1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Sequence.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/AttributeMask.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GCStrategy.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include "llvm/IR/InstIterator.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/Statepoint.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueHandle.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 65 #include "llvm/Transforms/Utils/Local.h" 66 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 67 #include <algorithm> 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <iterator> 72 #include <optional> 73 #include <set> 74 #include <string> 75 #include <utility> 76 #include <vector> 77 78 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 79 80 using namespace llvm; 81 82 // Print the liveset found at the insert location 83 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 84 cl::init(false)); 85 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 86 cl::init(false)); 87 88 // Print out the base pointers for debugging 89 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 90 cl::init(false)); 91 92 // Cost threshold measuring when it is profitable to rematerialize value instead 93 // of relocating it 94 static cl::opt<unsigned> 95 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 96 cl::init(6)); 97 98 #ifdef EXPENSIVE_CHECKS 99 static bool ClobberNonLive = true; 100 #else 101 static bool ClobberNonLive = false; 102 #endif 103 104 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 105 cl::location(ClobberNonLive), 106 cl::Hidden); 107 108 static cl::opt<bool> 109 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 110 cl::Hidden, cl::init(true)); 111 112 static cl::opt<bool> RematDerivedAtUses("rs4gc-remat-derived-at-uses", 113 cl::Hidden, cl::init(true)); 114 115 /// The IR fed into RewriteStatepointsForGC may have had attributes and 116 /// metadata implying dereferenceability that are no longer valid/correct after 117 /// RewriteStatepointsForGC has run. This is because semantically, after 118 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 119 /// heap. stripNonValidData (conservatively) restores 120 /// correctness by erasing all attributes in the module that externally imply 121 /// dereferenceability. Similar reasoning also applies to the noalias 122 /// attributes and metadata. gc.statepoint can touch the entire heap including 123 /// noalias objects. 124 /// Apart from attributes and metadata, we also remove instructions that imply 125 /// constant physical memory: llvm.invariant.start. 126 static void stripNonValidData(Module &M); 127 128 // Find the GC strategy for a function, or null if it doesn't have one. 129 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F); 130 131 static bool shouldRewriteStatepointsIn(Function &F); 132 133 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 134 ModuleAnalysisManager &AM) { 135 bool Changed = false; 136 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 137 for (Function &F : M) { 138 // Nothing to do for declarations. 139 if (F.isDeclaration() || F.empty()) 140 continue; 141 142 // Policy choice says not to rewrite - the most common reason is that we're 143 // compiling code without a GCStrategy. 144 if (!shouldRewriteStatepointsIn(F)) 145 continue; 146 147 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 148 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 149 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 150 Changed |= runOnFunction(F, DT, TTI, TLI); 151 } 152 if (!Changed) 153 return PreservedAnalyses::all(); 154 155 // stripNonValidData asserts that shouldRewriteStatepointsIn 156 // returns true for at least one function in the module. Since at least 157 // one function changed, we know that the precondition is satisfied. 158 stripNonValidData(M); 159 160 PreservedAnalyses PA; 161 PA.preserve<TargetIRAnalysis>(); 162 PA.preserve<TargetLibraryAnalysis>(); 163 return PA; 164 } 165 166 namespace { 167 168 struct GCPtrLivenessData { 169 /// Values defined in this block. 170 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 171 172 /// Values used in this block (and thus live); does not included values 173 /// killed within this block. 174 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 175 176 /// Values live into this basic block (i.e. used by any 177 /// instruction in this basic block or ones reachable from here) 178 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 179 180 /// Values live out of this basic block (i.e. live into 181 /// any successor block) 182 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 183 }; 184 185 // The type of the internal cache used inside the findBasePointers family 186 // of functions. From the callers perspective, this is an opaque type and 187 // should not be inspected. 188 // 189 // In the actual implementation this caches two relations: 190 // - The base relation itself (i.e. this pointer is based on that one) 191 // - The base defining value relation (i.e. before base_phi insertion) 192 // Generally, after the execution of a full findBasePointer call, only the 193 // base relation will remain. Internally, we add a mixture of the two 194 // types, then update all the second type to the first type 195 using DefiningValueMapTy = MapVector<Value *, Value *>; 196 using IsKnownBaseMapTy = MapVector<Value *, bool>; 197 using PointerToBaseTy = MapVector<Value *, Value *>; 198 using StatepointLiveSetTy = SetVector<Value *>; 199 using RematerializedValueMapTy = 200 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 201 202 struct PartiallyConstructedSafepointRecord { 203 /// The set of values known to be live across this safepoint 204 StatepointLiveSetTy LiveSet; 205 206 /// The *new* gc.statepoint instruction itself. This produces the token 207 /// that normal path gc.relocates and the gc.result are tied to. 208 GCStatepointInst *StatepointToken; 209 210 /// Instruction to which exceptional gc relocates are attached 211 /// Makes it easier to iterate through them during relocationViaAlloca. 212 Instruction *UnwindToken; 213 214 /// Record live values we are rematerialized instead of relocating. 215 /// They are not included into 'LiveSet' field. 216 /// Maps rematerialized copy to it's original value. 217 RematerializedValueMapTy RematerializedValues; 218 }; 219 220 struct RematerizlizationCandidateRecord { 221 // Chain from derived pointer to base. 222 SmallVector<Instruction *, 3> ChainToBase; 223 // Original base. 224 Value *RootOfChain; 225 // Cost of chain. 226 InstructionCost Cost; 227 }; 228 using RematCandTy = MapVector<Value *, RematerizlizationCandidateRecord>; 229 230 } // end anonymous namespace 231 232 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 233 std::optional<OperandBundleUse> DeoptBundle = 234 Call->getOperandBundle(LLVMContext::OB_deopt); 235 236 if (!DeoptBundle) { 237 assert(AllowStatepointWithNoDeoptInfo && 238 "Found non-leaf call without deopt info!"); 239 return std::nullopt; 240 } 241 242 return DeoptBundle->Inputs; 243 } 244 245 /// Compute the live-in set for every basic block in the function 246 static void computeLiveInValues(DominatorTree &DT, Function &F, 247 GCPtrLivenessData &Data, GCStrategy *GC); 248 249 /// Given results from the dataflow liveness computation, find the set of live 250 /// Values at a particular instruction. 251 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 252 StatepointLiveSetTy &out, GCStrategy *GC); 253 254 static bool isGCPointerType(Type *T, GCStrategy *GC) { 255 assert(GC && "GC Strategy for isGCPointerType cannot be null"); 256 257 if (!isa<PointerType>(T)) 258 return false; 259 260 // conservative - same as StatepointLowering 261 return GC->isGCManagedPointer(T).value_or(true); 262 } 263 264 // Return true if this type is one which a) is a gc pointer or contains a GC 265 // pointer and b) is of a type this code expects to encounter as a live value. 266 // (The insertion code will assert that a type which matches (a) and not (b) 267 // is not encountered.) 268 static bool isHandledGCPointerType(Type *T, GCStrategy *GC) { 269 // We fully support gc pointers 270 if (isGCPointerType(T, GC)) 271 return true; 272 // We partially support vectors of gc pointers. The code will assert if it 273 // can't handle something. 274 if (auto VT = dyn_cast<VectorType>(T)) 275 if (isGCPointerType(VT->getElementType(), GC)) 276 return true; 277 return false; 278 } 279 280 #ifndef NDEBUG 281 /// Returns true if this type contains a gc pointer whether we know how to 282 /// handle that type or not. 283 static bool containsGCPtrType(Type *Ty, GCStrategy *GC) { 284 if (isGCPointerType(Ty, GC)) 285 return true; 286 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 287 return isGCPointerType(VT->getScalarType(), GC); 288 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 289 return containsGCPtrType(AT->getElementType(), GC); 290 if (StructType *ST = dyn_cast<StructType>(Ty)) 291 return llvm::any_of(ST->elements(), 292 [GC](Type *Ty) { return containsGCPtrType(Ty, GC); }); 293 return false; 294 } 295 296 // Returns true if this is a type which a) is a gc pointer or contains a GC 297 // pointer and b) is of a type which the code doesn't expect (i.e. first class 298 // aggregates). Used to trip assertions. 299 static bool isUnhandledGCPointerType(Type *Ty, GCStrategy *GC) { 300 return containsGCPtrType(Ty, GC) && !isHandledGCPointerType(Ty, GC); 301 } 302 #endif 303 304 // Return the name of the value suffixed with the provided value, or if the 305 // value didn't have a name, the default value specified. 306 static std::string suffixed_name_or(Value *V, StringRef Suffix, 307 StringRef DefaultName) { 308 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 309 } 310 311 // Conservatively identifies any definitions which might be live at the 312 // given instruction. The analysis is performed immediately before the 313 // given instruction. Values defined by that instruction are not considered 314 // live. Values used by that instruction are considered live. 315 static void analyzeParsePointLiveness( 316 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 317 PartiallyConstructedSafepointRecord &Result, GCStrategy *GC) { 318 StatepointLiveSetTy LiveSet; 319 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet, GC); 320 321 if (PrintLiveSet) { 322 dbgs() << "Live Variables:\n"; 323 for (Value *V : LiveSet) 324 dbgs() << " " << V->getName() << " " << *V << "\n"; 325 } 326 if (PrintLiveSetSize) { 327 dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; 328 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 329 } 330 Result.LiveSet = LiveSet; 331 } 332 333 /// Returns true if V is a known base. 334 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases); 335 336 /// Caches the IsKnownBase flag for a value and asserts that it wasn't present 337 /// in the cache before. 338 static void setKnownBase(Value *V, bool IsKnownBase, 339 IsKnownBaseMapTy &KnownBases); 340 341 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 342 IsKnownBaseMapTy &KnownBases); 343 344 /// Return a base defining value for the 'Index' element of the given vector 345 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 346 /// 'I'. As an optimization, this method will try to determine when the 347 /// element is known to already be a base pointer. If this can be established, 348 /// the second value in the returned pair will be true. Note that either a 349 /// vector or a pointer typed value can be returned. For the former, the 350 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 351 /// If the later, the return pointer is a BDV (or possibly a base) for the 352 /// particular element in 'I'. 353 static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache, 354 IsKnownBaseMapTy &KnownBases) { 355 // Each case parallels findBaseDefiningValue below, see that code for 356 // detailed motivation. 357 358 auto Cached = Cache.find(I); 359 if (Cached != Cache.end()) 360 return Cached->second; 361 362 if (isa<Argument>(I)) { 363 // An incoming argument to the function is a base pointer 364 Cache[I] = I; 365 setKnownBase(I, /* IsKnownBase */true, KnownBases); 366 return I; 367 } 368 369 if (isa<Constant>(I)) { 370 // Base of constant vector consists only of constant null pointers. 371 // For reasoning see similar case inside 'findBaseDefiningValue' function. 372 auto *CAZ = ConstantAggregateZero::get(I->getType()); 373 Cache[I] = CAZ; 374 setKnownBase(CAZ, /* IsKnownBase */true, KnownBases); 375 return CAZ; 376 } 377 378 if (isa<LoadInst>(I)) { 379 Cache[I] = I; 380 setKnownBase(I, /* IsKnownBase */true, KnownBases); 381 return I; 382 } 383 384 if (isa<InsertElementInst>(I)) { 385 // We don't know whether this vector contains entirely base pointers or 386 // not. To be conservatively correct, we treat it as a BDV and will 387 // duplicate code as needed to construct a parallel vector of bases. 388 Cache[I] = I; 389 setKnownBase(I, /* IsKnownBase */false, KnownBases); 390 return I; 391 } 392 393 if (isa<ShuffleVectorInst>(I)) { 394 // We don't know whether this vector contains entirely base pointers or 395 // not. To be conservatively correct, we treat it as a BDV and will 396 // duplicate code as needed to construct a parallel vector of bases. 397 // TODO: There a number of local optimizations which could be applied here 398 // for particular sufflevector patterns. 399 Cache[I] = I; 400 setKnownBase(I, /* IsKnownBase */false, KnownBases); 401 return I; 402 } 403 404 // The behavior of getelementptr instructions is the same for vector and 405 // non-vector data types. 406 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 407 auto *BDV = 408 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 409 Cache[GEP] = BDV; 410 return BDV; 411 } 412 413 // The behavior of freeze instructions is the same for vector and 414 // non-vector data types. 415 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 416 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 417 Cache[Freeze] = BDV; 418 return BDV; 419 } 420 421 // If the pointer comes through a bitcast of a vector of pointers to 422 // a vector of another type of pointer, then look through the bitcast 423 if (auto *BC = dyn_cast<BitCastInst>(I)) { 424 auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases); 425 Cache[BC] = BDV; 426 return BDV; 427 } 428 429 // We assume that functions in the source language only return base 430 // pointers. This should probably be generalized via attributes to support 431 // both source language and internal functions. 432 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 433 Cache[I] = I; 434 setKnownBase(I, /* IsKnownBase */true, KnownBases); 435 return I; 436 } 437 438 // A PHI or Select is a base defining value. The outer findBasePointer 439 // algorithm is responsible for constructing a base value for this BDV. 440 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 441 "unknown vector instruction - no base found for vector element"); 442 Cache[I] = I; 443 setKnownBase(I, /* IsKnownBase */false, KnownBases); 444 return I; 445 } 446 447 /// Helper function for findBasePointer - Will return a value which either a) 448 /// defines the base pointer for the input, b) blocks the simple search 449 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 450 /// from pointer to vector type or back. 451 static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, 452 IsKnownBaseMapTy &KnownBases) { 453 assert(I->getType()->isPtrOrPtrVectorTy() && 454 "Illegal to ask for the base pointer of a non-pointer type"); 455 auto Cached = Cache.find(I); 456 if (Cached != Cache.end()) 457 return Cached->second; 458 459 if (I->getType()->isVectorTy()) 460 return findBaseDefiningValueOfVector(I, Cache, KnownBases); 461 462 if (isa<Argument>(I)) { 463 // An incoming argument to the function is a base pointer 464 // We should have never reached here if this argument isn't an gc value 465 Cache[I] = I; 466 setKnownBase(I, /* IsKnownBase */true, KnownBases); 467 return I; 468 } 469 470 if (isa<Constant>(I)) { 471 // We assume that objects with a constant base (e.g. a global) can't move 472 // and don't need to be reported to the collector because they are always 473 // live. Besides global references, all kinds of constants (e.g. undef, 474 // constant expressions, null pointers) can be introduced by the inliner or 475 // the optimizer, especially on dynamically dead paths. 476 // Here we treat all of them as having single null base. By doing this we 477 // trying to avoid problems reporting various conflicts in a form of 478 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 479 // See constant.ll file for relevant test cases. 480 481 auto *CPN = ConstantPointerNull::get(cast<PointerType>(I->getType())); 482 Cache[I] = CPN; 483 setKnownBase(CPN, /* IsKnownBase */true, KnownBases); 484 return CPN; 485 } 486 487 // inttoptrs in an integral address space are currently ill-defined. We 488 // treat them as defining base pointers here for consistency with the 489 // constant rule above and because we don't really have a better semantic 490 // to give them. Note that the optimizer is always free to insert undefined 491 // behavior on dynamically dead paths as well. 492 if (isa<IntToPtrInst>(I)) { 493 Cache[I] = I; 494 setKnownBase(I, /* IsKnownBase */true, KnownBases); 495 return I; 496 } 497 498 if (CastInst *CI = dyn_cast<CastInst>(I)) { 499 Value *Def = CI->stripPointerCasts(); 500 // If stripping pointer casts changes the address space there is an 501 // addrspacecast in between. 502 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 503 cast<PointerType>(CI->getType())->getAddressSpace() && 504 "unsupported addrspacecast"); 505 // If we find a cast instruction here, it means we've found a cast which is 506 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 507 // handle int->ptr conversion. 508 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 509 auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases); 510 Cache[CI] = BDV; 511 return BDV; 512 } 513 514 if (isa<LoadInst>(I)) { 515 // The value loaded is an gc base itself 516 Cache[I] = I; 517 setKnownBase(I, /* IsKnownBase */true, KnownBases); 518 return I; 519 } 520 521 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 522 // The base of this GEP is the base 523 auto *BDV = 524 findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); 525 Cache[GEP] = BDV; 526 return BDV; 527 } 528 529 if (auto *Freeze = dyn_cast<FreezeInst>(I)) { 530 auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); 531 Cache[Freeze] = BDV; 532 return BDV; 533 } 534 535 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 536 switch (II->getIntrinsicID()) { 537 default: 538 // fall through to general call handling 539 break; 540 case Intrinsic::experimental_gc_statepoint: 541 llvm_unreachable("statepoints don't produce pointers"); 542 case Intrinsic::experimental_gc_relocate: 543 // Rerunning safepoint insertion after safepoints are already 544 // inserted is not supported. It could probably be made to work, 545 // but why are you doing this? There's no good reason. 546 llvm_unreachable("repeat safepoint insertion is not supported"); 547 case Intrinsic::gcroot: 548 // Currently, this mechanism hasn't been extended to work with gcroot. 549 // There's no reason it couldn't be, but I haven't thought about the 550 // implications much. 551 llvm_unreachable( 552 "interaction with the gcroot mechanism is not supported"); 553 case Intrinsic::experimental_gc_get_pointer_base: 554 auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases); 555 Cache[II] = BDV; 556 return BDV; 557 } 558 } 559 // We assume that functions in the source language only return base 560 // pointers. This should probably be generalized via attributes to support 561 // both source language and internal functions. 562 if (isa<CallInst>(I) || isa<InvokeInst>(I)) { 563 Cache[I] = I; 564 setKnownBase(I, /* IsKnownBase */true, KnownBases); 565 return I; 566 } 567 568 // TODO: I have absolutely no idea how to implement this part yet. It's not 569 // necessarily hard, I just haven't really looked at it yet. 570 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 571 572 if (isa<AtomicCmpXchgInst>(I)) { 573 // A CAS is effectively a atomic store and load combined under a 574 // predicate. From the perspective of base pointers, we just treat it 575 // like a load. 576 Cache[I] = I; 577 setKnownBase(I, /* IsKnownBase */true, KnownBases); 578 return I; 579 } 580 581 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 582 "binary ops which don't apply to pointers"); 583 584 // The aggregate ops. Aggregates can either be in the heap or on the 585 // stack, but in either case, this is simply a field load. As a result, 586 // this is a defining definition of the base just like a load is. 587 if (isa<ExtractValueInst>(I)) { 588 Cache[I] = I; 589 setKnownBase(I, /* IsKnownBase */true, KnownBases); 590 return I; 591 } 592 593 // We should never see an insert vector since that would require we be 594 // tracing back a struct value not a pointer value. 595 assert(!isa<InsertValueInst>(I) && 596 "Base pointer for a struct is meaningless"); 597 598 // This value might have been generated by findBasePointer() called when 599 // substituting gc.get.pointer.base() intrinsic. 600 bool IsKnownBase = 601 isa<Instruction>(I) && cast<Instruction>(I)->getMetadata("is_base_value"); 602 setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases); 603 Cache[I] = I; 604 605 // An extractelement produces a base result exactly when it's input does. 606 // We may need to insert a parallel instruction to extract the appropriate 607 // element out of the base vector corresponding to the input. Given this, 608 // it's analogous to the phi and select case even though it's not a merge. 609 if (isa<ExtractElementInst>(I)) 610 // Note: There a lot of obvious peephole cases here. This are deliberately 611 // handled after the main base pointer inference algorithm to make writing 612 // test cases to exercise that code easier. 613 return I; 614 615 // The last two cases here don't return a base pointer. Instead, they 616 // return a value which dynamically selects from among several base 617 // derived pointers (each with it's own base potentially). It's the job of 618 // the caller to resolve these. 619 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 620 "missing instruction case in findBaseDefiningValue"); 621 return I; 622 } 623 624 /// Returns the base defining value for this value. 625 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache, 626 IsKnownBaseMapTy &KnownBases) { 627 if (!Cache.contains(I)) { 628 auto *BDV = findBaseDefiningValue(I, Cache, KnownBases); 629 Cache[I] = BDV; 630 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 631 << Cache[I]->getName() << ", is known base = " 632 << KnownBases[I] << "\n"); 633 } 634 assert(Cache[I] != nullptr); 635 assert(KnownBases.contains(Cache[I]) && 636 "Cached value must be present in known bases map"); 637 return Cache[I]; 638 } 639 640 /// Return a base pointer for this value if known. Otherwise, return it's 641 /// base defining value. 642 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache, 643 IsKnownBaseMapTy &KnownBases) { 644 Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases); 645 auto Found = Cache.find(Def); 646 if (Found != Cache.end()) { 647 // Either a base-of relation, or a self reference. Caller must check. 648 return Found->second; 649 } 650 // Only a BDV available 651 return Def; 652 } 653 654 #ifndef NDEBUG 655 /// This value is a base pointer that is not generated by RS4GC, i.e. it already 656 /// exists in the code. 657 static bool isOriginalBaseResult(Value *V) { 658 // no recursion possible 659 return !isa<PHINode>(V) && !isa<SelectInst>(V) && 660 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 661 !isa<ShuffleVectorInst>(V); 662 } 663 #endif 664 665 static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) { 666 auto It = KnownBases.find(V); 667 assert(It != KnownBases.end() && "Value not present in the map"); 668 return It->second; 669 } 670 671 static void setKnownBase(Value *V, bool IsKnownBase, 672 IsKnownBaseMapTy &KnownBases) { 673 #ifndef NDEBUG 674 auto It = KnownBases.find(V); 675 if (It != KnownBases.end()) 676 assert(It->second == IsKnownBase && "Changing already present value"); 677 #endif 678 KnownBases[V] = IsKnownBase; 679 } 680 681 // Returns true if First and Second values are both scalar or both vector. 682 static bool areBothVectorOrScalar(Value *First, Value *Second) { 683 return isa<VectorType>(First->getType()) == 684 isa<VectorType>(Second->getType()); 685 } 686 687 namespace { 688 689 /// Models the state of a single base defining value in the findBasePointer 690 /// algorithm for determining where a new instruction is needed to propagate 691 /// the base of this BDV. 692 class BDVState { 693 public: 694 enum StatusTy { 695 // Starting state of lattice 696 Unknown, 697 // Some specific base value -- does *not* mean that instruction 698 // propagates the base of the object 699 // ex: gep %arg, 16 -> %arg is the base value 700 Base, 701 // Need to insert a node to represent a merge. 702 Conflict 703 }; 704 705 BDVState() { 706 llvm_unreachable("missing state in map"); 707 } 708 709 explicit BDVState(Value *OriginalValue) 710 : OriginalValue(OriginalValue) {} 711 explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) 712 : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { 713 assert(Status != Base || BaseValue); 714 } 715 716 StatusTy getStatus() const { return Status; } 717 Value *getOriginalValue() const { return OriginalValue; } 718 Value *getBaseValue() const { return BaseValue; } 719 720 bool isBase() const { return getStatus() == Base; } 721 bool isUnknown() const { return getStatus() == Unknown; } 722 bool isConflict() const { return getStatus() == Conflict; } 723 724 // Values of type BDVState form a lattice, and this function implements the 725 // meet 726 // operation. 727 void meet(const BDVState &Other) { 728 auto markConflict = [&]() { 729 Status = BDVState::Conflict; 730 BaseValue = nullptr; 731 }; 732 // Conflict is a final state. 733 if (isConflict()) 734 return; 735 // if we are not known - just take other state. 736 if (isUnknown()) { 737 Status = Other.getStatus(); 738 BaseValue = Other.getBaseValue(); 739 return; 740 } 741 // We are base. 742 assert(isBase() && "Unknown state"); 743 // If other is unknown - just keep our state. 744 if (Other.isUnknown()) 745 return; 746 // If other is conflict - it is a final state. 747 if (Other.isConflict()) 748 return markConflict(); 749 // Other is base as well. 750 assert(Other.isBase() && "Unknown state"); 751 // If bases are different - Conflict. 752 if (getBaseValue() != Other.getBaseValue()) 753 return markConflict(); 754 // We are identical, do nothing. 755 } 756 757 bool operator==(const BDVState &Other) const { 758 return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && 759 Status == Other.Status; 760 } 761 762 bool operator!=(const BDVState &other) const { return !(*this == other); } 763 764 LLVM_DUMP_METHOD 765 void dump() const { 766 print(dbgs()); 767 dbgs() << '\n'; 768 } 769 770 void print(raw_ostream &OS) const { 771 switch (getStatus()) { 772 case Unknown: 773 OS << "U"; 774 break; 775 case Base: 776 OS << "B"; 777 break; 778 case Conflict: 779 OS << "C"; 780 break; 781 } 782 OS << " (base " << getBaseValue() << " - " 783 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" 784 << " for " << OriginalValue->getName() << ":"; 785 } 786 787 private: 788 AssertingVH<Value> OriginalValue; // instruction this state corresponds to 789 StatusTy Status = Unknown; 790 AssertingVH<Value> BaseValue = nullptr; // Non-null only if Status == Base. 791 }; 792 793 } // end anonymous namespace 794 795 #ifndef NDEBUG 796 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 797 State.print(OS); 798 return OS; 799 } 800 #endif 801 802 /// For a given value or instruction, figure out what base ptr its derived from. 803 /// For gc objects, this is simply itself. On success, returns a value which is 804 /// the base pointer. (This is reliable and can be used for relocation.) On 805 /// failure, returns nullptr. 806 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache, 807 IsKnownBaseMapTy &KnownBases) { 808 Value *Def = findBaseOrBDV(I, Cache, KnownBases); 809 810 if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I)) 811 return Def; 812 813 // Here's the rough algorithm: 814 // - For every SSA value, construct a mapping to either an actual base 815 // pointer or a PHI which obscures the base pointer. 816 // - Construct a mapping from PHI to unknown TOP state. Use an 817 // optimistic algorithm to propagate base pointer information. Lattice 818 // looks like: 819 // UNKNOWN 820 // b1 b2 b3 b4 821 // CONFLICT 822 // When algorithm terminates, all PHIs will either have a single concrete 823 // base or be in a conflict state. 824 // - For every conflict, insert a dummy PHI node without arguments. Add 825 // these to the base[Instruction] = BasePtr mapping. For every 826 // non-conflict, add the actual base. 827 // - For every conflict, add arguments for the base[a] of each input 828 // arguments. 829 // 830 // Note: A simpler form of this would be to add the conflict form of all 831 // PHIs without running the optimistic algorithm. This would be 832 // analogous to pessimistic data flow and would likely lead to an 833 // overall worse solution. 834 835 #ifndef NDEBUG 836 auto isExpectedBDVType = [](Value *BDV) { 837 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 838 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 839 isa<ShuffleVectorInst>(BDV); 840 }; 841 #endif 842 843 // Once populated, will contain a mapping from each potentially non-base BDV 844 // to a lattice value (described above) which corresponds to that BDV. 845 // We use the order of insertion (DFS over the def/use graph) to provide a 846 // stable deterministic ordering for visiting DenseMaps (which are unordered) 847 // below. This is important for deterministic compilation. 848 MapVector<Value *, BDVState> States; 849 850 #ifndef NDEBUG 851 auto VerifyStates = [&]() { 852 for (auto &Entry : States) { 853 assert(Entry.first == Entry.second.getOriginalValue()); 854 } 855 }; 856 #endif 857 858 auto visitBDVOperands = [](Value *BDV, std::function<void (Value*)> F) { 859 if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 860 for (Value *InVal : PN->incoming_values()) 861 F(InVal); 862 } else if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 863 F(SI->getTrueValue()); 864 F(SI->getFalseValue()); 865 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 866 F(EE->getVectorOperand()); 867 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)) { 868 F(IE->getOperand(0)); 869 F(IE->getOperand(1)); 870 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(BDV)) { 871 // For a canonical broadcast, ignore the undef argument 872 // (without this, we insert a parallel base shuffle for every broadcast) 873 F(SV->getOperand(0)); 874 if (!SV->isZeroEltSplat()) 875 F(SV->getOperand(1)); 876 } else { 877 llvm_unreachable("unexpected BDV type"); 878 } 879 }; 880 881 882 // Recursively fill in all base defining values reachable from the initial 883 // one for which we don't already know a definite base value for 884 /* scope */ { 885 SmallVector<Value*, 16> Worklist; 886 Worklist.push_back(Def); 887 States.insert({Def, BDVState(Def)}); 888 while (!Worklist.empty()) { 889 Value *Current = Worklist.pop_back_val(); 890 assert(!isOriginalBaseResult(Current) && "why did it get added?"); 891 892 auto visitIncomingValue = [&](Value *InVal) { 893 Value *Base = findBaseOrBDV(InVal, Cache, KnownBases); 894 if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal)) 895 // Known bases won't need new instructions introduced and can be 896 // ignored safely. However, this can only be done when InVal and Base 897 // are both scalar or both vector. Otherwise, we need to find a 898 // correct BDV for InVal, by creating an entry in the lattice 899 // (States). 900 return; 901 assert(isExpectedBDVType(Base) && "the only non-base values " 902 "we see should be base defining values"); 903 if (States.insert(std::make_pair(Base, BDVState(Base))).second) 904 Worklist.push_back(Base); 905 }; 906 907 visitBDVOperands(Current, visitIncomingValue); 908 } 909 } 910 911 #ifndef NDEBUG 912 VerifyStates(); 913 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 914 for (const auto &Pair : States) { 915 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 916 } 917 #endif 918 919 // Iterate forward through the value graph pruning any node from the state 920 // list where all of the inputs are base pointers. The purpose of this is to 921 // reuse existing values when the derived pointer we were asked to materialize 922 // a base pointer for happens to be a base pointer itself. (Or a sub-graph 923 // feeding it does.) 924 SmallVector<Value *> ToRemove; 925 do { 926 ToRemove.clear(); 927 for (auto Pair : States) { 928 Value *BDV = Pair.first; 929 auto canPruneInput = [&](Value *V) { 930 // If the input of the BDV is the BDV itself we can prune it. This is 931 // only possible if the BDV is a PHI node. 932 if (V->stripPointerCasts() == BDV) 933 return true; 934 Value *VBDV = findBaseOrBDV(V, Cache, KnownBases); 935 if (V->stripPointerCasts() != VBDV) 936 return false; 937 // The assumption is that anything not in the state list is 938 // propagates a base pointer. 939 return States.count(VBDV) == 0; 940 }; 941 942 bool CanPrune = true; 943 visitBDVOperands(BDV, [&](Value *Op) { 944 CanPrune = CanPrune && canPruneInput(Op); 945 }); 946 if (CanPrune) 947 ToRemove.push_back(BDV); 948 } 949 for (Value *V : ToRemove) { 950 States.erase(V); 951 // Cache the fact V is it's own base for later usage. 952 Cache[V] = V; 953 } 954 } while (!ToRemove.empty()); 955 956 // Did we manage to prove that Def itself must be a base pointer? 957 if (!States.count(Def)) 958 return Def; 959 960 // Return a phi state for a base defining value. We'll generate a new 961 // base state for known bases and expect to find a cached state otherwise. 962 auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { 963 auto I = States.find(BaseValue); 964 if (I != States.end()) 965 return I->second; 966 assert(areBothVectorOrScalar(BaseValue, Input)); 967 return BDVState(BaseValue, BDVState::Base, BaseValue); 968 }; 969 970 // Even though we have identified a concrete base (or a conflict) for all live 971 // pointers at this point, there are cases where the base is of an 972 // incompatible type compared to the original instruction. We conservatively 973 // mark those as conflicts to ensure that corresponding BDVs will be generated 974 // in the next steps. 975 976 // this is a rather explicit check for all cases where we should mark the 977 // state as a conflict to force the latter stages of the algorithm to emit 978 // the BDVs. 979 // TODO: in many cases the instructions emited for the conflicting states 980 // will be identical to the I itself (if the I's operate on their BDVs 981 // themselves). We should exploit this, but can't do it here since it would 982 // break the invariant about the BDVs not being known to be a base. 983 // TODO: the code also does not handle constants at all - the algorithm relies 984 // on all constants having the same BDV and therefore constant-only insns 985 // will never be in conflict, but this check is ignored here. If the 986 // constant conflicts will be to BDVs themselves, they will be identical 987 // instructions and will get optimized away (as in the above TODO) 988 auto MarkConflict = [&](Instruction *I, Value *BaseValue) { 989 // II and EE mixes vector & scalar so is always a conflict 990 if (isa<InsertElementInst>(I) || isa<ExtractElementInst>(I)) 991 return true; 992 // Shuffle vector is always a conflict as it creates new vector from 993 // existing ones. 994 if (isa<ShuffleVectorInst>(I)) 995 return true; 996 // Any instructions where the computed base type differs from the 997 // instruction type. An example is where an extract instruction is used by a 998 // select. Here the select's BDV is a vector (because of extract's BDV), 999 // while the select itself is a scalar type. Note that the IE and EE 1000 // instruction check is not fully subsumed by the vector<->scalar check at 1001 // the end, this is due to the BDV algorithm being ignorant of BDV types at 1002 // this junction. 1003 if (!areBothVectorOrScalar(BaseValue, I)) 1004 return true; 1005 return false; 1006 }; 1007 1008 bool Progress = true; 1009 while (Progress) { 1010 #ifndef NDEBUG 1011 const size_t OldSize = States.size(); 1012 #endif 1013 Progress = false; 1014 // We're only changing values in this loop, thus safe to keep iterators. 1015 // Since this is computing a fixed point, the order of visit does not 1016 // effect the result. TODO: We could use a worklist here and make this run 1017 // much faster. 1018 for (auto Pair : States) { 1019 Value *BDV = Pair.first; 1020 // Only values that do not have known bases or those that have differing 1021 // type (scalar versus vector) from a possible known base should be in the 1022 // lattice. 1023 assert((!isKnownBase(BDV, KnownBases) || 1024 !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && 1025 "why did it get added?"); 1026 1027 BDVState NewState(BDV); 1028 visitBDVOperands(BDV, [&](Value *Op) { 1029 Value *BDV = findBaseOrBDV(Op, Cache, KnownBases); 1030 auto OpState = GetStateForBDV(BDV, Op); 1031 NewState.meet(OpState); 1032 }); 1033 1034 // if the instruction has known base, but should in fact be marked as 1035 // conflict because of incompatible in/out types, we mark it as such 1036 // ensuring that it will propagate through the fixpoint iteration 1037 auto I = cast<Instruction>(BDV); 1038 auto BV = NewState.getBaseValue(); 1039 if (BV && MarkConflict(I, BV)) 1040 NewState = BDVState(I, BDVState::Conflict); 1041 1042 BDVState OldState = Pair.second; 1043 if (OldState != NewState) { 1044 Progress = true; 1045 States[BDV] = NewState; 1046 } 1047 } 1048 1049 assert(OldSize == States.size() && 1050 "fixed point shouldn't be adding any new nodes to state"); 1051 } 1052 1053 #ifndef NDEBUG 1054 VerifyStates(); 1055 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 1056 for (const auto &Pair : States) { 1057 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 1058 } 1059 1060 // since we do the conflict marking as part of the fixpoint iteration this 1061 // loop only asserts that invariants are met 1062 for (auto Pair : States) { 1063 Instruction *I = cast<Instruction>(Pair.first); 1064 BDVState State = Pair.second; 1065 auto *BaseValue = State.getBaseValue(); 1066 // Only values that do not have known bases or those that have differing 1067 // type (scalar versus vector) from a possible known base should be in the 1068 // lattice. 1069 assert( 1070 (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) && 1071 "why did it get added?"); 1072 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1073 } 1074 #endif 1075 1076 // Insert Phis for all conflicts 1077 // TODO: adjust naming patterns to avoid this order of iteration dependency 1078 for (auto Pair : States) { 1079 Instruction *I = cast<Instruction>(Pair.first); 1080 BDVState State = Pair.second; 1081 // Only values that do not have known bases or those that have differing 1082 // type (scalar versus vector) from a possible known base should be in the 1083 // lattice. 1084 assert((!isKnownBase(I, KnownBases) || 1085 !areBothVectorOrScalar(I, State.getBaseValue())) && 1086 "why did it get added?"); 1087 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1088 1089 // Since we're joining a vector and scalar base, they can never be the 1090 // same. As a result, we should always see insert element having reached 1091 // the conflict state. 1092 assert(!isa<InsertElementInst>(I) || State.isConflict()); 1093 1094 if (!State.isConflict()) 1095 continue; 1096 1097 auto getMangledName = [](Instruction *I) -> std::string { 1098 if (isa<PHINode>(I)) { 1099 return suffixed_name_or(I, ".base", "base_phi"); 1100 } else if (isa<SelectInst>(I)) { 1101 return suffixed_name_or(I, ".base", "base_select"); 1102 } else if (isa<ExtractElementInst>(I)) { 1103 return suffixed_name_or(I, ".base", "base_ee"); 1104 } else if (isa<InsertElementInst>(I)) { 1105 return suffixed_name_or(I, ".base", "base_ie"); 1106 } else { 1107 return suffixed_name_or(I, ".base", "base_sv"); 1108 } 1109 }; 1110 1111 Instruction *BaseInst = I->clone(); 1112 BaseInst->insertBefore(I); 1113 BaseInst->setName(getMangledName(I)); 1114 // Add metadata marking this as a base value 1115 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 1116 States[I] = BDVState(I, BDVState::Conflict, BaseInst); 1117 setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); 1118 } 1119 1120 #ifndef NDEBUG 1121 VerifyStates(); 1122 #endif 1123 1124 // Returns a instruction which produces the base pointer for a given 1125 // instruction. The instruction is assumed to be an input to one of the BDVs 1126 // seen in the inference algorithm above. As such, we must either already 1127 // know it's base defining value is a base, or have inserted a new 1128 // instruction to propagate the base of it's BDV and have entered that newly 1129 // introduced instruction into the state table. In either case, we are 1130 // assured to be able to determine an instruction which produces it's base 1131 // pointer. 1132 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1133 Value *BDV = findBaseOrBDV(Input, Cache, KnownBases); 1134 Value *Base = nullptr; 1135 if (!States.count(BDV)) { 1136 assert(areBothVectorOrScalar(BDV, Input)); 1137 Base = BDV; 1138 } else { 1139 // Either conflict or base. 1140 assert(States.count(BDV)); 1141 Base = States[BDV].getBaseValue(); 1142 } 1143 assert(Base && "Can't be null"); 1144 // The cast is needed since base traversal may strip away bitcasts 1145 if (Base->getType() != Input->getType() && InsertPt) 1146 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1147 return Base; 1148 }; 1149 1150 // Fixup all the inputs of the new PHIs. Visit order needs to be 1151 // deterministic and predictable because we're naming newly created 1152 // instructions. 1153 for (auto Pair : States) { 1154 Instruction *BDV = cast<Instruction>(Pair.first); 1155 BDVState State = Pair.second; 1156 1157 // Only values that do not have known bases or those that have differing 1158 // type (scalar versus vector) from a possible known base should be in the 1159 // lattice. 1160 assert((!isKnownBase(BDV, KnownBases) || 1161 !areBothVectorOrScalar(BDV, State.getBaseValue())) && 1162 "why did it get added?"); 1163 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1164 if (!State.isConflict()) 1165 continue; 1166 1167 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1168 PHINode *PN = cast<PHINode>(BDV); 1169 const unsigned NumPHIValues = PN->getNumIncomingValues(); 1170 1171 // The IR verifier requires phi nodes with multiple entries from the 1172 // same basic block to have the same incoming value for each of those 1173 // entries. Since we're inserting bitcasts in the loop, make sure we 1174 // do so at least once per incoming block. 1175 DenseMap<BasicBlock *, Value*> BlockToValue; 1176 for (unsigned i = 0; i < NumPHIValues; i++) { 1177 Value *InVal = PN->getIncomingValue(i); 1178 BasicBlock *InBB = PN->getIncomingBlock(i); 1179 if (!BlockToValue.count(InBB)) 1180 BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); 1181 else { 1182 #ifndef NDEBUG 1183 Value *OldBase = BlockToValue[InBB]; 1184 Value *Base = getBaseForInput(InVal, nullptr); 1185 1186 // We can't use `stripPointerCasts` instead of this function because 1187 // `stripPointerCasts` doesn't handle vectors of pointers. 1188 auto StripBitCasts = [](Value *V) -> Value * { 1189 while (auto *BC = dyn_cast<BitCastInst>(V)) 1190 V = BC->getOperand(0); 1191 return V; 1192 }; 1193 // In essence this assert states: the only way two values 1194 // incoming from the same basic block may be different is by 1195 // being different bitcasts of the same value. A cleanup 1196 // that remains TODO is changing findBaseOrBDV to return an 1197 // llvm::Value of the correct type (and still remain pure). 1198 // This will remove the need to add bitcasts. 1199 assert(StripBitCasts(Base) == StripBitCasts(OldBase) && 1200 "findBaseOrBDV should be pure!"); 1201 #endif 1202 } 1203 Value *Base = BlockToValue[InBB]; 1204 BasePHI->setIncomingValue(i, Base); 1205 } 1206 } else if (SelectInst *BaseSI = 1207 dyn_cast<SelectInst>(State.getBaseValue())) { 1208 SelectInst *SI = cast<SelectInst>(BDV); 1209 1210 // Find the instruction which produces the base for each input. 1211 // We may need to insert a bitcast. 1212 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1213 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1214 } else if (auto *BaseEE = 1215 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1216 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1217 // Find the instruction which produces the base for each input. We may 1218 // need to insert a bitcast. 1219 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1220 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1221 auto *BdvIE = cast<InsertElementInst>(BDV); 1222 auto UpdateOperand = [&](int OperandIdx) { 1223 Value *InVal = BdvIE->getOperand(OperandIdx); 1224 Value *Base = getBaseForInput(InVal, BaseIE); 1225 BaseIE->setOperand(OperandIdx, Base); 1226 }; 1227 UpdateOperand(0); // vector operand 1228 UpdateOperand(1); // scalar operand 1229 } else { 1230 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1231 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1232 auto UpdateOperand = [&](int OperandIdx) { 1233 Value *InVal = BdvSV->getOperand(OperandIdx); 1234 Value *Base = getBaseForInput(InVal, BaseSV); 1235 BaseSV->setOperand(OperandIdx, Base); 1236 }; 1237 UpdateOperand(0); // vector operand 1238 if (!BdvSV->isZeroEltSplat()) 1239 UpdateOperand(1); // vector operand 1240 else { 1241 // Never read, so just use poison 1242 Value *InVal = BdvSV->getOperand(1); 1243 BaseSV->setOperand(1, PoisonValue::get(InVal->getType())); 1244 } 1245 } 1246 } 1247 1248 #ifndef NDEBUG 1249 VerifyStates(); 1250 #endif 1251 1252 // get the data layout to compare the sizes of base/derived pointer values 1253 [[maybe_unused]] auto &DL = 1254 cast<llvm::Instruction>(Def)->getModule()->getDataLayout(); 1255 // Cache all of our results so we can cheaply reuse them 1256 // NOTE: This is actually two caches: one of the base defining value 1257 // relation and one of the base pointer relation! FIXME 1258 for (auto Pair : States) { 1259 auto *BDV = Pair.first; 1260 Value *Base = Pair.second.getBaseValue(); 1261 assert(BDV && Base); 1262 // Whenever we have a derived ptr(s), their base 1263 // ptr(s) must be of the same size, not necessarily the same type 1264 assert(DL.getTypeAllocSize(BDV->getType()) == 1265 DL.getTypeAllocSize(Base->getType()) && 1266 "Derived and base values should have same size"); 1267 // Only values that do not have known bases or those that have differing 1268 // type (scalar versus vector) from a possible known base should be in the 1269 // lattice. 1270 assert( 1271 (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) && 1272 "why did it get added?"); 1273 1274 LLVM_DEBUG( 1275 dbgs() << "Updating base value cache" 1276 << " for: " << BDV->getName() << " from: " 1277 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1278 << " to: " << Base->getName() << "\n"); 1279 1280 Cache[BDV] = Base; 1281 } 1282 assert(Cache.count(Def)); 1283 return Cache[Def]; 1284 } 1285 1286 // For a set of live pointers (base and/or derived), identify the base 1287 // pointer of the object which they are derived from. This routine will 1288 // mutate the IR graph as needed to make the 'base' pointer live at the 1289 // definition site of 'derived'. This ensures that any use of 'derived' can 1290 // also use 'base'. This may involve the insertion of a number of 1291 // additional PHI nodes. 1292 // 1293 // preconditions: live is a set of pointer type Values 1294 // 1295 // side effects: may insert PHI nodes into the existing CFG, will preserve 1296 // CFG, will not remove or mutate any existing nodes 1297 // 1298 // post condition: PointerToBase contains one (derived, base) pair for every 1299 // pointer in live. Note that derived can be equal to base if the original 1300 // pointer was a base pointer. 1301 static void findBasePointers(const StatepointLiveSetTy &live, 1302 PointerToBaseTy &PointerToBase, DominatorTree *DT, 1303 DefiningValueMapTy &DVCache, 1304 IsKnownBaseMapTy &KnownBases) { 1305 for (Value *ptr : live) { 1306 Value *base = findBasePointer(ptr, DVCache, KnownBases); 1307 assert(base && "failed to find base pointer"); 1308 PointerToBase[ptr] = base; 1309 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1310 DT->dominates(cast<Instruction>(base)->getParent(), 1311 cast<Instruction>(ptr)->getParent())) && 1312 "The base we found better dominate the derived pointer"); 1313 } 1314 } 1315 1316 /// Find the required based pointers (and adjust the live set) for the given 1317 /// parse point. 1318 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1319 CallBase *Call, 1320 PartiallyConstructedSafepointRecord &result, 1321 PointerToBaseTy &PointerToBase, 1322 IsKnownBaseMapTy &KnownBases) { 1323 StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; 1324 // We assume that all pointers passed to deopt are base pointers; as an 1325 // optimization, we can use this to avoid seperately materializing the base 1326 // pointer graph. This is only relevant since we're very conservative about 1327 // generating new conflict nodes during base pointer insertion. If we were 1328 // smarter there, this would be irrelevant. 1329 if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) 1330 for (Value *V : Opt->Inputs) { 1331 if (!PotentiallyDerivedPointers.count(V)) 1332 continue; 1333 PotentiallyDerivedPointers.remove(V); 1334 PointerToBase[V] = V; 1335 } 1336 findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache, 1337 KnownBases); 1338 } 1339 1340 /// Given an updated version of the dataflow liveness results, update the 1341 /// liveset and base pointer maps for the call site CS. 1342 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1343 CallBase *Call, 1344 PartiallyConstructedSafepointRecord &result, 1345 PointerToBaseTy &PointerToBase, 1346 GCStrategy *GC); 1347 1348 static void recomputeLiveInValues( 1349 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1350 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 1351 PointerToBaseTy &PointerToBase, GCStrategy *GC) { 1352 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1353 // again. The old values are still live and will help it stabilize quickly. 1354 GCPtrLivenessData RevisedLivenessData; 1355 computeLiveInValues(DT, F, RevisedLivenessData, GC); 1356 for (size_t i = 0; i < records.size(); i++) { 1357 struct PartiallyConstructedSafepointRecord &info = records[i]; 1358 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, PointerToBase, 1359 GC); 1360 } 1361 } 1362 1363 // Utility function which clones all instructions from "ChainToBase" 1364 // and inserts them before "InsertBefore". Returns rematerialized value 1365 // which should be used after statepoint. 1366 static Instruction *rematerializeChain(ArrayRef<Instruction *> ChainToBase, 1367 Instruction *InsertBefore, 1368 Value *RootOfChain, 1369 Value *AlternateLiveBase) { 1370 Instruction *LastClonedValue = nullptr; 1371 Instruction *LastValue = nullptr; 1372 // Walk backwards to visit top-most instructions first. 1373 for (Instruction *Instr : 1374 make_range(ChainToBase.rbegin(), ChainToBase.rend())) { 1375 // Only GEP's and casts are supported as we need to be careful to not 1376 // introduce any new uses of pointers not in the liveset. 1377 // Note that it's fine to introduce new uses of pointers which were 1378 // otherwise not used after this statepoint. 1379 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 1380 1381 Instruction *ClonedValue = Instr->clone(); 1382 ClonedValue->insertBefore(InsertBefore); 1383 ClonedValue->setName(Instr->getName() + ".remat"); 1384 1385 // If it is not first instruction in the chain then it uses previously 1386 // cloned value. We should update it to use cloned value. 1387 if (LastClonedValue) { 1388 assert(LastValue); 1389 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 1390 #ifndef NDEBUG 1391 for (auto *OpValue : ClonedValue->operand_values()) { 1392 // Assert that cloned instruction does not use any instructions from 1393 // this chain other than LastClonedValue 1394 assert(!is_contained(ChainToBase, OpValue) && 1395 "incorrect use in rematerialization chain"); 1396 // Assert that the cloned instruction does not use the RootOfChain 1397 // or the AlternateLiveBase. 1398 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 1399 } 1400 #endif 1401 } else { 1402 // For the first instruction, replace the use of unrelocated base i.e. 1403 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 1404 // live set. They have been proved to be the same PHI nodes. Note 1405 // that the *only* use of the RootOfChain in the ChainToBase list is 1406 // the first Value in the list. 1407 if (RootOfChain != AlternateLiveBase) 1408 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 1409 } 1410 1411 LastClonedValue = ClonedValue; 1412 LastValue = Instr; 1413 } 1414 assert(LastClonedValue); 1415 return LastClonedValue; 1416 } 1417 1418 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1419 // no uses of the original value / return value between the gc.statepoint and 1420 // the gc.relocate / gc.result call. One case which can arise is a phi node 1421 // starting one of the successor blocks. We also need to be able to insert the 1422 // gc.relocates only on the path which goes through the statepoint. We might 1423 // need to split an edge to make this possible. 1424 static BasicBlock * 1425 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1426 DominatorTree &DT) { 1427 BasicBlock *Ret = BB; 1428 if (!BB->getUniquePredecessor()) 1429 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1430 1431 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1432 // from it 1433 FoldSingleEntryPHINodes(Ret); 1434 assert(!isa<PHINode>(Ret->begin()) && 1435 "All PHI nodes should have been removed!"); 1436 1437 // At this point, we can safely insert a gc.relocate or gc.result as the first 1438 // instruction in Ret if needed. 1439 return Ret; 1440 } 1441 1442 // List of all function attributes which must be stripped when lowering from 1443 // abstract machine model to physical machine model. Essentially, these are 1444 // all the effects a safepoint might have which we ignored in the abstract 1445 // machine model for purposes of optimization. We have to strip these on 1446 // both function declarations and call sites. 1447 static constexpr Attribute::AttrKind FnAttrsToStrip[] = 1448 {Attribute::Memory, Attribute::NoSync, Attribute::NoFree}; 1449 1450 // Create new attribute set containing only attributes which can be transferred 1451 // from the original call to the safepoint. 1452 static AttributeList legalizeCallAttributes(CallBase *Call, bool IsMemIntrinsic, 1453 AttributeList StatepointAL) { 1454 AttributeList OrigAL = Call->getAttributes(); 1455 if (OrigAL.isEmpty()) 1456 return StatepointAL; 1457 1458 // Remove the readonly, readnone, and statepoint function attributes. 1459 LLVMContext &Ctx = Call->getContext(); 1460 AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs()); 1461 for (auto Attr : FnAttrsToStrip) 1462 FnAttrs.removeAttribute(Attr); 1463 1464 for (Attribute A : OrigAL.getFnAttrs()) { 1465 if (isStatepointDirectiveAttr(A)) 1466 FnAttrs.removeAttribute(A); 1467 } 1468 1469 StatepointAL = StatepointAL.addFnAttributes(Ctx, FnAttrs); 1470 1471 // The memory intrinsics do not have a 1:1 correspondence of the original 1472 // call arguments to the produced statepoint. Do not transfer the argument 1473 // attributes to avoid putting them on incorrect arguments. 1474 if (IsMemIntrinsic) 1475 return StatepointAL; 1476 1477 // Attach the argument attributes from the original call at the corresponding 1478 // arguments in the statepoint. Note that any argument attributes that are 1479 // invalid after lowering are stripped in stripNonValidDataFromBody. 1480 for (unsigned I : llvm::seq(Call->arg_size())) 1481 StatepointAL = StatepointAL.addParamAttributes( 1482 Ctx, GCStatepointInst::CallArgsBeginPos + I, 1483 AttrBuilder(Ctx, OrigAL.getParamAttrs(I))); 1484 1485 // Return attributes are later attached to the gc.result intrinsic. 1486 return StatepointAL; 1487 } 1488 1489 /// Helper function to place all gc relocates necessary for the given 1490 /// statepoint. 1491 /// Inputs: 1492 /// liveVariables - list of variables to be relocated. 1493 /// basePtrs - base pointers. 1494 /// statepointToken - statepoint instruction to which relocates should be 1495 /// bound. 1496 /// Builder - Llvm IR builder to be used to construct new calls. 1497 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1498 ArrayRef<Value *> BasePtrs, 1499 Instruction *StatepointToken, 1500 IRBuilder<> &Builder, GCStrategy *GC) { 1501 if (LiveVariables.empty()) 1502 return; 1503 1504 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1505 auto ValIt = llvm::find(LiveVec, Val); 1506 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1507 size_t Index = std::distance(LiveVec.begin(), ValIt); 1508 assert(Index < LiveVec.size() && "Bug in std::find?"); 1509 return Index; 1510 }; 1511 Module *M = StatepointToken->getModule(); 1512 1513 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1514 // element type is i8 addrspace(1)*). We originally generated unique 1515 // declarations for each pointer type, but this proved problematic because 1516 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1517 // towards a single unified pointer type anyways, we can just cast everything 1518 // to an i8* of the right address space. A bitcast is added later to convert 1519 // gc_relocate to the actual value's type. 1520 auto getGCRelocateDecl = [&](Type *Ty) { 1521 assert(isHandledGCPointerType(Ty, GC)); 1522 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1523 Type *NewTy = PointerType::get(M->getContext(), AS); 1524 if (auto *VT = dyn_cast<VectorType>(Ty)) 1525 NewTy = FixedVectorType::get(NewTy, 1526 cast<FixedVectorType>(VT)->getNumElements()); 1527 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1528 {NewTy}); 1529 }; 1530 1531 // Lazily populated map from input types to the canonicalized form mentioned 1532 // in the comment above. This should probably be cached somewhere more 1533 // broadly. 1534 DenseMap<Type *, Function *> TypeToDeclMap; 1535 1536 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1537 // Generate the gc.relocate call and save the result 1538 Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); 1539 Value *LiveIdx = Builder.getInt32(i); 1540 1541 Type *Ty = LiveVariables[i]->getType(); 1542 if (!TypeToDeclMap.count(Ty)) 1543 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1544 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1545 1546 // only specify a debug name if we can give a useful one 1547 CallInst *Reloc = Builder.CreateCall( 1548 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1549 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1550 // Trick CodeGen into thinking there are lots of free registers at this 1551 // fake call. 1552 Reloc->setCallingConv(CallingConv::Cold); 1553 } 1554 } 1555 1556 namespace { 1557 1558 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1559 /// avoids having to worry about keeping around dangling pointers to Values. 1560 class DeferredReplacement { 1561 AssertingVH<Instruction> Old; 1562 AssertingVH<Instruction> New; 1563 bool IsDeoptimize = false; 1564 1565 DeferredReplacement() = default; 1566 1567 public: 1568 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1569 assert(Old != New && Old && New && 1570 "Cannot RAUW equal values or to / from null!"); 1571 1572 DeferredReplacement D; 1573 D.Old = Old; 1574 D.New = New; 1575 return D; 1576 } 1577 1578 static DeferredReplacement createDelete(Instruction *ToErase) { 1579 DeferredReplacement D; 1580 D.Old = ToErase; 1581 return D; 1582 } 1583 1584 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1585 #ifndef NDEBUG 1586 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1587 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1588 "Only way to construct a deoptimize deferred replacement"); 1589 #endif 1590 DeferredReplacement D; 1591 D.Old = Old; 1592 D.IsDeoptimize = true; 1593 return D; 1594 } 1595 1596 /// Does the task represented by this instance. 1597 void doReplacement() { 1598 Instruction *OldI = Old; 1599 Instruction *NewI = New; 1600 1601 assert(OldI != NewI && "Disallowed at construction?!"); 1602 assert((!IsDeoptimize || !New) && 1603 "Deoptimize intrinsics are not replaced!"); 1604 1605 Old = nullptr; 1606 New = nullptr; 1607 1608 if (NewI) 1609 OldI->replaceAllUsesWith(NewI); 1610 1611 if (IsDeoptimize) { 1612 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1613 // not necessarily be followed by the matching return. 1614 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1615 new UnreachableInst(RI->getContext(), RI); 1616 RI->eraseFromParent(); 1617 } 1618 1619 OldI->eraseFromParent(); 1620 } 1621 }; 1622 1623 } // end anonymous namespace 1624 1625 static StringRef getDeoptLowering(CallBase *Call) { 1626 const char *DeoptLowering = "deopt-lowering"; 1627 if (Call->hasFnAttr(DeoptLowering)) { 1628 // FIXME: Calls have a *really* confusing interface around attributes 1629 // with values. 1630 const AttributeList &CSAS = Call->getAttributes(); 1631 if (CSAS.hasFnAttr(DeoptLowering)) 1632 return CSAS.getFnAttr(DeoptLowering).getValueAsString(); 1633 Function *F = Call->getCalledFunction(); 1634 assert(F && F->hasFnAttribute(DeoptLowering)); 1635 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1636 } 1637 return "live-through"; 1638 } 1639 1640 static void 1641 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1642 const SmallVectorImpl<Value *> &BasePtrs, 1643 const SmallVectorImpl<Value *> &LiveVariables, 1644 PartiallyConstructedSafepointRecord &Result, 1645 std::vector<DeferredReplacement> &Replacements, 1646 const PointerToBaseTy &PointerToBase, 1647 GCStrategy *GC) { 1648 assert(BasePtrs.size() == LiveVariables.size()); 1649 1650 // Then go ahead and use the builder do actually do the inserts. We insert 1651 // immediately before the previous instruction under the assumption that all 1652 // arguments will be available here. We can't insert afterwards since we may 1653 // be replacing a terminator. 1654 IRBuilder<> Builder(Call); 1655 1656 ArrayRef<Value *> GCArgs(LiveVariables); 1657 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1658 uint32_t NumPatchBytes = 0; 1659 uint32_t Flags = uint32_t(StatepointFlags::None); 1660 1661 SmallVector<Value *, 8> CallArgs(Call->args()); 1662 std::optional<ArrayRef<Use>> DeoptArgs; 1663 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) 1664 DeoptArgs = Bundle->Inputs; 1665 std::optional<ArrayRef<Use>> TransitionArgs; 1666 if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1667 TransitionArgs = Bundle->Inputs; 1668 // TODO: This flag no longer serves a purpose and can be removed later 1669 Flags |= uint32_t(StatepointFlags::GCTransition); 1670 } 1671 1672 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1673 // with a return value, we lower then as never returning calls to 1674 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1675 bool IsDeoptimize = false; 1676 bool IsMemIntrinsic = false; 1677 1678 StatepointDirectives SD = 1679 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1680 if (SD.NumPatchBytes) 1681 NumPatchBytes = *SD.NumPatchBytes; 1682 if (SD.StatepointID) 1683 StatepointID = *SD.StatepointID; 1684 1685 // Pass through the requested lowering if any. The default is live-through. 1686 StringRef DeoptLowering = getDeoptLowering(Call); 1687 if (DeoptLowering.equals("live-in")) 1688 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1689 else { 1690 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1691 } 1692 1693 FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand()); 1694 if (Function *F = dyn_cast<Function>(CallTarget.getCallee())) { 1695 auto IID = F->getIntrinsicID(); 1696 if (IID == Intrinsic::experimental_deoptimize) { 1697 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1698 // __llvm_deoptimize symbol. We want to resolve this now, since the 1699 // verifier does not allow taking the address of an intrinsic function. 1700 1701 SmallVector<Type *, 8> DomainTy; 1702 for (Value *Arg : CallArgs) 1703 DomainTy.push_back(Arg->getType()); 1704 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1705 /* isVarArg = */ false); 1706 1707 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1708 // calls to @llvm.experimental.deoptimize with different argument types in 1709 // the same module. This is fine -- we assume the frontend knew what it 1710 // was doing when generating this kind of IR. 1711 CallTarget = F->getParent() 1712 ->getOrInsertFunction("__llvm_deoptimize", FTy); 1713 1714 IsDeoptimize = true; 1715 } else if (IID == Intrinsic::memcpy_element_unordered_atomic || 1716 IID == Intrinsic::memmove_element_unordered_atomic) { 1717 IsMemIntrinsic = true; 1718 1719 // Unordered atomic memcpy and memmove intrinsics which are not explicitly 1720 // marked as "gc-leaf-function" should be lowered in a GC parseable way. 1721 // Specifically, these calls should be lowered to the 1722 // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. 1723 // Similarly to __llvm_deoptimize we want to resolve this now, since the 1724 // verifier does not allow taking the address of an intrinsic function. 1725 // 1726 // Moreover we need to shuffle the arguments for the call in order to 1727 // accommodate GC. The underlying source and destination objects might be 1728 // relocated during copy operation should the GC occur. To relocate the 1729 // derived source and destination pointers the implementation of the 1730 // intrinsic should know the corresponding base pointers. 1731 // 1732 // To make the base pointers available pass them explicitly as arguments: 1733 // memcpy(dest_derived, source_derived, ...) => 1734 // memcpy(dest_base, dest_offset, source_base, source_offset, ...) 1735 auto &Context = Call->getContext(); 1736 auto &DL = Call->getModule()->getDataLayout(); 1737 auto GetBaseAndOffset = [&](Value *Derived) { 1738 Value *Base = nullptr; 1739 // Optimizations in unreachable code might substitute the real pointer 1740 // with undef, poison or null-derived constant. Return null base for 1741 // them to be consistent with the handling in the main algorithm in 1742 // findBaseDefiningValue. 1743 if (isa<Constant>(Derived)) 1744 Base = 1745 ConstantPointerNull::get(cast<PointerType>(Derived->getType())); 1746 else { 1747 assert(PointerToBase.count(Derived)); 1748 Base = PointerToBase.find(Derived)->second; 1749 } 1750 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 1751 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 1752 Value *Base_int = Builder.CreatePtrToInt( 1753 Base, Type::getIntNTy(Context, IntPtrSize)); 1754 Value *Derived_int = Builder.CreatePtrToInt( 1755 Derived, Type::getIntNTy(Context, IntPtrSize)); 1756 return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); 1757 }; 1758 1759 auto *Dest = CallArgs[0]; 1760 Value *DestBase, *DestOffset; 1761 std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); 1762 1763 auto *Source = CallArgs[1]; 1764 Value *SourceBase, *SourceOffset; 1765 std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); 1766 1767 auto *LengthInBytes = CallArgs[2]; 1768 auto *ElementSizeCI = cast<ConstantInt>(CallArgs[3]); 1769 1770 CallArgs.clear(); 1771 CallArgs.push_back(DestBase); 1772 CallArgs.push_back(DestOffset); 1773 CallArgs.push_back(SourceBase); 1774 CallArgs.push_back(SourceOffset); 1775 CallArgs.push_back(LengthInBytes); 1776 1777 SmallVector<Type *, 8> DomainTy; 1778 for (Value *Arg : CallArgs) 1779 DomainTy.push_back(Arg->getType()); 1780 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1781 /* isVarArg = */ false); 1782 1783 auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { 1784 uint64_t ElementSize = ElementSizeCI->getZExtValue(); 1785 if (IID == Intrinsic::memcpy_element_unordered_atomic) { 1786 switch (ElementSize) { 1787 case 1: 1788 return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; 1789 case 2: 1790 return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; 1791 case 4: 1792 return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; 1793 case 8: 1794 return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; 1795 case 16: 1796 return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; 1797 default: 1798 llvm_unreachable("unexpected element size!"); 1799 } 1800 } 1801 assert(IID == Intrinsic::memmove_element_unordered_atomic); 1802 switch (ElementSize) { 1803 case 1: 1804 return "__llvm_memmove_element_unordered_atomic_safepoint_1"; 1805 case 2: 1806 return "__llvm_memmove_element_unordered_atomic_safepoint_2"; 1807 case 4: 1808 return "__llvm_memmove_element_unordered_atomic_safepoint_4"; 1809 case 8: 1810 return "__llvm_memmove_element_unordered_atomic_safepoint_8"; 1811 case 16: 1812 return "__llvm_memmove_element_unordered_atomic_safepoint_16"; 1813 default: 1814 llvm_unreachable("unexpected element size!"); 1815 } 1816 }; 1817 1818 CallTarget = 1819 F->getParent() 1820 ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy); 1821 } 1822 } 1823 1824 // Create the statepoint given all the arguments 1825 GCStatepointInst *Token = nullptr; 1826 if (auto *CI = dyn_cast<CallInst>(Call)) { 1827 CallInst *SPCall = Builder.CreateGCStatepointCall( 1828 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1829 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1830 1831 SPCall->setTailCallKind(CI->getTailCallKind()); 1832 SPCall->setCallingConv(CI->getCallingConv()); 1833 1834 // Set up function attrs directly on statepoint and return attrs later for 1835 // gc_result intrinsic. 1836 SPCall->setAttributes( 1837 legalizeCallAttributes(CI, IsMemIntrinsic, SPCall->getAttributes())); 1838 1839 Token = cast<GCStatepointInst>(SPCall); 1840 1841 // Put the following gc_result and gc_relocate calls immediately after the 1842 // the old call (which we're about to delete) 1843 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1844 Builder.SetInsertPoint(CI->getNextNode()); 1845 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1846 } else { 1847 auto *II = cast<InvokeInst>(Call); 1848 1849 // Insert the new invoke into the old block. We'll remove the old one in a 1850 // moment at which point this will become the new terminator for the 1851 // original block. 1852 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1853 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1854 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1855 "statepoint_token"); 1856 1857 SPInvoke->setCallingConv(II->getCallingConv()); 1858 1859 // Set up function attrs directly on statepoint and return attrs later for 1860 // gc_result intrinsic. 1861 SPInvoke->setAttributes( 1862 legalizeCallAttributes(II, IsMemIntrinsic, SPInvoke->getAttributes())); 1863 1864 Token = cast<GCStatepointInst>(SPInvoke); 1865 1866 // Generate gc relocates in exceptional path 1867 BasicBlock *UnwindBlock = II->getUnwindDest(); 1868 assert(!isa<PHINode>(UnwindBlock->begin()) && 1869 UnwindBlock->getUniquePredecessor() && 1870 "can't safely insert in this block!"); 1871 1872 Builder.SetInsertPoint(UnwindBlock, UnwindBlock->getFirstInsertionPt()); 1873 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1874 1875 // Attach exceptional gc relocates to the landingpad. 1876 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1877 Result.UnwindToken = ExceptionalToken; 1878 1879 CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder, GC); 1880 1881 // Generate gc relocates and returns for normal block 1882 BasicBlock *NormalDest = II->getNormalDest(); 1883 assert(!isa<PHINode>(NormalDest->begin()) && 1884 NormalDest->getUniquePredecessor() && 1885 "can't safely insert in this block!"); 1886 1887 Builder.SetInsertPoint(NormalDest, NormalDest->getFirstInsertionPt()); 1888 1889 // gc relocates will be generated later as if it were regular call 1890 // statepoint 1891 } 1892 assert(Token && "Should be set in one of the above branches!"); 1893 1894 if (IsDeoptimize) { 1895 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1896 // transform the tail-call like structure to a call to a void function 1897 // followed by unreachable to get better codegen. 1898 Replacements.push_back( 1899 DeferredReplacement::createDeoptimizeReplacement(Call)); 1900 } else { 1901 Token->setName("statepoint_token"); 1902 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1903 StringRef Name = Call->hasName() ? Call->getName() : ""; 1904 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1905 GCResult->setAttributes( 1906 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1907 Call->getAttributes().getRetAttrs())); 1908 1909 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1910 // live set of some other safepoint, in which case that safepoint's 1911 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1912 // llvm::Instruction. Instead, we defer the replacement and deletion to 1913 // after the live sets have been made explicit in the IR, and we no longer 1914 // have raw pointers to worry about. 1915 Replacements.emplace_back( 1916 DeferredReplacement::createRAUW(Call, GCResult)); 1917 } else { 1918 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1919 } 1920 } 1921 1922 Result.StatepointToken = Token; 1923 1924 // Second, create a gc.relocate for every live variable 1925 CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder, GC); 1926 } 1927 1928 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1929 // which make the relocations happening at this safepoint explicit. 1930 // 1931 // WARNING: Does not do any fixup to adjust users of the original live 1932 // values. That's the callers responsibility. 1933 static void 1934 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1935 PartiallyConstructedSafepointRecord &Result, 1936 std::vector<DeferredReplacement> &Replacements, 1937 const PointerToBaseTy &PointerToBase, GCStrategy *GC) { 1938 const auto &LiveSet = Result.LiveSet; 1939 1940 // Convert to vector for efficient cross referencing. 1941 SmallVector<Value *, 64> BaseVec, LiveVec; 1942 LiveVec.reserve(LiveSet.size()); 1943 BaseVec.reserve(LiveSet.size()); 1944 for (Value *L : LiveSet) { 1945 LiveVec.push_back(L); 1946 assert(PointerToBase.count(L)); 1947 Value *Base = PointerToBase.find(L)->second; 1948 BaseVec.push_back(Base); 1949 } 1950 assert(LiveVec.size() == BaseVec.size()); 1951 1952 // Do the actual rewriting and delete the old statepoint 1953 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements, 1954 PointerToBase, GC); 1955 } 1956 1957 // Helper function for the relocationViaAlloca. 1958 // 1959 // It receives iterator to the statepoint gc relocates and emits a store to the 1960 // assigned location (via allocaMap) for the each one of them. It adds the 1961 // visited values into the visitedLiveValues set, which we will later use them 1962 // for validation checking. 1963 static void 1964 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1965 DenseMap<Value *, AllocaInst *> &AllocaMap, 1966 DenseSet<Value *> &VisitedLiveValues) { 1967 for (User *U : GCRelocs) { 1968 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1969 if (!Relocate) 1970 continue; 1971 1972 Value *OriginalValue = Relocate->getDerivedPtr(); 1973 assert(AllocaMap.count(OriginalValue)); 1974 Value *Alloca = AllocaMap[OriginalValue]; 1975 1976 // Emit store into the related alloca. 1977 assert(Relocate->getNextNode() && 1978 "Should always have one since it's not a terminator"); 1979 new StoreInst(Relocate, Alloca, Relocate->getNextNode()); 1980 1981 #ifndef NDEBUG 1982 VisitedLiveValues.insert(OriginalValue); 1983 #endif 1984 } 1985 } 1986 1987 // Helper function for the "relocationViaAlloca". Similar to the 1988 // "insertRelocationStores" but works for rematerialized values. 1989 static void insertRematerializationStores( 1990 const RematerializedValueMapTy &RematerializedValues, 1991 DenseMap<Value *, AllocaInst *> &AllocaMap, 1992 DenseSet<Value *> &VisitedLiveValues) { 1993 for (auto RematerializedValuePair: RematerializedValues) { 1994 Instruction *RematerializedValue = RematerializedValuePair.first; 1995 Value *OriginalValue = RematerializedValuePair.second; 1996 1997 assert(AllocaMap.count(OriginalValue) && 1998 "Can not find alloca for rematerialized value"); 1999 Value *Alloca = AllocaMap[OriginalValue]; 2000 2001 new StoreInst(RematerializedValue, Alloca, 2002 RematerializedValue->getNextNode()); 2003 2004 #ifndef NDEBUG 2005 VisitedLiveValues.insert(OriginalValue); 2006 #endif 2007 } 2008 } 2009 2010 /// Do all the relocation update via allocas and mem2reg 2011 static void relocationViaAlloca( 2012 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 2013 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 2014 #ifndef NDEBUG 2015 // record initial number of (static) allocas; we'll check we have the same 2016 // number when we get done. 2017 int InitialAllocaNum = 0; 2018 for (Instruction &I : F.getEntryBlock()) 2019 if (isa<AllocaInst>(I)) 2020 InitialAllocaNum++; 2021 #endif 2022 2023 // TODO-PERF: change data structures, reserve 2024 DenseMap<Value *, AllocaInst *> AllocaMap; 2025 SmallVector<AllocaInst *, 200> PromotableAllocas; 2026 // Used later to chack that we have enough allocas to store all values 2027 std::size_t NumRematerializedValues = 0; 2028 PromotableAllocas.reserve(Live.size()); 2029 2030 // Emit alloca for "LiveValue" and record it in "allocaMap" and 2031 // "PromotableAllocas" 2032 const DataLayout &DL = F.getParent()->getDataLayout(); 2033 auto emitAllocaFor = [&](Value *LiveValue) { 2034 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 2035 DL.getAllocaAddrSpace(), "", 2036 F.getEntryBlock().getFirstNonPHI()); 2037 AllocaMap[LiveValue] = Alloca; 2038 PromotableAllocas.push_back(Alloca); 2039 }; 2040 2041 // Emit alloca for each live gc pointer 2042 for (Value *V : Live) 2043 emitAllocaFor(V); 2044 2045 // Emit allocas for rematerialized values 2046 for (const auto &Info : Records) 2047 for (auto RematerializedValuePair : Info.RematerializedValues) { 2048 Value *OriginalValue = RematerializedValuePair.second; 2049 if (AllocaMap.contains(OriginalValue)) 2050 continue; 2051 2052 emitAllocaFor(OriginalValue); 2053 ++NumRematerializedValues; 2054 } 2055 2056 // The next two loops are part of the same conceptual operation. We need to 2057 // insert a store to the alloca after the original def and at each 2058 // redefinition. We need to insert a load before each use. These are split 2059 // into distinct loops for performance reasons. 2060 2061 // Update gc pointer after each statepoint: either store a relocated value or 2062 // null (if no relocated value was found for this gc pointer and it is not a 2063 // gc_result). This must happen before we update the statepoint with load of 2064 // alloca otherwise we lose the link between statepoint and old def. 2065 for (const auto &Info : Records) { 2066 Value *Statepoint = Info.StatepointToken; 2067 2068 // This will be used for consistency check 2069 DenseSet<Value *> VisitedLiveValues; 2070 2071 // Insert stores for normal statepoint gc relocates 2072 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 2073 2074 // In case if it was invoke statepoint 2075 // we will insert stores for exceptional path gc relocates. 2076 if (isa<InvokeInst>(Statepoint)) { 2077 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 2078 VisitedLiveValues); 2079 } 2080 2081 // Do similar thing with rematerialized values 2082 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 2083 VisitedLiveValues); 2084 2085 if (ClobberNonLive) { 2086 // As a debugging aid, pretend that an unrelocated pointer becomes null at 2087 // the gc.statepoint. This will turn some subtle GC problems into 2088 // slightly easier to debug SEGVs. Note that on large IR files with 2089 // lots of gc.statepoints this is extremely costly both memory and time 2090 // wise. 2091 SmallVector<AllocaInst *, 64> ToClobber; 2092 for (auto Pair : AllocaMap) { 2093 Value *Def = Pair.first; 2094 AllocaInst *Alloca = Pair.second; 2095 2096 // This value was relocated 2097 if (VisitedLiveValues.count(Def)) { 2098 continue; 2099 } 2100 ToClobber.push_back(Alloca); 2101 } 2102 2103 auto InsertClobbersAt = [&](Instruction *IP) { 2104 for (auto *AI : ToClobber) { 2105 auto AT = AI->getAllocatedType(); 2106 Constant *CPN; 2107 if (AT->isVectorTy()) 2108 CPN = ConstantAggregateZero::get(AT); 2109 else 2110 CPN = ConstantPointerNull::get(cast<PointerType>(AT)); 2111 new StoreInst(CPN, AI, IP); 2112 } 2113 }; 2114 2115 // Insert the clobbering stores. These may get intermixed with the 2116 // gc.results and gc.relocates, but that's fine. 2117 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 2118 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 2119 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 2120 } else { 2121 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 2122 } 2123 } 2124 } 2125 2126 // Update use with load allocas and add store for gc_relocated. 2127 for (auto Pair : AllocaMap) { 2128 Value *Def = Pair.first; 2129 AllocaInst *Alloca = Pair.second; 2130 2131 // We pre-record the uses of allocas so that we dont have to worry about 2132 // later update that changes the user information.. 2133 2134 SmallVector<Instruction *, 20> Uses; 2135 // PERF: trade a linear scan for repeated reallocation 2136 Uses.reserve(Def->getNumUses()); 2137 for (User *U : Def->users()) { 2138 if (!isa<ConstantExpr>(U)) { 2139 // If the def has a ConstantExpr use, then the def is either a 2140 // ConstantExpr use itself or null. In either case 2141 // (recursively in the first, directly in the second), the oop 2142 // it is ultimately dependent on is null and this particular 2143 // use does not need to be fixed up. 2144 Uses.push_back(cast<Instruction>(U)); 2145 } 2146 } 2147 2148 llvm::sort(Uses); 2149 auto Last = std::unique(Uses.begin(), Uses.end()); 2150 Uses.erase(Last, Uses.end()); 2151 2152 for (Instruction *Use : Uses) { 2153 if (isa<PHINode>(Use)) { 2154 PHINode *Phi = cast<PHINode>(Use); 2155 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 2156 if (Def == Phi->getIncomingValue(i)) { 2157 LoadInst *Load = 2158 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 2159 Phi->getIncomingBlock(i)->getTerminator()); 2160 Phi->setIncomingValue(i, Load); 2161 } 2162 } 2163 } else { 2164 LoadInst *Load = 2165 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 2166 Use->replaceUsesOfWith(Def, Load); 2167 } 2168 } 2169 2170 // Emit store for the initial gc value. Store must be inserted after load, 2171 // otherwise store will be in alloca's use list and an extra load will be 2172 // inserted before it. 2173 StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, 2174 DL.getABITypeAlign(Def->getType())); 2175 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 2176 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 2177 // InvokeInst is a terminator so the store need to be inserted into its 2178 // normal destination block. 2179 BasicBlock *NormalDest = Invoke->getNormalDest(); 2180 Store->insertBefore(NormalDest->getFirstNonPHI()); 2181 } else { 2182 assert(!Inst->isTerminator() && 2183 "The only terminator that can produce a value is " 2184 "InvokeInst which is handled above."); 2185 Store->insertAfter(Inst); 2186 } 2187 } else { 2188 assert(isa<Argument>(Def)); 2189 Store->insertAfter(cast<Instruction>(Alloca)); 2190 } 2191 } 2192 2193 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 2194 "we must have the same allocas with lives"); 2195 (void) NumRematerializedValues; 2196 if (!PromotableAllocas.empty()) { 2197 // Apply mem2reg to promote alloca to SSA 2198 PromoteMemToReg(PromotableAllocas, DT); 2199 } 2200 2201 #ifndef NDEBUG 2202 for (auto &I : F.getEntryBlock()) 2203 if (isa<AllocaInst>(I)) 2204 InitialAllocaNum--; 2205 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 2206 #endif 2207 } 2208 2209 /// Implement a unique function which doesn't require we sort the input 2210 /// vector. Doing so has the effect of changing the output of a couple of 2211 /// tests in ways which make them less useful in testing fused safepoints. 2212 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 2213 SmallSet<T, 8> Seen; 2214 erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); 2215 } 2216 2217 /// Insert holders so that each Value is obviously live through the entire 2218 /// lifetime of the call. 2219 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 2220 SmallVectorImpl<CallInst *> &Holders) { 2221 if (Values.empty()) 2222 // No values to hold live, might as well not insert the empty holder 2223 return; 2224 2225 Module *M = Call->getModule(); 2226 // Use a dummy vararg function to actually hold the values live 2227 FunctionCallee Func = M->getOrInsertFunction( 2228 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 2229 if (isa<CallInst>(Call)) { 2230 // For call safepoints insert dummy calls right after safepoint 2231 Holders.push_back( 2232 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 2233 return; 2234 } 2235 // For invoke safepooints insert dummy calls both in normal and 2236 // exceptional destination blocks 2237 auto *II = cast<InvokeInst>(Call); 2238 Holders.push_back(CallInst::Create( 2239 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 2240 Holders.push_back(CallInst::Create( 2241 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 2242 } 2243 2244 static void findLiveReferences( 2245 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 2246 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records, 2247 GCStrategy *GC) { 2248 GCPtrLivenessData OriginalLivenessData; 2249 computeLiveInValues(DT, F, OriginalLivenessData, GC); 2250 for (size_t i = 0; i < records.size(); i++) { 2251 struct PartiallyConstructedSafepointRecord &info = records[i]; 2252 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info, GC); 2253 } 2254 } 2255 2256 // Helper function for the "rematerializeLiveValues". It walks use chain 2257 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 2258 // the base or a value it cannot process. Only "simple" values are processed 2259 // (currently it is GEP's and casts). The returned root is examined by the 2260 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 2261 // with all visited values. 2262 static Value* findRematerializableChainToBasePointer( 2263 SmallVectorImpl<Instruction*> &ChainToBase, 2264 Value *CurrentValue) { 2265 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 2266 ChainToBase.push_back(GEP); 2267 return findRematerializableChainToBasePointer(ChainToBase, 2268 GEP->getPointerOperand()); 2269 } 2270 2271 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 2272 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 2273 return CI; 2274 2275 ChainToBase.push_back(CI); 2276 return findRematerializableChainToBasePointer(ChainToBase, 2277 CI->getOperand(0)); 2278 } 2279 2280 // We have reached the root of the chain, which is either equal to the base or 2281 // is the first unsupported value along the use chain. 2282 return CurrentValue; 2283 } 2284 2285 // Helper function for the "rematerializeLiveValues". Compute cost of the use 2286 // chain we are going to rematerialize. 2287 static InstructionCost 2288 chainToBasePointerCost(SmallVectorImpl<Instruction *> &Chain, 2289 TargetTransformInfo &TTI) { 2290 InstructionCost Cost = 0; 2291 2292 for (Instruction *Instr : Chain) { 2293 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 2294 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 2295 "non noop cast is found during rematerialization"); 2296 2297 Type *SrcTy = CI->getOperand(0)->getType(); 2298 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, 2299 TTI::getCastContextHint(CI), 2300 TargetTransformInfo::TCK_SizeAndLatency, CI); 2301 2302 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 2303 // Cost of the address calculation 2304 Type *ValTy = GEP->getSourceElementType(); 2305 Cost += TTI.getAddressComputationCost(ValTy); 2306 2307 // And cost of the GEP itself 2308 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 2309 // allowed for the external usage) 2310 if (!GEP->hasAllConstantIndices()) 2311 Cost += 2; 2312 2313 } else { 2314 llvm_unreachable("unsupported instruction type during rematerialization"); 2315 } 2316 } 2317 2318 return Cost; 2319 } 2320 2321 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 2322 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 2323 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 2324 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 2325 return false; 2326 // Map of incoming values and their corresponding basic blocks of 2327 // OrigRootPhi. 2328 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 2329 for (unsigned i = 0; i < PhiNum; i++) 2330 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 2331 OrigRootPhi.getIncomingBlock(i); 2332 2333 // Both current and base PHIs should have same incoming values and 2334 // the same basic blocks corresponding to the incoming values. 2335 for (unsigned i = 0; i < PhiNum; i++) { 2336 auto CIVI = 2337 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2338 if (CIVI == CurrentIncomingValues.end()) 2339 return false; 2340 BasicBlock *CurrentIncomingBB = CIVI->second; 2341 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2342 return false; 2343 } 2344 return true; 2345 } 2346 2347 // Find derived pointers that can be recomputed cheap enough and fill 2348 // RematerizationCandidates with such candidates. 2349 static void 2350 findRematerializationCandidates(PointerToBaseTy PointerToBase, 2351 RematCandTy &RematerizationCandidates, 2352 TargetTransformInfo &TTI) { 2353 const unsigned int ChainLengthThreshold = 10; 2354 2355 for (auto P2B : PointerToBase) { 2356 auto *Derived = P2B.first; 2357 auto *Base = P2B.second; 2358 // Consider only derived pointers. 2359 if (Derived == Base) 2360 continue; 2361 2362 // For each live pointer find its defining chain. 2363 SmallVector<Instruction *, 3> ChainToBase; 2364 Value *RootOfChain = 2365 findRematerializableChainToBasePointer(ChainToBase, Derived); 2366 2367 // Nothing to do, or chain is too long 2368 if ( ChainToBase.size() == 0 || 2369 ChainToBase.size() > ChainLengthThreshold) 2370 continue; 2371 2372 // Handle the scenario where the RootOfChain is not equal to the 2373 // Base Value, but they are essentially the same phi values. 2374 if (RootOfChain != PointerToBase[Derived]) { 2375 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2376 PHINode *AlternateRootPhi = dyn_cast<PHINode>(PointerToBase[Derived]); 2377 if (!OrigRootPhi || !AlternateRootPhi) 2378 continue; 2379 // PHI nodes that have the same incoming values, and belonging to the same 2380 // basic blocks are essentially the same SSA value. When the original phi 2381 // has incoming values with different base pointers, the original phi is 2382 // marked as conflict, and an additional `AlternateRootPhi` with the same 2383 // incoming values get generated by the findBasePointer function. We need 2384 // to identify the newly generated AlternateRootPhi (.base version of phi) 2385 // and RootOfChain (the original phi node itself) are the same, so that we 2386 // can rematerialize the gep and casts. This is a workaround for the 2387 // deficiency in the findBasePointer algorithm. 2388 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2389 continue; 2390 } 2391 // Compute cost of this chain. 2392 InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); 2393 // TODO: We can also account for cases when we will be able to remove some 2394 // of the rematerialized values by later optimization passes. I.e if 2395 // we rematerialized several intersecting chains. Or if original values 2396 // don't have any uses besides this statepoint. 2397 2398 // Ok, there is a candidate. 2399 RematerizlizationCandidateRecord Record; 2400 Record.ChainToBase = ChainToBase; 2401 Record.RootOfChain = RootOfChain; 2402 Record.Cost = Cost; 2403 RematerizationCandidates.insert({ Derived, Record }); 2404 } 2405 } 2406 2407 // Try to rematerialize derived pointers immediately before their uses 2408 // (instead of rematerializing after every statepoint it is live through). 2409 // This can be beneficial when derived pointer is live across many 2410 // statepoints, but uses are rare. 2411 static void rematerializeLiveValuesAtUses( 2412 RematCandTy &RematerizationCandidates, 2413 MutableArrayRef<PartiallyConstructedSafepointRecord> Records, 2414 PointerToBaseTy &PointerToBase) { 2415 if (!RematDerivedAtUses) 2416 return; 2417 2418 SmallVector<Instruction *, 32> LiveValuesToBeDeleted; 2419 2420 LLVM_DEBUG(dbgs() << "Rematerialize derived pointers at uses, " 2421 << "Num statepoints: " << Records.size() << '\n'); 2422 2423 for (auto &It : RematerizationCandidates) { 2424 Instruction *Cand = cast<Instruction>(It.first); 2425 auto &Record = It.second; 2426 2427 if (Record.Cost >= RematerializationThreshold) 2428 continue; 2429 2430 if (Cand->user_empty()) 2431 continue; 2432 2433 if (Cand->hasOneUse()) 2434 if (auto *U = dyn_cast<Instruction>(Cand->getUniqueUndroppableUser())) 2435 if (U->getParent() == Cand->getParent()) 2436 continue; 2437 2438 // Rematerialization before PHI nodes is not implemented. 2439 if (llvm::any_of(Cand->users(), 2440 [](const auto *U) { return isa<PHINode>(U); })) 2441 continue; 2442 2443 LLVM_DEBUG(dbgs() << "Trying cand " << *Cand << " ... "); 2444 2445 // Count of rematerialization instructions we introduce is equal to number 2446 // of candidate uses. 2447 // Count of rematerialization instructions we eliminate is equal to number 2448 // of statepoints it is live through. 2449 // Consider transformation profitable if latter is greater than former 2450 // (in other words, we create less than eliminate). 2451 unsigned NumLiveStatepoints = llvm::count_if( 2452 Records, [Cand](const auto &R) { return R.LiveSet.contains(Cand); }); 2453 unsigned NumUses = Cand->getNumUses(); 2454 2455 LLVM_DEBUG(dbgs() << "Num uses: " << NumUses << " Num live statepoints: " 2456 << NumLiveStatepoints << " "); 2457 2458 if (NumLiveStatepoints < NumUses) { 2459 LLVM_DEBUG(dbgs() << "not profitable\n"); 2460 continue; 2461 } 2462 2463 // If rematerialization is 'free', then favor rematerialization at 2464 // uses as it generally shortens live ranges. 2465 // TODO: Short (size ==1) chains only? 2466 if (NumLiveStatepoints == NumUses && Record.Cost > 0) { 2467 LLVM_DEBUG(dbgs() << "not profitable\n"); 2468 continue; 2469 } 2470 2471 LLVM_DEBUG(dbgs() << "looks profitable\n"); 2472 2473 // ChainToBase may contain another remat candidate (as a sub chain) which 2474 // has been rewritten by now. Need to recollect chain to have up to date 2475 // value. 2476 // TODO: sort records in findRematerializationCandidates() in 2477 // decreasing chain size order? 2478 if (Record.ChainToBase.size() > 1) { 2479 Record.ChainToBase.clear(); 2480 findRematerializableChainToBasePointer(Record.ChainToBase, Cand); 2481 } 2482 2483 // Current rematerialization algorithm is very simple: we rematerialize 2484 // immediately before EVERY use, even if there are several uses in same 2485 // block or if use is local to Cand Def. The reason is that this allows 2486 // us to avoid recomputing liveness without complicated analysis: 2487 // - If we did not eliminate all uses of original Candidate, we do not 2488 // know exaclty in what BBs it is still live. 2489 // - If we rematerialize once per BB, we need to find proper insertion 2490 // place (first use in block, but after Def) and analyze if there is 2491 // statepoint between uses in the block. 2492 while (!Cand->user_empty()) { 2493 Instruction *UserI = cast<Instruction>(*Cand->user_begin()); 2494 Instruction *RematChain = rematerializeChain( 2495 Record.ChainToBase, UserI, Record.RootOfChain, PointerToBase[Cand]); 2496 UserI->replaceUsesOfWith(Cand, RematChain); 2497 PointerToBase[RematChain] = PointerToBase[Cand]; 2498 } 2499 LiveValuesToBeDeleted.push_back(Cand); 2500 } 2501 2502 LLVM_DEBUG(dbgs() << "Rematerialized " << LiveValuesToBeDeleted.size() 2503 << " derived pointers\n"); 2504 for (auto *Cand : LiveValuesToBeDeleted) { 2505 assert(Cand->use_empty() && "Unexpected user remain"); 2506 RematerizationCandidates.erase(Cand); 2507 for (auto &R : Records) { 2508 assert(!R.LiveSet.contains(Cand) || 2509 R.LiveSet.contains(PointerToBase[Cand])); 2510 R.LiveSet.remove(Cand); 2511 } 2512 } 2513 2514 // Recollect not rematerialized chains - we might have rewritten 2515 // their sub-chains. 2516 if (!LiveValuesToBeDeleted.empty()) { 2517 for (auto &P : RematerizationCandidates) { 2518 auto &R = P.second; 2519 if (R.ChainToBase.size() > 1) { 2520 R.ChainToBase.clear(); 2521 findRematerializableChainToBasePointer(R.ChainToBase, P.first); 2522 } 2523 } 2524 } 2525 } 2526 2527 // From the statepoint live set pick values that are cheaper to recompute then 2528 // to relocate. Remove this values from the live set, rematerialize them after 2529 // statepoint and record them in "Info" structure. Note that similar to 2530 // relocated values we don't do any user adjustments here. 2531 static void rematerializeLiveValues(CallBase *Call, 2532 PartiallyConstructedSafepointRecord &Info, 2533 PointerToBaseTy &PointerToBase, 2534 RematCandTy &RematerizationCandidates, 2535 TargetTransformInfo &TTI) { 2536 // Record values we are going to delete from this statepoint live set. 2537 // We can not di this in following loop due to iterator invalidation. 2538 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2539 2540 for (Value *LiveValue : Info.LiveSet) { 2541 auto It = RematerizationCandidates.find(LiveValue); 2542 if (It == RematerizationCandidates.end()) 2543 continue; 2544 2545 RematerizlizationCandidateRecord &Record = It->second; 2546 2547 InstructionCost Cost = Record.Cost; 2548 // For invokes we need to rematerialize each chain twice - for normal and 2549 // for unwind basic blocks. Model this by multiplying cost by two. 2550 if (isa<InvokeInst>(Call)) 2551 Cost *= 2; 2552 2553 // If it's too expensive - skip it. 2554 if (Cost >= RematerializationThreshold) 2555 continue; 2556 2557 // Remove value from the live set 2558 LiveValuesToBeDeleted.push_back(LiveValue); 2559 2560 // Clone instructions and record them inside "Info" structure. 2561 2562 // Different cases for calls and invokes. For invokes we need to clone 2563 // instructions both on normal and unwind path. 2564 if (isa<CallInst>(Call)) { 2565 Instruction *InsertBefore = Call->getNextNode(); 2566 assert(InsertBefore); 2567 Instruction *RematerializedValue = 2568 rematerializeChain(Record.ChainToBase, InsertBefore, 2569 Record.RootOfChain, PointerToBase[LiveValue]); 2570 Info.RematerializedValues[RematerializedValue] = LiveValue; 2571 } else { 2572 auto *Invoke = cast<InvokeInst>(Call); 2573 2574 Instruction *NormalInsertBefore = 2575 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2576 Instruction *UnwindInsertBefore = 2577 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2578 2579 Instruction *NormalRematerializedValue = 2580 rematerializeChain(Record.ChainToBase, NormalInsertBefore, 2581 Record.RootOfChain, PointerToBase[LiveValue]); 2582 Instruction *UnwindRematerializedValue = 2583 rematerializeChain(Record.ChainToBase, UnwindInsertBefore, 2584 Record.RootOfChain, PointerToBase[LiveValue]); 2585 2586 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2587 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2588 } 2589 } 2590 2591 // Remove rematerialized values from the live set. 2592 for (auto *LiveValue: LiveValuesToBeDeleted) { 2593 Info.LiveSet.remove(LiveValue); 2594 } 2595 } 2596 2597 static bool inlineGetBaseAndOffset(Function &F, 2598 SmallVectorImpl<CallInst *> &Intrinsics, 2599 DefiningValueMapTy &DVCache, 2600 IsKnownBaseMapTy &KnownBases) { 2601 auto &Context = F.getContext(); 2602 auto &DL = F.getParent()->getDataLayout(); 2603 bool Changed = false; 2604 2605 for (auto *Callsite : Intrinsics) 2606 switch (Callsite->getIntrinsicID()) { 2607 case Intrinsic::experimental_gc_get_pointer_base: { 2608 Changed = true; 2609 Value *Base = 2610 findBasePointer(Callsite->getOperand(0), DVCache, KnownBases); 2611 assert(!DVCache.count(Callsite)); 2612 Callsite->replaceAllUsesWith(Base); 2613 if (!Base->hasName()) 2614 Base->takeName(Callsite); 2615 Callsite->eraseFromParent(); 2616 break; 2617 } 2618 case Intrinsic::experimental_gc_get_pointer_offset: { 2619 Changed = true; 2620 Value *Derived = Callsite->getOperand(0); 2621 Value *Base = findBasePointer(Derived, DVCache, KnownBases); 2622 assert(!DVCache.count(Callsite)); 2623 unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); 2624 unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); 2625 IRBuilder<> Builder(Callsite); 2626 Value *BaseInt = 2627 Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), 2628 suffixed_name_or(Base, ".int", "")); 2629 Value *DerivedInt = 2630 Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), 2631 suffixed_name_or(Derived, ".int", "")); 2632 Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); 2633 Callsite->replaceAllUsesWith(Offset); 2634 Offset->takeName(Callsite); 2635 Callsite->eraseFromParent(); 2636 break; 2637 } 2638 default: 2639 llvm_unreachable("Unknown intrinsic"); 2640 } 2641 2642 return Changed; 2643 } 2644 2645 static bool insertParsePoints(Function &F, DominatorTree &DT, 2646 TargetTransformInfo &TTI, 2647 SmallVectorImpl<CallBase *> &ToUpdate, 2648 DefiningValueMapTy &DVCache, 2649 IsKnownBaseMapTy &KnownBases) { 2650 std::unique_ptr<GCStrategy> GC = findGCStrategy(F); 2651 2652 #ifndef NDEBUG 2653 // Validate the input 2654 std::set<CallBase *> Uniqued; 2655 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2656 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2657 2658 for (CallBase *Call : ToUpdate) 2659 assert(Call->getFunction() == &F); 2660 #endif 2661 2662 // When inserting gc.relocates for invokes, we need to be able to insert at 2663 // the top of the successor blocks. See the comment on 2664 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2665 // may restructure the CFG. 2666 for (CallBase *Call : ToUpdate) { 2667 auto *II = dyn_cast<InvokeInst>(Call); 2668 if (!II) 2669 continue; 2670 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2671 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2672 } 2673 2674 // A list of dummy calls added to the IR to keep various values obviously 2675 // live in the IR. We'll remove all of these when done. 2676 SmallVector<CallInst *, 64> Holders; 2677 2678 // Insert a dummy call with all of the deopt operands we'll need for the 2679 // actual safepoint insertion as arguments. This ensures reference operands 2680 // in the deopt argument list are considered live through the safepoint (and 2681 // thus makes sure they get relocated.) 2682 for (CallBase *Call : ToUpdate) { 2683 SmallVector<Value *, 64> DeoptValues; 2684 2685 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2686 assert(!isUnhandledGCPointerType(Arg->getType(), GC.get()) && 2687 "support for FCA unimplemented"); 2688 if (isHandledGCPointerType(Arg->getType(), GC.get())) 2689 DeoptValues.push_back(Arg); 2690 } 2691 2692 insertUseHolderAfter(Call, DeoptValues, Holders); 2693 } 2694 2695 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2696 2697 // A) Identify all gc pointers which are statically live at the given call 2698 // site. 2699 findLiveReferences(F, DT, ToUpdate, Records, GC.get()); 2700 2701 /// Global mapping from live pointers to a base-defining-value. 2702 PointerToBaseTy PointerToBase; 2703 2704 // B) Find the base pointers for each live pointer 2705 for (size_t i = 0; i < Records.size(); i++) { 2706 PartiallyConstructedSafepointRecord &info = Records[i]; 2707 findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases); 2708 } 2709 if (PrintBasePointers) { 2710 errs() << "Base Pairs (w/o Relocation):\n"; 2711 for (auto &Pair : PointerToBase) { 2712 errs() << " derived "; 2713 Pair.first->printAsOperand(errs(), false); 2714 errs() << " base "; 2715 Pair.second->printAsOperand(errs(), false); 2716 errs() << "\n"; 2717 ; 2718 } 2719 } 2720 2721 // The base phi insertion logic (for any safepoint) may have inserted new 2722 // instructions which are now live at some safepoint. The simplest such 2723 // example is: 2724 // loop: 2725 // phi a <-- will be a new base_phi here 2726 // safepoint 1 <-- that needs to be live here 2727 // gep a + 1 2728 // safepoint 2 2729 // br loop 2730 // We insert some dummy calls after each safepoint to definitely hold live 2731 // the base pointers which were identified for that safepoint. We'll then 2732 // ask liveness for _every_ base inserted to see what is now live. Then we 2733 // remove the dummy calls. 2734 Holders.reserve(Holders.size() + Records.size()); 2735 for (size_t i = 0; i < Records.size(); i++) { 2736 PartiallyConstructedSafepointRecord &Info = Records[i]; 2737 2738 SmallVector<Value *, 128> Bases; 2739 for (auto *Derived : Info.LiveSet) { 2740 assert(PointerToBase.count(Derived) && "Missed base for derived pointer"); 2741 Bases.push_back(PointerToBase[Derived]); 2742 } 2743 2744 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2745 } 2746 2747 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2748 // need to rerun liveness. We may *also* have inserted new defs, but that's 2749 // not the key issue. 2750 recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase, GC.get()); 2751 2752 if (PrintBasePointers) { 2753 errs() << "Base Pairs: (w/Relocation)\n"; 2754 for (auto Pair : PointerToBase) { 2755 errs() << " derived "; 2756 Pair.first->printAsOperand(errs(), false); 2757 errs() << " base "; 2758 Pair.second->printAsOperand(errs(), false); 2759 errs() << "\n"; 2760 } 2761 } 2762 2763 // It is possible that non-constant live variables have a constant base. For 2764 // example, a GEP with a variable offset from a global. In this case we can 2765 // remove it from the liveset. We already don't add constants to the liveset 2766 // because we assume they won't move at runtime and the GC doesn't need to be 2767 // informed about them. The same reasoning applies if the base is constant. 2768 // Note that the relocation placement code relies on this filtering for 2769 // correctness as it expects the base to be in the liveset, which isn't true 2770 // if the base is constant. 2771 for (auto &Info : Records) { 2772 Info.LiveSet.remove_if([&](Value *LiveV) { 2773 assert(PointerToBase.count(LiveV) && "Missed base for derived pointer"); 2774 return isa<Constant>(PointerToBase[LiveV]); 2775 }); 2776 } 2777 2778 for (CallInst *CI : Holders) 2779 CI->eraseFromParent(); 2780 2781 Holders.clear(); 2782 2783 // Compute the cost of possible re-materialization of derived pointers. 2784 RematCandTy RematerizationCandidates; 2785 findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI); 2786 2787 // In order to reduce live set of statepoint we might choose to rematerialize 2788 // some values instead of relocating them. This is purely an optimization and 2789 // does not influence correctness. 2790 // First try rematerialization at uses, then after statepoints. 2791 rematerializeLiveValuesAtUses(RematerizationCandidates, Records, 2792 PointerToBase); 2793 for (size_t i = 0; i < Records.size(); i++) 2794 rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, 2795 RematerizationCandidates, TTI); 2796 2797 // We need this to safely RAUW and delete call or invoke return values that 2798 // may themselves be live over a statepoint. For details, please see usage in 2799 // makeStatepointExplicitImpl. 2800 std::vector<DeferredReplacement> Replacements; 2801 2802 // Now run through and replace the existing statepoints with new ones with 2803 // the live variables listed. We do not yet update uses of the values being 2804 // relocated. We have references to live variables that need to 2805 // survive to the last iteration of this loop. (By construction, the 2806 // previous statepoint can not be a live variable, thus we can and remove 2807 // the old statepoint calls as we go.) 2808 for (size_t i = 0; i < Records.size(); i++) 2809 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements, 2810 PointerToBase, GC.get()); 2811 2812 ToUpdate.clear(); // prevent accident use of invalid calls. 2813 2814 for (auto &PR : Replacements) 2815 PR.doReplacement(); 2816 2817 Replacements.clear(); 2818 2819 for (auto &Info : Records) { 2820 // These live sets may contain state Value pointers, since we replaced calls 2821 // with operand bundles with calls wrapped in gc.statepoint, and some of 2822 // those calls may have been def'ing live gc pointers. Clear these out to 2823 // avoid accidentally using them. 2824 // 2825 // TODO: We should create a separate data structure that does not contain 2826 // these live sets, and migrate to using that data structure from this point 2827 // onward. 2828 Info.LiveSet.clear(); 2829 } 2830 PointerToBase.clear(); 2831 2832 // Do all the fixups of the original live variables to their relocated selves 2833 SmallVector<Value *, 128> Live; 2834 for (const PartiallyConstructedSafepointRecord &Info : Records) { 2835 // We can't simply save the live set from the original insertion. One of 2836 // the live values might be the result of a call which needs a safepoint. 2837 // That Value* no longer exists and we need to use the new gc_result. 2838 // Thankfully, the live set is embedded in the statepoint (and updated), so 2839 // we just grab that. 2840 llvm::append_range(Live, Info.StatepointToken->gc_args()); 2841 #ifndef NDEBUG 2842 // Do some basic validation checking on our liveness results before 2843 // performing relocation. Relocation can and will turn mistakes in liveness 2844 // results into non-sensical code which is must harder to debug. 2845 // TODO: It would be nice to test consistency as well 2846 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2847 "statepoint must be reachable or liveness is meaningless"); 2848 for (Value *V : Info.StatepointToken->gc_args()) { 2849 if (!isa<Instruction>(V)) 2850 // Non-instruction values trivial dominate all possible uses 2851 continue; 2852 auto *LiveInst = cast<Instruction>(V); 2853 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2854 "unreachable values should never be live"); 2855 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2856 "basic SSA liveness expectation violated by liveness analysis"); 2857 } 2858 #endif 2859 } 2860 unique_unsorted(Live); 2861 2862 #ifndef NDEBUG 2863 // Validation check 2864 for (auto *Ptr : Live) 2865 assert(isHandledGCPointerType(Ptr->getType(), GC.get()) && 2866 "must be a gc pointer type"); 2867 #endif 2868 2869 relocationViaAlloca(F, DT, Live, Records); 2870 return !Records.empty(); 2871 } 2872 2873 // List of all parameter and return attributes which must be stripped when 2874 // lowering from the abstract machine model. Note that we list attributes 2875 // here which aren't valid as return attributes, that is okay. 2876 static AttributeMask getParamAndReturnAttributesToRemove() { 2877 AttributeMask R; 2878 R.addAttribute(Attribute::Dereferenceable); 2879 R.addAttribute(Attribute::DereferenceableOrNull); 2880 R.addAttribute(Attribute::ReadNone); 2881 R.addAttribute(Attribute::ReadOnly); 2882 R.addAttribute(Attribute::WriteOnly); 2883 R.addAttribute(Attribute::NoAlias); 2884 R.addAttribute(Attribute::NoFree); 2885 return R; 2886 } 2887 2888 static void stripNonValidAttributesFromPrototype(Function &F) { 2889 LLVMContext &Ctx = F.getContext(); 2890 2891 // Intrinsics are very delicate. Lowering sometimes depends the presence 2892 // of certain attributes for correctness, but we may have also inferred 2893 // additional ones in the abstract machine model which need stripped. This 2894 // assumes that the attributes defined in Intrinsic.td are conservatively 2895 // correct for both physical and abstract model. 2896 if (Intrinsic::ID id = F.getIntrinsicID()) { 2897 F.setAttributes(Intrinsic::getAttributes(Ctx, id)); 2898 return; 2899 } 2900 2901 AttributeMask R = getParamAndReturnAttributesToRemove(); 2902 for (Argument &A : F.args()) 2903 if (isa<PointerType>(A.getType())) 2904 F.removeParamAttrs(A.getArgNo(), R); 2905 2906 if (isa<PointerType>(F.getReturnType())) 2907 F.removeRetAttrs(R); 2908 2909 for (auto Attr : FnAttrsToStrip) 2910 F.removeFnAttr(Attr); 2911 } 2912 2913 /// Certain metadata on instructions are invalid after running RS4GC. 2914 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2915 /// optimize functions. We drop such metadata on the instruction. 2916 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2917 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2918 return; 2919 // These are the attributes that are still valid on loads and stores after 2920 // RS4GC. 2921 // The metadata implying dereferenceability and noalias are (conservatively) 2922 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2923 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2924 // touch the entire heap including noalias objects. Note: The reasoning is 2925 // same as stripping the dereferenceability and noalias attributes that are 2926 // analogous to the metadata counterparts. 2927 // We also drop the invariant.load metadata on the load because that metadata 2928 // implies the address operand to the load points to memory that is never 2929 // changed once it became dereferenceable. This is no longer true after RS4GC. 2930 // Similar reasoning applies to invariant.group metadata, which applies to 2931 // loads within a group. 2932 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2933 LLVMContext::MD_range, 2934 LLVMContext::MD_alias_scope, 2935 LLVMContext::MD_nontemporal, 2936 LLVMContext::MD_nonnull, 2937 LLVMContext::MD_align, 2938 LLVMContext::MD_type}; 2939 2940 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2941 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2942 } 2943 2944 static void stripNonValidDataFromBody(Function &F) { 2945 if (F.empty()) 2946 return; 2947 2948 LLVMContext &Ctx = F.getContext(); 2949 MDBuilder Builder(Ctx); 2950 2951 // Set of invariantstart instructions that we need to remove. 2952 // Use this to avoid invalidating the instruction iterator. 2953 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2954 2955 for (Instruction &I : instructions(F)) { 2956 // invariant.start on memory location implies that the referenced memory 2957 // location is constant and unchanging. This is no longer true after 2958 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2959 // which frees the entire heap and the presence of invariant.start allows 2960 // the optimizer to sink the load of a memory location past a statepoint, 2961 // which is incorrect. 2962 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2963 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2964 InvariantStartInstructions.push_back(II); 2965 continue; 2966 } 2967 2968 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2969 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2970 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2971 } 2972 2973 stripInvalidMetadataFromInstruction(I); 2974 2975 AttributeMask R = getParamAndReturnAttributesToRemove(); 2976 if (auto *Call = dyn_cast<CallBase>(&I)) { 2977 for (int i = 0, e = Call->arg_size(); i != e; i++) 2978 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2979 Call->removeParamAttrs(i, R); 2980 if (isa<PointerType>(Call->getType())) 2981 Call->removeRetAttrs(R); 2982 } 2983 } 2984 2985 // Delete the invariant.start instructions and RAUW poison. 2986 for (auto *II : InvariantStartInstructions) { 2987 II->replaceAllUsesWith(PoisonValue::get(II->getType())); 2988 II->eraseFromParent(); 2989 } 2990 } 2991 2992 /// Looks up the GC strategy for a given function, returning null if the 2993 /// function doesn't have a GC tag. The strategy is stored in the cache. 2994 static std::unique_ptr<GCStrategy> findGCStrategy(Function &F) { 2995 if (!F.hasGC()) 2996 return nullptr; 2997 2998 return getGCStrategy(F.getGC()); 2999 } 3000 3001 /// Returns true if this function should be rewritten by this pass. The main 3002 /// point of this function is as an extension point for custom logic. 3003 static bool shouldRewriteStatepointsIn(Function &F) { 3004 if (!F.hasGC()) 3005 return false; 3006 3007 std::unique_ptr<GCStrategy> Strategy = findGCStrategy(F); 3008 3009 assert(Strategy && "GC strategy is required by function, but was not found"); 3010 3011 return Strategy->useRS4GC(); 3012 } 3013 3014 static void stripNonValidData(Module &M) { 3015 #ifndef NDEBUG 3016 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 3017 #endif 3018 3019 for (Function &F : M) 3020 stripNonValidAttributesFromPrototype(F); 3021 3022 for (Function &F : M) 3023 stripNonValidDataFromBody(F); 3024 } 3025 3026 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 3027 TargetTransformInfo &TTI, 3028 const TargetLibraryInfo &TLI) { 3029 assert(!F.isDeclaration() && !F.empty() && 3030 "need function body to rewrite statepoints in"); 3031 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 3032 3033 auto NeedsRewrite = [&TLI](Instruction &I) { 3034 if (const auto *Call = dyn_cast<CallBase>(&I)) { 3035 if (isa<GCStatepointInst>(Call)) 3036 return false; 3037 if (callsGCLeafFunction(Call, TLI)) 3038 return false; 3039 3040 // Normally it's up to the frontend to make sure that non-leaf calls also 3041 // have proper deopt state if it is required. We make an exception for 3042 // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics 3043 // these are non-leaf by default. They might be generated by the optimizer 3044 // which doesn't know how to produce a proper deopt state. So if we see a 3045 // non-leaf memcpy/memmove without deopt state just treat it as a leaf 3046 // copy and don't produce a statepoint. 3047 if (!AllowStatepointWithNoDeoptInfo && 3048 !Call->getOperandBundle(LLVMContext::OB_deopt)) { 3049 assert((isa<AtomicMemCpyInst>(Call) || isa<AtomicMemMoveInst>(Call)) && 3050 "Don't expect any other calls here!"); 3051 return false; 3052 } 3053 return true; 3054 } 3055 return false; 3056 }; 3057 3058 // Delete any unreachable statepoints so that we don't have unrewritten 3059 // statepoints surviving this pass. This makes testing easier and the 3060 // resulting IR less confusing to human readers. 3061 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 3062 bool MadeChange = removeUnreachableBlocks(F, &DTU); 3063 // Flush the Dominator Tree. 3064 DTU.getDomTree(); 3065 3066 // Gather all the statepoints which need rewritten. Be careful to only 3067 // consider those in reachable code since we need to ask dominance queries 3068 // when rewriting. We'll delete the unreachable ones in a moment. 3069 SmallVector<CallBase *, 64> ParsePointNeeded; 3070 SmallVector<CallInst *, 64> Intrinsics; 3071 for (Instruction &I : instructions(F)) { 3072 // TODO: only the ones with the flag set! 3073 if (NeedsRewrite(I)) { 3074 // NOTE removeUnreachableBlocks() is stronger than 3075 // DominatorTree::isReachableFromEntry(). In other words 3076 // removeUnreachableBlocks can remove some blocks for which 3077 // isReachableFromEntry() returns true. 3078 assert(DT.isReachableFromEntry(I.getParent()) && 3079 "no unreachable blocks expected"); 3080 ParsePointNeeded.push_back(cast<CallBase>(&I)); 3081 } 3082 if (auto *CI = dyn_cast<CallInst>(&I)) 3083 if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || 3084 CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) 3085 Intrinsics.emplace_back(CI); 3086 } 3087 3088 // Return early if no work to do. 3089 if (ParsePointNeeded.empty() && Intrinsics.empty()) 3090 return MadeChange; 3091 3092 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 3093 // These are created by LCSSA. They have the effect of increasing the size 3094 // of liveness sets for no good reason. It may be harder to do this post 3095 // insertion since relocations and base phis can confuse things. 3096 for (BasicBlock &BB : F) 3097 if (BB.getUniquePredecessor()) 3098 MadeChange |= FoldSingleEntryPHINodes(&BB); 3099 3100 // Before we start introducing relocations, we want to tweak the IR a bit to 3101 // avoid unfortunate code generation effects. The main example is that we 3102 // want to try to make sure the comparison feeding a branch is after any 3103 // safepoints. Otherwise, we end up with a comparison of pre-relocation 3104 // values feeding a branch after relocation. This is semantically correct, 3105 // but results in extra register pressure since both the pre-relocation and 3106 // post-relocation copies must be available in registers. For code without 3107 // relocations this is handled elsewhere, but teaching the scheduler to 3108 // reverse the transform we're about to do would be slightly complex. 3109 // Note: This may extend the live range of the inputs to the icmp and thus 3110 // increase the liveset of any statepoint we move over. This is profitable 3111 // as long as all statepoints are in rare blocks. If we had in-register 3112 // lowering for live values this would be a much safer transform. 3113 auto getConditionInst = [](Instruction *TI) -> Instruction * { 3114 if (auto *BI = dyn_cast<BranchInst>(TI)) 3115 if (BI->isConditional()) 3116 return dyn_cast<Instruction>(BI->getCondition()); 3117 // TODO: Extend this to handle switches 3118 return nullptr; 3119 }; 3120 for (BasicBlock &BB : F) { 3121 Instruction *TI = BB.getTerminator(); 3122 if (auto *Cond = getConditionInst(TI)) 3123 // TODO: Handle more than just ICmps here. We should be able to move 3124 // most instructions without side effects or memory access. 3125 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 3126 MadeChange = true; 3127 Cond->moveBefore(TI); 3128 } 3129 } 3130 3131 // Nasty workaround - The base computation code in the main algorithm doesn't 3132 // consider the fact that a GEP can be used to convert a scalar to a vector. 3133 // The right fix for this is to integrate GEPs into the base rewriting 3134 // algorithm properly, this is just a short term workaround to prevent 3135 // crashes by canonicalizing such GEPs into fully vector GEPs. 3136 for (Instruction &I : instructions(F)) { 3137 if (!isa<GetElementPtrInst>(I)) 3138 continue; 3139 3140 unsigned VF = 0; 3141 for (unsigned i = 0; i < I.getNumOperands(); i++) 3142 if (auto *OpndVTy = dyn_cast<VectorType>(I.getOperand(i)->getType())) { 3143 assert(VF == 0 || 3144 VF == cast<FixedVectorType>(OpndVTy)->getNumElements()); 3145 VF = cast<FixedVectorType>(OpndVTy)->getNumElements(); 3146 } 3147 3148 // It's the vector to scalar traversal through the pointer operand which 3149 // confuses base pointer rewriting, so limit ourselves to that case. 3150 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 3151 IRBuilder<> B(&I); 3152 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 3153 I.setOperand(0, Splat); 3154 MadeChange = true; 3155 } 3156 } 3157 3158 // Cache the 'defining value' relation used in the computation and 3159 // insertion of base phis and selects. This ensures that we don't insert 3160 // large numbers of duplicate base_phis. Use one cache for both 3161 // inlineGetBaseAndOffset() and insertParsePoints(). 3162 DefiningValueMapTy DVCache; 3163 3164 // Mapping between a base values and a flag indicating whether it's a known 3165 // base or not. 3166 IsKnownBaseMapTy KnownBases; 3167 3168 if (!Intrinsics.empty()) 3169 // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding 3170 // live references. 3171 MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases); 3172 3173 if (!ParsePointNeeded.empty()) 3174 MadeChange |= 3175 insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases); 3176 3177 return MadeChange; 3178 } 3179 3180 // liveness computation via standard dataflow 3181 // ------------------------------------------------------------------- 3182 3183 // TODO: Consider using bitvectors for liveness, the set of potentially 3184 // interesting values should be small and easy to pre-compute. 3185 3186 /// Compute the live-in set for the location rbegin starting from 3187 /// the live-out set of the basic block 3188 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 3189 BasicBlock::reverse_iterator End, 3190 SetVector<Value *> &LiveTmp, GCStrategy *GC) { 3191 for (auto &I : make_range(Begin, End)) { 3192 // KILL/Def - Remove this definition from LiveIn 3193 LiveTmp.remove(&I); 3194 3195 // Don't consider *uses* in PHI nodes, we handle their contribution to 3196 // predecessor blocks when we seed the LiveOut sets 3197 if (isa<PHINode>(I)) 3198 continue; 3199 3200 // USE - Add to the LiveIn set for this instruction 3201 for (Value *V : I.operands()) { 3202 assert(!isUnhandledGCPointerType(V->getType(), GC) && 3203 "support for FCA unimplemented"); 3204 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) { 3205 // The choice to exclude all things constant here is slightly subtle. 3206 // There are two independent reasons: 3207 // - We assume that things which are constant (from LLVM's definition) 3208 // do not move at runtime. For example, the address of a global 3209 // variable is fixed, even though it's contents may not be. 3210 // - Second, we can't disallow arbitrary inttoptr constants even 3211 // if the language frontend does. Optimization passes are free to 3212 // locally exploit facts without respect to global reachability. This 3213 // can create sections of code which are dynamically unreachable and 3214 // contain just about anything. (see constants.ll in tests) 3215 LiveTmp.insert(V); 3216 } 3217 } 3218 } 3219 } 3220 3221 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp, 3222 GCStrategy *GC) { 3223 for (BasicBlock *Succ : successors(BB)) { 3224 for (auto &I : *Succ) { 3225 PHINode *PN = dyn_cast<PHINode>(&I); 3226 if (!PN) 3227 break; 3228 3229 Value *V = PN->getIncomingValueForBlock(BB); 3230 assert(!isUnhandledGCPointerType(V->getType(), GC) && 3231 "support for FCA unimplemented"); 3232 if (isHandledGCPointerType(V->getType(), GC) && !isa<Constant>(V)) 3233 LiveTmp.insert(V); 3234 } 3235 } 3236 } 3237 3238 static SetVector<Value *> computeKillSet(BasicBlock *BB, GCStrategy *GC) { 3239 SetVector<Value *> KillSet; 3240 for (Instruction &I : *BB) 3241 if (isHandledGCPointerType(I.getType(), GC)) 3242 KillSet.insert(&I); 3243 return KillSet; 3244 } 3245 3246 #ifndef NDEBUG 3247 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 3248 /// validation check for the liveness computation. 3249 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 3250 Instruction *TI, bool TermOkay = false) { 3251 for (Value *V : Live) { 3252 if (auto *I = dyn_cast<Instruction>(V)) { 3253 // The terminator can be a member of the LiveOut set. LLVM's definition 3254 // of instruction dominance states that V does not dominate itself. As 3255 // such, we need to special case this to allow it. 3256 if (TermOkay && TI == I) 3257 continue; 3258 assert(DT.dominates(I, TI) && 3259 "basic SSA liveness expectation violated by liveness analysis"); 3260 } 3261 } 3262 } 3263 3264 /// Check that all the liveness sets used during the computation of liveness 3265 /// obey basic SSA properties. This is useful for finding cases where we miss 3266 /// a def. 3267 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 3268 BasicBlock &BB) { 3269 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 3270 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 3271 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 3272 } 3273 #endif 3274 3275 static void computeLiveInValues(DominatorTree &DT, Function &F, 3276 GCPtrLivenessData &Data, GCStrategy *GC) { 3277 SmallSetVector<BasicBlock *, 32> Worklist; 3278 3279 // Seed the liveness for each individual block 3280 for (BasicBlock &BB : F) { 3281 Data.KillSet[&BB] = computeKillSet(&BB, GC); 3282 Data.LiveSet[&BB].clear(); 3283 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB], GC); 3284 3285 #ifndef NDEBUG 3286 for (Value *Kill : Data.KillSet[&BB]) 3287 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 3288 #endif 3289 3290 Data.LiveOut[&BB] = SetVector<Value *>(); 3291 computeLiveOutSeed(&BB, Data.LiveOut[&BB], GC); 3292 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 3293 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 3294 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 3295 if (!Data.LiveIn[&BB].empty()) 3296 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 3297 } 3298 3299 // Propagate that liveness until stable 3300 while (!Worklist.empty()) { 3301 BasicBlock *BB = Worklist.pop_back_val(); 3302 3303 // Compute our new liveout set, then exit early if it hasn't changed despite 3304 // the contribution of our successor. 3305 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3306 const auto OldLiveOutSize = LiveOut.size(); 3307 for (BasicBlock *Succ : successors(BB)) { 3308 assert(Data.LiveIn.count(Succ)); 3309 LiveOut.set_union(Data.LiveIn[Succ]); 3310 } 3311 // assert OutLiveOut is a subset of LiveOut 3312 if (OldLiveOutSize == LiveOut.size()) { 3313 // If the sets are the same size, then we didn't actually add anything 3314 // when unioning our successors LiveIn. Thus, the LiveIn of this block 3315 // hasn't changed. 3316 continue; 3317 } 3318 Data.LiveOut[BB] = LiveOut; 3319 3320 // Apply the effects of this basic block 3321 SetVector<Value *> LiveTmp = LiveOut; 3322 LiveTmp.set_union(Data.LiveSet[BB]); 3323 LiveTmp.set_subtract(Data.KillSet[BB]); 3324 3325 assert(Data.LiveIn.count(BB)); 3326 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 3327 // assert: OldLiveIn is a subset of LiveTmp 3328 if (OldLiveIn.size() != LiveTmp.size()) { 3329 Data.LiveIn[BB] = LiveTmp; 3330 Worklist.insert(pred_begin(BB), pred_end(BB)); 3331 } 3332 } // while (!Worklist.empty()) 3333 3334 #ifndef NDEBUG 3335 // Verify our output against SSA properties. This helps catch any 3336 // missing kills during the above iteration. 3337 for (BasicBlock &BB : F) 3338 checkBasicSSA(DT, Data, BB); 3339 #endif 3340 } 3341 3342 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 3343 StatepointLiveSetTy &Out, GCStrategy *GC) { 3344 BasicBlock *BB = Inst->getParent(); 3345 3346 // Note: The copy is intentional and required 3347 assert(Data.LiveOut.count(BB)); 3348 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 3349 3350 // We want to handle the statepoint itself oddly. It's 3351 // call result is not live (normal), nor are it's arguments 3352 // (unless they're used again later). This adjustment is 3353 // specifically what we need to relocate 3354 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), LiveOut, 3355 GC); 3356 LiveOut.remove(Inst); 3357 Out.insert(LiveOut.begin(), LiveOut.end()); 3358 } 3359 3360 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 3361 CallBase *Call, 3362 PartiallyConstructedSafepointRecord &Info, 3363 PointerToBaseTy &PointerToBase, 3364 GCStrategy *GC) { 3365 StatepointLiveSetTy Updated; 3366 findLiveSetAtInst(Call, RevisedLivenessData, Updated, GC); 3367 3368 // We may have base pointers which are now live that weren't before. We need 3369 // to update the PointerToBase structure to reflect this. 3370 for (auto *V : Updated) 3371 PointerToBase.insert({ V, V }); 3372 3373 Info.LiveSet = Updated; 3374 } 3375