1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass reassociates commutative expressions in an order that is designed 10 // to promote better constant propagation, GCSE, LICM, PRE, etc. 11 // 12 // For example: 4 + (x + 5) -> x + (4 + 5) 13 // 14 // In the implementation of this algorithm, constants are assigned rank = 0, 15 // function arguments are rank = 1, and other values are assigned ranks 16 // corresponding to the reverse post order traversal of current function 17 // (starting at 2), which effectively gives values in deep loops higher rank 18 // than values not in loops. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/Reassociate.h" 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/PatternMatch.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <utility> 63 64 using namespace llvm; 65 using namespace reassociate; 66 using namespace PatternMatch; 67 68 #define DEBUG_TYPE "reassociate" 69 70 STATISTIC(NumChanged, "Number of insts reassociated"); 71 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 72 STATISTIC(NumFactor , "Number of multiplies factored"); 73 74 #ifndef NDEBUG 75 /// Print out the expression identified in the Ops list. 76 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 77 Module *M = I->getModule(); 78 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 79 << *Ops[0].Op->getType() << '\t'; 80 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 81 dbgs() << "[ "; 82 Ops[i].Op->printAsOperand(dbgs(), false, M); 83 dbgs() << ", #" << Ops[i].Rank << "] "; 84 } 85 } 86 #endif 87 88 /// Utility class representing a non-constant Xor-operand. We classify 89 /// non-constant Xor-Operands into two categories: 90 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 91 /// C2) 92 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 93 /// constant. 94 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 95 /// operand as "E | 0" 96 class llvm::reassociate::XorOpnd { 97 public: 98 XorOpnd(Value *V); 99 100 bool isInvalid() const { return SymbolicPart == nullptr; } 101 bool isOrExpr() const { return isOr; } 102 Value *getValue() const { return OrigVal; } 103 Value *getSymbolicPart() const { return SymbolicPart; } 104 unsigned getSymbolicRank() const { return SymbolicRank; } 105 const APInt &getConstPart() const { return ConstPart; } 106 107 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 108 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 109 110 private: 111 Value *OrigVal; 112 Value *SymbolicPart; 113 APInt ConstPart; 114 unsigned SymbolicRank; 115 bool isOr; 116 }; 117 118 XorOpnd::XorOpnd(Value *V) { 119 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 120 OrigVal = V; 121 Instruction *I = dyn_cast<Instruction>(V); 122 SymbolicRank = 0; 123 124 if (I && (I->getOpcode() == Instruction::Or || 125 I->getOpcode() == Instruction::And)) { 126 Value *V0 = I->getOperand(0); 127 Value *V1 = I->getOperand(1); 128 const APInt *C; 129 if (match(V0, m_APInt(C))) 130 std::swap(V0, V1); 131 132 if (match(V1, m_APInt(C))) { 133 ConstPart = *C; 134 SymbolicPart = V0; 135 isOr = (I->getOpcode() == Instruction::Or); 136 return; 137 } 138 } 139 140 // view the operand as "V | 0" 141 SymbolicPart = V; 142 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 143 isOr = true; 144 } 145 146 /// Return true if V is an instruction of the specified opcode and if it 147 /// only has one use. 148 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 149 auto *I = dyn_cast<Instruction>(V); 150 if (I && I->hasOneUse() && I->getOpcode() == Opcode) 151 if (!isa<FPMathOperator>(I) || I->isFast()) 152 return cast<BinaryOperator>(I); 153 return nullptr; 154 } 155 156 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 157 unsigned Opcode2) { 158 auto *I = dyn_cast<Instruction>(V); 159 if (I && I->hasOneUse() && 160 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2)) 161 if (!isa<FPMathOperator>(I) || I->isFast()) 162 return cast<BinaryOperator>(I); 163 return nullptr; 164 } 165 166 void ReassociatePass::BuildRankMap(Function &F, 167 ReversePostOrderTraversal<Function*> &RPOT) { 168 unsigned Rank = 2; 169 170 // Assign distinct ranks to function arguments. 171 for (auto &Arg : F.args()) { 172 ValueRankMap[&Arg] = ++Rank; 173 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 174 << "\n"); 175 } 176 177 // Traverse basic blocks in ReversePostOrder. 178 for (BasicBlock *BB : RPOT) { 179 unsigned BBRank = RankMap[BB] = ++Rank << 16; 180 181 // Walk the basic block, adding precomputed ranks for any instructions that 182 // we cannot move. This ensures that the ranks for these instructions are 183 // all different in the block. 184 for (Instruction &I : *BB) 185 if (mayBeMemoryDependent(I)) 186 ValueRankMap[&I] = ++BBRank; 187 } 188 } 189 190 unsigned ReassociatePass::getRank(Value *V) { 191 Instruction *I = dyn_cast<Instruction>(V); 192 if (!I) { 193 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 194 return 0; // Otherwise it's a global or constant, rank 0. 195 } 196 197 if (unsigned Rank = ValueRankMap[I]) 198 return Rank; // Rank already known? 199 200 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 201 // we can reassociate expressions for code motion! Since we do not recurse 202 // for PHI nodes, we cannot have infinite recursion here, because there 203 // cannot be loops in the value graph that do not go through PHI nodes. 204 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 205 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 206 Rank = std::max(Rank, getRank(I->getOperand(i))); 207 208 // If this is a 'not' or 'neg' instruction, do not count it for rank. This 209 // assures us that X and ~X will have the same rank. 210 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) && 211 !match(I, m_FNeg(m_Value()))) 212 ++Rank; 213 214 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank 215 << "\n"); 216 217 return ValueRankMap[I] = Rank; 218 } 219 220 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 221 void ReassociatePass::canonicalizeOperands(Instruction *I) { 222 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 223 assert(I->isCommutative() && "Expected commutative operator."); 224 225 Value *LHS = I->getOperand(0); 226 Value *RHS = I->getOperand(1); 227 if (LHS == RHS || isa<Constant>(RHS)) 228 return; 229 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 230 cast<BinaryOperator>(I)->swapOperands(); 231 } 232 233 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 234 Instruction *InsertBefore, Value *FlagsOp) { 235 if (S1->getType()->isIntOrIntVectorTy()) 236 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 237 else { 238 BinaryOperator *Res = 239 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 240 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 241 return Res; 242 } 243 } 244 245 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 246 Instruction *InsertBefore, Value *FlagsOp) { 247 if (S1->getType()->isIntOrIntVectorTy()) 248 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 249 else { 250 BinaryOperator *Res = 251 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 252 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 253 return Res; 254 } 255 } 256 257 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 258 Instruction *InsertBefore, Value *FlagsOp) { 259 if (S1->getType()->isIntOrIntVectorTy()) 260 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 261 else { 262 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 263 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 264 return Res; 265 } 266 } 267 268 /// Replace 0-X with X*-1. 269 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 270 assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) && 271 "Expected a Negate!"); 272 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0. 273 unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0; 274 Type *Ty = Neg->getType(); 275 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 276 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 277 278 BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg); 279 Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op. 280 Res->takeName(Neg); 281 Neg->replaceAllUsesWith(Res); 282 Res->setDebugLoc(Neg->getDebugLoc()); 283 return Res; 284 } 285 286 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 287 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 288 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 289 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 290 /// even x in Bitwidth-bit arithmetic. 291 static unsigned CarmichaelShift(unsigned Bitwidth) { 292 if (Bitwidth < 3) 293 return Bitwidth - 1; 294 return Bitwidth - 2; 295 } 296 297 /// Add the extra weight 'RHS' to the existing weight 'LHS', 298 /// reducing the combined weight using any special properties of the operation. 299 /// The existing weight LHS represents the computation X op X op ... op X where 300 /// X occurs LHS times. The combined weight represents X op X op ... op X with 301 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 302 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 303 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 304 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 305 // If we were working with infinite precision arithmetic then the combined 306 // weight would be LHS + RHS. But we are using finite precision arithmetic, 307 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 308 // for nilpotent operations and addition, but not for idempotent operations 309 // and multiplication), so it is important to correctly reduce the combined 310 // weight back into range if wrapping would be wrong. 311 312 // If RHS is zero then the weight didn't change. 313 if (RHS.isMinValue()) 314 return; 315 // If LHS is zero then the combined weight is RHS. 316 if (LHS.isMinValue()) { 317 LHS = RHS; 318 return; 319 } 320 // From this point on we know that neither LHS nor RHS is zero. 321 322 if (Instruction::isIdempotent(Opcode)) { 323 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 324 // weight of 1. Keeping weights at zero or one also means that wrapping is 325 // not a problem. 326 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 327 return; // Return a weight of 1. 328 } 329 if (Instruction::isNilpotent(Opcode)) { 330 // Nilpotent means X op X === 0, so reduce weights modulo 2. 331 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 332 LHS = 0; // 1 + 1 === 0 modulo 2. 333 return; 334 } 335 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 336 // TODO: Reduce the weight by exploiting nsw/nuw? 337 LHS += RHS; 338 return; 339 } 340 341 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 342 "Unknown associative operation!"); 343 unsigned Bitwidth = LHS.getBitWidth(); 344 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 345 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 346 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 347 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 348 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 349 // which by a happy accident means that they can always be represented using 350 // Bitwidth bits. 351 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 352 // the Carmichael number). 353 if (Bitwidth > 3) { 354 /// CM - The value of Carmichael's lambda function. 355 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 356 // Any weight W >= Threshold can be replaced with W - CM. 357 APInt Threshold = CM + Bitwidth; 358 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 359 // For Bitwidth 4 or more the following sum does not overflow. 360 LHS += RHS; 361 while (LHS.uge(Threshold)) 362 LHS -= CM; 363 } else { 364 // To avoid problems with overflow do everything the same as above but using 365 // a larger type. 366 unsigned CM = 1U << CarmichaelShift(Bitwidth); 367 unsigned Threshold = CM + Bitwidth; 368 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 369 "Weights not reduced!"); 370 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 371 while (Total >= Threshold) 372 Total -= CM; 373 LHS = Total; 374 } 375 } 376 377 using RepeatedValue = std::pair<Value*, APInt>; 378 379 /// Given an associative binary expression, return the leaf 380 /// nodes in Ops along with their weights (how many times the leaf occurs). The 381 /// original expression is the same as 382 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 383 /// op 384 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 385 /// op 386 /// ... 387 /// op 388 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 389 /// 390 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 391 /// 392 /// This routine may modify the function, in which case it returns 'true'. The 393 /// changes it makes may well be destructive, changing the value computed by 'I' 394 /// to something completely different. Thus if the routine returns 'true' then 395 /// you MUST either replace I with a new expression computed from the Ops array, 396 /// or use RewriteExprTree to put the values back in. 397 /// 398 /// A leaf node is either not a binary operation of the same kind as the root 399 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 400 /// opcode), or is the same kind of binary operator but has a use which either 401 /// does not belong to the expression, or does belong to the expression but is 402 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 403 /// of the expression, while for non-leaf nodes (except for the root 'I') every 404 /// use is a non-leaf node of the expression. 405 /// 406 /// For example: 407 /// expression graph node names 408 /// 409 /// + | I 410 /// / \ | 411 /// + + | A, B 412 /// / \ / \ | 413 /// * + * | C, D, E 414 /// / \ / \ / \ | 415 /// + * | F, G 416 /// 417 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 418 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 419 /// 420 /// The expression is maximal: if some instruction is a binary operator of the 421 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 422 /// then the instruction also belongs to the expression, is not a leaf node of 423 /// it, and its operands also belong to the expression (but may be leaf nodes). 424 /// 425 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 426 /// order to ensure that every non-root node in the expression has *exactly one* 427 /// use by a non-leaf node of the expression. This destruction means that the 428 /// caller MUST either replace 'I' with a new expression or use something like 429 /// RewriteExprTree to put the values back in if the routine indicates that it 430 /// made a change by returning 'true'. 431 /// 432 /// In the above example either the right operand of A or the left operand of B 433 /// will be replaced by undef. If it is B's operand then this gives: 434 /// 435 /// + | I 436 /// / \ | 437 /// + + | A, B - operand of B replaced with undef 438 /// / \ \ | 439 /// * + * | C, D, E 440 /// / \ / \ / \ | 441 /// + * | F, G 442 /// 443 /// Note that such undef operands can only be reached by passing through 'I'. 444 /// For example, if you visit operands recursively starting from a leaf node 445 /// then you will never see such an undef operand unless you get back to 'I', 446 /// which requires passing through a phi node. 447 /// 448 /// Note that this routine may also mutate binary operators of the wrong type 449 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 450 /// of the expression) if it can turn them into binary operators of the right 451 /// type and thus make the expression bigger. 452 static bool LinearizeExprTree(Instruction *I, 453 SmallVectorImpl<RepeatedValue> &Ops) { 454 assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) && 455 "Expected a UnaryOperator or BinaryOperator!"); 456 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 457 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 458 unsigned Opcode = I->getOpcode(); 459 assert(I->isAssociative() && I->isCommutative() && 460 "Expected an associative and commutative operation!"); 461 462 // Visit all operands of the expression, keeping track of their weight (the 463 // number of paths from the expression root to the operand, or if you like 464 // the number of times that operand occurs in the linearized expression). 465 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 466 // while A has weight two. 467 468 // Worklist of non-leaf nodes (their operands are in the expression too) along 469 // with their weights, representing a certain number of paths to the operator. 470 // If an operator occurs in the worklist multiple times then we found multiple 471 // ways to get to it. 472 SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight) 473 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 474 bool Changed = false; 475 476 // Leaves of the expression are values that either aren't the right kind of 477 // operation (eg: a constant, or a multiply in an add tree), or are, but have 478 // some uses that are not inside the expression. For example, in I = X + X, 479 // X = A + B, the value X has two uses (by I) that are in the expression. If 480 // X has any other uses, for example in a return instruction, then we consider 481 // X to be a leaf, and won't analyze it further. When we first visit a value, 482 // if it has more than one use then at first we conservatively consider it to 483 // be a leaf. Later, as the expression is explored, we may discover some more 484 // uses of the value from inside the expression. If all uses turn out to be 485 // from within the expression (and the value is a binary operator of the right 486 // kind) then the value is no longer considered to be a leaf, and its operands 487 // are explored. 488 489 // Leaves - Keeps track of the set of putative leaves as well as the number of 490 // paths to each leaf seen so far. 491 using LeafMap = DenseMap<Value *, APInt>; 492 LeafMap Leaves; // Leaf -> Total weight so far. 493 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 494 495 #ifndef NDEBUG 496 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme. 497 #endif 498 while (!Worklist.empty()) { 499 std::pair<Instruction*, APInt> P = Worklist.pop_back_val(); 500 I = P.first; // We examine the operands of this binary operator. 501 502 for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands. 503 Value *Op = I->getOperand(OpIdx); 504 APInt Weight = P.second; // Number of paths to this operand. 505 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 506 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 507 508 // If this is a binary operation of the right kind with only one use then 509 // add its operands to the expression. 510 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 511 assert(Visited.insert(Op).second && "Not first visit!"); 512 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 513 Worklist.push_back(std::make_pair(BO, Weight)); 514 continue; 515 } 516 517 // Appears to be a leaf. Is the operand already in the set of leaves? 518 LeafMap::iterator It = Leaves.find(Op); 519 if (It == Leaves.end()) { 520 // Not in the leaf map. Must be the first time we saw this operand. 521 assert(Visited.insert(Op).second && "Not first visit!"); 522 if (!Op->hasOneUse()) { 523 // This value has uses not accounted for by the expression, so it is 524 // not safe to modify. Mark it as being a leaf. 525 LLVM_DEBUG(dbgs() 526 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 527 LeafOrder.push_back(Op); 528 Leaves[Op] = Weight; 529 continue; 530 } 531 // No uses outside the expression, try morphing it. 532 } else { 533 // Already in the leaf map. 534 assert(It != Leaves.end() && Visited.count(Op) && 535 "In leaf map but not visited!"); 536 537 // Update the number of paths to the leaf. 538 IncorporateWeight(It->second, Weight, Opcode); 539 540 #if 0 // TODO: Re-enable once PR13021 is fixed. 541 // The leaf already has one use from inside the expression. As we want 542 // exactly one such use, drop this new use of the leaf. 543 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 544 I->setOperand(OpIdx, UndefValue::get(I->getType())); 545 Changed = true; 546 547 // If the leaf is a binary operation of the right kind and we now see 548 // that its multiple original uses were in fact all by nodes belonging 549 // to the expression, then no longer consider it to be a leaf and add 550 // its operands to the expression. 551 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 552 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 553 Worklist.push_back(std::make_pair(BO, It->second)); 554 Leaves.erase(It); 555 continue; 556 } 557 #endif 558 559 // If we still have uses that are not accounted for by the expression 560 // then it is not safe to modify the value. 561 if (!Op->hasOneUse()) 562 continue; 563 564 // No uses outside the expression, try morphing it. 565 Weight = It->second; 566 Leaves.erase(It); // Since the value may be morphed below. 567 } 568 569 // At this point we have a value which, first of all, is not a binary 570 // expression of the right kind, and secondly, is only used inside the 571 // expression. This means that it can safely be modified. See if we 572 // can usefully morph it into an expression of the right kind. 573 assert((!isa<Instruction>(Op) || 574 cast<Instruction>(Op)->getOpcode() != Opcode 575 || (isa<FPMathOperator>(Op) && 576 !cast<Instruction>(Op)->isFast())) && 577 "Should have been handled above!"); 578 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 579 580 // If this is a multiply expression, turn any internal negations into 581 // multiplies by -1 so they can be reassociated. 582 if (Instruction *Tmp = dyn_cast<Instruction>(Op)) 583 if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) || 584 (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) { 585 LLVM_DEBUG(dbgs() 586 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 587 Tmp = LowerNegateToMultiply(Tmp); 588 LLVM_DEBUG(dbgs() << *Tmp << '\n'); 589 Worklist.push_back(std::make_pair(Tmp, Weight)); 590 Changed = true; 591 continue; 592 } 593 594 // Failed to morph into an expression of the right type. This really is 595 // a leaf. 596 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 597 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 598 LeafOrder.push_back(Op); 599 Leaves[Op] = Weight; 600 } 601 } 602 603 // The leaves, repeated according to their weights, represent the linearized 604 // form of the expression. 605 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 606 Value *V = LeafOrder[i]; 607 LeafMap::iterator It = Leaves.find(V); 608 if (It == Leaves.end()) 609 // Node initially thought to be a leaf wasn't. 610 continue; 611 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 612 APInt Weight = It->second; 613 if (Weight.isMinValue()) 614 // Leaf already output or weight reduction eliminated it. 615 continue; 616 // Ensure the leaf is only output once. 617 It->second = 0; 618 Ops.push_back(std::make_pair(V, Weight)); 619 } 620 621 // For nilpotent operations or addition there may be no operands, for example 622 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 623 // in both cases the weight reduces to 0 causing the value to be skipped. 624 if (Ops.empty()) { 625 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 626 assert(Identity && "Associative operation without identity!"); 627 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 628 } 629 630 return Changed; 631 } 632 633 /// Now that the operands for this expression tree are 634 /// linearized and optimized, emit them in-order. 635 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 636 SmallVectorImpl<ValueEntry> &Ops) { 637 assert(Ops.size() > 1 && "Single values should be used directly!"); 638 639 // Since our optimizations should never increase the number of operations, the 640 // new expression can usually be written reusing the existing binary operators 641 // from the original expression tree, without creating any new instructions, 642 // though the rewritten expression may have a completely different topology. 643 // We take care to not change anything if the new expression will be the same 644 // as the original. If more than trivial changes (like commuting operands) 645 // were made then we are obliged to clear out any optional subclass data like 646 // nsw flags. 647 648 /// NodesToRewrite - Nodes from the original expression available for writing 649 /// the new expression into. 650 SmallVector<BinaryOperator*, 8> NodesToRewrite; 651 unsigned Opcode = I->getOpcode(); 652 BinaryOperator *Op = I; 653 654 /// NotRewritable - The operands being written will be the leaves of the new 655 /// expression and must not be used as inner nodes (via NodesToRewrite) by 656 /// mistake. Inner nodes are always reassociable, and usually leaves are not 657 /// (if they were they would have been incorporated into the expression and so 658 /// would not be leaves), so most of the time there is no danger of this. But 659 /// in rare cases a leaf may become reassociable if an optimization kills uses 660 /// of it, or it may momentarily become reassociable during rewriting (below) 661 /// due it being removed as an operand of one of its uses. Ensure that misuse 662 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 663 /// leaves and refusing to reuse any of them as inner nodes. 664 SmallPtrSet<Value*, 8> NotRewritable; 665 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 666 NotRewritable.insert(Ops[i].Op); 667 668 // ExpressionChanged - Non-null if the rewritten expression differs from the 669 // original in some non-trivial way, requiring the clearing of optional flags. 670 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 671 BinaryOperator *ExpressionChanged = nullptr; 672 for (unsigned i = 0; ; ++i) { 673 // The last operation (which comes earliest in the IR) is special as both 674 // operands will come from Ops, rather than just one with the other being 675 // a subexpression. 676 if (i+2 == Ops.size()) { 677 Value *NewLHS = Ops[i].Op; 678 Value *NewRHS = Ops[i+1].Op; 679 Value *OldLHS = Op->getOperand(0); 680 Value *OldRHS = Op->getOperand(1); 681 682 if (NewLHS == OldLHS && NewRHS == OldRHS) 683 // Nothing changed, leave it alone. 684 break; 685 686 if (NewLHS == OldRHS && NewRHS == OldLHS) { 687 // The order of the operands was reversed. Swap them. 688 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 689 Op->swapOperands(); 690 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 691 MadeChange = true; 692 ++NumChanged; 693 break; 694 } 695 696 // The new operation differs non-trivially from the original. Overwrite 697 // the old operands with the new ones. 698 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 699 if (NewLHS != OldLHS) { 700 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 701 if (BO && !NotRewritable.count(BO)) 702 NodesToRewrite.push_back(BO); 703 Op->setOperand(0, NewLHS); 704 } 705 if (NewRHS != OldRHS) { 706 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 707 if (BO && !NotRewritable.count(BO)) 708 NodesToRewrite.push_back(BO); 709 Op->setOperand(1, NewRHS); 710 } 711 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 712 713 ExpressionChanged = Op; 714 MadeChange = true; 715 ++NumChanged; 716 717 break; 718 } 719 720 // Not the last operation. The left-hand side will be a sub-expression 721 // while the right-hand side will be the current element of Ops. 722 Value *NewRHS = Ops[i].Op; 723 if (NewRHS != Op->getOperand(1)) { 724 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 725 if (NewRHS == Op->getOperand(0)) { 726 // The new right-hand side was already present as the left operand. If 727 // we are lucky then swapping the operands will sort out both of them. 728 Op->swapOperands(); 729 } else { 730 // Overwrite with the new right-hand side. 731 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 732 if (BO && !NotRewritable.count(BO)) 733 NodesToRewrite.push_back(BO); 734 Op->setOperand(1, NewRHS); 735 ExpressionChanged = Op; 736 } 737 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 738 MadeChange = true; 739 ++NumChanged; 740 } 741 742 // Now deal with the left-hand side. If this is already an operation node 743 // from the original expression then just rewrite the rest of the expression 744 // into it. 745 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 746 if (BO && !NotRewritable.count(BO)) { 747 Op = BO; 748 continue; 749 } 750 751 // Otherwise, grab a spare node from the original expression and use that as 752 // the left-hand side. If there are no nodes left then the optimizers made 753 // an expression with more nodes than the original! This usually means that 754 // they did something stupid but it might mean that the problem was just too 755 // hard (finding the mimimal number of multiplications needed to realize a 756 // multiplication expression is NP-complete). Whatever the reason, smart or 757 // stupid, create a new node if there are none left. 758 BinaryOperator *NewOp; 759 if (NodesToRewrite.empty()) { 760 Constant *Undef = UndefValue::get(I->getType()); 761 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 762 Undef, Undef, "", I); 763 if (NewOp->getType()->isFPOrFPVectorTy()) 764 NewOp->setFastMathFlags(I->getFastMathFlags()); 765 } else { 766 NewOp = NodesToRewrite.pop_back_val(); 767 } 768 769 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 770 Op->setOperand(0, NewOp); 771 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 772 ExpressionChanged = Op; 773 MadeChange = true; 774 ++NumChanged; 775 Op = NewOp; 776 } 777 778 // If the expression changed non-trivially then clear out all subclass data 779 // starting from the operator specified in ExpressionChanged, and compactify 780 // the operators to just before the expression root to guarantee that the 781 // expression tree is dominated by all of Ops. 782 if (ExpressionChanged) 783 do { 784 // Preserve FastMathFlags. 785 if (isa<FPMathOperator>(I)) { 786 FastMathFlags Flags = I->getFastMathFlags(); 787 ExpressionChanged->clearSubclassOptionalData(); 788 ExpressionChanged->setFastMathFlags(Flags); 789 } else 790 ExpressionChanged->clearSubclassOptionalData(); 791 792 if (ExpressionChanged == I) 793 break; 794 795 // Discard any debug info related to the expressions that has changed (we 796 // can leave debug infor related to the root, since the result of the 797 // expression tree should be the same even after reassociation). 798 replaceDbgUsesWithUndef(ExpressionChanged); 799 800 ExpressionChanged->moveBefore(I); 801 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 802 } while (true); 803 804 // Throw away any left over nodes from the original expression. 805 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 806 RedoInsts.insert(NodesToRewrite[i]); 807 } 808 809 /// Insert instructions before the instruction pointed to by BI, 810 /// that computes the negative version of the value specified. The negative 811 /// version of the value is returned, and BI is left pointing at the instruction 812 /// that should be processed next by the reassociation pass. 813 /// Also add intermediate instructions to the redo list that are modified while 814 /// pushing the negates through adds. These will be revisited to see if 815 /// additional opportunities have been exposed. 816 static Value *NegateValue(Value *V, Instruction *BI, 817 ReassociatePass::OrderedSet &ToRedo) { 818 if (auto *C = dyn_cast<Constant>(V)) 819 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) : 820 ConstantExpr::getNeg(C); 821 822 // We are trying to expose opportunity for reassociation. One of the things 823 // that we want to do to achieve this is to push a negation as deep into an 824 // expression chain as possible, to expose the add instructions. In practice, 825 // this means that we turn this: 826 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 827 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 828 // the constants. We assume that instcombine will clean up the mess later if 829 // we introduce tons of unnecessary negation instructions. 830 // 831 if (BinaryOperator *I = 832 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 833 // Push the negates through the add. 834 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 835 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 836 if (I->getOpcode() == Instruction::Add) { 837 I->setHasNoUnsignedWrap(false); 838 I->setHasNoSignedWrap(false); 839 } 840 841 // We must move the add instruction here, because the neg instructions do 842 // not dominate the old add instruction in general. By moving it, we are 843 // assured that the neg instructions we just inserted dominate the 844 // instruction we are about to insert after them. 845 // 846 I->moveBefore(BI); 847 I->setName(I->getName()+".neg"); 848 849 // Add the intermediate negates to the redo list as processing them later 850 // could expose more reassociating opportunities. 851 ToRedo.insert(I); 852 return I; 853 } 854 855 // Okay, we need to materialize a negated version of V with an instruction. 856 // Scan the use lists of V to see if we have one already. 857 for (User *U : V->users()) { 858 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value()))) 859 continue; 860 861 // We found one! Now we have to make sure that the definition dominates 862 // this use. We do this by moving it to the entry block (if it is a 863 // non-instruction value) or right after the definition. These negates will 864 // be zapped by reassociate later, so we don't need much finesse here. 865 Instruction *TheNeg = cast<Instruction>(U); 866 867 // Verify that the negate is in this function, V might be a constant expr. 868 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 869 continue; 870 871 bool FoundCatchSwitch = false; 872 873 BasicBlock::iterator InsertPt; 874 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 875 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 876 InsertPt = II->getNormalDest()->begin(); 877 } else { 878 InsertPt = ++InstInput->getIterator(); 879 } 880 881 const BasicBlock *BB = InsertPt->getParent(); 882 883 // Make sure we don't move anything before PHIs or exception 884 // handling pads. 885 while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) || 886 InsertPt->isEHPad())) { 887 if (isa<CatchSwitchInst>(InsertPt)) 888 // A catchswitch cannot have anything in the block except 889 // itself and PHIs. We'll bail out below. 890 FoundCatchSwitch = true; 891 ++InsertPt; 892 } 893 } else { 894 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 895 } 896 897 // We found a catchswitch in the block where we want to move the 898 // neg. We cannot move anything into that block. Bail and just 899 // create the neg before BI, as if we hadn't found an existing 900 // neg. 901 if (FoundCatchSwitch) 902 break; 903 904 TheNeg->moveBefore(&*InsertPt); 905 if (TheNeg->getOpcode() == Instruction::Sub) { 906 TheNeg->setHasNoUnsignedWrap(false); 907 TheNeg->setHasNoSignedWrap(false); 908 } else { 909 TheNeg->andIRFlags(BI); 910 } 911 ToRedo.insert(TheNeg); 912 return TheNeg; 913 } 914 915 // Insert a 'neg' instruction that subtracts the value from zero to get the 916 // negation. 917 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 918 ToRedo.insert(NewNeg); 919 return NewNeg; 920 } 921 922 /// Return true if we should break up this subtract of X-Y into (X + -Y). 923 static bool ShouldBreakUpSubtract(Instruction *Sub) { 924 // If this is a negation, we can't split it up! 925 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 926 return false; 927 928 // Don't breakup X - undef. 929 if (isa<UndefValue>(Sub->getOperand(1))) 930 return false; 931 932 // Don't bother to break this up unless either the LHS is an associable add or 933 // subtract or if this is only used by one. 934 Value *V0 = Sub->getOperand(0); 935 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 936 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 937 return true; 938 Value *V1 = Sub->getOperand(1); 939 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 940 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 941 return true; 942 Value *VB = Sub->user_back(); 943 if (Sub->hasOneUse() && 944 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 945 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 946 return true; 947 948 return false; 949 } 950 951 /// If we have (X-Y), and if either X is an add, or if this is only used by an 952 /// add, transform this into (X+(0-Y)) to promote better reassociation. 953 static BinaryOperator *BreakUpSubtract(Instruction *Sub, 954 ReassociatePass::OrderedSet &ToRedo) { 955 // Convert a subtract into an add and a neg instruction. This allows sub 956 // instructions to be commuted with other add instructions. 957 // 958 // Calculate the negative value of Operand 1 of the sub instruction, 959 // and set it as the RHS of the add instruction we just made. 960 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 961 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 962 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 963 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 964 New->takeName(Sub); 965 966 // Everyone now refers to the add instruction. 967 Sub->replaceAllUsesWith(New); 968 New->setDebugLoc(Sub->getDebugLoc()); 969 970 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); 971 return New; 972 } 973 974 /// If this is a shift of a reassociable multiply or is used by one, change 975 /// this into a multiply by a constant to assist with further reassociation. 976 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 977 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 978 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 979 980 BinaryOperator *Mul = 981 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 982 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 983 Mul->takeName(Shl); 984 985 // Everyone now refers to the mul instruction. 986 Shl->replaceAllUsesWith(Mul); 987 Mul->setDebugLoc(Shl->getDebugLoc()); 988 989 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 990 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 991 // handling. 992 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 993 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 994 if (NSW && NUW) 995 Mul->setHasNoSignedWrap(true); 996 Mul->setHasNoUnsignedWrap(NUW); 997 return Mul; 998 } 999 1000 /// Scan backwards and forwards among values with the same rank as element i 1001 /// to see if X exists. If X does not exist, return i. This is useful when 1002 /// scanning for 'x' when we see '-x' because they both get the same rank. 1003 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 1004 unsigned i, Value *X) { 1005 unsigned XRank = Ops[i].Rank; 1006 unsigned e = Ops.size(); 1007 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1008 if (Ops[j].Op == X) 1009 return j; 1010 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1011 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1012 if (I1->isIdenticalTo(I2)) 1013 return j; 1014 } 1015 // Scan backwards. 1016 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1017 if (Ops[j].Op == X) 1018 return j; 1019 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1020 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1021 if (I1->isIdenticalTo(I2)) 1022 return j; 1023 } 1024 return i; 1025 } 1026 1027 /// Emit a tree of add instructions, summing Ops together 1028 /// and returning the result. Insert the tree before I. 1029 static Value *EmitAddTreeOfValues(Instruction *I, 1030 SmallVectorImpl<WeakTrackingVH> &Ops) { 1031 if (Ops.size() == 1) return Ops.back(); 1032 1033 Value *V1 = Ops.back(); 1034 Ops.pop_back(); 1035 Value *V2 = EmitAddTreeOfValues(I, Ops); 1036 return CreateAdd(V2, V1, "reass.add", I, I); 1037 } 1038 1039 /// If V is an expression tree that is a multiplication sequence, 1040 /// and if this sequence contains a multiply by Factor, 1041 /// remove Factor from the tree and return the new tree. 1042 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1043 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1044 if (!BO) 1045 return nullptr; 1046 1047 SmallVector<RepeatedValue, 8> Tree; 1048 MadeChange |= LinearizeExprTree(BO, Tree); 1049 SmallVector<ValueEntry, 8> Factors; 1050 Factors.reserve(Tree.size()); 1051 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1052 RepeatedValue E = Tree[i]; 1053 Factors.append(E.second.getZExtValue(), 1054 ValueEntry(getRank(E.first), E.first)); 1055 } 1056 1057 bool FoundFactor = false; 1058 bool NeedsNegate = false; 1059 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1060 if (Factors[i].Op == Factor) { 1061 FoundFactor = true; 1062 Factors.erase(Factors.begin()+i); 1063 break; 1064 } 1065 1066 // If this is a negative version of this factor, remove it. 1067 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1068 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1069 if (FC1->getValue() == -FC2->getValue()) { 1070 FoundFactor = NeedsNegate = true; 1071 Factors.erase(Factors.begin()+i); 1072 break; 1073 } 1074 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1075 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1076 const APFloat &F1 = FC1->getValueAPF(); 1077 APFloat F2(FC2->getValueAPF()); 1078 F2.changeSign(); 1079 if (F1.compare(F2) == APFloat::cmpEqual) { 1080 FoundFactor = NeedsNegate = true; 1081 Factors.erase(Factors.begin() + i); 1082 break; 1083 } 1084 } 1085 } 1086 } 1087 1088 if (!FoundFactor) { 1089 // Make sure to restore the operands to the expression tree. 1090 RewriteExprTree(BO, Factors); 1091 return nullptr; 1092 } 1093 1094 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1095 1096 // If this was just a single multiply, remove the multiply and return the only 1097 // remaining operand. 1098 if (Factors.size() == 1) { 1099 RedoInsts.insert(BO); 1100 V = Factors[0].Op; 1101 } else { 1102 RewriteExprTree(BO, Factors); 1103 V = BO; 1104 } 1105 1106 if (NeedsNegate) 1107 V = CreateNeg(V, "neg", &*InsertPt, BO); 1108 1109 return V; 1110 } 1111 1112 /// If V is a single-use multiply, recursively add its operands as factors, 1113 /// otherwise add V to the list of factors. 1114 /// 1115 /// Ops is the top-level list of add operands we're trying to factor. 1116 static void FindSingleUseMultiplyFactors(Value *V, 1117 SmallVectorImpl<Value*> &Factors) { 1118 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1119 if (!BO) { 1120 Factors.push_back(V); 1121 return; 1122 } 1123 1124 // Otherwise, add the LHS and RHS to the list of factors. 1125 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1126 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1127 } 1128 1129 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1130 /// This optimizes based on identities. If it can be reduced to a single Value, 1131 /// it is returned, otherwise the Ops list is mutated as necessary. 1132 static Value *OptimizeAndOrXor(unsigned Opcode, 1133 SmallVectorImpl<ValueEntry> &Ops) { 1134 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1135 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1136 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1137 // First, check for X and ~X in the operand list. 1138 assert(i < Ops.size()); 1139 Value *X; 1140 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^. 1141 unsigned FoundX = FindInOperandList(Ops, i, X); 1142 if (FoundX != i) { 1143 if (Opcode == Instruction::And) // ...&X&~X = 0 1144 return Constant::getNullValue(X->getType()); 1145 1146 if (Opcode == Instruction::Or) // ...|X|~X = -1 1147 return Constant::getAllOnesValue(X->getType()); 1148 } 1149 } 1150 1151 // Next, check for duplicate pairs of values, which we assume are next to 1152 // each other, due to our sorting criteria. 1153 assert(i < Ops.size()); 1154 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1155 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1156 // Drop duplicate values for And and Or. 1157 Ops.erase(Ops.begin()+i); 1158 --i; --e; 1159 ++NumAnnihil; 1160 continue; 1161 } 1162 1163 // Drop pairs of values for Xor. 1164 assert(Opcode == Instruction::Xor); 1165 if (e == 2) 1166 return Constant::getNullValue(Ops[0].Op->getType()); 1167 1168 // Y ^ X^X -> Y 1169 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1170 i -= 1; e -= 2; 1171 ++NumAnnihil; 1172 } 1173 } 1174 return nullptr; 1175 } 1176 1177 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1178 /// instruction with the given two operands, and return the resulting 1179 /// instruction. There are two special cases: 1) if the constant operand is 0, 1180 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1181 /// be returned. 1182 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1183 const APInt &ConstOpnd) { 1184 if (ConstOpnd.isNullValue()) 1185 return nullptr; 1186 1187 if (ConstOpnd.isAllOnesValue()) 1188 return Opnd; 1189 1190 Instruction *I = BinaryOperator::CreateAnd( 1191 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1192 InsertBefore); 1193 I->setDebugLoc(InsertBefore->getDebugLoc()); 1194 return I; 1195 } 1196 1197 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1198 // into "R ^ C", where C would be 0, and R is a symbolic value. 1199 // 1200 // If it was successful, true is returned, and the "R" and "C" is returned 1201 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1202 // and both "Res" and "ConstOpnd" remain unchanged. 1203 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1204 APInt &ConstOpnd, Value *&Res) { 1205 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1206 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1207 // = (x & ~c1) ^ (c1 ^ c2) 1208 // It is useful only when c1 == c2. 1209 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1210 return false; 1211 1212 if (!Opnd1->getValue()->hasOneUse()) 1213 return false; 1214 1215 const APInt &C1 = Opnd1->getConstPart(); 1216 if (C1 != ConstOpnd) 1217 return false; 1218 1219 Value *X = Opnd1->getSymbolicPart(); 1220 Res = createAndInstr(I, X, ~C1); 1221 // ConstOpnd was C2, now C1 ^ C2. 1222 ConstOpnd ^= C1; 1223 1224 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1225 RedoInsts.insert(T); 1226 return true; 1227 } 1228 1229 // Helper function of OptimizeXor(). It tries to simplify 1230 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1231 // symbolic value. 1232 // 1233 // If it was successful, true is returned, and the "R" and "C" is returned 1234 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1235 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1236 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1237 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1238 XorOpnd *Opnd2, APInt &ConstOpnd, 1239 Value *&Res) { 1240 Value *X = Opnd1->getSymbolicPart(); 1241 if (X != Opnd2->getSymbolicPart()) 1242 return false; 1243 1244 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1245 int DeadInstNum = 1; 1246 if (Opnd1->getValue()->hasOneUse()) 1247 DeadInstNum++; 1248 if (Opnd2->getValue()->hasOneUse()) 1249 DeadInstNum++; 1250 1251 // Xor-Rule 2: 1252 // (x | c1) ^ (x & c2) 1253 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1254 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1255 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1256 // 1257 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1258 if (Opnd2->isOrExpr()) 1259 std::swap(Opnd1, Opnd2); 1260 1261 const APInt &C1 = Opnd1->getConstPart(); 1262 const APInt &C2 = Opnd2->getConstPart(); 1263 APInt C3((~C1) ^ C2); 1264 1265 // Do not increase code size! 1266 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1267 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1268 if (NewInstNum > DeadInstNum) 1269 return false; 1270 } 1271 1272 Res = createAndInstr(I, X, C3); 1273 ConstOpnd ^= C1; 1274 } else if (Opnd1->isOrExpr()) { 1275 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1276 // 1277 const APInt &C1 = Opnd1->getConstPart(); 1278 const APInt &C2 = Opnd2->getConstPart(); 1279 APInt C3 = C1 ^ C2; 1280 1281 // Do not increase code size 1282 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1283 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1284 if (NewInstNum > DeadInstNum) 1285 return false; 1286 } 1287 1288 Res = createAndInstr(I, X, C3); 1289 ConstOpnd ^= C3; 1290 } else { 1291 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1292 // 1293 const APInt &C1 = Opnd1->getConstPart(); 1294 const APInt &C2 = Opnd2->getConstPart(); 1295 APInt C3 = C1 ^ C2; 1296 Res = createAndInstr(I, X, C3); 1297 } 1298 1299 // Put the original operands in the Redo list; hope they will be deleted 1300 // as dead code. 1301 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1302 RedoInsts.insert(T); 1303 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1304 RedoInsts.insert(T); 1305 1306 return true; 1307 } 1308 1309 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1310 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1311 /// necessary. 1312 Value *ReassociatePass::OptimizeXor(Instruction *I, 1313 SmallVectorImpl<ValueEntry> &Ops) { 1314 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1315 return V; 1316 1317 if (Ops.size() == 1) 1318 return nullptr; 1319 1320 SmallVector<XorOpnd, 8> Opnds; 1321 SmallVector<XorOpnd*, 8> OpndPtrs; 1322 Type *Ty = Ops[0].Op->getType(); 1323 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1324 1325 // Step 1: Convert ValueEntry to XorOpnd 1326 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1327 Value *V = Ops[i].Op; 1328 const APInt *C; 1329 // TODO: Support non-splat vectors. 1330 if (match(V, m_APInt(C))) { 1331 ConstOpnd ^= *C; 1332 } else { 1333 XorOpnd O(V); 1334 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1335 Opnds.push_back(O); 1336 } 1337 } 1338 1339 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1340 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1341 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1342 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1343 // when new elements are added to the vector. 1344 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1345 OpndPtrs.push_back(&Opnds[i]); 1346 1347 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1348 // the same symbolic value cluster together. For instance, the input operand 1349 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1350 // ("x | 123", "x & 789", "y & 456"). 1351 // 1352 // The purpose is twofold: 1353 // 1) Cluster together the operands sharing the same symbolic-value. 1354 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1355 // could potentially shorten crital path, and expose more loop-invariants. 1356 // Note that values' rank are basically defined in RPO order (FIXME). 1357 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1358 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1359 // "z" in the order of X-Y-Z is better than any other orders. 1360 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) { 1361 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1362 }); 1363 1364 // Step 3: Combine adjacent operands 1365 XorOpnd *PrevOpnd = nullptr; 1366 bool Changed = false; 1367 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1368 XorOpnd *CurrOpnd = OpndPtrs[i]; 1369 // The combined value 1370 Value *CV; 1371 1372 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1373 if (!ConstOpnd.isNullValue() && 1374 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1375 Changed = true; 1376 if (CV) 1377 *CurrOpnd = XorOpnd(CV); 1378 else { 1379 CurrOpnd->Invalidate(); 1380 continue; 1381 } 1382 } 1383 1384 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1385 PrevOpnd = CurrOpnd; 1386 continue; 1387 } 1388 1389 // step 3.2: When previous and current operands share the same symbolic 1390 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1391 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1392 // Remove previous operand 1393 PrevOpnd->Invalidate(); 1394 if (CV) { 1395 *CurrOpnd = XorOpnd(CV); 1396 PrevOpnd = CurrOpnd; 1397 } else { 1398 CurrOpnd->Invalidate(); 1399 PrevOpnd = nullptr; 1400 } 1401 Changed = true; 1402 } 1403 } 1404 1405 // Step 4: Reassemble the Ops 1406 if (Changed) { 1407 Ops.clear(); 1408 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1409 XorOpnd &O = Opnds[i]; 1410 if (O.isInvalid()) 1411 continue; 1412 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1413 Ops.push_back(VE); 1414 } 1415 if (!ConstOpnd.isNullValue()) { 1416 Value *C = ConstantInt::get(Ty, ConstOpnd); 1417 ValueEntry VE(getRank(C), C); 1418 Ops.push_back(VE); 1419 } 1420 unsigned Sz = Ops.size(); 1421 if (Sz == 1) 1422 return Ops.back().Op; 1423 if (Sz == 0) { 1424 assert(ConstOpnd.isNullValue()); 1425 return ConstantInt::get(Ty, ConstOpnd); 1426 } 1427 } 1428 1429 return nullptr; 1430 } 1431 1432 /// Optimize a series of operands to an 'add' instruction. This 1433 /// optimizes based on identities. If it can be reduced to a single Value, it 1434 /// is returned, otherwise the Ops list is mutated as necessary. 1435 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1436 SmallVectorImpl<ValueEntry> &Ops) { 1437 // Scan the operand lists looking for X and -X pairs. If we find any, we 1438 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1439 // scan for any 1440 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1441 1442 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1443 Value *TheOp = Ops[i].Op; 1444 // Check to see if we've seen this operand before. If so, we factor all 1445 // instances of the operand together. Due to our sorting criteria, we know 1446 // that these need to be next to each other in the vector. 1447 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1448 // Rescan the list, remove all instances of this operand from the expr. 1449 unsigned NumFound = 0; 1450 do { 1451 Ops.erase(Ops.begin()+i); 1452 ++NumFound; 1453 } while (i != Ops.size() && Ops[i].Op == TheOp); 1454 1455 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp 1456 << '\n'); 1457 ++NumFactor; 1458 1459 // Insert a new multiply. 1460 Type *Ty = TheOp->getType(); 1461 Constant *C = Ty->isIntOrIntVectorTy() ? 1462 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1463 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1464 1465 // Now that we have inserted a multiply, optimize it. This allows us to 1466 // handle cases that require multiple factoring steps, such as this: 1467 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1468 RedoInsts.insert(Mul); 1469 1470 // If every add operand was a duplicate, return the multiply. 1471 if (Ops.empty()) 1472 return Mul; 1473 1474 // Otherwise, we had some input that didn't have the dupe, such as 1475 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1476 // things being added by this operation. 1477 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1478 1479 --i; 1480 e = Ops.size(); 1481 continue; 1482 } 1483 1484 // Check for X and -X or X and ~X in the operand list. 1485 Value *X; 1486 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) && 1487 !match(TheOp, m_FNeg(m_Value(X)))) 1488 continue; 1489 1490 unsigned FoundX = FindInOperandList(Ops, i, X); 1491 if (FoundX == i) 1492 continue; 1493 1494 // Remove X and -X from the operand list. 1495 if (Ops.size() == 2 && 1496 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value())))) 1497 return Constant::getNullValue(X->getType()); 1498 1499 // Remove X and ~X from the operand list. 1500 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value()))) 1501 return Constant::getAllOnesValue(X->getType()); 1502 1503 Ops.erase(Ops.begin()+i); 1504 if (i < FoundX) 1505 --FoundX; 1506 else 1507 --i; // Need to back up an extra one. 1508 Ops.erase(Ops.begin()+FoundX); 1509 ++NumAnnihil; 1510 --i; // Revisit element. 1511 e -= 2; // Removed two elements. 1512 1513 // if X and ~X we append -1 to the operand list. 1514 if (match(TheOp, m_Not(m_Value()))) { 1515 Value *V = Constant::getAllOnesValue(X->getType()); 1516 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1517 e += 1; 1518 } 1519 } 1520 1521 // Scan the operand list, checking to see if there are any common factors 1522 // between operands. Consider something like A*A+A*B*C+D. We would like to 1523 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1524 // To efficiently find this, we count the number of times a factor occurs 1525 // for any ADD operands that are MULs. 1526 DenseMap<Value*, unsigned> FactorOccurrences; 1527 1528 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1529 // where they are actually the same multiply. 1530 unsigned MaxOcc = 0; 1531 Value *MaxOccVal = nullptr; 1532 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1533 BinaryOperator *BOp = 1534 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1535 if (!BOp) 1536 continue; 1537 1538 // Compute all of the factors of this added value. 1539 SmallVector<Value*, 8> Factors; 1540 FindSingleUseMultiplyFactors(BOp, Factors); 1541 assert(Factors.size() > 1 && "Bad linearize!"); 1542 1543 // Add one to FactorOccurrences for each unique factor in this op. 1544 SmallPtrSet<Value*, 8> Duplicates; 1545 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1546 Value *Factor = Factors[i]; 1547 if (!Duplicates.insert(Factor).second) 1548 continue; 1549 1550 unsigned Occ = ++FactorOccurrences[Factor]; 1551 if (Occ > MaxOcc) { 1552 MaxOcc = Occ; 1553 MaxOccVal = Factor; 1554 } 1555 1556 // If Factor is a negative constant, add the negated value as a factor 1557 // because we can percolate the negate out. Watch for minint, which 1558 // cannot be positivified. 1559 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1560 if (CI->isNegative() && !CI->isMinValue(true)) { 1561 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1562 if (!Duplicates.insert(Factor).second) 1563 continue; 1564 unsigned Occ = ++FactorOccurrences[Factor]; 1565 if (Occ > MaxOcc) { 1566 MaxOcc = Occ; 1567 MaxOccVal = Factor; 1568 } 1569 } 1570 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1571 if (CF->isNegative()) { 1572 APFloat F(CF->getValueAPF()); 1573 F.changeSign(); 1574 Factor = ConstantFP::get(CF->getContext(), F); 1575 if (!Duplicates.insert(Factor).second) 1576 continue; 1577 unsigned Occ = ++FactorOccurrences[Factor]; 1578 if (Occ > MaxOcc) { 1579 MaxOcc = Occ; 1580 MaxOccVal = Factor; 1581 } 1582 } 1583 } 1584 } 1585 } 1586 1587 // If any factor occurred more than one time, we can pull it out. 1588 if (MaxOcc > 1) { 1589 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal 1590 << '\n'); 1591 ++NumFactor; 1592 1593 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1594 // this, we could otherwise run into situations where removing a factor 1595 // from an expression will drop a use of maxocc, and this can cause 1596 // RemoveFactorFromExpression on successive values to behave differently. 1597 Instruction *DummyInst = 1598 I->getType()->isIntOrIntVectorTy() 1599 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1600 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1601 1602 SmallVector<WeakTrackingVH, 4> NewMulOps; 1603 for (unsigned i = 0; i != Ops.size(); ++i) { 1604 // Only try to remove factors from expressions we're allowed to. 1605 BinaryOperator *BOp = 1606 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1607 if (!BOp) 1608 continue; 1609 1610 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1611 // The factorized operand may occur several times. Convert them all in 1612 // one fell swoop. 1613 for (unsigned j = Ops.size(); j != i;) { 1614 --j; 1615 if (Ops[j].Op == Ops[i].Op) { 1616 NewMulOps.push_back(V); 1617 Ops.erase(Ops.begin()+j); 1618 } 1619 } 1620 --i; 1621 } 1622 } 1623 1624 // No need for extra uses anymore. 1625 DummyInst->deleteValue(); 1626 1627 unsigned NumAddedValues = NewMulOps.size(); 1628 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1629 1630 // Now that we have inserted the add tree, optimize it. This allows us to 1631 // handle cases that require multiple factoring steps, such as this: 1632 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1633 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1634 (void)NumAddedValues; 1635 if (Instruction *VI = dyn_cast<Instruction>(V)) 1636 RedoInsts.insert(VI); 1637 1638 // Create the multiply. 1639 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1640 1641 // Rerun associate on the multiply in case the inner expression turned into 1642 // a multiply. We want to make sure that we keep things in canonical form. 1643 RedoInsts.insert(V2); 1644 1645 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1646 // entire result expression is just the multiply "A*(B+C)". 1647 if (Ops.empty()) 1648 return V2; 1649 1650 // Otherwise, we had some input that didn't have the factor, such as 1651 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1652 // things being added by this operation. 1653 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1654 } 1655 1656 return nullptr; 1657 } 1658 1659 /// Build up a vector of value/power pairs factoring a product. 1660 /// 1661 /// Given a series of multiplication operands, build a vector of factors and 1662 /// the powers each is raised to when forming the final product. Sort them in 1663 /// the order of descending power. 1664 /// 1665 /// (x*x) -> [(x, 2)] 1666 /// ((x*x)*x) -> [(x, 3)] 1667 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1668 /// 1669 /// \returns Whether any factors have a power greater than one. 1670 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1671 SmallVectorImpl<Factor> &Factors) { 1672 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1673 // Compute the sum of powers of simplifiable factors. 1674 unsigned FactorPowerSum = 0; 1675 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1676 Value *Op = Ops[Idx-1].Op; 1677 1678 // Count the number of occurrences of this value. 1679 unsigned Count = 1; 1680 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1681 ++Count; 1682 // Track for simplification all factors which occur 2 or more times. 1683 if (Count > 1) 1684 FactorPowerSum += Count; 1685 } 1686 1687 // We can only simplify factors if the sum of the powers of our simplifiable 1688 // factors is 4 or higher. When that is the case, we will *always* have 1689 // a simplification. This is an important invariant to prevent cyclicly 1690 // trying to simplify already minimal formations. 1691 if (FactorPowerSum < 4) 1692 return false; 1693 1694 // Now gather the simplifiable factors, removing them from Ops. 1695 FactorPowerSum = 0; 1696 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1697 Value *Op = Ops[Idx-1].Op; 1698 1699 // Count the number of occurrences of this value. 1700 unsigned Count = 1; 1701 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1702 ++Count; 1703 if (Count == 1) 1704 continue; 1705 // Move an even number of occurrences to Factors. 1706 Count &= ~1U; 1707 Idx -= Count; 1708 FactorPowerSum += Count; 1709 Factors.push_back(Factor(Op, Count)); 1710 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1711 } 1712 1713 // None of the adjustments above should have reduced the sum of factor powers 1714 // below our mininum of '4'. 1715 assert(FactorPowerSum >= 4); 1716 1717 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) { 1718 return LHS.Power > RHS.Power; 1719 }); 1720 return true; 1721 } 1722 1723 /// Build a tree of multiplies, computing the product of Ops. 1724 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1725 SmallVectorImpl<Value*> &Ops) { 1726 if (Ops.size() == 1) 1727 return Ops.back(); 1728 1729 Value *LHS = Ops.pop_back_val(); 1730 do { 1731 if (LHS->getType()->isIntOrIntVectorTy()) 1732 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1733 else 1734 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1735 } while (!Ops.empty()); 1736 1737 return LHS; 1738 } 1739 1740 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1741 /// 1742 /// Given a vector of values raised to various powers, where no two values are 1743 /// equal and the powers are sorted in decreasing order, compute the minimal 1744 /// DAG of multiplies to compute the final product, and return that product 1745 /// value. 1746 Value * 1747 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1748 SmallVectorImpl<Factor> &Factors) { 1749 assert(Factors[0].Power); 1750 SmallVector<Value *, 4> OuterProduct; 1751 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1752 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1753 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1754 LastIdx = Idx; 1755 continue; 1756 } 1757 1758 // We want to multiply across all the factors with the same power so that 1759 // we can raise them to that power as a single entity. Build a mini tree 1760 // for that. 1761 SmallVector<Value *, 4> InnerProduct; 1762 InnerProduct.push_back(Factors[LastIdx].Base); 1763 do { 1764 InnerProduct.push_back(Factors[Idx].Base); 1765 ++Idx; 1766 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1767 1768 // Reset the base value of the first factor to the new expression tree. 1769 // We'll remove all the factors with the same power in a second pass. 1770 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1771 if (Instruction *MI = dyn_cast<Instruction>(M)) 1772 RedoInsts.insert(MI); 1773 1774 LastIdx = Idx; 1775 } 1776 // Unique factors with equal powers -- we've folded them into the first one's 1777 // base. 1778 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1779 [](const Factor &LHS, const Factor &RHS) { 1780 return LHS.Power == RHS.Power; 1781 }), 1782 Factors.end()); 1783 1784 // Iteratively collect the base of each factor with an add power into the 1785 // outer product, and halve each power in preparation for squaring the 1786 // expression. 1787 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1788 if (Factors[Idx].Power & 1) 1789 OuterProduct.push_back(Factors[Idx].Base); 1790 Factors[Idx].Power >>= 1; 1791 } 1792 if (Factors[0].Power) { 1793 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1794 OuterProduct.push_back(SquareRoot); 1795 OuterProduct.push_back(SquareRoot); 1796 } 1797 if (OuterProduct.size() == 1) 1798 return OuterProduct.front(); 1799 1800 Value *V = buildMultiplyTree(Builder, OuterProduct); 1801 return V; 1802 } 1803 1804 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1805 SmallVectorImpl<ValueEntry> &Ops) { 1806 // We can only optimize the multiplies when there is a chain of more than 1807 // three, such that a balanced tree might require fewer total multiplies. 1808 if (Ops.size() < 4) 1809 return nullptr; 1810 1811 // Try to turn linear trees of multiplies without other uses of the 1812 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1813 // re-use. 1814 SmallVector<Factor, 4> Factors; 1815 if (!collectMultiplyFactors(Ops, Factors)) 1816 return nullptr; // All distinct factors, so nothing left for us to do. 1817 1818 IRBuilder<> Builder(I); 1819 // The reassociate transformation for FP operations is performed only 1820 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1821 // to the newly generated operations. 1822 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1823 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1824 1825 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1826 if (Ops.empty()) 1827 return V; 1828 1829 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1830 Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry); 1831 return nullptr; 1832 } 1833 1834 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1835 SmallVectorImpl<ValueEntry> &Ops) { 1836 // Now that we have the linearized expression tree, try to optimize it. 1837 // Start by folding any constants that we found. 1838 Constant *Cst = nullptr; 1839 unsigned Opcode = I->getOpcode(); 1840 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1841 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1842 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1843 } 1844 // If there was nothing but constants then we are done. 1845 if (Ops.empty()) 1846 return Cst; 1847 1848 // Put the combined constant back at the end of the operand list, except if 1849 // there is no point. For example, an add of 0 gets dropped here, while a 1850 // multiplication by zero turns the whole expression into zero. 1851 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1852 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1853 return Cst; 1854 Ops.push_back(ValueEntry(0, Cst)); 1855 } 1856 1857 if (Ops.size() == 1) return Ops[0].Op; 1858 1859 // Handle destructive annihilation due to identities between elements in the 1860 // argument list here. 1861 unsigned NumOps = Ops.size(); 1862 switch (Opcode) { 1863 default: break; 1864 case Instruction::And: 1865 case Instruction::Or: 1866 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1867 return Result; 1868 break; 1869 1870 case Instruction::Xor: 1871 if (Value *Result = OptimizeXor(I, Ops)) 1872 return Result; 1873 break; 1874 1875 case Instruction::Add: 1876 case Instruction::FAdd: 1877 if (Value *Result = OptimizeAdd(I, Ops)) 1878 return Result; 1879 break; 1880 1881 case Instruction::Mul: 1882 case Instruction::FMul: 1883 if (Value *Result = OptimizeMul(I, Ops)) 1884 return Result; 1885 break; 1886 } 1887 1888 if (Ops.size() != NumOps) 1889 return OptimizeExpression(I, Ops); 1890 return nullptr; 1891 } 1892 1893 // Remove dead instructions and if any operands are trivially dead add them to 1894 // Insts so they will be removed as well. 1895 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 1896 OrderedSet &Insts) { 1897 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1898 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1899 ValueRankMap.erase(I); 1900 Insts.remove(I); 1901 RedoInsts.remove(I); 1902 llvm::salvageDebugInfoOrMarkUndef(*I); 1903 I->eraseFromParent(); 1904 for (auto Op : Ops) 1905 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1906 if (OpInst->use_empty()) 1907 Insts.insert(OpInst); 1908 } 1909 1910 /// Zap the given instruction, adding interesting operands to the work list. 1911 void ReassociatePass::EraseInst(Instruction *I) { 1912 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1913 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1914 1915 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1916 // Erase the dead instruction. 1917 ValueRankMap.erase(I); 1918 RedoInsts.remove(I); 1919 llvm::salvageDebugInfoOrMarkUndef(*I); 1920 I->eraseFromParent(); 1921 // Optimize its operands. 1922 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1923 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1924 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1925 // If this is a node in an expression tree, climb to the expression root 1926 // and add that since that's where optimization actually happens. 1927 unsigned Opcode = Op->getOpcode(); 1928 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1929 Visited.insert(Op).second) 1930 Op = Op->user_back(); 1931 1932 // The instruction we're going to push may be coming from a 1933 // dead block, and Reassociate skips the processing of unreachable 1934 // blocks because it's a waste of time and also because it can 1935 // lead to infinite loop due to LLVM's non-standard definition 1936 // of dominance. 1937 if (ValueRankMap.find(Op) != ValueRankMap.end()) 1938 RedoInsts.insert(Op); 1939 } 1940 1941 MadeChange = true; 1942 } 1943 1944 /// Recursively analyze an expression to build a list of instructions that have 1945 /// negative floating-point constant operands. The caller can then transform 1946 /// the list to create positive constants for better reassociation and CSE. 1947 static void getNegatibleInsts(Value *V, 1948 SmallVectorImpl<Instruction *> &Candidates) { 1949 // Handle only one-use instructions. Combining negations does not justify 1950 // replicating instructions. 1951 Instruction *I; 1952 if (!match(V, m_OneUse(m_Instruction(I)))) 1953 return; 1954 1955 // Handle expressions of multiplications and divisions. 1956 // TODO: This could look through floating-point casts. 1957 const APFloat *C; 1958 switch (I->getOpcode()) { 1959 case Instruction::FMul: 1960 // Not expecting non-canonical code here. Bail out and wait. 1961 if (match(I->getOperand(0), m_Constant())) 1962 break; 1963 1964 if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) { 1965 Candidates.push_back(I); 1966 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n'); 1967 } 1968 getNegatibleInsts(I->getOperand(0), Candidates); 1969 getNegatibleInsts(I->getOperand(1), Candidates); 1970 break; 1971 case Instruction::FDiv: 1972 // Not expecting non-canonical code here. Bail out and wait. 1973 if (match(I->getOperand(0), m_Constant()) && 1974 match(I->getOperand(1), m_Constant())) 1975 break; 1976 1977 if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) || 1978 (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) { 1979 Candidates.push_back(I); 1980 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n'); 1981 } 1982 getNegatibleInsts(I->getOperand(0), Candidates); 1983 getNegatibleInsts(I->getOperand(1), Candidates); 1984 break; 1985 default: 1986 break; 1987 } 1988 } 1989 1990 /// Given an fadd/fsub with an operand that is a one-use instruction 1991 /// (the fadd/fsub), try to change negative floating-point constants into 1992 /// positive constants to increase potential for reassociation and CSE. 1993 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I, 1994 Instruction *Op, 1995 Value *OtherOp) { 1996 assert((I->getOpcode() == Instruction::FAdd || 1997 I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub"); 1998 1999 // Collect instructions with negative FP constants from the subtree that ends 2000 // in Op. 2001 SmallVector<Instruction *, 4> Candidates; 2002 getNegatibleInsts(Op, Candidates); 2003 if (Candidates.empty()) 2004 return nullptr; 2005 2006 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 2007 // resulting subtract will be broken up later. This can get us into an 2008 // infinite loop during reassociation. 2009 bool IsFSub = I->getOpcode() == Instruction::FSub; 2010 bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1; 2011 if (NeedsSubtract && ShouldBreakUpSubtract(I)) 2012 return nullptr; 2013 2014 for (Instruction *Negatible : Candidates) { 2015 const APFloat *C; 2016 if (match(Negatible->getOperand(0), m_APFloat(C))) { 2017 assert(!match(Negatible->getOperand(1), m_Constant()) && 2018 "Expecting only 1 constant operand"); 2019 assert(C->isNegative() && "Expected negative FP constant"); 2020 Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C))); 2021 MadeChange = true; 2022 } 2023 if (match(Negatible->getOperand(1), m_APFloat(C))) { 2024 assert(!match(Negatible->getOperand(0), m_Constant()) && 2025 "Expecting only 1 constant operand"); 2026 assert(C->isNegative() && "Expected negative FP constant"); 2027 Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C))); 2028 MadeChange = true; 2029 } 2030 } 2031 assert(MadeChange == true && "Negative constant candidate was not changed"); 2032 2033 // Negations cancelled out. 2034 if (Candidates.size() % 2 == 0) 2035 return I; 2036 2037 // Negate the final operand in the expression by flipping the opcode of this 2038 // fadd/fsub. 2039 assert(Candidates.size() % 2 == 1 && "Expected odd number"); 2040 IRBuilder<> Builder(I); 2041 Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I) 2042 : Builder.CreateFSubFMF(OtherOp, Op, I); 2043 I->replaceAllUsesWith(NewInst); 2044 RedoInsts.insert(I); 2045 return dyn_cast<Instruction>(NewInst); 2046 } 2047 2048 /// Canonicalize expressions that contain a negative floating-point constant 2049 /// of the following form: 2050 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree) 2051 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree) 2052 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree) 2053 /// 2054 /// The fadd/fsub opcode may be switched to allow folding a negation into the 2055 /// input instruction. 2056 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) { 2057 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n'); 2058 Value *X; 2059 Instruction *Op; 2060 if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op))))) 2061 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2062 I = R; 2063 if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X)))) 2064 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2065 I = R; 2066 if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op))))) 2067 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2068 I = R; 2069 return I; 2070 } 2071 2072 /// Inspect and optimize the given instruction. Note that erasing 2073 /// instructions is not allowed. 2074 void ReassociatePass::OptimizeInst(Instruction *I) { 2075 // Only consider operations that we understand. 2076 if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I)) 2077 return; 2078 2079 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2080 // If an operand of this shift is a reassociable multiply, or if the shift 2081 // is used by a reassociable multiply or add, turn into a multiply. 2082 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2083 (I->hasOneUse() && 2084 (isReassociableOp(I->user_back(), Instruction::Mul) || 2085 isReassociableOp(I->user_back(), Instruction::Add)))) { 2086 Instruction *NI = ConvertShiftToMul(I); 2087 RedoInsts.insert(I); 2088 MadeChange = true; 2089 I = NI; 2090 } 2091 2092 // Commute binary operators, to canonicalize the order of their operands. 2093 // This can potentially expose more CSE opportunities, and makes writing other 2094 // transformations simpler. 2095 if (I->isCommutative()) 2096 canonicalizeOperands(I); 2097 2098 // Canonicalize negative constants out of expressions. 2099 if (Instruction *Res = canonicalizeNegFPConstants(I)) 2100 I = Res; 2101 2102 // Don't optimize floating-point instructions unless they are 'fast'. 2103 if (I->getType()->isFPOrFPVectorTy() && !I->isFast()) 2104 return; 2105 2106 // Do not reassociate boolean (i1) expressions. We want to preserve the 2107 // original order of evaluation for short-circuited comparisons that 2108 // SimplifyCFG has folded to AND/OR expressions. If the expression 2109 // is not further optimized, it is likely to be transformed back to a 2110 // short-circuited form for code gen, and the source order may have been 2111 // optimized for the most likely conditions. 2112 if (I->getType()->isIntegerTy(1)) 2113 return; 2114 2115 // If this is a subtract instruction which is not already in negate form, 2116 // see if we can convert it to X+-Y. 2117 if (I->getOpcode() == Instruction::Sub) { 2118 if (ShouldBreakUpSubtract(I)) { 2119 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2120 RedoInsts.insert(I); 2121 MadeChange = true; 2122 I = NI; 2123 } else if (match(I, m_Neg(m_Value()))) { 2124 // Otherwise, this is a negation. See if the operand is a multiply tree 2125 // and if this is not an inner node of a multiply tree. 2126 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2127 (!I->hasOneUse() || 2128 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2129 Instruction *NI = LowerNegateToMultiply(I); 2130 // If the negate was simplified, revisit the users to see if we can 2131 // reassociate further. 2132 for (User *U : NI->users()) { 2133 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2134 RedoInsts.insert(Tmp); 2135 } 2136 RedoInsts.insert(I); 2137 MadeChange = true; 2138 I = NI; 2139 } 2140 } 2141 } else if (I->getOpcode() == Instruction::FNeg || 2142 I->getOpcode() == Instruction::FSub) { 2143 if (ShouldBreakUpSubtract(I)) { 2144 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2145 RedoInsts.insert(I); 2146 MadeChange = true; 2147 I = NI; 2148 } else if (match(I, m_FNeg(m_Value()))) { 2149 // Otherwise, this is a negation. See if the operand is a multiply tree 2150 // and if this is not an inner node of a multiply tree. 2151 Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) : 2152 I->getOperand(0); 2153 if (isReassociableOp(Op, Instruction::FMul) && 2154 (!I->hasOneUse() || 2155 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2156 // If the negate was simplified, revisit the users to see if we can 2157 // reassociate further. 2158 Instruction *NI = LowerNegateToMultiply(I); 2159 for (User *U : NI->users()) { 2160 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2161 RedoInsts.insert(Tmp); 2162 } 2163 RedoInsts.insert(I); 2164 MadeChange = true; 2165 I = NI; 2166 } 2167 } 2168 } 2169 2170 // If this instruction is an associative binary operator, process it. 2171 if (!I->isAssociative()) return; 2172 BinaryOperator *BO = cast<BinaryOperator>(I); 2173 2174 // If this is an interior node of a reassociable tree, ignore it until we 2175 // get to the root of the tree, to avoid N^2 analysis. 2176 unsigned Opcode = BO->getOpcode(); 2177 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2178 // During the initial run we will get to the root of the tree. 2179 // But if we get here while we are redoing instructions, there is no 2180 // guarantee that the root will be visited. So Redo later 2181 if (BO->user_back() != BO && 2182 BO->getParent() == BO->user_back()->getParent()) 2183 RedoInsts.insert(BO->user_back()); 2184 return; 2185 } 2186 2187 // If this is an add tree that is used by a sub instruction, ignore it 2188 // until we process the subtract. 2189 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2190 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2191 return; 2192 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2193 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2194 return; 2195 2196 ReassociateExpression(BO); 2197 } 2198 2199 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2200 // First, walk the expression tree, linearizing the tree, collecting the 2201 // operand information. 2202 SmallVector<RepeatedValue, 8> Tree; 2203 MadeChange |= LinearizeExprTree(I, Tree); 2204 SmallVector<ValueEntry, 8> Ops; 2205 Ops.reserve(Tree.size()); 2206 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2207 RepeatedValue E = Tree[i]; 2208 Ops.append(E.second.getZExtValue(), 2209 ValueEntry(getRank(E.first), E.first)); 2210 } 2211 2212 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2213 2214 // Now that we have linearized the tree to a list and have gathered all of 2215 // the operands and their ranks, sort the operands by their rank. Use a 2216 // stable_sort so that values with equal ranks will have their relative 2217 // positions maintained (and so the compiler is deterministic). Note that 2218 // this sorts so that the highest ranking values end up at the beginning of 2219 // the vector. 2220 llvm::stable_sort(Ops); 2221 2222 // Now that we have the expression tree in a convenient 2223 // sorted form, optimize it globally if possible. 2224 if (Value *V = OptimizeExpression(I, Ops)) { 2225 if (V == I) 2226 // Self-referential expression in unreachable code. 2227 return; 2228 // This expression tree simplified to something that isn't a tree, 2229 // eliminate it. 2230 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2231 I->replaceAllUsesWith(V); 2232 if (Instruction *VI = dyn_cast<Instruction>(V)) 2233 if (I->getDebugLoc()) 2234 VI->setDebugLoc(I->getDebugLoc()); 2235 RedoInsts.insert(I); 2236 ++NumAnnihil; 2237 return; 2238 } 2239 2240 // We want to sink immediates as deeply as possible except in the case where 2241 // this is a multiply tree used only by an add, and the immediate is a -1. 2242 // In this case we reassociate to put the negation on the outside so that we 2243 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2244 if (I->hasOneUse()) { 2245 if (I->getOpcode() == Instruction::Mul && 2246 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2247 isa<ConstantInt>(Ops.back().Op) && 2248 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2249 ValueEntry Tmp = Ops.pop_back_val(); 2250 Ops.insert(Ops.begin(), Tmp); 2251 } else if (I->getOpcode() == Instruction::FMul && 2252 cast<Instruction>(I->user_back())->getOpcode() == 2253 Instruction::FAdd && 2254 isa<ConstantFP>(Ops.back().Op) && 2255 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2256 ValueEntry Tmp = Ops.pop_back_val(); 2257 Ops.insert(Ops.begin(), Tmp); 2258 } 2259 } 2260 2261 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2262 2263 if (Ops.size() == 1) { 2264 if (Ops[0].Op == I) 2265 // Self-referential expression in unreachable code. 2266 return; 2267 2268 // This expression tree simplified to something that isn't a tree, 2269 // eliminate it. 2270 I->replaceAllUsesWith(Ops[0].Op); 2271 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2272 OI->setDebugLoc(I->getDebugLoc()); 2273 RedoInsts.insert(I); 2274 return; 2275 } 2276 2277 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 2278 // Find the pair with the highest count in the pairmap and move it to the 2279 // back of the list so that it can later be CSE'd. 2280 // example: 2281 // a*b*c*d*e 2282 // if c*e is the most "popular" pair, we can express this as 2283 // (((c*e)*d)*b)*a 2284 unsigned Max = 1; 2285 unsigned BestRank = 0; 2286 std::pair<unsigned, unsigned> BestPair; 2287 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 2288 for (unsigned i = 0; i < Ops.size() - 1; ++i) 2289 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2290 unsigned Score = 0; 2291 Value *Op0 = Ops[i].Op; 2292 Value *Op1 = Ops[j].Op; 2293 if (std::less<Value *>()(Op1, Op0)) 2294 std::swap(Op0, Op1); 2295 auto it = PairMap[Idx].find({Op0, Op1}); 2296 if (it != PairMap[Idx].end()) { 2297 // Functions like BreakUpSubtract() can erase the Values we're using 2298 // as keys and create new Values after we built the PairMap. There's a 2299 // small chance that the new nodes can have the same address as 2300 // something already in the table. We shouldn't accumulate the stored 2301 // score in that case as it refers to the wrong Value. 2302 if (it->second.isValid()) 2303 Score += it->second.Score; 2304 } 2305 2306 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 2307 if (Score > Max || (Score == Max && MaxRank < BestRank)) { 2308 BestPair = {i, j}; 2309 Max = Score; 2310 BestRank = MaxRank; 2311 } 2312 } 2313 if (Max > 1) { 2314 auto Op0 = Ops[BestPair.first]; 2315 auto Op1 = Ops[BestPair.second]; 2316 Ops.erase(&Ops[BestPair.second]); 2317 Ops.erase(&Ops[BestPair.first]); 2318 Ops.push_back(Op0); 2319 Ops.push_back(Op1); 2320 } 2321 } 2322 // Now that we ordered and optimized the expressions, splat them back into 2323 // the expression tree, removing any unneeded nodes. 2324 RewriteExprTree(I, Ops); 2325 } 2326 2327 void 2328 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 2329 // Make a "pairmap" of how often each operand pair occurs. 2330 for (BasicBlock *BI : RPOT) { 2331 for (Instruction &I : *BI) { 2332 if (!I.isAssociative()) 2333 continue; 2334 2335 // Ignore nodes that aren't at the root of trees. 2336 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 2337 continue; 2338 2339 // Collect all operands in a single reassociable expression. 2340 // Since Reassociate has already been run once, we can assume things 2341 // are already canonical according to Reassociation's regime. 2342 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 2343 SmallVector<Value *, 8> Ops; 2344 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 2345 Value *Op = Worklist.pop_back_val(); 2346 Instruction *OpI = dyn_cast<Instruction>(Op); 2347 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 2348 Ops.push_back(Op); 2349 continue; 2350 } 2351 // Be paranoid about self-referencing expressions in unreachable code. 2352 if (OpI->getOperand(0) != OpI) 2353 Worklist.push_back(OpI->getOperand(0)); 2354 if (OpI->getOperand(1) != OpI) 2355 Worklist.push_back(OpI->getOperand(1)); 2356 } 2357 // Skip extremely long expressions. 2358 if (Ops.size() > GlobalReassociateLimit) 2359 continue; 2360 2361 // Add all pairwise combinations of operands to the pair map. 2362 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 2363 SmallSet<std::pair<Value *, Value*>, 32> Visited; 2364 for (unsigned i = 0; i < Ops.size() - 1; ++i) { 2365 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2366 // Canonicalize operand orderings. 2367 Value *Op0 = Ops[i]; 2368 Value *Op1 = Ops[j]; 2369 if (std::less<Value *>()(Op1, Op0)) 2370 std::swap(Op0, Op1); 2371 if (!Visited.insert({Op0, Op1}).second) 2372 continue; 2373 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}}); 2374 if (!res.second) { 2375 // If either key value has been erased then we've got the same 2376 // address by coincidence. That can't happen here because nothing is 2377 // erasing values but it can happen by the time we're querying the 2378 // map. 2379 assert(res.first->second.isValid() && "WeakVH invalidated"); 2380 ++res.first->second.Score; 2381 } 2382 } 2383 } 2384 } 2385 } 2386 } 2387 2388 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2389 // Get the functions basic blocks in Reverse Post Order. This order is used by 2390 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2391 // blocks (it has been seen that the analysis in this pass could hang when 2392 // analysing dead basic blocks). 2393 ReversePostOrderTraversal<Function *> RPOT(&F); 2394 2395 // Calculate the rank map for F. 2396 BuildRankMap(F, RPOT); 2397 2398 // Build the pair map before running reassociate. 2399 // Technically this would be more accurate if we did it after one round 2400 // of reassociation, but in practice it doesn't seem to help much on 2401 // real-world code, so don't waste the compile time running reassociate 2402 // twice. 2403 // If a user wants, they could expicitly run reassociate twice in their 2404 // pass pipeline for further potential gains. 2405 // It might also be possible to update the pair map during runtime, but the 2406 // overhead of that may be large if there's many reassociable chains. 2407 BuildPairMap(RPOT); 2408 2409 MadeChange = false; 2410 2411 // Traverse the same blocks that were analysed by BuildRankMap. 2412 for (BasicBlock *BI : RPOT) { 2413 assert(RankMap.count(&*BI) && "BB should be ranked."); 2414 // Optimize every instruction in the basic block. 2415 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2416 if (isInstructionTriviallyDead(&*II)) { 2417 EraseInst(&*II++); 2418 } else { 2419 OptimizeInst(&*II); 2420 assert(II->getParent() == &*BI && "Moved to a different block!"); 2421 ++II; 2422 } 2423 2424 // Make a copy of all the instructions to be redone so we can remove dead 2425 // instructions. 2426 OrderedSet ToRedo(RedoInsts); 2427 // Iterate over all instructions to be reevaluated and remove trivially dead 2428 // instructions. If any operand of the trivially dead instruction becomes 2429 // dead mark it for deletion as well. Continue this process until all 2430 // trivially dead instructions have been removed. 2431 while (!ToRedo.empty()) { 2432 Instruction *I = ToRedo.pop_back_val(); 2433 if (isInstructionTriviallyDead(I)) { 2434 RecursivelyEraseDeadInsts(I, ToRedo); 2435 MadeChange = true; 2436 } 2437 } 2438 2439 // Now that we have removed dead instructions, we can reoptimize the 2440 // remaining instructions. 2441 while (!RedoInsts.empty()) { 2442 Instruction *I = RedoInsts.front(); 2443 RedoInsts.erase(RedoInsts.begin()); 2444 if (isInstructionTriviallyDead(I)) 2445 EraseInst(I); 2446 else 2447 OptimizeInst(I); 2448 } 2449 } 2450 2451 // We are done with the rank map and pair map. 2452 RankMap.clear(); 2453 ValueRankMap.clear(); 2454 for (auto &Entry : PairMap) 2455 Entry.clear(); 2456 2457 if (MadeChange) { 2458 PreservedAnalyses PA; 2459 PA.preserveSet<CFGAnalyses>(); 2460 PA.preserve<GlobalsAA>(); 2461 return PA; 2462 } 2463 2464 return PreservedAnalyses::all(); 2465 } 2466 2467 namespace { 2468 2469 class ReassociateLegacyPass : public FunctionPass { 2470 ReassociatePass Impl; 2471 2472 public: 2473 static char ID; // Pass identification, replacement for typeid 2474 2475 ReassociateLegacyPass() : FunctionPass(ID) { 2476 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2477 } 2478 2479 bool runOnFunction(Function &F) override { 2480 if (skipFunction(F)) 2481 return false; 2482 2483 FunctionAnalysisManager DummyFAM; 2484 auto PA = Impl.run(F, DummyFAM); 2485 return !PA.areAllPreserved(); 2486 } 2487 2488 void getAnalysisUsage(AnalysisUsage &AU) const override { 2489 AU.setPreservesCFG(); 2490 AU.addPreserved<GlobalsAAWrapperPass>(); 2491 } 2492 }; 2493 2494 } // end anonymous namespace 2495 2496 char ReassociateLegacyPass::ID = 0; 2497 2498 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2499 "Reassociate expressions", false, false) 2500 2501 // Public interface to the Reassociate pass 2502 FunctionPass *llvm::createReassociatePass() { 2503 return new ReassociateLegacyPass(); 2504 } 2505