the correct type according to alloca. 1874 assert(Relocate->getNextNode() && 1875 "Should always have one since it's not a terminator"); 1876 IRBuilder<> Builder(Relocate->getNextNode()); 1877 Value *CastedRelocatedValue = 1878 Builder.CreateBitCast(Relocate, 1879 cast<AllocaInst>(Alloca)->getAllocatedType(), 1880 suffixed_name_or(Relocate, ".casted", "")); 1881 1882 new StoreInst(CastedRelocatedValue, Alloca, 1883 cast<Instruction>(CastedRelocatedValue)->getNextNode()); 1884 1885 #ifndef NDEBUG 1886 VisitedLiveValues.insert(OriginalValue); 1887 #endif 1888 } 1889 } 1890 1891 // Helper function for the "relocationViaAlloca". Similar to the 1892 // "insertRelocationStores" but works for rematerialized values. 1893 static void insertRematerializationStores( 1894 const RematerializedValueMapTy &RematerializedValues, 1895 DenseMap<Value *, AllocaInst *> &AllocaMap, 1896 DenseSet<Value *> &VisitedLiveValues) { 1897 for (auto RematerializedValuePair: RematerializedValues) { 1898 Instruction *RematerializedValue = RematerializedValuePair.first; 1899 Value *OriginalValue = RematerializedValuePair.second; 1900 1901 assert(AllocaMap.count(OriginalValue) && 1902 "Can not find alloca for rematerialized value"); 1903 Value *Alloca = AllocaMap[OriginalValue]; 1904 1905 new StoreInst(RematerializedValue, Alloca, 1906 RematerializedValue->getNextNode()); 1907 1908 #ifndef NDEBUG 1909 VisitedLiveValues.insert(OriginalValue); 1910 #endif 1911 } 1912 } 1913 1914 /// Do all the relocation update via allocas and mem2reg 1915 static void relocationViaAlloca( 1916 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1917 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1918 #ifndef NDEBUG 1919 // record initial number of (static) allocas; we'll check we have the same 1920 // number when we get done. 1921 int InitialAllocaNum = 0; 1922 for (Instruction &I : F.getEntryBlock()) 1923 if (isa<AllocaInst>(I)) 1924 InitialAllocaNum++; 1925 #endif 1926 1927 // TODO-PERF: change data structures, reserve 1928 DenseMap<Value *, AllocaInst *> AllocaMap; 1929 SmallVector<AllocaInst *, 200> PromotableAllocas; 1930 // Used later to chack that we have enough allocas to store all values 1931 std::size_t NumRematerializedValues = 0; 1932 PromotableAllocas.reserve(Live.size()); 1933 1934 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1935 // "PromotableAllocas" 1936 const DataLayout &DL = F.getParent()->getDataLayout(); 1937 auto emitAllocaFor = [&](Value *LiveValue) { 1938 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1939 DL.getAllocaAddrSpace(), "", 1940 F.getEntryBlock().getFirstNonPHI()); 1941 AllocaMap[LiveValue] = Alloca; 1942 PromotableAllocas.push_back(Alloca); 1943 }; 1944 1945 // Emit alloca for each live gc pointer 1946 for (Value *V : Live) 1947 emitAllocaFor(V); 1948 1949 // Emit allocas for rematerialized values 1950 for (const auto &Info : Records) 1951 for (auto RematerializedValuePair : Info.RematerializedValues) { 1952 Value *OriginalValue = RematerializedValuePair.second; 1953 if (AllocaMap.count(OriginalValue) != 0) 1954 continue; 1955 1956 emitAllocaFor(OriginalValue); 1957 ++NumRematerializedValues; 1958 } 1959 1960 // The next two loops are part of the same conceptual operation. We need to 1961 // insert a store to the alloca after the original def and at each 1962 // redefinition. We need to insert a load before each use. These are split 1963 // into distinct loops for performance reasons. 1964 1965 // Update gc pointer after each statepoint: either store a relocated value or 1966 // null (if no relocated value was found for this gc pointer and it is not a 1967 // gc_result). This must happen before we update the statepoint with load of 1968 // alloca otherwise we lose the link between statepoint and old def. 1969 for (const auto &Info : Records) { 1970 Value *Statepoint = Info.StatepointToken; 1971 1972 // This will be used for consistency check 1973 DenseSet<Value *> VisitedLiveValues; 1974 1975 // Insert stores for normal statepoint gc relocates 1976 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1977 1978 // In case if it was invoke statepoint 1979 // we will insert stores for exceptional path gc relocates. 1980 if (isa<InvokeInst>(Statepoint)) { 1981 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1982 VisitedLiveValues); 1983 } 1984 1985 // Do similar thing with rematerialized values 1986 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1987 VisitedLiveValues); 1988 1989 if (ClobberNonLive) { 1990 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1991 // the gc.statepoint. This will turn some subtle GC problems into 1992 // slightly easier to debug SEGVs. Note that on large IR files with 1993 // lots of gc.statepoints this is extremely costly both memory and time 1994 // wise. 1995 SmallVector<AllocaInst *, 64> ToClobber; 1996 for (auto Pair : AllocaMap) { 1997 Value *Def = Pair.first; 1998 AllocaInst *Alloca = Pair.second; 1999 2000 // This value was relocated 2001 if (VisitedLiveValues.count(Def)) { 2002 continue; 2003 } 2004 ToClobber.push_back(Alloca); 2005 } 2006 2007 auto InsertClobbersAt = [&](Instruction *IP) { 2008 for (auto *AI : ToClobber) { 2009 auto PT = cast<PointerType>(AI->getAllocatedType()); 2010 Constant *CPN = ConstantPointerNull::get(PT); 2011 new StoreInst(CPN, AI, IP); 2012 } 2013 }; 2014 2015 // Insert the clobbering stores. These may get intermixed with the 2016 // gc.results and gc.relocates, but that's fine. 2017 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 2018 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 2019 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 2020 } else { 2021 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 2022 } 2023 } 2024 } 2025 2026 // Update use with load allocas and add store for gc_relocated. 2027 for (auto Pair : AllocaMap) { 2028 Value *Def = Pair.first; 2029 AllocaInst *Alloca = Pair.second; 2030 2031 // We pre-record the uses of allocas so that we dont have to worry about 2032 // later update that changes the user information.. 2033 2034 SmallVector<Instruction *, 20> Uses; 2035 // PERF: trade a linear scan for repeated reallocation 2036 Uses.reserve(Def->getNumUses()); 2037 for (User *U : Def->users()) { 2038 if (!isa<ConstantExpr>(U)) { 2039 // If the def has a ConstantExpr use, then the def is either a 2040 // ConstantExpr use itself or null. In either case 2041 // (recursively in the first, directly in the second), the oop 2042 // it is ultimately dependent on is null and this particular 2043 // use does not need to be fixed up. 2044 Uses.push_back(cast<Instruction>(U)); 2045 } 2046 } 2047 2048 llvm::sort(Uses); 2049 auto Last = std::unique(Uses.begin(), Uses.end()); 2050 Uses.erase(Last, Uses.end()); 2051 2052 for (Instruction *Use : Uses) { 2053 if (isa<PHINode>(Use)) { 2054 PHINode *Phi = cast<PHINode>(Use); 2055 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2056 if (Def == Phi->getIncomingValue(i)) { 2057 LoadInst *Load = 2058 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2059 Phi->getIncomingBlock(i)->getTerminator()); 2060 Phi->setIncomingValue(i, Load); 2061 } 2062 } 2063 } else { 2064 LoadInst *Load = 2065 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2066 Use->replaceUsesOfWith(Def, Load); 2067 } 2068 } 2069 2070 // Emit store for the initial gc value. Store must be inserted after load, 2071 // otherwise store will be in alloca's use list and an extra load will be 2072 // inserted before it. 2073 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2074 DL.getABITypeAlign(Def->getType())); 2075 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2076 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2077 // InvokeInst is a terminator so the store need to be inserted into its 2078 // normal destination block. 2079 BasicBlock *NormalDest = Invoke->getNormalDest(); 2080 Store->insertBefore(NormalDest->getFirstNonPHI()); 2081 } else { 2082 assert(!Inst->isTerminator() && 2083 "The only terminator that can produce a value is " 2084 "InvokeInst which is handled above."); 2085 Store->insertAfter(Inst); 2086 } 2087 } else { 2088 assert(isa<Argument>(Def)); 2089 Store->insertAfter(cast<Instruction>(Alloca)); 2090 } 2091 } 2092 2093 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2094 "we must have the same allocas with lives"); 2095 if (!PromotableAllocas.empty()) { 2096 // Apply mem2reg to promote alloca to SSA 2097 PromoteMemToReg(PromotableAllocas, DT); 2098 } 2099 2100 #ifndef NDEBUG 2101 for (auto &I : F.getEntryBlock()) 2102 if (isa<AllocaInst>(I)) 2103 InitialAllocaNum--; 2104 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2105 #endif 2106 } 2107 2108 /// Implement a unique function which doesn't require we sort the input 2109 /// vector. Doing so has the effect of changing the output of a couple of 2110 /// tests in ways which make them less useful in testing fused safepoints. 2111 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2112 SmallSet<T, 8> Seen; 2113 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2114 } 2115 2116 /// Insert holders so that each Value is obviously live through the entire 2117 /// lifetime of the call. 2118 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2119 SmallVectorImpl<CallInst *> &Holders) { 2120 if (Values.empty()) 2121 // No values to hold live, might as well not insert the empty holder 2122 return; 2123 2124 Module *M = Call->getModule(); 2125 // Use a dummy vararg function to actually hold the values live 2126 FunctionCallee Func = M->getOrInsertFunction( 2127 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2128 if (isa<CallInst>(Call)) { 2129 // For call safepoints insert dummy calls right after safepoint 2130 Holders.push_back( 2131 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2132 return; 2133 } 2134 // For invoke safepooints insert dummy calls both in normal and 2135 // exceptional destination blocks 2136 auto *II = cast<InvokeInst>(Call); 2137 Holders.push_back(CallInst::Create( 2138 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2139 Holders.push_back(CallInst::Create( 2140 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2141 } 2142 2143 static void findLiveReferences( 2144 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2145 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 2146 GCPtrLivenessData OriginalLivenessData; 2147 computeLiveInValues(DT, F, OriginalLivenessData); 2148 for (size_t i = 0; i < records.size(); i++) { 2149 struct PartiallyConstructedSafepointRecord &info = records[i]; 2150 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 2151 } 2152 } 2153 2154 // Helper function for the "rematerializeLiveValues". It walks use chain 2155 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2156 // the base or a value it cannot process. Only "simple" values are processed 2157 // (currently it is GEP's and casts). The returned root is examined by the 2158 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2159 // with all visited values. 2160 static Value* findRematerializableChainToBasePointer( 2161 SmallVectorImpl<Instruction*> &ChainToBase, 2162 Value *CurrentValue) { 2163 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2164 ChainToBase.push_back(GEP); 2165 return findRematerializableChainToBasePointer(ChainToBase, 2166 GEP->getPointerOperand()); 2167 } 2168 2169 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2170 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2171 return CI; 2172 2173 ChainToBase.push_back(CI); 2174 return findRematerializableChainToBasePointer(ChainToBase, 2175 CI->getOperand(0)); 2176 } 2177 2178 // We have reached the root of the chain, which is either equal to the base or 2179 // is the first unsupported value along the use chain. 2180 return CurrentValue; 2181 } 2182 2183 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2184 // chain we are going to rematerialize. 2185 static InstructionCost 2186 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2187 TargetTransformInfo &TTI) { 2188 InstructionCost Cost = 0; 2189 2190 for (Instruction *Instr : Chain) { 2191 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2192 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2193 "non noop cast is found during rematerialization"); 2194 2195 Type *SrcTy = CI->getOperand(0)->getType(); 2196 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2197 TTI::getCastContextHint(CI), 2198 TargetTransformInfo::TCK_SizeAndLatency, CI); 2199 2200 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2201 // Cost of the address calculation 2202 Type *ValTy = GEP->getSourceElementType(); 2203 Cost += TTI.getAddressComputationCost(ValTy); 2204 2205 // And cost of the GEP itself 2206 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2207 // allowed for the external usage) 2208 if (!GEP->hasAllConstantIndices()) 2209 Cost += 2; 2210 2211 } else { 2212 llvm_unreachable("unsupported instruction type during rematerialization"); 2213 } 2214 } 2215 2216 return Cost; 2217 } 2218 2219 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2220 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2221 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2222 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2223 return false; 2224 // Map of incoming values and their corresponding basic blocks of 2225 // OrigRootPhi. 2226 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2227 for (unsigned i = 0; i < PhiNum; i++) 2228 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2229 OrigRootPhi.getIncomingBlock(i); 2230 2231 // Both current and base PHIs should have same incoming values and 2232 // the same basic blocks corresponding to the incoming values. 2233 for (unsigned i = 0; i < PhiNum; i++) { 2234 auto CIVI = 2235 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2236 if (CIVI == CurrentIncomingValues.end()) 2237 return false; 2238 BasicBlock *CurrentIncomingBB = CIVI->second; 2239 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2240 return false; 2241 } 2242 return true; 2243 } 2244 2245 // From the statepoint live set pick values that are cheaper to recompute then 2246 // to relocate. Remove this values from the live set, rematerialize them after 2247 // statepoint and record them in "Info" structure. Note that similar to 2248 // relocated values we don't do any user adjustments here. 2249 static void rematerializeLiveValues(CallBase *Call, 2250 PartiallyConstructedSafepointRecord &Info, 2251 TargetTransformInfo &TTI) { 2252 const unsigned int ChainLengthThreshold = 10; 2253 2254 // Record values we are going to delete from this statepoint live set. 2255 // We can not di this in following loop due to iterator invalidation. 2256 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2257 2258 for (Value *LiveValue: Info.LiveSet) { 2259 // For each live pointer find its defining chain 2260 SmallVector<Instruction *, 3> ChainToBase; 2261 assert(Info.PointerToBase.count(LiveValue)); 2262 Value *RootOfChain = 2263 findRematerializableChainToBasePointer(ChainToBase, 2264 LiveValue); 2265 2266 // Nothing to do, or chain is too long 2267 if ( ChainToBase.size() == 0 || 2268 ChainToBase.size() > ChainLengthThreshold) 2269 continue; 2270 2271 // Handle the scenario where the RootOfChain is not equal to the 2272 // Base Value, but they are essentially the same phi values. 2273 if (RootOfChain != Info.PointerToBase[LiveValue]) { 2274 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2275 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 2276 if (!OrigRootPhi || !AlternateRootPhi) 2277 continue; 2278 // PHI nodes that have the same incoming values, and belonging to the same 2279 // basic blocks are essentially the same SSA value. When the original phi 2280 // has incoming values with different base pointers, the original phi is 2281 // marked as conflict, and an additional `AlternateRootPhi` with the same 2282 // incoming values get generated by the findBasePointer function. We need 2283 // to identify the newly generated AlternateRootPhi (.base version of phi) 2284 // and RootOfChain (the original phi node itself) are the same, so that we 2285 // can rematerialize the gep and casts. This is a workaround for the 2286 // deficiency in the findBasePointer algorithm. 2287 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2288 continue; 2289 // Now that the phi nodes are proved to be the same, assert that 2290 // findBasePointer's newly generated AlternateRootPhi is present in the 2291 // liveset of the call. 2292 assert(Info.LiveSet.count(AlternateRootPhi)); 2293 } 2294 // Compute cost of this chain 2295 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2296 // TODO: We can also account for cases when we will be able to remove some 2297 // of the rematerialized values by later optimization passes. I.e if 2298 // we rematerialized several intersecting chains. Or if original values 2299 // don't have any uses besides this statepoint. 2300 2301 // For invokes we need to rematerialize each chain twice - for normal and 2302 // for unwind basic blocks. Model this by multiplying cost by two. 2303 if (isa<InvokeInst>(Call)) { 2304 Cost *= 2; 2305 } 2306 // If it's too expensive - skip it 2307 if (Cost >= RematerializationThreshold) 2308 continue; 2309 2310 // Remove value from the live set 2311 LiveValuesToBeDeleted.push_back(LiveValue); 2312 2313 // Clone instructions and record them inside "Info" structure 2314 2315 // Walk backwards to visit top-most instructions first 2316 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2317 2318 // Utility function which clones all instructions from "ChainToBase" 2319 // and inserts them before "InsertBefore". Returns rematerialized value 2320 // which should be used after statepoint. 2321 auto rematerializeChain = [&ChainToBase]( 2322 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2323 Instruction *LastClonedValue = nullptr; 2324 Instruction *LastValue = nullptr; 2325 for (Instruction *Instr: ChainToBase) { 2326 // Only GEP's and casts are supported as we need to be careful to not 2327 // introduce any new uses of pointers not in the liveset. 2328 // Note that it's fine to introduce new uses of pointers which were 2329 // otherwise not used after this statepoint. 2330 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2331 2332 Instruction *ClonedValue = Instr->clone(); 2333 ClonedValue->insertBefore(InsertBefore); 2334 ClonedValue->setName(Instr->getName() + ".remat"); 2335 2336 // If it is not first instruction in the chain then it uses previously 2337 // cloned value. We should update it to use cloned value. 2338 if (LastClonedValue) { 2339 assert(LastValue); 2340 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2341 #ifndef NDEBUG 2342 for (auto OpValue : ClonedValue->operand_values()) { 2343 // Assert that cloned instruction does not use any instructions from 2344 // this chain other than LastClonedValue 2345 assert(!is_contained(ChainToBase, OpValue) && 2346 "incorrect use in rematerialization chain"); 2347 // Assert that the cloned instruction does not use the RootOfChain 2348 // or the AlternateLiveBase. 2349 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2350 } 2351 #endif 2352 } else { 2353 // For the first instruction, replace the use of unrelocated base i.e. 2354 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2355 // live set. They have been proved to be the same PHI nodes. Note 2356 // that the *only* use of the RootOfChain in the ChainToBase list is 2357 // the first Value in the list. 2358 if (RootOfChain != AlternateLiveBase) 2359 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2360 } 2361 2362 LastClonedValue = ClonedValue; 2363 LastValue = Instr; 2364 } 2365 assert(LastClonedValue); 2366 return LastClonedValue; 2367 }; 2368 2369 // Different cases for calls and invokes. For invokes we need to clone 2370 // instructions both on normal and unwind path. 2371 if (isa<CallInst>(Call)) { 2372 Instruction *InsertBefore = Call->getNextNode(); 2373 assert(InsertBefore); 2374 Instruction *RematerializedValue = rematerializeChain( 2375 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2376 Info.RematerializedValues[RematerializedValue] = LiveValue; 2377 } else { 2378 auto *Invoke = cast<InvokeInst>(Call); 2379 2380 Instruction *NormalInsertBefore = 2381 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2382 Instruction *UnwindInsertBefore = 2383 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2384 2385 Instruction *NormalRematerializedValue = rematerializeChain( 2386 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2387 Instruction *UnwindRematerializedValue = rematerializeChain( 2388 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2389 2390 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2391 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2392 } 2393 } 2394 2395 // Remove rematerializaed values from the live set 2396 for (auto LiveValue: LiveValuesToBeDeleted) { 2397 Info.LiveSet.remove(LiveValue); 2398 } 2399 } 2400 2401 static bool inlineGetBaseAndOffset(Function &F, 2402 SmallVectorImpl<CallInst *> &Intrinsics, 2403 DefiningValueMapTy &DVCache) { 2404 auto &Context = F.getContext(); 2405 auto &DL = F.getParent()->getDataLayout(); 2406 bool Changed = false; 2407 2408 for (auto *Callsite : Intrinsics) 2409 switch (Callsite->getIntrinsicID()) { 2410 case Intrinsic::experimental_gc_get_pointer_base: { 2411 Changed = true; 2412 Value *Base = findBasePointer(Callsite->getOperand(0), DVCache); 2413 assert(!DVCache.count(Callsite)); 2414 auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast( 2415 Base, Callsite->getType(), suffixed_name_or(Base, ".cast", "")); 2416 if (BaseBC != Base) 2417 DVCache[BaseBC] = Base; 2418 Callsite->replaceAllUsesWith(BaseBC); 2419 if (!BaseBC->hasName()) 2420 BaseBC->takeName(Callsite); 2421 Callsite->eraseFromParent(); 2422 break; 2423 } 2424 case Intrinsic::experimental_gc_get_pointer_offset: { 2425 Changed = true; 2426 Value *Derived = Callsite->getOperand(0); 2427 Value *Base = findBasePointer(Derived, DVCache); 2428 assert(!DVCache.count(Callsite)); 2429 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2430 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2431 IRBuilder<> Builder(Callsite); 2432 Value *BaseInt = 2433 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2434 suffixed_name_or(Base, ".int", "")); 2435 Value *DerivedInt = 2436 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2437 suffixed_name_or(Derived, ".int", "")); 2438 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2439 Callsite->replaceAllUsesWith(Offset); 2440 Offset->takeName(Callsite); 2441 Callsite->eraseFromParent(); 2442 break; 2443 } 2444 default: 2445 llvm_unreachable("Unknown intrinsic"); 2446 } 2447 2448 return Changed; 2449 } 2450 2451 static bool insertParsePoints(Function &F, DominatorTree &DT, 2452 TargetTransformInfo &TTI, 2453 SmallVectorImpl<CallBase *> &ToUpdate, 2454 DefiningValueMapTy &DVCache) { 2455 #ifndef NDEBUG 2456 // Validate the input 2457 std::set<CallBase *> Uniqued; 2458 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2459 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2460 2461 for (CallBase *Call : ToUpdate) 2462 assert(Call->getFunction() == &F); 2463 #endif 2464 2465 // When inserting gc.relocates for invokes, we need to be able to insert at 2466 // the top of the successor blocks. See the comment on 2467 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2468 // may restructure the CFG. 2469 for (CallBase *Call : ToUpdate) { 2470 auto *II = dyn_cast<InvokeInst>(Call); 2471 if (!II) 2472 continue; 2473 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2474 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2475 } 2476 2477 // A list of dummy calls added to the IR to keep various values obviously 2478 // live in the IR. We'll remove all of these when done. 2479 SmallVector<CallInst *, 64> Holders; 2480 2481 // Insert a dummy call with all of the deopt operands we'll need for the 2482 // actual safepoint insertion as arguments. This ensures reference operands 2483 // in the deopt argument list are considered live through the safepoint (and 2484 // thus makes sure they get relocated.) 2485 for (CallBase *Call : ToUpdate) { 2486 SmallVector<Value *, 64> DeoptValues; 2487 2488 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2489 assert(!isUnhandledGCPointerType(Arg->getType()) && 2490 "support for FCA unimplemented"); 2491 if (isHandledGCPointerType(Arg->getType())) 2492 DeoptValues.push_back(Arg); 2493 } 2494 2495 insertUseHolderAfter(Call, DeoptValues, Holders); 2496 } 2497 2498 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2499 2500 // A) Identify all gc pointers which are statically live at the given call 2501 // site. 2502 findLiveReferences(F, DT, ToUpdate, Records); 2503 2504 // B) Find the base pointers for each live pointer 2505 for (size_t i = 0; i < Records.size(); i++) { 2506 PartiallyConstructedSafepointRecord &info = Records[i]; 2507 findBasePointers(DT, DVCache, ToUpdate[i], info); 2508 } 2509 2510 // The base phi insertion logic (for any safepoint) may have inserted new 2511 // instructions which are now live at some safepoint. The simplest such 2512 // example is: 2513 // loop: 2514 // phi a <-- will be a new base_phi here 2515 // safepoint 1 <-- that needs to be live here 2516 // gep a + 1 2517 // safepoint 2 2518 // br loop 2519 // We insert some dummy calls after each safepoint to definitely hold live 2520 // the base pointers which were identified for that safepoint. We'll then 2521 // ask liveness for _every_ base inserted to see what is now live. Then we 2522 // remove the dummy calls. 2523 Holders.reserve(Holders.size() + Records.size()); 2524 for (size_t i = 0; i < Records.size(); i++) { 2525 PartiallyConstructedSafepointRecord &Info = Records[i]; 2526 2527 SmallVector<Value *, 128> Bases; 2528 for (auto Pair : Info.PointerToBase) 2529 Bases.push_back(Pair.second); 2530 2531 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2532 } 2533 2534 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2535 // need to rerun liveness. We may *also* have inserted new defs, but that's 2536 // not the key issue. 2537 recomputeLiveInValues(F, DT, ToUpdate, Records); 2538 2539 if (PrintBasePointers) { 2540 for (auto &Info : Records) { 2541 errs() << "Base Pairs: (w/Relocation)\n"; 2542 for (auto Pair : Info.PointerToBase) { 2543 errs() << " derived "; 2544 Pair.first->printAsOperand(errs(), false); 2545 errs() << " base "; 2546 Pair.second->printAsOperand(errs(), false); 2547 errs() << "\n"; 2548 } 2549 } 2550 } 2551 2552 // It is possible that non-constant live variables have a constant base. For 2553 // example, a GEP with a variable offset from a global. In this case we can 2554 // remove it from the liveset. We already don't add constants to the liveset 2555 // because we assume they won't move at runtime and the GC doesn't need to be 2556 // informed about them. The same reasoning applies if the base is constant. 2557 // Note that the relocation placement code relies on this filtering for 2558 // correctness as it expects the base to be in the liveset, which isn't true 2559 // if the base is constant. 2560 for (auto &Info : Records) 2561 for (auto &BasePair : Info.PointerToBase) 2562 if (isa<Constant>(BasePair.second)) 2563 Info.LiveSet.remove(BasePair.first); 2564 2565 for (CallInst *CI : Holders) 2566 CI->eraseFromParent(); 2567 2568 Holders.clear(); 2569 2570 // In order to reduce live set of statepoint we might choose to rematerialize 2571 // some values instead of relocating them. This is purely an optimization and 2572 // does not influence correctness. 2573 for (size_t i = 0; i < Records.size(); i++) 2574 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2575 2576 // We need this to safely RAUW and delete call or invoke return values that 2577 // may themselves be live over a statepoint. For details, please see usage in 2578 // makeStatepointExplicitImpl. 2579 std::vector<DeferredReplacement> Replacements; 2580 2581 // Now run through and replace the existing statepoints with new ones with 2582 // the live variables listed. We do not yet update uses of the values being 2583 // relocated. We have references to live variables that need to 2584 // survive to the last iteration of this loop. (By construction, the 2585 // previous statepoint can not be a live variable, thus we can and remove 2586 // the old statepoint calls as we go.) 2587 for (size_t i = 0; i < Records.size(); i++) 2588 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2589 2590 ToUpdate.clear(); // prevent accident use of invalid calls. 2591 2592 for (auto &PR : Replacements) 2593 PR.doReplacement(); 2594 2595 Replacements.clear(); 2596 2597 for (auto &Info : Records) { 2598 // These live sets may contain state Value pointers, since we replaced calls 2599 // with operand bundles with calls wrapped in gc.statepoint, and some of 2600 // those calls may have been def'ing live gc pointers. Clear these out to 2601 // avoid accidentally using them. 2602 // 2603 // TODO: We should create a separate data structure that does not contain 2604 // these live sets, and migrate to using that data structure from this point 2605 // onward. 2606 Info.LiveSet.clear(); 2607 Info.PointerToBase.clear(); 2608 } 2609 2610 // Do all the fixups of the original live variables to their relocated selves 2611 SmallVector<Value *, 128> Live; 2612 for (size_t i = 0; i < Records.size(); i++) { 2613 PartiallyConstructedSafepointRecord &Info = Records[i]; 2614 2615 // We can't simply save the live set from the original insertion. One of 2616 // the live values might be the result of a call which needs a safepoint. 2617 // That Value* no longer exists and we need to use the new gc_result. 2618 // Thankfully, the live set is embedded in the statepoint (and updated), so 2619 // we just grab that. 2620 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2621 #ifndef NDEBUG 2622 // Do some basic validation checking on our liveness results before 2623 // performing relocation. Relocation can and will turn mistakes in liveness 2624 // results into non-sensical code which is must harder to debug. 2625 // TODO: It would be nice to test consistency as well 2626 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2627 "statepoint must be reachable or liveness is meaningless"); 2628 for (Value *V : Info.StatepointToken->gc_args()) { 2629 if (!isa<Instruction>(V)) 2630 // Non-instruction values trivial dominate all possible uses 2631 continue; 2632 auto *LiveInst = cast<Instruction>(V); 2633 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2634 "unreachable values should never be live"); 2635 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2636 "basic SSA liveness expectation violated by liveness analysis"); 2637 } 2638 #endif 2639 } 2640 unique_unsorted(Live); 2641 2642 #ifndef NDEBUG 2643 // Validation check 2644 for (auto *Ptr : Live) 2645 assert(isHandledGCPointerType(Ptr->getType()) && 2646 "must be a gc pointer type"); 2647 #endif 2648 2649 relocationViaAlloca(F, DT, Live, Records); 2650 return !Records.empty(); 2651 } 2652 2653 // Handles both return values and arguments for Functions and calls. 2654 template <typename AttrHolder> 2655 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2656 unsigned Index) { 2657 AttrBuilder R; 2658 AttributeSet AS = AH.getAttributes().getAttributes(Index); 2659 if (AS.getDereferenceableBytes()) 2660 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2661 AS.getDereferenceableBytes())); 2662 if (AS.getDereferenceableOrNullBytes()) 2663 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2664 AS.getDereferenceableOrNullBytes())); 2665 for (auto Attr : ParamAttrsToStrip) 2666 if (AS.hasAttribute(Attr)) 2667 R.addAttribute(Attr); 2668 2669 if (!R.empty()) 2670 AH.setAttributes(AH.getAttributes().removeAttributesAtIndex(Ctx, Index, R)); 2671 } 2672 2673 static void stripNonValidAttributesFromPrototype(Function &F) { 2674 LLVMContext &Ctx = F.getContext(); 2675 2676 // Intrinsics are very delicate. Lowering sometimes depends the presence 2677 // of certain attributes for correctness, but we may have also inferred 2678 // additional ones in the abstract machine model which need stripped. This 2679 // assumes that the attributes defined in Intrinsic.td are conservatively 2680 // correct for both physical and abstract model. 2681 if (Intrinsic::ID id = F.getIntrinsicID()) { 2682 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2683 return; 2684 } 2685 2686 for (Argument &A : F.args()) 2687 if (isa<PointerType>(A.getType())) 2688 RemoveNonValidAttrAtIndex(Ctx, F, 2689 A.getArgNo() + AttributeList::FirstArgIndex); 2690 2691 if (isa<PointerType>(F.getReturnType())) 2692 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2693 2694 for (auto Attr : FnAttrsToStrip) 2695 F.removeFnAttr(Attr); 2696 } 2697 2698 /// Certain metadata on instructions are invalid after running RS4GC. 2699 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2700 /// optimize functions. We drop such metadata on the instruction. 2701 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2702 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2703 return; 2704 // These are the attributes that are still valid on loads and stores after 2705 // RS4GC. 2706 // The metadata implying dereferenceability and noalias are (conservatively) 2707 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2708 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2709 // touch the entire heap including noalias objects. Note: The reasoning is 2710 // same as stripping the dereferenceability and noalias attributes that are 2711 // analogous to the metadata counterparts. 2712 // We also drop the invariant.load metadata on the load because that metadata 2713 // implies the address operand to the load points to memory that is never 2714 // changed once it became dereferenceable. This is no longer true after RS4GC. 2715 // Similar reasoning applies to invariant.group metadata, which applies to 2716 // loads within a group. 2717 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2718 LLVMContext::MD_range, 2719 LLVMContext::MD_alias_scope, 2720 LLVMContext::MD_nontemporal, 2721 LLVMContext::MD_nonnull, 2722 LLVMContext::MD_align, 2723 LLVMContext::MD_type}; 2724 2725 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2726 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2727 } 2728 2729 static void stripNonValidDataFromBody(Function &F) { 2730 if (F.empty()) 2731 return; 2732 2733 LLVMContext &Ctx = F.getContext(); 2734 MDBuilder Builder(Ctx); 2735 2736 // Set of invariantstart instructions that we need to remove. 2737 // Use this to avoid invalidating the instruction iterator. 2738 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2739 2740 for (Instruction &I : instructions(F)) { 2741 // invariant.start on memory location implies that the referenced memory 2742 // location is constant and unchanging. This is no longer true after 2743 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2744 // which frees the entire heap and the presence of invariant.start allows 2745 // the optimizer to sink the load of a memory location past a statepoint, 2746 // which is incorrect. 2747 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2748 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2749 InvariantStartInstructions.push_back(II); 2750 continue; 2751 } 2752 2753 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2754 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2755 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2756 } 2757 2758 stripInvalidMetadataFromInstruction(I); 2759 2760 if (auto *Call = dyn_cast<CallBase>(&I)) { 2761 for (int i = 0, e = Call->arg_size(); i != e; i++) 2762 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2763 RemoveNonValidAttrAtIndex(Ctx, *Call, 2764 i + AttributeList::FirstArgIndex); 2765 if (isa<PointerType>(Call->getType())) 2766 RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex); 2767 } 2768 } 2769 2770 // Delete the invariant.start instructions and RAUW undef. 2771 for (auto *II : InvariantStartInstructions) { 2772 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2773 II->eraseFromParent(); 2774 } 2775 } 2776 2777 /// Returns true if this function should be rewritten by this pass. The main 2778 /// point of this function is as an extension point for custom logic. 2779 static bool shouldRewriteStatepointsIn(Function &F) { 2780 // TODO: This should check the GCStrategy 2781 if (F.hasGC()) { 2782 const auto &FunctionGCName = F.getGC(); 2783 const StringRef StatepointExampleName("statepoint-example"); 2784 const StringRef CoreCLRName("coreclr"); 2785 return (StatepointExampleName == FunctionGCName) || 2786 (CoreCLRName == FunctionGCName); 2787 } else 2788 return false; 2789 } 2790 2791 static void stripNonValidData(Module &M) { 2792 #ifndef NDEBUG 2793 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2794 #endif 2795 2796 for (Function &F : M) 2797 stripNonValidAttributesFromPrototype(F); 2798 2799 for (Function &F : M) 2800 stripNonValidDataFromBody(F); 2801 } 2802 2803 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2804 TargetTransformInfo &TTI, 2805 const TargetLibraryInfo &TLI) { 2806 assert(!F.isDeclaration() && !F.empty() && 2807 "need function body to rewrite statepoints in"); 2808 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2809 2810 auto NeedsRewrite = [&TLI](Instruction &I) { 2811 if (const auto *Call = dyn_cast<CallBase>(&I)) { 2812 if (isa<GCStatepointInst>(Call)) 2813 return false; 2814 if (callsGCLeafFunction(Call, TLI)) 2815 return false; 2816 2817 // Normally it's up to the frontend to make sure that non-leaf calls also 2818 // have proper deopt state if it is required. We make an exception for 2819 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 2820 // these are non-leaf by default. They might be generated by the optimizer 2821 // which doesn't know how to produce a proper deopt state. So if we see a 2822 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 2823 // copy and don't produce a statepoint. 2824 if (!AllowStatepointWithNoDeoptInfo && 2825 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 2826 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 2827 "Don't expect any other calls here!"); 2828 return false; 2829 } 2830 return true; 2831 } 2832 return false; 2833 }; 2834 2835 // Delete any unreachable statepoints so that we don't have unrewritten 2836 // statepoints surviving this pass. This makes testing easier and the 2837 // resulting IR less confusing to human readers. 2838 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2839 bool MadeChange = removeUnreachableBlocks(F, &DTU); 2840 // Flush the Dominator Tree. 2841 DTU.getDomTree(); 2842 2843 // Gather all the statepoints which need rewritten. Be careful to only 2844 // consider those in reachable code since we need to ask dominance queries 2845 // when rewriting. We'll delete the unreachable ones in a moment. 2846 SmallVector<CallBase *, 64> ParsePointNeeded; 2847 SmallVector<CallInst *, 64> Intrinsics; 2848 for (Instruction &I : instructions(F)) { 2849 // TODO: only the ones with the flag set! 2850 if (NeedsRewrite(I)) { 2851 // NOTE removeUnreachableBlocks() is stronger than 2852 // DominatorTree::isReachableFromEntry(). In other words 2853 // removeUnreachableBlocks can remove some blocks for which 2854 // isReachableFromEntry() returns true. 2855 assert(DT.isReachableFromEntry(I.getParent()) && 2856 "no unreachable blocks expected"); 2857 ParsePointNeeded.push_back(cast<CallBase>(&I)); 2858 } 2859 if (auto *CI = dyn_cast<CallInst>(&I)) 2860 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 2861 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 2862 Intrinsics.emplace_back(CI); 2863 } 2864 2865 // Return early if no work to do. 2866 if (ParsePointNeeded.empty() && Intrinsics.empty()) 2867 return MadeChange; 2868 2869 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2870 // These are created by LCSSA. They have the effect of increasing the size 2871 // of liveness sets for no good reason. It may be harder to do this post 2872 // insertion since relocations and base phis can confuse things. 2873 for (BasicBlock &BB : F) 2874 if (BB.getUniquePredecessor()) 2875 MadeChange |= FoldSingleEntryPHINodes(&BB); 2876 2877 // Before we start introducing relocations, we want to tweak the IR a bit to 2878 // avoid unfortunate code generation effects. The main example is that we 2879 // want to try to make sure the comparison feeding a branch is after any 2880 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2881 // values feeding a branch after relocation. This is semantically correct, 2882 // but results in extra register pressure since both the pre-relocation and 2883 // post-relocation copies must be available in registers. For code without 2884 // relocations this is handled elsewhere, but teaching the scheduler to 2885 // reverse the transform we're about to do would be slightly complex. 2886 // Note: This may extend the live range of the inputs to the icmp and thus 2887 // increase the liveset of any statepoint we move over. This is profitable 2888 // as long as all statepoints are in rare blocks. If we had in-register 2889 // lowering for live values this would be a much safer transform. 2890 auto getConditionInst = [](Instruction *TI) -> Instruction * { 2891 if (auto *BI = dyn_cast<BranchInst>(TI)) 2892 if (BI->isConditional()) 2893 return dyn_cast<Instruction>(BI->getCondition()); 2894 // TODO: Extend this to handle switches 2895 return nullptr; 2896 }; 2897 for (BasicBlock &BB : F) { 2898 Instruction *TI = BB.getTerminator(); 2899 if (auto *Cond = getConditionInst(TI)) 2900 // TODO: Handle more than just ICmps here. We should be able to move 2901 // most instructions without side effects or memory access. 2902 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2903 MadeChange = true; 2904 Cond->moveBefore(TI); 2905 } 2906 } 2907 2908 // Nasty workaround - The base computation code in the main algorithm doesn't 2909 // consider the fact that a GEP can be used to convert a scalar to a vector. 2910 // The right fix for this is to integrate GEPs into the base rewriting 2911 // algorithm properly, this is just a short term workaround to prevent 2912 // crashes by canonicalizing such GEPs into fully vector GEPs. 2913 for (Instruction &I : instructions(F)) { 2914 if (!isa<GetElementPtrInst>(I)) 2915 continue; 2916 2917 unsigned VF = 0; 2918 for (unsigned i = 0; i < I.getNumOperands(); i++) 2919 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 2920 assert(VF == 0 || 2921 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 2922 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 2923 } 2924 2925 // It's the vector to scalar traversal through the pointer operand which 2926 // confuses base pointer rewriting, so limit ourselves to that case. 2927 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 2928 IRBuilder<> B(&I); 2929 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 2930 I.setOperand(0, Splat); 2931 MadeChange = true; 2932 } 2933 } 2934 2935 // Cache the 'defining value' relation used in the computation and 2936 // insertion of base phis and selects. This ensures that we don't insert 2937 // large numbers of duplicate base_phis. Use one cache for both 2938 // inlineGetBaseAndOffset() and insertParsePoints(). 2939 DefiningValueMapTy DVCache; 2940 2941 if (!Intrinsics.empty()) 2942 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 2943 // live references. 2944 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache); 2945 2946 if (!ParsePointNeeded.empty()) 2947 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache); 2948 2949 return MadeChange; 2950 } 2951 2952 // liveness computation via standard dataflow 2953 // ------------------------------------------------------------------- 2954 2955 // TODO: Consider using bitvectors for liveness, the set of potentially 2956 // interesting values should be small and easy to pre-compute. 2957 2958 /// Compute the live-in set for the location rbegin starting from 2959 /// the live-out set of the basic block 2960 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2961 BasicBlock::reverse_iterator End, 2962 SetVector<Value *> &LiveTmp) { 2963 for (auto &I : make_range(Begin, End)) { 2964 // KILL/Def - Remove this definition from LiveIn 2965 LiveTmp.remove(&I); 2966 2967 // Don't consider *uses* in PHI nodes, we handle their contribution to 2968 // predecessor blocks when we seed the LiveOut sets 2969 if (isa<PHINode>(I)) 2970 continue; 2971 2972 // USE - Add to the LiveIn set for this instruction 2973 for (Value *V : I.operands()) { 2974 assert(!isUnhandledGCPointerType(V->getType()) && 2975 "support for FCA unimplemented"); 2976 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2977 // The choice to exclude all things constant here is slightly subtle. 2978 // There are two independent reasons: 2979 // - We assume that things which are constant (from LLVM's definition) 2980 // do not move at runtime. For example, the address of a global 2981 // variable is fixed, even though it's contents may not be. 2982 // - Second, we can't disallow arbitrary inttoptr constants even 2983 // if the language frontend does. Optimization passes are free to 2984 // locally exploit facts without respect to global reachability. This 2985 // can create sections of code which are dynamically unreachable and 2986 // contain just about anything. (see constants.ll in tests) 2987 LiveTmp.insert(V); 2988 } 2989 } 2990 } 2991 } 2992 2993 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2994 for (BasicBlock *Succ : successors(BB)) { 2995 for (auto &I : *Succ) { 2996 PHINode *PN = dyn_cast<PHINode>(&I); 2997 if (!PN) 2998 break; 2999 3000 Value *V = PN->getIncomingValueForBlock(BB); 3001 assert(!isUnhandledGCPointerType(V->getType()) && 3002 "support for FCA unimplemented"); 3003 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 3004 LiveTmp.insert(V); 3005 } 3006 } 3007 } 3008 3009 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 3010 SetVector<Value *> KillSet; 3011 for (Instruction &I : *BB) 3012 if (isHandledGCPointerType(I.getType())) 3013 KillSet.insert(&I); 3014 return KillSet; 3015 } 3016 3017 #ifndef NDEBUG 3018 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3019 /// validation check for the liveness computation. 3020 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3021 Instruction *TI, bool TermOkay = false) { 3022 for (Value *V : Live) { 3023 if (auto *I = dyn_cast<Instruction>(V)) { 3024 // The terminator can be a member of the LiveOut set. LLVM's definition 3025 // of instruction dominance states that V does not dominate itself. As 3026 // such, we need to special case this to allow it. 3027 if (TermOkay && TI == I) 3028 continue; 3029 assert(DT.dominates(I, TI) && 3030 "basic SSA liveness expectation violated by liveness analysis"); 3031 } 3032 } 3033 } 3034 3035 /// Check that all the liveness sets used during the computation of liveness 3036 /// obey basic SSA properties. This is useful for finding cases where we miss 3037 /// a def. 3038 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3039 BasicBlock &BB) { 3040 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3041 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3042 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3043 } 3044 #endif 3045 3046 static void computeLiveInValues(DominatorTree &DT, Function &F, 3047 GCPtrLivenessData &Data) { 3048 SmallSetVector<BasicBlock *, 32> Worklist; 3049 3050 // Seed the liveness for each individual block 3051 for (BasicBlock &BB : F) { 3052 Data.KillSet[&BB] = computeKillSet(&BB); 3053 Data.LiveSet[&BB].clear(); 3054 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 3055 3056 #ifndef NDEBUG 3057 for (Value *Kill : Data.KillSet[&BB]) 3058 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3059 #endif 3060 3061 Data.LiveOut[&BB] = SetVector<Value *>(); 3062 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 3063 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3064 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3065 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3066 if (!Data.LiveIn[&BB].empty()) 3067 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3068 } 3069 3070 // Propagate that liveness until stable 3071 while (!Worklist.empty()) { 3072 BasicBlock *BB = Worklist.pop_back_val(); 3073 3074 // Compute our new liveout set, then exit early if it hasn't changed despite 3075 // the contribution of our successor. 3076 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3077 const auto OldLiveOutSize = LiveOut.size(); 3078 for (BasicBlock *Succ : successors(BB)) { 3079 assert(Data.LiveIn.count(Succ)); 3080 LiveOut.set_union(Data.LiveIn[Succ]); 3081 } 3082 // assert OutLiveOut is a subset of LiveOut 3083 if (OldLiveOutSize == LiveOut.size()) { 3084 // If the sets are the same size, then we didn't actually add anything 3085 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3086 // hasn't changed. 3087 continue; 3088 } 3089 Data.LiveOut[BB] = LiveOut; 3090 3091 // Apply the effects of this basic block 3092 SetVector<Value *> LiveTmp = LiveOut; 3093 LiveTmp.set_union(Data.LiveSet[BB]); 3094 LiveTmp.set_subtract(Data.KillSet[BB]); 3095 3096 assert(Data.LiveIn.count(BB)); 3097 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3098 // assert: OldLiveIn is a subset of LiveTmp 3099 if (OldLiveIn.size() != LiveTmp.size()) { 3100 Data.LiveIn[BB] = LiveTmp; 3101 Worklist.insert(pred_begin(BB), pred_end(BB)); 3102 } 3103 } // while (!Worklist.empty()) 3104 3105 #ifndef NDEBUG 3106 // Verify our output against SSA properties. This helps catch any 3107 // missing kills during the above iteration. 3108 for (BasicBlock &BB : F) 3109 checkBasicSSA(DT, Data, BB); 3110 #endif 3111 } 3112 3113 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3114 StatepointLiveSetTy &Out) { 3115 BasicBlock *BB = Inst->getParent(); 3116 3117 // Note: The copy is intentional and required 3118 assert(Data.LiveOut.count(BB)); 3119 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3120 3121 // We want to handle the statepoint itself oddly. It's 3122 // call result is not live (normal), nor are it's arguments 3123 // (unless they're used again later). This adjustment is 3124 // specifically what we need to relocate 3125 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 3126 LiveOut); 3127 LiveOut.remove(Inst); 3128 Out.insert(LiveOut.begin(), LiveOut.end()); 3129 } 3130 3131 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3132 CallBase *Call, 3133 PartiallyConstructedSafepointRecord &Info) { 3134 StatepointLiveSetTy Updated; 3135 findLiveSetAtInst(Call, RevisedLivenessData, Updated); 3136 3137 // We may have base pointers which are now live that weren't before. We need 3138 // to update the PointerToBase structure to reflect this. 3139 for (auto V : Updated) 3140 Info.PointerToBase.insert({V, V}); 3141 3142 #ifndef NDEBUG 3143 for (auto V : Updated) 3144 assert(Info.PointerToBase.count(V) && 3145 "Must be able to find base for live value!"); 3146 #endif 3147 3148 // Remove any stale base mappings - this can happen since our liveness is 3149 // more precise then the one inherent in the base pointer analysis. 3150 DenseSet<Value *> ToErase; 3151 for (auto KVPair : Info.PointerToBase) 3152 if (!Updated.count(KVPair.first)) 3153 ToErase.insert(KVPair.first); 3154 3155 for (auto *V : ToErase) 3156 Info.PointerToBase.erase(V); 3157 3158 #ifndef NDEBUG 3159 for (auto KVPair : Info.PointerToBase) 3160 assert(Updated.count(KVPair.first) && "record for non-live value"); 3161 #endif 3162 3163 Info.LiveSet = Updated; 3164 } 3165