1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Rewrite call/invoke instructions so as to make potential relocations 10 // performed by the garbage collector explicit in the IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/iterator_range.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstIterator.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/User.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueHandle.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Local.h" 67 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 68 #include <algorithm> 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <iterator> 73 #include <set> 74 #include <string> 75 #include <utility> 76 #include <vector> 77 78 #define DEBUG_TYPE "rewrite-statepoints-for-gc" 79 80 using namespace llvm; 81 82 // Print the liveset found at the insert location 83 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, 84 cl::init(false)); 85 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, 86 cl::init(false)); 87 88 // Print out the base pointers for debugging 89 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden, 90 cl::init(false)); 91 92 // Cost threshold measuring when it is profitable to rematerialize value instead 93 // of relocating it 94 static cl::opt<unsigned> 95 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, 96 cl::init(6)); 97 98 #ifdef EXPENSIVE_CHECKS 99 static bool ClobberNonLive = true; 100 #else 101 static bool ClobberNonLive = false; 102 #endif 103 104 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live", 105 cl::location(ClobberNonLive), 106 cl::Hidden); 107 108 static cl::opt<bool> 109 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", 110 cl::Hidden, cl::init(true)); 111 112 /// The IR fed into RewriteStatepointsForGC may have had attributes and 113 /// metadata implying dereferenceability that are no longer valid/correct after 114 /// RewriteStatepointsForGC has run. This is because semantically, after 115 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire 116 /// heap. stripNonValidData (conservatively) restores 117 /// correctness by erasing all attributes in the module that externally imply 118 /// dereferenceability. Similar reasoning also applies to the noalias 119 /// attributes and metadata. gc.statepoint can touch the entire heap including 120 /// noalias objects. 121 /// Apart from attributes and metadata, we also remove instructions that imply 122 /// constant physical memory: llvm.invariant.start. 123 static void stripNonValidData(Module &M); 124 125 static bool shouldRewriteStatepointsIn(Function &F); 126 127 PreservedAnalyses RewriteStatepointsForGC::run(Module &M, 128 ModuleAnalysisManager &AM) { 129 bool Changed = false; 130 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 131 for (Function &F : M) { 132 // Nothing to do for declarations. 133 if (F.isDeclaration() || F.empty()) 134 continue; 135 136 // Policy choice says not to rewrite - the most common reason is that we're 137 // compiling code without a GCStrategy. 138 if (!shouldRewriteStatepointsIn(F)) 139 continue; 140 141 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 142 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 143 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 144 Changed |= runOnFunction(F, DT, TTI, TLI); 145 } 146 if (!Changed) 147 return PreservedAnalyses::all(); 148 149 // stripNonValidData asserts that shouldRewriteStatepointsIn 150 // returns true for at least one function in the module. Since at least 151 // one function changed, we know that the precondition is satisfied. 152 stripNonValidData(M); 153 154 PreservedAnalyses PA; 155 PA.preserve<TargetIRAnalysis>(); 156 PA.preserve<TargetLibraryAnalysis>(); 157 return PA; 158 } 159 160 namespace { 161 162 class RewriteStatepointsForGCLegacyPass : public ModulePass { 163 RewriteStatepointsForGC Impl; 164 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 168 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() { 169 initializeRewriteStatepointsForGCLegacyPassPass( 170 *PassRegistry::getPassRegistry()); 171 } 172 173 bool runOnModule(Module &M) override { 174 bool Changed = false; 175 const TargetLibraryInfo &TLI = 176 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 177 for (Function &F : M) { 178 // Nothing to do for declarations. 179 if (F.isDeclaration() || F.empty()) 180 continue; 181 182 // Policy choice says not to rewrite - the most common reason is that 183 // we're compiling code without a GCStrategy. 184 if (!shouldRewriteStatepointsIn(F)) 185 continue; 186 187 TargetTransformInfo &TTI = 188 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 189 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 190 191 Changed |= Impl.runOnFunction(F, DT, TTI, TLI); 192 } 193 194 if (!Changed) 195 return false; 196 197 // stripNonValidData asserts that shouldRewriteStatepointsIn 198 // returns true for at least one function in the module. Since at least 199 // one function changed, we know that the precondition is satisfied. 200 stripNonValidData(M); 201 return true; 202 } 203 204 void getAnalysisUsage(AnalysisUsage &AU) const override { 205 // We add and rewrite a bunch of instructions, but don't really do much 206 // else. We could in theory preserve a lot more analyses here. 207 AU.addRequired<DominatorTreeWrapperPass>(); 208 AU.addRequired<TargetTransformInfoWrapperPass>(); 209 AU.addRequired<TargetLibraryInfoWrapperPass>(); 210 } 211 }; 212 213 } // end anonymous namespace 214 215 char RewriteStatepointsForGCLegacyPass::ID = 0; 216 217 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() { 218 return new RewriteStatepointsForGCLegacyPass(); 219 } 220 221 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass, 222 "rewrite-statepoints-for-gc", 223 "Make relocations explicit at statepoints", false, false) 224 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 225 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 226 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass, 227 "rewrite-statepoints-for-gc", 228 "Make relocations explicit at statepoints", false, false) 229 230 namespace { 231 232 struct GCPtrLivenessData { 233 /// Values defined in this block. 234 MapVector<BasicBlock *, SetVector<Value *>> KillSet; 235 236 /// Values used in this block (and thus live); does not included values 237 /// killed within this block. 238 MapVector<BasicBlock *, SetVector<Value *>> LiveSet; 239 240 /// Values live into this basic block (i.e. used by any 241 /// instruction in this basic block or ones reachable from here) 242 MapVector<BasicBlock *, SetVector<Value *>> LiveIn; 243 244 /// Values live out of this basic block (i.e. live into 245 /// any successor block) 246 MapVector<BasicBlock *, SetVector<Value *>> LiveOut; 247 }; 248 249 // The type of the internal cache used inside the findBasePointers family 250 // of functions. From the callers perspective, this is an opaque type and 251 // should not be inspected. 252 // 253 // In the actual implementation this caches two relations: 254 // - The base relation itself (i.e. this pointer is based on that one) 255 // - The base defining value relation (i.e. before base_phi insertion) 256 // Generally, after the execution of a full findBasePointer call, only the 257 // base relation will remain. Internally, we add a mixture of the two 258 // types, then update all the second type to the first type 259 using DefiningValueMapTy = MapVector<Value *, Value *>; 260 using StatepointLiveSetTy = SetVector<Value *>; 261 using RematerializedValueMapTy = 262 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>; 263 264 struct PartiallyConstructedSafepointRecord { 265 /// The set of values known to be live across this safepoint 266 StatepointLiveSetTy LiveSet; 267 268 /// Mapping from live pointers to a base-defining-value 269 MapVector<Value *, Value *> PointerToBase; 270 271 /// The *new* gc.statepoint instruction itself. This produces the token 272 /// that normal path gc.relocates and the gc.result are tied to. 273 Instruction *StatepointToken; 274 275 /// Instruction to which exceptional gc relocates are attached 276 /// Makes it easier to iterate through them during relocationViaAlloca. 277 Instruction *UnwindToken; 278 279 /// Record live values we are rematerialized instead of relocating. 280 /// They are not included into 'LiveSet' field. 281 /// Maps rematerialized copy to it's original value. 282 RematerializedValueMapTy RematerializedValues; 283 }; 284 285 } // end anonymous namespace 286 287 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) { 288 Optional<OperandBundleUse> DeoptBundle = 289 Call->getOperandBundle(LLVMContext::OB_deopt); 290 291 if (!DeoptBundle.hasValue()) { 292 assert(AllowStatepointWithNoDeoptInfo && 293 "Found non-leaf call without deopt info!"); 294 return None; 295 } 296 297 return DeoptBundle.getValue().Inputs; 298 } 299 300 /// Compute the live-in set for every basic block in the function 301 static void computeLiveInValues(DominatorTree &DT, Function &F, 302 GCPtrLivenessData &Data); 303 304 /// Given results from the dataflow liveness computation, find the set of live 305 /// Values at a particular instruction. 306 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, 307 StatepointLiveSetTy &out); 308 309 // TODO: Once we can get to the GCStrategy, this becomes 310 // Optional<bool> isGCManagedPointer(const Type *Ty) const override { 311 312 static bool isGCPointerType(Type *T) { 313 if (auto *PT = dyn_cast<PointerType>(T)) 314 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our 315 // GC managed heap. We know that a pointer into this heap needs to be 316 // updated and that no other pointer does. 317 return PT->getAddressSpace() == 1; 318 return false; 319 } 320 321 // Return true if this type is one which a) is a gc pointer or contains a GC 322 // pointer and b) is of a type this code expects to encounter as a live value. 323 // (The insertion code will assert that a type which matches (a) and not (b) 324 // is not encountered.) 325 static bool isHandledGCPointerType(Type *T) { 326 // We fully support gc pointers 327 if (isGCPointerType(T)) 328 return true; 329 // We partially support vectors of gc pointers. The code will assert if it 330 // can't handle something. 331 if (auto VT = dyn_cast<VectorType>(T)) 332 if (isGCPointerType(VT->getElementType())) 333 return true; 334 return false; 335 } 336 337 #ifndef NDEBUG 338 /// Returns true if this type contains a gc pointer whether we know how to 339 /// handle that type or not. 340 static bool containsGCPtrType(Type *Ty) { 341 if (isGCPointerType(Ty)) 342 return true; 343 if (VectorType *VT = dyn_cast<VectorType>(Ty)) 344 return isGCPointerType(VT->getScalarType()); 345 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) 346 return containsGCPtrType(AT->getElementType()); 347 if (StructType *ST = dyn_cast<StructType>(Ty)) 348 return llvm::any_of(ST->elements(), containsGCPtrType); 349 return false; 350 } 351 352 // Returns true if this is a type which a) is a gc pointer or contains a GC 353 // pointer and b) is of a type which the code doesn't expect (i.e. first class 354 // aggregates). Used to trip assertions. 355 static bool isUnhandledGCPointerType(Type *Ty) { 356 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty); 357 } 358 #endif 359 360 // Return the name of the value suffixed with the provided value, or if the 361 // value didn't have a name, the default value specified. 362 static std::string suffixed_name_or(Value *V, StringRef Suffix, 363 StringRef DefaultName) { 364 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); 365 } 366 367 // Conservatively identifies any definitions which might be live at the 368 // given instruction. The analysis is performed immediately before the 369 // given instruction. Values defined by that instruction are not considered 370 // live. Values used by that instruction are considered live. 371 static void analyzeParsePointLiveness( 372 DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, 373 PartiallyConstructedSafepointRecord &Result) { 374 StatepointLiveSetTy LiveSet; 375 findLiveSetAtInst(Call, OriginalLivenessData, LiveSet); 376 377 if (PrintLiveSet) { 378 dbgs() << "Live Variables:\n"; 379 for (Value *V : LiveSet) 380 dbgs() << " " << V->getName() << " " << *V << "\n"; 381 } 382 if (PrintLiveSetSize) { 383 dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n"; 384 dbgs() << "Number live values: " << LiveSet.size() << "\n"; 385 } 386 Result.LiveSet = LiveSet; 387 } 388 389 static bool isKnownBaseResult(Value *V); 390 391 namespace { 392 393 /// A single base defining value - An immediate base defining value for an 394 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'. 395 /// For instructions which have multiple pointer [vector] inputs or that 396 /// transition between vector and scalar types, there is no immediate base 397 /// defining value. The 'base defining value' for 'Def' is the transitive 398 /// closure of this relation stopping at the first instruction which has no 399 /// immediate base defining value. The b.d.v. might itself be a base pointer, 400 /// but it can also be an arbitrary derived pointer. 401 struct BaseDefiningValueResult { 402 /// Contains the value which is the base defining value. 403 Value * const BDV; 404 405 /// True if the base defining value is also known to be an actual base 406 /// pointer. 407 const bool IsKnownBase; 408 409 BaseDefiningValueResult(Value *BDV, bool IsKnownBase) 410 : BDV(BDV), IsKnownBase(IsKnownBase) { 411 #ifndef NDEBUG 412 // Check consistency between new and old means of checking whether a BDV is 413 // a base. 414 bool MustBeBase = isKnownBaseResult(BDV); 415 assert(!MustBeBase || MustBeBase == IsKnownBase); 416 #endif 417 } 418 }; 419 420 } // end anonymous namespace 421 422 static BaseDefiningValueResult findBaseDefiningValue(Value *I); 423 424 /// Return a base defining value for the 'Index' element of the given vector 425 /// instruction 'I'. If Index is null, returns a BDV for the entire vector 426 /// 'I'. As an optimization, this method will try to determine when the 427 /// element is known to already be a base pointer. If this can be established, 428 /// the second value in the returned pair will be true. Note that either a 429 /// vector or a pointer typed value can be returned. For the former, the 430 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. 431 /// If the later, the return pointer is a BDV (or possibly a base) for the 432 /// particular element in 'I'. 433 static BaseDefiningValueResult 434 findBaseDefiningValueOfVector(Value *I) { 435 // Each case parallels findBaseDefiningValue below, see that code for 436 // detailed motivation. 437 438 if (isa<Argument>(I)) 439 // An incoming argument to the function is a base pointer 440 return BaseDefiningValueResult(I, true); 441 442 if (isa<Constant>(I)) 443 // Base of constant vector consists only of constant null pointers. 444 // For reasoning see similar case inside 'findBaseDefiningValue' function. 445 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()), 446 true); 447 448 if (isa<LoadInst>(I)) 449 return BaseDefiningValueResult(I, true); 450 451 if (isa<InsertElementInst>(I)) 452 // We don't know whether this vector contains entirely base pointers or 453 // not. To be conservatively correct, we treat it as a BDV and will 454 // duplicate code as needed to construct a parallel vector of bases. 455 return BaseDefiningValueResult(I, false); 456 457 if (isa<ShuffleVectorInst>(I)) 458 // We don't know whether this vector contains entirely base pointers or 459 // not. To be conservatively correct, we treat it as a BDV and will 460 // duplicate code as needed to construct a parallel vector of bases. 461 // TODO: There a number of local optimizations which could be applied here 462 // for particular sufflevector patterns. 463 return BaseDefiningValueResult(I, false); 464 465 // The behavior of getelementptr instructions is the same for vector and 466 // non-vector data types. 467 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 468 return findBaseDefiningValue(GEP->getPointerOperand()); 469 470 // If the pointer comes through a bitcast of a vector of pointers to 471 // a vector of another type of pointer, then look through the bitcast 472 if (auto *BC = dyn_cast<BitCastInst>(I)) 473 return findBaseDefiningValue(BC->getOperand(0)); 474 475 // We assume that functions in the source language only return base 476 // pointers. This should probably be generalized via attributes to support 477 // both source language and internal functions. 478 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 479 return BaseDefiningValueResult(I, true); 480 481 // A PHI or Select is a base defining value. The outer findBasePointer 482 // algorithm is responsible for constructing a base value for this BDV. 483 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 484 "unknown vector instruction - no base found for vector element"); 485 return BaseDefiningValueResult(I, false); 486 } 487 488 /// Helper function for findBasePointer - Will return a value which either a) 489 /// defines the base pointer for the input, b) blocks the simple search 490 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change 491 /// from pointer to vector type or back. 492 static BaseDefiningValueResult findBaseDefiningValue(Value *I) { 493 assert(I->getType()->isPtrOrPtrVectorTy() && 494 "Illegal to ask for the base pointer of a non-pointer type"); 495 496 if (I->getType()->isVectorTy()) 497 return findBaseDefiningValueOfVector(I); 498 499 if (isa<Argument>(I)) 500 // An incoming argument to the function is a base pointer 501 // We should have never reached here if this argument isn't an gc value 502 return BaseDefiningValueResult(I, true); 503 504 if (isa<Constant>(I)) { 505 // We assume that objects with a constant base (e.g. a global) can't move 506 // and don't need to be reported to the collector because they are always 507 // live. Besides global references, all kinds of constants (e.g. undef, 508 // constant expressions, null pointers) can be introduced by the inliner or 509 // the optimizer, especially on dynamically dead paths. 510 // Here we treat all of them as having single null base. By doing this we 511 // trying to avoid problems reporting various conflicts in a form of 512 // "phi (const1, const2)" or "phi (const, regular gc ptr)". 513 // See constant.ll file for relevant test cases. 514 515 return BaseDefiningValueResult( 516 ConstantPointerNull::get(cast<PointerType>(I->getType())), true); 517 } 518 519 if (CastInst *CI = dyn_cast<CastInst>(I)) { 520 Value *Def = CI->stripPointerCasts(); 521 // If stripping pointer casts changes the address space there is an 522 // addrspacecast in between. 523 assert(cast<PointerType>(Def->getType())->getAddressSpace() == 524 cast<PointerType>(CI->getType())->getAddressSpace() && 525 "unsupported addrspacecast"); 526 // If we find a cast instruction here, it means we've found a cast which is 527 // not simply a pointer cast (i.e. an inttoptr). We don't know how to 528 // handle int->ptr conversion. 529 assert(!isa<CastInst>(Def) && "shouldn't find another cast here"); 530 return findBaseDefiningValue(Def); 531 } 532 533 if (isa<LoadInst>(I)) 534 // The value loaded is an gc base itself 535 return BaseDefiningValueResult(I, true); 536 537 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 538 // The base of this GEP is the base 539 return findBaseDefiningValue(GEP->getPointerOperand()); 540 541 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 542 switch (II->getIntrinsicID()) { 543 default: 544 // fall through to general call handling 545 break; 546 case Intrinsic::experimental_gc_statepoint: 547 llvm_unreachable("statepoints don't produce pointers"); 548 case Intrinsic::experimental_gc_relocate: 549 // Rerunning safepoint insertion after safepoints are already 550 // inserted is not supported. It could probably be made to work, 551 // but why are you doing this? There's no good reason. 552 llvm_unreachable("repeat safepoint insertion is not supported"); 553 case Intrinsic::gcroot: 554 // Currently, this mechanism hasn't been extended to work with gcroot. 555 // There's no reason it couldn't be, but I haven't thought about the 556 // implications much. 557 llvm_unreachable( 558 "interaction with the gcroot mechanism is not supported"); 559 } 560 } 561 // We assume that functions in the source language only return base 562 // pointers. This should probably be generalized via attributes to support 563 // both source language and internal functions. 564 if (isa<CallInst>(I) || isa<InvokeInst>(I)) 565 return BaseDefiningValueResult(I, true); 566 567 // TODO: I have absolutely no idea how to implement this part yet. It's not 568 // necessarily hard, I just haven't really looked at it yet. 569 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); 570 571 if (isa<AtomicCmpXchgInst>(I)) 572 // A CAS is effectively a atomic store and load combined under a 573 // predicate. From the perspective of base pointers, we just treat it 574 // like a load. 575 return BaseDefiningValueResult(I, true); 576 577 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are " 578 "binary ops which don't apply to pointers"); 579 580 // The aggregate ops. Aggregates can either be in the heap or on the 581 // stack, but in either case, this is simply a field load. As a result, 582 // this is a defining definition of the base just like a load is. 583 if (isa<ExtractValueInst>(I)) 584 return BaseDefiningValueResult(I, true); 585 586 // We should never see an insert vector since that would require we be 587 // tracing back a struct value not a pointer value. 588 assert(!isa<InsertValueInst>(I) && 589 "Base pointer for a struct is meaningless"); 590 591 // An extractelement produces a base result exactly when it's input does. 592 // We may need to insert a parallel instruction to extract the appropriate 593 // element out of the base vector corresponding to the input. Given this, 594 // it's analogous to the phi and select case even though it's not a merge. 595 if (isa<ExtractElementInst>(I)) 596 // Note: There a lot of obvious peephole cases here. This are deliberately 597 // handled after the main base pointer inference algorithm to make writing 598 // test cases to exercise that code easier. 599 return BaseDefiningValueResult(I, false); 600 601 // The last two cases here don't return a base pointer. Instead, they 602 // return a value which dynamically selects from among several base 603 // derived pointers (each with it's own base potentially). It's the job of 604 // the caller to resolve these. 605 assert((isa<SelectInst>(I) || isa<PHINode>(I)) && 606 "missing instruction case in findBaseDefiningValing"); 607 return BaseDefiningValueResult(I, false); 608 } 609 610 /// Returns the base defining value for this value. 611 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) { 612 Value *&Cached = Cache[I]; 613 if (!Cached) { 614 Cached = findBaseDefiningValue(I).BDV; 615 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " 616 << Cached->getName() << "\n"); 617 } 618 assert(Cache[I] != nullptr); 619 return Cached; 620 } 621 622 /// Return a base pointer for this value if known. Otherwise, return it's 623 /// base defining value. 624 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) { 625 Value *Def = findBaseDefiningValueCached(I, Cache); 626 auto Found = Cache.find(Def); 627 if (Found != Cache.end()) { 628 // Either a base-of relation, or a self reference. Caller must check. 629 return Found->second; 630 } 631 // Only a BDV available 632 return Def; 633 } 634 635 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, 636 /// is it known to be a base pointer? Or do we need to continue searching. 637 static bool isKnownBaseResult(Value *V) { 638 if (!isa<PHINode>(V) && !isa<SelectInst>(V) && 639 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) && 640 !isa<ShuffleVectorInst>(V)) { 641 // no recursion possible 642 return true; 643 } 644 if (isa<Instruction>(V) && 645 cast<Instruction>(V)->getMetadata("is_base_value")) { 646 // This is a previously inserted base phi or select. We know 647 // that this is a base value. 648 return true; 649 } 650 651 // We need to keep searching 652 return false; 653 } 654 655 namespace { 656 657 /// Models the state of a single base defining value in the findBasePointer 658 /// algorithm for determining where a new instruction is needed to propagate 659 /// the base of this BDV. 660 class BDVState { 661 public: 662 enum Status { Unknown, Base, Conflict }; 663 664 BDVState() : BaseValue(nullptr) {} 665 666 explicit BDVState(Status Status, Value *BaseValue = nullptr) 667 : Status(Status), BaseValue(BaseValue) { 668 assert(Status != Base || BaseValue); 669 } 670 671 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {} 672 673 Status getStatus() const { return Status; } 674 Value *getBaseValue() const { return BaseValue; } 675 676 bool isBase() const { return getStatus() == Base; } 677 bool isUnknown() const { return getStatus() == Unknown; } 678 bool isConflict() const { return getStatus() == Conflict; } 679 680 bool operator==(const BDVState &Other) const { 681 return BaseValue == Other.BaseValue && Status == Other.Status; 682 } 683 684 bool operator!=(const BDVState &other) const { return !(*this == other); } 685 686 LLVM_DUMP_METHOD 687 void dump() const { 688 print(dbgs()); 689 dbgs() << '\n'; 690 } 691 692 void print(raw_ostream &OS) const { 693 switch (getStatus()) { 694 case Unknown: 695 OS << "U"; 696 break; 697 case Base: 698 OS << "B"; 699 break; 700 case Conflict: 701 OS << "C"; 702 break; 703 } 704 OS << " (" << getBaseValue() << " - " 705 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): "; 706 } 707 708 private: 709 Status Status = Unknown; 710 AssertingVH<Value> BaseValue; // Non-null only if Status == Base. 711 }; 712 713 } // end anonymous namespace 714 715 #ifndef NDEBUG 716 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { 717 State.print(OS); 718 return OS; 719 } 720 #endif 721 722 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) { 723 switch (LHS.getStatus()) { 724 case BDVState::Unknown: 725 return RHS; 726 727 case BDVState::Base: 728 assert(LHS.getBaseValue() && "can't be null"); 729 if (RHS.isUnknown()) 730 return LHS; 731 732 if (RHS.isBase()) { 733 if (LHS.getBaseValue() == RHS.getBaseValue()) { 734 assert(LHS == RHS && "equality broken!"); 735 return LHS; 736 } 737 return BDVState(BDVState::Conflict); 738 } 739 assert(RHS.isConflict() && "only three states!"); 740 return BDVState(BDVState::Conflict); 741 742 case BDVState::Conflict: 743 return LHS; 744 } 745 llvm_unreachable("only three states!"); 746 } 747 748 // Values of type BDVState form a lattice, and this function implements the meet 749 // operation. 750 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) { 751 BDVState Result = meetBDVStateImpl(LHS, RHS); 752 assert(Result == meetBDVStateImpl(RHS, LHS) && 753 "Math is wrong: meet does not commute!"); 754 return Result; 755 } 756 757 /// For a given value or instruction, figure out what base ptr its derived from. 758 /// For gc objects, this is simply itself. On success, returns a value which is 759 /// the base pointer. (This is reliable and can be used for relocation.) On 760 /// failure, returns nullptr. 761 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) { 762 Value *Def = findBaseOrBDV(I, Cache); 763 764 if (isKnownBaseResult(Def)) 765 return Def; 766 767 // Here's the rough algorithm: 768 // - For every SSA value, construct a mapping to either an actual base 769 // pointer or a PHI which obscures the base pointer. 770 // - Construct a mapping from PHI to unknown TOP state. Use an 771 // optimistic algorithm to propagate base pointer information. Lattice 772 // looks like: 773 // UNKNOWN 774 // b1 b2 b3 b4 775 // CONFLICT 776 // When algorithm terminates, all PHIs will either have a single concrete 777 // base or be in a conflict state. 778 // - For every conflict, insert a dummy PHI node without arguments. Add 779 // these to the base[Instruction] = BasePtr mapping. For every 780 // non-conflict, add the actual base. 781 // - For every conflict, add arguments for the base[a] of each input 782 // arguments. 783 // 784 // Note: A simpler form of this would be to add the conflict form of all 785 // PHIs without running the optimistic algorithm. This would be 786 // analogous to pessimistic data flow and would likely lead to an 787 // overall worse solution. 788 789 #ifndef NDEBUG 790 auto isExpectedBDVType = [](Value *BDV) { 791 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) || 792 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) || 793 isa<ShuffleVectorInst>(BDV); 794 }; 795 #endif 796 797 // Once populated, will contain a mapping from each potentially non-base BDV 798 // to a lattice value (described above) which corresponds to that BDV. 799 // We use the order of insertion (DFS over the def/use graph) to provide a 800 // stable deterministic ordering for visiting DenseMaps (which are unordered) 801 // below. This is important for deterministic compilation. 802 MapVector<Value *, BDVState> States; 803 804 // Recursively fill in all base defining values reachable from the initial 805 // one for which we don't already know a definite base value for 806 /* scope */ { 807 SmallVector<Value*, 16> Worklist; 808 Worklist.push_back(Def); 809 States.insert({Def, BDVState()}); 810 while (!Worklist.empty()) { 811 Value *Current = Worklist.pop_back_val(); 812 assert(!isKnownBaseResult(Current) && "why did it get added?"); 813 814 auto visitIncomingValue = [&](Value *InVal) { 815 Value *Base = findBaseOrBDV(InVal, Cache); 816 if (isKnownBaseResult(Base)) 817 // Known bases won't need new instructions introduced and can be 818 // ignored safely 819 return; 820 assert(isExpectedBDVType(Base) && "the only non-base values " 821 "we see should be base defining values"); 822 if (States.insert(std::make_pair(Base, BDVState())).second) 823 Worklist.push_back(Base); 824 }; 825 if (PHINode *PN = dyn_cast<PHINode>(Current)) { 826 for (Value *InVal : PN->incoming_values()) 827 visitIncomingValue(InVal); 828 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) { 829 visitIncomingValue(SI->getTrueValue()); 830 visitIncomingValue(SI->getFalseValue()); 831 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) { 832 visitIncomingValue(EE->getVectorOperand()); 833 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) { 834 visitIncomingValue(IE->getOperand(0)); // vector operand 835 visitIncomingValue(IE->getOperand(1)); // scalar operand 836 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) { 837 visitIncomingValue(SV->getOperand(0)); 838 visitIncomingValue(SV->getOperand(1)); 839 } 840 else { 841 llvm_unreachable("Unimplemented instruction case"); 842 } 843 } 844 } 845 846 #ifndef NDEBUG 847 LLVM_DEBUG(dbgs() << "States after initialization:\n"); 848 for (auto Pair : States) { 849 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 850 } 851 #endif 852 853 // Return a phi state for a base defining value. We'll generate a new 854 // base state for known bases and expect to find a cached state otherwise. 855 auto getStateForBDV = [&](Value *baseValue) { 856 if (isKnownBaseResult(baseValue)) 857 return BDVState(baseValue); 858 auto I = States.find(baseValue); 859 assert(I != States.end() && "lookup failed!"); 860 return I->second; 861 }; 862 863 bool Progress = true; 864 while (Progress) { 865 #ifndef NDEBUG 866 const size_t OldSize = States.size(); 867 #endif 868 Progress = false; 869 // We're only changing values in this loop, thus safe to keep iterators. 870 // Since this is computing a fixed point, the order of visit does not 871 // effect the result. TODO: We could use a worklist here and make this run 872 // much faster. 873 for (auto Pair : States) { 874 Value *BDV = Pair.first; 875 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 876 877 // Given an input value for the current instruction, return a BDVState 878 // instance which represents the BDV of that value. 879 auto getStateForInput = [&](Value *V) mutable { 880 Value *BDV = findBaseOrBDV(V, Cache); 881 return getStateForBDV(BDV); 882 }; 883 884 BDVState NewState; 885 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) { 886 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue())); 887 NewState = 888 meetBDVState(NewState, getStateForInput(SI->getFalseValue())); 889 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) { 890 for (Value *Val : PN->incoming_values()) 891 NewState = meetBDVState(NewState, getStateForInput(Val)); 892 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) { 893 // The 'meet' for an extractelement is slightly trivial, but it's still 894 // useful in that it drives us to conflict if our input is. 895 NewState = 896 meetBDVState(NewState, getStateForInput(EE->getVectorOperand())); 897 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){ 898 // Given there's a inherent type mismatch between the operands, will 899 // *always* produce Conflict. 900 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0))); 901 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1))); 902 } else { 903 // The only instance this does not return a Conflict is when both the 904 // vector operands are the same vector. 905 auto *SV = cast<ShuffleVectorInst>(BDV); 906 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0))); 907 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1))); 908 } 909 910 BDVState OldState = States[BDV]; 911 if (OldState != NewState) { 912 Progress = true; 913 States[BDV] = NewState; 914 } 915 } 916 917 assert(OldSize == States.size() && 918 "fixed point shouldn't be adding any new nodes to state"); 919 } 920 921 #ifndef NDEBUG 922 LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); 923 for (auto Pair : States) { 924 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); 925 } 926 #endif 927 928 // Insert Phis for all conflicts 929 // TODO: adjust naming patterns to avoid this order of iteration dependency 930 for (auto Pair : States) { 931 Instruction *I = cast<Instruction>(Pair.first); 932 BDVState State = Pair.second; 933 assert(!isKnownBaseResult(I) && "why did it get added?"); 934 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 935 936 // extractelement instructions are a bit special in that we may need to 937 // insert an extract even when we know an exact base for the instruction. 938 // The problem is that we need to convert from a vector base to a scalar 939 // base for the particular indice we're interested in. 940 if (State.isBase() && isa<ExtractElementInst>(I) && 941 isa<VectorType>(State.getBaseValue()->getType())) { 942 auto *EE = cast<ExtractElementInst>(I); 943 // TODO: In many cases, the new instruction is just EE itself. We should 944 // exploit this, but can't do it here since it would break the invariant 945 // about the BDV not being known to be a base. 946 auto *BaseInst = ExtractElementInst::Create( 947 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE); 948 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 949 States[I] = BDVState(BDVState::Base, BaseInst); 950 } 951 952 // Since we're joining a vector and scalar base, they can never be the 953 // same. As a result, we should always see insert element having reached 954 // the conflict state. 955 assert(!isa<InsertElementInst>(I) || State.isConflict()); 956 957 if (!State.isConflict()) 958 continue; 959 960 /// Create and insert a new instruction which will represent the base of 961 /// the given instruction 'I'. 962 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* { 963 if (isa<PHINode>(I)) { 964 BasicBlock *BB = I->getParent(); 965 int NumPreds = pred_size(BB); 966 assert(NumPreds > 0 && "how did we reach here"); 967 std::string Name = suffixed_name_or(I, ".base", "base_phi"); 968 return PHINode::Create(I->getType(), NumPreds, Name, I); 969 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 970 // The undef will be replaced later 971 UndefValue *Undef = UndefValue::get(SI->getType()); 972 std::string Name = suffixed_name_or(I, ".base", "base_select"); 973 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI); 974 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 975 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType()); 976 std::string Name = suffixed_name_or(I, ".base", "base_ee"); 977 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name, 978 EE); 979 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 980 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType()); 981 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType()); 982 std::string Name = suffixed_name_or(I, ".base", "base_ie"); 983 return InsertElementInst::Create(VecUndef, ScalarUndef, 984 IE->getOperand(2), Name, IE); 985 } else { 986 auto *SV = cast<ShuffleVectorInst>(I); 987 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType()); 988 std::string Name = suffixed_name_or(I, ".base", "base_sv"); 989 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2), 990 Name, SV); 991 } 992 }; 993 Instruction *BaseInst = MakeBaseInstPlaceholder(I); 994 // Add metadata marking this as a base value 995 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); 996 States[I] = BDVState(BDVState::Conflict, BaseInst); 997 } 998 999 // Returns a instruction which produces the base pointer for a given 1000 // instruction. The instruction is assumed to be an input to one of the BDVs 1001 // seen in the inference algorithm above. As such, we must either already 1002 // know it's base defining value is a base, or have inserted a new 1003 // instruction to propagate the base of it's BDV and have entered that newly 1004 // introduced instruction into the state table. In either case, we are 1005 // assured to be able to determine an instruction which produces it's base 1006 // pointer. 1007 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { 1008 Value *BDV = findBaseOrBDV(Input, Cache); 1009 Value *Base = nullptr; 1010 if (isKnownBaseResult(BDV)) { 1011 Base = BDV; 1012 } else { 1013 // Either conflict or base. 1014 assert(States.count(BDV)); 1015 Base = States[BDV].getBaseValue(); 1016 } 1017 assert(Base && "Can't be null"); 1018 // The cast is needed since base traversal may strip away bitcasts 1019 if (Base->getType() != Input->getType() && InsertPt) 1020 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt); 1021 return Base; 1022 }; 1023 1024 // Fixup all the inputs of the new PHIs. Visit order needs to be 1025 // deterministic and predictable because we're naming newly created 1026 // instructions. 1027 for (auto Pair : States) { 1028 Instruction *BDV = cast<Instruction>(Pair.first); 1029 BDVState State = Pair.second; 1030 1031 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1032 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); 1033 if (!State.isConflict()) 1034 continue; 1035 1036 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) { 1037 PHINode *PN = cast<PHINode>(BDV); 1038 unsigned NumPHIValues = PN->getNumIncomingValues(); 1039 for (unsigned i = 0; i < NumPHIValues; i++) { 1040 Value *InVal = PN->getIncomingValue(i); 1041 BasicBlock *InBB = PN->getIncomingBlock(i); 1042 1043 // If we've already seen InBB, add the same incoming value 1044 // we added for it earlier. The IR verifier requires phi 1045 // nodes with multiple entries from the same basic block 1046 // to have the same incoming value for each of those 1047 // entries. If we don't do this check here and basephi 1048 // has a different type than base, we'll end up adding two 1049 // bitcasts (and hence two distinct values) as incoming 1050 // values for the same basic block. 1051 1052 int BlockIndex = BasePHI->getBasicBlockIndex(InBB); 1053 if (BlockIndex != -1) { 1054 Value *OldBase = BasePHI->getIncomingValue(BlockIndex); 1055 BasePHI->addIncoming(OldBase, InBB); 1056 1057 #ifndef NDEBUG 1058 Value *Base = getBaseForInput(InVal, nullptr); 1059 // In essence this assert states: the only way two values 1060 // incoming from the same basic block may be different is by 1061 // being different bitcasts of the same value. A cleanup 1062 // that remains TODO is changing findBaseOrBDV to return an 1063 // llvm::Value of the correct type (and still remain pure). 1064 // This will remove the need to add bitcasts. 1065 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() && 1066 "Sanity -- findBaseOrBDV should be pure!"); 1067 #endif 1068 continue; 1069 } 1070 1071 // Find the instruction which produces the base for each input. We may 1072 // need to insert a bitcast in the incoming block. 1073 // TODO: Need to split critical edges if insertion is needed 1074 Value *Base = getBaseForInput(InVal, InBB->getTerminator()); 1075 BasePHI->addIncoming(Base, InBB); 1076 } 1077 assert(BasePHI->getNumIncomingValues() == NumPHIValues); 1078 } else if (SelectInst *BaseSI = 1079 dyn_cast<SelectInst>(State.getBaseValue())) { 1080 SelectInst *SI = cast<SelectInst>(BDV); 1081 1082 // Find the instruction which produces the base for each input. 1083 // We may need to insert a bitcast. 1084 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); 1085 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); 1086 } else if (auto *BaseEE = 1087 dyn_cast<ExtractElementInst>(State.getBaseValue())) { 1088 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand(); 1089 // Find the instruction which produces the base for each input. We may 1090 // need to insert a bitcast. 1091 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); 1092 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){ 1093 auto *BdvIE = cast<InsertElementInst>(BDV); 1094 auto UpdateOperand = [&](int OperandIdx) { 1095 Value *InVal = BdvIE->getOperand(OperandIdx); 1096 Value *Base = getBaseForInput(InVal, BaseIE); 1097 BaseIE->setOperand(OperandIdx, Base); 1098 }; 1099 UpdateOperand(0); // vector operand 1100 UpdateOperand(1); // scalar operand 1101 } else { 1102 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue()); 1103 auto *BdvSV = cast<ShuffleVectorInst>(BDV); 1104 auto UpdateOperand = [&](int OperandIdx) { 1105 Value *InVal = BdvSV->getOperand(OperandIdx); 1106 Value *Base = getBaseForInput(InVal, BaseSV); 1107 BaseSV->setOperand(OperandIdx, Base); 1108 }; 1109 UpdateOperand(0); // vector operand 1110 UpdateOperand(1); // vector operand 1111 } 1112 } 1113 1114 // Cache all of our results so we can cheaply reuse them 1115 // NOTE: This is actually two caches: one of the base defining value 1116 // relation and one of the base pointer relation! FIXME 1117 for (auto Pair : States) { 1118 auto *BDV = Pair.first; 1119 Value *Base = Pair.second.getBaseValue(); 1120 assert(BDV && Base); 1121 assert(!isKnownBaseResult(BDV) && "why did it get added?"); 1122 1123 LLVM_DEBUG( 1124 dbgs() << "Updating base value cache" 1125 << " for: " << BDV->getName() << " from: " 1126 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") 1127 << " to: " << Base->getName() << "\n"); 1128 1129 if (Cache.count(BDV)) { 1130 assert(isKnownBaseResult(Base) && 1131 "must be something we 'know' is a base pointer"); 1132 // Once we transition from the BDV relation being store in the Cache to 1133 // the base relation being stored, it must be stable 1134 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) && 1135 "base relation should be stable"); 1136 } 1137 Cache[BDV] = Base; 1138 } 1139 assert(Cache.count(Def)); 1140 return Cache[Def]; 1141 } 1142 1143 // For a set of live pointers (base and/or derived), identify the base 1144 // pointer of the object which they are derived from. This routine will 1145 // mutate the IR graph as needed to make the 'base' pointer live at the 1146 // definition site of 'derived'. This ensures that any use of 'derived' can 1147 // also use 'base'. This may involve the insertion of a number of 1148 // additional PHI nodes. 1149 // 1150 // preconditions: live is a set of pointer type Values 1151 // 1152 // side effects: may insert PHI nodes into the existing CFG, will preserve 1153 // CFG, will not remove or mutate any existing nodes 1154 // 1155 // post condition: PointerToBase contains one (derived, base) pair for every 1156 // pointer in live. Note that derived can be equal to base if the original 1157 // pointer was a base pointer. 1158 static void 1159 findBasePointers(const StatepointLiveSetTy &live, 1160 MapVector<Value *, Value *> &PointerToBase, 1161 DominatorTree *DT, DefiningValueMapTy &DVCache) { 1162 for (Value *ptr : live) { 1163 Value *base = findBasePointer(ptr, DVCache); 1164 assert(base && "failed to find base pointer"); 1165 PointerToBase[ptr] = base; 1166 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || 1167 DT->dominates(cast<Instruction>(base)->getParent(), 1168 cast<Instruction>(ptr)->getParent())) && 1169 "The base we found better dominate the derived pointer"); 1170 } 1171 } 1172 1173 /// Find the required based pointers (and adjust the live set) for the given 1174 /// parse point. 1175 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, 1176 CallBase *Call, 1177 PartiallyConstructedSafepointRecord &result) { 1178 MapVector<Value *, Value *> PointerToBase; 1179 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache); 1180 1181 if (PrintBasePointers) { 1182 errs() << "Base Pairs (w/o Relocation):\n"; 1183 for (auto &Pair : PointerToBase) { 1184 errs() << " derived "; 1185 Pair.first->printAsOperand(errs(), false); 1186 errs() << " base "; 1187 Pair.second->printAsOperand(errs(), false); 1188 errs() << "\n";; 1189 } 1190 } 1191 1192 result.PointerToBase = PointerToBase; 1193 } 1194 1195 /// Given an updated version of the dataflow liveness results, update the 1196 /// liveset and base pointer maps for the call site CS. 1197 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 1198 CallBase *Call, 1199 PartiallyConstructedSafepointRecord &result); 1200 1201 static void recomputeLiveInValues( 1202 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1203 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1204 // TODO-PERF: reuse the original liveness, then simply run the dataflow 1205 // again. The old values are still live and will help it stabilize quickly. 1206 GCPtrLivenessData RevisedLivenessData; 1207 computeLiveInValues(DT, F, RevisedLivenessData); 1208 for (size_t i = 0; i < records.size(); i++) { 1209 struct PartiallyConstructedSafepointRecord &info = records[i]; 1210 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info); 1211 } 1212 } 1213 1214 // When inserting gc.relocate and gc.result calls, we need to ensure there are 1215 // no uses of the original value / return value between the gc.statepoint and 1216 // the gc.relocate / gc.result call. One case which can arise is a phi node 1217 // starting one of the successor blocks. We also need to be able to insert the 1218 // gc.relocates only on the path which goes through the statepoint. We might 1219 // need to split an edge to make this possible. 1220 static BasicBlock * 1221 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, 1222 DominatorTree &DT) { 1223 BasicBlock *Ret = BB; 1224 if (!BB->getUniquePredecessor()) 1225 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); 1226 1227 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes 1228 // from it 1229 FoldSingleEntryPHINodes(Ret); 1230 assert(!isa<PHINode>(Ret->begin()) && 1231 "All PHI nodes should have been removed!"); 1232 1233 // At this point, we can safely insert a gc.relocate or gc.result as the first 1234 // instruction in Ret if needed. 1235 return Ret; 1236 } 1237 1238 // Create new attribute set containing only attributes which can be transferred 1239 // from original call to the safepoint. 1240 static AttributeList legalizeCallAttributes(AttributeList AL) { 1241 if (AL.isEmpty()) 1242 return AL; 1243 1244 // Remove the readonly, readnone, and statepoint function attributes. 1245 AttrBuilder FnAttrs = AL.getFnAttributes(); 1246 FnAttrs.removeAttribute(Attribute::ReadNone); 1247 FnAttrs.removeAttribute(Attribute::ReadOnly); 1248 for (Attribute A : AL.getFnAttributes()) { 1249 if (isStatepointDirectiveAttr(A)) 1250 FnAttrs.remove(A); 1251 } 1252 1253 // Just skip parameter and return attributes for now 1254 LLVMContext &Ctx = AL.getContext(); 1255 return AttributeList::get(Ctx, AttributeList::FunctionIndex, 1256 AttributeSet::get(Ctx, FnAttrs)); 1257 } 1258 1259 /// Helper function to place all gc relocates necessary for the given 1260 /// statepoint. 1261 /// Inputs: 1262 /// liveVariables - list of variables to be relocated. 1263 /// liveStart - index of the first live variable. 1264 /// basePtrs - base pointers. 1265 /// statepointToken - statepoint instruction to which relocates should be 1266 /// bound. 1267 /// Builder - Llvm IR builder to be used to construct new calls. 1268 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables, 1269 const int LiveStart, 1270 ArrayRef<Value *> BasePtrs, 1271 Instruction *StatepointToken, 1272 IRBuilder<> Builder) { 1273 if (LiveVariables.empty()) 1274 return; 1275 1276 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) { 1277 auto ValIt = llvm::find(LiveVec, Val); 1278 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); 1279 size_t Index = std::distance(LiveVec.begin(), ValIt); 1280 assert(Index < LiveVec.size() && "Bug in std::find?"); 1281 return Index; 1282 }; 1283 Module *M = StatepointToken->getModule(); 1284 1285 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose 1286 // element type is i8 addrspace(1)*). We originally generated unique 1287 // declarations for each pointer type, but this proved problematic because 1288 // the intrinsic mangling code is incomplete and fragile. Since we're moving 1289 // towards a single unified pointer type anyways, we can just cast everything 1290 // to an i8* of the right address space. A bitcast is added later to convert 1291 // gc_relocate to the actual value's type. 1292 auto getGCRelocateDecl = [&] (Type *Ty) { 1293 assert(isHandledGCPointerType(Ty)); 1294 auto AS = Ty->getScalarType()->getPointerAddressSpace(); 1295 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS); 1296 if (auto *VT = dyn_cast<VectorType>(Ty)) 1297 NewTy = VectorType::get(NewTy, VT->getNumElements()); 1298 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, 1299 {NewTy}); 1300 }; 1301 1302 // Lazily populated map from input types to the canonicalized form mentioned 1303 // in the comment above. This should probably be cached somewhere more 1304 // broadly. 1305 DenseMap<Type *, Function *> TypeToDeclMap; 1306 1307 for (unsigned i = 0; i < LiveVariables.size(); i++) { 1308 // Generate the gc.relocate call and save the result 1309 Value *BaseIdx = 1310 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i])); 1311 Value *LiveIdx = Builder.getInt32(LiveStart + i); 1312 1313 Type *Ty = LiveVariables[i]->getType(); 1314 if (!TypeToDeclMap.count(Ty)) 1315 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); 1316 Function *GCRelocateDecl = TypeToDeclMap[Ty]; 1317 1318 // only specify a debug name if we can give a useful one 1319 CallInst *Reloc = Builder.CreateCall( 1320 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, 1321 suffixed_name_or(LiveVariables[i], ".relocated", "")); 1322 // Trick CodeGen into thinking there are lots of free registers at this 1323 // fake call. 1324 Reloc->setCallingConv(CallingConv::Cold); 1325 } 1326 } 1327 1328 namespace { 1329 1330 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this 1331 /// avoids having to worry about keeping around dangling pointers to Values. 1332 class DeferredReplacement { 1333 AssertingVH<Instruction> Old; 1334 AssertingVH<Instruction> New; 1335 bool IsDeoptimize = false; 1336 1337 DeferredReplacement() = default; 1338 1339 public: 1340 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { 1341 assert(Old != New && Old && New && 1342 "Cannot RAUW equal values or to / from null!"); 1343 1344 DeferredReplacement D; 1345 D.Old = Old; 1346 D.New = New; 1347 return D; 1348 } 1349 1350 static DeferredReplacement createDelete(Instruction *ToErase) { 1351 DeferredReplacement D; 1352 D.Old = ToErase; 1353 return D; 1354 } 1355 1356 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { 1357 #ifndef NDEBUG 1358 auto *F = cast<CallInst>(Old)->getCalledFunction(); 1359 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && 1360 "Only way to construct a deoptimize deferred replacement"); 1361 #endif 1362 DeferredReplacement D; 1363 D.Old = Old; 1364 D.IsDeoptimize = true; 1365 return D; 1366 } 1367 1368 /// Does the task represented by this instance. 1369 void doReplacement() { 1370 Instruction *OldI = Old; 1371 Instruction *NewI = New; 1372 1373 assert(OldI != NewI && "Disallowed at construction?!"); 1374 assert((!IsDeoptimize || !New) && 1375 "Deoptimize intrinsics are not replaced!"); 1376 1377 Old = nullptr; 1378 New = nullptr; 1379 1380 if (NewI) 1381 OldI->replaceAllUsesWith(NewI); 1382 1383 if (IsDeoptimize) { 1384 // Note: we've inserted instructions, so the call to llvm.deoptimize may 1385 // not necessarily be followed by the matching return. 1386 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator()); 1387 new UnreachableInst(RI->getContext(), RI); 1388 RI->eraseFromParent(); 1389 } 1390 1391 OldI->eraseFromParent(); 1392 } 1393 }; 1394 1395 } // end anonymous namespace 1396 1397 static StringRef getDeoptLowering(CallBase *Call) { 1398 const char *DeoptLowering = "deopt-lowering"; 1399 if (Call->hasFnAttr(DeoptLowering)) { 1400 // FIXME: Calls have a *really* confusing interface around attributes 1401 // with values. 1402 const AttributeList &CSAS = Call->getAttributes(); 1403 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering)) 1404 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering) 1405 .getValueAsString(); 1406 Function *F = Call->getCalledFunction(); 1407 assert(F && F->hasFnAttribute(DeoptLowering)); 1408 return F->getFnAttribute(DeoptLowering).getValueAsString(); 1409 } 1410 return "live-through"; 1411 } 1412 1413 static void 1414 makeStatepointExplicitImpl(CallBase *Call, /* to replace */ 1415 const SmallVectorImpl<Value *> &BasePtrs, 1416 const SmallVectorImpl<Value *> &LiveVariables, 1417 PartiallyConstructedSafepointRecord &Result, 1418 std::vector<DeferredReplacement> &Replacements) { 1419 assert(BasePtrs.size() == LiveVariables.size()); 1420 1421 // Then go ahead and use the builder do actually do the inserts. We insert 1422 // immediately before the previous instruction under the assumption that all 1423 // arguments will be available here. We can't insert afterwards since we may 1424 // be replacing a terminator. 1425 IRBuilder<> Builder(Call); 1426 1427 ArrayRef<Value *> GCArgs(LiveVariables); 1428 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; 1429 uint32_t NumPatchBytes = 0; 1430 uint32_t Flags = uint32_t(StatepointFlags::None); 1431 1432 ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end()); 1433 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call); 1434 ArrayRef<Use> TransitionArgs; 1435 if (auto TransitionBundle = 1436 Call->getOperandBundle(LLVMContext::OB_gc_transition)) { 1437 Flags |= uint32_t(StatepointFlags::GCTransition); 1438 TransitionArgs = TransitionBundle->Inputs; 1439 } 1440 1441 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls 1442 // with a return value, we lower then as never returning calls to 1443 // __llvm_deoptimize that are followed by unreachable to get better codegen. 1444 bool IsDeoptimize = false; 1445 1446 StatepointDirectives SD = 1447 parseStatepointDirectivesFromAttrs(Call->getAttributes()); 1448 if (SD.NumPatchBytes) 1449 NumPatchBytes = *SD.NumPatchBytes; 1450 if (SD.StatepointID) 1451 StatepointID = *SD.StatepointID; 1452 1453 // Pass through the requested lowering if any. The default is live-through. 1454 StringRef DeoptLowering = getDeoptLowering(Call); 1455 if (DeoptLowering.equals("live-in")) 1456 Flags |= uint32_t(StatepointFlags::DeoptLiveIn); 1457 else { 1458 assert(DeoptLowering.equals("live-through") && "Unsupported value!"); 1459 } 1460 1461 Value *CallTarget = Call->getCalledValue(); 1462 if (Function *F = dyn_cast<Function>(CallTarget)) { 1463 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) { 1464 // Calls to llvm.experimental.deoptimize are lowered to calls to the 1465 // __llvm_deoptimize symbol. We want to resolve this now, since the 1466 // verifier does not allow taking the address of an intrinsic function. 1467 1468 SmallVector<Type *, 8> DomainTy; 1469 for (Value *Arg : CallArgs) 1470 DomainTy.push_back(Arg->getType()); 1471 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, 1472 /* isVarArg = */ false); 1473 1474 // Note: CallTarget can be a bitcast instruction of a symbol if there are 1475 // calls to @llvm.experimental.deoptimize with different argument types in 1476 // the same module. This is fine -- we assume the frontend knew what it 1477 // was doing when generating this kind of IR. 1478 CallTarget = F->getParent() 1479 ->getOrInsertFunction("__llvm_deoptimize", FTy) 1480 .getCallee(); 1481 1482 IsDeoptimize = true; 1483 } 1484 } 1485 1486 // Create the statepoint given all the arguments 1487 Instruction *Token = nullptr; 1488 if (auto *CI = dyn_cast<CallInst>(Call)) { 1489 CallInst *SPCall = Builder.CreateGCStatepointCall( 1490 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, 1491 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); 1492 1493 SPCall->setTailCallKind(CI->getTailCallKind()); 1494 SPCall->setCallingConv(CI->getCallingConv()); 1495 1496 // Currently we will fail on parameter attributes and on certain 1497 // function attributes. In case if we can handle this set of attributes - 1498 // set up function attrs directly on statepoint and return attrs later for 1499 // gc_result intrinsic. 1500 SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes())); 1501 1502 Token = SPCall; 1503 1504 // Put the following gc_result and gc_relocate calls immediately after the 1505 // the old call (which we're about to delete) 1506 assert(CI->getNextNode() && "Not a terminator, must have next!"); 1507 Builder.SetInsertPoint(CI->getNextNode()); 1508 Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); 1509 } else { 1510 auto *II = cast<InvokeInst>(Call); 1511 1512 // Insert the new invoke into the old block. We'll remove the old one in a 1513 // moment at which point this will become the new terminator for the 1514 // original block. 1515 InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( 1516 StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), 1517 II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, 1518 "statepoint_token"); 1519 1520 SPInvoke->setCallingConv(II->getCallingConv()); 1521 1522 // Currently we will fail on parameter attributes and on certain 1523 // function attributes. In case if we can handle this set of attributes - 1524 // set up function attrs directly on statepoint and return attrs later for 1525 // gc_result intrinsic. 1526 SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes())); 1527 1528 Token = SPInvoke; 1529 1530 // Generate gc relocates in exceptional path 1531 BasicBlock *UnwindBlock = II->getUnwindDest(); 1532 assert(!isa<PHINode>(UnwindBlock->begin()) && 1533 UnwindBlock->getUniquePredecessor() && 1534 "can't safely insert in this block!"); 1535 1536 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt()); 1537 Builder.SetCurrentDebugLocation(II->getDebugLoc()); 1538 1539 // Attach exceptional gc relocates to the landingpad. 1540 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); 1541 Result.UnwindToken = ExceptionalToken; 1542 1543 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1544 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken, 1545 Builder); 1546 1547 // Generate gc relocates and returns for normal block 1548 BasicBlock *NormalDest = II->getNormalDest(); 1549 assert(!isa<PHINode>(NormalDest->begin()) && 1550 NormalDest->getUniquePredecessor() && 1551 "can't safely insert in this block!"); 1552 1553 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt()); 1554 1555 // gc relocates will be generated later as if it were regular call 1556 // statepoint 1557 } 1558 assert(Token && "Should be set in one of the above branches!"); 1559 1560 if (IsDeoptimize) { 1561 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we 1562 // transform the tail-call like structure to a call to a void function 1563 // followed by unreachable to get better codegen. 1564 Replacements.push_back( 1565 DeferredReplacement::createDeoptimizeReplacement(Call)); 1566 } else { 1567 Token->setName("statepoint_token"); 1568 if (!Call->getType()->isVoidTy() && !Call->use_empty()) { 1569 StringRef Name = Call->hasName() ? Call->getName() : ""; 1570 CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); 1571 GCResult->setAttributes( 1572 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, 1573 Call->getAttributes().getRetAttributes())); 1574 1575 // We cannot RAUW or delete CS.getInstruction() because it could be in the 1576 // live set of some other safepoint, in which case that safepoint's 1577 // PartiallyConstructedSafepointRecord will hold a raw pointer to this 1578 // llvm::Instruction. Instead, we defer the replacement and deletion to 1579 // after the live sets have been made explicit in the IR, and we no longer 1580 // have raw pointers to worry about. 1581 Replacements.emplace_back( 1582 DeferredReplacement::createRAUW(Call, GCResult)); 1583 } else { 1584 Replacements.emplace_back(DeferredReplacement::createDelete(Call)); 1585 } 1586 } 1587 1588 Result.StatepointToken = Token; 1589 1590 // Second, create a gc.relocate for every live variable 1591 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx(); 1592 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder); 1593 } 1594 1595 // Replace an existing gc.statepoint with a new one and a set of gc.relocates 1596 // which make the relocations happening at this safepoint explicit. 1597 // 1598 // WARNING: Does not do any fixup to adjust users of the original live 1599 // values. That's the callers responsibility. 1600 static void 1601 makeStatepointExplicit(DominatorTree &DT, CallBase *Call, 1602 PartiallyConstructedSafepointRecord &Result, 1603 std::vector<DeferredReplacement> &Replacements) { 1604 const auto &LiveSet = Result.LiveSet; 1605 const auto &PointerToBase = Result.PointerToBase; 1606 1607 // Convert to vector for efficient cross referencing. 1608 SmallVector<Value *, 64> BaseVec, LiveVec; 1609 LiveVec.reserve(LiveSet.size()); 1610 BaseVec.reserve(LiveSet.size()); 1611 for (Value *L : LiveSet) { 1612 LiveVec.push_back(L); 1613 assert(PointerToBase.count(L)); 1614 Value *Base = PointerToBase.find(L)->second; 1615 BaseVec.push_back(Base); 1616 } 1617 assert(LiveVec.size() == BaseVec.size()); 1618 1619 // Do the actual rewriting and delete the old statepoint 1620 makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements); 1621 } 1622 1623 // Helper function for the relocationViaAlloca. 1624 // 1625 // It receives iterator to the statepoint gc relocates and emits a store to the 1626 // assigned location (via allocaMap) for the each one of them. It adds the 1627 // visited values into the visitedLiveValues set, which we will later use them 1628 // for sanity checking. 1629 static void 1630 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs, 1631 DenseMap<Value *, AllocaInst *> &AllocaMap, 1632 DenseSet<Value *> &VisitedLiveValues) { 1633 for (User *U : GCRelocs) { 1634 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U); 1635 if (!Relocate) 1636 continue; 1637 1638 Value *OriginalValue = Relocate->getDerivedPtr(); 1639 assert(AllocaMap.count(OriginalValue)); 1640 Value *Alloca = AllocaMap[OriginalValue]; 1641 1642 // Emit store into the related alloca 1643 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to 1644 // the correct type according to alloca. 1645 assert(Relocate->getNextNode() && 1646 "Should always have one since it's not a terminator"); 1647 IRBuilder<> Builder(Relocate->getNextNode()); 1648 Value *CastedRelocatedValue = 1649 Builder.CreateBitCast(Relocate, 1650 cast<AllocaInst>(Alloca)->getAllocatedType(), 1651 suffixed_name_or(Relocate, ".casted", "")); 1652 1653 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca); 1654 Store->insertAfter(cast<Instruction>(CastedRelocatedValue)); 1655 1656 #ifndef NDEBUG 1657 VisitedLiveValues.insert(OriginalValue); 1658 #endif 1659 } 1660 } 1661 1662 // Helper function for the "relocationViaAlloca". Similar to the 1663 // "insertRelocationStores" but works for rematerialized values. 1664 static void insertRematerializationStores( 1665 const RematerializedValueMapTy &RematerializedValues, 1666 DenseMap<Value *, AllocaInst *> &AllocaMap, 1667 DenseSet<Value *> &VisitedLiveValues) { 1668 for (auto RematerializedValuePair: RematerializedValues) { 1669 Instruction *RematerializedValue = RematerializedValuePair.first; 1670 Value *OriginalValue = RematerializedValuePair.second; 1671 1672 assert(AllocaMap.count(OriginalValue) && 1673 "Can not find alloca for rematerialized value"); 1674 Value *Alloca = AllocaMap[OriginalValue]; 1675 1676 StoreInst *Store = new StoreInst(RematerializedValue, Alloca); 1677 Store->insertAfter(RematerializedValue); 1678 1679 #ifndef NDEBUG 1680 VisitedLiveValues.insert(OriginalValue); 1681 #endif 1682 } 1683 } 1684 1685 /// Do all the relocation update via allocas and mem2reg 1686 static void relocationViaAlloca( 1687 Function &F, DominatorTree &DT, ArrayRef<Value *> Live, 1688 ArrayRef<PartiallyConstructedSafepointRecord> Records) { 1689 #ifndef NDEBUG 1690 // record initial number of (static) allocas; we'll check we have the same 1691 // number when we get done. 1692 int InitialAllocaNum = 0; 1693 for (Instruction &I : F.getEntryBlock()) 1694 if (isa<AllocaInst>(I)) 1695 InitialAllocaNum++; 1696 #endif 1697 1698 // TODO-PERF: change data structures, reserve 1699 DenseMap<Value *, AllocaInst *> AllocaMap; 1700 SmallVector<AllocaInst *, 200> PromotableAllocas; 1701 // Used later to chack that we have enough allocas to store all values 1702 std::size_t NumRematerializedValues = 0; 1703 PromotableAllocas.reserve(Live.size()); 1704 1705 // Emit alloca for "LiveValue" and record it in "allocaMap" and 1706 // "PromotableAllocas" 1707 const DataLayout &DL = F.getParent()->getDataLayout(); 1708 auto emitAllocaFor = [&](Value *LiveValue) { 1709 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), 1710 DL.getAllocaAddrSpace(), "", 1711 F.getEntryBlock().getFirstNonPHI()); 1712 AllocaMap[LiveValue] = Alloca; 1713 PromotableAllocas.push_back(Alloca); 1714 }; 1715 1716 // Emit alloca for each live gc pointer 1717 for (Value *V : Live) 1718 emitAllocaFor(V); 1719 1720 // Emit allocas for rematerialized values 1721 for (const auto &Info : Records) 1722 for (auto RematerializedValuePair : Info.RematerializedValues) { 1723 Value *OriginalValue = RematerializedValuePair.second; 1724 if (AllocaMap.count(OriginalValue) != 0) 1725 continue; 1726 1727 emitAllocaFor(OriginalValue); 1728 ++NumRematerializedValues; 1729 } 1730 1731 // The next two loops are part of the same conceptual operation. We need to 1732 // insert a store to the alloca after the original def and at each 1733 // redefinition. We need to insert a load before each use. These are split 1734 // into distinct loops for performance reasons. 1735 1736 // Update gc pointer after each statepoint: either store a relocated value or 1737 // null (if no relocated value was found for this gc pointer and it is not a 1738 // gc_result). This must happen before we update the statepoint with load of 1739 // alloca otherwise we lose the link between statepoint and old def. 1740 for (const auto &Info : Records) { 1741 Value *Statepoint = Info.StatepointToken; 1742 1743 // This will be used for consistency check 1744 DenseSet<Value *> VisitedLiveValues; 1745 1746 // Insert stores for normal statepoint gc relocates 1747 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); 1748 1749 // In case if it was invoke statepoint 1750 // we will insert stores for exceptional path gc relocates. 1751 if (isa<InvokeInst>(Statepoint)) { 1752 insertRelocationStores(Info.UnwindToken->users(), AllocaMap, 1753 VisitedLiveValues); 1754 } 1755 1756 // Do similar thing with rematerialized values 1757 insertRematerializationStores(Info.RematerializedValues, AllocaMap, 1758 VisitedLiveValues); 1759 1760 if (ClobberNonLive) { 1761 // As a debugging aid, pretend that an unrelocated pointer becomes null at 1762 // the gc.statepoint. This will turn some subtle GC problems into 1763 // slightly easier to debug SEGVs. Note that on large IR files with 1764 // lots of gc.statepoints this is extremely costly both memory and time 1765 // wise. 1766 SmallVector<AllocaInst *, 64> ToClobber; 1767 for (auto Pair : AllocaMap) { 1768 Value *Def = Pair.first; 1769 AllocaInst *Alloca = Pair.second; 1770 1771 // This value was relocated 1772 if (VisitedLiveValues.count(Def)) { 1773 continue; 1774 } 1775 ToClobber.push_back(Alloca); 1776 } 1777 1778 auto InsertClobbersAt = [&](Instruction *IP) { 1779 for (auto *AI : ToClobber) { 1780 auto PT = cast<PointerType>(AI->getAllocatedType()); 1781 Constant *CPN = ConstantPointerNull::get(PT); 1782 StoreInst *Store = new StoreInst(CPN, AI); 1783 Store->insertBefore(IP); 1784 } 1785 }; 1786 1787 // Insert the clobbering stores. These may get intermixed with the 1788 // gc.results and gc.relocates, but that's fine. 1789 if (auto II = dyn_cast<InvokeInst>(Statepoint)) { 1790 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt()); 1791 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt()); 1792 } else { 1793 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode()); 1794 } 1795 } 1796 } 1797 1798 // Update use with load allocas and add store for gc_relocated. 1799 for (auto Pair : AllocaMap) { 1800 Value *Def = Pair.first; 1801 AllocaInst *Alloca = Pair.second; 1802 1803 // We pre-record the uses of allocas so that we dont have to worry about 1804 // later update that changes the user information.. 1805 1806 SmallVector<Instruction *, 20> Uses; 1807 // PERF: trade a linear scan for repeated reallocation 1808 Uses.reserve(Def->getNumUses()); 1809 for (User *U : Def->users()) { 1810 if (!isa<ConstantExpr>(U)) { 1811 // If the def has a ConstantExpr use, then the def is either a 1812 // ConstantExpr use itself or null. In either case 1813 // (recursively in the first, directly in the second), the oop 1814 // it is ultimately dependent on is null and this particular 1815 // use does not need to be fixed up. 1816 Uses.push_back(cast<Instruction>(U)); 1817 } 1818 } 1819 1820 llvm::sort(Uses); 1821 auto Last = std::unique(Uses.begin(), Uses.end()); 1822 Uses.erase(Last, Uses.end()); 1823 1824 for (Instruction *Use : Uses) { 1825 if (isa<PHINode>(Use)) { 1826 PHINode *Phi = cast<PHINode>(Use); 1827 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { 1828 if (Def == Phi->getIncomingValue(i)) { 1829 LoadInst *Load = 1830 new LoadInst(Alloca->getAllocatedType(), Alloca, "", 1831 Phi->getIncomingBlock(i)->getTerminator()); 1832 Phi->setIncomingValue(i, Load); 1833 } 1834 } 1835 } else { 1836 LoadInst *Load = 1837 new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use); 1838 Use->replaceUsesOfWith(Def, Load); 1839 } 1840 } 1841 1842 // Emit store for the initial gc value. Store must be inserted after load, 1843 // otherwise store will be in alloca's use list and an extra load will be 1844 // inserted before it. 1845 StoreInst *Store = new StoreInst(Def, Alloca); 1846 if (Instruction *Inst = dyn_cast<Instruction>(Def)) { 1847 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) { 1848 // InvokeInst is a terminator so the store need to be inserted into its 1849 // normal destination block. 1850 BasicBlock *NormalDest = Invoke->getNormalDest(); 1851 Store->insertBefore(NormalDest->getFirstNonPHI()); 1852 } else { 1853 assert(!Inst->isTerminator() && 1854 "The only terminator that can produce a value is " 1855 "InvokeInst which is handled above."); 1856 Store->insertAfter(Inst); 1857 } 1858 } else { 1859 assert(isa<Argument>(Def)); 1860 Store->insertAfter(cast<Instruction>(Alloca)); 1861 } 1862 } 1863 1864 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && 1865 "we must have the same allocas with lives"); 1866 if (!PromotableAllocas.empty()) { 1867 // Apply mem2reg to promote alloca to SSA 1868 PromoteMemToReg(PromotableAllocas, DT); 1869 } 1870 1871 #ifndef NDEBUG 1872 for (auto &I : F.getEntryBlock()) 1873 if (isa<AllocaInst>(I)) 1874 InitialAllocaNum--; 1875 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); 1876 #endif 1877 } 1878 1879 /// Implement a unique function which doesn't require we sort the input 1880 /// vector. Doing so has the effect of changing the output of a couple of 1881 /// tests in ways which make them less useful in testing fused safepoints. 1882 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { 1883 SmallSet<T, 8> Seen; 1884 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }), 1885 Vec.end()); 1886 } 1887 1888 /// Insert holders so that each Value is obviously live through the entire 1889 /// lifetime of the call. 1890 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values, 1891 SmallVectorImpl<CallInst *> &Holders) { 1892 if (Values.empty()) 1893 // No values to hold live, might as well not insert the empty holder 1894 return; 1895 1896 Module *M = Call->getModule(); 1897 // Use a dummy vararg function to actually hold the values live 1898 FunctionCallee Func = M->getOrInsertFunction( 1899 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); 1900 if (isa<CallInst>(Call)) { 1901 // For call safepoints insert dummy calls right after safepoint 1902 Holders.push_back( 1903 CallInst::Create(Func, Values, "", &*++Call->getIterator())); 1904 return; 1905 } 1906 // For invoke safepooints insert dummy calls both in normal and 1907 // exceptional destination blocks 1908 auto *II = cast<InvokeInst>(Call); 1909 Holders.push_back(CallInst::Create( 1910 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt())); 1911 Holders.push_back(CallInst::Create( 1912 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt())); 1913 } 1914 1915 static void findLiveReferences( 1916 Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate, 1917 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { 1918 GCPtrLivenessData OriginalLivenessData; 1919 computeLiveInValues(DT, F, OriginalLivenessData); 1920 for (size_t i = 0; i < records.size(); i++) { 1921 struct PartiallyConstructedSafepointRecord &info = records[i]; 1922 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info); 1923 } 1924 } 1925 1926 // Helper function for the "rematerializeLiveValues". It walks use chain 1927 // starting from the "CurrentValue" until it reaches the root of the chain, i.e. 1928 // the base or a value it cannot process. Only "simple" values are processed 1929 // (currently it is GEP's and casts). The returned root is examined by the 1930 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array 1931 // with all visited values. 1932 static Value* findRematerializableChainToBasePointer( 1933 SmallVectorImpl<Instruction*> &ChainToBase, 1934 Value *CurrentValue) { 1935 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) { 1936 ChainToBase.push_back(GEP); 1937 return findRematerializableChainToBasePointer(ChainToBase, 1938 GEP->getPointerOperand()); 1939 } 1940 1941 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) { 1942 if (!CI->isNoopCast(CI->getModule()->getDataLayout())) 1943 return CI; 1944 1945 ChainToBase.push_back(CI); 1946 return findRematerializableChainToBasePointer(ChainToBase, 1947 CI->getOperand(0)); 1948 } 1949 1950 // We have reached the root of the chain, which is either equal to the base or 1951 // is the first unsupported value along the use chain. 1952 return CurrentValue; 1953 } 1954 1955 // Helper function for the "rematerializeLiveValues". Compute cost of the use 1956 // chain we are going to rematerialize. 1957 static unsigned 1958 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain, 1959 TargetTransformInfo &TTI) { 1960 unsigned Cost = 0; 1961 1962 for (Instruction *Instr : Chain) { 1963 if (CastInst *CI = dyn_cast<CastInst>(Instr)) { 1964 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) && 1965 "non noop cast is found during rematerialization"); 1966 1967 Type *SrcTy = CI->getOperand(0)->getType(); 1968 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI); 1969 1970 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) { 1971 // Cost of the address calculation 1972 Type *ValTy = GEP->getSourceElementType(); 1973 Cost += TTI.getAddressComputationCost(ValTy); 1974 1975 // And cost of the GEP itself 1976 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not 1977 // allowed for the external usage) 1978 if (!GEP->hasAllConstantIndices()) 1979 Cost += 2; 1980 1981 } else { 1982 llvm_unreachable("unsupported instruction type during rematerialization"); 1983 } 1984 } 1985 1986 return Cost; 1987 } 1988 1989 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { 1990 unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); 1991 if (PhiNum != AlternateRootPhi.getNumIncomingValues() || 1992 OrigRootPhi.getParent() != AlternateRootPhi.getParent()) 1993 return false; 1994 // Map of incoming values and their corresponding basic blocks of 1995 // OrigRootPhi. 1996 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues; 1997 for (unsigned i = 0; i < PhiNum; i++) 1998 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = 1999 OrigRootPhi.getIncomingBlock(i); 2000 2001 // Both current and base PHIs should have same incoming values and 2002 // the same basic blocks corresponding to the incoming values. 2003 for (unsigned i = 0; i < PhiNum; i++) { 2004 auto CIVI = 2005 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); 2006 if (CIVI == CurrentIncomingValues.end()) 2007 return false; 2008 BasicBlock *CurrentIncomingBB = CIVI->second; 2009 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) 2010 return false; 2011 } 2012 return true; 2013 } 2014 2015 // From the statepoint live set pick values that are cheaper to recompute then 2016 // to relocate. Remove this values from the live set, rematerialize them after 2017 // statepoint and record them in "Info" structure. Note that similar to 2018 // relocated values we don't do any user adjustments here. 2019 static void rematerializeLiveValues(CallBase *Call, 2020 PartiallyConstructedSafepointRecord &Info, 2021 TargetTransformInfo &TTI) { 2022 const unsigned int ChainLengthThreshold = 10; 2023 2024 // Record values we are going to delete from this statepoint live set. 2025 // We can not di this in following loop due to iterator invalidation. 2026 SmallVector<Value *, 32> LiveValuesToBeDeleted; 2027 2028 for (Value *LiveValue: Info.LiveSet) { 2029 // For each live pointer find its defining chain 2030 SmallVector<Instruction *, 3> ChainToBase; 2031 assert(Info.PointerToBase.count(LiveValue)); 2032 Value *RootOfChain = 2033 findRematerializableChainToBasePointer(ChainToBase, 2034 LiveValue); 2035 2036 // Nothing to do, or chain is too long 2037 if ( ChainToBase.size() == 0 || 2038 ChainToBase.size() > ChainLengthThreshold) 2039 continue; 2040 2041 // Handle the scenario where the RootOfChain is not equal to the 2042 // Base Value, but they are essentially the same phi values. 2043 if (RootOfChain != Info.PointerToBase[LiveValue]) { 2044 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain); 2045 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]); 2046 if (!OrigRootPhi || !AlternateRootPhi) 2047 continue; 2048 // PHI nodes that have the same incoming values, and belonging to the same 2049 // basic blocks are essentially the same SSA value. When the original phi 2050 // has incoming values with different base pointers, the original phi is 2051 // marked as conflict, and an additional `AlternateRootPhi` with the same 2052 // incoming values get generated by the findBasePointer function. We need 2053 // to identify the newly generated AlternateRootPhi (.base version of phi) 2054 // and RootOfChain (the original phi node itself) are the same, so that we 2055 // can rematerialize the gep and casts. This is a workaround for the 2056 // deficiency in the findBasePointer algorithm. 2057 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) 2058 continue; 2059 // Now that the phi nodes are proved to be the same, assert that 2060 // findBasePointer's newly generated AlternateRootPhi is present in the 2061 // liveset of the call. 2062 assert(Info.LiveSet.count(AlternateRootPhi)); 2063 } 2064 // Compute cost of this chain 2065 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI); 2066 // TODO: We can also account for cases when we will be able to remove some 2067 // of the rematerialized values by later optimization passes. I.e if 2068 // we rematerialized several intersecting chains. Or if original values 2069 // don't have any uses besides this statepoint. 2070 2071 // For invokes we need to rematerialize each chain twice - for normal and 2072 // for unwind basic blocks. Model this by multiplying cost by two. 2073 if (isa<InvokeInst>(Call)) { 2074 Cost *= 2; 2075 } 2076 // If it's too expensive - skip it 2077 if (Cost >= RematerializationThreshold) 2078 continue; 2079 2080 // Remove value from the live set 2081 LiveValuesToBeDeleted.push_back(LiveValue); 2082 2083 // Clone instructions and record them inside "Info" structure 2084 2085 // Walk backwards to visit top-most instructions first 2086 std::reverse(ChainToBase.begin(), ChainToBase.end()); 2087 2088 // Utility function which clones all instructions from "ChainToBase" 2089 // and inserts them before "InsertBefore". Returns rematerialized value 2090 // which should be used after statepoint. 2091 auto rematerializeChain = [&ChainToBase]( 2092 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { 2093 Instruction *LastClonedValue = nullptr; 2094 Instruction *LastValue = nullptr; 2095 for (Instruction *Instr: ChainToBase) { 2096 // Only GEP's and casts are supported as we need to be careful to not 2097 // introduce any new uses of pointers not in the liveset. 2098 // Note that it's fine to introduce new uses of pointers which were 2099 // otherwise not used after this statepoint. 2100 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr)); 2101 2102 Instruction *ClonedValue = Instr->clone(); 2103 ClonedValue->insertBefore(InsertBefore); 2104 ClonedValue->setName(Instr->getName() + ".remat"); 2105 2106 // If it is not first instruction in the chain then it uses previously 2107 // cloned value. We should update it to use cloned value. 2108 if (LastClonedValue) { 2109 assert(LastValue); 2110 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); 2111 #ifndef NDEBUG 2112 for (auto OpValue : ClonedValue->operand_values()) { 2113 // Assert that cloned instruction does not use any instructions from 2114 // this chain other than LastClonedValue 2115 assert(!is_contained(ChainToBase, OpValue) && 2116 "incorrect use in rematerialization chain"); 2117 // Assert that the cloned instruction does not use the RootOfChain 2118 // or the AlternateLiveBase. 2119 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); 2120 } 2121 #endif 2122 } else { 2123 // For the first instruction, replace the use of unrelocated base i.e. 2124 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the 2125 // live set. They have been proved to be the same PHI nodes. Note 2126 // that the *only* use of the RootOfChain in the ChainToBase list is 2127 // the first Value in the list. 2128 if (RootOfChain != AlternateLiveBase) 2129 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); 2130 } 2131 2132 LastClonedValue = ClonedValue; 2133 LastValue = Instr; 2134 } 2135 assert(LastClonedValue); 2136 return LastClonedValue; 2137 }; 2138 2139 // Different cases for calls and invokes. For invokes we need to clone 2140 // instructions both on normal and unwind path. 2141 if (isa<CallInst>(Call)) { 2142 Instruction *InsertBefore = Call->getNextNode(); 2143 assert(InsertBefore); 2144 Instruction *RematerializedValue = rematerializeChain( 2145 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2146 Info.RematerializedValues[RematerializedValue] = LiveValue; 2147 } else { 2148 auto *Invoke = cast<InvokeInst>(Call); 2149 2150 Instruction *NormalInsertBefore = 2151 &*Invoke->getNormalDest()->getFirstInsertionPt(); 2152 Instruction *UnwindInsertBefore = 2153 &*Invoke->getUnwindDest()->getFirstInsertionPt(); 2154 2155 Instruction *NormalRematerializedValue = rematerializeChain( 2156 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2157 Instruction *UnwindRematerializedValue = rematerializeChain( 2158 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]); 2159 2160 Info.RematerializedValues[NormalRematerializedValue] = LiveValue; 2161 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; 2162 } 2163 } 2164 2165 // Remove rematerializaed values from the live set 2166 for (auto LiveValue: LiveValuesToBeDeleted) { 2167 Info.LiveSet.remove(LiveValue); 2168 } 2169 } 2170 2171 static bool insertParsePoints(Function &F, DominatorTree &DT, 2172 TargetTransformInfo &TTI, 2173 SmallVectorImpl<CallBase *> &ToUpdate) { 2174 #ifndef NDEBUG 2175 // sanity check the input 2176 std::set<CallBase *> Uniqued; 2177 Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); 2178 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); 2179 2180 for (CallBase *Call : ToUpdate) 2181 assert(Call->getFunction() == &F); 2182 #endif 2183 2184 // When inserting gc.relocates for invokes, we need to be able to insert at 2185 // the top of the successor blocks. See the comment on 2186 // normalForInvokeSafepoint on exactly what is needed. Note that this step 2187 // may restructure the CFG. 2188 for (CallBase *Call : ToUpdate) { 2189 auto *II = dyn_cast<InvokeInst>(Call); 2190 if (!II) 2191 continue; 2192 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); 2193 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); 2194 } 2195 2196 // A list of dummy calls added to the IR to keep various values obviously 2197 // live in the IR. We'll remove all of these when done. 2198 SmallVector<CallInst *, 64> Holders; 2199 2200 // Insert a dummy call with all of the deopt operands we'll need for the 2201 // actual safepoint insertion as arguments. This ensures reference operands 2202 // in the deopt argument list are considered live through the safepoint (and 2203 // thus makes sure they get relocated.) 2204 for (CallBase *Call : ToUpdate) { 2205 SmallVector<Value *, 64> DeoptValues; 2206 2207 for (Value *Arg : GetDeoptBundleOperands(Call)) { 2208 assert(!isUnhandledGCPointerType(Arg->getType()) && 2209 "support for FCA unimplemented"); 2210 if (isHandledGCPointerType(Arg->getType())) 2211 DeoptValues.push_back(Arg); 2212 } 2213 2214 insertUseHolderAfter(Call, DeoptValues, Holders); 2215 } 2216 2217 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size()); 2218 2219 // A) Identify all gc pointers which are statically live at the given call 2220 // site. 2221 findLiveReferences(F, DT, ToUpdate, Records); 2222 2223 // B) Find the base pointers for each live pointer 2224 /* scope for caching */ { 2225 // Cache the 'defining value' relation used in the computation and 2226 // insertion of base phis and selects. This ensures that we don't insert 2227 // large numbers of duplicate base_phis. 2228 DefiningValueMapTy DVCache; 2229 2230 for (size_t i = 0; i < Records.size(); i++) { 2231 PartiallyConstructedSafepointRecord &info = Records[i]; 2232 findBasePointers(DT, DVCache, ToUpdate[i], info); 2233 } 2234 } // end of cache scope 2235 2236 // The base phi insertion logic (for any safepoint) may have inserted new 2237 // instructions which are now live at some safepoint. The simplest such 2238 // example is: 2239 // loop: 2240 // phi a <-- will be a new base_phi here 2241 // safepoint 1 <-- that needs to be live here 2242 // gep a + 1 2243 // safepoint 2 2244 // br loop 2245 // We insert some dummy calls after each safepoint to definitely hold live 2246 // the base pointers which were identified for that safepoint. We'll then 2247 // ask liveness for _every_ base inserted to see what is now live. Then we 2248 // remove the dummy calls. 2249 Holders.reserve(Holders.size() + Records.size()); 2250 for (size_t i = 0; i < Records.size(); i++) { 2251 PartiallyConstructedSafepointRecord &Info = Records[i]; 2252 2253 SmallVector<Value *, 128> Bases; 2254 for (auto Pair : Info.PointerToBase) 2255 Bases.push_back(Pair.second); 2256 2257 insertUseHolderAfter(ToUpdate[i], Bases, Holders); 2258 } 2259 2260 // By selecting base pointers, we've effectively inserted new uses. Thus, we 2261 // need to rerun liveness. We may *also* have inserted new defs, but that's 2262 // not the key issue. 2263 recomputeLiveInValues(F, DT, ToUpdate, Records); 2264 2265 if (PrintBasePointers) { 2266 for (auto &Info : Records) { 2267 errs() << "Base Pairs: (w/Relocation)\n"; 2268 for (auto Pair : Info.PointerToBase) { 2269 errs() << " derived "; 2270 Pair.first->printAsOperand(errs(), false); 2271 errs() << " base "; 2272 Pair.second->printAsOperand(errs(), false); 2273 errs() << "\n"; 2274 } 2275 } 2276 } 2277 2278 // It is possible that non-constant live variables have a constant base. For 2279 // example, a GEP with a variable offset from a global. In this case we can 2280 // remove it from the liveset. We already don't add constants to the liveset 2281 // because we assume they won't move at runtime and the GC doesn't need to be 2282 // informed about them. The same reasoning applies if the base is constant. 2283 // Note that the relocation placement code relies on this filtering for 2284 // correctness as it expects the base to be in the liveset, which isn't true 2285 // if the base is constant. 2286 for (auto &Info : Records) 2287 for (auto &BasePair : Info.PointerToBase) 2288 if (isa<Constant>(BasePair.second)) 2289 Info.LiveSet.remove(BasePair.first); 2290 2291 for (CallInst *CI : Holders) 2292 CI->eraseFromParent(); 2293 2294 Holders.clear(); 2295 2296 // In order to reduce live set of statepoint we might choose to rematerialize 2297 // some values instead of relocating them. This is purely an optimization and 2298 // does not influence correctness. 2299 for (size_t i = 0; i < Records.size(); i++) 2300 rematerializeLiveValues(ToUpdate[i], Records[i], TTI); 2301 2302 // We need this to safely RAUW and delete call or invoke return values that 2303 // may themselves be live over a statepoint. For details, please see usage in 2304 // makeStatepointExplicitImpl. 2305 std::vector<DeferredReplacement> Replacements; 2306 2307 // Now run through and replace the existing statepoints with new ones with 2308 // the live variables listed. We do not yet update uses of the values being 2309 // relocated. We have references to live variables that need to 2310 // survive to the last iteration of this loop. (By construction, the 2311 // previous statepoint can not be a live variable, thus we can and remove 2312 // the old statepoint calls as we go.) 2313 for (size_t i = 0; i < Records.size(); i++) 2314 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements); 2315 2316 ToUpdate.clear(); // prevent accident use of invalid calls. 2317 2318 for (auto &PR : Replacements) 2319 PR.doReplacement(); 2320 2321 Replacements.clear(); 2322 2323 for (auto &Info : Records) { 2324 // These live sets may contain state Value pointers, since we replaced calls 2325 // with operand bundles with calls wrapped in gc.statepoint, and some of 2326 // those calls may have been def'ing live gc pointers. Clear these out to 2327 // avoid accidentally using them. 2328 // 2329 // TODO: We should create a separate data structure that does not contain 2330 // these live sets, and migrate to using that data structure from this point 2331 // onward. 2332 Info.LiveSet.clear(); 2333 Info.PointerToBase.clear(); 2334 } 2335 2336 // Do all the fixups of the original live variables to their relocated selves 2337 SmallVector<Value *, 128> Live; 2338 for (size_t i = 0; i < Records.size(); i++) { 2339 PartiallyConstructedSafepointRecord &Info = Records[i]; 2340 2341 // We can't simply save the live set from the original insertion. One of 2342 // the live values might be the result of a call which needs a safepoint. 2343 // That Value* no longer exists and we need to use the new gc_result. 2344 // Thankfully, the live set is embedded in the statepoint (and updated), so 2345 // we just grab that. 2346 Statepoint Statepoint(Info.StatepointToken); 2347 Live.insert(Live.end(), Statepoint.gc_args_begin(), 2348 Statepoint.gc_args_end()); 2349 #ifndef NDEBUG 2350 // Do some basic sanity checks on our liveness results before performing 2351 // relocation. Relocation can and will turn mistakes in liveness results 2352 // into non-sensical code which is must harder to debug. 2353 // TODO: It would be nice to test consistency as well 2354 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && 2355 "statepoint must be reachable or liveness is meaningless"); 2356 for (Value *V : Statepoint.gc_args()) { 2357 if (!isa<Instruction>(V)) 2358 // Non-instruction values trivial dominate all possible uses 2359 continue; 2360 auto *LiveInst = cast<Instruction>(V); 2361 assert(DT.isReachableFromEntry(LiveInst->getParent()) && 2362 "unreachable values should never be live"); 2363 assert(DT.dominates(LiveInst, Info.StatepointToken) && 2364 "basic SSA liveness expectation violated by liveness analysis"); 2365 } 2366 #endif 2367 } 2368 unique_unsorted(Live); 2369 2370 #ifndef NDEBUG 2371 // sanity check 2372 for (auto *Ptr : Live) 2373 assert(isHandledGCPointerType(Ptr->getType()) && 2374 "must be a gc pointer type"); 2375 #endif 2376 2377 relocationViaAlloca(F, DT, Live, Records); 2378 return !Records.empty(); 2379 } 2380 2381 // Handles both return values and arguments for Functions and calls. 2382 template <typename AttrHolder> 2383 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH, 2384 unsigned Index) { 2385 AttrBuilder R; 2386 if (AH.getDereferenceableBytes(Index)) 2387 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable, 2388 AH.getDereferenceableBytes(Index))); 2389 if (AH.getDereferenceableOrNullBytes(Index)) 2390 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull, 2391 AH.getDereferenceableOrNullBytes(Index))); 2392 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias)) 2393 R.addAttribute(Attribute::NoAlias); 2394 2395 if (!R.empty()) 2396 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R)); 2397 } 2398 2399 static void stripNonValidAttributesFromPrototype(Function &F) { 2400 LLVMContext &Ctx = F.getContext(); 2401 2402 for (Argument &A : F.args()) 2403 if (isa<PointerType>(A.getType())) 2404 RemoveNonValidAttrAtIndex(Ctx, F, 2405 A.getArgNo() + AttributeList::FirstArgIndex); 2406 2407 if (isa<PointerType>(F.getReturnType())) 2408 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex); 2409 } 2410 2411 /// Certain metadata on instructions are invalid after running RS4GC. 2412 /// Optimizations that run after RS4GC can incorrectly use this metadata to 2413 /// optimize functions. We drop such metadata on the instruction. 2414 static void stripInvalidMetadataFromInstruction(Instruction &I) { 2415 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 2416 return; 2417 // These are the attributes that are still valid on loads and stores after 2418 // RS4GC. 2419 // The metadata implying dereferenceability and noalias are (conservatively) 2420 // dropped. This is because semantically, after RewriteStatepointsForGC runs, 2421 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can 2422 // touch the entire heap including noalias objects. Note: The reasoning is 2423 // same as stripping the dereferenceability and noalias attributes that are 2424 // analogous to the metadata counterparts. 2425 // We also drop the invariant.load metadata on the load because that metadata 2426 // implies the address operand to the load points to memory that is never 2427 // changed once it became dereferenceable. This is no longer true after RS4GC. 2428 // Similar reasoning applies to invariant.group metadata, which applies to 2429 // loads within a group. 2430 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, 2431 LLVMContext::MD_range, 2432 LLVMContext::MD_alias_scope, 2433 LLVMContext::MD_nontemporal, 2434 LLVMContext::MD_nonnull, 2435 LLVMContext::MD_align, 2436 LLVMContext::MD_type}; 2437 2438 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. 2439 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); 2440 } 2441 2442 static void stripNonValidDataFromBody(Function &F) { 2443 if (F.empty()) 2444 return; 2445 2446 LLVMContext &Ctx = F.getContext(); 2447 MDBuilder Builder(Ctx); 2448 2449 // Set of invariantstart instructions that we need to remove. 2450 // Use this to avoid invalidating the instruction iterator. 2451 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions; 2452 2453 for (Instruction &I : instructions(F)) { 2454 // invariant.start on memory location implies that the referenced memory 2455 // location is constant and unchanging. This is no longer true after 2456 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint 2457 // which frees the entire heap and the presence of invariant.start allows 2458 // the optimizer to sink the load of a memory location past a statepoint, 2459 // which is incorrect. 2460 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 2461 if (II->getIntrinsicID() == Intrinsic::invariant_start) { 2462 InvariantStartInstructions.push_back(II); 2463 continue; 2464 } 2465 2466 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { 2467 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); 2468 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); 2469 } 2470 2471 stripInvalidMetadataFromInstruction(I); 2472 2473 if (auto *Call = dyn_cast<CallBase>(&I)) { 2474 for (int i = 0, e = Call->arg_size(); i != e; i++) 2475 if (isa<PointerType>(Call->getArgOperand(i)->getType())) 2476 RemoveNonValidAttrAtIndex(Ctx, *Call, 2477 i + AttributeList::FirstArgIndex); 2478 if (isa<PointerType>(Call->getType())) 2479 RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex); 2480 } 2481 } 2482 2483 // Delete the invariant.start instructions and RAUW undef. 2484 for (auto *II : InvariantStartInstructions) { 2485 II->replaceAllUsesWith(UndefValue::get(II->getType())); 2486 II->eraseFromParent(); 2487 } 2488 } 2489 2490 /// Returns true if this function should be rewritten by this pass. The main 2491 /// point of this function is as an extension point for custom logic. 2492 static bool shouldRewriteStatepointsIn(Function &F) { 2493 // TODO: This should check the GCStrategy 2494 if (F.hasGC()) { 2495 const auto &FunctionGCName = F.getGC(); 2496 const StringRef StatepointExampleName("statepoint-example"); 2497 const StringRef CoreCLRName("coreclr"); 2498 return (StatepointExampleName == FunctionGCName) || 2499 (CoreCLRName == FunctionGCName); 2500 } else 2501 return false; 2502 } 2503 2504 static void stripNonValidData(Module &M) { 2505 #ifndef NDEBUG 2506 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); 2507 #endif 2508 2509 for (Function &F : M) 2510 stripNonValidAttributesFromPrototype(F); 2511 2512 for (Function &F : M) 2513 stripNonValidDataFromBody(F); 2514 } 2515 2516 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, 2517 TargetTransformInfo &TTI, 2518 const TargetLibraryInfo &TLI) { 2519 assert(!F.isDeclaration() && !F.empty() && 2520 "need function body to rewrite statepoints in"); 2521 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); 2522 2523 auto NeedsRewrite = [&TLI](Instruction &I) { 2524 if (const auto *Call = dyn_cast<CallBase>(&I)) 2525 return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call); 2526 return false; 2527 }; 2528 2529 // Delete any unreachable statepoints so that we don't have unrewritten 2530 // statepoints surviving this pass. This makes testing easier and the 2531 // resulting IR less confusing to human readers. 2532 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 2533 bool MadeChange = removeUnreachableBlocks(F, nullptr, &DTU); 2534 // Flush the Dominator Tree. 2535 DTU.getDomTree(); 2536 2537 // Gather all the statepoints which need rewritten. Be careful to only 2538 // consider those in reachable code since we need to ask dominance queries 2539 // when rewriting. We'll delete the unreachable ones in a moment. 2540 SmallVector<CallBase *, 64> ParsePointNeeded; 2541 for (Instruction &I : instructions(F)) { 2542 // TODO: only the ones with the flag set! 2543 if (NeedsRewrite(I)) { 2544 // NOTE removeUnreachableBlocks() is stronger than 2545 // DominatorTree::isReachableFromEntry(). In other words 2546 // removeUnreachableBlocks can remove some blocks for which 2547 // isReachableFromEntry() returns true. 2548 assert(DT.isReachableFromEntry(I.getParent()) && 2549 "no unreachable blocks expected"); 2550 ParsePointNeeded.push_back(cast<CallBase>(&I)); 2551 } 2552 } 2553 2554 // Return early if no work to do. 2555 if (ParsePointNeeded.empty()) 2556 return MadeChange; 2557 2558 // As a prepass, go ahead and aggressively destroy single entry phi nodes. 2559 // These are created by LCSSA. They have the effect of increasing the size 2560 // of liveness sets for no good reason. It may be harder to do this post 2561 // insertion since relocations and base phis can confuse things. 2562 for (BasicBlock &BB : F) 2563 if (BB.getUniquePredecessor()) { 2564 MadeChange = true; 2565 FoldSingleEntryPHINodes(&BB); 2566 } 2567 2568 // Before we start introducing relocations, we want to tweak the IR a bit to 2569 // avoid unfortunate code generation effects. The main example is that we 2570 // want to try to make sure the comparison feeding a branch is after any 2571 // safepoints. Otherwise, we end up with a comparison of pre-relocation 2572 // values feeding a branch after relocation. This is semantically correct, 2573 // but results in extra register pressure since both the pre-relocation and 2574 // post-relocation copies must be available in registers. For code without 2575 // relocations this is handled elsewhere, but teaching the scheduler to 2576 // reverse the transform we're about to do would be slightly complex. 2577 // Note: This may extend the live range of the inputs to the icmp and thus 2578 // increase the liveset of any statepoint we move over. This is profitable 2579 // as long as all statepoints are in rare blocks. If we had in-register 2580 // lowering for live values this would be a much safer transform. 2581 auto getConditionInst = [](Instruction *TI) -> Instruction * { 2582 if (auto *BI = dyn_cast<BranchInst>(TI)) 2583 if (BI->isConditional()) 2584 return dyn_cast<Instruction>(BI->getCondition()); 2585 // TODO: Extend this to handle switches 2586 return nullptr; 2587 }; 2588 for (BasicBlock &BB : F) { 2589 Instruction *TI = BB.getTerminator(); 2590 if (auto *Cond = getConditionInst(TI)) 2591 // TODO: Handle more than just ICmps here. We should be able to move 2592 // most instructions without side effects or memory access. 2593 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) { 2594 MadeChange = true; 2595 Cond->moveBefore(TI); 2596 } 2597 } 2598 2599 // Nasty workaround - The base computation code in the main algorithm doesn't 2600 // consider the fact that a GEP can be used to convert a scalar to a vector. 2601 // The right fix for this is to integrate GEPs into the base rewriting 2602 // algorithm properly, this is just a short term workaround to prevent 2603 // crashes by canonicalizing such GEPs into fully vector GEPs. 2604 for (Instruction &I : instructions(F)) { 2605 if (!isa<GetElementPtrInst>(I)) 2606 continue; 2607 2608 unsigned VF = 0; 2609 for (unsigned i = 0; i < I.getNumOperands(); i++) 2610 if (I.getOperand(i)->getType()->isVectorTy()) { 2611 assert(VF == 0 || 2612 VF == I.getOperand(i)->getType()->getVectorNumElements()); 2613 VF = I.getOperand(i)->getType()->getVectorNumElements(); 2614 } 2615 2616 // It's the vector to scalar traversal through the pointer operand which 2617 // confuses base pointer rewriting, so limit ourselves to that case. 2618 if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { 2619 IRBuilder<> B(&I); 2620 auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); 2621 I.setOperand(0, Splat); 2622 MadeChange = true; 2623 } 2624 } 2625 2626 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded); 2627 return MadeChange; 2628 } 2629 2630 // liveness computation via standard dataflow 2631 // ------------------------------------------------------------------- 2632 2633 // TODO: Consider using bitvectors for liveness, the set of potentially 2634 // interesting values should be small and easy to pre-compute. 2635 2636 /// Compute the live-in set for the location rbegin starting from 2637 /// the live-out set of the basic block 2638 static void computeLiveInValues(BasicBlock::reverse_iterator Begin, 2639 BasicBlock::reverse_iterator End, 2640 SetVector<Value *> &LiveTmp) { 2641 for (auto &I : make_range(Begin, End)) { 2642 // KILL/Def - Remove this definition from LiveIn 2643 LiveTmp.remove(&I); 2644 2645 // Don't consider *uses* in PHI nodes, we handle their contribution to 2646 // predecessor blocks when we seed the LiveOut sets 2647 if (isa<PHINode>(I)) 2648 continue; 2649 2650 // USE - Add to the LiveIn set for this instruction 2651 for (Value *V : I.operands()) { 2652 assert(!isUnhandledGCPointerType(V->getType()) && 2653 "support for FCA unimplemented"); 2654 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) { 2655 // The choice to exclude all things constant here is slightly subtle. 2656 // There are two independent reasons: 2657 // - We assume that things which are constant (from LLVM's definition) 2658 // do not move at runtime. For example, the address of a global 2659 // variable is fixed, even though it's contents may not be. 2660 // - Second, we can't disallow arbitrary inttoptr constants even 2661 // if the language frontend does. Optimization passes are free to 2662 // locally exploit facts without respect to global reachability. This 2663 // can create sections of code which are dynamically unreachable and 2664 // contain just about anything. (see constants.ll in tests) 2665 LiveTmp.insert(V); 2666 } 2667 } 2668 } 2669 } 2670 2671 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) { 2672 for (BasicBlock *Succ : successors(BB)) { 2673 for (auto &I : *Succ) { 2674 PHINode *PN = dyn_cast<PHINode>(&I); 2675 if (!PN) 2676 break; 2677 2678 Value *V = PN->getIncomingValueForBlock(BB); 2679 assert(!isUnhandledGCPointerType(V->getType()) && 2680 "support for FCA unimplemented"); 2681 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) 2682 LiveTmp.insert(V); 2683 } 2684 } 2685 } 2686 2687 static SetVector<Value *> computeKillSet(BasicBlock *BB) { 2688 SetVector<Value *> KillSet; 2689 for (Instruction &I : *BB) 2690 if (isHandledGCPointerType(I.getType())) 2691 KillSet.insert(&I); 2692 return KillSet; 2693 } 2694 2695 #ifndef NDEBUG 2696 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic 2697 /// sanity check for the liveness computation. 2698 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live, 2699 Instruction *TI, bool TermOkay = false) { 2700 for (Value *V : Live) { 2701 if (auto *I = dyn_cast<Instruction>(V)) { 2702 // The terminator can be a member of the LiveOut set. LLVM's definition 2703 // of instruction dominance states that V does not dominate itself. As 2704 // such, we need to special case this to allow it. 2705 if (TermOkay && TI == I) 2706 continue; 2707 assert(DT.dominates(I, TI) && 2708 "basic SSA liveness expectation violated by liveness analysis"); 2709 } 2710 } 2711 } 2712 2713 /// Check that all the liveness sets used during the computation of liveness 2714 /// obey basic SSA properties. This is useful for finding cases where we miss 2715 /// a def. 2716 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, 2717 BasicBlock &BB) { 2718 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); 2719 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); 2720 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); 2721 } 2722 #endif 2723 2724 static void computeLiveInValues(DominatorTree &DT, Function &F, 2725 GCPtrLivenessData &Data) { 2726 SmallSetVector<BasicBlock *, 32> Worklist; 2727 2728 // Seed the liveness for each individual block 2729 for (BasicBlock &BB : F) { 2730 Data.KillSet[&BB] = computeKillSet(&BB); 2731 Data.LiveSet[&BB].clear(); 2732 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]); 2733 2734 #ifndef NDEBUG 2735 for (Value *Kill : Data.KillSet[&BB]) 2736 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); 2737 #endif 2738 2739 Data.LiveOut[&BB] = SetVector<Value *>(); 2740 computeLiveOutSeed(&BB, Data.LiveOut[&BB]); 2741 Data.LiveIn[&BB] = Data.LiveSet[&BB]; 2742 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); 2743 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); 2744 if (!Data.LiveIn[&BB].empty()) 2745 Worklist.insert(pred_begin(&BB), pred_end(&BB)); 2746 } 2747 2748 // Propagate that liveness until stable 2749 while (!Worklist.empty()) { 2750 BasicBlock *BB = Worklist.pop_back_val(); 2751 2752 // Compute our new liveout set, then exit early if it hasn't changed despite 2753 // the contribution of our successor. 2754 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2755 const auto OldLiveOutSize = LiveOut.size(); 2756 for (BasicBlock *Succ : successors(BB)) { 2757 assert(Data.LiveIn.count(Succ)); 2758 LiveOut.set_union(Data.LiveIn[Succ]); 2759 } 2760 // assert OutLiveOut is a subset of LiveOut 2761 if (OldLiveOutSize == LiveOut.size()) { 2762 // If the sets are the same size, then we didn't actually add anything 2763 // when unioning our successors LiveIn. Thus, the LiveIn of this block 2764 // hasn't changed. 2765 continue; 2766 } 2767 Data.LiveOut[BB] = LiveOut; 2768 2769 // Apply the effects of this basic block 2770 SetVector<Value *> LiveTmp = LiveOut; 2771 LiveTmp.set_union(Data.LiveSet[BB]); 2772 LiveTmp.set_subtract(Data.KillSet[BB]); 2773 2774 assert(Data.LiveIn.count(BB)); 2775 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB]; 2776 // assert: OldLiveIn is a subset of LiveTmp 2777 if (OldLiveIn.size() != LiveTmp.size()) { 2778 Data.LiveIn[BB] = LiveTmp; 2779 Worklist.insert(pred_begin(BB), pred_end(BB)); 2780 } 2781 } // while (!Worklist.empty()) 2782 2783 #ifndef NDEBUG 2784 // Sanity check our output against SSA properties. This helps catch any 2785 // missing kills during the above iteration. 2786 for (BasicBlock &BB : F) 2787 checkBasicSSA(DT, Data, BB); 2788 #endif 2789 } 2790 2791 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, 2792 StatepointLiveSetTy &Out) { 2793 BasicBlock *BB = Inst->getParent(); 2794 2795 // Note: The copy is intentional and required 2796 assert(Data.LiveOut.count(BB)); 2797 SetVector<Value *> LiveOut = Data.LiveOut[BB]; 2798 2799 // We want to handle the statepoint itself oddly. It's 2800 // call result is not live (normal), nor are it's arguments 2801 // (unless they're used again later). This adjustment is 2802 // specifically what we need to relocate 2803 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), 2804 LiveOut); 2805 LiveOut.remove(Inst); 2806 Out.insert(LiveOut.begin(), LiveOut.end()); 2807 } 2808 2809 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, 2810 CallBase *Call, 2811 PartiallyConstructedSafepointRecord &Info) { 2812 StatepointLiveSetTy Updated; 2813 findLiveSetAtInst(Call, RevisedLivenessData, Updated); 2814 2815 // We may have base pointers which are now live that weren't before. We need 2816 // to update the PointerToBase structure to reflect this. 2817 for (auto V : Updated) 2818 if (Info.PointerToBase.insert({V, V}).second) { 2819 assert(isKnownBaseResult(V) && 2820 "Can't find base for unexpected live value!"); 2821 continue; 2822 } 2823 2824 #ifndef NDEBUG 2825 for (auto V : Updated) 2826 assert(Info.PointerToBase.count(V) && 2827 "Must be able to find base for live value!"); 2828 #endif 2829 2830 // Remove any stale base mappings - this can happen since our liveness is 2831 // more precise then the one inherent in the base pointer analysis. 2832 DenseSet<Value *> ToErase; 2833 for (auto KVPair : Info.PointerToBase) 2834 if (!Updated.count(KVPair.first)) 2835 ToErase.insert(KVPair.first); 2836 2837 for (auto *V : ToErase) 2838 Info.PointerToBase.erase(V); 2839 2840 #ifndef NDEBUG 2841 for (auto KVPair : Info.PointerToBase) 2842 assert(Updated.count(KVPair.first) && "record for non-live value"); 2843 #endif 2844 2845 Info.LiveSet = Updated; 2846 } 2847