xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <set>
75 #include <string>
76 #include <utility>
77 #include <vector>
78 
79 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
80 
81 using namespace llvm;
82 
83 // Print the liveset found at the insert location
84 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
85                                   cl::init(false));
86 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
87                                       cl::init(false));
88 
89 // Print out the base pointers for debugging
90 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
91                                        cl::init(false));
92 
93 // Cost threshold measuring when it is profitable to rematerialize value instead
94 // of relocating it
95 static cl::opt<unsigned>
96 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
97                            cl::init(6));
98 
99 #ifdef EXPENSIVE_CHECKS
100 static bool ClobberNonLive = true;
101 #else
102 static bool ClobberNonLive = false;
103 #endif
104 
105 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
106                                                   cl::location(ClobberNonLive),
107                                                   cl::Hidden);
108 
109 static cl::opt<bool>
110     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
111                                    cl::Hidden, cl::init(true));
112 
113 /// The IR fed into RewriteStatepointsForGC may have had attributes and
114 /// metadata implying dereferenceability that are no longer valid/correct after
115 /// RewriteStatepointsForGC has run. This is because semantically, after
116 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
117 /// heap. stripNonValidData (conservatively) restores
118 /// correctness by erasing all attributes in the module that externally imply
119 /// dereferenceability. Similar reasoning also applies to the noalias
120 /// attributes and metadata. gc.statepoint can touch the entire heap including
121 /// noalias objects.
122 /// Apart from attributes and metadata, we also remove instructions that imply
123 /// constant physical memory: llvm.invariant.start.
124 static void stripNonValidData(Module &M);
125 
126 static bool shouldRewriteStatepointsIn(Function &F);
127 
128 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
129                                                ModuleAnalysisManager &AM) {
130   bool Changed = false;
131   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
132   for (Function &F : M) {
133     // Nothing to do for declarations.
134     if (F.isDeclaration() || F.empty())
135       continue;
136 
137     // Policy choice says not to rewrite - the most common reason is that we're
138     // compiling code without a GCStrategy.
139     if (!shouldRewriteStatepointsIn(F))
140       continue;
141 
142     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
143     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
144     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
145     Changed |= runOnFunction(F, DT, TTI, TLI);
146   }
147   if (!Changed)
148     return PreservedAnalyses::all();
149 
150   // stripNonValidData asserts that shouldRewriteStatepointsIn
151   // returns true for at least one function in the module.  Since at least
152   // one function changed, we know that the precondition is satisfied.
153   stripNonValidData(M);
154 
155   PreservedAnalyses PA;
156   PA.preserve<TargetIRAnalysis>();
157   PA.preserve<TargetLibraryAnalysis>();
158   return PA;
159 }
160 
161 namespace {
162 
163 class RewriteStatepointsForGCLegacyPass : public ModulePass {
164   RewriteStatepointsForGC Impl;
165 
166 public:
167   static char ID; // Pass identification, replacement for typeid
168 
169   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
170     initializeRewriteStatepointsForGCLegacyPassPass(
171         *PassRegistry::getPassRegistry());
172   }
173 
174   bool runOnModule(Module &M) override {
175     bool Changed = false;
176     for (Function &F : M) {
177       // Nothing to do for declarations.
178       if (F.isDeclaration() || F.empty())
179         continue;
180 
181       // Policy choice says not to rewrite - the most common reason is that
182       // we're compiling code without a GCStrategy.
183       if (!shouldRewriteStatepointsIn(F))
184         continue;
185 
186       TargetTransformInfo &TTI =
187           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188       const TargetLibraryInfo &TLI =
189           getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
190       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
191 
192       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
193     }
194 
195     if (!Changed)
196       return false;
197 
198     // stripNonValidData asserts that shouldRewriteStatepointsIn
199     // returns true for at least one function in the module.  Since at least
200     // one function changed, we know that the precondition is satisfied.
201     stripNonValidData(M);
202     return true;
203   }
204 
205   void getAnalysisUsage(AnalysisUsage &AU) const override {
206     // We add and rewrite a bunch of instructions, but don't really do much
207     // else.  We could in theory preserve a lot more analyses here.
208     AU.addRequired<DominatorTreeWrapperPass>();
209     AU.addRequired<TargetTransformInfoWrapperPass>();
210     AU.addRequired<TargetLibraryInfoWrapperPass>();
211   }
212 };
213 
214 } // end anonymous namespace
215 
216 char RewriteStatepointsForGCLegacyPass::ID = 0;
217 
218 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
219   return new RewriteStatepointsForGCLegacyPass();
220 }
221 
222 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
223                       "rewrite-statepoints-for-gc",
224                       "Make relocations explicit at statepoints", false, false)
225 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
227 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
228                     "rewrite-statepoints-for-gc",
229                     "Make relocations explicit at statepoints", false, false)
230 
231 namespace {
232 
233 struct GCPtrLivenessData {
234   /// Values defined in this block.
235   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
236 
237   /// Values used in this block (and thus live); does not included values
238   /// killed within this block.
239   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
240 
241   /// Values live into this basic block (i.e. used by any
242   /// instruction in this basic block or ones reachable from here)
243   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
244 
245   /// Values live out of this basic block (i.e. live into
246   /// any successor block)
247   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
248 };
249 
250 // The type of the internal cache used inside the findBasePointers family
251 // of functions.  From the callers perspective, this is an opaque type and
252 // should not be inspected.
253 //
254 // In the actual implementation this caches two relations:
255 // - The base relation itself (i.e. this pointer is based on that one)
256 // - The base defining value relation (i.e. before base_phi insertion)
257 // Generally, after the execution of a full findBasePointer call, only the
258 // base relation will remain.  Internally, we add a mixture of the two
259 // types, then update all the second type to the first type
260 using DefiningValueMapTy = MapVector<Value *, Value *>;
261 using StatepointLiveSetTy = SetVector<Value *>;
262 using RematerializedValueMapTy =
263     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
264 
265 struct PartiallyConstructedSafepointRecord {
266   /// The set of values known to be live across this safepoint
267   StatepointLiveSetTy LiveSet;
268 
269   /// Mapping from live pointers to a base-defining-value
270   MapVector<Value *, Value *> PointerToBase;
271 
272   /// The *new* gc.statepoint instruction itself.  This produces the token
273   /// that normal path gc.relocates and the gc.result are tied to.
274   GCStatepointInst *StatepointToken;
275 
276   /// Instruction to which exceptional gc relocates are attached
277   /// Makes it easier to iterate through them during relocationViaAlloca.
278   Instruction *UnwindToken;
279 
280   /// Record live values we are rematerialized instead of relocating.
281   /// They are not included into 'LiveSet' field.
282   /// Maps rematerialized copy to it's original value.
283   RematerializedValueMapTy RematerializedValues;
284 };
285 
286 } // end anonymous namespace
287 
288 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
289   Optional<OperandBundleUse> DeoptBundle =
290       Call->getOperandBundle(LLVMContext::OB_deopt);
291 
292   if (!DeoptBundle.hasValue()) {
293     assert(AllowStatepointWithNoDeoptInfo &&
294            "Found non-leaf call without deopt info!");
295     return None;
296   }
297 
298   return DeoptBundle.getValue().Inputs;
299 }
300 
301 /// Compute the live-in set for every basic block in the function
302 static void computeLiveInValues(DominatorTree &DT, Function &F,
303                                 GCPtrLivenessData &Data);
304 
305 /// Given results from the dataflow liveness computation, find the set of live
306 /// Values at a particular instruction.
307 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
308                               StatepointLiveSetTy &out);
309 
310 // TODO: Once we can get to the GCStrategy, this becomes
311 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
312 
313 static bool isGCPointerType(Type *T) {
314   if (auto *PT = dyn_cast<PointerType>(T))
315     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
316     // GC managed heap.  We know that a pointer into this heap needs to be
317     // updated and that no other pointer does.
318     return PT->getAddressSpace() == 1;
319   return false;
320 }
321 
322 // Return true if this type is one which a) is a gc pointer or contains a GC
323 // pointer and b) is of a type this code expects to encounter as a live value.
324 // (The insertion code will assert that a type which matches (a) and not (b)
325 // is not encountered.)
326 static bool isHandledGCPointerType(Type *T) {
327   // We fully support gc pointers
328   if (isGCPointerType(T))
329     return true;
330   // We partially support vectors of gc pointers. The code will assert if it
331   // can't handle something.
332   if (auto VT = dyn_cast<VectorType>(T))
333     if (isGCPointerType(VT->getElementType()))
334       return true;
335   return false;
336 }
337 
338 #ifndef NDEBUG
339 /// Returns true if this type contains a gc pointer whether we know how to
340 /// handle that type or not.
341 static bool containsGCPtrType(Type *Ty) {
342   if (isGCPointerType(Ty))
343     return true;
344   if (VectorType *VT = dyn_cast<VectorType>(Ty))
345     return isGCPointerType(VT->getScalarType());
346   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
347     return containsGCPtrType(AT->getElementType());
348   if (StructType *ST = dyn_cast<StructType>(Ty))
349     return llvm::any_of(ST->elements(), containsGCPtrType);
350   return false;
351 }
352 
353 // Returns true if this is a type which a) is a gc pointer or contains a GC
354 // pointer and b) is of a type which the code doesn't expect (i.e. first class
355 // aggregates).  Used to trip assertions.
356 static bool isUnhandledGCPointerType(Type *Ty) {
357   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
358 }
359 #endif
360 
361 // Return the name of the value suffixed with the provided value, or if the
362 // value didn't have a name, the default value specified.
363 static std::string suffixed_name_or(Value *V, StringRef Suffix,
364                                     StringRef DefaultName) {
365   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
366 }
367 
368 // Conservatively identifies any definitions which might be live at the
369 // given instruction. The  analysis is performed immediately before the
370 // given instruction. Values defined by that instruction are not considered
371 // live.  Values used by that instruction are considered live.
372 static void analyzeParsePointLiveness(
373     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
374     PartiallyConstructedSafepointRecord &Result) {
375   StatepointLiveSetTy LiveSet;
376   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
377 
378   if (PrintLiveSet) {
379     dbgs() << "Live Variables:\n";
380     for (Value *V : LiveSet)
381       dbgs() << " " << V->getName() << " " << *V << "\n";
382   }
383   if (PrintLiveSetSize) {
384     dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n";
385     dbgs() << "Number live values: " << LiveSet.size() << "\n";
386   }
387   Result.LiveSet = LiveSet;
388 }
389 
390 // Returns true is V is a knownBaseResult.
391 static bool isKnownBaseResult(Value *V);
392 
393 // Returns true if V is a BaseResult that already exists in the IR, i.e. it is
394 // not created by the findBasePointers algorithm.
395 static bool isOriginalBaseResult(Value *V);
396 
397 namespace {
398 
399 /// A single base defining value - An immediate base defining value for an
400 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
401 /// For instructions which have multiple pointer [vector] inputs or that
402 /// transition between vector and scalar types, there is no immediate base
403 /// defining value.  The 'base defining value' for 'Def' is the transitive
404 /// closure of this relation stopping at the first instruction which has no
405 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
406 /// but it can also be an arbitrary derived pointer.
407 struct BaseDefiningValueResult {
408   /// Contains the value which is the base defining value.
409   Value * const BDV;
410 
411   /// True if the base defining value is also known to be an actual base
412   /// pointer.
413   const bool IsKnownBase;
414 
415   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
416     : BDV(BDV), IsKnownBase(IsKnownBase) {
417 #ifndef NDEBUG
418     // Check consistency between new and old means of checking whether a BDV is
419     // a base.
420     bool MustBeBase = isKnownBaseResult(BDV);
421     assert(!MustBeBase || MustBeBase == IsKnownBase);
422 #endif
423   }
424 };
425 
426 } // end anonymous namespace
427 
428 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
429 
430 /// Return a base defining value for the 'Index' element of the given vector
431 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
432 /// 'I'.  As an optimization, this method will try to determine when the
433 /// element is known to already be a base pointer.  If this can be established,
434 /// the second value in the returned pair will be true.  Note that either a
435 /// vector or a pointer typed value can be returned.  For the former, the
436 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
437 /// If the later, the return pointer is a BDV (or possibly a base) for the
438 /// particular element in 'I'.
439 static BaseDefiningValueResult
440 findBaseDefiningValueOfVector(Value *I) {
441   // Each case parallels findBaseDefiningValue below, see that code for
442   // detailed motivation.
443 
444   if (isa<Argument>(I))
445     // An incoming argument to the function is a base pointer
446     return BaseDefiningValueResult(I, true);
447 
448   if (isa<Constant>(I))
449     // Base of constant vector consists only of constant null pointers.
450     // For reasoning see similar case inside 'findBaseDefiningValue' function.
451     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
452                                    true);
453 
454   if (isa<LoadInst>(I))
455     return BaseDefiningValueResult(I, true);
456 
457   if (isa<InsertElementInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     return BaseDefiningValueResult(I, false);
462 
463   if (isa<ShuffleVectorInst>(I))
464     // We don't know whether this vector contains entirely base pointers or
465     // not.  To be conservatively correct, we treat it as a BDV and will
466     // duplicate code as needed to construct a parallel vector of bases.
467     // TODO: There a number of local optimizations which could be applied here
468     // for particular sufflevector patterns.
469     return BaseDefiningValueResult(I, false);
470 
471   // The behavior of getelementptr instructions is the same for vector and
472   // non-vector data types.
473   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
474     return findBaseDefiningValue(GEP->getPointerOperand());
475 
476   // If the pointer comes through a bitcast of a vector of pointers to
477   // a vector of another type of pointer, then look through the bitcast
478   if (auto *BC = dyn_cast<BitCastInst>(I))
479     return findBaseDefiningValue(BC->getOperand(0));
480 
481   // We assume that functions in the source language only return base
482   // pointers.  This should probably be generalized via attributes to support
483   // both source language and internal functions.
484   if (isa<CallInst>(I) || isa<InvokeInst>(I))
485     return BaseDefiningValueResult(I, true);
486 
487   // A PHI or Select is a base defining value.  The outer findBasePointer
488   // algorithm is responsible for constructing a base value for this BDV.
489   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
490          "unknown vector instruction - no base found for vector element");
491   return BaseDefiningValueResult(I, false);
492 }
493 
494 /// Helper function for findBasePointer - Will return a value which either a)
495 /// defines the base pointer for the input, b) blocks the simple search
496 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
497 /// from pointer to vector type or back.
498 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
499   assert(I->getType()->isPtrOrPtrVectorTy() &&
500          "Illegal to ask for the base pointer of a non-pointer type");
501 
502   if (I->getType()->isVectorTy())
503     return findBaseDefiningValueOfVector(I);
504 
505   if (isa<Argument>(I))
506     // An incoming argument to the function is a base pointer
507     // We should have never reached here if this argument isn't an gc value
508     return BaseDefiningValueResult(I, true);
509 
510   if (isa<Constant>(I)) {
511     // We assume that objects with a constant base (e.g. a global) can't move
512     // and don't need to be reported to the collector because they are always
513     // live. Besides global references, all kinds of constants (e.g. undef,
514     // constant expressions, null pointers) can be introduced by the inliner or
515     // the optimizer, especially on dynamically dead paths.
516     // Here we treat all of them as having single null base. By doing this we
517     // trying to avoid problems reporting various conflicts in a form of
518     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
519     // See constant.ll file for relevant test cases.
520 
521     return BaseDefiningValueResult(
522         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
523   }
524 
525   // inttoptrs in an integral address space are currently ill-defined.  We
526   // treat them as defining base pointers here for consistency with the
527   // constant rule above and because we don't really have a better semantic
528   // to give them.  Note that the optimizer is always free to insert undefined
529   // behavior on dynamically dead paths as well.
530   if (isa<IntToPtrInst>(I))
531     return BaseDefiningValueResult(I, true);
532 
533   if (CastInst *CI = dyn_cast<CastInst>(I)) {
534     Value *Def = CI->stripPointerCasts();
535     // If stripping pointer casts changes the address space there is an
536     // addrspacecast in between.
537     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
538                cast<PointerType>(CI->getType())->getAddressSpace() &&
539            "unsupported addrspacecast");
540     // If we find a cast instruction here, it means we've found a cast which is
541     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
542     // handle int->ptr conversion.
543     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
544     return findBaseDefiningValue(Def);
545   }
546 
547   if (isa<LoadInst>(I))
548     // The value loaded is an gc base itself
549     return BaseDefiningValueResult(I, true);
550 
551   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
552     // The base of this GEP is the base
553     return findBaseDefiningValue(GEP->getPointerOperand());
554 
555   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
556     switch (II->getIntrinsicID()) {
557     default:
558       // fall through to general call handling
559       break;
560     case Intrinsic::experimental_gc_statepoint:
561       llvm_unreachable("statepoints don't produce pointers");
562     case Intrinsic::experimental_gc_relocate:
563       // Rerunning safepoint insertion after safepoints are already
564       // inserted is not supported.  It could probably be made to work,
565       // but why are you doing this?  There's no good reason.
566       llvm_unreachable("repeat safepoint insertion is not supported");
567     case Intrinsic::gcroot:
568       // Currently, this mechanism hasn't been extended to work with gcroot.
569       // There's no reason it couldn't be, but I haven't thought about the
570       // implications much.
571       llvm_unreachable(
572           "interaction with the gcroot mechanism is not supported");
573     case Intrinsic::experimental_gc_get_pointer_base:
574       return findBaseDefiningValue(II->getOperand(0));
575     }
576   }
577   // We assume that functions in the source language only return base
578   // pointers.  This should probably be generalized via attributes to support
579   // both source language and internal functions.
580   if (isa<CallInst>(I) || isa<InvokeInst>(I))
581     return BaseDefiningValueResult(I, true);
582 
583   // TODO: I have absolutely no idea how to implement this part yet.  It's not
584   // necessarily hard, I just haven't really looked at it yet.
585   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
586 
587   if (isa<AtomicCmpXchgInst>(I))
588     // A CAS is effectively a atomic store and load combined under a
589     // predicate.  From the perspective of base pointers, we just treat it
590     // like a load.
591     return BaseDefiningValueResult(I, true);
592 
593   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
594                                    "binary ops which don't apply to pointers");
595 
596   // The aggregate ops.  Aggregates can either be in the heap or on the
597   // stack, but in either case, this is simply a field load.  As a result,
598   // this is a defining definition of the base just like a load is.
599   if (isa<ExtractValueInst>(I))
600     return BaseDefiningValueResult(I, true);
601 
602   // We should never see an insert vector since that would require we be
603   // tracing back a struct value not a pointer value.
604   assert(!isa<InsertValueInst>(I) &&
605          "Base pointer for a struct is meaningless");
606 
607   // This value might have been generated by findBasePointer() called when
608   // substituting gc.get.pointer.base() intrinsic.
609   bool IsKnownBase =
610       isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value");
611 
612   // An extractelement produces a base result exactly when it's input does.
613   // We may need to insert a parallel instruction to extract the appropriate
614   // element out of the base vector corresponding to the input. Given this,
615   // it's analogous to the phi and select case even though it's not a merge.
616   if (isa<ExtractElementInst>(I))
617     // Note: There a lot of obvious peephole cases here.  This are deliberately
618     // handled after the main base pointer inference algorithm to make writing
619     // test cases to exercise that code easier.
620     return BaseDefiningValueResult(I, IsKnownBase);
621 
622   // The last two cases here don't return a base pointer.  Instead, they
623   // return a value which dynamically selects from among several base
624   // derived pointers (each with it's own base potentially).  It's the job of
625   // the caller to resolve these.
626   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
627          "missing instruction case in findBaseDefiningValing");
628   return BaseDefiningValueResult(I, IsKnownBase);
629 }
630 
631 /// Returns the base defining value for this value.
632 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
633   Value *&Cached = Cache[I];
634   if (!Cached) {
635     Cached = findBaseDefiningValue(I).BDV;
636     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
637                       << Cached->getName() << "\n");
638   }
639   assert(Cache[I] != nullptr);
640   return Cached;
641 }
642 
643 /// Return a base pointer for this value if known.  Otherwise, return it's
644 /// base defining value.
645 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
646   Value *Def = findBaseDefiningValueCached(I, Cache);
647   auto Found = Cache.find(Def);
648   if (Found != Cache.end()) {
649     // Either a base-of relation, or a self reference.  Caller must check.
650     return Found->second;
651   }
652   // Only a BDV available
653   return Def;
654 }
655 
656 /// This value is a base pointer that is not generated by RS4GC, i.e. it already
657 /// exists in the code.
658 static bool isOriginalBaseResult(Value *V) {
659   // no recursion possible
660   return !isa<PHINode>(V) && !isa<SelectInst>(V) &&
661          !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
662          !isa<ShuffleVectorInst>(V);
663 }
664 
665 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
666 /// is it known to be a base pointer?  Or do we need to continue searching.
667 static bool isKnownBaseResult(Value *V) {
668   if (isOriginalBaseResult(V))
669     return true;
670   if (isa<Instruction>(V) &&
671       cast<Instruction>(V)->getMetadata("is_base_value")) {
672     // This is a previously inserted base phi or select.  We know
673     // that this is a base value.
674     return true;
675   }
676 
677   // We need to keep searching
678   return false;
679 }
680 
681 // Returns true if First and Second values are both scalar or both vector.
682 static bool areBothVectorOrScalar(Value *First, Value *Second) {
683   return isa<VectorType>(First->getType()) ==
684          isa<VectorType>(Second->getType());
685 }
686 
687 namespace {
688 
689 /// Models the state of a single base defining value in the findBasePointer
690 /// algorithm for determining where a new instruction is needed to propagate
691 /// the base of this BDV.
692 class BDVState {
693 public:
694   enum StatusTy {
695      // Starting state of lattice
696      Unknown,
697      // Some specific base value -- does *not* mean that instruction
698      // propagates the base of the object
699      // ex: gep %arg, 16 -> %arg is the base value
700      Base,
701      // Need to insert a node to represent a merge.
702      Conflict
703   };
704 
705   BDVState() {
706     llvm_unreachable("missing state in map");
707   }
708 
709   explicit BDVState(Value *OriginalValue)
710     : OriginalValue(OriginalValue) {}
711   explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr)
712     : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) {
713     assert(Status != Base || BaseValue);
714   }
715 
716   StatusTy getStatus() const { return Status; }
717   Value *getOriginalValue() const { return OriginalValue; }
718   Value *getBaseValue() const { return BaseValue; }
719 
720   bool isBase() const { return getStatus() == Base; }
721   bool isUnknown() const { return getStatus() == Unknown; }
722   bool isConflict() const { return getStatus() == Conflict; }
723 
724   // Values of type BDVState form a lattice, and this function implements the
725   // meet
726   // operation.
727   void meet(const BDVState &Other) {
728     auto markConflict = [&]() {
729       Status = BDVState::Conflict;
730       BaseValue = nullptr;
731     };
732     // Conflict is a final state.
733     if (isConflict())
734       return;
735     // if we are not known - just take other state.
736     if (isUnknown()) {
737       Status = Other.getStatus();
738       BaseValue = Other.getBaseValue();
739       return;
740     }
741     // We are base.
742     assert(isBase() && "Unknown state");
743     // If other is unknown - just keep our state.
744     if (Other.isUnknown())
745       return;
746     // If other is conflict - it is a final state.
747     if (Other.isConflict())
748       return markConflict();
749     // Other is base as well.
750     assert(Other.isBase() && "Unknown state");
751     // If bases are different - Conflict.
752     if (getBaseValue() != Other.getBaseValue())
753       return markConflict();
754     // We are identical, do nothing.
755   }
756 
757   bool operator==(const BDVState &Other) const {
758     return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue &&
759       Status == Other.Status;
760   }
761 
762   bool operator!=(const BDVState &other) const { return !(*this == other); }
763 
764   LLVM_DUMP_METHOD
765   void dump() const {
766     print(dbgs());
767     dbgs() << '\n';
768   }
769 
770   void print(raw_ostream &OS) const {
771     switch (getStatus()) {
772     case Unknown:
773       OS << "U";
774       break;
775     case Base:
776       OS << "B";
777       break;
778     case Conflict:
779       OS << "C";
780       break;
781     }
782     OS << " (base " << getBaseValue() << " - "
783        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")"
784        << " for  "  << OriginalValue->getName() << ":";
785   }
786 
787 private:
788   AssertingVH<Value> OriginalValue; // instruction this state corresponds to
789   StatusTy Status = Unknown;
790   AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base.
791 };
792 
793 } // end anonymous namespace
794 
795 #ifndef NDEBUG
796 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
797   State.print(OS);
798   return OS;
799 }
800 #endif
801 
802 /// For a given value or instruction, figure out what base ptr its derived from.
803 /// For gc objects, this is simply itself.  On success, returns a value which is
804 /// the base pointer.  (This is reliable and can be used for relocation.)  On
805 /// failure, returns nullptr.
806 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
807   Value *Def = findBaseOrBDV(I, Cache);
808 
809   if (isKnownBaseResult(Def) && areBothVectorOrScalar(Def, I))
810     return Def;
811 
812   // Here's the rough algorithm:
813   // - For every SSA value, construct a mapping to either an actual base
814   //   pointer or a PHI which obscures the base pointer.
815   // - Construct a mapping from PHI to unknown TOP state.  Use an
816   //   optimistic algorithm to propagate base pointer information.  Lattice
817   //   looks like:
818   //   UNKNOWN
819   //   b1 b2 b3 b4
820   //   CONFLICT
821   //   When algorithm terminates, all PHIs will either have a single concrete
822   //   base or be in a conflict state.
823   // - For every conflict, insert a dummy PHI node without arguments.  Add
824   //   these to the base[Instruction] = BasePtr mapping.  For every
825   //   non-conflict, add the actual base.
826   //  - For every conflict, add arguments for the base[a] of each input
827   //   arguments.
828   //
829   // Note: A simpler form of this would be to add the conflict form of all
830   // PHIs without running the optimistic algorithm.  This would be
831   // analogous to pessimistic data flow and would likely lead to an
832   // overall worse solution.
833 
834 #ifndef NDEBUG
835   auto isExpectedBDVType = [](Value *BDV) {
836     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
837            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
838            isa<ShuffleVectorInst>(BDV);
839   };
840 #endif
841 
842   // Once populated, will contain a mapping from each potentially non-base BDV
843   // to a lattice value (described above) which corresponds to that BDV.
844   // We use the order of insertion (DFS over the def/use graph) to provide a
845   // stable deterministic ordering for visiting DenseMaps (which are unordered)
846   // below.  This is important for deterministic compilation.
847   MapVector<Value *, BDVState> States;
848 
849 #ifndef NDEBUG
850   auto VerifyStates = [&]() {
851     for (auto &Entry : States) {
852       assert(Entry.first == Entry.second.getOriginalValue());
853     }
854   };
855 #endif
856 
857   auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) {
858     if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
859       for (Value *InVal : PN->incoming_values())
860         F(InVal);
861     } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
862       F(SI->getTrueValue());
863       F(SI->getFalseValue());
864     } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
865       F(EE->getVectorOperand());
866     } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) {
867       F(IE->getOperand(0));
868       F(IE->getOperand(1));
869     } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) {
870       // For a canonical broadcast, ignore the undef argument
871       // (without this, we insert a parallel base shuffle for every broadcast)
872       F(SV->getOperand(0));
873       if (!SV->isZeroEltSplat())
874         F(SV->getOperand(1));
875     } else {
876       llvm_unreachable("unexpected BDV type");
877     }
878   };
879 
880 
881   // Recursively fill in all base defining values reachable from the initial
882   // one for which we don't already know a definite base value for
883   /* scope */ {
884     SmallVector<Value*, 16> Worklist;
885     Worklist.push_back(Def);
886     States.insert({Def, BDVState(Def)});
887     while (!Worklist.empty()) {
888       Value *Current = Worklist.pop_back_val();
889       assert(!isOriginalBaseResult(Current) && "why did it get added?");
890 
891       auto visitIncomingValue = [&](Value *InVal) {
892         Value *Base = findBaseOrBDV(InVal, Cache);
893         if (isKnownBaseResult(Base) && areBothVectorOrScalar(Base, InVal))
894           // Known bases won't need new instructions introduced and can be
895           // ignored safely. However, this can only be done when InVal and Base
896           // are both scalar or both vector. Otherwise, we need to find a
897           // correct BDV for InVal, by creating an entry in the lattice
898           // (States).
899           return;
900         assert(isExpectedBDVType(Base) && "the only non-base values "
901                "we see should be base defining values");
902         if (States.insert(std::make_pair(Base, BDVState(Base))).second)
903           Worklist.push_back(Base);
904       };
905 
906       visitBDVOperands(Current, visitIncomingValue);
907     }
908   }
909 
910 #ifndef NDEBUG
911   VerifyStates();
912   LLVM_DEBUG(dbgs() << "States after initialization:\n");
913   for (const auto &Pair : States) {
914     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
915   }
916 #endif
917 
918   // Iterate forward through the value graph pruning any node from the state
919   // list where all of the inputs are base pointers.  The purpose of this is to
920   // reuse existing values when the derived pointer we were asked to materialize
921   // a base pointer for happens to be a base pointer itself.  (Or a sub-graph
922   // feeding it does.)
923   SmallVector<Value *> ToRemove;
924   do {
925     ToRemove.clear();
926     for (auto Pair : States) {
927       Value *BDV = Pair.first;
928       auto canPruneInput = [&](Value *V) {
929         Value *BDV = findBaseOrBDV(V, Cache);
930         if (V->stripPointerCasts() != BDV)
931           return false;
932         // The assumption is that anything not in the state list is
933         // propagates a base pointer.
934         return States.count(BDV) == 0;
935       };
936 
937       bool CanPrune = true;
938       visitBDVOperands(BDV, [&](Value *Op) {
939         CanPrune = CanPrune && canPruneInput(Op);
940       });
941       if (CanPrune)
942         ToRemove.push_back(BDV);
943     }
944     for (Value *V : ToRemove) {
945       States.erase(V);
946       // Cache the fact V is it's own base for later usage.
947       Cache[V] = V;
948     }
949   } while (!ToRemove.empty());
950 
951   // Did we manage to prove that Def itself must be a base pointer?
952   if (!States.count(Def))
953     return Def;
954 
955   // Return a phi state for a base defining value.  We'll generate a new
956   // base state for known bases and expect to find a cached state otherwise.
957   auto GetStateForBDV = [&](Value *BaseValue, Value *Input) {
958     auto I = States.find(BaseValue);
959     if (I != States.end())
960       return I->second;
961     assert(areBothVectorOrScalar(BaseValue, Input));
962     return BDVState(BaseValue, BDVState::Base, BaseValue);
963   };
964 
965   bool Progress = true;
966   while (Progress) {
967 #ifndef NDEBUG
968     const size_t OldSize = States.size();
969 #endif
970     Progress = false;
971     // We're only changing values in this loop, thus safe to keep iterators.
972     // Since this is computing a fixed point, the order of visit does not
973     // effect the result.  TODO: We could use a worklist here and make this run
974     // much faster.
975     for (auto Pair : States) {
976       Value *BDV = Pair.first;
977       // Only values that do not have known bases or those that have differing
978       // type (scalar versus vector) from a possible known base should be in the
979       // lattice.
980       assert((!isKnownBaseResult(BDV) ||
981              !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) &&
982                  "why did it get added?");
983 
984       BDVState NewState(BDV);
985       visitBDVOperands(BDV, [&](Value *Op) {
986         Value *BDV = findBaseOrBDV(Op, Cache);
987         auto OpState = GetStateForBDV(BDV, Op);
988         NewState.meet(OpState);
989       });
990 
991       BDVState OldState = States[BDV];
992       if (OldState != NewState) {
993         Progress = true;
994         States[BDV] = NewState;
995       }
996     }
997 
998     assert(OldSize == States.size() &&
999            "fixed point shouldn't be adding any new nodes to state");
1000   }
1001 
1002 #ifndef NDEBUG
1003   VerifyStates();
1004   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
1005   for (const auto &Pair : States) {
1006     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
1007   }
1008 #endif
1009 
1010   // Handle all instructions that have a vector BDV, but the instruction itself
1011   // is of scalar type.
1012   for (auto Pair : States) {
1013     Instruction *I = cast<Instruction>(Pair.first);
1014     BDVState State = Pair.second;
1015     auto *BaseValue = State.getBaseValue();
1016     // Only values that do not have known bases or those that have differing
1017     // type (scalar versus vector) from a possible known base should be in the
1018     // lattice.
1019     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, BaseValue)) &&
1020            "why did it get added?");
1021     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1022 
1023     if (!State.isBase() || !isa<VectorType>(BaseValue->getType()))
1024       continue;
1025     // extractelement instructions are a bit special in that we may need to
1026     // insert an extract even when we know an exact base for the instruction.
1027     // The problem is that we need to convert from a vector base to a scalar
1028     // base for the particular indice we're interested in.
1029     if (isa<ExtractElementInst>(I)) {
1030       auto *EE = cast<ExtractElementInst>(I);
1031       // TODO: In many cases, the new instruction is just EE itself.  We should
1032       // exploit this, but can't do it here since it would break the invariant
1033       // about the BDV not being known to be a base.
1034       auto *BaseInst = ExtractElementInst::Create(
1035           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
1036       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1037       States[I] = BDVState(I, BDVState::Base, BaseInst);
1038     } else if (!isa<VectorType>(I->getType())) {
1039       // We need to handle cases that have a vector base but the instruction is
1040       // a scalar type (these could be phis or selects or any instruction that
1041       // are of scalar type, but the base can be a vector type).  We
1042       // conservatively set this as conflict.  Setting the base value for these
1043       // conflicts is handled in the next loop which traverses States.
1044       States[I] = BDVState(I, BDVState::Conflict);
1045     }
1046   }
1047 
1048 #ifndef NDEBUG
1049   VerifyStates();
1050 #endif
1051 
1052   // Insert Phis for all conflicts
1053   // TODO: adjust naming patterns to avoid this order of iteration dependency
1054   for (auto Pair : States) {
1055     Instruction *I = cast<Instruction>(Pair.first);
1056     BDVState State = Pair.second;
1057     // Only values that do not have known bases or those that have differing
1058     // type (scalar versus vector) from a possible known base should be in the
1059     // lattice.
1060     assert((!isKnownBaseResult(I) || !areBothVectorOrScalar(I, State.getBaseValue())) &&
1061            "why did it get added?");
1062     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1063 
1064     // Since we're joining a vector and scalar base, they can never be the
1065     // same.  As a result, we should always see insert element having reached
1066     // the conflict state.
1067     assert(!isa<InsertElementInst>(I) || State.isConflict());
1068 
1069     if (!State.isConflict())
1070       continue;
1071 
1072     auto getMangledName = [](Instruction *I) -> std::string {
1073       if (isa<PHINode>(I)) {
1074         return suffixed_name_or(I, ".base", "base_phi");
1075       } else if (isa<SelectInst>(I)) {
1076         return suffixed_name_or(I, ".base", "base_select");
1077       } else if (isa<ExtractElementInst>(I)) {
1078         return suffixed_name_or(I, ".base", "base_ee");
1079       } else if (isa<InsertElementInst>(I)) {
1080         return suffixed_name_or(I, ".base", "base_ie");
1081       } else {
1082         return suffixed_name_or(I, ".base", "base_sv");
1083       }
1084     };
1085 
1086     Instruction *BaseInst = I->clone();
1087     BaseInst->insertBefore(I);
1088     BaseInst->setName(getMangledName(I));
1089     // Add metadata marking this as a base value
1090     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1091     States[I] = BDVState(I, BDVState::Conflict, BaseInst);
1092   }
1093 
1094 #ifndef NDEBUG
1095   VerifyStates();
1096 #endif
1097 
1098   // Returns a instruction which produces the base pointer for a given
1099   // instruction.  The instruction is assumed to be an input to one of the BDVs
1100   // seen in the inference algorithm above.  As such, we must either already
1101   // know it's base defining value is a base, or have inserted a new
1102   // instruction to propagate the base of it's BDV and have entered that newly
1103   // introduced instruction into the state table.  In either case, we are
1104   // assured to be able to determine an instruction which produces it's base
1105   // pointer.
1106   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1107     Value *BDV = findBaseOrBDV(Input, Cache);
1108     Value *Base = nullptr;
1109     if (!States.count(BDV)) {
1110       assert(areBothVectorOrScalar(BDV, Input));
1111       Base = BDV;
1112     } else {
1113       // Either conflict or base.
1114       assert(States.count(BDV));
1115       Base = States[BDV].getBaseValue();
1116     }
1117     assert(Base && "Can't be null");
1118     // The cast is needed since base traversal may strip away bitcasts
1119     if (Base->getType() != Input->getType() && InsertPt)
1120       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1121     return Base;
1122   };
1123 
1124   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1125   // deterministic and predictable because we're naming newly created
1126   // instructions.
1127   for (auto Pair : States) {
1128     Instruction *BDV = cast<Instruction>(Pair.first);
1129     BDVState State = Pair.second;
1130 
1131     // Only values that do not have known bases or those that have differing
1132     // type (scalar versus vector) from a possible known base should be in the
1133     // lattice.
1134     assert((!isKnownBaseResult(BDV) ||
1135             !areBothVectorOrScalar(BDV, State.getBaseValue())) &&
1136            "why did it get added?");
1137     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1138     if (!State.isConflict())
1139       continue;
1140 
1141     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1142       PHINode *PN = cast<PHINode>(BDV);
1143       const unsigned NumPHIValues = PN->getNumIncomingValues();
1144 
1145       // The IR verifier requires phi nodes with multiple entries from the
1146       // same basic block to have the same incoming value for each of those
1147       // entries.  Since we're inserting bitcasts in the loop, make sure we
1148       // do so at least once per incoming block.
1149       DenseMap<BasicBlock *, Value*> BlockToValue;
1150       for (unsigned i = 0; i < NumPHIValues; i++) {
1151         Value *InVal = PN->getIncomingValue(i);
1152         BasicBlock *InBB = PN->getIncomingBlock(i);
1153         if (!BlockToValue.count(InBB))
1154           BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator());
1155         else {
1156 #ifndef NDEBUG
1157           Value *OldBase = BlockToValue[InBB];
1158           Value *Base = getBaseForInput(InVal, nullptr);
1159           // In essence this assert states: the only way two values
1160           // incoming from the same basic block may be different is by
1161           // being different bitcasts of the same value.  A cleanup
1162           // that remains TODO is changing findBaseOrBDV to return an
1163           // llvm::Value of the correct type (and still remain pure).
1164           // This will remove the need to add bitcasts.
1165           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1166                  "findBaseOrBDV should be pure!");
1167 #endif
1168         }
1169         Value *Base = BlockToValue[InBB];
1170         BasePHI->setIncomingValue(i, Base);
1171       }
1172     } else if (SelectInst *BaseSI =
1173                    dyn_cast<SelectInst>(State.getBaseValue())) {
1174       SelectInst *SI = cast<SelectInst>(BDV);
1175 
1176       // Find the instruction which produces the base for each input.
1177       // We may need to insert a bitcast.
1178       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1179       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1180     } else if (auto *BaseEE =
1181                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1182       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1183       // Find the instruction which produces the base for each input.  We may
1184       // need to insert a bitcast.
1185       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1186     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1187       auto *BdvIE = cast<InsertElementInst>(BDV);
1188       auto UpdateOperand = [&](int OperandIdx) {
1189         Value *InVal = BdvIE->getOperand(OperandIdx);
1190         Value *Base = getBaseForInput(InVal, BaseIE);
1191         BaseIE->setOperand(OperandIdx, Base);
1192       };
1193       UpdateOperand(0); // vector operand
1194       UpdateOperand(1); // scalar operand
1195     } else {
1196       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1197       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1198       auto UpdateOperand = [&](int OperandIdx) {
1199         Value *InVal = BdvSV->getOperand(OperandIdx);
1200         Value *Base = getBaseForInput(InVal, BaseSV);
1201         BaseSV->setOperand(OperandIdx, Base);
1202       };
1203       UpdateOperand(0); // vector operand
1204       if (!BdvSV->isZeroEltSplat())
1205         UpdateOperand(1); // vector operand
1206       else {
1207         // Never read, so just use undef
1208         Value *InVal = BdvSV->getOperand(1);
1209         BaseSV->setOperand(1, UndefValue::get(InVal->getType()));
1210       }
1211     }
1212   }
1213 
1214 #ifndef NDEBUG
1215   VerifyStates();
1216 #endif
1217 
1218   // Cache all of our results so we can cheaply reuse them
1219   // NOTE: This is actually two caches: one of the base defining value
1220   // relation and one of the base pointer relation!  FIXME
1221   for (auto Pair : States) {
1222     auto *BDV = Pair.first;
1223     Value *Base = Pair.second.getBaseValue();
1224     assert(BDV && Base);
1225     // Only values that do not have known bases or those that have differing
1226     // type (scalar versus vector) from a possible known base should be in the
1227     // lattice.
1228     assert((!isKnownBaseResult(BDV) || !areBothVectorOrScalar(BDV, Base)) &&
1229            "why did it get added?");
1230 
1231     LLVM_DEBUG(
1232         dbgs() << "Updating base value cache"
1233                << " for: " << BDV->getName() << " from: "
1234                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1235                << " to: " << Base->getName() << "\n");
1236 
1237     Cache[BDV] = Base;
1238   }
1239   assert(Cache.count(Def));
1240   return Cache[Def];
1241 }
1242 
1243 // For a set of live pointers (base and/or derived), identify the base
1244 // pointer of the object which they are derived from.  This routine will
1245 // mutate the IR graph as needed to make the 'base' pointer live at the
1246 // definition site of 'derived'.  This ensures that any use of 'derived' can
1247 // also use 'base'.  This may involve the insertion of a number of
1248 // additional PHI nodes.
1249 //
1250 // preconditions: live is a set of pointer type Values
1251 //
1252 // side effects: may insert PHI nodes into the existing CFG, will preserve
1253 // CFG, will not remove or mutate any existing nodes
1254 //
1255 // post condition: PointerToBase contains one (derived, base) pair for every
1256 // pointer in live.  Note that derived can be equal to base if the original
1257 // pointer was a base pointer.
1258 static void
1259 findBasePointers(const StatepointLiveSetTy &live,
1260                  MapVector<Value *, Value *> &PointerToBase,
1261                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1262   for (Value *ptr : live) {
1263     Value *base = findBasePointer(ptr, DVCache);
1264     assert(base && "failed to find base pointer");
1265     PointerToBase[ptr] = base;
1266     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1267             DT->dominates(cast<Instruction>(base)->getParent(),
1268                           cast<Instruction>(ptr)->getParent())) &&
1269            "The base we found better dominate the derived pointer");
1270   }
1271 }
1272 
1273 /// Find the required based pointers (and adjust the live set) for the given
1274 /// parse point.
1275 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1276                              CallBase *Call,
1277                              PartiallyConstructedSafepointRecord &result) {
1278   MapVector<Value *, Value *> PointerToBase;
1279   StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet;
1280   // We assume that all pointers passed to deopt are base pointers; as an
1281   // optimization, we can use this to avoid seperately materializing the base
1282   // pointer graph.  This is only relevant since we're very conservative about
1283   // generating new conflict nodes during base pointer insertion.  If we were
1284   // smarter there, this would be irrelevant.
1285   if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt))
1286     for (Value *V : Opt->Inputs) {
1287       if (!PotentiallyDerivedPointers.count(V))
1288         continue;
1289       PotentiallyDerivedPointers.remove(V);
1290       PointerToBase[V] = V;
1291     }
1292   findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache);
1293 
1294   if (PrintBasePointers) {
1295     errs() << "Base Pairs (w/o Relocation):\n";
1296     for (auto &Pair : PointerToBase) {
1297       errs() << " derived ";
1298       Pair.first->printAsOperand(errs(), false);
1299       errs() << " base ";
1300       Pair.second->printAsOperand(errs(), false);
1301       errs() << "\n";;
1302     }
1303   }
1304 
1305   result.PointerToBase = PointerToBase;
1306 }
1307 
1308 /// Given an updated version of the dataflow liveness results, update the
1309 /// liveset and base pointer maps for the call site CS.
1310 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1311                                   CallBase *Call,
1312                                   PartiallyConstructedSafepointRecord &result);
1313 
1314 static void recomputeLiveInValues(
1315     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1316     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1317   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1318   // again.  The old values are still live and will help it stabilize quickly.
1319   GCPtrLivenessData RevisedLivenessData;
1320   computeLiveInValues(DT, F, RevisedLivenessData);
1321   for (size_t i = 0; i < records.size(); i++) {
1322     struct PartiallyConstructedSafepointRecord &info = records[i];
1323     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1324   }
1325 }
1326 
1327 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1328 // no uses of the original value / return value between the gc.statepoint and
1329 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1330 // starting one of the successor blocks.  We also need to be able to insert the
1331 // gc.relocates only on the path which goes through the statepoint.  We might
1332 // need to split an edge to make this possible.
1333 static BasicBlock *
1334 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1335                             DominatorTree &DT) {
1336   BasicBlock *Ret = BB;
1337   if (!BB->getUniquePredecessor())
1338     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1339 
1340   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1341   // from it
1342   FoldSingleEntryPHINodes(Ret);
1343   assert(!isa<PHINode>(Ret->begin()) &&
1344          "All PHI nodes should have been removed!");
1345 
1346   // At this point, we can safely insert a gc.relocate or gc.result as the first
1347   // instruction in Ret if needed.
1348   return Ret;
1349 }
1350 
1351 // List of all function attributes which must be stripped when lowering from
1352 // abstract machine model to physical machine model.  Essentially, these are
1353 // all the effects a safepoint might have which we ignored in the abstract
1354 // machine model for purposes of optimization.  We have to strip these on
1355 // both function declarations and call sites.
1356 static constexpr Attribute::AttrKind FnAttrsToStrip[] =
1357   {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly,
1358    Attribute::ArgMemOnly, Attribute::InaccessibleMemOnly,
1359    Attribute::InaccessibleMemOrArgMemOnly,
1360    Attribute::NoSync, Attribute::NoFree};
1361 
1362 // List of all parameter and return attributes which must be stripped when
1363 // lowering from the abstract machine model.  Note that we list attributes
1364 // here which aren't valid as return attributes, that is okay.  There are
1365 // also some additional attributes with arguments which are handled
1366 // explicitly and are not in this list.
1367 static constexpr Attribute::AttrKind ParamAttrsToStrip[] =
1368   {Attribute::ReadNone, Attribute::ReadOnly, Attribute::WriteOnly,
1369    Attribute::NoAlias, Attribute::NoFree};
1370 
1371 
1372 // Create new attribute set containing only attributes which can be transferred
1373 // from original call to the safepoint.
1374 static AttributeList legalizeCallAttributes(LLVMContext &Ctx,
1375                                             AttributeList AL) {
1376   if (AL.isEmpty())
1377     return AL;
1378 
1379   // Remove the readonly, readnone, and statepoint function attributes.
1380   AttrBuilder FnAttrs = AL.getFnAttrs();
1381   for (auto Attr : FnAttrsToStrip)
1382     FnAttrs.removeAttribute(Attr);
1383 
1384   for (Attribute A : AL.getFnAttrs()) {
1385     if (isStatepointDirectiveAttr(A))
1386       FnAttrs.remove(A);
1387   }
1388 
1389   // Just skip parameter and return attributes for now
1390   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1391                             AttributeSet::get(Ctx, FnAttrs));
1392 }
1393 
1394 /// Helper function to place all gc relocates necessary for the given
1395 /// statepoint.
1396 /// Inputs:
1397 ///   liveVariables - list of variables to be relocated.
1398 ///   basePtrs - base pointers.
1399 ///   statepointToken - statepoint instruction to which relocates should be
1400 ///   bound.
1401 ///   Builder - Llvm IR builder to be used to construct new calls.
1402 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1403                               ArrayRef<Value *> BasePtrs,
1404                               Instruction *StatepointToken,
1405                               IRBuilder<> &Builder) {
1406   if (LiveVariables.empty())
1407     return;
1408 
1409   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1410     auto ValIt = llvm::find(LiveVec, Val);
1411     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1412     size_t Index = std::distance(LiveVec.begin(), ValIt);
1413     assert(Index < LiveVec.size() && "Bug in std::find?");
1414     return Index;
1415   };
1416   Module *M = StatepointToken->getModule();
1417 
1418   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1419   // element type is i8 addrspace(1)*). We originally generated unique
1420   // declarations for each pointer type, but this proved problematic because
1421   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1422   // towards a single unified pointer type anyways, we can just cast everything
1423   // to an i8* of the right address space.  A bitcast is added later to convert
1424   // gc_relocate to the actual value's type.
1425   auto getGCRelocateDecl = [&] (Type *Ty) {
1426     assert(isHandledGCPointerType(Ty));
1427     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1428     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1429     if (auto *VT = dyn_cast<VectorType>(Ty))
1430       NewTy = FixedVectorType::get(NewTy,
1431                                    cast<FixedVectorType>(VT)->getNumElements());
1432     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1433                                      {NewTy});
1434   };
1435 
1436   // Lazily populated map from input types to the canonicalized form mentioned
1437   // in the comment above.  This should probably be cached somewhere more
1438   // broadly.
1439   DenseMap<Type *, Function *> TypeToDeclMap;
1440 
1441   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1442     // Generate the gc.relocate call and save the result
1443     Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i]));
1444     Value *LiveIdx = Builder.getInt32(i);
1445 
1446     Type *Ty = LiveVariables[i]->getType();
1447     if (!TypeToDeclMap.count(Ty))
1448       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1449     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1450 
1451     // only specify a debug name if we can give a useful one
1452     CallInst *Reloc = Builder.CreateCall(
1453         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1454         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1455     // Trick CodeGen into thinking there are lots of free registers at this
1456     // fake call.
1457     Reloc->setCallingConv(CallingConv::Cold);
1458   }
1459 }
1460 
1461 namespace {
1462 
1463 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1464 /// avoids having to worry about keeping around dangling pointers to Values.
1465 class DeferredReplacement {
1466   AssertingVH<Instruction> Old;
1467   AssertingVH<Instruction> New;
1468   bool IsDeoptimize = false;
1469 
1470   DeferredReplacement() = default;
1471 
1472 public:
1473   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1474     assert(Old != New && Old && New &&
1475            "Cannot RAUW equal values or to / from null!");
1476 
1477     DeferredReplacement D;
1478     D.Old = Old;
1479     D.New = New;
1480     return D;
1481   }
1482 
1483   static DeferredReplacement createDelete(Instruction *ToErase) {
1484     DeferredReplacement D;
1485     D.Old = ToErase;
1486     return D;
1487   }
1488 
1489   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1490 #ifndef NDEBUG
1491     auto *F = cast<CallInst>(Old)->getCalledFunction();
1492     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1493            "Only way to construct a deoptimize deferred replacement");
1494 #endif
1495     DeferredReplacement D;
1496     D.Old = Old;
1497     D.IsDeoptimize = true;
1498     return D;
1499   }
1500 
1501   /// Does the task represented by this instance.
1502   void doReplacement() {
1503     Instruction *OldI = Old;
1504     Instruction *NewI = New;
1505 
1506     assert(OldI != NewI && "Disallowed at construction?!");
1507     assert((!IsDeoptimize || !New) &&
1508            "Deoptimize intrinsics are not replaced!");
1509 
1510     Old = nullptr;
1511     New = nullptr;
1512 
1513     if (NewI)
1514       OldI->replaceAllUsesWith(NewI);
1515 
1516     if (IsDeoptimize) {
1517       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1518       // not necessarily be followed by the matching return.
1519       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1520       new UnreachableInst(RI->getContext(), RI);
1521       RI->eraseFromParent();
1522     }
1523 
1524     OldI->eraseFromParent();
1525   }
1526 };
1527 
1528 } // end anonymous namespace
1529 
1530 static StringRef getDeoptLowering(CallBase *Call) {
1531   const char *DeoptLowering = "deopt-lowering";
1532   if (Call->hasFnAttr(DeoptLowering)) {
1533     // FIXME: Calls have a *really* confusing interface around attributes
1534     // with values.
1535     const AttributeList &CSAS = Call->getAttributes();
1536     if (CSAS.hasFnAttr(DeoptLowering))
1537       return CSAS.getFnAttr(DeoptLowering).getValueAsString();
1538     Function *F = Call->getCalledFunction();
1539     assert(F && F->hasFnAttribute(DeoptLowering));
1540     return F->getFnAttribute(DeoptLowering).getValueAsString();
1541   }
1542   return "live-through";
1543 }
1544 
1545 static void
1546 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1547                            const SmallVectorImpl<Value *> &BasePtrs,
1548                            const SmallVectorImpl<Value *> &LiveVariables,
1549                            PartiallyConstructedSafepointRecord &Result,
1550                            std::vector<DeferredReplacement> &Replacements) {
1551   assert(BasePtrs.size() == LiveVariables.size());
1552 
1553   // Then go ahead and use the builder do actually do the inserts.  We insert
1554   // immediately before the previous instruction under the assumption that all
1555   // arguments will be available here.  We can't insert afterwards since we may
1556   // be replacing a terminator.
1557   IRBuilder<> Builder(Call);
1558 
1559   ArrayRef<Value *> GCArgs(LiveVariables);
1560   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1561   uint32_t NumPatchBytes = 0;
1562   uint32_t Flags = uint32_t(StatepointFlags::None);
1563 
1564   SmallVector<Value *, 8> CallArgs(Call->args());
1565   Optional<ArrayRef<Use>> DeoptArgs;
1566   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt))
1567     DeoptArgs = Bundle->Inputs;
1568   Optional<ArrayRef<Use>> TransitionArgs;
1569   if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1570     TransitionArgs = Bundle->Inputs;
1571     // TODO: This flag no longer serves a purpose and can be removed later
1572     Flags |= uint32_t(StatepointFlags::GCTransition);
1573   }
1574 
1575   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1576   // with a return value, we lower then as never returning calls to
1577   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1578   bool IsDeoptimize = false;
1579 
1580   StatepointDirectives SD =
1581       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1582   if (SD.NumPatchBytes)
1583     NumPatchBytes = *SD.NumPatchBytes;
1584   if (SD.StatepointID)
1585     StatepointID = *SD.StatepointID;
1586 
1587   // Pass through the requested lowering if any.  The default is live-through.
1588   StringRef DeoptLowering = getDeoptLowering(Call);
1589   if (DeoptLowering.equals("live-in"))
1590     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1591   else {
1592     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1593   }
1594 
1595   Value *CallTarget = Call->getCalledOperand();
1596   if (Function *F = dyn_cast<Function>(CallTarget)) {
1597     auto IID = F->getIntrinsicID();
1598     if (IID == Intrinsic::experimental_deoptimize) {
1599       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1600       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1601       // verifier does not allow taking the address of an intrinsic function.
1602 
1603       SmallVector<Type *, 8> DomainTy;
1604       for (Value *Arg : CallArgs)
1605         DomainTy.push_back(Arg->getType());
1606       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1607                                     /* isVarArg = */ false);
1608 
1609       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1610       // calls to @llvm.experimental.deoptimize with different argument types in
1611       // the same module.  This is fine -- we assume the frontend knew what it
1612       // was doing when generating this kind of IR.
1613       CallTarget = F->getParent()
1614                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1615                        .getCallee();
1616 
1617       IsDeoptimize = true;
1618     } else if (IID == Intrinsic::memcpy_element_unordered_atomic ||
1619                IID == Intrinsic::memmove_element_unordered_atomic) {
1620       // Unordered atomic memcpy and memmove intrinsics which are not explicitly
1621       // marked as "gc-leaf-function" should be lowered in a GC parseable way.
1622       // Specifically, these calls should be lowered to the
1623       // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols.
1624       // Similarly to __llvm_deoptimize we want to resolve this now, since the
1625       // verifier does not allow taking the address of an intrinsic function.
1626       //
1627       // Moreover we need to shuffle the arguments for the call in order to
1628       // accommodate GC. The underlying source and destination objects might be
1629       // relocated during copy operation should the GC occur. To relocate the
1630       // derived source and destination pointers the implementation of the
1631       // intrinsic should know the corresponding base pointers.
1632       //
1633       // To make the base pointers available pass them explicitly as arguments:
1634       //   memcpy(dest_derived, source_derived, ...) =>
1635       //   memcpy(dest_base, dest_offset, source_base, source_offset, ...)
1636       auto &Context = Call->getContext();
1637       auto &DL = Call->getModule()->getDataLayout();
1638       auto GetBaseAndOffset = [&](Value *Derived) {
1639         assert(Result.PointerToBase.count(Derived));
1640         unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
1641         unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
1642         Value *Base = Result.PointerToBase.find(Derived)->second;
1643         Value *Base_int = Builder.CreatePtrToInt(
1644             Base, Type::getIntNTy(Context, IntPtrSize));
1645         Value *Derived_int = Builder.CreatePtrToInt(
1646             Derived, Type::getIntNTy(Context, IntPtrSize));
1647         return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int));
1648       };
1649 
1650       auto *Dest = CallArgs[0];
1651       Value *DestBase, *DestOffset;
1652       std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest);
1653 
1654       auto *Source = CallArgs[1];
1655       Value *SourceBase, *SourceOffset;
1656       std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source);
1657 
1658       auto *LengthInBytes = CallArgs[2];
1659       auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]);
1660 
1661       CallArgs.clear();
1662       CallArgs.push_back(DestBase);
1663       CallArgs.push_back(DestOffset);
1664       CallArgs.push_back(SourceBase);
1665       CallArgs.push_back(SourceOffset);
1666       CallArgs.push_back(LengthInBytes);
1667 
1668       SmallVector<Type *, 8> DomainTy;
1669       for (Value *Arg : CallArgs)
1670         DomainTy.push_back(Arg->getType());
1671       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1672                                     /* isVarArg = */ false);
1673 
1674       auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) {
1675         uint64_t ElementSize = ElementSizeCI->getZExtValue();
1676         if (IID == Intrinsic::memcpy_element_unordered_atomic) {
1677           switch (ElementSize) {
1678           case 1:
1679             return "__llvm_memcpy_element_unordered_atomic_safepoint_1";
1680           case 2:
1681             return "__llvm_memcpy_element_unordered_atomic_safepoint_2";
1682           case 4:
1683             return "__llvm_memcpy_element_unordered_atomic_safepoint_4";
1684           case 8:
1685             return "__llvm_memcpy_element_unordered_atomic_safepoint_8";
1686           case 16:
1687             return "__llvm_memcpy_element_unordered_atomic_safepoint_16";
1688           default:
1689             llvm_unreachable("unexpected element size!");
1690           }
1691         }
1692         assert(IID == Intrinsic::memmove_element_unordered_atomic);
1693         switch (ElementSize) {
1694         case 1:
1695           return "__llvm_memmove_element_unordered_atomic_safepoint_1";
1696         case 2:
1697           return "__llvm_memmove_element_unordered_atomic_safepoint_2";
1698         case 4:
1699           return "__llvm_memmove_element_unordered_atomic_safepoint_4";
1700         case 8:
1701           return "__llvm_memmove_element_unordered_atomic_safepoint_8";
1702         case 16:
1703           return "__llvm_memmove_element_unordered_atomic_safepoint_16";
1704         default:
1705           llvm_unreachable("unexpected element size!");
1706         }
1707       };
1708 
1709       CallTarget =
1710           F->getParent()
1711               ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy)
1712               .getCallee();
1713     }
1714   }
1715 
1716   // Create the statepoint given all the arguments
1717   GCStatepointInst *Token = nullptr;
1718   if (auto *CI = dyn_cast<CallInst>(Call)) {
1719     CallInst *SPCall = Builder.CreateGCStatepointCall(
1720         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1721         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1722 
1723     SPCall->setTailCallKind(CI->getTailCallKind());
1724     SPCall->setCallingConv(CI->getCallingConv());
1725 
1726     // Currently we will fail on parameter attributes and on certain
1727     // function attributes.  In case if we can handle this set of attributes -
1728     // set up function attrs directly on statepoint and return attrs later for
1729     // gc_result intrinsic.
1730     SPCall->setAttributes(
1731         legalizeCallAttributes(CI->getContext(), CI->getAttributes()));
1732 
1733     Token = cast<GCStatepointInst>(SPCall);
1734 
1735     // Put the following gc_result and gc_relocate calls immediately after the
1736     // the old call (which we're about to delete)
1737     assert(CI->getNextNode() && "Not a terminator, must have next!");
1738     Builder.SetInsertPoint(CI->getNextNode());
1739     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1740   } else {
1741     auto *II = cast<InvokeInst>(Call);
1742 
1743     // Insert the new invoke into the old block.  We'll remove the old one in a
1744     // moment at which point this will become the new terminator for the
1745     // original block.
1746     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1747         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1748         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1749         "statepoint_token");
1750 
1751     SPInvoke->setCallingConv(II->getCallingConv());
1752 
1753     // Currently we will fail on parameter attributes and on certain
1754     // function attributes.  In case if we can handle this set of attributes -
1755     // set up function attrs directly on statepoint and return attrs later for
1756     // gc_result intrinsic.
1757     SPInvoke->setAttributes(
1758         legalizeCallAttributes(II->getContext(), II->getAttributes()));
1759 
1760     Token = cast<GCStatepointInst>(SPInvoke);
1761 
1762     // Generate gc relocates in exceptional path
1763     BasicBlock *UnwindBlock = II->getUnwindDest();
1764     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1765            UnwindBlock->getUniquePredecessor() &&
1766            "can't safely insert in this block!");
1767 
1768     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1769     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1770 
1771     // Attach exceptional gc relocates to the landingpad.
1772     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1773     Result.UnwindToken = ExceptionalToken;
1774 
1775     CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder);
1776 
1777     // Generate gc relocates and returns for normal block
1778     BasicBlock *NormalDest = II->getNormalDest();
1779     assert(!isa<PHINode>(NormalDest->begin()) &&
1780            NormalDest->getUniquePredecessor() &&
1781            "can't safely insert in this block!");
1782 
1783     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1784 
1785     // gc relocates will be generated later as if it were regular call
1786     // statepoint
1787   }
1788   assert(Token && "Should be set in one of the above branches!");
1789 
1790   if (IsDeoptimize) {
1791     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1792     // transform the tail-call like structure to a call to a void function
1793     // followed by unreachable to get better codegen.
1794     Replacements.push_back(
1795         DeferredReplacement::createDeoptimizeReplacement(Call));
1796   } else {
1797     Token->setName("statepoint_token");
1798     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1799       StringRef Name = Call->hasName() ? Call->getName() : "";
1800       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1801       GCResult->setAttributes(
1802           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1803                              Call->getAttributes().getRetAttrs()));
1804 
1805       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1806       // live set of some other safepoint, in which case that safepoint's
1807       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1808       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1809       // after the live sets have been made explicit in the IR, and we no longer
1810       // have raw pointers to worry about.
1811       Replacements.emplace_back(
1812           DeferredReplacement::createRAUW(Call, GCResult));
1813     } else {
1814       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1815     }
1816   }
1817 
1818   Result.StatepointToken = Token;
1819 
1820   // Second, create a gc.relocate for every live variable
1821   CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder);
1822 }
1823 
1824 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1825 // which make the relocations happening at this safepoint explicit.
1826 //
1827 // WARNING: Does not do any fixup to adjust users of the original live
1828 // values.  That's the callers responsibility.
1829 static void
1830 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1831                        PartiallyConstructedSafepointRecord &Result,
1832                        std::vector<DeferredReplacement> &Replacements) {
1833   const auto &LiveSet = Result.LiveSet;
1834   const auto &PointerToBase = Result.PointerToBase;
1835 
1836   // Convert to vector for efficient cross referencing.
1837   SmallVector<Value *, 64> BaseVec, LiveVec;
1838   LiveVec.reserve(LiveSet.size());
1839   BaseVec.reserve(LiveSet.size());
1840   for (Value *L : LiveSet) {
1841     LiveVec.push_back(L);
1842     assert(PointerToBase.count(L));
1843     Value *Base = PointerToBase.find(L)->second;
1844     BaseVec.push_back(Base);
1845   }
1846   assert(LiveVec.size() == BaseVec.size());
1847 
1848   // Do the actual rewriting and delete the old statepoint
1849   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1850 }
1851 
1852 // Helper function for the relocationViaAlloca.
1853 //
1854 // It receives iterator to the statepoint gc relocates and emits a store to the
1855 // assigned location (via allocaMap) for the each one of them.  It adds the
1856 // visited values into the visitedLiveValues set, which we will later use them
1857 // for validation checking.
1858 static void
1859 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1860                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1861                        DenseSet<Value *> &VisitedLiveValues) {
1862   for (User *U : GCRelocs) {
1863     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1864     if (!Relocate)
1865       continue;
1866 
1867     Value *OriginalValue = Relocate->getDerivedPtr();
1868     assert(AllocaMap.count(OriginalValue));
1869     Value *Alloca = AllocaMap[OriginalValue];
1870 
1871     // Emit store into the related alloca
1872     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1873     // the correct type according to alloca.
1874     assert(Relocate->getNextNode() &&
1875            "Should always have one since it's not a terminator");
1876     IRBuilder<> Builder(Relocate->getNextNode());
1877     Value *CastedRelocatedValue =
1878       Builder.CreateBitCast(Relocate,
1879                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1880                             suffixed_name_or(Relocate, ".casted", ""));
1881 
1882     new StoreInst(CastedRelocatedValue, Alloca,
1883                   cast<Instruction>(CastedRelocatedValue)->getNextNode());
1884 
1885 #ifndef NDEBUG
1886     VisitedLiveValues.insert(OriginalValue);
1887 #endif
1888   }
1889 }
1890 
1891 // Helper function for the "relocationViaAlloca". Similar to the
1892 // "insertRelocationStores" but works for rematerialized values.
1893 static void insertRematerializationStores(
1894     const RematerializedValueMapTy &RematerializedValues,
1895     DenseMap<Value *, AllocaInst *> &AllocaMap,
1896     DenseSet<Value *> &VisitedLiveValues) {
1897   for (auto RematerializedValuePair: RematerializedValues) {
1898     Instruction *RematerializedValue = RematerializedValuePair.first;
1899     Value *OriginalValue = RematerializedValuePair.second;
1900 
1901     assert(AllocaMap.count(OriginalValue) &&
1902            "Can not find alloca for rematerialized value");
1903     Value *Alloca = AllocaMap[OriginalValue];
1904 
1905     new StoreInst(RematerializedValue, Alloca,
1906                   RematerializedValue->getNextNode());
1907 
1908 #ifndef NDEBUG
1909     VisitedLiveValues.insert(OriginalValue);
1910 #endif
1911   }
1912 }
1913 
1914 /// Do all the relocation update via allocas and mem2reg
1915 static void relocationViaAlloca(
1916     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1917     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1918 #ifndef NDEBUG
1919   // record initial number of (static) allocas; we'll check we have the same
1920   // number when we get done.
1921   int InitialAllocaNum = 0;
1922   for (Instruction &I : F.getEntryBlock())
1923     if (isa<AllocaInst>(I))
1924       InitialAllocaNum++;
1925 #endif
1926 
1927   // TODO-PERF: change data structures, reserve
1928   DenseMap<Value *, AllocaInst *> AllocaMap;
1929   SmallVector<AllocaInst *, 200> PromotableAllocas;
1930   // Used later to chack that we have enough allocas to store all values
1931   std::size_t NumRematerializedValues = 0;
1932   PromotableAllocas.reserve(Live.size());
1933 
1934   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1935   // "PromotableAllocas"
1936   const DataLayout &DL = F.getParent()->getDataLayout();
1937   auto emitAllocaFor = [&](Value *LiveValue) {
1938     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1939                                         DL.getAllocaAddrSpace(), "",
1940                                         F.getEntryBlock().getFirstNonPHI());
1941     AllocaMap[LiveValue] = Alloca;
1942     PromotableAllocas.push_back(Alloca);
1943   };
1944 
1945   // Emit alloca for each live gc pointer
1946   for (Value *V : Live)
1947     emitAllocaFor(V);
1948 
1949   // Emit allocas for rematerialized values
1950   for (const auto &Info : Records)
1951     for (auto RematerializedValuePair : Info.RematerializedValues) {
1952       Value *OriginalValue = RematerializedValuePair.second;
1953       if (AllocaMap.count(OriginalValue) != 0)
1954         continue;
1955 
1956       emitAllocaFor(OriginalValue);
1957       ++NumRematerializedValues;
1958     }
1959 
1960   // The next two loops are part of the same conceptual operation.  We need to
1961   // insert a store to the alloca after the original def and at each
1962   // redefinition.  We need to insert a load before each use.  These are split
1963   // into distinct loops for performance reasons.
1964 
1965   // Update gc pointer after each statepoint: either store a relocated value or
1966   // null (if no relocated value was found for this gc pointer and it is not a
1967   // gc_result).  This must happen before we update the statepoint with load of
1968   // alloca otherwise we lose the link between statepoint and old def.
1969   for (const auto &Info : Records) {
1970     Value *Statepoint = Info.StatepointToken;
1971 
1972     // This will be used for consistency check
1973     DenseSet<Value *> VisitedLiveValues;
1974 
1975     // Insert stores for normal statepoint gc relocates
1976     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1977 
1978     // In case if it was invoke statepoint
1979     // we will insert stores for exceptional path gc relocates.
1980     if (isa<InvokeInst>(Statepoint)) {
1981       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1982                              VisitedLiveValues);
1983     }
1984 
1985     // Do similar thing with rematerialized values
1986     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1987                                   VisitedLiveValues);
1988 
1989     if (ClobberNonLive) {
1990       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1991       // the gc.statepoint.  This will turn some subtle GC problems into
1992       // slightly easier to debug SEGVs.  Note that on large IR files with
1993       // lots of gc.statepoints this is extremely costly both memory and time
1994       // wise.
1995       SmallVector<AllocaInst *, 64> ToClobber;
1996       for (auto Pair : AllocaMap) {
1997         Value *Def = Pair.first;
1998         AllocaInst *Alloca = Pair.second;
1999 
2000         // This value was relocated
2001         if (VisitedLiveValues.count(Def)) {
2002           continue;
2003         }
2004         ToClobber.push_back(Alloca);
2005       }
2006 
2007       auto InsertClobbersAt = [&](Instruction *IP) {
2008         for (auto *AI : ToClobber) {
2009           auto PT = cast<PointerType>(AI->getAllocatedType());
2010           Constant *CPN = ConstantPointerNull::get(PT);
2011           new StoreInst(CPN, AI, IP);
2012         }
2013       };
2014 
2015       // Insert the clobbering stores.  These may get intermixed with the
2016       // gc.results and gc.relocates, but that's fine.
2017       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
2018         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
2019         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
2020       } else {
2021         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
2022       }
2023     }
2024   }
2025 
2026   // Update use with load allocas and add store for gc_relocated.
2027   for (auto Pair : AllocaMap) {
2028     Value *Def = Pair.first;
2029     AllocaInst *Alloca = Pair.second;
2030 
2031     // We pre-record the uses of allocas so that we dont have to worry about
2032     // later update that changes the user information..
2033 
2034     SmallVector<Instruction *, 20> Uses;
2035     // PERF: trade a linear scan for repeated reallocation
2036     Uses.reserve(Def->getNumUses());
2037     for (User *U : Def->users()) {
2038       if (!isa<ConstantExpr>(U)) {
2039         // If the def has a ConstantExpr use, then the def is either a
2040         // ConstantExpr use itself or null.  In either case
2041         // (recursively in the first, directly in the second), the oop
2042         // it is ultimately dependent on is null and this particular
2043         // use does not need to be fixed up.
2044         Uses.push_back(cast<Instruction>(U));
2045       }
2046     }
2047 
2048     llvm::sort(Uses);
2049     auto Last = std::unique(Uses.begin(), Uses.end());
2050     Uses.erase(Last, Uses.end());
2051 
2052     for (Instruction *Use : Uses) {
2053       if (isa<PHINode>(Use)) {
2054         PHINode *Phi = cast<PHINode>(Use);
2055         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
2056           if (Def == Phi->getIncomingValue(i)) {
2057             LoadInst *Load =
2058                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
2059                              Phi->getIncomingBlock(i)->getTerminator());
2060             Phi->setIncomingValue(i, Load);
2061           }
2062         }
2063       } else {
2064         LoadInst *Load =
2065             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
2066         Use->replaceUsesOfWith(Def, Load);
2067       }
2068     }
2069 
2070     // Emit store for the initial gc value.  Store must be inserted after load,
2071     // otherwise store will be in alloca's use list and an extra load will be
2072     // inserted before it.
2073     StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false,
2074                                      DL.getABITypeAlign(Def->getType()));
2075     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
2076       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
2077         // InvokeInst is a terminator so the store need to be inserted into its
2078         // normal destination block.
2079         BasicBlock *NormalDest = Invoke->getNormalDest();
2080         Store->insertBefore(NormalDest->getFirstNonPHI());
2081       } else {
2082         assert(!Inst->isTerminator() &&
2083                "The only terminator that can produce a value is "
2084                "InvokeInst which is handled above.");
2085         Store->insertAfter(Inst);
2086       }
2087     } else {
2088       assert(isa<Argument>(Def));
2089       Store->insertAfter(cast<Instruction>(Alloca));
2090     }
2091   }
2092 
2093   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
2094          "we must have the same allocas with lives");
2095   if (!PromotableAllocas.empty()) {
2096     // Apply mem2reg to promote alloca to SSA
2097     PromoteMemToReg(PromotableAllocas, DT);
2098   }
2099 
2100 #ifndef NDEBUG
2101   for (auto &I : F.getEntryBlock())
2102     if (isa<AllocaInst>(I))
2103       InitialAllocaNum--;
2104   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
2105 #endif
2106 }
2107 
2108 /// Implement a unique function which doesn't require we sort the input
2109 /// vector.  Doing so has the effect of changing the output of a couple of
2110 /// tests in ways which make them less useful in testing fused safepoints.
2111 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
2112   SmallSet<T, 8> Seen;
2113   erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; });
2114 }
2115 
2116 /// Insert holders so that each Value is obviously live through the entire
2117 /// lifetime of the call.
2118 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
2119                                  SmallVectorImpl<CallInst *> &Holders) {
2120   if (Values.empty())
2121     // No values to hold live, might as well not insert the empty holder
2122     return;
2123 
2124   Module *M = Call->getModule();
2125   // Use a dummy vararg function to actually hold the values live
2126   FunctionCallee Func = M->getOrInsertFunction(
2127       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
2128   if (isa<CallInst>(Call)) {
2129     // For call safepoints insert dummy calls right after safepoint
2130     Holders.push_back(
2131         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
2132     return;
2133   }
2134   // For invoke safepooints insert dummy calls both in normal and
2135   // exceptional destination blocks
2136   auto *II = cast<InvokeInst>(Call);
2137   Holders.push_back(CallInst::Create(
2138       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
2139   Holders.push_back(CallInst::Create(
2140       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
2141 }
2142 
2143 static void findLiveReferences(
2144     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
2145     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
2146   GCPtrLivenessData OriginalLivenessData;
2147   computeLiveInValues(DT, F, OriginalLivenessData);
2148   for (size_t i = 0; i < records.size(); i++) {
2149     struct PartiallyConstructedSafepointRecord &info = records[i];
2150     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
2151   }
2152 }
2153 
2154 // Helper function for the "rematerializeLiveValues". It walks use chain
2155 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
2156 // the base or a value it cannot process. Only "simple" values are processed
2157 // (currently it is GEP's and casts). The returned root is  examined by the
2158 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
2159 // with all visited values.
2160 static Value* findRematerializableChainToBasePointer(
2161   SmallVectorImpl<Instruction*> &ChainToBase,
2162   Value *CurrentValue) {
2163   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
2164     ChainToBase.push_back(GEP);
2165     return findRematerializableChainToBasePointer(ChainToBase,
2166                                                   GEP->getPointerOperand());
2167   }
2168 
2169   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
2170     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
2171       return CI;
2172 
2173     ChainToBase.push_back(CI);
2174     return findRematerializableChainToBasePointer(ChainToBase,
2175                                                   CI->getOperand(0));
2176   }
2177 
2178   // We have reached the root of the chain, which is either equal to the base or
2179   // is the first unsupported value along the use chain.
2180   return CurrentValue;
2181 }
2182 
2183 // Helper function for the "rematerializeLiveValues". Compute cost of the use
2184 // chain we are going to rematerialize.
2185 static InstructionCost
2186 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain,
2187                        TargetTransformInfo &TTI) {
2188   InstructionCost Cost = 0;
2189 
2190   for (Instruction *Instr : Chain) {
2191     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
2192       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
2193              "non noop cast is found during rematerialization");
2194 
2195       Type *SrcTy = CI->getOperand(0)->getType();
2196       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy,
2197                                    TTI::getCastContextHint(CI),
2198                                    TargetTransformInfo::TCK_SizeAndLatency, CI);
2199 
2200     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
2201       // Cost of the address calculation
2202       Type *ValTy = GEP->getSourceElementType();
2203       Cost += TTI.getAddressComputationCost(ValTy);
2204 
2205       // And cost of the GEP itself
2206       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
2207       //       allowed for the external usage)
2208       if (!GEP->hasAllConstantIndices())
2209         Cost += 2;
2210 
2211     } else {
2212       llvm_unreachable("unsupported instruction type during rematerialization");
2213     }
2214   }
2215 
2216   return Cost;
2217 }
2218 
2219 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
2220   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
2221   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
2222       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
2223     return false;
2224   // Map of incoming values and their corresponding basic blocks of
2225   // OrigRootPhi.
2226   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2227   for (unsigned i = 0; i < PhiNum; i++)
2228     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2229         OrigRootPhi.getIncomingBlock(i);
2230 
2231   // Both current and base PHIs should have same incoming values and
2232   // the same basic blocks corresponding to the incoming values.
2233   for (unsigned i = 0; i < PhiNum; i++) {
2234     auto CIVI =
2235         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2236     if (CIVI == CurrentIncomingValues.end())
2237       return false;
2238     BasicBlock *CurrentIncomingBB = CIVI->second;
2239     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2240       return false;
2241   }
2242   return true;
2243 }
2244 
2245 // From the statepoint live set pick values that are cheaper to recompute then
2246 // to relocate. Remove this values from the live set, rematerialize them after
2247 // statepoint and record them in "Info" structure. Note that similar to
2248 // relocated values we don't do any user adjustments here.
2249 static void rematerializeLiveValues(CallBase *Call,
2250                                     PartiallyConstructedSafepointRecord &Info,
2251                                     TargetTransformInfo &TTI) {
2252   const unsigned int ChainLengthThreshold = 10;
2253 
2254   // Record values we are going to delete from this statepoint live set.
2255   // We can not di this in following loop due to iterator invalidation.
2256   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2257 
2258   for (Value *LiveValue: Info.LiveSet) {
2259     // For each live pointer find its defining chain
2260     SmallVector<Instruction *, 3> ChainToBase;
2261     assert(Info.PointerToBase.count(LiveValue));
2262     Value *RootOfChain =
2263       findRematerializableChainToBasePointer(ChainToBase,
2264                                              LiveValue);
2265 
2266     // Nothing to do, or chain is too long
2267     if ( ChainToBase.size() == 0 ||
2268         ChainToBase.size() > ChainLengthThreshold)
2269       continue;
2270 
2271     // Handle the scenario where the RootOfChain is not equal to the
2272     // Base Value, but they are essentially the same phi values.
2273     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2274       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2275       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2276       if (!OrigRootPhi || !AlternateRootPhi)
2277         continue;
2278       // PHI nodes that have the same incoming values, and belonging to the same
2279       // basic blocks are essentially the same SSA value.  When the original phi
2280       // has incoming values with different base pointers, the original phi is
2281       // marked as conflict, and an additional `AlternateRootPhi` with the same
2282       // incoming values get generated by the findBasePointer function. We need
2283       // to identify the newly generated AlternateRootPhi (.base version of phi)
2284       // and RootOfChain (the original phi node itself) are the same, so that we
2285       // can rematerialize the gep and casts. This is a workaround for the
2286       // deficiency in the findBasePointer algorithm.
2287       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2288         continue;
2289       // Now that the phi nodes are proved to be the same, assert that
2290       // findBasePointer's newly generated AlternateRootPhi is present in the
2291       // liveset of the call.
2292       assert(Info.LiveSet.count(AlternateRootPhi));
2293     }
2294     // Compute cost of this chain
2295     InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI);
2296     // TODO: We can also account for cases when we will be able to remove some
2297     //       of the rematerialized values by later optimization passes. I.e if
2298     //       we rematerialized several intersecting chains. Or if original values
2299     //       don't have any uses besides this statepoint.
2300 
2301     // For invokes we need to rematerialize each chain twice - for normal and
2302     // for unwind basic blocks. Model this by multiplying cost by two.
2303     if (isa<InvokeInst>(Call)) {
2304       Cost *= 2;
2305     }
2306     // If it's too expensive - skip it
2307     if (Cost >= RematerializationThreshold)
2308       continue;
2309 
2310     // Remove value from the live set
2311     LiveValuesToBeDeleted.push_back(LiveValue);
2312 
2313     // Clone instructions and record them inside "Info" structure
2314 
2315     // Walk backwards to visit top-most instructions first
2316     std::reverse(ChainToBase.begin(), ChainToBase.end());
2317 
2318     // Utility function which clones all instructions from "ChainToBase"
2319     // and inserts them before "InsertBefore". Returns rematerialized value
2320     // which should be used after statepoint.
2321     auto rematerializeChain = [&ChainToBase](
2322         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2323       Instruction *LastClonedValue = nullptr;
2324       Instruction *LastValue = nullptr;
2325       for (Instruction *Instr: ChainToBase) {
2326         // Only GEP's and casts are supported as we need to be careful to not
2327         // introduce any new uses of pointers not in the liveset.
2328         // Note that it's fine to introduce new uses of pointers which were
2329         // otherwise not used after this statepoint.
2330         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2331 
2332         Instruction *ClonedValue = Instr->clone();
2333         ClonedValue->insertBefore(InsertBefore);
2334         ClonedValue->setName(Instr->getName() + ".remat");
2335 
2336         // If it is not first instruction in the chain then it uses previously
2337         // cloned value. We should update it to use cloned value.
2338         if (LastClonedValue) {
2339           assert(LastValue);
2340           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2341 #ifndef NDEBUG
2342           for (auto OpValue : ClonedValue->operand_values()) {
2343             // Assert that cloned instruction does not use any instructions from
2344             // this chain other than LastClonedValue
2345             assert(!is_contained(ChainToBase, OpValue) &&
2346                    "incorrect use in rematerialization chain");
2347             // Assert that the cloned instruction does not use the RootOfChain
2348             // or the AlternateLiveBase.
2349             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2350           }
2351 #endif
2352         } else {
2353           // For the first instruction, replace the use of unrelocated base i.e.
2354           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2355           // live set. They have been proved to be the same PHI nodes.  Note
2356           // that the *only* use of the RootOfChain in the ChainToBase list is
2357           // the first Value in the list.
2358           if (RootOfChain != AlternateLiveBase)
2359             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2360         }
2361 
2362         LastClonedValue = ClonedValue;
2363         LastValue = Instr;
2364       }
2365       assert(LastClonedValue);
2366       return LastClonedValue;
2367     };
2368 
2369     // Different cases for calls and invokes. For invokes we need to clone
2370     // instructions both on normal and unwind path.
2371     if (isa<CallInst>(Call)) {
2372       Instruction *InsertBefore = Call->getNextNode();
2373       assert(InsertBefore);
2374       Instruction *RematerializedValue = rematerializeChain(
2375           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2376       Info.RematerializedValues[RematerializedValue] = LiveValue;
2377     } else {
2378       auto *Invoke = cast<InvokeInst>(Call);
2379 
2380       Instruction *NormalInsertBefore =
2381           &*Invoke->getNormalDest()->getFirstInsertionPt();
2382       Instruction *UnwindInsertBefore =
2383           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2384 
2385       Instruction *NormalRematerializedValue = rematerializeChain(
2386           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2387       Instruction *UnwindRematerializedValue = rematerializeChain(
2388           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2389 
2390       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2391       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2392     }
2393   }
2394 
2395   // Remove rematerializaed values from the live set
2396   for (auto LiveValue: LiveValuesToBeDeleted) {
2397     Info.LiveSet.remove(LiveValue);
2398   }
2399 }
2400 
2401 static bool inlineGetBaseAndOffset(Function &F,
2402                                    SmallVectorImpl<CallInst *> &Intrinsics,
2403                                    DefiningValueMapTy &DVCache) {
2404   auto &Context = F.getContext();
2405   auto &DL = F.getParent()->getDataLayout();
2406   bool Changed = false;
2407 
2408   for (auto *Callsite : Intrinsics)
2409     switch (Callsite->getIntrinsicID()) {
2410     case Intrinsic::experimental_gc_get_pointer_base: {
2411       Changed = true;
2412       Value *Base = findBasePointer(Callsite->getOperand(0), DVCache);
2413       assert(!DVCache.count(Callsite));
2414       auto *BaseBC = IRBuilder<>(Callsite).CreateBitCast(
2415           Base, Callsite->getType(), suffixed_name_or(Base, ".cast", ""));
2416       if (BaseBC != Base)
2417         DVCache[BaseBC] = Base;
2418       Callsite->replaceAllUsesWith(BaseBC);
2419       if (!BaseBC->hasName())
2420         BaseBC->takeName(Callsite);
2421       Callsite->eraseFromParent();
2422       break;
2423     }
2424     case Intrinsic::experimental_gc_get_pointer_offset: {
2425       Changed = true;
2426       Value *Derived = Callsite->getOperand(0);
2427       Value *Base = findBasePointer(Derived, DVCache);
2428       assert(!DVCache.count(Callsite));
2429       unsigned AddressSpace = Derived->getType()->getPointerAddressSpace();
2430       unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace);
2431       IRBuilder<> Builder(Callsite);
2432       Value *BaseInt =
2433           Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize),
2434                                  suffixed_name_or(Base, ".int", ""));
2435       Value *DerivedInt =
2436           Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize),
2437                                  suffixed_name_or(Derived, ".int", ""));
2438       Value *Offset = Builder.CreateSub(DerivedInt, BaseInt);
2439       Callsite->replaceAllUsesWith(Offset);
2440       Offset->takeName(Callsite);
2441       Callsite->eraseFromParent();
2442       break;
2443     }
2444     default:
2445       llvm_unreachable("Unknown intrinsic");
2446     }
2447 
2448   return Changed;
2449 }
2450 
2451 static bool insertParsePoints(Function &F, DominatorTree &DT,
2452                               TargetTransformInfo &TTI,
2453                               SmallVectorImpl<CallBase *> &ToUpdate,
2454                               DefiningValueMapTy &DVCache) {
2455 #ifndef NDEBUG
2456   // Validate the input
2457   std::set<CallBase *> Uniqued;
2458   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2459   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2460 
2461   for (CallBase *Call : ToUpdate)
2462     assert(Call->getFunction() == &F);
2463 #endif
2464 
2465   // When inserting gc.relocates for invokes, we need to be able to insert at
2466   // the top of the successor blocks.  See the comment on
2467   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2468   // may restructure the CFG.
2469   for (CallBase *Call : ToUpdate) {
2470     auto *II = dyn_cast<InvokeInst>(Call);
2471     if (!II)
2472       continue;
2473     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2474     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2475   }
2476 
2477   // A list of dummy calls added to the IR to keep various values obviously
2478   // live in the IR.  We'll remove all of these when done.
2479   SmallVector<CallInst *, 64> Holders;
2480 
2481   // Insert a dummy call with all of the deopt operands we'll need for the
2482   // actual safepoint insertion as arguments.  This ensures reference operands
2483   // in the deopt argument list are considered live through the safepoint (and
2484   // thus makes sure they get relocated.)
2485   for (CallBase *Call : ToUpdate) {
2486     SmallVector<Value *, 64> DeoptValues;
2487 
2488     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2489       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2490              "support for FCA unimplemented");
2491       if (isHandledGCPointerType(Arg->getType()))
2492         DeoptValues.push_back(Arg);
2493     }
2494 
2495     insertUseHolderAfter(Call, DeoptValues, Holders);
2496   }
2497 
2498   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2499 
2500   // A) Identify all gc pointers which are statically live at the given call
2501   // site.
2502   findLiveReferences(F, DT, ToUpdate, Records);
2503 
2504   // B) Find the base pointers for each live pointer
2505   for (size_t i = 0; i < Records.size(); i++) {
2506     PartiallyConstructedSafepointRecord &info = Records[i];
2507     findBasePointers(DT, DVCache, ToUpdate[i], info);
2508   }
2509 
2510   // The base phi insertion logic (for any safepoint) may have inserted new
2511   // instructions which are now live at some safepoint.  The simplest such
2512   // example is:
2513   // loop:
2514   //   phi a  <-- will be a new base_phi here
2515   //   safepoint 1 <-- that needs to be live here
2516   //   gep a + 1
2517   //   safepoint 2
2518   //   br loop
2519   // We insert some dummy calls after each safepoint to definitely hold live
2520   // the base pointers which were identified for that safepoint.  We'll then
2521   // ask liveness for _every_ base inserted to see what is now live.  Then we
2522   // remove the dummy calls.
2523   Holders.reserve(Holders.size() + Records.size());
2524   for (size_t i = 0; i < Records.size(); i++) {
2525     PartiallyConstructedSafepointRecord &Info = Records[i];
2526 
2527     SmallVector<Value *, 128> Bases;
2528     for (auto Pair : Info.PointerToBase)
2529       Bases.push_back(Pair.second);
2530 
2531     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2532   }
2533 
2534   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2535   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2536   // not the key issue.
2537   recomputeLiveInValues(F, DT, ToUpdate, Records);
2538 
2539   if (PrintBasePointers) {
2540     for (auto &Info : Records) {
2541       errs() << "Base Pairs: (w/Relocation)\n";
2542       for (auto Pair : Info.PointerToBase) {
2543         errs() << " derived ";
2544         Pair.first->printAsOperand(errs(), false);
2545         errs() << " base ";
2546         Pair.second->printAsOperand(errs(), false);
2547         errs() << "\n";
2548       }
2549     }
2550   }
2551 
2552   // It is possible that non-constant live variables have a constant base.  For
2553   // example, a GEP with a variable offset from a global.  In this case we can
2554   // remove it from the liveset.  We already don't add constants to the liveset
2555   // because we assume they won't move at runtime and the GC doesn't need to be
2556   // informed about them.  The same reasoning applies if the base is constant.
2557   // Note that the relocation placement code relies on this filtering for
2558   // correctness as it expects the base to be in the liveset, which isn't true
2559   // if the base is constant.
2560   for (auto &Info : Records)
2561     for (auto &BasePair : Info.PointerToBase)
2562       if (isa<Constant>(BasePair.second))
2563         Info.LiveSet.remove(BasePair.first);
2564 
2565   for (CallInst *CI : Holders)
2566     CI->eraseFromParent();
2567 
2568   Holders.clear();
2569 
2570   // In order to reduce live set of statepoint we might choose to rematerialize
2571   // some values instead of relocating them. This is purely an optimization and
2572   // does not influence correctness.
2573   for (size_t i = 0; i < Records.size(); i++)
2574     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2575 
2576   // We need this to safely RAUW and delete call or invoke return values that
2577   // may themselves be live over a statepoint.  For details, please see usage in
2578   // makeStatepointExplicitImpl.
2579   std::vector<DeferredReplacement> Replacements;
2580 
2581   // Now run through and replace the existing statepoints with new ones with
2582   // the live variables listed.  We do not yet update uses of the values being
2583   // relocated. We have references to live variables that need to
2584   // survive to the last iteration of this loop.  (By construction, the
2585   // previous statepoint can not be a live variable, thus we can and remove
2586   // the old statepoint calls as we go.)
2587   for (size_t i = 0; i < Records.size(); i++)
2588     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2589 
2590   ToUpdate.clear(); // prevent accident use of invalid calls.
2591 
2592   for (auto &PR : Replacements)
2593     PR.doReplacement();
2594 
2595   Replacements.clear();
2596 
2597   for (auto &Info : Records) {
2598     // These live sets may contain state Value pointers, since we replaced calls
2599     // with operand bundles with calls wrapped in gc.statepoint, and some of
2600     // those calls may have been def'ing live gc pointers.  Clear these out to
2601     // avoid accidentally using them.
2602     //
2603     // TODO: We should create a separate data structure that does not contain
2604     // these live sets, and migrate to using that data structure from this point
2605     // onward.
2606     Info.LiveSet.clear();
2607     Info.PointerToBase.clear();
2608   }
2609 
2610   // Do all the fixups of the original live variables to their relocated selves
2611   SmallVector<Value *, 128> Live;
2612   for (size_t i = 0; i < Records.size(); i++) {
2613     PartiallyConstructedSafepointRecord &Info = Records[i];
2614 
2615     // We can't simply save the live set from the original insertion.  One of
2616     // the live values might be the result of a call which needs a safepoint.
2617     // That Value* no longer exists and we need to use the new gc_result.
2618     // Thankfully, the live set is embedded in the statepoint (and updated), so
2619     // we just grab that.
2620     llvm::append_range(Live, Info.StatepointToken->gc_args());
2621 #ifndef NDEBUG
2622     // Do some basic validation checking on our liveness results before
2623     // performing relocation.  Relocation can and will turn mistakes in liveness
2624     // results into non-sensical code which is must harder to debug.
2625     // TODO: It would be nice to test consistency as well
2626     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2627            "statepoint must be reachable or liveness is meaningless");
2628     for (Value *V : Info.StatepointToken->gc_args()) {
2629       if (!isa<Instruction>(V))
2630         // Non-instruction values trivial dominate all possible uses
2631         continue;
2632       auto *LiveInst = cast<Instruction>(V);
2633       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2634              "unreachable values should never be live");
2635       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2636              "basic SSA liveness expectation violated by liveness analysis");
2637     }
2638 #endif
2639   }
2640   unique_unsorted(Live);
2641 
2642 #ifndef NDEBUG
2643   // Validation check
2644   for (auto *Ptr : Live)
2645     assert(isHandledGCPointerType(Ptr->getType()) &&
2646            "must be a gc pointer type");
2647 #endif
2648 
2649   relocationViaAlloca(F, DT, Live, Records);
2650   return !Records.empty();
2651 }
2652 
2653 // Handles both return values and arguments for Functions and calls.
2654 template <typename AttrHolder>
2655 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2656                                       unsigned Index) {
2657   AttrBuilder R;
2658   AttributeSet AS = AH.getAttributes().getAttributes(Index);
2659   if (AS.getDereferenceableBytes())
2660     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2661                                   AS.getDereferenceableBytes()));
2662   if (AS.getDereferenceableOrNullBytes())
2663     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2664                                   AS.getDereferenceableOrNullBytes()));
2665   for (auto Attr : ParamAttrsToStrip)
2666     if (AS.hasAttribute(Attr))
2667       R.addAttribute(Attr);
2668 
2669   if (!R.empty())
2670     AH.setAttributes(AH.getAttributes().removeAttributesAtIndex(Ctx, Index, R));
2671 }
2672 
2673 static void stripNonValidAttributesFromPrototype(Function &F) {
2674   LLVMContext &Ctx = F.getContext();
2675 
2676   // Intrinsics are very delicate.  Lowering sometimes depends the presence
2677   // of certain attributes for correctness, but we may have also inferred
2678   // additional ones in the abstract machine model which need stripped.  This
2679   // assumes that the attributes defined in Intrinsic.td are conservatively
2680   // correct for both physical and abstract model.
2681   if (Intrinsic::ID id = F.getIntrinsicID()) {
2682     F.setAttributes(Intrinsic::getAttributes(Ctx, id));
2683     return;
2684   }
2685 
2686   for (Argument &A : F.args())
2687     if (isa<PointerType>(A.getType()))
2688       RemoveNonValidAttrAtIndex(Ctx, F,
2689                                 A.getArgNo() + AttributeList::FirstArgIndex);
2690 
2691   if (isa<PointerType>(F.getReturnType()))
2692     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2693 
2694   for (auto Attr : FnAttrsToStrip)
2695     F.removeFnAttr(Attr);
2696 }
2697 
2698 /// Certain metadata on instructions are invalid after running RS4GC.
2699 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2700 /// optimize functions. We drop such metadata on the instruction.
2701 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2702   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2703     return;
2704   // These are the attributes that are still valid on loads and stores after
2705   // RS4GC.
2706   // The metadata implying dereferenceability and noalias are (conservatively)
2707   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2708   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2709   // touch the entire heap including noalias objects. Note: The reasoning is
2710   // same as stripping the dereferenceability and noalias attributes that are
2711   // analogous to the metadata counterparts.
2712   // We also drop the invariant.load metadata on the load because that metadata
2713   // implies the address operand to the load points to memory that is never
2714   // changed once it became dereferenceable. This is no longer true after RS4GC.
2715   // Similar reasoning applies to invariant.group metadata, which applies to
2716   // loads within a group.
2717   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2718                          LLVMContext::MD_range,
2719                          LLVMContext::MD_alias_scope,
2720                          LLVMContext::MD_nontemporal,
2721                          LLVMContext::MD_nonnull,
2722                          LLVMContext::MD_align,
2723                          LLVMContext::MD_type};
2724 
2725   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2726   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2727 }
2728 
2729 static void stripNonValidDataFromBody(Function &F) {
2730   if (F.empty())
2731     return;
2732 
2733   LLVMContext &Ctx = F.getContext();
2734   MDBuilder Builder(Ctx);
2735 
2736   // Set of invariantstart instructions that we need to remove.
2737   // Use this to avoid invalidating the instruction iterator.
2738   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2739 
2740   for (Instruction &I : instructions(F)) {
2741     // invariant.start on memory location implies that the referenced memory
2742     // location is constant and unchanging. This is no longer true after
2743     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2744     // which frees the entire heap and the presence of invariant.start allows
2745     // the optimizer to sink the load of a memory location past a statepoint,
2746     // which is incorrect.
2747     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2748       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2749         InvariantStartInstructions.push_back(II);
2750         continue;
2751       }
2752 
2753     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2754       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2755       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2756     }
2757 
2758     stripInvalidMetadataFromInstruction(I);
2759 
2760     if (auto *Call = dyn_cast<CallBase>(&I)) {
2761       for (int i = 0, e = Call->arg_size(); i != e; i++)
2762         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2763           RemoveNonValidAttrAtIndex(Ctx, *Call,
2764                                     i + AttributeList::FirstArgIndex);
2765       if (isa<PointerType>(Call->getType()))
2766         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2767     }
2768   }
2769 
2770   // Delete the invariant.start instructions and RAUW undef.
2771   for (auto *II : InvariantStartInstructions) {
2772     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2773     II->eraseFromParent();
2774   }
2775 }
2776 
2777 /// Returns true if this function should be rewritten by this pass.  The main
2778 /// point of this function is as an extension point for custom logic.
2779 static bool shouldRewriteStatepointsIn(Function &F) {
2780   // TODO: This should check the GCStrategy
2781   if (F.hasGC()) {
2782     const auto &FunctionGCName = F.getGC();
2783     const StringRef StatepointExampleName("statepoint-example");
2784     const StringRef CoreCLRName("coreclr");
2785     return (StatepointExampleName == FunctionGCName) ||
2786            (CoreCLRName == FunctionGCName);
2787   } else
2788     return false;
2789 }
2790 
2791 static void stripNonValidData(Module &M) {
2792 #ifndef NDEBUG
2793   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2794 #endif
2795 
2796   for (Function &F : M)
2797     stripNonValidAttributesFromPrototype(F);
2798 
2799   for (Function &F : M)
2800     stripNonValidDataFromBody(F);
2801 }
2802 
2803 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2804                                             TargetTransformInfo &TTI,
2805                                             const TargetLibraryInfo &TLI) {
2806   assert(!F.isDeclaration() && !F.empty() &&
2807          "need function body to rewrite statepoints in");
2808   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2809 
2810   auto NeedsRewrite = [&TLI](Instruction &I) {
2811     if (const auto *Call = dyn_cast<CallBase>(&I)) {
2812       if (isa<GCStatepointInst>(Call))
2813         return false;
2814       if (callsGCLeafFunction(Call, TLI))
2815         return false;
2816 
2817       // Normally it's up to the frontend to make sure that non-leaf calls also
2818       // have proper deopt state if it is required. We make an exception for
2819       // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics
2820       // these are non-leaf by default. They might be generated by the optimizer
2821       // which doesn't know how to produce a proper deopt state. So if we see a
2822       // non-leaf memcpy/memmove without deopt state just treat it as a leaf
2823       // copy and don't produce a statepoint.
2824       if (!AllowStatepointWithNoDeoptInfo &&
2825           !Call->getOperandBundle(LLVMContext::OB_deopt)) {
2826         assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) &&
2827                "Don't expect any other calls here!");
2828         return false;
2829       }
2830       return true;
2831     }
2832     return false;
2833   };
2834 
2835   // Delete any unreachable statepoints so that we don't have unrewritten
2836   // statepoints surviving this pass.  This makes testing easier and the
2837   // resulting IR less confusing to human readers.
2838   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2839   bool MadeChange = removeUnreachableBlocks(F, &DTU);
2840   // Flush the Dominator Tree.
2841   DTU.getDomTree();
2842 
2843   // Gather all the statepoints which need rewritten.  Be careful to only
2844   // consider those in reachable code since we need to ask dominance queries
2845   // when rewriting.  We'll delete the unreachable ones in a moment.
2846   SmallVector<CallBase *, 64> ParsePointNeeded;
2847   SmallVector<CallInst *, 64> Intrinsics;
2848   for (Instruction &I : instructions(F)) {
2849     // TODO: only the ones with the flag set!
2850     if (NeedsRewrite(I)) {
2851       // NOTE removeUnreachableBlocks() is stronger than
2852       // DominatorTree::isReachableFromEntry(). In other words
2853       // removeUnreachableBlocks can remove some blocks for which
2854       // isReachableFromEntry() returns true.
2855       assert(DT.isReachableFromEntry(I.getParent()) &&
2856             "no unreachable blocks expected");
2857       ParsePointNeeded.push_back(cast<CallBase>(&I));
2858     }
2859     if (auto *CI = dyn_cast<CallInst>(&I))
2860       if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base ||
2861           CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset)
2862         Intrinsics.emplace_back(CI);
2863   }
2864 
2865   // Return early if no work to do.
2866   if (ParsePointNeeded.empty() && Intrinsics.empty())
2867     return MadeChange;
2868 
2869   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2870   // These are created by LCSSA.  They have the effect of increasing the size
2871   // of liveness sets for no good reason.  It may be harder to do this post
2872   // insertion since relocations and base phis can confuse things.
2873   for (BasicBlock &BB : F)
2874     if (BB.getUniquePredecessor())
2875       MadeChange |= FoldSingleEntryPHINodes(&BB);
2876 
2877   // Before we start introducing relocations, we want to tweak the IR a bit to
2878   // avoid unfortunate code generation effects.  The main example is that we
2879   // want to try to make sure the comparison feeding a branch is after any
2880   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2881   // values feeding a branch after relocation.  This is semantically correct,
2882   // but results in extra register pressure since both the pre-relocation and
2883   // post-relocation copies must be available in registers.  For code without
2884   // relocations this is handled elsewhere, but teaching the scheduler to
2885   // reverse the transform we're about to do would be slightly complex.
2886   // Note: This may extend the live range of the inputs to the icmp and thus
2887   // increase the liveset of any statepoint we move over.  This is profitable
2888   // as long as all statepoints are in rare blocks.  If we had in-register
2889   // lowering for live values this would be a much safer transform.
2890   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2891     if (auto *BI = dyn_cast<BranchInst>(TI))
2892       if (BI->isConditional())
2893         return dyn_cast<Instruction>(BI->getCondition());
2894     // TODO: Extend this to handle switches
2895     return nullptr;
2896   };
2897   for (BasicBlock &BB : F) {
2898     Instruction *TI = BB.getTerminator();
2899     if (auto *Cond = getConditionInst(TI))
2900       // TODO: Handle more than just ICmps here.  We should be able to move
2901       // most instructions without side effects or memory access.
2902       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2903         MadeChange = true;
2904         Cond->moveBefore(TI);
2905       }
2906   }
2907 
2908   // Nasty workaround - The base computation code in the main algorithm doesn't
2909   // consider the fact that a GEP can be used to convert a scalar to a vector.
2910   // The right fix for this is to integrate GEPs into the base rewriting
2911   // algorithm properly, this is just a short term workaround to prevent
2912   // crashes by canonicalizing such GEPs into fully vector GEPs.
2913   for (Instruction &I : instructions(F)) {
2914     if (!isa<GetElementPtrInst>(I))
2915       continue;
2916 
2917     unsigned VF = 0;
2918     for (unsigned i = 0; i < I.getNumOperands(); i++)
2919       if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) {
2920         assert(VF == 0 ||
2921                VF == cast<FixedVectorType>(OpndVTy)->getNumElements());
2922         VF = cast<FixedVectorType>(OpndVTy)->getNumElements();
2923       }
2924 
2925     // It's the vector to scalar traversal through the pointer operand which
2926     // confuses base pointer rewriting, so limit ourselves to that case.
2927     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2928       IRBuilder<> B(&I);
2929       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2930       I.setOperand(0, Splat);
2931       MadeChange = true;
2932     }
2933   }
2934 
2935   // Cache the 'defining value' relation used in the computation and
2936   // insertion of base phis and selects.  This ensures that we don't insert
2937   // large numbers of duplicate base_phis. Use one cache for both
2938   // inlineGetBaseAndOffset() and insertParsePoints().
2939   DefiningValueMapTy DVCache;
2940 
2941   if (!Intrinsics.empty())
2942     // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding
2943     // live references.
2944     MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache);
2945 
2946   if (!ParsePointNeeded.empty())
2947     MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache);
2948 
2949   return MadeChange;
2950 }
2951 
2952 // liveness computation via standard dataflow
2953 // -------------------------------------------------------------------
2954 
2955 // TODO: Consider using bitvectors for liveness, the set of potentially
2956 // interesting values should be small and easy to pre-compute.
2957 
2958 /// Compute the live-in set for the location rbegin starting from
2959 /// the live-out set of the basic block
2960 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2961                                 BasicBlock::reverse_iterator End,
2962                                 SetVector<Value *> &LiveTmp) {
2963   for (auto &I : make_range(Begin, End)) {
2964     // KILL/Def - Remove this definition from LiveIn
2965     LiveTmp.remove(&I);
2966 
2967     // Don't consider *uses* in PHI nodes, we handle their contribution to
2968     // predecessor blocks when we seed the LiveOut sets
2969     if (isa<PHINode>(I))
2970       continue;
2971 
2972     // USE - Add to the LiveIn set for this instruction
2973     for (Value *V : I.operands()) {
2974       assert(!isUnhandledGCPointerType(V->getType()) &&
2975              "support for FCA unimplemented");
2976       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2977         // The choice to exclude all things constant here is slightly subtle.
2978         // There are two independent reasons:
2979         // - We assume that things which are constant (from LLVM's definition)
2980         // do not move at runtime.  For example, the address of a global
2981         // variable is fixed, even though it's contents may not be.
2982         // - Second, we can't disallow arbitrary inttoptr constants even
2983         // if the language frontend does.  Optimization passes are free to
2984         // locally exploit facts without respect to global reachability.  This
2985         // can create sections of code which are dynamically unreachable and
2986         // contain just about anything.  (see constants.ll in tests)
2987         LiveTmp.insert(V);
2988       }
2989     }
2990   }
2991 }
2992 
2993 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2994   for (BasicBlock *Succ : successors(BB)) {
2995     for (auto &I : *Succ) {
2996       PHINode *PN = dyn_cast<PHINode>(&I);
2997       if (!PN)
2998         break;
2999 
3000       Value *V = PN->getIncomingValueForBlock(BB);
3001       assert(!isUnhandledGCPointerType(V->getType()) &&
3002              "support for FCA unimplemented");
3003       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
3004         LiveTmp.insert(V);
3005     }
3006   }
3007 }
3008 
3009 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
3010   SetVector<Value *> KillSet;
3011   for (Instruction &I : *BB)
3012     if (isHandledGCPointerType(I.getType()))
3013       KillSet.insert(&I);
3014   return KillSet;
3015 }
3016 
3017 #ifndef NDEBUG
3018 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
3019 /// validation check for the liveness computation.
3020 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
3021                           Instruction *TI, bool TermOkay = false) {
3022   for (Value *V : Live) {
3023     if (auto *I = dyn_cast<Instruction>(V)) {
3024       // The terminator can be a member of the LiveOut set.  LLVM's definition
3025       // of instruction dominance states that V does not dominate itself.  As
3026       // such, we need to special case this to allow it.
3027       if (TermOkay && TI == I)
3028         continue;
3029       assert(DT.dominates(I, TI) &&
3030              "basic SSA liveness expectation violated by liveness analysis");
3031     }
3032   }
3033 }
3034 
3035 /// Check that all the liveness sets used during the computation of liveness
3036 /// obey basic SSA properties.  This is useful for finding cases where we miss
3037 /// a def.
3038 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
3039                           BasicBlock &BB) {
3040   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
3041   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
3042   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
3043 }
3044 #endif
3045 
3046 static void computeLiveInValues(DominatorTree &DT, Function &F,
3047                                 GCPtrLivenessData &Data) {
3048   SmallSetVector<BasicBlock *, 32> Worklist;
3049 
3050   // Seed the liveness for each individual block
3051   for (BasicBlock &BB : F) {
3052     Data.KillSet[&BB] = computeKillSet(&BB);
3053     Data.LiveSet[&BB].clear();
3054     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
3055 
3056 #ifndef NDEBUG
3057     for (Value *Kill : Data.KillSet[&BB])
3058       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
3059 #endif
3060 
3061     Data.LiveOut[&BB] = SetVector<Value *>();
3062     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
3063     Data.LiveIn[&BB] = Data.LiveSet[&BB];
3064     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
3065     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
3066     if (!Data.LiveIn[&BB].empty())
3067       Worklist.insert(pred_begin(&BB), pred_end(&BB));
3068   }
3069 
3070   // Propagate that liveness until stable
3071   while (!Worklist.empty()) {
3072     BasicBlock *BB = Worklist.pop_back_val();
3073 
3074     // Compute our new liveout set, then exit early if it hasn't changed despite
3075     // the contribution of our successor.
3076     SetVector<Value *> LiveOut = Data.LiveOut[BB];
3077     const auto OldLiveOutSize = LiveOut.size();
3078     for (BasicBlock *Succ : successors(BB)) {
3079       assert(Data.LiveIn.count(Succ));
3080       LiveOut.set_union(Data.LiveIn[Succ]);
3081     }
3082     // assert OutLiveOut is a subset of LiveOut
3083     if (OldLiveOutSize == LiveOut.size()) {
3084       // If the sets are the same size, then we didn't actually add anything
3085       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
3086       // hasn't changed.
3087       continue;
3088     }
3089     Data.LiveOut[BB] = LiveOut;
3090 
3091     // Apply the effects of this basic block
3092     SetVector<Value *> LiveTmp = LiveOut;
3093     LiveTmp.set_union(Data.LiveSet[BB]);
3094     LiveTmp.set_subtract(Data.KillSet[BB]);
3095 
3096     assert(Data.LiveIn.count(BB));
3097     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
3098     // assert: OldLiveIn is a subset of LiveTmp
3099     if (OldLiveIn.size() != LiveTmp.size()) {
3100       Data.LiveIn[BB] = LiveTmp;
3101       Worklist.insert(pred_begin(BB), pred_end(BB));
3102     }
3103   } // while (!Worklist.empty())
3104 
3105 #ifndef NDEBUG
3106   // Verify our output against SSA properties.  This helps catch any
3107   // missing kills during the above iteration.
3108   for (BasicBlock &BB : F)
3109     checkBasicSSA(DT, Data, BB);
3110 #endif
3111 }
3112 
3113 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
3114                               StatepointLiveSetTy &Out) {
3115   BasicBlock *BB = Inst->getParent();
3116 
3117   // Note: The copy is intentional and required
3118   assert(Data.LiveOut.count(BB));
3119   SetVector<Value *> LiveOut = Data.LiveOut[BB];
3120 
3121   // We want to handle the statepoint itself oddly.  It's
3122   // call result is not live (normal), nor are it's arguments
3123   // (unless they're used again later).  This adjustment is
3124   // specifically what we need to relocate
3125   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
3126                       LiveOut);
3127   LiveOut.remove(Inst);
3128   Out.insert(LiveOut.begin(), LiveOut.end());
3129 }
3130 
3131 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
3132                                   CallBase *Call,
3133                                   PartiallyConstructedSafepointRecord &Info) {
3134   StatepointLiveSetTy Updated;
3135   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
3136 
3137   // We may have base pointers which are now live that weren't before.  We need
3138   // to update the PointerToBase structure to reflect this.
3139   for (auto V : Updated)
3140     Info.PointerToBase.insert({V, V});
3141 
3142 #ifndef NDEBUG
3143   for (auto V : Updated)
3144     assert(Info.PointerToBase.count(V) &&
3145            "Must be able to find base for live value!");
3146 #endif
3147 
3148   // Remove any stale base mappings - this can happen since our liveness is
3149   // more precise then the one inherent in the base pointer analysis.
3150   DenseSet<Value *> ToErase;
3151   for (auto KVPair : Info.PointerToBase)
3152     if (!Updated.count(KVPair.first))
3153       ToErase.insert(KVPair.first);
3154 
3155   for (auto *V : ToErase)
3156     Info.PointerToBase.erase(V);
3157 
3158 #ifndef NDEBUG
3159   for (auto KVPair : Info.PointerToBase)
3160     assert(Updated.count(KVPair.first) && "record for non-live value");
3161 #endif
3162 
3163   Info.LiveSet = Updated;
3164 }
3165