xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/Reassociate.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <utility>
63 
64 using namespace llvm;
65 using namespace reassociate;
66 using namespace PatternMatch;
67 
68 #define DEBUG_TYPE "reassociate"
69 
70 STATISTIC(NumChanged, "Number of insts reassociated");
71 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
72 STATISTIC(NumFactor , "Number of multiplies factored");
73 
74 #ifndef NDEBUG
75 /// Print out the expression identified in the Ops list.
76 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
77   Module *M = I->getModule();
78   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
79        << *Ops[0].Op->getType() << '\t';
80   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
81     dbgs() << "[ ";
82     Ops[i].Op->printAsOperand(dbgs(), false, M);
83     dbgs() << ", #" << Ops[i].Rank << "] ";
84   }
85 }
86 #endif
87 
88 /// Utility class representing a non-constant Xor-operand. We classify
89 /// non-constant Xor-Operands into two categories:
90 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
91 ///  C2)
92 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
93 ///          constant.
94 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
95 ///          operand as "E | 0"
96 class llvm::reassociate::XorOpnd {
97 public:
98   XorOpnd(Value *V);
99 
100   bool isInvalid() const { return SymbolicPart == nullptr; }
101   bool isOrExpr() const { return isOr; }
102   Value *getValue() const { return OrigVal; }
103   Value *getSymbolicPart() const { return SymbolicPart; }
104   unsigned getSymbolicRank() const { return SymbolicRank; }
105   const APInt &getConstPart() const { return ConstPart; }
106 
107   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
108   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
109 
110 private:
111   Value *OrigVal;
112   Value *SymbolicPart;
113   APInt ConstPart;
114   unsigned SymbolicRank;
115   bool isOr;
116 };
117 
118 XorOpnd::XorOpnd(Value *V) {
119   assert(!isa<ConstantInt>(V) && "No ConstantInt");
120   OrigVal = V;
121   Instruction *I = dyn_cast<Instruction>(V);
122   SymbolicRank = 0;
123 
124   if (I && (I->getOpcode() == Instruction::Or ||
125             I->getOpcode() == Instruction::And)) {
126     Value *V0 = I->getOperand(0);
127     Value *V1 = I->getOperand(1);
128     const APInt *C;
129     if (match(V0, m_APInt(C)))
130       std::swap(V0, V1);
131 
132     if (match(V1, m_APInt(C))) {
133       ConstPart = *C;
134       SymbolicPart = V0;
135       isOr = (I->getOpcode() == Instruction::Or);
136       return;
137     }
138   }
139 
140   // view the operand as "V | 0"
141   SymbolicPart = V;
142   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
143   isOr = true;
144 }
145 
146 /// Return true if V is an instruction of the specified opcode and if it
147 /// only has one use.
148 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
149   auto *I = dyn_cast<Instruction>(V);
150   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
151     if (!isa<FPMathOperator>(I) || I->isFast())
152       return cast<BinaryOperator>(I);
153   return nullptr;
154 }
155 
156 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
157                                         unsigned Opcode2) {
158   auto *I = dyn_cast<Instruction>(V);
159   if (I && I->hasOneUse() &&
160       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
161     if (!isa<FPMathOperator>(I) || I->isFast())
162       return cast<BinaryOperator>(I);
163   return nullptr;
164 }
165 
166 void ReassociatePass::BuildRankMap(Function &F,
167                                    ReversePostOrderTraversal<Function*> &RPOT) {
168   unsigned Rank = 2;
169 
170   // Assign distinct ranks to function arguments.
171   for (auto &Arg : F.args()) {
172     ValueRankMap[&Arg] = ++Rank;
173     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
174                       << "\n");
175   }
176 
177   // Traverse basic blocks in ReversePostOrder.
178   for (BasicBlock *BB : RPOT) {
179     unsigned BBRank = RankMap[BB] = ++Rank << 16;
180 
181     // Walk the basic block, adding precomputed ranks for any instructions that
182     // we cannot move.  This ensures that the ranks for these instructions are
183     // all different in the block.
184     for (Instruction &I : *BB)
185       if (mayBeMemoryDependent(I))
186         ValueRankMap[&I] = ++BBRank;
187   }
188 }
189 
190 unsigned ReassociatePass::getRank(Value *V) {
191   Instruction *I = dyn_cast<Instruction>(V);
192   if (!I) {
193     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
194     return 0;  // Otherwise it's a global or constant, rank 0.
195   }
196 
197   if (unsigned Rank = ValueRankMap[I])
198     return Rank;    // Rank already known?
199 
200   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
201   // we can reassociate expressions for code motion!  Since we do not recurse
202   // for PHI nodes, we cannot have infinite recursion here, because there
203   // cannot be loops in the value graph that do not go through PHI nodes.
204   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
205   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
206     Rank = std::max(Rank, getRank(I->getOperand(i)));
207 
208   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
209   // assures us that X and ~X will have the same rank.
210   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
211       !match(I, m_FNeg(m_Value())))
212     ++Rank;
213 
214   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
215                     << "\n");
216 
217   return ValueRankMap[I] = Rank;
218 }
219 
220 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
221 void ReassociatePass::canonicalizeOperands(Instruction *I) {
222   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
223   assert(I->isCommutative() && "Expected commutative operator.");
224 
225   Value *LHS = I->getOperand(0);
226   Value *RHS = I->getOperand(1);
227   if (LHS == RHS || isa<Constant>(RHS))
228     return;
229   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
230     cast<BinaryOperator>(I)->swapOperands();
231 }
232 
233 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
234                                  Instruction *InsertBefore, Value *FlagsOp) {
235   if (S1->getType()->isIntOrIntVectorTy())
236     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
237   else {
238     BinaryOperator *Res =
239         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
240     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
241     return Res;
242   }
243 }
244 
245 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
246                                  Instruction *InsertBefore, Value *FlagsOp) {
247   if (S1->getType()->isIntOrIntVectorTy())
248     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
249   else {
250     BinaryOperator *Res =
251       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
252     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
253     return Res;
254   }
255 }
256 
257 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
258                                  Instruction *InsertBefore, Value *FlagsOp) {
259   if (S1->getType()->isIntOrIntVectorTy())
260     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
261   else {
262     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
263     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
264     return Res;
265   }
266 }
267 
268 /// Replace 0-X with X*-1.
269 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
270   assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
271          "Expected a Negate!");
272   // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
273   unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
274   Type *Ty = Neg->getType();
275   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
276     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
277 
278   BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
279   Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
280   Res->takeName(Neg);
281   Neg->replaceAllUsesWith(Res);
282   Res->setDebugLoc(Neg->getDebugLoc());
283   return Res;
284 }
285 
286 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
287 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
288 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
289 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
290 /// even x in Bitwidth-bit arithmetic.
291 static unsigned CarmichaelShift(unsigned Bitwidth) {
292   if (Bitwidth < 3)
293     return Bitwidth - 1;
294   return Bitwidth - 2;
295 }
296 
297 /// Add the extra weight 'RHS' to the existing weight 'LHS',
298 /// reducing the combined weight using any special properties of the operation.
299 /// The existing weight LHS represents the computation X op X op ... op X where
300 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
301 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
302 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
303 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
304 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
305   // If we were working with infinite precision arithmetic then the combined
306   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
307   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
308   // for nilpotent operations and addition, but not for idempotent operations
309   // and multiplication), so it is important to correctly reduce the combined
310   // weight back into range if wrapping would be wrong.
311 
312   // If RHS is zero then the weight didn't change.
313   if (RHS.isMinValue())
314     return;
315   // If LHS is zero then the combined weight is RHS.
316   if (LHS.isMinValue()) {
317     LHS = RHS;
318     return;
319   }
320   // From this point on we know that neither LHS nor RHS is zero.
321 
322   if (Instruction::isIdempotent(Opcode)) {
323     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
324     // weight of 1.  Keeping weights at zero or one also means that wrapping is
325     // not a problem.
326     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
327     return; // Return a weight of 1.
328   }
329   if (Instruction::isNilpotent(Opcode)) {
330     // Nilpotent means X op X === 0, so reduce weights modulo 2.
331     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
332     LHS = 0; // 1 + 1 === 0 modulo 2.
333     return;
334   }
335   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
336     // TODO: Reduce the weight by exploiting nsw/nuw?
337     LHS += RHS;
338     return;
339   }
340 
341   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
342          "Unknown associative operation!");
343   unsigned Bitwidth = LHS.getBitWidth();
344   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
345   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
346   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
347   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
348   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
349   // which by a happy accident means that they can always be represented using
350   // Bitwidth bits.
351   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
352   // the Carmichael number).
353   if (Bitwidth > 3) {
354     /// CM - The value of Carmichael's lambda function.
355     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
356     // Any weight W >= Threshold can be replaced with W - CM.
357     APInt Threshold = CM + Bitwidth;
358     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
359     // For Bitwidth 4 or more the following sum does not overflow.
360     LHS += RHS;
361     while (LHS.uge(Threshold))
362       LHS -= CM;
363   } else {
364     // To avoid problems with overflow do everything the same as above but using
365     // a larger type.
366     unsigned CM = 1U << CarmichaelShift(Bitwidth);
367     unsigned Threshold = CM + Bitwidth;
368     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
369            "Weights not reduced!");
370     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
371     while (Total >= Threshold)
372       Total -= CM;
373     LHS = Total;
374   }
375 }
376 
377 using RepeatedValue = std::pair<Value*, APInt>;
378 
379 /// Given an associative binary expression, return the leaf
380 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
381 /// original expression is the same as
382 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
383 /// op
384 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
385 /// op
386 ///   ...
387 /// op
388 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
389 ///
390 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
391 ///
392 /// This routine may modify the function, in which case it returns 'true'.  The
393 /// changes it makes may well be destructive, changing the value computed by 'I'
394 /// to something completely different.  Thus if the routine returns 'true' then
395 /// you MUST either replace I with a new expression computed from the Ops array,
396 /// or use RewriteExprTree to put the values back in.
397 ///
398 /// A leaf node is either not a binary operation of the same kind as the root
399 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
400 /// opcode), or is the same kind of binary operator but has a use which either
401 /// does not belong to the expression, or does belong to the expression but is
402 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
403 /// of the expression, while for non-leaf nodes (except for the root 'I') every
404 /// use is a non-leaf node of the expression.
405 ///
406 /// For example:
407 ///           expression graph        node names
408 ///
409 ///                     +        |        I
410 ///                    / \       |
411 ///                   +   +      |      A,  B
412 ///                  / \ / \     |
413 ///                 *   +   *    |    C,  D,  E
414 ///                / \ / \ / \   |
415 ///                   +   *      |      F,  G
416 ///
417 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
418 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
419 ///
420 /// The expression is maximal: if some instruction is a binary operator of the
421 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
422 /// then the instruction also belongs to the expression, is not a leaf node of
423 /// it, and its operands also belong to the expression (but may be leaf nodes).
424 ///
425 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
426 /// order to ensure that every non-root node in the expression has *exactly one*
427 /// use by a non-leaf node of the expression.  This destruction means that the
428 /// caller MUST either replace 'I' with a new expression or use something like
429 /// RewriteExprTree to put the values back in if the routine indicates that it
430 /// made a change by returning 'true'.
431 ///
432 /// In the above example either the right operand of A or the left operand of B
433 /// will be replaced by undef.  If it is B's operand then this gives:
434 ///
435 ///                     +        |        I
436 ///                    / \       |
437 ///                   +   +      |      A,  B - operand of B replaced with undef
438 ///                  / \   \     |
439 ///                 *   +   *    |    C,  D,  E
440 ///                / \ / \ / \   |
441 ///                   +   *      |      F,  G
442 ///
443 /// Note that such undef operands can only be reached by passing through 'I'.
444 /// For example, if you visit operands recursively starting from a leaf node
445 /// then you will never see such an undef operand unless you get back to 'I',
446 /// which requires passing through a phi node.
447 ///
448 /// Note that this routine may also mutate binary operators of the wrong type
449 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
450 /// of the expression) if it can turn them into binary operators of the right
451 /// type and thus make the expression bigger.
452 static bool LinearizeExprTree(Instruction *I,
453                               SmallVectorImpl<RepeatedValue> &Ops) {
454   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
455          "Expected a UnaryOperator or BinaryOperator!");
456   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
457   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
458   unsigned Opcode = I->getOpcode();
459   assert(I->isAssociative() && I->isCommutative() &&
460          "Expected an associative and commutative operation!");
461 
462   // Visit all operands of the expression, keeping track of their weight (the
463   // number of paths from the expression root to the operand, or if you like
464   // the number of times that operand occurs in the linearized expression).
465   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
466   // while A has weight two.
467 
468   // Worklist of non-leaf nodes (their operands are in the expression too) along
469   // with their weights, representing a certain number of paths to the operator.
470   // If an operator occurs in the worklist multiple times then we found multiple
471   // ways to get to it.
472   SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
473   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
474   bool Changed = false;
475 
476   // Leaves of the expression are values that either aren't the right kind of
477   // operation (eg: a constant, or a multiply in an add tree), or are, but have
478   // some uses that are not inside the expression.  For example, in I = X + X,
479   // X = A + B, the value X has two uses (by I) that are in the expression.  If
480   // X has any other uses, for example in a return instruction, then we consider
481   // X to be a leaf, and won't analyze it further.  When we first visit a value,
482   // if it has more than one use then at first we conservatively consider it to
483   // be a leaf.  Later, as the expression is explored, we may discover some more
484   // uses of the value from inside the expression.  If all uses turn out to be
485   // from within the expression (and the value is a binary operator of the right
486   // kind) then the value is no longer considered to be a leaf, and its operands
487   // are explored.
488 
489   // Leaves - Keeps track of the set of putative leaves as well as the number of
490   // paths to each leaf seen so far.
491   using LeafMap = DenseMap<Value *, APInt>;
492   LeafMap Leaves; // Leaf -> Total weight so far.
493   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
494 
495 #ifndef NDEBUG
496   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
497 #endif
498   while (!Worklist.empty()) {
499     std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
500     I = P.first; // We examine the operands of this binary operator.
501 
502     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
503       Value *Op = I->getOperand(OpIdx);
504       APInt Weight = P.second; // Number of paths to this operand.
505       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
506       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
507 
508       // If this is a binary operation of the right kind with only one use then
509       // add its operands to the expression.
510       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
511         assert(Visited.insert(Op).second && "Not first visit!");
512         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
513         Worklist.push_back(std::make_pair(BO, Weight));
514         continue;
515       }
516 
517       // Appears to be a leaf.  Is the operand already in the set of leaves?
518       LeafMap::iterator It = Leaves.find(Op);
519       if (It == Leaves.end()) {
520         // Not in the leaf map.  Must be the first time we saw this operand.
521         assert(Visited.insert(Op).second && "Not first visit!");
522         if (!Op->hasOneUse()) {
523           // This value has uses not accounted for by the expression, so it is
524           // not safe to modify.  Mark it as being a leaf.
525           LLVM_DEBUG(dbgs()
526                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
527           LeafOrder.push_back(Op);
528           Leaves[Op] = Weight;
529           continue;
530         }
531         // No uses outside the expression, try morphing it.
532       } else {
533         // Already in the leaf map.
534         assert(It != Leaves.end() && Visited.count(Op) &&
535                "In leaf map but not visited!");
536 
537         // Update the number of paths to the leaf.
538         IncorporateWeight(It->second, Weight, Opcode);
539 
540 #if 0   // TODO: Re-enable once PR13021 is fixed.
541         // The leaf already has one use from inside the expression.  As we want
542         // exactly one such use, drop this new use of the leaf.
543         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
544         I->setOperand(OpIdx, UndefValue::get(I->getType()));
545         Changed = true;
546 
547         // If the leaf is a binary operation of the right kind and we now see
548         // that its multiple original uses were in fact all by nodes belonging
549         // to the expression, then no longer consider it to be a leaf and add
550         // its operands to the expression.
551         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
552           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
553           Worklist.push_back(std::make_pair(BO, It->second));
554           Leaves.erase(It);
555           continue;
556         }
557 #endif
558 
559         // If we still have uses that are not accounted for by the expression
560         // then it is not safe to modify the value.
561         if (!Op->hasOneUse())
562           continue;
563 
564         // No uses outside the expression, try morphing it.
565         Weight = It->second;
566         Leaves.erase(It); // Since the value may be morphed below.
567       }
568 
569       // At this point we have a value which, first of all, is not a binary
570       // expression of the right kind, and secondly, is only used inside the
571       // expression.  This means that it can safely be modified.  See if we
572       // can usefully morph it into an expression of the right kind.
573       assert((!isa<Instruction>(Op) ||
574               cast<Instruction>(Op)->getOpcode() != Opcode
575               || (isa<FPMathOperator>(Op) &&
576                   !cast<Instruction>(Op)->isFast())) &&
577              "Should have been handled above!");
578       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
579 
580       // If this is a multiply expression, turn any internal negations into
581       // multiplies by -1 so they can be reassociated.
582       if (Instruction *Tmp = dyn_cast<Instruction>(Op))
583         if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) ||
584             (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) {
585           LLVM_DEBUG(dbgs()
586                      << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
587           Tmp = LowerNegateToMultiply(Tmp);
588           LLVM_DEBUG(dbgs() << *Tmp << '\n');
589           Worklist.push_back(std::make_pair(Tmp, Weight));
590           Changed = true;
591           continue;
592         }
593 
594       // Failed to morph into an expression of the right type.  This really is
595       // a leaf.
596       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
597       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
598       LeafOrder.push_back(Op);
599       Leaves[Op] = Weight;
600     }
601   }
602 
603   // The leaves, repeated according to their weights, represent the linearized
604   // form of the expression.
605   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
606     Value *V = LeafOrder[i];
607     LeafMap::iterator It = Leaves.find(V);
608     if (It == Leaves.end())
609       // Node initially thought to be a leaf wasn't.
610       continue;
611     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
612     APInt Weight = It->second;
613     if (Weight.isMinValue())
614       // Leaf already output or weight reduction eliminated it.
615       continue;
616     // Ensure the leaf is only output once.
617     It->second = 0;
618     Ops.push_back(std::make_pair(V, Weight));
619   }
620 
621   // For nilpotent operations or addition there may be no operands, for example
622   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
623   // in both cases the weight reduces to 0 causing the value to be skipped.
624   if (Ops.empty()) {
625     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
626     assert(Identity && "Associative operation without identity!");
627     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
628   }
629 
630   return Changed;
631 }
632 
633 /// Now that the operands for this expression tree are
634 /// linearized and optimized, emit them in-order.
635 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
636                                       SmallVectorImpl<ValueEntry> &Ops) {
637   assert(Ops.size() > 1 && "Single values should be used directly!");
638 
639   // Since our optimizations should never increase the number of operations, the
640   // new expression can usually be written reusing the existing binary operators
641   // from the original expression tree, without creating any new instructions,
642   // though the rewritten expression may have a completely different topology.
643   // We take care to not change anything if the new expression will be the same
644   // as the original.  If more than trivial changes (like commuting operands)
645   // were made then we are obliged to clear out any optional subclass data like
646   // nsw flags.
647 
648   /// NodesToRewrite - Nodes from the original expression available for writing
649   /// the new expression into.
650   SmallVector<BinaryOperator*, 8> NodesToRewrite;
651   unsigned Opcode = I->getOpcode();
652   BinaryOperator *Op = I;
653 
654   /// NotRewritable - The operands being written will be the leaves of the new
655   /// expression and must not be used as inner nodes (via NodesToRewrite) by
656   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
657   /// (if they were they would have been incorporated into the expression and so
658   /// would not be leaves), so most of the time there is no danger of this.  But
659   /// in rare cases a leaf may become reassociable if an optimization kills uses
660   /// of it, or it may momentarily become reassociable during rewriting (below)
661   /// due it being removed as an operand of one of its uses.  Ensure that misuse
662   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
663   /// leaves and refusing to reuse any of them as inner nodes.
664   SmallPtrSet<Value*, 8> NotRewritable;
665   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
666     NotRewritable.insert(Ops[i].Op);
667 
668   // ExpressionChanged - Non-null if the rewritten expression differs from the
669   // original in some non-trivial way, requiring the clearing of optional flags.
670   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
671   BinaryOperator *ExpressionChanged = nullptr;
672   for (unsigned i = 0; ; ++i) {
673     // The last operation (which comes earliest in the IR) is special as both
674     // operands will come from Ops, rather than just one with the other being
675     // a subexpression.
676     if (i+2 == Ops.size()) {
677       Value *NewLHS = Ops[i].Op;
678       Value *NewRHS = Ops[i+1].Op;
679       Value *OldLHS = Op->getOperand(0);
680       Value *OldRHS = Op->getOperand(1);
681 
682       if (NewLHS == OldLHS && NewRHS == OldRHS)
683         // Nothing changed, leave it alone.
684         break;
685 
686       if (NewLHS == OldRHS && NewRHS == OldLHS) {
687         // The order of the operands was reversed.  Swap them.
688         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
689         Op->swapOperands();
690         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
691         MadeChange = true;
692         ++NumChanged;
693         break;
694       }
695 
696       // The new operation differs non-trivially from the original. Overwrite
697       // the old operands with the new ones.
698       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
699       if (NewLHS != OldLHS) {
700         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
701         if (BO && !NotRewritable.count(BO))
702           NodesToRewrite.push_back(BO);
703         Op->setOperand(0, NewLHS);
704       }
705       if (NewRHS != OldRHS) {
706         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
707         if (BO && !NotRewritable.count(BO))
708           NodesToRewrite.push_back(BO);
709         Op->setOperand(1, NewRHS);
710       }
711       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
712 
713       ExpressionChanged = Op;
714       MadeChange = true;
715       ++NumChanged;
716 
717       break;
718     }
719 
720     // Not the last operation.  The left-hand side will be a sub-expression
721     // while the right-hand side will be the current element of Ops.
722     Value *NewRHS = Ops[i].Op;
723     if (NewRHS != Op->getOperand(1)) {
724       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
725       if (NewRHS == Op->getOperand(0)) {
726         // The new right-hand side was already present as the left operand.  If
727         // we are lucky then swapping the operands will sort out both of them.
728         Op->swapOperands();
729       } else {
730         // Overwrite with the new right-hand side.
731         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
732         if (BO && !NotRewritable.count(BO))
733           NodesToRewrite.push_back(BO);
734         Op->setOperand(1, NewRHS);
735         ExpressionChanged = Op;
736       }
737       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
738       MadeChange = true;
739       ++NumChanged;
740     }
741 
742     // Now deal with the left-hand side.  If this is already an operation node
743     // from the original expression then just rewrite the rest of the expression
744     // into it.
745     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
746     if (BO && !NotRewritable.count(BO)) {
747       Op = BO;
748       continue;
749     }
750 
751     // Otherwise, grab a spare node from the original expression and use that as
752     // the left-hand side.  If there are no nodes left then the optimizers made
753     // an expression with more nodes than the original!  This usually means that
754     // they did something stupid but it might mean that the problem was just too
755     // hard (finding the mimimal number of multiplications needed to realize a
756     // multiplication expression is NP-complete).  Whatever the reason, smart or
757     // stupid, create a new node if there are none left.
758     BinaryOperator *NewOp;
759     if (NodesToRewrite.empty()) {
760       Constant *Undef = UndefValue::get(I->getType());
761       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
762                                      Undef, Undef, "", I);
763       if (NewOp->getType()->isFPOrFPVectorTy())
764         NewOp->setFastMathFlags(I->getFastMathFlags());
765     } else {
766       NewOp = NodesToRewrite.pop_back_val();
767     }
768 
769     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
770     Op->setOperand(0, NewOp);
771     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
772     ExpressionChanged = Op;
773     MadeChange = true;
774     ++NumChanged;
775     Op = NewOp;
776   }
777 
778   // If the expression changed non-trivially then clear out all subclass data
779   // starting from the operator specified in ExpressionChanged, and compactify
780   // the operators to just before the expression root to guarantee that the
781   // expression tree is dominated by all of Ops.
782   if (ExpressionChanged)
783     do {
784       // Preserve FastMathFlags.
785       if (isa<FPMathOperator>(I)) {
786         FastMathFlags Flags = I->getFastMathFlags();
787         ExpressionChanged->clearSubclassOptionalData();
788         ExpressionChanged->setFastMathFlags(Flags);
789       } else
790         ExpressionChanged->clearSubclassOptionalData();
791 
792       if (ExpressionChanged == I)
793         break;
794 
795       // Discard any debug info related to the expressions that has changed (we
796       // can leave debug infor related to the root, since the result of the
797       // expression tree should be the same even after reassociation).
798       replaceDbgUsesWithUndef(ExpressionChanged);
799 
800       ExpressionChanged->moveBefore(I);
801       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
802     } while (true);
803 
804   // Throw away any left over nodes from the original expression.
805   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
806     RedoInsts.insert(NodesToRewrite[i]);
807 }
808 
809 /// Insert instructions before the instruction pointed to by BI,
810 /// that computes the negative version of the value specified.  The negative
811 /// version of the value is returned, and BI is left pointing at the instruction
812 /// that should be processed next by the reassociation pass.
813 /// Also add intermediate instructions to the redo list that are modified while
814 /// pushing the negates through adds.  These will be revisited to see if
815 /// additional opportunities have been exposed.
816 static Value *NegateValue(Value *V, Instruction *BI,
817                           ReassociatePass::OrderedSet &ToRedo) {
818   if (auto *C = dyn_cast<Constant>(V))
819     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
820                                               ConstantExpr::getNeg(C);
821 
822   // We are trying to expose opportunity for reassociation.  One of the things
823   // that we want to do to achieve this is to push a negation as deep into an
824   // expression chain as possible, to expose the add instructions.  In practice,
825   // this means that we turn this:
826   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
827   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
828   // the constants.  We assume that instcombine will clean up the mess later if
829   // we introduce tons of unnecessary negation instructions.
830   //
831   if (BinaryOperator *I =
832           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
833     // Push the negates through the add.
834     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
835     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
836     if (I->getOpcode() == Instruction::Add) {
837       I->setHasNoUnsignedWrap(false);
838       I->setHasNoSignedWrap(false);
839     }
840 
841     // We must move the add instruction here, because the neg instructions do
842     // not dominate the old add instruction in general.  By moving it, we are
843     // assured that the neg instructions we just inserted dominate the
844     // instruction we are about to insert after them.
845     //
846     I->moveBefore(BI);
847     I->setName(I->getName()+".neg");
848 
849     // Add the intermediate negates to the redo list as processing them later
850     // could expose more reassociating opportunities.
851     ToRedo.insert(I);
852     return I;
853   }
854 
855   // Okay, we need to materialize a negated version of V with an instruction.
856   // Scan the use lists of V to see if we have one already.
857   for (User *U : V->users()) {
858     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
859       continue;
860 
861     // We found one!  Now we have to make sure that the definition dominates
862     // this use.  We do this by moving it to the entry block (if it is a
863     // non-instruction value) or right after the definition.  These negates will
864     // be zapped by reassociate later, so we don't need much finesse here.
865     Instruction *TheNeg = cast<Instruction>(U);
866 
867     // Verify that the negate is in this function, V might be a constant expr.
868     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
869       continue;
870 
871     bool FoundCatchSwitch = false;
872 
873     BasicBlock::iterator InsertPt;
874     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
875       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
876         InsertPt = II->getNormalDest()->begin();
877       } else {
878         InsertPt = ++InstInput->getIterator();
879       }
880 
881       const BasicBlock *BB = InsertPt->getParent();
882 
883       // Make sure we don't move anything before PHIs or exception
884       // handling pads.
885       while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
886                                        InsertPt->isEHPad())) {
887         if (isa<CatchSwitchInst>(InsertPt))
888           // A catchswitch cannot have anything in the block except
889           // itself and PHIs.  We'll bail out below.
890           FoundCatchSwitch = true;
891         ++InsertPt;
892       }
893     } else {
894       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
895     }
896 
897     // We found a catchswitch in the block where we want to move the
898     // neg.  We cannot move anything into that block.  Bail and just
899     // create the neg before BI, as if we hadn't found an existing
900     // neg.
901     if (FoundCatchSwitch)
902       break;
903 
904     TheNeg->moveBefore(&*InsertPt);
905     if (TheNeg->getOpcode() == Instruction::Sub) {
906       TheNeg->setHasNoUnsignedWrap(false);
907       TheNeg->setHasNoSignedWrap(false);
908     } else {
909       TheNeg->andIRFlags(BI);
910     }
911     ToRedo.insert(TheNeg);
912     return TheNeg;
913   }
914 
915   // Insert a 'neg' instruction that subtracts the value from zero to get the
916   // negation.
917   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
918   ToRedo.insert(NewNeg);
919   return NewNeg;
920 }
921 
922 /// Return true if we should break up this subtract of X-Y into (X + -Y).
923 static bool ShouldBreakUpSubtract(Instruction *Sub) {
924   // If this is a negation, we can't split it up!
925   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
926     return false;
927 
928   // Don't breakup X - undef.
929   if (isa<UndefValue>(Sub->getOperand(1)))
930     return false;
931 
932   // Don't bother to break this up unless either the LHS is an associable add or
933   // subtract or if this is only used by one.
934   Value *V0 = Sub->getOperand(0);
935   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
936       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
937     return true;
938   Value *V1 = Sub->getOperand(1);
939   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
940       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
941     return true;
942   Value *VB = Sub->user_back();
943   if (Sub->hasOneUse() &&
944       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
945        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
946     return true;
947 
948   return false;
949 }
950 
951 /// If we have (X-Y), and if either X is an add, or if this is only used by an
952 /// add, transform this into (X+(0-Y)) to promote better reassociation.
953 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
954                                        ReassociatePass::OrderedSet &ToRedo) {
955   // Convert a subtract into an add and a neg instruction. This allows sub
956   // instructions to be commuted with other add instructions.
957   //
958   // Calculate the negative value of Operand 1 of the sub instruction,
959   // and set it as the RHS of the add instruction we just made.
960   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
961   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
962   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
963   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
964   New->takeName(Sub);
965 
966   // Everyone now refers to the add instruction.
967   Sub->replaceAllUsesWith(New);
968   New->setDebugLoc(Sub->getDebugLoc());
969 
970   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
971   return New;
972 }
973 
974 /// If this is a shift of a reassociable multiply or is used by one, change
975 /// this into a multiply by a constant to assist with further reassociation.
976 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
977   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
978   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
979 
980   BinaryOperator *Mul =
981     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
982   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
983   Mul->takeName(Shl);
984 
985   // Everyone now refers to the mul instruction.
986   Shl->replaceAllUsesWith(Mul);
987   Mul->setDebugLoc(Shl->getDebugLoc());
988 
989   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
990   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
991   // handling.
992   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
993   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
994   if (NSW && NUW)
995     Mul->setHasNoSignedWrap(true);
996   Mul->setHasNoUnsignedWrap(NUW);
997   return Mul;
998 }
999 
1000 /// Scan backwards and forwards among values with the same rank as element i
1001 /// to see if X exists.  If X does not exist, return i.  This is useful when
1002 /// scanning for 'x' when we see '-x' because they both get the same rank.
1003 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1004                                   unsigned i, Value *X) {
1005   unsigned XRank = Ops[i].Rank;
1006   unsigned e = Ops.size();
1007   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1008     if (Ops[j].Op == X)
1009       return j;
1010     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1011       if (Instruction *I2 = dyn_cast<Instruction>(X))
1012         if (I1->isIdenticalTo(I2))
1013           return j;
1014   }
1015   // Scan backwards.
1016   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1017     if (Ops[j].Op == X)
1018       return j;
1019     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1020       if (Instruction *I2 = dyn_cast<Instruction>(X))
1021         if (I1->isIdenticalTo(I2))
1022           return j;
1023   }
1024   return i;
1025 }
1026 
1027 /// Emit a tree of add instructions, summing Ops together
1028 /// and returning the result.  Insert the tree before I.
1029 static Value *EmitAddTreeOfValues(Instruction *I,
1030                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1031   if (Ops.size() == 1) return Ops.back();
1032 
1033   Value *V1 = Ops.back();
1034   Ops.pop_back();
1035   Value *V2 = EmitAddTreeOfValues(I, Ops);
1036   return CreateAdd(V2, V1, "reass.add", I, I);
1037 }
1038 
1039 /// If V is an expression tree that is a multiplication sequence,
1040 /// and if this sequence contains a multiply by Factor,
1041 /// remove Factor from the tree and return the new tree.
1042 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1043   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1044   if (!BO)
1045     return nullptr;
1046 
1047   SmallVector<RepeatedValue, 8> Tree;
1048   MadeChange |= LinearizeExprTree(BO, Tree);
1049   SmallVector<ValueEntry, 8> Factors;
1050   Factors.reserve(Tree.size());
1051   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1052     RepeatedValue E = Tree[i];
1053     Factors.append(E.second.getZExtValue(),
1054                    ValueEntry(getRank(E.first), E.first));
1055   }
1056 
1057   bool FoundFactor = false;
1058   bool NeedsNegate = false;
1059   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1060     if (Factors[i].Op == Factor) {
1061       FoundFactor = true;
1062       Factors.erase(Factors.begin()+i);
1063       break;
1064     }
1065 
1066     // If this is a negative version of this factor, remove it.
1067     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1068       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1069         if (FC1->getValue() == -FC2->getValue()) {
1070           FoundFactor = NeedsNegate = true;
1071           Factors.erase(Factors.begin()+i);
1072           break;
1073         }
1074     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1075       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1076         const APFloat &F1 = FC1->getValueAPF();
1077         APFloat F2(FC2->getValueAPF());
1078         F2.changeSign();
1079         if (F1.compare(F2) == APFloat::cmpEqual) {
1080           FoundFactor = NeedsNegate = true;
1081           Factors.erase(Factors.begin() + i);
1082           break;
1083         }
1084       }
1085     }
1086   }
1087 
1088   if (!FoundFactor) {
1089     // Make sure to restore the operands to the expression tree.
1090     RewriteExprTree(BO, Factors);
1091     return nullptr;
1092   }
1093 
1094   BasicBlock::iterator InsertPt = ++BO->getIterator();
1095 
1096   // If this was just a single multiply, remove the multiply and return the only
1097   // remaining operand.
1098   if (Factors.size() == 1) {
1099     RedoInsts.insert(BO);
1100     V = Factors[0].Op;
1101   } else {
1102     RewriteExprTree(BO, Factors);
1103     V = BO;
1104   }
1105 
1106   if (NeedsNegate)
1107     V = CreateNeg(V, "neg", &*InsertPt, BO);
1108 
1109   return V;
1110 }
1111 
1112 /// If V is a single-use multiply, recursively add its operands as factors,
1113 /// otherwise add V to the list of factors.
1114 ///
1115 /// Ops is the top-level list of add operands we're trying to factor.
1116 static void FindSingleUseMultiplyFactors(Value *V,
1117                                          SmallVectorImpl<Value*> &Factors) {
1118   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1119   if (!BO) {
1120     Factors.push_back(V);
1121     return;
1122   }
1123 
1124   // Otherwise, add the LHS and RHS to the list of factors.
1125   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1126   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1127 }
1128 
1129 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1130 /// This optimizes based on identities.  If it can be reduced to a single Value,
1131 /// it is returned, otherwise the Ops list is mutated as necessary.
1132 static Value *OptimizeAndOrXor(unsigned Opcode,
1133                                SmallVectorImpl<ValueEntry> &Ops) {
1134   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1135   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1136   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1137     // First, check for X and ~X in the operand list.
1138     assert(i < Ops.size());
1139     Value *X;
1140     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1141       unsigned FoundX = FindInOperandList(Ops, i, X);
1142       if (FoundX != i) {
1143         if (Opcode == Instruction::And)   // ...&X&~X = 0
1144           return Constant::getNullValue(X->getType());
1145 
1146         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1147           return Constant::getAllOnesValue(X->getType());
1148       }
1149     }
1150 
1151     // Next, check for duplicate pairs of values, which we assume are next to
1152     // each other, due to our sorting criteria.
1153     assert(i < Ops.size());
1154     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1155       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1156         // Drop duplicate values for And and Or.
1157         Ops.erase(Ops.begin()+i);
1158         --i; --e;
1159         ++NumAnnihil;
1160         continue;
1161       }
1162 
1163       // Drop pairs of values for Xor.
1164       assert(Opcode == Instruction::Xor);
1165       if (e == 2)
1166         return Constant::getNullValue(Ops[0].Op->getType());
1167 
1168       // Y ^ X^X -> Y
1169       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1170       i -= 1; e -= 2;
1171       ++NumAnnihil;
1172     }
1173   }
1174   return nullptr;
1175 }
1176 
1177 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1178 /// instruction with the given two operands, and return the resulting
1179 /// instruction. There are two special cases: 1) if the constant operand is 0,
1180 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1181 /// be returned.
1182 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1183                              const APInt &ConstOpnd) {
1184   if (ConstOpnd.isNullValue())
1185     return nullptr;
1186 
1187   if (ConstOpnd.isAllOnesValue())
1188     return Opnd;
1189 
1190   Instruction *I = BinaryOperator::CreateAnd(
1191       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1192       InsertBefore);
1193   I->setDebugLoc(InsertBefore->getDebugLoc());
1194   return I;
1195 }
1196 
1197 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1198 // into "R ^ C", where C would be 0, and R is a symbolic value.
1199 //
1200 // If it was successful, true is returned, and the "R" and "C" is returned
1201 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1202 // and both "Res" and "ConstOpnd" remain unchanged.
1203 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1204                                      APInt &ConstOpnd, Value *&Res) {
1205   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1206   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1207   //                       = (x & ~c1) ^ (c1 ^ c2)
1208   // It is useful only when c1 == c2.
1209   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1210     return false;
1211 
1212   if (!Opnd1->getValue()->hasOneUse())
1213     return false;
1214 
1215   const APInt &C1 = Opnd1->getConstPart();
1216   if (C1 != ConstOpnd)
1217     return false;
1218 
1219   Value *X = Opnd1->getSymbolicPart();
1220   Res = createAndInstr(I, X, ~C1);
1221   // ConstOpnd was C2, now C1 ^ C2.
1222   ConstOpnd ^= C1;
1223 
1224   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1225     RedoInsts.insert(T);
1226   return true;
1227 }
1228 
1229 // Helper function of OptimizeXor(). It tries to simplify
1230 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1231 // symbolic value.
1232 //
1233 // If it was successful, true is returned, and the "R" and "C" is returned
1234 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1235 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1236 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1237 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1238                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1239                                      Value *&Res) {
1240   Value *X = Opnd1->getSymbolicPart();
1241   if (X != Opnd2->getSymbolicPart())
1242     return false;
1243 
1244   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1245   int DeadInstNum = 1;
1246   if (Opnd1->getValue()->hasOneUse())
1247     DeadInstNum++;
1248   if (Opnd2->getValue()->hasOneUse())
1249     DeadInstNum++;
1250 
1251   // Xor-Rule 2:
1252   //  (x | c1) ^ (x & c2)
1253   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1254   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1255   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1256   //
1257   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1258     if (Opnd2->isOrExpr())
1259       std::swap(Opnd1, Opnd2);
1260 
1261     const APInt &C1 = Opnd1->getConstPart();
1262     const APInt &C2 = Opnd2->getConstPart();
1263     APInt C3((~C1) ^ C2);
1264 
1265     // Do not increase code size!
1266     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1267       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1268       if (NewInstNum > DeadInstNum)
1269         return false;
1270     }
1271 
1272     Res = createAndInstr(I, X, C3);
1273     ConstOpnd ^= C1;
1274   } else if (Opnd1->isOrExpr()) {
1275     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1276     //
1277     const APInt &C1 = Opnd1->getConstPart();
1278     const APInt &C2 = Opnd2->getConstPart();
1279     APInt C3 = C1 ^ C2;
1280 
1281     // Do not increase code size
1282     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1283       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1284       if (NewInstNum > DeadInstNum)
1285         return false;
1286     }
1287 
1288     Res = createAndInstr(I, X, C3);
1289     ConstOpnd ^= C3;
1290   } else {
1291     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1292     //
1293     const APInt &C1 = Opnd1->getConstPart();
1294     const APInt &C2 = Opnd2->getConstPart();
1295     APInt C3 = C1 ^ C2;
1296     Res = createAndInstr(I, X, C3);
1297   }
1298 
1299   // Put the original operands in the Redo list; hope they will be deleted
1300   // as dead code.
1301   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1302     RedoInsts.insert(T);
1303   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1304     RedoInsts.insert(T);
1305 
1306   return true;
1307 }
1308 
1309 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1310 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1311 /// necessary.
1312 Value *ReassociatePass::OptimizeXor(Instruction *I,
1313                                     SmallVectorImpl<ValueEntry> &Ops) {
1314   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1315     return V;
1316 
1317   if (Ops.size() == 1)
1318     return nullptr;
1319 
1320   SmallVector<XorOpnd, 8> Opnds;
1321   SmallVector<XorOpnd*, 8> OpndPtrs;
1322   Type *Ty = Ops[0].Op->getType();
1323   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1324 
1325   // Step 1: Convert ValueEntry to XorOpnd
1326   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1327     Value *V = Ops[i].Op;
1328     const APInt *C;
1329     // TODO: Support non-splat vectors.
1330     if (match(V, m_APInt(C))) {
1331       ConstOpnd ^= *C;
1332     } else {
1333       XorOpnd O(V);
1334       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1335       Opnds.push_back(O);
1336     }
1337   }
1338 
1339   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1340   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1341   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1342   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1343   //  when new elements are added to the vector.
1344   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1345     OpndPtrs.push_back(&Opnds[i]);
1346 
1347   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1348   //  the same symbolic value cluster together. For instance, the input operand
1349   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1350   //  ("x | 123", "x & 789", "y & 456").
1351   //
1352   //  The purpose is twofold:
1353   //  1) Cluster together the operands sharing the same symbolic-value.
1354   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1355   //     could potentially shorten crital path, and expose more loop-invariants.
1356   //     Note that values' rank are basically defined in RPO order (FIXME).
1357   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1358   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1359   //     "z" in the order of X-Y-Z is better than any other orders.
1360   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1361     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1362   });
1363 
1364   // Step 3: Combine adjacent operands
1365   XorOpnd *PrevOpnd = nullptr;
1366   bool Changed = false;
1367   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1368     XorOpnd *CurrOpnd = OpndPtrs[i];
1369     // The combined value
1370     Value *CV;
1371 
1372     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1373     if (!ConstOpnd.isNullValue() &&
1374         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1375       Changed = true;
1376       if (CV)
1377         *CurrOpnd = XorOpnd(CV);
1378       else {
1379         CurrOpnd->Invalidate();
1380         continue;
1381       }
1382     }
1383 
1384     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1385       PrevOpnd = CurrOpnd;
1386       continue;
1387     }
1388 
1389     // step 3.2: When previous and current operands share the same symbolic
1390     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1391     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1392       // Remove previous operand
1393       PrevOpnd->Invalidate();
1394       if (CV) {
1395         *CurrOpnd = XorOpnd(CV);
1396         PrevOpnd = CurrOpnd;
1397       } else {
1398         CurrOpnd->Invalidate();
1399         PrevOpnd = nullptr;
1400       }
1401       Changed = true;
1402     }
1403   }
1404 
1405   // Step 4: Reassemble the Ops
1406   if (Changed) {
1407     Ops.clear();
1408     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1409       XorOpnd &O = Opnds[i];
1410       if (O.isInvalid())
1411         continue;
1412       ValueEntry VE(getRank(O.getValue()), O.getValue());
1413       Ops.push_back(VE);
1414     }
1415     if (!ConstOpnd.isNullValue()) {
1416       Value *C = ConstantInt::get(Ty, ConstOpnd);
1417       ValueEntry VE(getRank(C), C);
1418       Ops.push_back(VE);
1419     }
1420     unsigned Sz = Ops.size();
1421     if (Sz == 1)
1422       return Ops.back().Op;
1423     if (Sz == 0) {
1424       assert(ConstOpnd.isNullValue());
1425       return ConstantInt::get(Ty, ConstOpnd);
1426     }
1427   }
1428 
1429   return nullptr;
1430 }
1431 
1432 /// Optimize a series of operands to an 'add' instruction.  This
1433 /// optimizes based on identities.  If it can be reduced to a single Value, it
1434 /// is returned, otherwise the Ops list is mutated as necessary.
1435 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1436                                     SmallVectorImpl<ValueEntry> &Ops) {
1437   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1438   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1439   // scan for any
1440   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1441 
1442   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1443     Value *TheOp = Ops[i].Op;
1444     // Check to see if we've seen this operand before.  If so, we factor all
1445     // instances of the operand together.  Due to our sorting criteria, we know
1446     // that these need to be next to each other in the vector.
1447     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1448       // Rescan the list, remove all instances of this operand from the expr.
1449       unsigned NumFound = 0;
1450       do {
1451         Ops.erase(Ops.begin()+i);
1452         ++NumFound;
1453       } while (i != Ops.size() && Ops[i].Op == TheOp);
1454 
1455       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1456                         << '\n');
1457       ++NumFactor;
1458 
1459       // Insert a new multiply.
1460       Type *Ty = TheOp->getType();
1461       Constant *C = Ty->isIntOrIntVectorTy() ?
1462         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1463       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1464 
1465       // Now that we have inserted a multiply, optimize it. This allows us to
1466       // handle cases that require multiple factoring steps, such as this:
1467       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1468       RedoInsts.insert(Mul);
1469 
1470       // If every add operand was a duplicate, return the multiply.
1471       if (Ops.empty())
1472         return Mul;
1473 
1474       // Otherwise, we had some input that didn't have the dupe, such as
1475       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1476       // things being added by this operation.
1477       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1478 
1479       --i;
1480       e = Ops.size();
1481       continue;
1482     }
1483 
1484     // Check for X and -X or X and ~X in the operand list.
1485     Value *X;
1486     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1487         !match(TheOp, m_FNeg(m_Value(X))))
1488       continue;
1489 
1490     unsigned FoundX = FindInOperandList(Ops, i, X);
1491     if (FoundX == i)
1492       continue;
1493 
1494     // Remove X and -X from the operand list.
1495     if (Ops.size() == 2 &&
1496         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1497       return Constant::getNullValue(X->getType());
1498 
1499     // Remove X and ~X from the operand list.
1500     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1501       return Constant::getAllOnesValue(X->getType());
1502 
1503     Ops.erase(Ops.begin()+i);
1504     if (i < FoundX)
1505       --FoundX;
1506     else
1507       --i;   // Need to back up an extra one.
1508     Ops.erase(Ops.begin()+FoundX);
1509     ++NumAnnihil;
1510     --i;     // Revisit element.
1511     e -= 2;  // Removed two elements.
1512 
1513     // if X and ~X we append -1 to the operand list.
1514     if (match(TheOp, m_Not(m_Value()))) {
1515       Value *V = Constant::getAllOnesValue(X->getType());
1516       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1517       e += 1;
1518     }
1519   }
1520 
1521   // Scan the operand list, checking to see if there are any common factors
1522   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1523   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1524   // To efficiently find this, we count the number of times a factor occurs
1525   // for any ADD operands that are MULs.
1526   DenseMap<Value*, unsigned> FactorOccurrences;
1527 
1528   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1529   // where they are actually the same multiply.
1530   unsigned MaxOcc = 0;
1531   Value *MaxOccVal = nullptr;
1532   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1533     BinaryOperator *BOp =
1534         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1535     if (!BOp)
1536       continue;
1537 
1538     // Compute all of the factors of this added value.
1539     SmallVector<Value*, 8> Factors;
1540     FindSingleUseMultiplyFactors(BOp, Factors);
1541     assert(Factors.size() > 1 && "Bad linearize!");
1542 
1543     // Add one to FactorOccurrences for each unique factor in this op.
1544     SmallPtrSet<Value*, 8> Duplicates;
1545     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1546       Value *Factor = Factors[i];
1547       if (!Duplicates.insert(Factor).second)
1548         continue;
1549 
1550       unsigned Occ = ++FactorOccurrences[Factor];
1551       if (Occ > MaxOcc) {
1552         MaxOcc = Occ;
1553         MaxOccVal = Factor;
1554       }
1555 
1556       // If Factor is a negative constant, add the negated value as a factor
1557       // because we can percolate the negate out.  Watch for minint, which
1558       // cannot be positivified.
1559       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1560         if (CI->isNegative() && !CI->isMinValue(true)) {
1561           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1562           if (!Duplicates.insert(Factor).second)
1563             continue;
1564           unsigned Occ = ++FactorOccurrences[Factor];
1565           if (Occ > MaxOcc) {
1566             MaxOcc = Occ;
1567             MaxOccVal = Factor;
1568           }
1569         }
1570       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1571         if (CF->isNegative()) {
1572           APFloat F(CF->getValueAPF());
1573           F.changeSign();
1574           Factor = ConstantFP::get(CF->getContext(), F);
1575           if (!Duplicates.insert(Factor).second)
1576             continue;
1577           unsigned Occ = ++FactorOccurrences[Factor];
1578           if (Occ > MaxOcc) {
1579             MaxOcc = Occ;
1580             MaxOccVal = Factor;
1581           }
1582         }
1583       }
1584     }
1585   }
1586 
1587   // If any factor occurred more than one time, we can pull it out.
1588   if (MaxOcc > 1) {
1589     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1590                       << '\n');
1591     ++NumFactor;
1592 
1593     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1594     // this, we could otherwise run into situations where removing a factor
1595     // from an expression will drop a use of maxocc, and this can cause
1596     // RemoveFactorFromExpression on successive values to behave differently.
1597     Instruction *DummyInst =
1598         I->getType()->isIntOrIntVectorTy()
1599             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1600             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1601 
1602     SmallVector<WeakTrackingVH, 4> NewMulOps;
1603     for (unsigned i = 0; i != Ops.size(); ++i) {
1604       // Only try to remove factors from expressions we're allowed to.
1605       BinaryOperator *BOp =
1606           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1607       if (!BOp)
1608         continue;
1609 
1610       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1611         // The factorized operand may occur several times.  Convert them all in
1612         // one fell swoop.
1613         for (unsigned j = Ops.size(); j != i;) {
1614           --j;
1615           if (Ops[j].Op == Ops[i].Op) {
1616             NewMulOps.push_back(V);
1617             Ops.erase(Ops.begin()+j);
1618           }
1619         }
1620         --i;
1621       }
1622     }
1623 
1624     // No need for extra uses anymore.
1625     DummyInst->deleteValue();
1626 
1627     unsigned NumAddedValues = NewMulOps.size();
1628     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1629 
1630     // Now that we have inserted the add tree, optimize it. This allows us to
1631     // handle cases that require multiple factoring steps, such as this:
1632     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1633     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1634     (void)NumAddedValues;
1635     if (Instruction *VI = dyn_cast<Instruction>(V))
1636       RedoInsts.insert(VI);
1637 
1638     // Create the multiply.
1639     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1640 
1641     // Rerun associate on the multiply in case the inner expression turned into
1642     // a multiply.  We want to make sure that we keep things in canonical form.
1643     RedoInsts.insert(V2);
1644 
1645     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1646     // entire result expression is just the multiply "A*(B+C)".
1647     if (Ops.empty())
1648       return V2;
1649 
1650     // Otherwise, we had some input that didn't have the factor, such as
1651     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1652     // things being added by this operation.
1653     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1654   }
1655 
1656   return nullptr;
1657 }
1658 
1659 /// Build up a vector of value/power pairs factoring a product.
1660 ///
1661 /// Given a series of multiplication operands, build a vector of factors and
1662 /// the powers each is raised to when forming the final product. Sort them in
1663 /// the order of descending power.
1664 ///
1665 ///      (x*x)          -> [(x, 2)]
1666 ///     ((x*x)*x)       -> [(x, 3)]
1667 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1668 ///
1669 /// \returns Whether any factors have a power greater than one.
1670 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1671                                    SmallVectorImpl<Factor> &Factors) {
1672   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1673   // Compute the sum of powers of simplifiable factors.
1674   unsigned FactorPowerSum = 0;
1675   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1676     Value *Op = Ops[Idx-1].Op;
1677 
1678     // Count the number of occurrences of this value.
1679     unsigned Count = 1;
1680     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1681       ++Count;
1682     // Track for simplification all factors which occur 2 or more times.
1683     if (Count > 1)
1684       FactorPowerSum += Count;
1685   }
1686 
1687   // We can only simplify factors if the sum of the powers of our simplifiable
1688   // factors is 4 or higher. When that is the case, we will *always* have
1689   // a simplification. This is an important invariant to prevent cyclicly
1690   // trying to simplify already minimal formations.
1691   if (FactorPowerSum < 4)
1692     return false;
1693 
1694   // Now gather the simplifiable factors, removing them from Ops.
1695   FactorPowerSum = 0;
1696   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1697     Value *Op = Ops[Idx-1].Op;
1698 
1699     // Count the number of occurrences of this value.
1700     unsigned Count = 1;
1701     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1702       ++Count;
1703     if (Count == 1)
1704       continue;
1705     // Move an even number of occurrences to Factors.
1706     Count &= ~1U;
1707     Idx -= Count;
1708     FactorPowerSum += Count;
1709     Factors.push_back(Factor(Op, Count));
1710     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1711   }
1712 
1713   // None of the adjustments above should have reduced the sum of factor powers
1714   // below our mininum of '4'.
1715   assert(FactorPowerSum >= 4);
1716 
1717   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1718     return LHS.Power > RHS.Power;
1719   });
1720   return true;
1721 }
1722 
1723 /// Build a tree of multiplies, computing the product of Ops.
1724 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1725                                 SmallVectorImpl<Value*> &Ops) {
1726   if (Ops.size() == 1)
1727     return Ops.back();
1728 
1729   Value *LHS = Ops.pop_back_val();
1730   do {
1731     if (LHS->getType()->isIntOrIntVectorTy())
1732       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1733     else
1734       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1735   } while (!Ops.empty());
1736 
1737   return LHS;
1738 }
1739 
1740 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1741 ///
1742 /// Given a vector of values raised to various powers, where no two values are
1743 /// equal and the powers are sorted in decreasing order, compute the minimal
1744 /// DAG of multiplies to compute the final product, and return that product
1745 /// value.
1746 Value *
1747 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1748                                          SmallVectorImpl<Factor> &Factors) {
1749   assert(Factors[0].Power);
1750   SmallVector<Value *, 4> OuterProduct;
1751   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1752        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1753     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1754       LastIdx = Idx;
1755       continue;
1756     }
1757 
1758     // We want to multiply across all the factors with the same power so that
1759     // we can raise them to that power as a single entity. Build a mini tree
1760     // for that.
1761     SmallVector<Value *, 4> InnerProduct;
1762     InnerProduct.push_back(Factors[LastIdx].Base);
1763     do {
1764       InnerProduct.push_back(Factors[Idx].Base);
1765       ++Idx;
1766     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1767 
1768     // Reset the base value of the first factor to the new expression tree.
1769     // We'll remove all the factors with the same power in a second pass.
1770     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1771     if (Instruction *MI = dyn_cast<Instruction>(M))
1772       RedoInsts.insert(MI);
1773 
1774     LastIdx = Idx;
1775   }
1776   // Unique factors with equal powers -- we've folded them into the first one's
1777   // base.
1778   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1779                             [](const Factor &LHS, const Factor &RHS) {
1780                               return LHS.Power == RHS.Power;
1781                             }),
1782                 Factors.end());
1783 
1784   // Iteratively collect the base of each factor with an add power into the
1785   // outer product, and halve each power in preparation for squaring the
1786   // expression.
1787   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1788     if (Factors[Idx].Power & 1)
1789       OuterProduct.push_back(Factors[Idx].Base);
1790     Factors[Idx].Power >>= 1;
1791   }
1792   if (Factors[0].Power) {
1793     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1794     OuterProduct.push_back(SquareRoot);
1795     OuterProduct.push_back(SquareRoot);
1796   }
1797   if (OuterProduct.size() == 1)
1798     return OuterProduct.front();
1799 
1800   Value *V = buildMultiplyTree(Builder, OuterProduct);
1801   return V;
1802 }
1803 
1804 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1805                                     SmallVectorImpl<ValueEntry> &Ops) {
1806   // We can only optimize the multiplies when there is a chain of more than
1807   // three, such that a balanced tree might require fewer total multiplies.
1808   if (Ops.size() < 4)
1809     return nullptr;
1810 
1811   // Try to turn linear trees of multiplies without other uses of the
1812   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1813   // re-use.
1814   SmallVector<Factor, 4> Factors;
1815   if (!collectMultiplyFactors(Ops, Factors))
1816     return nullptr; // All distinct factors, so nothing left for us to do.
1817 
1818   IRBuilder<> Builder(I);
1819   // The reassociate transformation for FP operations is performed only
1820   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1821   // to the newly generated operations.
1822   if (auto FPI = dyn_cast<FPMathOperator>(I))
1823     Builder.setFastMathFlags(FPI->getFastMathFlags());
1824 
1825   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1826   if (Ops.empty())
1827     return V;
1828 
1829   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1830   Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1831   return nullptr;
1832 }
1833 
1834 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1835                                            SmallVectorImpl<ValueEntry> &Ops) {
1836   // Now that we have the linearized expression tree, try to optimize it.
1837   // Start by folding any constants that we found.
1838   Constant *Cst = nullptr;
1839   unsigned Opcode = I->getOpcode();
1840   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1841     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1842     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1843   }
1844   // If there was nothing but constants then we are done.
1845   if (Ops.empty())
1846     return Cst;
1847 
1848   // Put the combined constant back at the end of the operand list, except if
1849   // there is no point.  For example, an add of 0 gets dropped here, while a
1850   // multiplication by zero turns the whole expression into zero.
1851   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1852     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1853       return Cst;
1854     Ops.push_back(ValueEntry(0, Cst));
1855   }
1856 
1857   if (Ops.size() == 1) return Ops[0].Op;
1858 
1859   // Handle destructive annihilation due to identities between elements in the
1860   // argument list here.
1861   unsigned NumOps = Ops.size();
1862   switch (Opcode) {
1863   default: break;
1864   case Instruction::And:
1865   case Instruction::Or:
1866     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1867       return Result;
1868     break;
1869 
1870   case Instruction::Xor:
1871     if (Value *Result = OptimizeXor(I, Ops))
1872       return Result;
1873     break;
1874 
1875   case Instruction::Add:
1876   case Instruction::FAdd:
1877     if (Value *Result = OptimizeAdd(I, Ops))
1878       return Result;
1879     break;
1880 
1881   case Instruction::Mul:
1882   case Instruction::FMul:
1883     if (Value *Result = OptimizeMul(I, Ops))
1884       return Result;
1885     break;
1886   }
1887 
1888   if (Ops.size() != NumOps)
1889     return OptimizeExpression(I, Ops);
1890   return nullptr;
1891 }
1892 
1893 // Remove dead instructions and if any operands are trivially dead add them to
1894 // Insts so they will be removed as well.
1895 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1896                                                 OrderedSet &Insts) {
1897   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1898   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1899   ValueRankMap.erase(I);
1900   Insts.remove(I);
1901   RedoInsts.remove(I);
1902   llvm::salvageDebugInfoOrMarkUndef(*I);
1903   I->eraseFromParent();
1904   for (auto Op : Ops)
1905     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1906       if (OpInst->use_empty())
1907         Insts.insert(OpInst);
1908 }
1909 
1910 /// Zap the given instruction, adding interesting operands to the work list.
1911 void ReassociatePass::EraseInst(Instruction *I) {
1912   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1913   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1914 
1915   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1916   // Erase the dead instruction.
1917   ValueRankMap.erase(I);
1918   RedoInsts.remove(I);
1919   llvm::salvageDebugInfoOrMarkUndef(*I);
1920   I->eraseFromParent();
1921   // Optimize its operands.
1922   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1923   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1924     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1925       // If this is a node in an expression tree, climb to the expression root
1926       // and add that since that's where optimization actually happens.
1927       unsigned Opcode = Op->getOpcode();
1928       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1929              Visited.insert(Op).second)
1930         Op = Op->user_back();
1931 
1932       // The instruction we're going to push may be coming from a
1933       // dead block, and Reassociate skips the processing of unreachable
1934       // blocks because it's a waste of time and also because it can
1935       // lead to infinite loop due to LLVM's non-standard definition
1936       // of dominance.
1937       if (ValueRankMap.find(Op) != ValueRankMap.end())
1938         RedoInsts.insert(Op);
1939     }
1940 
1941   MadeChange = true;
1942 }
1943 
1944 /// Recursively analyze an expression to build a list of instructions that have
1945 /// negative floating-point constant operands. The caller can then transform
1946 /// the list to create positive constants for better reassociation and CSE.
1947 static void getNegatibleInsts(Value *V,
1948                               SmallVectorImpl<Instruction *> &Candidates) {
1949   // Handle only one-use instructions. Combining negations does not justify
1950   // replicating instructions.
1951   Instruction *I;
1952   if (!match(V, m_OneUse(m_Instruction(I))))
1953     return;
1954 
1955   // Handle expressions of multiplications and divisions.
1956   // TODO: This could look through floating-point casts.
1957   const APFloat *C;
1958   switch (I->getOpcode()) {
1959     case Instruction::FMul:
1960       // Not expecting non-canonical code here. Bail out and wait.
1961       if (match(I->getOperand(0), m_Constant()))
1962         break;
1963 
1964       if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
1965         Candidates.push_back(I);
1966         LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
1967       }
1968       getNegatibleInsts(I->getOperand(0), Candidates);
1969       getNegatibleInsts(I->getOperand(1), Candidates);
1970       break;
1971     case Instruction::FDiv:
1972       // Not expecting non-canonical code here. Bail out and wait.
1973       if (match(I->getOperand(0), m_Constant()) &&
1974           match(I->getOperand(1), m_Constant()))
1975         break;
1976 
1977       if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
1978           (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
1979         Candidates.push_back(I);
1980         LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
1981       }
1982       getNegatibleInsts(I->getOperand(0), Candidates);
1983       getNegatibleInsts(I->getOperand(1), Candidates);
1984       break;
1985     default:
1986       break;
1987   }
1988 }
1989 
1990 /// Given an fadd/fsub with an operand that is a one-use instruction
1991 /// (the fadd/fsub), try to change negative floating-point constants into
1992 /// positive constants to increase potential for reassociation and CSE.
1993 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
1994                                                               Instruction *Op,
1995                                                               Value *OtherOp) {
1996   assert((I->getOpcode() == Instruction::FAdd ||
1997           I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
1998 
1999   // Collect instructions with negative FP constants from the subtree that ends
2000   // in Op.
2001   SmallVector<Instruction *, 4> Candidates;
2002   getNegatibleInsts(Op, Candidates);
2003   if (Candidates.empty())
2004     return nullptr;
2005 
2006   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2007   // resulting subtract will be broken up later.  This can get us into an
2008   // infinite loop during reassociation.
2009   bool IsFSub = I->getOpcode() == Instruction::FSub;
2010   bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2011   if (NeedsSubtract && ShouldBreakUpSubtract(I))
2012     return nullptr;
2013 
2014   for (Instruction *Negatible : Candidates) {
2015     const APFloat *C;
2016     if (match(Negatible->getOperand(0), m_APFloat(C))) {
2017       assert(!match(Negatible->getOperand(1), m_Constant()) &&
2018              "Expecting only 1 constant operand");
2019       assert(C->isNegative() && "Expected negative FP constant");
2020       Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2021       MadeChange = true;
2022     }
2023     if (match(Negatible->getOperand(1), m_APFloat(C))) {
2024       assert(!match(Negatible->getOperand(0), m_Constant()) &&
2025              "Expecting only 1 constant operand");
2026       assert(C->isNegative() && "Expected negative FP constant");
2027       Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2028       MadeChange = true;
2029     }
2030   }
2031   assert(MadeChange == true && "Negative constant candidate was not changed");
2032 
2033   // Negations cancelled out.
2034   if (Candidates.size() % 2 == 0)
2035     return I;
2036 
2037   // Negate the final operand in the expression by flipping the opcode of this
2038   // fadd/fsub.
2039   assert(Candidates.size() % 2 == 1 && "Expected odd number");
2040   IRBuilder<> Builder(I);
2041   Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2042                           : Builder.CreateFSubFMF(OtherOp, Op, I);
2043   I->replaceAllUsesWith(NewInst);
2044   RedoInsts.insert(I);
2045   return dyn_cast<Instruction>(NewInst);
2046 }
2047 
2048 /// Canonicalize expressions that contain a negative floating-point constant
2049 /// of the following form:
2050 ///   OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2051 ///   (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2052 ///   OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2053 ///
2054 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2055 /// input instruction.
2056 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2057   LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2058   Value *X;
2059   Instruction *Op;
2060   if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2061     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2062       I = R;
2063   if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2064     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2065       I = R;
2066   if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2067     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2068       I = R;
2069   return I;
2070 }
2071 
2072 /// Inspect and optimize the given instruction. Note that erasing
2073 /// instructions is not allowed.
2074 void ReassociatePass::OptimizeInst(Instruction *I) {
2075   // Only consider operations that we understand.
2076   if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2077     return;
2078 
2079   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2080     // If an operand of this shift is a reassociable multiply, or if the shift
2081     // is used by a reassociable multiply or add, turn into a multiply.
2082     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2083         (I->hasOneUse() &&
2084          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2085           isReassociableOp(I->user_back(), Instruction::Add)))) {
2086       Instruction *NI = ConvertShiftToMul(I);
2087       RedoInsts.insert(I);
2088       MadeChange = true;
2089       I = NI;
2090     }
2091 
2092   // Commute binary operators, to canonicalize the order of their operands.
2093   // This can potentially expose more CSE opportunities, and makes writing other
2094   // transformations simpler.
2095   if (I->isCommutative())
2096     canonicalizeOperands(I);
2097 
2098   // Canonicalize negative constants out of expressions.
2099   if (Instruction *Res = canonicalizeNegFPConstants(I))
2100     I = Res;
2101 
2102   // Don't optimize floating-point instructions unless they are 'fast'.
2103   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2104     return;
2105 
2106   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2107   // original order of evaluation for short-circuited comparisons that
2108   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2109   // is not further optimized, it is likely to be transformed back to a
2110   // short-circuited form for code gen, and the source order may have been
2111   // optimized for the most likely conditions.
2112   if (I->getType()->isIntegerTy(1))
2113     return;
2114 
2115   // If this is a subtract instruction which is not already in negate form,
2116   // see if we can convert it to X+-Y.
2117   if (I->getOpcode() == Instruction::Sub) {
2118     if (ShouldBreakUpSubtract(I)) {
2119       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2120       RedoInsts.insert(I);
2121       MadeChange = true;
2122       I = NI;
2123     } else if (match(I, m_Neg(m_Value()))) {
2124       // Otherwise, this is a negation.  See if the operand is a multiply tree
2125       // and if this is not an inner node of a multiply tree.
2126       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2127           (!I->hasOneUse() ||
2128            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2129         Instruction *NI = LowerNegateToMultiply(I);
2130         // If the negate was simplified, revisit the users to see if we can
2131         // reassociate further.
2132         for (User *U : NI->users()) {
2133           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2134             RedoInsts.insert(Tmp);
2135         }
2136         RedoInsts.insert(I);
2137         MadeChange = true;
2138         I = NI;
2139       }
2140     }
2141   } else if (I->getOpcode() == Instruction::FNeg ||
2142              I->getOpcode() == Instruction::FSub) {
2143     if (ShouldBreakUpSubtract(I)) {
2144       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2145       RedoInsts.insert(I);
2146       MadeChange = true;
2147       I = NI;
2148     } else if (match(I, m_FNeg(m_Value()))) {
2149       // Otherwise, this is a negation.  See if the operand is a multiply tree
2150       // and if this is not an inner node of a multiply tree.
2151       Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2152                                            I->getOperand(0);
2153       if (isReassociableOp(Op, Instruction::FMul) &&
2154           (!I->hasOneUse() ||
2155            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2156         // If the negate was simplified, revisit the users to see if we can
2157         // reassociate further.
2158         Instruction *NI = LowerNegateToMultiply(I);
2159         for (User *U : NI->users()) {
2160           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2161             RedoInsts.insert(Tmp);
2162         }
2163         RedoInsts.insert(I);
2164         MadeChange = true;
2165         I = NI;
2166       }
2167     }
2168   }
2169 
2170   // If this instruction is an associative binary operator, process it.
2171   if (!I->isAssociative()) return;
2172   BinaryOperator *BO = cast<BinaryOperator>(I);
2173 
2174   // If this is an interior node of a reassociable tree, ignore it until we
2175   // get to the root of the tree, to avoid N^2 analysis.
2176   unsigned Opcode = BO->getOpcode();
2177   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2178     // During the initial run we will get to the root of the tree.
2179     // But if we get here while we are redoing instructions, there is no
2180     // guarantee that the root will be visited. So Redo later
2181     if (BO->user_back() != BO &&
2182         BO->getParent() == BO->user_back()->getParent())
2183       RedoInsts.insert(BO->user_back());
2184     return;
2185   }
2186 
2187   // If this is an add tree that is used by a sub instruction, ignore it
2188   // until we process the subtract.
2189   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2190       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2191     return;
2192   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2193       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2194     return;
2195 
2196   ReassociateExpression(BO);
2197 }
2198 
2199 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2200   // First, walk the expression tree, linearizing the tree, collecting the
2201   // operand information.
2202   SmallVector<RepeatedValue, 8> Tree;
2203   MadeChange |= LinearizeExprTree(I, Tree);
2204   SmallVector<ValueEntry, 8> Ops;
2205   Ops.reserve(Tree.size());
2206   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2207     RepeatedValue E = Tree[i];
2208     Ops.append(E.second.getZExtValue(),
2209                ValueEntry(getRank(E.first), E.first));
2210   }
2211 
2212   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2213 
2214   // Now that we have linearized the tree to a list and have gathered all of
2215   // the operands and their ranks, sort the operands by their rank.  Use a
2216   // stable_sort so that values with equal ranks will have their relative
2217   // positions maintained (and so the compiler is deterministic).  Note that
2218   // this sorts so that the highest ranking values end up at the beginning of
2219   // the vector.
2220   llvm::stable_sort(Ops);
2221 
2222   // Now that we have the expression tree in a convenient
2223   // sorted form, optimize it globally if possible.
2224   if (Value *V = OptimizeExpression(I, Ops)) {
2225     if (V == I)
2226       // Self-referential expression in unreachable code.
2227       return;
2228     // This expression tree simplified to something that isn't a tree,
2229     // eliminate it.
2230     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2231     I->replaceAllUsesWith(V);
2232     if (Instruction *VI = dyn_cast<Instruction>(V))
2233       if (I->getDebugLoc())
2234         VI->setDebugLoc(I->getDebugLoc());
2235     RedoInsts.insert(I);
2236     ++NumAnnihil;
2237     return;
2238   }
2239 
2240   // We want to sink immediates as deeply as possible except in the case where
2241   // this is a multiply tree used only by an add, and the immediate is a -1.
2242   // In this case we reassociate to put the negation on the outside so that we
2243   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2244   if (I->hasOneUse()) {
2245     if (I->getOpcode() == Instruction::Mul &&
2246         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2247         isa<ConstantInt>(Ops.back().Op) &&
2248         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2249       ValueEntry Tmp = Ops.pop_back_val();
2250       Ops.insert(Ops.begin(), Tmp);
2251     } else if (I->getOpcode() == Instruction::FMul &&
2252                cast<Instruction>(I->user_back())->getOpcode() ==
2253                    Instruction::FAdd &&
2254                isa<ConstantFP>(Ops.back().Op) &&
2255                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2256       ValueEntry Tmp = Ops.pop_back_val();
2257       Ops.insert(Ops.begin(), Tmp);
2258     }
2259   }
2260 
2261   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2262 
2263   if (Ops.size() == 1) {
2264     if (Ops[0].Op == I)
2265       // Self-referential expression in unreachable code.
2266       return;
2267 
2268     // This expression tree simplified to something that isn't a tree,
2269     // eliminate it.
2270     I->replaceAllUsesWith(Ops[0].Op);
2271     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2272       OI->setDebugLoc(I->getDebugLoc());
2273     RedoInsts.insert(I);
2274     return;
2275   }
2276 
2277   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2278     // Find the pair with the highest count in the pairmap and move it to the
2279     // back of the list so that it can later be CSE'd.
2280     // example:
2281     //   a*b*c*d*e
2282     // if c*e is the most "popular" pair, we can express this as
2283     //   (((c*e)*d)*b)*a
2284     unsigned Max = 1;
2285     unsigned BestRank = 0;
2286     std::pair<unsigned, unsigned> BestPair;
2287     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2288     for (unsigned i = 0; i < Ops.size() - 1; ++i)
2289       for (unsigned j = i + 1; j < Ops.size(); ++j) {
2290         unsigned Score = 0;
2291         Value *Op0 = Ops[i].Op;
2292         Value *Op1 = Ops[j].Op;
2293         if (std::less<Value *>()(Op1, Op0))
2294           std::swap(Op0, Op1);
2295         auto it = PairMap[Idx].find({Op0, Op1});
2296         if (it != PairMap[Idx].end()) {
2297           // Functions like BreakUpSubtract() can erase the Values we're using
2298           // as keys and create new Values after we built the PairMap. There's a
2299           // small chance that the new nodes can have the same address as
2300           // something already in the table. We shouldn't accumulate the stored
2301           // score in that case as it refers to the wrong Value.
2302           if (it->second.isValid())
2303             Score += it->second.Score;
2304         }
2305 
2306         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2307         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2308           BestPair = {i, j};
2309           Max = Score;
2310           BestRank = MaxRank;
2311         }
2312       }
2313     if (Max > 1) {
2314       auto Op0 = Ops[BestPair.first];
2315       auto Op1 = Ops[BestPair.second];
2316       Ops.erase(&Ops[BestPair.second]);
2317       Ops.erase(&Ops[BestPair.first]);
2318       Ops.push_back(Op0);
2319       Ops.push_back(Op1);
2320     }
2321   }
2322   // Now that we ordered and optimized the expressions, splat them back into
2323   // the expression tree, removing any unneeded nodes.
2324   RewriteExprTree(I, Ops);
2325 }
2326 
2327 void
2328 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2329   // Make a "pairmap" of how often each operand pair occurs.
2330   for (BasicBlock *BI : RPOT) {
2331     for (Instruction &I : *BI) {
2332       if (!I.isAssociative())
2333         continue;
2334 
2335       // Ignore nodes that aren't at the root of trees.
2336       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2337         continue;
2338 
2339       // Collect all operands in a single reassociable expression.
2340       // Since Reassociate has already been run once, we can assume things
2341       // are already canonical according to Reassociation's regime.
2342       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2343       SmallVector<Value *, 8> Ops;
2344       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2345         Value *Op = Worklist.pop_back_val();
2346         Instruction *OpI = dyn_cast<Instruction>(Op);
2347         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2348           Ops.push_back(Op);
2349           continue;
2350         }
2351         // Be paranoid about self-referencing expressions in unreachable code.
2352         if (OpI->getOperand(0) != OpI)
2353           Worklist.push_back(OpI->getOperand(0));
2354         if (OpI->getOperand(1) != OpI)
2355           Worklist.push_back(OpI->getOperand(1));
2356       }
2357       // Skip extremely long expressions.
2358       if (Ops.size() > GlobalReassociateLimit)
2359         continue;
2360 
2361       // Add all pairwise combinations of operands to the pair map.
2362       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2363       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2364       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2365         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2366           // Canonicalize operand orderings.
2367           Value *Op0 = Ops[i];
2368           Value *Op1 = Ops[j];
2369           if (std::less<Value *>()(Op1, Op0))
2370             std::swap(Op0, Op1);
2371           if (!Visited.insert({Op0, Op1}).second)
2372             continue;
2373           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2374           if (!res.second) {
2375             // If either key value has been erased then we've got the same
2376             // address by coincidence. That can't happen here because nothing is
2377             // erasing values but it can happen by the time we're querying the
2378             // map.
2379             assert(res.first->second.isValid() && "WeakVH invalidated");
2380             ++res.first->second.Score;
2381           }
2382         }
2383       }
2384     }
2385   }
2386 }
2387 
2388 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2389   // Get the functions basic blocks in Reverse Post Order. This order is used by
2390   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2391   // blocks (it has been seen that the analysis in this pass could hang when
2392   // analysing dead basic blocks).
2393   ReversePostOrderTraversal<Function *> RPOT(&F);
2394 
2395   // Calculate the rank map for F.
2396   BuildRankMap(F, RPOT);
2397 
2398   // Build the pair map before running reassociate.
2399   // Technically this would be more accurate if we did it after one round
2400   // of reassociation, but in practice it doesn't seem to help much on
2401   // real-world code, so don't waste the compile time running reassociate
2402   // twice.
2403   // If a user wants, they could expicitly run reassociate twice in their
2404   // pass pipeline for further potential gains.
2405   // It might also be possible to update the pair map during runtime, but the
2406   // overhead of that may be large if there's many reassociable chains.
2407   BuildPairMap(RPOT);
2408 
2409   MadeChange = false;
2410 
2411   // Traverse the same blocks that were analysed by BuildRankMap.
2412   for (BasicBlock *BI : RPOT) {
2413     assert(RankMap.count(&*BI) && "BB should be ranked.");
2414     // Optimize every instruction in the basic block.
2415     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2416       if (isInstructionTriviallyDead(&*II)) {
2417         EraseInst(&*II++);
2418       } else {
2419         OptimizeInst(&*II);
2420         assert(II->getParent() == &*BI && "Moved to a different block!");
2421         ++II;
2422       }
2423 
2424     // Make a copy of all the instructions to be redone so we can remove dead
2425     // instructions.
2426     OrderedSet ToRedo(RedoInsts);
2427     // Iterate over all instructions to be reevaluated and remove trivially dead
2428     // instructions. If any operand of the trivially dead instruction becomes
2429     // dead mark it for deletion as well. Continue this process until all
2430     // trivially dead instructions have been removed.
2431     while (!ToRedo.empty()) {
2432       Instruction *I = ToRedo.pop_back_val();
2433       if (isInstructionTriviallyDead(I)) {
2434         RecursivelyEraseDeadInsts(I, ToRedo);
2435         MadeChange = true;
2436       }
2437     }
2438 
2439     // Now that we have removed dead instructions, we can reoptimize the
2440     // remaining instructions.
2441     while (!RedoInsts.empty()) {
2442       Instruction *I = RedoInsts.front();
2443       RedoInsts.erase(RedoInsts.begin());
2444       if (isInstructionTriviallyDead(I))
2445         EraseInst(I);
2446       else
2447         OptimizeInst(I);
2448     }
2449   }
2450 
2451   // We are done with the rank map and pair map.
2452   RankMap.clear();
2453   ValueRankMap.clear();
2454   for (auto &Entry : PairMap)
2455     Entry.clear();
2456 
2457   if (MadeChange) {
2458     PreservedAnalyses PA;
2459     PA.preserveSet<CFGAnalyses>();
2460     PA.preserve<GlobalsAA>();
2461     return PA;
2462   }
2463 
2464   return PreservedAnalyses::all();
2465 }
2466 
2467 namespace {
2468 
2469   class ReassociateLegacyPass : public FunctionPass {
2470     ReassociatePass Impl;
2471 
2472   public:
2473     static char ID; // Pass identification, replacement for typeid
2474 
2475     ReassociateLegacyPass() : FunctionPass(ID) {
2476       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2477     }
2478 
2479     bool runOnFunction(Function &F) override {
2480       if (skipFunction(F))
2481         return false;
2482 
2483       FunctionAnalysisManager DummyFAM;
2484       auto PA = Impl.run(F, DummyFAM);
2485       return !PA.areAllPreserved();
2486     }
2487 
2488     void getAnalysisUsage(AnalysisUsage &AU) const override {
2489       AU.setPreservesCFG();
2490       AU.addPreserved<GlobalsAAWrapperPass>();
2491     }
2492   };
2493 
2494 } // end anonymous namespace
2495 
2496 char ReassociateLegacyPass::ID = 0;
2497 
2498 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2499                 "Reassociate expressions", false, false)
2500 
2501 // Public interface to the Reassociate pass
2502 FunctionPass *llvm::createReassociatePass() {
2503   return new ReassociateLegacyPass();
2504 }
2505