xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Rewrite call/invoke instructions so as to make potential relocations
10 // performed by the garbage collector explicit in the IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstIterator.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueHandle.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <set>
74 #include <string>
75 #include <utility>
76 #include <vector>
77 
78 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
79 
80 using namespace llvm;
81 
82 // Print the liveset found at the insert location
83 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
84                                   cl::init(false));
85 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
86                                       cl::init(false));
87 
88 // Print out the base pointers for debugging
89 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
90                                        cl::init(false));
91 
92 // Cost threshold measuring when it is profitable to rematerialize value instead
93 // of relocating it
94 static cl::opt<unsigned>
95 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
96                            cl::init(6));
97 
98 #ifdef EXPENSIVE_CHECKS
99 static bool ClobberNonLive = true;
100 #else
101 static bool ClobberNonLive = false;
102 #endif
103 
104 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
105                                                   cl::location(ClobberNonLive),
106                                                   cl::Hidden);
107 
108 static cl::opt<bool>
109     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
110                                    cl::Hidden, cl::init(true));
111 
112 /// The IR fed into RewriteStatepointsForGC may have had attributes and
113 /// metadata implying dereferenceability that are no longer valid/correct after
114 /// RewriteStatepointsForGC has run. This is because semantically, after
115 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
116 /// heap. stripNonValidData (conservatively) restores
117 /// correctness by erasing all attributes in the module that externally imply
118 /// dereferenceability. Similar reasoning also applies to the noalias
119 /// attributes and metadata. gc.statepoint can touch the entire heap including
120 /// noalias objects.
121 /// Apart from attributes and metadata, we also remove instructions that imply
122 /// constant physical memory: llvm.invariant.start.
123 static void stripNonValidData(Module &M);
124 
125 static bool shouldRewriteStatepointsIn(Function &F);
126 
127 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
128                                                ModuleAnalysisManager &AM) {
129   bool Changed = false;
130   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
131   for (Function &F : M) {
132     // Nothing to do for declarations.
133     if (F.isDeclaration() || F.empty())
134       continue;
135 
136     // Policy choice says not to rewrite - the most common reason is that we're
137     // compiling code without a GCStrategy.
138     if (!shouldRewriteStatepointsIn(F))
139       continue;
140 
141     auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
142     auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
143     auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
144     Changed |= runOnFunction(F, DT, TTI, TLI);
145   }
146   if (!Changed)
147     return PreservedAnalyses::all();
148 
149   // stripNonValidData asserts that shouldRewriteStatepointsIn
150   // returns true for at least one function in the module.  Since at least
151   // one function changed, we know that the precondition is satisfied.
152   stripNonValidData(M);
153 
154   PreservedAnalyses PA;
155   PA.preserve<TargetIRAnalysis>();
156   PA.preserve<TargetLibraryAnalysis>();
157   return PA;
158 }
159 
160 namespace {
161 
162 class RewriteStatepointsForGCLegacyPass : public ModulePass {
163   RewriteStatepointsForGC Impl;
164 
165 public:
166   static char ID; // Pass identification, replacement for typeid
167 
168   RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
169     initializeRewriteStatepointsForGCLegacyPassPass(
170         *PassRegistry::getPassRegistry());
171   }
172 
173   bool runOnModule(Module &M) override {
174     bool Changed = false;
175     const TargetLibraryInfo &TLI =
176         getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
177     for (Function &F : M) {
178       // Nothing to do for declarations.
179       if (F.isDeclaration() || F.empty())
180         continue;
181 
182       // Policy choice says not to rewrite - the most common reason is that
183       // we're compiling code without a GCStrategy.
184       if (!shouldRewriteStatepointsIn(F))
185         continue;
186 
187       TargetTransformInfo &TTI =
188           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
189       auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
190 
191       Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
192     }
193 
194     if (!Changed)
195       return false;
196 
197     // stripNonValidData asserts that shouldRewriteStatepointsIn
198     // returns true for at least one function in the module.  Since at least
199     // one function changed, we know that the precondition is satisfied.
200     stripNonValidData(M);
201     return true;
202   }
203 
204   void getAnalysisUsage(AnalysisUsage &AU) const override {
205     // We add and rewrite a bunch of instructions, but don't really do much
206     // else.  We could in theory preserve a lot more analyses here.
207     AU.addRequired<DominatorTreeWrapperPass>();
208     AU.addRequired<TargetTransformInfoWrapperPass>();
209     AU.addRequired<TargetLibraryInfoWrapperPass>();
210   }
211 };
212 
213 } // end anonymous namespace
214 
215 char RewriteStatepointsForGCLegacyPass::ID = 0;
216 
217 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
218   return new RewriteStatepointsForGCLegacyPass();
219 }
220 
221 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
222                       "rewrite-statepoints-for-gc",
223                       "Make relocations explicit at statepoints", false, false)
224 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
225 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
226 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
227                     "rewrite-statepoints-for-gc",
228                     "Make relocations explicit at statepoints", false, false)
229 
230 namespace {
231 
232 struct GCPtrLivenessData {
233   /// Values defined in this block.
234   MapVector<BasicBlock *, SetVector<Value *>> KillSet;
235 
236   /// Values used in this block (and thus live); does not included values
237   /// killed within this block.
238   MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
239 
240   /// Values live into this basic block (i.e. used by any
241   /// instruction in this basic block or ones reachable from here)
242   MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
243 
244   /// Values live out of this basic block (i.e. live into
245   /// any successor block)
246   MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
247 };
248 
249 // The type of the internal cache used inside the findBasePointers family
250 // of functions.  From the callers perspective, this is an opaque type and
251 // should not be inspected.
252 //
253 // In the actual implementation this caches two relations:
254 // - The base relation itself (i.e. this pointer is based on that one)
255 // - The base defining value relation (i.e. before base_phi insertion)
256 // Generally, after the execution of a full findBasePointer call, only the
257 // base relation will remain.  Internally, we add a mixture of the two
258 // types, then update all the second type to the first type
259 using DefiningValueMapTy = MapVector<Value *, Value *>;
260 using StatepointLiveSetTy = SetVector<Value *>;
261 using RematerializedValueMapTy =
262     MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
263 
264 struct PartiallyConstructedSafepointRecord {
265   /// The set of values known to be live across this safepoint
266   StatepointLiveSetTy LiveSet;
267 
268   /// Mapping from live pointers to a base-defining-value
269   MapVector<Value *, Value *> PointerToBase;
270 
271   /// The *new* gc.statepoint instruction itself.  This produces the token
272   /// that normal path gc.relocates and the gc.result are tied to.
273   Instruction *StatepointToken;
274 
275   /// Instruction to which exceptional gc relocates are attached
276   /// Makes it easier to iterate through them during relocationViaAlloca.
277   Instruction *UnwindToken;
278 
279   /// Record live values we are rematerialized instead of relocating.
280   /// They are not included into 'LiveSet' field.
281   /// Maps rematerialized copy to it's original value.
282   RematerializedValueMapTy RematerializedValues;
283 };
284 
285 } // end anonymous namespace
286 
287 static ArrayRef<Use> GetDeoptBundleOperands(const CallBase *Call) {
288   Optional<OperandBundleUse> DeoptBundle =
289       Call->getOperandBundle(LLVMContext::OB_deopt);
290 
291   if (!DeoptBundle.hasValue()) {
292     assert(AllowStatepointWithNoDeoptInfo &&
293            "Found non-leaf call without deopt info!");
294     return None;
295   }
296 
297   return DeoptBundle.getValue().Inputs;
298 }
299 
300 /// Compute the live-in set for every basic block in the function
301 static void computeLiveInValues(DominatorTree &DT, Function &F,
302                                 GCPtrLivenessData &Data);
303 
304 /// Given results from the dataflow liveness computation, find the set of live
305 /// Values at a particular instruction.
306 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
307                               StatepointLiveSetTy &out);
308 
309 // TODO: Once we can get to the GCStrategy, this becomes
310 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
311 
312 static bool isGCPointerType(Type *T) {
313   if (auto *PT = dyn_cast<PointerType>(T))
314     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
315     // GC managed heap.  We know that a pointer into this heap needs to be
316     // updated and that no other pointer does.
317     return PT->getAddressSpace() == 1;
318   return false;
319 }
320 
321 // Return true if this type is one which a) is a gc pointer or contains a GC
322 // pointer and b) is of a type this code expects to encounter as a live value.
323 // (The insertion code will assert that a type which matches (a) and not (b)
324 // is not encountered.)
325 static bool isHandledGCPointerType(Type *T) {
326   // We fully support gc pointers
327   if (isGCPointerType(T))
328     return true;
329   // We partially support vectors of gc pointers. The code will assert if it
330   // can't handle something.
331   if (auto VT = dyn_cast<VectorType>(T))
332     if (isGCPointerType(VT->getElementType()))
333       return true;
334   return false;
335 }
336 
337 #ifndef NDEBUG
338 /// Returns true if this type contains a gc pointer whether we know how to
339 /// handle that type or not.
340 static bool containsGCPtrType(Type *Ty) {
341   if (isGCPointerType(Ty))
342     return true;
343   if (VectorType *VT = dyn_cast<VectorType>(Ty))
344     return isGCPointerType(VT->getScalarType());
345   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
346     return containsGCPtrType(AT->getElementType());
347   if (StructType *ST = dyn_cast<StructType>(Ty))
348     return llvm::any_of(ST->elements(), containsGCPtrType);
349   return false;
350 }
351 
352 // Returns true if this is a type which a) is a gc pointer or contains a GC
353 // pointer and b) is of a type which the code doesn't expect (i.e. first class
354 // aggregates).  Used to trip assertions.
355 static bool isUnhandledGCPointerType(Type *Ty) {
356   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
357 }
358 #endif
359 
360 // Return the name of the value suffixed with the provided value, or if the
361 // value didn't have a name, the default value specified.
362 static std::string suffixed_name_or(Value *V, StringRef Suffix,
363                                     StringRef DefaultName) {
364   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
365 }
366 
367 // Conservatively identifies any definitions which might be live at the
368 // given instruction. The  analysis is performed immediately before the
369 // given instruction. Values defined by that instruction are not considered
370 // live.  Values used by that instruction are considered live.
371 static void analyzeParsePointLiveness(
372     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call,
373     PartiallyConstructedSafepointRecord &Result) {
374   StatepointLiveSetTy LiveSet;
375   findLiveSetAtInst(Call, OriginalLivenessData, LiveSet);
376 
377   if (PrintLiveSet) {
378     dbgs() << "Live Variables:\n";
379     for (Value *V : LiveSet)
380       dbgs() << " " << V->getName() << " " << *V << "\n";
381   }
382   if (PrintLiveSetSize) {
383     dbgs() << "Safepoint For: " << Call->getCalledValue()->getName() << "\n";
384     dbgs() << "Number live values: " << LiveSet.size() << "\n";
385   }
386   Result.LiveSet = LiveSet;
387 }
388 
389 static bool isKnownBaseResult(Value *V);
390 
391 namespace {
392 
393 /// A single base defining value - An immediate base defining value for an
394 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
395 /// For instructions which have multiple pointer [vector] inputs or that
396 /// transition between vector and scalar types, there is no immediate base
397 /// defining value.  The 'base defining value' for 'Def' is the transitive
398 /// closure of this relation stopping at the first instruction which has no
399 /// immediate base defining value.  The b.d.v. might itself be a base pointer,
400 /// but it can also be an arbitrary derived pointer.
401 struct BaseDefiningValueResult {
402   /// Contains the value which is the base defining value.
403   Value * const BDV;
404 
405   /// True if the base defining value is also known to be an actual base
406   /// pointer.
407   const bool IsKnownBase;
408 
409   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
410     : BDV(BDV), IsKnownBase(IsKnownBase) {
411 #ifndef NDEBUG
412     // Check consistency between new and old means of checking whether a BDV is
413     // a base.
414     bool MustBeBase = isKnownBaseResult(BDV);
415     assert(!MustBeBase || MustBeBase == IsKnownBase);
416 #endif
417   }
418 };
419 
420 } // end anonymous namespace
421 
422 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
423 
424 /// Return a base defining value for the 'Index' element of the given vector
425 /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
426 /// 'I'.  As an optimization, this method will try to determine when the
427 /// element is known to already be a base pointer.  If this can be established,
428 /// the second value in the returned pair will be true.  Note that either a
429 /// vector or a pointer typed value can be returned.  For the former, the
430 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
431 /// If the later, the return pointer is a BDV (or possibly a base) for the
432 /// particular element in 'I'.
433 static BaseDefiningValueResult
434 findBaseDefiningValueOfVector(Value *I) {
435   // Each case parallels findBaseDefiningValue below, see that code for
436   // detailed motivation.
437 
438   if (isa<Argument>(I))
439     // An incoming argument to the function is a base pointer
440     return BaseDefiningValueResult(I, true);
441 
442   if (isa<Constant>(I))
443     // Base of constant vector consists only of constant null pointers.
444     // For reasoning see similar case inside 'findBaseDefiningValue' function.
445     return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
446                                    true);
447 
448   if (isa<LoadInst>(I))
449     return BaseDefiningValueResult(I, true);
450 
451   if (isa<InsertElementInst>(I))
452     // We don't know whether this vector contains entirely base pointers or
453     // not.  To be conservatively correct, we treat it as a BDV and will
454     // duplicate code as needed to construct a parallel vector of bases.
455     return BaseDefiningValueResult(I, false);
456 
457   if (isa<ShuffleVectorInst>(I))
458     // We don't know whether this vector contains entirely base pointers or
459     // not.  To be conservatively correct, we treat it as a BDV and will
460     // duplicate code as needed to construct a parallel vector of bases.
461     // TODO: There a number of local optimizations which could be applied here
462     // for particular sufflevector patterns.
463     return BaseDefiningValueResult(I, false);
464 
465   // The behavior of getelementptr instructions is the same for vector and
466   // non-vector data types.
467   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
468     return findBaseDefiningValue(GEP->getPointerOperand());
469 
470   // If the pointer comes through a bitcast of a vector of pointers to
471   // a vector of another type of pointer, then look through the bitcast
472   if (auto *BC = dyn_cast<BitCastInst>(I))
473     return findBaseDefiningValue(BC->getOperand(0));
474 
475   // We assume that functions in the source language only return base
476   // pointers.  This should probably be generalized via attributes to support
477   // both source language and internal functions.
478   if (isa<CallInst>(I) || isa<InvokeInst>(I))
479     return BaseDefiningValueResult(I, true);
480 
481   // A PHI or Select is a base defining value.  The outer findBasePointer
482   // algorithm is responsible for constructing a base value for this BDV.
483   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
484          "unknown vector instruction - no base found for vector element");
485   return BaseDefiningValueResult(I, false);
486 }
487 
488 /// Helper function for findBasePointer - Will return a value which either a)
489 /// defines the base pointer for the input, b) blocks the simple search
490 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
491 /// from pointer to vector type or back.
492 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
493   assert(I->getType()->isPtrOrPtrVectorTy() &&
494          "Illegal to ask for the base pointer of a non-pointer type");
495 
496   if (I->getType()->isVectorTy())
497     return findBaseDefiningValueOfVector(I);
498 
499   if (isa<Argument>(I))
500     // An incoming argument to the function is a base pointer
501     // We should have never reached here if this argument isn't an gc value
502     return BaseDefiningValueResult(I, true);
503 
504   if (isa<Constant>(I)) {
505     // We assume that objects with a constant base (e.g. a global) can't move
506     // and don't need to be reported to the collector because they are always
507     // live. Besides global references, all kinds of constants (e.g. undef,
508     // constant expressions, null pointers) can be introduced by the inliner or
509     // the optimizer, especially on dynamically dead paths.
510     // Here we treat all of them as having single null base. By doing this we
511     // trying to avoid problems reporting various conflicts in a form of
512     // "phi (const1, const2)" or "phi (const, regular gc ptr)".
513     // See constant.ll file for relevant test cases.
514 
515     return BaseDefiningValueResult(
516         ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
517   }
518 
519   if (CastInst *CI = dyn_cast<CastInst>(I)) {
520     Value *Def = CI->stripPointerCasts();
521     // If stripping pointer casts changes the address space there is an
522     // addrspacecast in between.
523     assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
524                cast<PointerType>(CI->getType())->getAddressSpace() &&
525            "unsupported addrspacecast");
526     // If we find a cast instruction here, it means we've found a cast which is
527     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
528     // handle int->ptr conversion.
529     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
530     return findBaseDefiningValue(Def);
531   }
532 
533   if (isa<LoadInst>(I))
534     // The value loaded is an gc base itself
535     return BaseDefiningValueResult(I, true);
536 
537   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
538     // The base of this GEP is the base
539     return findBaseDefiningValue(GEP->getPointerOperand());
540 
541   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
542     switch (II->getIntrinsicID()) {
543     default:
544       // fall through to general call handling
545       break;
546     case Intrinsic::experimental_gc_statepoint:
547       llvm_unreachable("statepoints don't produce pointers");
548     case Intrinsic::experimental_gc_relocate:
549       // Rerunning safepoint insertion after safepoints are already
550       // inserted is not supported.  It could probably be made to work,
551       // but why are you doing this?  There's no good reason.
552       llvm_unreachable("repeat safepoint insertion is not supported");
553     case Intrinsic::gcroot:
554       // Currently, this mechanism hasn't been extended to work with gcroot.
555       // There's no reason it couldn't be, but I haven't thought about the
556       // implications much.
557       llvm_unreachable(
558           "interaction with the gcroot mechanism is not supported");
559     }
560   }
561   // We assume that functions in the source language only return base
562   // pointers.  This should probably be generalized via attributes to support
563   // both source language and internal functions.
564   if (isa<CallInst>(I) || isa<InvokeInst>(I))
565     return BaseDefiningValueResult(I, true);
566 
567   // TODO: I have absolutely no idea how to implement this part yet.  It's not
568   // necessarily hard, I just haven't really looked at it yet.
569   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
570 
571   if (isa<AtomicCmpXchgInst>(I))
572     // A CAS is effectively a atomic store and load combined under a
573     // predicate.  From the perspective of base pointers, we just treat it
574     // like a load.
575     return BaseDefiningValueResult(I, true);
576 
577   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
578                                    "binary ops which don't apply to pointers");
579 
580   // The aggregate ops.  Aggregates can either be in the heap or on the
581   // stack, but in either case, this is simply a field load.  As a result,
582   // this is a defining definition of the base just like a load is.
583   if (isa<ExtractValueInst>(I))
584     return BaseDefiningValueResult(I, true);
585 
586   // We should never see an insert vector since that would require we be
587   // tracing back a struct value not a pointer value.
588   assert(!isa<InsertValueInst>(I) &&
589          "Base pointer for a struct is meaningless");
590 
591   // An extractelement produces a base result exactly when it's input does.
592   // We may need to insert a parallel instruction to extract the appropriate
593   // element out of the base vector corresponding to the input. Given this,
594   // it's analogous to the phi and select case even though it's not a merge.
595   if (isa<ExtractElementInst>(I))
596     // Note: There a lot of obvious peephole cases here.  This are deliberately
597     // handled after the main base pointer inference algorithm to make writing
598     // test cases to exercise that code easier.
599     return BaseDefiningValueResult(I, false);
600 
601   // The last two cases here don't return a base pointer.  Instead, they
602   // return a value which dynamically selects from among several base
603   // derived pointers (each with it's own base potentially).  It's the job of
604   // the caller to resolve these.
605   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
606          "missing instruction case in findBaseDefiningValing");
607   return BaseDefiningValueResult(I, false);
608 }
609 
610 /// Returns the base defining value for this value.
611 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
612   Value *&Cached = Cache[I];
613   if (!Cached) {
614     Cached = findBaseDefiningValue(I).BDV;
615     LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
616                       << Cached->getName() << "\n");
617   }
618   assert(Cache[I] != nullptr);
619   return Cached;
620 }
621 
622 /// Return a base pointer for this value if known.  Otherwise, return it's
623 /// base defining value.
624 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
625   Value *Def = findBaseDefiningValueCached(I, Cache);
626   auto Found = Cache.find(Def);
627   if (Found != Cache.end()) {
628     // Either a base-of relation, or a self reference.  Caller must check.
629     return Found->second;
630   }
631   // Only a BDV available
632   return Def;
633 }
634 
635 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
636 /// is it known to be a base pointer?  Or do we need to continue searching.
637 static bool isKnownBaseResult(Value *V) {
638   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
639       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
640       !isa<ShuffleVectorInst>(V)) {
641     // no recursion possible
642     return true;
643   }
644   if (isa<Instruction>(V) &&
645       cast<Instruction>(V)->getMetadata("is_base_value")) {
646     // This is a previously inserted base phi or select.  We know
647     // that this is a base value.
648     return true;
649   }
650 
651   // We need to keep searching
652   return false;
653 }
654 
655 namespace {
656 
657 /// Models the state of a single base defining value in the findBasePointer
658 /// algorithm for determining where a new instruction is needed to propagate
659 /// the base of this BDV.
660 class BDVState {
661 public:
662   enum Status { Unknown, Base, Conflict };
663 
664   BDVState() : BaseValue(nullptr) {}
665 
666   explicit BDVState(Status Status, Value *BaseValue = nullptr)
667       : Status(Status), BaseValue(BaseValue) {
668     assert(Status != Base || BaseValue);
669   }
670 
671   explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
672 
673   Status getStatus() const { return Status; }
674   Value *getBaseValue() const { return BaseValue; }
675 
676   bool isBase() const { return getStatus() == Base; }
677   bool isUnknown() const { return getStatus() == Unknown; }
678   bool isConflict() const { return getStatus() == Conflict; }
679 
680   bool operator==(const BDVState &Other) const {
681     return BaseValue == Other.BaseValue && Status == Other.Status;
682   }
683 
684   bool operator!=(const BDVState &other) const { return !(*this == other); }
685 
686   LLVM_DUMP_METHOD
687   void dump() const {
688     print(dbgs());
689     dbgs() << '\n';
690   }
691 
692   void print(raw_ostream &OS) const {
693     switch (getStatus()) {
694     case Unknown:
695       OS << "U";
696       break;
697     case Base:
698       OS << "B";
699       break;
700     case Conflict:
701       OS << "C";
702       break;
703     }
704     OS << " (" << getBaseValue() << " - "
705        << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
706   }
707 
708 private:
709   Status Status = Unknown;
710   AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
711 };
712 
713 } // end anonymous namespace
714 
715 #ifndef NDEBUG
716 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
717   State.print(OS);
718   return OS;
719 }
720 #endif
721 
722 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
723   switch (LHS.getStatus()) {
724   case BDVState::Unknown:
725     return RHS;
726 
727   case BDVState::Base:
728     assert(LHS.getBaseValue() && "can't be null");
729     if (RHS.isUnknown())
730       return LHS;
731 
732     if (RHS.isBase()) {
733       if (LHS.getBaseValue() == RHS.getBaseValue()) {
734         assert(LHS == RHS && "equality broken!");
735         return LHS;
736       }
737       return BDVState(BDVState::Conflict);
738     }
739     assert(RHS.isConflict() && "only three states!");
740     return BDVState(BDVState::Conflict);
741 
742   case BDVState::Conflict:
743     return LHS;
744   }
745   llvm_unreachable("only three states!");
746 }
747 
748 // Values of type BDVState form a lattice, and this function implements the meet
749 // operation.
750 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
751   BDVState Result = meetBDVStateImpl(LHS, RHS);
752   assert(Result == meetBDVStateImpl(RHS, LHS) &&
753          "Math is wrong: meet does not commute!");
754   return Result;
755 }
756 
757 /// For a given value or instruction, figure out what base ptr its derived from.
758 /// For gc objects, this is simply itself.  On success, returns a value which is
759 /// the base pointer.  (This is reliable and can be used for relocation.)  On
760 /// failure, returns nullptr.
761 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
762   Value *Def = findBaseOrBDV(I, Cache);
763 
764   if (isKnownBaseResult(Def))
765     return Def;
766 
767   // Here's the rough algorithm:
768   // - For every SSA value, construct a mapping to either an actual base
769   //   pointer or a PHI which obscures the base pointer.
770   // - Construct a mapping from PHI to unknown TOP state.  Use an
771   //   optimistic algorithm to propagate base pointer information.  Lattice
772   //   looks like:
773   //   UNKNOWN
774   //   b1 b2 b3 b4
775   //   CONFLICT
776   //   When algorithm terminates, all PHIs will either have a single concrete
777   //   base or be in a conflict state.
778   // - For every conflict, insert a dummy PHI node without arguments.  Add
779   //   these to the base[Instruction] = BasePtr mapping.  For every
780   //   non-conflict, add the actual base.
781   //  - For every conflict, add arguments for the base[a] of each input
782   //   arguments.
783   //
784   // Note: A simpler form of this would be to add the conflict form of all
785   // PHIs without running the optimistic algorithm.  This would be
786   // analogous to pessimistic data flow and would likely lead to an
787   // overall worse solution.
788 
789 #ifndef NDEBUG
790   auto isExpectedBDVType = [](Value *BDV) {
791     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
792            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
793            isa<ShuffleVectorInst>(BDV);
794   };
795 #endif
796 
797   // Once populated, will contain a mapping from each potentially non-base BDV
798   // to a lattice value (described above) which corresponds to that BDV.
799   // We use the order of insertion (DFS over the def/use graph) to provide a
800   // stable deterministic ordering for visiting DenseMaps (which are unordered)
801   // below.  This is important for deterministic compilation.
802   MapVector<Value *, BDVState> States;
803 
804   // Recursively fill in all base defining values reachable from the initial
805   // one for which we don't already know a definite base value for
806   /* scope */ {
807     SmallVector<Value*, 16> Worklist;
808     Worklist.push_back(Def);
809     States.insert({Def, BDVState()});
810     while (!Worklist.empty()) {
811       Value *Current = Worklist.pop_back_val();
812       assert(!isKnownBaseResult(Current) && "why did it get added?");
813 
814       auto visitIncomingValue = [&](Value *InVal) {
815         Value *Base = findBaseOrBDV(InVal, Cache);
816         if (isKnownBaseResult(Base))
817           // Known bases won't need new instructions introduced and can be
818           // ignored safely
819           return;
820         assert(isExpectedBDVType(Base) && "the only non-base values "
821                "we see should be base defining values");
822         if (States.insert(std::make_pair(Base, BDVState())).second)
823           Worklist.push_back(Base);
824       };
825       if (PHINode *PN = dyn_cast<PHINode>(Current)) {
826         for (Value *InVal : PN->incoming_values())
827           visitIncomingValue(InVal);
828       } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
829         visitIncomingValue(SI->getTrueValue());
830         visitIncomingValue(SI->getFalseValue());
831       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
832         visitIncomingValue(EE->getVectorOperand());
833       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
834         visitIncomingValue(IE->getOperand(0)); // vector operand
835         visitIncomingValue(IE->getOperand(1)); // scalar operand
836       } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
837         visitIncomingValue(SV->getOperand(0));
838         visitIncomingValue(SV->getOperand(1));
839       }
840       else {
841         llvm_unreachable("Unimplemented instruction case");
842       }
843     }
844   }
845 
846 #ifndef NDEBUG
847   LLVM_DEBUG(dbgs() << "States after initialization:\n");
848   for (auto Pair : States) {
849     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
850   }
851 #endif
852 
853   // Return a phi state for a base defining value.  We'll generate a new
854   // base state for known bases and expect to find a cached state otherwise.
855   auto getStateForBDV = [&](Value *baseValue) {
856     if (isKnownBaseResult(baseValue))
857       return BDVState(baseValue);
858     auto I = States.find(baseValue);
859     assert(I != States.end() && "lookup failed!");
860     return I->second;
861   };
862 
863   bool Progress = true;
864   while (Progress) {
865 #ifndef NDEBUG
866     const size_t OldSize = States.size();
867 #endif
868     Progress = false;
869     // We're only changing values in this loop, thus safe to keep iterators.
870     // Since this is computing a fixed point, the order of visit does not
871     // effect the result.  TODO: We could use a worklist here and make this run
872     // much faster.
873     for (auto Pair : States) {
874       Value *BDV = Pair.first;
875       assert(!isKnownBaseResult(BDV) && "why did it get added?");
876 
877       // Given an input value for the current instruction, return a BDVState
878       // instance which represents the BDV of that value.
879       auto getStateForInput = [&](Value *V) mutable {
880         Value *BDV = findBaseOrBDV(V, Cache);
881         return getStateForBDV(BDV);
882       };
883 
884       BDVState NewState;
885       if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
886         NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
887         NewState =
888             meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
889       } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
890         for (Value *Val : PN->incoming_values())
891           NewState = meetBDVState(NewState, getStateForInput(Val));
892       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
893         // The 'meet' for an extractelement is slightly trivial, but it's still
894         // useful in that it drives us to conflict if our input is.
895         NewState =
896             meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
897       } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
898         // Given there's a inherent type mismatch between the operands, will
899         // *always* produce Conflict.
900         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
901         NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
902       } else {
903         // The only instance this does not return a Conflict is when both the
904         // vector operands are the same vector.
905         auto *SV = cast<ShuffleVectorInst>(BDV);
906         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
907         NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
908       }
909 
910       BDVState OldState = States[BDV];
911       if (OldState != NewState) {
912         Progress = true;
913         States[BDV] = NewState;
914       }
915     }
916 
917     assert(OldSize == States.size() &&
918            "fixed point shouldn't be adding any new nodes to state");
919   }
920 
921 #ifndef NDEBUG
922   LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
923   for (auto Pair : States) {
924     LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
925   }
926 #endif
927 
928   // Insert Phis for all conflicts
929   // TODO: adjust naming patterns to avoid this order of iteration dependency
930   for (auto Pair : States) {
931     Instruction *I = cast<Instruction>(Pair.first);
932     BDVState State = Pair.second;
933     assert(!isKnownBaseResult(I) && "why did it get added?");
934     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
935 
936     // extractelement instructions are a bit special in that we may need to
937     // insert an extract even when we know an exact base for the instruction.
938     // The problem is that we need to convert from a vector base to a scalar
939     // base for the particular indice we're interested in.
940     if (State.isBase() && isa<ExtractElementInst>(I) &&
941         isa<VectorType>(State.getBaseValue()->getType())) {
942       auto *EE = cast<ExtractElementInst>(I);
943       // TODO: In many cases, the new instruction is just EE itself.  We should
944       // exploit this, but can't do it here since it would break the invariant
945       // about the BDV not being known to be a base.
946       auto *BaseInst = ExtractElementInst::Create(
947           State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
948       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
949       States[I] = BDVState(BDVState::Base, BaseInst);
950     }
951 
952     // Since we're joining a vector and scalar base, they can never be the
953     // same.  As a result, we should always see insert element having reached
954     // the conflict state.
955     assert(!isa<InsertElementInst>(I) || State.isConflict());
956 
957     if (!State.isConflict())
958       continue;
959 
960     /// Create and insert a new instruction which will represent the base of
961     /// the given instruction 'I'.
962     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
963       if (isa<PHINode>(I)) {
964         BasicBlock *BB = I->getParent();
965         int NumPreds = pred_size(BB);
966         assert(NumPreds > 0 && "how did we reach here");
967         std::string Name = suffixed_name_or(I, ".base", "base_phi");
968         return PHINode::Create(I->getType(), NumPreds, Name, I);
969       } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
970         // The undef will be replaced later
971         UndefValue *Undef = UndefValue::get(SI->getType());
972         std::string Name = suffixed_name_or(I, ".base", "base_select");
973         return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
974       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
975         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
976         std::string Name = suffixed_name_or(I, ".base", "base_ee");
977         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
978                                           EE);
979       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
980         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
981         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
982         std::string Name = suffixed_name_or(I, ".base", "base_ie");
983         return InsertElementInst::Create(VecUndef, ScalarUndef,
984                                          IE->getOperand(2), Name, IE);
985       } else {
986         auto *SV = cast<ShuffleVectorInst>(I);
987         UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
988         std::string Name = suffixed_name_or(I, ".base", "base_sv");
989         return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
990                                      Name, SV);
991       }
992     };
993     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
994     // Add metadata marking this as a base value
995     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
996     States[I] = BDVState(BDVState::Conflict, BaseInst);
997   }
998 
999   // Returns a instruction which produces the base pointer for a given
1000   // instruction.  The instruction is assumed to be an input to one of the BDVs
1001   // seen in the inference algorithm above.  As such, we must either already
1002   // know it's base defining value is a base, or have inserted a new
1003   // instruction to propagate the base of it's BDV and have entered that newly
1004   // introduced instruction into the state table.  In either case, we are
1005   // assured to be able to determine an instruction which produces it's base
1006   // pointer.
1007   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1008     Value *BDV = findBaseOrBDV(Input, Cache);
1009     Value *Base = nullptr;
1010     if (isKnownBaseResult(BDV)) {
1011       Base = BDV;
1012     } else {
1013       // Either conflict or base.
1014       assert(States.count(BDV));
1015       Base = States[BDV].getBaseValue();
1016     }
1017     assert(Base && "Can't be null");
1018     // The cast is needed since base traversal may strip away bitcasts
1019     if (Base->getType() != Input->getType() && InsertPt)
1020       Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1021     return Base;
1022   };
1023 
1024   // Fixup all the inputs of the new PHIs.  Visit order needs to be
1025   // deterministic and predictable because we're naming newly created
1026   // instructions.
1027   for (auto Pair : States) {
1028     Instruction *BDV = cast<Instruction>(Pair.first);
1029     BDVState State = Pair.second;
1030 
1031     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1032     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1033     if (!State.isConflict())
1034       continue;
1035 
1036     if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1037       PHINode *PN = cast<PHINode>(BDV);
1038       unsigned NumPHIValues = PN->getNumIncomingValues();
1039       for (unsigned i = 0; i < NumPHIValues; i++) {
1040         Value *InVal = PN->getIncomingValue(i);
1041         BasicBlock *InBB = PN->getIncomingBlock(i);
1042 
1043         // If we've already seen InBB, add the same incoming value
1044         // we added for it earlier.  The IR verifier requires phi
1045         // nodes with multiple entries from the same basic block
1046         // to have the same incoming value for each of those
1047         // entries.  If we don't do this check here and basephi
1048         // has a different type than base, we'll end up adding two
1049         // bitcasts (and hence two distinct values) as incoming
1050         // values for the same basic block.
1051 
1052         int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1053         if (BlockIndex != -1) {
1054           Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1055           BasePHI->addIncoming(OldBase, InBB);
1056 
1057 #ifndef NDEBUG
1058           Value *Base = getBaseForInput(InVal, nullptr);
1059           // In essence this assert states: the only way two values
1060           // incoming from the same basic block may be different is by
1061           // being different bitcasts of the same value.  A cleanup
1062           // that remains TODO is changing findBaseOrBDV to return an
1063           // llvm::Value of the correct type (and still remain pure).
1064           // This will remove the need to add bitcasts.
1065           assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1066                  "Sanity -- findBaseOrBDV should be pure!");
1067 #endif
1068           continue;
1069         }
1070 
1071         // Find the instruction which produces the base for each input.  We may
1072         // need to insert a bitcast in the incoming block.
1073         // TODO: Need to split critical edges if insertion is needed
1074         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1075         BasePHI->addIncoming(Base, InBB);
1076       }
1077       assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1078     } else if (SelectInst *BaseSI =
1079                    dyn_cast<SelectInst>(State.getBaseValue())) {
1080       SelectInst *SI = cast<SelectInst>(BDV);
1081 
1082       // Find the instruction which produces the base for each input.
1083       // We may need to insert a bitcast.
1084       BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1085       BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1086     } else if (auto *BaseEE =
1087                    dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1088       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1089       // Find the instruction which produces the base for each input.  We may
1090       // need to insert a bitcast.
1091       BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1092     } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1093       auto *BdvIE = cast<InsertElementInst>(BDV);
1094       auto UpdateOperand = [&](int OperandIdx) {
1095         Value *InVal = BdvIE->getOperand(OperandIdx);
1096         Value *Base = getBaseForInput(InVal, BaseIE);
1097         BaseIE->setOperand(OperandIdx, Base);
1098       };
1099       UpdateOperand(0); // vector operand
1100       UpdateOperand(1); // scalar operand
1101     } else {
1102       auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1103       auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1104       auto UpdateOperand = [&](int OperandIdx) {
1105         Value *InVal = BdvSV->getOperand(OperandIdx);
1106         Value *Base = getBaseForInput(InVal, BaseSV);
1107         BaseSV->setOperand(OperandIdx, Base);
1108       };
1109       UpdateOperand(0); // vector operand
1110       UpdateOperand(1); // vector operand
1111     }
1112   }
1113 
1114   // Cache all of our results so we can cheaply reuse them
1115   // NOTE: This is actually two caches: one of the base defining value
1116   // relation and one of the base pointer relation!  FIXME
1117   for (auto Pair : States) {
1118     auto *BDV = Pair.first;
1119     Value *Base = Pair.second.getBaseValue();
1120     assert(BDV && Base);
1121     assert(!isKnownBaseResult(BDV) && "why did it get added?");
1122 
1123     LLVM_DEBUG(
1124         dbgs() << "Updating base value cache"
1125                << " for: " << BDV->getName() << " from: "
1126                << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1127                << " to: " << Base->getName() << "\n");
1128 
1129     if (Cache.count(BDV)) {
1130       assert(isKnownBaseResult(Base) &&
1131              "must be something we 'know' is a base pointer");
1132       // Once we transition from the BDV relation being store in the Cache to
1133       // the base relation being stored, it must be stable
1134       assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1135              "base relation should be stable");
1136     }
1137     Cache[BDV] = Base;
1138   }
1139   assert(Cache.count(Def));
1140   return Cache[Def];
1141 }
1142 
1143 // For a set of live pointers (base and/or derived), identify the base
1144 // pointer of the object which they are derived from.  This routine will
1145 // mutate the IR graph as needed to make the 'base' pointer live at the
1146 // definition site of 'derived'.  This ensures that any use of 'derived' can
1147 // also use 'base'.  This may involve the insertion of a number of
1148 // additional PHI nodes.
1149 //
1150 // preconditions: live is a set of pointer type Values
1151 //
1152 // side effects: may insert PHI nodes into the existing CFG, will preserve
1153 // CFG, will not remove or mutate any existing nodes
1154 //
1155 // post condition: PointerToBase contains one (derived, base) pair for every
1156 // pointer in live.  Note that derived can be equal to base if the original
1157 // pointer was a base pointer.
1158 static void
1159 findBasePointers(const StatepointLiveSetTy &live,
1160                  MapVector<Value *, Value *> &PointerToBase,
1161                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
1162   for (Value *ptr : live) {
1163     Value *base = findBasePointer(ptr, DVCache);
1164     assert(base && "failed to find base pointer");
1165     PointerToBase[ptr] = base;
1166     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1167             DT->dominates(cast<Instruction>(base)->getParent(),
1168                           cast<Instruction>(ptr)->getParent())) &&
1169            "The base we found better dominate the derived pointer");
1170   }
1171 }
1172 
1173 /// Find the required based pointers (and adjust the live set) for the given
1174 /// parse point.
1175 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1176                              CallBase *Call,
1177                              PartiallyConstructedSafepointRecord &result) {
1178   MapVector<Value *, Value *> PointerToBase;
1179   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1180 
1181   if (PrintBasePointers) {
1182     errs() << "Base Pairs (w/o Relocation):\n";
1183     for (auto &Pair : PointerToBase) {
1184       errs() << " derived ";
1185       Pair.first->printAsOperand(errs(), false);
1186       errs() << " base ";
1187       Pair.second->printAsOperand(errs(), false);
1188       errs() << "\n";;
1189     }
1190   }
1191 
1192   result.PointerToBase = PointerToBase;
1193 }
1194 
1195 /// Given an updated version of the dataflow liveness results, update the
1196 /// liveset and base pointer maps for the call site CS.
1197 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1198                                   CallBase *Call,
1199                                   PartiallyConstructedSafepointRecord &result);
1200 
1201 static void recomputeLiveInValues(
1202     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1203     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1204   // TODO-PERF: reuse the original liveness, then simply run the dataflow
1205   // again.  The old values are still live and will help it stabilize quickly.
1206   GCPtrLivenessData RevisedLivenessData;
1207   computeLiveInValues(DT, F, RevisedLivenessData);
1208   for (size_t i = 0; i < records.size(); i++) {
1209     struct PartiallyConstructedSafepointRecord &info = records[i];
1210     recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1211   }
1212 }
1213 
1214 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1215 // no uses of the original value / return value between the gc.statepoint and
1216 // the gc.relocate / gc.result call.  One case which can arise is a phi node
1217 // starting one of the successor blocks.  We also need to be able to insert the
1218 // gc.relocates only on the path which goes through the statepoint.  We might
1219 // need to split an edge to make this possible.
1220 static BasicBlock *
1221 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1222                             DominatorTree &DT) {
1223   BasicBlock *Ret = BB;
1224   if (!BB->getUniquePredecessor())
1225     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1226 
1227   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1228   // from it
1229   FoldSingleEntryPHINodes(Ret);
1230   assert(!isa<PHINode>(Ret->begin()) &&
1231          "All PHI nodes should have been removed!");
1232 
1233   // At this point, we can safely insert a gc.relocate or gc.result as the first
1234   // instruction in Ret if needed.
1235   return Ret;
1236 }
1237 
1238 // Create new attribute set containing only attributes which can be transferred
1239 // from original call to the safepoint.
1240 static AttributeList legalizeCallAttributes(AttributeList AL) {
1241   if (AL.isEmpty())
1242     return AL;
1243 
1244   // Remove the readonly, readnone, and statepoint function attributes.
1245   AttrBuilder FnAttrs = AL.getFnAttributes();
1246   FnAttrs.removeAttribute(Attribute::ReadNone);
1247   FnAttrs.removeAttribute(Attribute::ReadOnly);
1248   for (Attribute A : AL.getFnAttributes()) {
1249     if (isStatepointDirectiveAttr(A))
1250       FnAttrs.remove(A);
1251   }
1252 
1253   // Just skip parameter and return attributes for now
1254   LLVMContext &Ctx = AL.getContext();
1255   return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1256                             AttributeSet::get(Ctx, FnAttrs));
1257 }
1258 
1259 /// Helper function to place all gc relocates necessary for the given
1260 /// statepoint.
1261 /// Inputs:
1262 ///   liveVariables - list of variables to be relocated.
1263 ///   liveStart - index of the first live variable.
1264 ///   basePtrs - base pointers.
1265 ///   statepointToken - statepoint instruction to which relocates should be
1266 ///   bound.
1267 ///   Builder - Llvm IR builder to be used to construct new calls.
1268 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1269                               const int LiveStart,
1270                               ArrayRef<Value *> BasePtrs,
1271                               Instruction *StatepointToken,
1272                               IRBuilder<> Builder) {
1273   if (LiveVariables.empty())
1274     return;
1275 
1276   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1277     auto ValIt = llvm::find(LiveVec, Val);
1278     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1279     size_t Index = std::distance(LiveVec.begin(), ValIt);
1280     assert(Index < LiveVec.size() && "Bug in std::find?");
1281     return Index;
1282   };
1283   Module *M = StatepointToken->getModule();
1284 
1285   // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1286   // element type is i8 addrspace(1)*). We originally generated unique
1287   // declarations for each pointer type, but this proved problematic because
1288   // the intrinsic mangling code is incomplete and fragile.  Since we're moving
1289   // towards a single unified pointer type anyways, we can just cast everything
1290   // to an i8* of the right address space.  A bitcast is added later to convert
1291   // gc_relocate to the actual value's type.
1292   auto getGCRelocateDecl = [&] (Type *Ty) {
1293     assert(isHandledGCPointerType(Ty));
1294     auto AS = Ty->getScalarType()->getPointerAddressSpace();
1295     Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1296     if (auto *VT = dyn_cast<VectorType>(Ty))
1297       NewTy = VectorType::get(NewTy, VT->getNumElements());
1298     return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1299                                      {NewTy});
1300   };
1301 
1302   // Lazily populated map from input types to the canonicalized form mentioned
1303   // in the comment above.  This should probably be cached somewhere more
1304   // broadly.
1305   DenseMap<Type *, Function *> TypeToDeclMap;
1306 
1307   for (unsigned i = 0; i < LiveVariables.size(); i++) {
1308     // Generate the gc.relocate call and save the result
1309     Value *BaseIdx =
1310       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1311     Value *LiveIdx = Builder.getInt32(LiveStart + i);
1312 
1313     Type *Ty = LiveVariables[i]->getType();
1314     if (!TypeToDeclMap.count(Ty))
1315       TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1316     Function *GCRelocateDecl = TypeToDeclMap[Ty];
1317 
1318     // only specify a debug name if we can give a useful one
1319     CallInst *Reloc = Builder.CreateCall(
1320         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1321         suffixed_name_or(LiveVariables[i], ".relocated", ""));
1322     // Trick CodeGen into thinking there are lots of free registers at this
1323     // fake call.
1324     Reloc->setCallingConv(CallingConv::Cold);
1325   }
1326 }
1327 
1328 namespace {
1329 
1330 /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
1331 /// avoids having to worry about keeping around dangling pointers to Values.
1332 class DeferredReplacement {
1333   AssertingVH<Instruction> Old;
1334   AssertingVH<Instruction> New;
1335   bool IsDeoptimize = false;
1336 
1337   DeferredReplacement() = default;
1338 
1339 public:
1340   static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1341     assert(Old != New && Old && New &&
1342            "Cannot RAUW equal values or to / from null!");
1343 
1344     DeferredReplacement D;
1345     D.Old = Old;
1346     D.New = New;
1347     return D;
1348   }
1349 
1350   static DeferredReplacement createDelete(Instruction *ToErase) {
1351     DeferredReplacement D;
1352     D.Old = ToErase;
1353     return D;
1354   }
1355 
1356   static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1357 #ifndef NDEBUG
1358     auto *F = cast<CallInst>(Old)->getCalledFunction();
1359     assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1360            "Only way to construct a deoptimize deferred replacement");
1361 #endif
1362     DeferredReplacement D;
1363     D.Old = Old;
1364     D.IsDeoptimize = true;
1365     return D;
1366   }
1367 
1368   /// Does the task represented by this instance.
1369   void doReplacement() {
1370     Instruction *OldI = Old;
1371     Instruction *NewI = New;
1372 
1373     assert(OldI != NewI && "Disallowed at construction?!");
1374     assert((!IsDeoptimize || !New) &&
1375            "Deoptimize intrinsics are not replaced!");
1376 
1377     Old = nullptr;
1378     New = nullptr;
1379 
1380     if (NewI)
1381       OldI->replaceAllUsesWith(NewI);
1382 
1383     if (IsDeoptimize) {
1384       // Note: we've inserted instructions, so the call to llvm.deoptimize may
1385       // not necessarily be followed by the matching return.
1386       auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1387       new UnreachableInst(RI->getContext(), RI);
1388       RI->eraseFromParent();
1389     }
1390 
1391     OldI->eraseFromParent();
1392   }
1393 };
1394 
1395 } // end anonymous namespace
1396 
1397 static StringRef getDeoptLowering(CallBase *Call) {
1398   const char *DeoptLowering = "deopt-lowering";
1399   if (Call->hasFnAttr(DeoptLowering)) {
1400     // FIXME: Calls have a *really* confusing interface around attributes
1401     // with values.
1402     const AttributeList &CSAS = Call->getAttributes();
1403     if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1404       return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1405           .getValueAsString();
1406     Function *F = Call->getCalledFunction();
1407     assert(F && F->hasFnAttribute(DeoptLowering));
1408     return F->getFnAttribute(DeoptLowering).getValueAsString();
1409   }
1410   return "live-through";
1411 }
1412 
1413 static void
1414 makeStatepointExplicitImpl(CallBase *Call, /* to replace */
1415                            const SmallVectorImpl<Value *> &BasePtrs,
1416                            const SmallVectorImpl<Value *> &LiveVariables,
1417                            PartiallyConstructedSafepointRecord &Result,
1418                            std::vector<DeferredReplacement> &Replacements) {
1419   assert(BasePtrs.size() == LiveVariables.size());
1420 
1421   // Then go ahead and use the builder do actually do the inserts.  We insert
1422   // immediately before the previous instruction under the assumption that all
1423   // arguments will be available here.  We can't insert afterwards since we may
1424   // be replacing a terminator.
1425   IRBuilder<> Builder(Call);
1426 
1427   ArrayRef<Value *> GCArgs(LiveVariables);
1428   uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1429   uint32_t NumPatchBytes = 0;
1430   uint32_t Flags = uint32_t(StatepointFlags::None);
1431 
1432   ArrayRef<Use> CallArgs(Call->arg_begin(), Call->arg_end());
1433   ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(Call);
1434   ArrayRef<Use> TransitionArgs;
1435   if (auto TransitionBundle =
1436           Call->getOperandBundle(LLVMContext::OB_gc_transition)) {
1437     Flags |= uint32_t(StatepointFlags::GCTransition);
1438     TransitionArgs = TransitionBundle->Inputs;
1439   }
1440 
1441   // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1442   // with a return value, we lower then as never returning calls to
1443   // __llvm_deoptimize that are followed by unreachable to get better codegen.
1444   bool IsDeoptimize = false;
1445 
1446   StatepointDirectives SD =
1447       parseStatepointDirectivesFromAttrs(Call->getAttributes());
1448   if (SD.NumPatchBytes)
1449     NumPatchBytes = *SD.NumPatchBytes;
1450   if (SD.StatepointID)
1451     StatepointID = *SD.StatepointID;
1452 
1453   // Pass through the requested lowering if any.  The default is live-through.
1454   StringRef DeoptLowering = getDeoptLowering(Call);
1455   if (DeoptLowering.equals("live-in"))
1456     Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1457   else {
1458     assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1459   }
1460 
1461   Value *CallTarget = Call->getCalledValue();
1462   if (Function *F = dyn_cast<Function>(CallTarget)) {
1463     if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1464       // Calls to llvm.experimental.deoptimize are lowered to calls to the
1465       // __llvm_deoptimize symbol.  We want to resolve this now, since the
1466       // verifier does not allow taking the address of an intrinsic function.
1467 
1468       SmallVector<Type *, 8> DomainTy;
1469       for (Value *Arg : CallArgs)
1470         DomainTy.push_back(Arg->getType());
1471       auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1472                                     /* isVarArg = */ false);
1473 
1474       // Note: CallTarget can be a bitcast instruction of a symbol if there are
1475       // calls to @llvm.experimental.deoptimize with different argument types in
1476       // the same module.  This is fine -- we assume the frontend knew what it
1477       // was doing when generating this kind of IR.
1478       CallTarget = F->getParent()
1479                        ->getOrInsertFunction("__llvm_deoptimize", FTy)
1480                        .getCallee();
1481 
1482       IsDeoptimize = true;
1483     }
1484   }
1485 
1486   // Create the statepoint given all the arguments
1487   Instruction *Token = nullptr;
1488   if (auto *CI = dyn_cast<CallInst>(Call)) {
1489     CallInst *SPCall = Builder.CreateGCStatepointCall(
1490         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1491         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1492 
1493     SPCall->setTailCallKind(CI->getTailCallKind());
1494     SPCall->setCallingConv(CI->getCallingConv());
1495 
1496     // Currently we will fail on parameter attributes and on certain
1497     // function attributes.  In case if we can handle this set of attributes -
1498     // set up function attrs directly on statepoint and return attrs later for
1499     // gc_result intrinsic.
1500     SPCall->setAttributes(legalizeCallAttributes(CI->getAttributes()));
1501 
1502     Token = SPCall;
1503 
1504     // Put the following gc_result and gc_relocate calls immediately after the
1505     // the old call (which we're about to delete)
1506     assert(CI->getNextNode() && "Not a terminator, must have next!");
1507     Builder.SetInsertPoint(CI->getNextNode());
1508     Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc());
1509   } else {
1510     auto *II = cast<InvokeInst>(Call);
1511 
1512     // Insert the new invoke into the old block.  We'll remove the old one in a
1513     // moment at which point this will become the new terminator for the
1514     // original block.
1515     InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke(
1516         StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(),
1517         II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs,
1518         "statepoint_token");
1519 
1520     SPInvoke->setCallingConv(II->getCallingConv());
1521 
1522     // Currently we will fail on parameter attributes and on certain
1523     // function attributes.  In case if we can handle this set of attributes -
1524     // set up function attrs directly on statepoint and return attrs later for
1525     // gc_result intrinsic.
1526     SPInvoke->setAttributes(legalizeCallAttributes(II->getAttributes()));
1527 
1528     Token = SPInvoke;
1529 
1530     // Generate gc relocates in exceptional path
1531     BasicBlock *UnwindBlock = II->getUnwindDest();
1532     assert(!isa<PHINode>(UnwindBlock->begin()) &&
1533            UnwindBlock->getUniquePredecessor() &&
1534            "can't safely insert in this block!");
1535 
1536     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1537     Builder.SetCurrentDebugLocation(II->getDebugLoc());
1538 
1539     // Attach exceptional gc relocates to the landingpad.
1540     Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1541     Result.UnwindToken = ExceptionalToken;
1542 
1543     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1544     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1545                       Builder);
1546 
1547     // Generate gc relocates and returns for normal block
1548     BasicBlock *NormalDest = II->getNormalDest();
1549     assert(!isa<PHINode>(NormalDest->begin()) &&
1550            NormalDest->getUniquePredecessor() &&
1551            "can't safely insert in this block!");
1552 
1553     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1554 
1555     // gc relocates will be generated later as if it were regular call
1556     // statepoint
1557   }
1558   assert(Token && "Should be set in one of the above branches!");
1559 
1560   if (IsDeoptimize) {
1561     // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1562     // transform the tail-call like structure to a call to a void function
1563     // followed by unreachable to get better codegen.
1564     Replacements.push_back(
1565         DeferredReplacement::createDeoptimizeReplacement(Call));
1566   } else {
1567     Token->setName("statepoint_token");
1568     if (!Call->getType()->isVoidTy() && !Call->use_empty()) {
1569       StringRef Name = Call->hasName() ? Call->getName() : "";
1570       CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name);
1571       GCResult->setAttributes(
1572           AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1573                              Call->getAttributes().getRetAttributes()));
1574 
1575       // We cannot RAUW or delete CS.getInstruction() because it could be in the
1576       // live set of some other safepoint, in which case that safepoint's
1577       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1578       // llvm::Instruction.  Instead, we defer the replacement and deletion to
1579       // after the live sets have been made explicit in the IR, and we no longer
1580       // have raw pointers to worry about.
1581       Replacements.emplace_back(
1582           DeferredReplacement::createRAUW(Call, GCResult));
1583     } else {
1584       Replacements.emplace_back(DeferredReplacement::createDelete(Call));
1585     }
1586   }
1587 
1588   Result.StatepointToken = Token;
1589 
1590   // Second, create a gc.relocate for every live variable
1591   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1592   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1593 }
1594 
1595 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1596 // which make the relocations happening at this safepoint explicit.
1597 //
1598 // WARNING: Does not do any fixup to adjust users of the original live
1599 // values.  That's the callers responsibility.
1600 static void
1601 makeStatepointExplicit(DominatorTree &DT, CallBase *Call,
1602                        PartiallyConstructedSafepointRecord &Result,
1603                        std::vector<DeferredReplacement> &Replacements) {
1604   const auto &LiveSet = Result.LiveSet;
1605   const auto &PointerToBase = Result.PointerToBase;
1606 
1607   // Convert to vector for efficient cross referencing.
1608   SmallVector<Value *, 64> BaseVec, LiveVec;
1609   LiveVec.reserve(LiveSet.size());
1610   BaseVec.reserve(LiveSet.size());
1611   for (Value *L : LiveSet) {
1612     LiveVec.push_back(L);
1613     assert(PointerToBase.count(L));
1614     Value *Base = PointerToBase.find(L)->second;
1615     BaseVec.push_back(Base);
1616   }
1617   assert(LiveVec.size() == BaseVec.size());
1618 
1619   // Do the actual rewriting and delete the old statepoint
1620   makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements);
1621 }
1622 
1623 // Helper function for the relocationViaAlloca.
1624 //
1625 // It receives iterator to the statepoint gc relocates and emits a store to the
1626 // assigned location (via allocaMap) for the each one of them.  It adds the
1627 // visited values into the visitedLiveValues set, which we will later use them
1628 // for sanity checking.
1629 static void
1630 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1631                        DenseMap<Value *, AllocaInst *> &AllocaMap,
1632                        DenseSet<Value *> &VisitedLiveValues) {
1633   for (User *U : GCRelocs) {
1634     GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1635     if (!Relocate)
1636       continue;
1637 
1638     Value *OriginalValue = Relocate->getDerivedPtr();
1639     assert(AllocaMap.count(OriginalValue));
1640     Value *Alloca = AllocaMap[OriginalValue];
1641 
1642     // Emit store into the related alloca
1643     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1644     // the correct type according to alloca.
1645     assert(Relocate->getNextNode() &&
1646            "Should always have one since it's not a terminator");
1647     IRBuilder<> Builder(Relocate->getNextNode());
1648     Value *CastedRelocatedValue =
1649       Builder.CreateBitCast(Relocate,
1650                             cast<AllocaInst>(Alloca)->getAllocatedType(),
1651                             suffixed_name_or(Relocate, ".casted", ""));
1652 
1653     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1654     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1655 
1656 #ifndef NDEBUG
1657     VisitedLiveValues.insert(OriginalValue);
1658 #endif
1659   }
1660 }
1661 
1662 // Helper function for the "relocationViaAlloca". Similar to the
1663 // "insertRelocationStores" but works for rematerialized values.
1664 static void insertRematerializationStores(
1665     const RematerializedValueMapTy &RematerializedValues,
1666     DenseMap<Value *, AllocaInst *> &AllocaMap,
1667     DenseSet<Value *> &VisitedLiveValues) {
1668   for (auto RematerializedValuePair: RematerializedValues) {
1669     Instruction *RematerializedValue = RematerializedValuePair.first;
1670     Value *OriginalValue = RematerializedValuePair.second;
1671 
1672     assert(AllocaMap.count(OriginalValue) &&
1673            "Can not find alloca for rematerialized value");
1674     Value *Alloca = AllocaMap[OriginalValue];
1675 
1676     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1677     Store->insertAfter(RematerializedValue);
1678 
1679 #ifndef NDEBUG
1680     VisitedLiveValues.insert(OriginalValue);
1681 #endif
1682   }
1683 }
1684 
1685 /// Do all the relocation update via allocas and mem2reg
1686 static void relocationViaAlloca(
1687     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1688     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1689 #ifndef NDEBUG
1690   // record initial number of (static) allocas; we'll check we have the same
1691   // number when we get done.
1692   int InitialAllocaNum = 0;
1693   for (Instruction &I : F.getEntryBlock())
1694     if (isa<AllocaInst>(I))
1695       InitialAllocaNum++;
1696 #endif
1697 
1698   // TODO-PERF: change data structures, reserve
1699   DenseMap<Value *, AllocaInst *> AllocaMap;
1700   SmallVector<AllocaInst *, 200> PromotableAllocas;
1701   // Used later to chack that we have enough allocas to store all values
1702   std::size_t NumRematerializedValues = 0;
1703   PromotableAllocas.reserve(Live.size());
1704 
1705   // Emit alloca for "LiveValue" and record it in "allocaMap" and
1706   // "PromotableAllocas"
1707   const DataLayout &DL = F.getParent()->getDataLayout();
1708   auto emitAllocaFor = [&](Value *LiveValue) {
1709     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1710                                         DL.getAllocaAddrSpace(), "",
1711                                         F.getEntryBlock().getFirstNonPHI());
1712     AllocaMap[LiveValue] = Alloca;
1713     PromotableAllocas.push_back(Alloca);
1714   };
1715 
1716   // Emit alloca for each live gc pointer
1717   for (Value *V : Live)
1718     emitAllocaFor(V);
1719 
1720   // Emit allocas for rematerialized values
1721   for (const auto &Info : Records)
1722     for (auto RematerializedValuePair : Info.RematerializedValues) {
1723       Value *OriginalValue = RematerializedValuePair.second;
1724       if (AllocaMap.count(OriginalValue) != 0)
1725         continue;
1726 
1727       emitAllocaFor(OriginalValue);
1728       ++NumRematerializedValues;
1729     }
1730 
1731   // The next two loops are part of the same conceptual operation.  We need to
1732   // insert a store to the alloca after the original def and at each
1733   // redefinition.  We need to insert a load before each use.  These are split
1734   // into distinct loops for performance reasons.
1735 
1736   // Update gc pointer after each statepoint: either store a relocated value or
1737   // null (if no relocated value was found for this gc pointer and it is not a
1738   // gc_result).  This must happen before we update the statepoint with load of
1739   // alloca otherwise we lose the link between statepoint and old def.
1740   for (const auto &Info : Records) {
1741     Value *Statepoint = Info.StatepointToken;
1742 
1743     // This will be used for consistency check
1744     DenseSet<Value *> VisitedLiveValues;
1745 
1746     // Insert stores for normal statepoint gc relocates
1747     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1748 
1749     // In case if it was invoke statepoint
1750     // we will insert stores for exceptional path gc relocates.
1751     if (isa<InvokeInst>(Statepoint)) {
1752       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1753                              VisitedLiveValues);
1754     }
1755 
1756     // Do similar thing with rematerialized values
1757     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1758                                   VisitedLiveValues);
1759 
1760     if (ClobberNonLive) {
1761       // As a debugging aid, pretend that an unrelocated pointer becomes null at
1762       // the gc.statepoint.  This will turn some subtle GC problems into
1763       // slightly easier to debug SEGVs.  Note that on large IR files with
1764       // lots of gc.statepoints this is extremely costly both memory and time
1765       // wise.
1766       SmallVector<AllocaInst *, 64> ToClobber;
1767       for (auto Pair : AllocaMap) {
1768         Value *Def = Pair.first;
1769         AllocaInst *Alloca = Pair.second;
1770 
1771         // This value was relocated
1772         if (VisitedLiveValues.count(Def)) {
1773           continue;
1774         }
1775         ToClobber.push_back(Alloca);
1776       }
1777 
1778       auto InsertClobbersAt = [&](Instruction *IP) {
1779         for (auto *AI : ToClobber) {
1780           auto PT = cast<PointerType>(AI->getAllocatedType());
1781           Constant *CPN = ConstantPointerNull::get(PT);
1782           StoreInst *Store = new StoreInst(CPN, AI);
1783           Store->insertBefore(IP);
1784         }
1785       };
1786 
1787       // Insert the clobbering stores.  These may get intermixed with the
1788       // gc.results and gc.relocates, but that's fine.
1789       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1790         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1791         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1792       } else {
1793         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1794       }
1795     }
1796   }
1797 
1798   // Update use with load allocas and add store for gc_relocated.
1799   for (auto Pair : AllocaMap) {
1800     Value *Def = Pair.first;
1801     AllocaInst *Alloca = Pair.second;
1802 
1803     // We pre-record the uses of allocas so that we dont have to worry about
1804     // later update that changes the user information..
1805 
1806     SmallVector<Instruction *, 20> Uses;
1807     // PERF: trade a linear scan for repeated reallocation
1808     Uses.reserve(Def->getNumUses());
1809     for (User *U : Def->users()) {
1810       if (!isa<ConstantExpr>(U)) {
1811         // If the def has a ConstantExpr use, then the def is either a
1812         // ConstantExpr use itself or null.  In either case
1813         // (recursively in the first, directly in the second), the oop
1814         // it is ultimately dependent on is null and this particular
1815         // use does not need to be fixed up.
1816         Uses.push_back(cast<Instruction>(U));
1817       }
1818     }
1819 
1820     llvm::sort(Uses);
1821     auto Last = std::unique(Uses.begin(), Uses.end());
1822     Uses.erase(Last, Uses.end());
1823 
1824     for (Instruction *Use : Uses) {
1825       if (isa<PHINode>(Use)) {
1826         PHINode *Phi = cast<PHINode>(Use);
1827         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1828           if (Def == Phi->getIncomingValue(i)) {
1829             LoadInst *Load =
1830                 new LoadInst(Alloca->getAllocatedType(), Alloca, "",
1831                              Phi->getIncomingBlock(i)->getTerminator());
1832             Phi->setIncomingValue(i, Load);
1833           }
1834         }
1835       } else {
1836         LoadInst *Load =
1837             new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use);
1838         Use->replaceUsesOfWith(Def, Load);
1839       }
1840     }
1841 
1842     // Emit store for the initial gc value.  Store must be inserted after load,
1843     // otherwise store will be in alloca's use list and an extra load will be
1844     // inserted before it.
1845     StoreInst *Store = new StoreInst(Def, Alloca);
1846     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1847       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1848         // InvokeInst is a terminator so the store need to be inserted into its
1849         // normal destination block.
1850         BasicBlock *NormalDest = Invoke->getNormalDest();
1851         Store->insertBefore(NormalDest->getFirstNonPHI());
1852       } else {
1853         assert(!Inst->isTerminator() &&
1854                "The only terminator that can produce a value is "
1855                "InvokeInst which is handled above.");
1856         Store->insertAfter(Inst);
1857       }
1858     } else {
1859       assert(isa<Argument>(Def));
1860       Store->insertAfter(cast<Instruction>(Alloca));
1861     }
1862   }
1863 
1864   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1865          "we must have the same allocas with lives");
1866   if (!PromotableAllocas.empty()) {
1867     // Apply mem2reg to promote alloca to SSA
1868     PromoteMemToReg(PromotableAllocas, DT);
1869   }
1870 
1871 #ifndef NDEBUG
1872   for (auto &I : F.getEntryBlock())
1873     if (isa<AllocaInst>(I))
1874       InitialAllocaNum--;
1875   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1876 #endif
1877 }
1878 
1879 /// Implement a unique function which doesn't require we sort the input
1880 /// vector.  Doing so has the effect of changing the output of a couple of
1881 /// tests in ways which make them less useful in testing fused safepoints.
1882 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1883   SmallSet<T, 8> Seen;
1884   Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
1885             Vec.end());
1886 }
1887 
1888 /// Insert holders so that each Value is obviously live through the entire
1889 /// lifetime of the call.
1890 static void insertUseHolderAfter(CallBase *Call, const ArrayRef<Value *> Values,
1891                                  SmallVectorImpl<CallInst *> &Holders) {
1892   if (Values.empty())
1893     // No values to hold live, might as well not insert the empty holder
1894     return;
1895 
1896   Module *M = Call->getModule();
1897   // Use a dummy vararg function to actually hold the values live
1898   FunctionCallee Func = M->getOrInsertFunction(
1899       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true));
1900   if (isa<CallInst>(Call)) {
1901     // For call safepoints insert dummy calls right after safepoint
1902     Holders.push_back(
1903         CallInst::Create(Func, Values, "", &*++Call->getIterator()));
1904     return;
1905   }
1906   // For invoke safepooints insert dummy calls both in normal and
1907   // exceptional destination blocks
1908   auto *II = cast<InvokeInst>(Call);
1909   Holders.push_back(CallInst::Create(
1910       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1911   Holders.push_back(CallInst::Create(
1912       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1913 }
1914 
1915 static void findLiveReferences(
1916     Function &F, DominatorTree &DT, ArrayRef<CallBase *> toUpdate,
1917     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1918   GCPtrLivenessData OriginalLivenessData;
1919   computeLiveInValues(DT, F, OriginalLivenessData);
1920   for (size_t i = 0; i < records.size(); i++) {
1921     struct PartiallyConstructedSafepointRecord &info = records[i];
1922     analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1923   }
1924 }
1925 
1926 // Helper function for the "rematerializeLiveValues". It walks use chain
1927 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
1928 // the base or a value it cannot process. Only "simple" values are processed
1929 // (currently it is GEP's and casts). The returned root is  examined by the
1930 // callers of findRematerializableChainToBasePointer.  Fills "ChainToBase" array
1931 // with all visited values.
1932 static Value* findRematerializableChainToBasePointer(
1933   SmallVectorImpl<Instruction*> &ChainToBase,
1934   Value *CurrentValue) {
1935   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1936     ChainToBase.push_back(GEP);
1937     return findRematerializableChainToBasePointer(ChainToBase,
1938                                                   GEP->getPointerOperand());
1939   }
1940 
1941   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1942     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1943       return CI;
1944 
1945     ChainToBase.push_back(CI);
1946     return findRematerializableChainToBasePointer(ChainToBase,
1947                                                   CI->getOperand(0));
1948   }
1949 
1950   // We have reached the root of the chain, which is either equal to the base or
1951   // is the first unsupported value along the use chain.
1952   return CurrentValue;
1953 }
1954 
1955 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1956 // chain we are going to rematerialize.
1957 static unsigned
1958 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1959                        TargetTransformInfo &TTI) {
1960   unsigned Cost = 0;
1961 
1962   for (Instruction *Instr : Chain) {
1963     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1964       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1965              "non noop cast is found during rematerialization");
1966 
1967       Type *SrcTy = CI->getOperand(0)->getType();
1968       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
1969 
1970     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1971       // Cost of the address calculation
1972       Type *ValTy = GEP->getSourceElementType();
1973       Cost += TTI.getAddressComputationCost(ValTy);
1974 
1975       // And cost of the GEP itself
1976       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1977       //       allowed for the external usage)
1978       if (!GEP->hasAllConstantIndices())
1979         Cost += 2;
1980 
1981     } else {
1982       llvm_unreachable("unsupported instruction type during rematerialization");
1983     }
1984   }
1985 
1986   return Cost;
1987 }
1988 
1989 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
1990   unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
1991   if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
1992       OrigRootPhi.getParent() != AlternateRootPhi.getParent())
1993     return false;
1994   // Map of incoming values and their corresponding basic blocks of
1995   // OrigRootPhi.
1996   SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
1997   for (unsigned i = 0; i < PhiNum; i++)
1998     CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
1999         OrigRootPhi.getIncomingBlock(i);
2000 
2001   // Both current and base PHIs should have same incoming values and
2002   // the same basic blocks corresponding to the incoming values.
2003   for (unsigned i = 0; i < PhiNum; i++) {
2004     auto CIVI =
2005         CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2006     if (CIVI == CurrentIncomingValues.end())
2007       return false;
2008     BasicBlock *CurrentIncomingBB = CIVI->second;
2009     if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2010       return false;
2011   }
2012   return true;
2013 }
2014 
2015 // From the statepoint live set pick values that are cheaper to recompute then
2016 // to relocate. Remove this values from the live set, rematerialize them after
2017 // statepoint and record them in "Info" structure. Note that similar to
2018 // relocated values we don't do any user adjustments here.
2019 static void rematerializeLiveValues(CallBase *Call,
2020                                     PartiallyConstructedSafepointRecord &Info,
2021                                     TargetTransformInfo &TTI) {
2022   const unsigned int ChainLengthThreshold = 10;
2023 
2024   // Record values we are going to delete from this statepoint live set.
2025   // We can not di this in following loop due to iterator invalidation.
2026   SmallVector<Value *, 32> LiveValuesToBeDeleted;
2027 
2028   for (Value *LiveValue: Info.LiveSet) {
2029     // For each live pointer find its defining chain
2030     SmallVector<Instruction *, 3> ChainToBase;
2031     assert(Info.PointerToBase.count(LiveValue));
2032     Value *RootOfChain =
2033       findRematerializableChainToBasePointer(ChainToBase,
2034                                              LiveValue);
2035 
2036     // Nothing to do, or chain is too long
2037     if ( ChainToBase.size() == 0 ||
2038         ChainToBase.size() > ChainLengthThreshold)
2039       continue;
2040 
2041     // Handle the scenario where the RootOfChain is not equal to the
2042     // Base Value, but they are essentially the same phi values.
2043     if (RootOfChain != Info.PointerToBase[LiveValue]) {
2044       PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2045       PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2046       if (!OrigRootPhi || !AlternateRootPhi)
2047         continue;
2048       // PHI nodes that have the same incoming values, and belonging to the same
2049       // basic blocks are essentially the same SSA value.  When the original phi
2050       // has incoming values with different base pointers, the original phi is
2051       // marked as conflict, and an additional `AlternateRootPhi` with the same
2052       // incoming values get generated by the findBasePointer function. We need
2053       // to identify the newly generated AlternateRootPhi (.base version of phi)
2054       // and RootOfChain (the original phi node itself) are the same, so that we
2055       // can rematerialize the gep and casts. This is a workaround for the
2056       // deficiency in the findBasePointer algorithm.
2057       if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2058         continue;
2059       // Now that the phi nodes are proved to be the same, assert that
2060       // findBasePointer's newly generated AlternateRootPhi is present in the
2061       // liveset of the call.
2062       assert(Info.LiveSet.count(AlternateRootPhi));
2063     }
2064     // Compute cost of this chain
2065     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2066     // TODO: We can also account for cases when we will be able to remove some
2067     //       of the rematerialized values by later optimization passes. I.e if
2068     //       we rematerialized several intersecting chains. Or if original values
2069     //       don't have any uses besides this statepoint.
2070 
2071     // For invokes we need to rematerialize each chain twice - for normal and
2072     // for unwind basic blocks. Model this by multiplying cost by two.
2073     if (isa<InvokeInst>(Call)) {
2074       Cost *= 2;
2075     }
2076     // If it's too expensive - skip it
2077     if (Cost >= RematerializationThreshold)
2078       continue;
2079 
2080     // Remove value from the live set
2081     LiveValuesToBeDeleted.push_back(LiveValue);
2082 
2083     // Clone instructions and record them inside "Info" structure
2084 
2085     // Walk backwards to visit top-most instructions first
2086     std::reverse(ChainToBase.begin(), ChainToBase.end());
2087 
2088     // Utility function which clones all instructions from "ChainToBase"
2089     // and inserts them before "InsertBefore". Returns rematerialized value
2090     // which should be used after statepoint.
2091     auto rematerializeChain = [&ChainToBase](
2092         Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2093       Instruction *LastClonedValue = nullptr;
2094       Instruction *LastValue = nullptr;
2095       for (Instruction *Instr: ChainToBase) {
2096         // Only GEP's and casts are supported as we need to be careful to not
2097         // introduce any new uses of pointers not in the liveset.
2098         // Note that it's fine to introduce new uses of pointers which were
2099         // otherwise not used after this statepoint.
2100         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2101 
2102         Instruction *ClonedValue = Instr->clone();
2103         ClonedValue->insertBefore(InsertBefore);
2104         ClonedValue->setName(Instr->getName() + ".remat");
2105 
2106         // If it is not first instruction in the chain then it uses previously
2107         // cloned value. We should update it to use cloned value.
2108         if (LastClonedValue) {
2109           assert(LastValue);
2110           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2111 #ifndef NDEBUG
2112           for (auto OpValue : ClonedValue->operand_values()) {
2113             // Assert that cloned instruction does not use any instructions from
2114             // this chain other than LastClonedValue
2115             assert(!is_contained(ChainToBase, OpValue) &&
2116                    "incorrect use in rematerialization chain");
2117             // Assert that the cloned instruction does not use the RootOfChain
2118             // or the AlternateLiveBase.
2119             assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2120           }
2121 #endif
2122         } else {
2123           // For the first instruction, replace the use of unrelocated base i.e.
2124           // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2125           // live set. They have been proved to be the same PHI nodes.  Note
2126           // that the *only* use of the RootOfChain in the ChainToBase list is
2127           // the first Value in the list.
2128           if (RootOfChain != AlternateLiveBase)
2129             ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2130         }
2131 
2132         LastClonedValue = ClonedValue;
2133         LastValue = Instr;
2134       }
2135       assert(LastClonedValue);
2136       return LastClonedValue;
2137     };
2138 
2139     // Different cases for calls and invokes. For invokes we need to clone
2140     // instructions both on normal and unwind path.
2141     if (isa<CallInst>(Call)) {
2142       Instruction *InsertBefore = Call->getNextNode();
2143       assert(InsertBefore);
2144       Instruction *RematerializedValue = rematerializeChain(
2145           InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2146       Info.RematerializedValues[RematerializedValue] = LiveValue;
2147     } else {
2148       auto *Invoke = cast<InvokeInst>(Call);
2149 
2150       Instruction *NormalInsertBefore =
2151           &*Invoke->getNormalDest()->getFirstInsertionPt();
2152       Instruction *UnwindInsertBefore =
2153           &*Invoke->getUnwindDest()->getFirstInsertionPt();
2154 
2155       Instruction *NormalRematerializedValue = rematerializeChain(
2156           NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2157       Instruction *UnwindRematerializedValue = rematerializeChain(
2158           UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2159 
2160       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2161       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2162     }
2163   }
2164 
2165   // Remove rematerializaed values from the live set
2166   for (auto LiveValue: LiveValuesToBeDeleted) {
2167     Info.LiveSet.remove(LiveValue);
2168   }
2169 }
2170 
2171 static bool insertParsePoints(Function &F, DominatorTree &DT,
2172                               TargetTransformInfo &TTI,
2173                               SmallVectorImpl<CallBase *> &ToUpdate) {
2174 #ifndef NDEBUG
2175   // sanity check the input
2176   std::set<CallBase *> Uniqued;
2177   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2178   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2179 
2180   for (CallBase *Call : ToUpdate)
2181     assert(Call->getFunction() == &F);
2182 #endif
2183 
2184   // When inserting gc.relocates for invokes, we need to be able to insert at
2185   // the top of the successor blocks.  See the comment on
2186   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
2187   // may restructure the CFG.
2188   for (CallBase *Call : ToUpdate) {
2189     auto *II = dyn_cast<InvokeInst>(Call);
2190     if (!II)
2191       continue;
2192     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2193     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2194   }
2195 
2196   // A list of dummy calls added to the IR to keep various values obviously
2197   // live in the IR.  We'll remove all of these when done.
2198   SmallVector<CallInst *, 64> Holders;
2199 
2200   // Insert a dummy call with all of the deopt operands we'll need for the
2201   // actual safepoint insertion as arguments.  This ensures reference operands
2202   // in the deopt argument list are considered live through the safepoint (and
2203   // thus makes sure they get relocated.)
2204   for (CallBase *Call : ToUpdate) {
2205     SmallVector<Value *, 64> DeoptValues;
2206 
2207     for (Value *Arg : GetDeoptBundleOperands(Call)) {
2208       assert(!isUnhandledGCPointerType(Arg->getType()) &&
2209              "support for FCA unimplemented");
2210       if (isHandledGCPointerType(Arg->getType()))
2211         DeoptValues.push_back(Arg);
2212     }
2213 
2214     insertUseHolderAfter(Call, DeoptValues, Holders);
2215   }
2216 
2217   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2218 
2219   // A) Identify all gc pointers which are statically live at the given call
2220   // site.
2221   findLiveReferences(F, DT, ToUpdate, Records);
2222 
2223   // B) Find the base pointers for each live pointer
2224   /* scope for caching */ {
2225     // Cache the 'defining value' relation used in the computation and
2226     // insertion of base phis and selects.  This ensures that we don't insert
2227     // large numbers of duplicate base_phis.
2228     DefiningValueMapTy DVCache;
2229 
2230     for (size_t i = 0; i < Records.size(); i++) {
2231       PartiallyConstructedSafepointRecord &info = Records[i];
2232       findBasePointers(DT, DVCache, ToUpdate[i], info);
2233     }
2234   } // end of cache scope
2235 
2236   // The base phi insertion logic (for any safepoint) may have inserted new
2237   // instructions which are now live at some safepoint.  The simplest such
2238   // example is:
2239   // loop:
2240   //   phi a  <-- will be a new base_phi here
2241   //   safepoint 1 <-- that needs to be live here
2242   //   gep a + 1
2243   //   safepoint 2
2244   //   br loop
2245   // We insert some dummy calls after each safepoint to definitely hold live
2246   // the base pointers which were identified for that safepoint.  We'll then
2247   // ask liveness for _every_ base inserted to see what is now live.  Then we
2248   // remove the dummy calls.
2249   Holders.reserve(Holders.size() + Records.size());
2250   for (size_t i = 0; i < Records.size(); i++) {
2251     PartiallyConstructedSafepointRecord &Info = Records[i];
2252 
2253     SmallVector<Value *, 128> Bases;
2254     for (auto Pair : Info.PointerToBase)
2255       Bases.push_back(Pair.second);
2256 
2257     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2258   }
2259 
2260   // By selecting base pointers, we've effectively inserted new uses. Thus, we
2261   // need to rerun liveness.  We may *also* have inserted new defs, but that's
2262   // not the key issue.
2263   recomputeLiveInValues(F, DT, ToUpdate, Records);
2264 
2265   if (PrintBasePointers) {
2266     for (auto &Info : Records) {
2267       errs() << "Base Pairs: (w/Relocation)\n";
2268       for (auto Pair : Info.PointerToBase) {
2269         errs() << " derived ";
2270         Pair.first->printAsOperand(errs(), false);
2271         errs() << " base ";
2272         Pair.second->printAsOperand(errs(), false);
2273         errs() << "\n";
2274       }
2275     }
2276   }
2277 
2278   // It is possible that non-constant live variables have a constant base.  For
2279   // example, a GEP with a variable offset from a global.  In this case we can
2280   // remove it from the liveset.  We already don't add constants to the liveset
2281   // because we assume they won't move at runtime and the GC doesn't need to be
2282   // informed about them.  The same reasoning applies if the base is constant.
2283   // Note that the relocation placement code relies on this filtering for
2284   // correctness as it expects the base to be in the liveset, which isn't true
2285   // if the base is constant.
2286   for (auto &Info : Records)
2287     for (auto &BasePair : Info.PointerToBase)
2288       if (isa<Constant>(BasePair.second))
2289         Info.LiveSet.remove(BasePair.first);
2290 
2291   for (CallInst *CI : Holders)
2292     CI->eraseFromParent();
2293 
2294   Holders.clear();
2295 
2296   // In order to reduce live set of statepoint we might choose to rematerialize
2297   // some values instead of relocating them. This is purely an optimization and
2298   // does not influence correctness.
2299   for (size_t i = 0; i < Records.size(); i++)
2300     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2301 
2302   // We need this to safely RAUW and delete call or invoke return values that
2303   // may themselves be live over a statepoint.  For details, please see usage in
2304   // makeStatepointExplicitImpl.
2305   std::vector<DeferredReplacement> Replacements;
2306 
2307   // Now run through and replace the existing statepoints with new ones with
2308   // the live variables listed.  We do not yet update uses of the values being
2309   // relocated. We have references to live variables that need to
2310   // survive to the last iteration of this loop.  (By construction, the
2311   // previous statepoint can not be a live variable, thus we can and remove
2312   // the old statepoint calls as we go.)
2313   for (size_t i = 0; i < Records.size(); i++)
2314     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2315 
2316   ToUpdate.clear(); // prevent accident use of invalid calls.
2317 
2318   for (auto &PR : Replacements)
2319     PR.doReplacement();
2320 
2321   Replacements.clear();
2322 
2323   for (auto &Info : Records) {
2324     // These live sets may contain state Value pointers, since we replaced calls
2325     // with operand bundles with calls wrapped in gc.statepoint, and some of
2326     // those calls may have been def'ing live gc pointers.  Clear these out to
2327     // avoid accidentally using them.
2328     //
2329     // TODO: We should create a separate data structure that does not contain
2330     // these live sets, and migrate to using that data structure from this point
2331     // onward.
2332     Info.LiveSet.clear();
2333     Info.PointerToBase.clear();
2334   }
2335 
2336   // Do all the fixups of the original live variables to their relocated selves
2337   SmallVector<Value *, 128> Live;
2338   for (size_t i = 0; i < Records.size(); i++) {
2339     PartiallyConstructedSafepointRecord &Info = Records[i];
2340 
2341     // We can't simply save the live set from the original insertion.  One of
2342     // the live values might be the result of a call which needs a safepoint.
2343     // That Value* no longer exists and we need to use the new gc_result.
2344     // Thankfully, the live set is embedded in the statepoint (and updated), so
2345     // we just grab that.
2346     Statepoint Statepoint(Info.StatepointToken);
2347     Live.insert(Live.end(), Statepoint.gc_args_begin(),
2348                 Statepoint.gc_args_end());
2349 #ifndef NDEBUG
2350     // Do some basic sanity checks on our liveness results before performing
2351     // relocation.  Relocation can and will turn mistakes in liveness results
2352     // into non-sensical code which is must harder to debug.
2353     // TODO: It would be nice to test consistency as well
2354     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2355            "statepoint must be reachable or liveness is meaningless");
2356     for (Value *V : Statepoint.gc_args()) {
2357       if (!isa<Instruction>(V))
2358         // Non-instruction values trivial dominate all possible uses
2359         continue;
2360       auto *LiveInst = cast<Instruction>(V);
2361       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2362              "unreachable values should never be live");
2363       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2364              "basic SSA liveness expectation violated by liveness analysis");
2365     }
2366 #endif
2367   }
2368   unique_unsorted(Live);
2369 
2370 #ifndef NDEBUG
2371   // sanity check
2372   for (auto *Ptr : Live)
2373     assert(isHandledGCPointerType(Ptr->getType()) &&
2374            "must be a gc pointer type");
2375 #endif
2376 
2377   relocationViaAlloca(F, DT, Live, Records);
2378   return !Records.empty();
2379 }
2380 
2381 // Handles both return values and arguments for Functions and calls.
2382 template <typename AttrHolder>
2383 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2384                                       unsigned Index) {
2385   AttrBuilder R;
2386   if (AH.getDereferenceableBytes(Index))
2387     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2388                                   AH.getDereferenceableBytes(Index)));
2389   if (AH.getDereferenceableOrNullBytes(Index))
2390     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2391                                   AH.getDereferenceableOrNullBytes(Index)));
2392   if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2393     R.addAttribute(Attribute::NoAlias);
2394 
2395   if (!R.empty())
2396     AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2397 }
2398 
2399 static void stripNonValidAttributesFromPrototype(Function &F) {
2400   LLVMContext &Ctx = F.getContext();
2401 
2402   for (Argument &A : F.args())
2403     if (isa<PointerType>(A.getType()))
2404       RemoveNonValidAttrAtIndex(Ctx, F,
2405                                 A.getArgNo() + AttributeList::FirstArgIndex);
2406 
2407   if (isa<PointerType>(F.getReturnType()))
2408     RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2409 }
2410 
2411 /// Certain metadata on instructions are invalid after running RS4GC.
2412 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2413 /// optimize functions. We drop such metadata on the instruction.
2414 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2415   if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2416     return;
2417   // These are the attributes that are still valid on loads and stores after
2418   // RS4GC.
2419   // The metadata implying dereferenceability and noalias are (conservatively)
2420   // dropped.  This is because semantically, after RewriteStatepointsForGC runs,
2421   // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2422   // touch the entire heap including noalias objects. Note: The reasoning is
2423   // same as stripping the dereferenceability and noalias attributes that are
2424   // analogous to the metadata counterparts.
2425   // We also drop the invariant.load metadata on the load because that metadata
2426   // implies the address operand to the load points to memory that is never
2427   // changed once it became dereferenceable. This is no longer true after RS4GC.
2428   // Similar reasoning applies to invariant.group metadata, which applies to
2429   // loads within a group.
2430   unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2431                          LLVMContext::MD_range,
2432                          LLVMContext::MD_alias_scope,
2433                          LLVMContext::MD_nontemporal,
2434                          LLVMContext::MD_nonnull,
2435                          LLVMContext::MD_align,
2436                          LLVMContext::MD_type};
2437 
2438   // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2439   I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2440 }
2441 
2442 static void stripNonValidDataFromBody(Function &F) {
2443   if (F.empty())
2444     return;
2445 
2446   LLVMContext &Ctx = F.getContext();
2447   MDBuilder Builder(Ctx);
2448 
2449   // Set of invariantstart instructions that we need to remove.
2450   // Use this to avoid invalidating the instruction iterator.
2451   SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2452 
2453   for (Instruction &I : instructions(F)) {
2454     // invariant.start on memory location implies that the referenced memory
2455     // location is constant and unchanging. This is no longer true after
2456     // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2457     // which frees the entire heap and the presence of invariant.start allows
2458     // the optimizer to sink the load of a memory location past a statepoint,
2459     // which is incorrect.
2460     if (auto *II = dyn_cast<IntrinsicInst>(&I))
2461       if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2462         InvariantStartInstructions.push_back(II);
2463         continue;
2464       }
2465 
2466     if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2467       MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2468       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2469     }
2470 
2471     stripInvalidMetadataFromInstruction(I);
2472 
2473     if (auto *Call = dyn_cast<CallBase>(&I)) {
2474       for (int i = 0, e = Call->arg_size(); i != e; i++)
2475         if (isa<PointerType>(Call->getArgOperand(i)->getType()))
2476           RemoveNonValidAttrAtIndex(Ctx, *Call,
2477                                     i + AttributeList::FirstArgIndex);
2478       if (isa<PointerType>(Call->getType()))
2479         RemoveNonValidAttrAtIndex(Ctx, *Call, AttributeList::ReturnIndex);
2480     }
2481   }
2482 
2483   // Delete the invariant.start instructions and RAUW undef.
2484   for (auto *II : InvariantStartInstructions) {
2485     II->replaceAllUsesWith(UndefValue::get(II->getType()));
2486     II->eraseFromParent();
2487   }
2488 }
2489 
2490 /// Returns true if this function should be rewritten by this pass.  The main
2491 /// point of this function is as an extension point for custom logic.
2492 static bool shouldRewriteStatepointsIn(Function &F) {
2493   // TODO: This should check the GCStrategy
2494   if (F.hasGC()) {
2495     const auto &FunctionGCName = F.getGC();
2496     const StringRef StatepointExampleName("statepoint-example");
2497     const StringRef CoreCLRName("coreclr");
2498     return (StatepointExampleName == FunctionGCName) ||
2499            (CoreCLRName == FunctionGCName);
2500   } else
2501     return false;
2502 }
2503 
2504 static void stripNonValidData(Module &M) {
2505 #ifndef NDEBUG
2506   assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2507 #endif
2508 
2509   for (Function &F : M)
2510     stripNonValidAttributesFromPrototype(F);
2511 
2512   for (Function &F : M)
2513     stripNonValidDataFromBody(F);
2514 }
2515 
2516 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2517                                             TargetTransformInfo &TTI,
2518                                             const TargetLibraryInfo &TLI) {
2519   assert(!F.isDeclaration() && !F.empty() &&
2520          "need function body to rewrite statepoints in");
2521   assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2522 
2523   auto NeedsRewrite = [&TLI](Instruction &I) {
2524     if (const auto *Call = dyn_cast<CallBase>(&I))
2525       return !callsGCLeafFunction(Call, TLI) && !isStatepoint(Call);
2526     return false;
2527   };
2528 
2529   // Delete any unreachable statepoints so that we don't have unrewritten
2530   // statepoints surviving this pass.  This makes testing easier and the
2531   // resulting IR less confusing to human readers.
2532   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2533   bool MadeChange = removeUnreachableBlocks(F, nullptr, &DTU);
2534   // Flush the Dominator Tree.
2535   DTU.getDomTree();
2536 
2537   // Gather all the statepoints which need rewritten.  Be careful to only
2538   // consider those in reachable code since we need to ask dominance queries
2539   // when rewriting.  We'll delete the unreachable ones in a moment.
2540   SmallVector<CallBase *, 64> ParsePointNeeded;
2541   for (Instruction &I : instructions(F)) {
2542     // TODO: only the ones with the flag set!
2543     if (NeedsRewrite(I)) {
2544       // NOTE removeUnreachableBlocks() is stronger than
2545       // DominatorTree::isReachableFromEntry(). In other words
2546       // removeUnreachableBlocks can remove some blocks for which
2547       // isReachableFromEntry() returns true.
2548       assert(DT.isReachableFromEntry(I.getParent()) &&
2549             "no unreachable blocks expected");
2550       ParsePointNeeded.push_back(cast<CallBase>(&I));
2551     }
2552   }
2553 
2554   // Return early if no work to do.
2555   if (ParsePointNeeded.empty())
2556     return MadeChange;
2557 
2558   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2559   // These are created by LCSSA.  They have the effect of increasing the size
2560   // of liveness sets for no good reason.  It may be harder to do this post
2561   // insertion since relocations and base phis can confuse things.
2562   for (BasicBlock &BB : F)
2563     if (BB.getUniquePredecessor()) {
2564       MadeChange = true;
2565       FoldSingleEntryPHINodes(&BB);
2566     }
2567 
2568   // Before we start introducing relocations, we want to tweak the IR a bit to
2569   // avoid unfortunate code generation effects.  The main example is that we
2570   // want to try to make sure the comparison feeding a branch is after any
2571   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
2572   // values feeding a branch after relocation.  This is semantically correct,
2573   // but results in extra register pressure since both the pre-relocation and
2574   // post-relocation copies must be available in registers.  For code without
2575   // relocations this is handled elsewhere, but teaching the scheduler to
2576   // reverse the transform we're about to do would be slightly complex.
2577   // Note: This may extend the live range of the inputs to the icmp and thus
2578   // increase the liveset of any statepoint we move over.  This is profitable
2579   // as long as all statepoints are in rare blocks.  If we had in-register
2580   // lowering for live values this would be a much safer transform.
2581   auto getConditionInst = [](Instruction *TI) -> Instruction * {
2582     if (auto *BI = dyn_cast<BranchInst>(TI))
2583       if (BI->isConditional())
2584         return dyn_cast<Instruction>(BI->getCondition());
2585     // TODO: Extend this to handle switches
2586     return nullptr;
2587   };
2588   for (BasicBlock &BB : F) {
2589     Instruction *TI = BB.getTerminator();
2590     if (auto *Cond = getConditionInst(TI))
2591       // TODO: Handle more than just ICmps here.  We should be able to move
2592       // most instructions without side effects or memory access.
2593       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2594         MadeChange = true;
2595         Cond->moveBefore(TI);
2596       }
2597   }
2598 
2599   // Nasty workaround - The base computation code in the main algorithm doesn't
2600   // consider the fact that a GEP can be used to convert a scalar to a vector.
2601   // The right fix for this is to integrate GEPs into the base rewriting
2602   // algorithm properly, this is just a short term workaround to prevent
2603   // crashes by canonicalizing such GEPs into fully vector GEPs.
2604   for (Instruction &I : instructions(F)) {
2605     if (!isa<GetElementPtrInst>(I))
2606       continue;
2607 
2608     unsigned VF = 0;
2609     for (unsigned i = 0; i < I.getNumOperands(); i++)
2610       if (I.getOperand(i)->getType()->isVectorTy()) {
2611         assert(VF == 0 ||
2612                VF == I.getOperand(i)->getType()->getVectorNumElements());
2613         VF = I.getOperand(i)->getType()->getVectorNumElements();
2614       }
2615 
2616     // It's the vector to scalar traversal through the pointer operand which
2617     // confuses base pointer rewriting, so limit ourselves to that case.
2618     if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) {
2619       IRBuilder<> B(&I);
2620       auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0));
2621       I.setOperand(0, Splat);
2622       MadeChange = true;
2623     }
2624   }
2625 
2626   MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2627   return MadeChange;
2628 }
2629 
2630 // liveness computation via standard dataflow
2631 // -------------------------------------------------------------------
2632 
2633 // TODO: Consider using bitvectors for liveness, the set of potentially
2634 // interesting values should be small and easy to pre-compute.
2635 
2636 /// Compute the live-in set for the location rbegin starting from
2637 /// the live-out set of the basic block
2638 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2639                                 BasicBlock::reverse_iterator End,
2640                                 SetVector<Value *> &LiveTmp) {
2641   for (auto &I : make_range(Begin, End)) {
2642     // KILL/Def - Remove this definition from LiveIn
2643     LiveTmp.remove(&I);
2644 
2645     // Don't consider *uses* in PHI nodes, we handle their contribution to
2646     // predecessor blocks when we seed the LiveOut sets
2647     if (isa<PHINode>(I))
2648       continue;
2649 
2650     // USE - Add to the LiveIn set for this instruction
2651     for (Value *V : I.operands()) {
2652       assert(!isUnhandledGCPointerType(V->getType()) &&
2653              "support for FCA unimplemented");
2654       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2655         // The choice to exclude all things constant here is slightly subtle.
2656         // There are two independent reasons:
2657         // - We assume that things which are constant (from LLVM's definition)
2658         // do not move at runtime.  For example, the address of a global
2659         // variable is fixed, even though it's contents may not be.
2660         // - Second, we can't disallow arbitrary inttoptr constants even
2661         // if the language frontend does.  Optimization passes are free to
2662         // locally exploit facts without respect to global reachability.  This
2663         // can create sections of code which are dynamically unreachable and
2664         // contain just about anything.  (see constants.ll in tests)
2665         LiveTmp.insert(V);
2666       }
2667     }
2668   }
2669 }
2670 
2671 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2672   for (BasicBlock *Succ : successors(BB)) {
2673     for (auto &I : *Succ) {
2674       PHINode *PN = dyn_cast<PHINode>(&I);
2675       if (!PN)
2676         break;
2677 
2678       Value *V = PN->getIncomingValueForBlock(BB);
2679       assert(!isUnhandledGCPointerType(V->getType()) &&
2680              "support for FCA unimplemented");
2681       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2682         LiveTmp.insert(V);
2683     }
2684   }
2685 }
2686 
2687 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2688   SetVector<Value *> KillSet;
2689   for (Instruction &I : *BB)
2690     if (isHandledGCPointerType(I.getType()))
2691       KillSet.insert(&I);
2692   return KillSet;
2693 }
2694 
2695 #ifndef NDEBUG
2696 /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
2697 /// sanity check for the liveness computation.
2698 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2699                           Instruction *TI, bool TermOkay = false) {
2700   for (Value *V : Live) {
2701     if (auto *I = dyn_cast<Instruction>(V)) {
2702       // The terminator can be a member of the LiveOut set.  LLVM's definition
2703       // of instruction dominance states that V does not dominate itself.  As
2704       // such, we need to special case this to allow it.
2705       if (TermOkay && TI == I)
2706         continue;
2707       assert(DT.dominates(I, TI) &&
2708              "basic SSA liveness expectation violated by liveness analysis");
2709     }
2710   }
2711 }
2712 
2713 /// Check that all the liveness sets used during the computation of liveness
2714 /// obey basic SSA properties.  This is useful for finding cases where we miss
2715 /// a def.
2716 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2717                           BasicBlock &BB) {
2718   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2719   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2720   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2721 }
2722 #endif
2723 
2724 static void computeLiveInValues(DominatorTree &DT, Function &F,
2725                                 GCPtrLivenessData &Data) {
2726   SmallSetVector<BasicBlock *, 32> Worklist;
2727 
2728   // Seed the liveness for each individual block
2729   for (BasicBlock &BB : F) {
2730     Data.KillSet[&BB] = computeKillSet(&BB);
2731     Data.LiveSet[&BB].clear();
2732     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2733 
2734 #ifndef NDEBUG
2735     for (Value *Kill : Data.KillSet[&BB])
2736       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2737 #endif
2738 
2739     Data.LiveOut[&BB] = SetVector<Value *>();
2740     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2741     Data.LiveIn[&BB] = Data.LiveSet[&BB];
2742     Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2743     Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2744     if (!Data.LiveIn[&BB].empty())
2745       Worklist.insert(pred_begin(&BB), pred_end(&BB));
2746   }
2747 
2748   // Propagate that liveness until stable
2749   while (!Worklist.empty()) {
2750     BasicBlock *BB = Worklist.pop_back_val();
2751 
2752     // Compute our new liveout set, then exit early if it hasn't changed despite
2753     // the contribution of our successor.
2754     SetVector<Value *> LiveOut = Data.LiveOut[BB];
2755     const auto OldLiveOutSize = LiveOut.size();
2756     for (BasicBlock *Succ : successors(BB)) {
2757       assert(Data.LiveIn.count(Succ));
2758       LiveOut.set_union(Data.LiveIn[Succ]);
2759     }
2760     // assert OutLiveOut is a subset of LiveOut
2761     if (OldLiveOutSize == LiveOut.size()) {
2762       // If the sets are the same size, then we didn't actually add anything
2763       // when unioning our successors LiveIn.  Thus, the LiveIn of this block
2764       // hasn't changed.
2765       continue;
2766     }
2767     Data.LiveOut[BB] = LiveOut;
2768 
2769     // Apply the effects of this basic block
2770     SetVector<Value *> LiveTmp = LiveOut;
2771     LiveTmp.set_union(Data.LiveSet[BB]);
2772     LiveTmp.set_subtract(Data.KillSet[BB]);
2773 
2774     assert(Data.LiveIn.count(BB));
2775     const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2776     // assert: OldLiveIn is a subset of LiveTmp
2777     if (OldLiveIn.size() != LiveTmp.size()) {
2778       Data.LiveIn[BB] = LiveTmp;
2779       Worklist.insert(pred_begin(BB), pred_end(BB));
2780     }
2781   } // while (!Worklist.empty())
2782 
2783 #ifndef NDEBUG
2784   // Sanity check our output against SSA properties.  This helps catch any
2785   // missing kills during the above iteration.
2786   for (BasicBlock &BB : F)
2787     checkBasicSSA(DT, Data, BB);
2788 #endif
2789 }
2790 
2791 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2792                               StatepointLiveSetTy &Out) {
2793   BasicBlock *BB = Inst->getParent();
2794 
2795   // Note: The copy is intentional and required
2796   assert(Data.LiveOut.count(BB));
2797   SetVector<Value *> LiveOut = Data.LiveOut[BB];
2798 
2799   // We want to handle the statepoint itself oddly.  It's
2800   // call result is not live (normal), nor are it's arguments
2801   // (unless they're used again later).  This adjustment is
2802   // specifically what we need to relocate
2803   computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2804                       LiveOut);
2805   LiveOut.remove(Inst);
2806   Out.insert(LiveOut.begin(), LiveOut.end());
2807 }
2808 
2809 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2810                                   CallBase *Call,
2811                                   PartiallyConstructedSafepointRecord &Info) {
2812   StatepointLiveSetTy Updated;
2813   findLiveSetAtInst(Call, RevisedLivenessData, Updated);
2814 
2815   // We may have base pointers which are now live that weren't before.  We need
2816   // to update the PointerToBase structure to reflect this.
2817   for (auto V : Updated)
2818     if (Info.PointerToBase.insert({V, V}).second) {
2819       assert(isKnownBaseResult(V) &&
2820              "Can't find base for unexpected live value!");
2821       continue;
2822     }
2823 
2824 #ifndef NDEBUG
2825   for (auto V : Updated)
2826     assert(Info.PointerToBase.count(V) &&
2827            "Must be able to find base for live value!");
2828 #endif
2829 
2830   // Remove any stale base mappings - this can happen since our liveness is
2831   // more precise then the one inherent in the base pointer analysis.
2832   DenseSet<Value *> ToErase;
2833   for (auto KVPair : Info.PointerToBase)
2834     if (!Updated.count(KVPair.first))
2835       ToErase.insert(KVPair.first);
2836 
2837   for (auto *V : ToErase)
2838     Info.PointerToBase.erase(V);
2839 
2840 #ifndef NDEBUG
2841   for (auto KVPair : Info.PointerToBase)
2842     assert(Updated.count(KVPair.first) && "record for non-live value");
2843 #endif
2844 
2845   Info.LiveSet = Updated;
2846 }
2847