1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass reassociates commutative expressions in an order that is designed 10 // to promote better constant propagation, GCSE, LICM, PRE, etc. 11 // 12 // For example: 4 + (x + 5) -> x + (4 + 5) 13 // 14 // In the implementation of this algorithm, constants are assigned rank = 0, 15 // function arguments are rank = 1, and other values are assigned ranks 16 // corresponding to the reverse post order traversal of current function 17 // (starting at 2), which effectively gives values in deep loops higher rank 18 // than values not in loops. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/Reassociate.h" 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/BasicAliasAnalysis.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/PatternMatch.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/IR/ValueHandle.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <utility> 63 64 using namespace llvm; 65 using namespace reassociate; 66 using namespace PatternMatch; 67 68 #define DEBUG_TYPE "reassociate" 69 70 STATISTIC(NumChanged, "Number of insts reassociated"); 71 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 72 STATISTIC(NumFactor , "Number of multiplies factored"); 73 74 static cl::opt<bool> 75 UseCSELocalOpt(DEBUG_TYPE "-use-cse-local", 76 cl::desc("Only reorder expressions within a basic block " 77 "when exposing CSE opportunities"), 78 cl::init(true), cl::Hidden); 79 80 #ifndef NDEBUG 81 /// Print out the expression identified in the Ops list. 82 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 83 Module *M = I->getModule(); 84 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 85 << *Ops[0].Op->getType() << '\t'; 86 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 87 dbgs() << "[ "; 88 Ops[i].Op->printAsOperand(dbgs(), false, M); 89 dbgs() << ", #" << Ops[i].Rank << "] "; 90 } 91 } 92 #endif 93 94 /// Utility class representing a non-constant Xor-operand. We classify 95 /// non-constant Xor-Operands into two categories: 96 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 97 /// C2) 98 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 99 /// constant. 100 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 101 /// operand as "E | 0" 102 class llvm::reassociate::XorOpnd { 103 public: 104 XorOpnd(Value *V); 105 106 bool isInvalid() const { return SymbolicPart == nullptr; } 107 bool isOrExpr() const { return isOr; } 108 Value *getValue() const { return OrigVal; } 109 Value *getSymbolicPart() const { return SymbolicPart; } 110 unsigned getSymbolicRank() const { return SymbolicRank; } 111 const APInt &getConstPart() const { return ConstPart; } 112 113 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 114 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 115 116 private: 117 Value *OrigVal; 118 Value *SymbolicPart; 119 APInt ConstPart; 120 unsigned SymbolicRank; 121 bool isOr; 122 }; 123 124 XorOpnd::XorOpnd(Value *V) { 125 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 126 OrigVal = V; 127 Instruction *I = dyn_cast<Instruction>(V); 128 SymbolicRank = 0; 129 130 if (I && (I->getOpcode() == Instruction::Or || 131 I->getOpcode() == Instruction::And)) { 132 Value *V0 = I->getOperand(0); 133 Value *V1 = I->getOperand(1); 134 const APInt *C; 135 if (match(V0, m_APInt(C))) 136 std::swap(V0, V1); 137 138 if (match(V1, m_APInt(C))) { 139 ConstPart = *C; 140 SymbolicPart = V0; 141 isOr = (I->getOpcode() == Instruction::Or); 142 return; 143 } 144 } 145 146 // view the operand as "V | 0" 147 SymbolicPart = V; 148 ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits()); 149 isOr = true; 150 } 151 152 /// Return true if I is an instruction with the FastMathFlags that are needed 153 /// for general reassociation set. This is not the same as testing 154 /// Instruction::isAssociative() because it includes operations like fsub. 155 /// (This routine is only intended to be called for floating-point operations.) 156 static bool hasFPAssociativeFlags(Instruction *I) { 157 assert(I && isa<FPMathOperator>(I) && "Should only check FP ops"); 158 return I->hasAllowReassoc() && I->hasNoSignedZeros(); 159 } 160 161 /// Return true if V is an instruction of the specified opcode and if it 162 /// only has one use. 163 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 164 auto *BO = dyn_cast<BinaryOperator>(V); 165 if (BO && BO->hasOneUse() && BO->getOpcode() == Opcode) 166 if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO)) 167 return BO; 168 return nullptr; 169 } 170 171 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 172 unsigned Opcode2) { 173 auto *BO = dyn_cast<BinaryOperator>(V); 174 if (BO && BO->hasOneUse() && 175 (BO->getOpcode() == Opcode1 || BO->getOpcode() == Opcode2)) 176 if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO)) 177 return BO; 178 return nullptr; 179 } 180 181 void ReassociatePass::BuildRankMap(Function &F, 182 ReversePostOrderTraversal<Function*> &RPOT) { 183 unsigned Rank = 2; 184 185 // Assign distinct ranks to function arguments. 186 for (auto &Arg : F.args()) { 187 ValueRankMap[&Arg] = ++Rank; 188 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 189 << "\n"); 190 } 191 192 // Traverse basic blocks in ReversePostOrder. 193 for (BasicBlock *BB : RPOT) { 194 unsigned BBRank = RankMap[BB] = ++Rank << 16; 195 196 // Walk the basic block, adding precomputed ranks for any instructions that 197 // we cannot move. This ensures that the ranks for these instructions are 198 // all different in the block. 199 for (Instruction &I : *BB) 200 if (mayHaveNonDefUseDependency(I)) 201 ValueRankMap[&I] = ++BBRank; 202 } 203 } 204 205 unsigned ReassociatePass::getRank(Value *V) { 206 Instruction *I = dyn_cast<Instruction>(V); 207 if (!I) { 208 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 209 return 0; // Otherwise it's a global or constant, rank 0. 210 } 211 212 if (unsigned Rank = ValueRankMap[I]) 213 return Rank; // Rank already known? 214 215 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 216 // we can reassociate expressions for code motion! Since we do not recurse 217 // for PHI nodes, we cannot have infinite recursion here, because there 218 // cannot be loops in the value graph that do not go through PHI nodes. 219 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 220 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 221 Rank = std::max(Rank, getRank(I->getOperand(i))); 222 223 // If this is a 'not' or 'neg' instruction, do not count it for rank. This 224 // assures us that X and ~X will have the same rank. 225 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) && 226 !match(I, m_FNeg(m_Value()))) 227 ++Rank; 228 229 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank 230 << "\n"); 231 232 return ValueRankMap[I] = Rank; 233 } 234 235 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 236 void ReassociatePass::canonicalizeOperands(Instruction *I) { 237 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 238 assert(I->isCommutative() && "Expected commutative operator."); 239 240 Value *LHS = I->getOperand(0); 241 Value *RHS = I->getOperand(1); 242 if (LHS == RHS || isa<Constant>(RHS)) 243 return; 244 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 245 cast<BinaryOperator>(I)->swapOperands(); 246 } 247 248 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 249 Instruction *InsertBefore, Value *FlagsOp) { 250 if (S1->getType()->isIntOrIntVectorTy()) 251 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 252 else { 253 BinaryOperator *Res = 254 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 255 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 256 return Res; 257 } 258 } 259 260 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 261 Instruction *InsertBefore, Value *FlagsOp) { 262 if (S1->getType()->isIntOrIntVectorTy()) 263 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 264 else { 265 BinaryOperator *Res = 266 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 267 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 268 return Res; 269 } 270 } 271 272 static Instruction *CreateNeg(Value *S1, const Twine &Name, 273 Instruction *InsertBefore, Value *FlagsOp) { 274 if (S1->getType()->isIntOrIntVectorTy()) 275 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 276 277 if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp)) 278 return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore); 279 280 return UnaryOperator::CreateFNeg(S1, Name, InsertBefore); 281 } 282 283 /// Replace 0-X with X*-1. 284 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 285 assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) && 286 "Expected a Negate!"); 287 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0. 288 unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0; 289 Type *Ty = Neg->getType(); 290 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 291 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 292 293 BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg); 294 Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op. 295 Res->takeName(Neg); 296 Neg->replaceAllUsesWith(Res); 297 Res->setDebugLoc(Neg->getDebugLoc()); 298 return Res; 299 } 300 301 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 302 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 303 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 304 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 305 /// even x in Bitwidth-bit arithmetic. 306 static unsigned CarmichaelShift(unsigned Bitwidth) { 307 if (Bitwidth < 3) 308 return Bitwidth - 1; 309 return Bitwidth - 2; 310 } 311 312 /// Add the extra weight 'RHS' to the existing weight 'LHS', 313 /// reducing the combined weight using any special properties of the operation. 314 /// The existing weight LHS represents the computation X op X op ... op X where 315 /// X occurs LHS times. The combined weight represents X op X op ... op X with 316 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 317 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 318 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 319 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 320 // If we were working with infinite precision arithmetic then the combined 321 // weight would be LHS + RHS. But we are using finite precision arithmetic, 322 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 323 // for nilpotent operations and addition, but not for idempotent operations 324 // and multiplication), so it is important to correctly reduce the combined 325 // weight back into range if wrapping would be wrong. 326 327 // If RHS is zero then the weight didn't change. 328 if (RHS.isMinValue()) 329 return; 330 // If LHS is zero then the combined weight is RHS. 331 if (LHS.isMinValue()) { 332 LHS = RHS; 333 return; 334 } 335 // From this point on we know that neither LHS nor RHS is zero. 336 337 if (Instruction::isIdempotent(Opcode)) { 338 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 339 // weight of 1. Keeping weights at zero or one also means that wrapping is 340 // not a problem. 341 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 342 return; // Return a weight of 1. 343 } 344 if (Instruction::isNilpotent(Opcode)) { 345 // Nilpotent means X op X === 0, so reduce weights modulo 2. 346 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 347 LHS = 0; // 1 + 1 === 0 modulo 2. 348 return; 349 } 350 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 351 // TODO: Reduce the weight by exploiting nsw/nuw? 352 LHS += RHS; 353 return; 354 } 355 356 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 357 "Unknown associative operation!"); 358 unsigned Bitwidth = LHS.getBitWidth(); 359 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 360 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 361 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 362 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 363 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 364 // which by a happy accident means that they can always be represented using 365 // Bitwidth bits. 366 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 367 // the Carmichael number). 368 if (Bitwidth > 3) { 369 /// CM - The value of Carmichael's lambda function. 370 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 371 // Any weight W >= Threshold can be replaced with W - CM. 372 APInt Threshold = CM + Bitwidth; 373 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 374 // For Bitwidth 4 or more the following sum does not overflow. 375 LHS += RHS; 376 while (LHS.uge(Threshold)) 377 LHS -= CM; 378 } else { 379 // To avoid problems with overflow do everything the same as above but using 380 // a larger type. 381 unsigned CM = 1U << CarmichaelShift(Bitwidth); 382 unsigned Threshold = CM + Bitwidth; 383 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 384 "Weights not reduced!"); 385 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 386 while (Total >= Threshold) 387 Total -= CM; 388 LHS = Total; 389 } 390 } 391 392 using RepeatedValue = std::pair<Value*, APInt>; 393 394 /// Given an associative binary expression, return the leaf 395 /// nodes in Ops along with their weights (how many times the leaf occurs). The 396 /// original expression is the same as 397 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 398 /// op 399 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 400 /// op 401 /// ... 402 /// op 403 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 404 /// 405 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 406 /// 407 /// This routine may modify the function, in which case it returns 'true'. The 408 /// changes it makes may well be destructive, changing the value computed by 'I' 409 /// to something completely different. Thus if the routine returns 'true' then 410 /// you MUST either replace I with a new expression computed from the Ops array, 411 /// or use RewriteExprTree to put the values back in. 412 /// 413 /// A leaf node is either not a binary operation of the same kind as the root 414 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 415 /// opcode), or is the same kind of binary operator but has a use which either 416 /// does not belong to the expression, or does belong to the expression but is 417 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 418 /// of the expression, while for non-leaf nodes (except for the root 'I') every 419 /// use is a non-leaf node of the expression. 420 /// 421 /// For example: 422 /// expression graph node names 423 /// 424 /// + | I 425 /// / \ | 426 /// + + | A, B 427 /// / \ / \ | 428 /// * + * | C, D, E 429 /// / \ / \ / \ | 430 /// + * | F, G 431 /// 432 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 433 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 434 /// 435 /// The expression is maximal: if some instruction is a binary operator of the 436 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 437 /// then the instruction also belongs to the expression, is not a leaf node of 438 /// it, and its operands also belong to the expression (but may be leaf nodes). 439 /// 440 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 441 /// order to ensure that every non-root node in the expression has *exactly one* 442 /// use by a non-leaf node of the expression. This destruction means that the 443 /// caller MUST either replace 'I' with a new expression or use something like 444 /// RewriteExprTree to put the values back in if the routine indicates that it 445 /// made a change by returning 'true'. 446 /// 447 /// In the above example either the right operand of A or the left operand of B 448 /// will be replaced by undef. If it is B's operand then this gives: 449 /// 450 /// + | I 451 /// / \ | 452 /// + + | A, B - operand of B replaced with undef 453 /// / \ \ | 454 /// * + * | C, D, E 455 /// / \ / \ / \ | 456 /// + * | F, G 457 /// 458 /// Note that such undef operands can only be reached by passing through 'I'. 459 /// For example, if you visit operands recursively starting from a leaf node 460 /// then you will never see such an undef operand unless you get back to 'I', 461 /// which requires passing through a phi node. 462 /// 463 /// Note that this routine may also mutate binary operators of the wrong type 464 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 465 /// of the expression) if it can turn them into binary operators of the right 466 /// type and thus make the expression bigger. 467 static bool LinearizeExprTree(Instruction *I, 468 SmallVectorImpl<RepeatedValue> &Ops, 469 ReassociatePass::OrderedSet &ToRedo, 470 bool &HasNUW) { 471 assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) && 472 "Expected a UnaryOperator or BinaryOperator!"); 473 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 474 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 475 unsigned Opcode = I->getOpcode(); 476 assert(I->isAssociative() && I->isCommutative() && 477 "Expected an associative and commutative operation!"); 478 479 // Visit all operands of the expression, keeping track of their weight (the 480 // number of paths from the expression root to the operand, or if you like 481 // the number of times that operand occurs in the linearized expression). 482 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 483 // while A has weight two. 484 485 // Worklist of non-leaf nodes (their operands are in the expression too) along 486 // with their weights, representing a certain number of paths to the operator. 487 // If an operator occurs in the worklist multiple times then we found multiple 488 // ways to get to it. 489 SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight) 490 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 491 bool Changed = false; 492 493 // Leaves of the expression are values that either aren't the right kind of 494 // operation (eg: a constant, or a multiply in an add tree), or are, but have 495 // some uses that are not inside the expression. For example, in I = X + X, 496 // X = A + B, the value X has two uses (by I) that are in the expression. If 497 // X has any other uses, for example in a return instruction, then we consider 498 // X to be a leaf, and won't analyze it further. When we first visit a value, 499 // if it has more than one use then at first we conservatively consider it to 500 // be a leaf. Later, as the expression is explored, we may discover some more 501 // uses of the value from inside the expression. If all uses turn out to be 502 // from within the expression (and the value is a binary operator of the right 503 // kind) then the value is no longer considered to be a leaf, and its operands 504 // are explored. 505 506 // Leaves - Keeps track of the set of putative leaves as well as the number of 507 // paths to each leaf seen so far. 508 using LeafMap = DenseMap<Value *, APInt>; 509 LeafMap Leaves; // Leaf -> Total weight so far. 510 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 511 512 #ifndef NDEBUG 513 SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme. 514 #endif 515 while (!Worklist.empty()) { 516 std::pair<Instruction*, APInt> P = Worklist.pop_back_val(); 517 I = P.first; // We examine the operands of this binary operator. 518 519 if (isa<OverflowingBinaryOperator>(I)) 520 HasNUW &= I->hasNoUnsignedWrap(); 521 522 for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands. 523 Value *Op = I->getOperand(OpIdx); 524 APInt Weight = P.second; // Number of paths to this operand. 525 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 526 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 527 528 // If this is a binary operation of the right kind with only one use then 529 // add its operands to the expression. 530 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 531 assert(Visited.insert(Op).second && "Not first visit!"); 532 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 533 Worklist.push_back(std::make_pair(BO, Weight)); 534 continue; 535 } 536 537 // Appears to be a leaf. Is the operand already in the set of leaves? 538 LeafMap::iterator It = Leaves.find(Op); 539 if (It == Leaves.end()) { 540 // Not in the leaf map. Must be the first time we saw this operand. 541 assert(Visited.insert(Op).second && "Not first visit!"); 542 if (!Op->hasOneUse()) { 543 // This value has uses not accounted for by the expression, so it is 544 // not safe to modify. Mark it as being a leaf. 545 LLVM_DEBUG(dbgs() 546 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 547 LeafOrder.push_back(Op); 548 Leaves[Op] = Weight; 549 continue; 550 } 551 // No uses outside the expression, try morphing it. 552 } else { 553 // Already in the leaf map. 554 assert(It != Leaves.end() && Visited.count(Op) && 555 "In leaf map but not visited!"); 556 557 // Update the number of paths to the leaf. 558 IncorporateWeight(It->second, Weight, Opcode); 559 560 #if 0 // TODO: Re-enable once PR13021 is fixed. 561 // The leaf already has one use from inside the expression. As we want 562 // exactly one such use, drop this new use of the leaf. 563 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 564 I->setOperand(OpIdx, UndefValue::get(I->getType())); 565 Changed = true; 566 567 // If the leaf is a binary operation of the right kind and we now see 568 // that its multiple original uses were in fact all by nodes belonging 569 // to the expression, then no longer consider it to be a leaf and add 570 // its operands to the expression. 571 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 572 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 573 Worklist.push_back(std::make_pair(BO, It->second)); 574 Leaves.erase(It); 575 continue; 576 } 577 #endif 578 579 // If we still have uses that are not accounted for by the expression 580 // then it is not safe to modify the value. 581 if (!Op->hasOneUse()) 582 continue; 583 584 // No uses outside the expression, try morphing it. 585 Weight = It->second; 586 Leaves.erase(It); // Since the value may be morphed below. 587 } 588 589 // At this point we have a value which, first of all, is not a binary 590 // expression of the right kind, and secondly, is only used inside the 591 // expression. This means that it can safely be modified. See if we 592 // can usefully morph it into an expression of the right kind. 593 assert((!isa<Instruction>(Op) || 594 cast<Instruction>(Op)->getOpcode() != Opcode 595 || (isa<FPMathOperator>(Op) && 596 !hasFPAssociativeFlags(cast<Instruction>(Op)))) && 597 "Should have been handled above!"); 598 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 599 600 // If this is a multiply expression, turn any internal negations into 601 // multiplies by -1 so they can be reassociated. Add any users of the 602 // newly created multiplication by -1 to the redo list, so any 603 // reassociation opportunities that are exposed will be reassociated 604 // further. 605 Instruction *Neg; 606 if (((Opcode == Instruction::Mul && match(Op, m_Neg(m_Value()))) || 607 (Opcode == Instruction::FMul && match(Op, m_FNeg(m_Value())))) && 608 match(Op, m_Instruction(Neg))) { 609 LLVM_DEBUG(dbgs() 610 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 611 Instruction *Mul = LowerNegateToMultiply(Neg); 612 LLVM_DEBUG(dbgs() << *Mul << '\n'); 613 Worklist.push_back(std::make_pair(Mul, Weight)); 614 for (User *U : Mul->users()) { 615 if (BinaryOperator *UserBO = dyn_cast<BinaryOperator>(U)) 616 ToRedo.insert(UserBO); 617 } 618 ToRedo.insert(Neg); 619 Changed = true; 620 continue; 621 } 622 623 // Failed to morph into an expression of the right type. This really is 624 // a leaf. 625 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 626 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 627 LeafOrder.push_back(Op); 628 Leaves[Op] = Weight; 629 } 630 } 631 632 // The leaves, repeated according to their weights, represent the linearized 633 // form of the expression. 634 for (Value *V : LeafOrder) { 635 LeafMap::iterator It = Leaves.find(V); 636 if (It == Leaves.end()) 637 // Node initially thought to be a leaf wasn't. 638 continue; 639 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 640 APInt Weight = It->second; 641 if (Weight.isMinValue()) 642 // Leaf already output or weight reduction eliminated it. 643 continue; 644 // Ensure the leaf is only output once. 645 It->second = 0; 646 Ops.push_back(std::make_pair(V, Weight)); 647 } 648 649 // For nilpotent operations or addition there may be no operands, for example 650 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 651 // in both cases the weight reduces to 0 causing the value to be skipped. 652 if (Ops.empty()) { 653 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 654 assert(Identity && "Associative operation without identity!"); 655 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 656 } 657 658 return Changed; 659 } 660 661 /// Now that the operands for this expression tree are 662 /// linearized and optimized, emit them in-order. 663 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 664 SmallVectorImpl<ValueEntry> &Ops, 665 bool HasNUW) { 666 assert(Ops.size() > 1 && "Single values should be used directly!"); 667 668 // Since our optimizations should never increase the number of operations, the 669 // new expression can usually be written reusing the existing binary operators 670 // from the original expression tree, without creating any new instructions, 671 // though the rewritten expression may have a completely different topology. 672 // We take care to not change anything if the new expression will be the same 673 // as the original. If more than trivial changes (like commuting operands) 674 // were made then we are obliged to clear out any optional subclass data like 675 // nsw flags. 676 677 /// NodesToRewrite - Nodes from the original expression available for writing 678 /// the new expression into. 679 SmallVector<BinaryOperator*, 8> NodesToRewrite; 680 unsigned Opcode = I->getOpcode(); 681 BinaryOperator *Op = I; 682 683 /// NotRewritable - The operands being written will be the leaves of the new 684 /// expression and must not be used as inner nodes (via NodesToRewrite) by 685 /// mistake. Inner nodes are always reassociable, and usually leaves are not 686 /// (if they were they would have been incorporated into the expression and so 687 /// would not be leaves), so most of the time there is no danger of this. But 688 /// in rare cases a leaf may become reassociable if an optimization kills uses 689 /// of it, or it may momentarily become reassociable during rewriting (below) 690 /// due it being removed as an operand of one of its uses. Ensure that misuse 691 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 692 /// leaves and refusing to reuse any of them as inner nodes. 693 SmallPtrSet<Value*, 8> NotRewritable; 694 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 695 NotRewritable.insert(Ops[i].Op); 696 697 // ExpressionChangedStart - Non-null if the rewritten expression differs from 698 // the original in some non-trivial way, requiring the clearing of optional 699 // flags. Flags are cleared from the operator in ExpressionChangedStart up to 700 // ExpressionChangedEnd inclusive. 701 BinaryOperator *ExpressionChangedStart = nullptr, 702 *ExpressionChangedEnd = nullptr; 703 for (unsigned i = 0; ; ++i) { 704 // The last operation (which comes earliest in the IR) is special as both 705 // operands will come from Ops, rather than just one with the other being 706 // a subexpression. 707 if (i+2 == Ops.size()) { 708 Value *NewLHS = Ops[i].Op; 709 Value *NewRHS = Ops[i+1].Op; 710 Value *OldLHS = Op->getOperand(0); 711 Value *OldRHS = Op->getOperand(1); 712 713 if (NewLHS == OldLHS && NewRHS == OldRHS) 714 // Nothing changed, leave it alone. 715 break; 716 717 if (NewLHS == OldRHS && NewRHS == OldLHS) { 718 // The order of the operands was reversed. Swap them. 719 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 720 Op->swapOperands(); 721 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 722 MadeChange = true; 723 ++NumChanged; 724 break; 725 } 726 727 // The new operation differs non-trivially from the original. Overwrite 728 // the old operands with the new ones. 729 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 730 if (NewLHS != OldLHS) { 731 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 732 if (BO && !NotRewritable.count(BO)) 733 NodesToRewrite.push_back(BO); 734 Op->setOperand(0, NewLHS); 735 } 736 if (NewRHS != OldRHS) { 737 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 738 if (BO && !NotRewritable.count(BO)) 739 NodesToRewrite.push_back(BO); 740 Op->setOperand(1, NewRHS); 741 } 742 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 743 744 ExpressionChangedStart = Op; 745 if (!ExpressionChangedEnd) 746 ExpressionChangedEnd = Op; 747 MadeChange = true; 748 ++NumChanged; 749 750 break; 751 } 752 753 // Not the last operation. The left-hand side will be a sub-expression 754 // while the right-hand side will be the current element of Ops. 755 Value *NewRHS = Ops[i].Op; 756 if (NewRHS != Op->getOperand(1)) { 757 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 758 if (NewRHS == Op->getOperand(0)) { 759 // The new right-hand side was already present as the left operand. If 760 // we are lucky then swapping the operands will sort out both of them. 761 Op->swapOperands(); 762 } else { 763 // Overwrite with the new right-hand side. 764 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 765 if (BO && !NotRewritable.count(BO)) 766 NodesToRewrite.push_back(BO); 767 Op->setOperand(1, NewRHS); 768 ExpressionChangedStart = Op; 769 if (!ExpressionChangedEnd) 770 ExpressionChangedEnd = Op; 771 } 772 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 773 MadeChange = true; 774 ++NumChanged; 775 } 776 777 // Now deal with the left-hand side. If this is already an operation node 778 // from the original expression then just rewrite the rest of the expression 779 // into it. 780 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 781 if (BO && !NotRewritable.count(BO)) { 782 Op = BO; 783 continue; 784 } 785 786 // Otherwise, grab a spare node from the original expression and use that as 787 // the left-hand side. If there are no nodes left then the optimizers made 788 // an expression with more nodes than the original! This usually means that 789 // they did something stupid but it might mean that the problem was just too 790 // hard (finding the mimimal number of multiplications needed to realize a 791 // multiplication expression is NP-complete). Whatever the reason, smart or 792 // stupid, create a new node if there are none left. 793 BinaryOperator *NewOp; 794 if (NodesToRewrite.empty()) { 795 Constant *Undef = UndefValue::get(I->getType()); 796 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 797 Undef, Undef, "", I); 798 if (isa<FPMathOperator>(NewOp)) 799 NewOp->setFastMathFlags(I->getFastMathFlags()); 800 } else { 801 NewOp = NodesToRewrite.pop_back_val(); 802 } 803 804 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 805 Op->setOperand(0, NewOp); 806 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 807 ExpressionChangedStart = Op; 808 if (!ExpressionChangedEnd) 809 ExpressionChangedEnd = Op; 810 MadeChange = true; 811 ++NumChanged; 812 Op = NewOp; 813 } 814 815 // If the expression changed non-trivially then clear out all subclass data 816 // starting from the operator specified in ExpressionChanged, and compactify 817 // the operators to just before the expression root to guarantee that the 818 // expression tree is dominated by all of Ops. 819 if (ExpressionChangedStart) { 820 bool ClearFlags = true; 821 do { 822 // Preserve flags. 823 if (ClearFlags) { 824 if (isa<FPMathOperator>(I)) { 825 FastMathFlags Flags = I->getFastMathFlags(); 826 ExpressionChangedStart->clearSubclassOptionalData(); 827 ExpressionChangedStart->setFastMathFlags(Flags); 828 } else { 829 ExpressionChangedStart->clearSubclassOptionalData(); 830 // Note that it doesn't hold for mul if one of the operands is zero. 831 // TODO: We can preserve NUW flag if we prove that all mul operands 832 // are non-zero. 833 if (HasNUW && ExpressionChangedStart->getOpcode() == Instruction::Add) 834 ExpressionChangedStart->setHasNoUnsignedWrap(); 835 } 836 } 837 838 if (ExpressionChangedStart == ExpressionChangedEnd) 839 ClearFlags = false; 840 if (ExpressionChangedStart == I) 841 break; 842 843 // Discard any debug info related to the expressions that has changed (we 844 // can leave debug info related to the root and any operation that didn't 845 // change, since the result of the expression tree should be the same 846 // even after reassociation). 847 if (ClearFlags) 848 replaceDbgUsesWithUndef(ExpressionChangedStart); 849 850 ExpressionChangedStart->moveBefore(I); 851 ExpressionChangedStart = 852 cast<BinaryOperator>(*ExpressionChangedStart->user_begin()); 853 } while (true); 854 } 855 856 // Throw away any left over nodes from the original expression. 857 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 858 RedoInsts.insert(NodesToRewrite[i]); 859 } 860 861 /// Insert instructions before the instruction pointed to by BI, 862 /// that computes the negative version of the value specified. The negative 863 /// version of the value is returned, and BI is left pointing at the instruction 864 /// that should be processed next by the reassociation pass. 865 /// Also add intermediate instructions to the redo list that are modified while 866 /// pushing the negates through adds. These will be revisited to see if 867 /// additional opportunities have been exposed. 868 static Value *NegateValue(Value *V, Instruction *BI, 869 ReassociatePass::OrderedSet &ToRedo) { 870 if (auto *C = dyn_cast<Constant>(V)) { 871 const DataLayout &DL = BI->getModule()->getDataLayout(); 872 Constant *Res = C->getType()->isFPOrFPVectorTy() 873 ? ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL) 874 : ConstantExpr::getNeg(C); 875 if (Res) 876 return Res; 877 } 878 879 // We are trying to expose opportunity for reassociation. One of the things 880 // that we want to do to achieve this is to push a negation as deep into an 881 // expression chain as possible, to expose the add instructions. In practice, 882 // this means that we turn this: 883 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 884 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 885 // the constants. We assume that instcombine will clean up the mess later if 886 // we introduce tons of unnecessary negation instructions. 887 // 888 if (BinaryOperator *I = 889 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 890 // Push the negates through the add. 891 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 892 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 893 if (I->getOpcode() == Instruction::Add) { 894 I->setHasNoUnsignedWrap(false); 895 I->setHasNoSignedWrap(false); 896 } 897 898 // We must move the add instruction here, because the neg instructions do 899 // not dominate the old add instruction in general. By moving it, we are 900 // assured that the neg instructions we just inserted dominate the 901 // instruction we are about to insert after them. 902 // 903 I->moveBefore(BI); 904 I->setName(I->getName()+".neg"); 905 906 // Add the intermediate negates to the redo list as processing them later 907 // could expose more reassociating opportunities. 908 ToRedo.insert(I); 909 return I; 910 } 911 912 // Okay, we need to materialize a negated version of V with an instruction. 913 // Scan the use lists of V to see if we have one already. 914 for (User *U : V->users()) { 915 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value()))) 916 continue; 917 918 // We found one! Now we have to make sure that the definition dominates 919 // this use. We do this by moving it to the entry block (if it is a 920 // non-instruction value) or right after the definition. These negates will 921 // be zapped by reassociate later, so we don't need much finesse here. 922 Instruction *TheNeg = dyn_cast<Instruction>(U); 923 924 // We can't safely propagate a vector zero constant with poison/undef lanes. 925 Constant *C; 926 if (match(TheNeg, m_BinOp(m_Constant(C), m_Value())) && 927 C->containsUndefOrPoisonElement()) 928 continue; 929 930 // Verify that the negate is in this function, V might be a constant expr. 931 if (!TheNeg || 932 TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 933 continue; 934 935 BasicBlock::iterator InsertPt; 936 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 937 auto InsertPtOpt = InstInput->getInsertionPointAfterDef(); 938 if (!InsertPtOpt) 939 continue; 940 InsertPt = *InsertPtOpt; 941 } else { 942 InsertPt = TheNeg->getFunction() 943 ->getEntryBlock() 944 .getFirstNonPHIOrDbg() 945 ->getIterator(); 946 } 947 948 TheNeg->moveBefore(*InsertPt->getParent(), InsertPt); 949 if (TheNeg->getOpcode() == Instruction::Sub) { 950 TheNeg->setHasNoUnsignedWrap(false); 951 TheNeg->setHasNoSignedWrap(false); 952 } else { 953 TheNeg->andIRFlags(BI); 954 } 955 ToRedo.insert(TheNeg); 956 return TheNeg; 957 } 958 959 // Insert a 'neg' instruction that subtracts the value from zero to get the 960 // negation. 961 Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 962 ToRedo.insert(NewNeg); 963 return NewNeg; 964 } 965 966 // See if this `or` looks like an load widening reduction, i.e. that it 967 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't 968 // ensure that the pattern is *really* a load widening reduction, 969 // we do not ensure that it can really be replaced with a widened load, 970 // only that it mostly looks like one. 971 static bool isLoadCombineCandidate(Instruction *Or) { 972 SmallVector<Instruction *, 8> Worklist; 973 SmallSet<Instruction *, 8> Visited; 974 975 auto Enqueue = [&](Value *V) { 976 auto *I = dyn_cast<Instruction>(V); 977 // Each node of an `or` reduction must be an instruction, 978 if (!I) 979 return false; // Node is certainly not part of an `or` load reduction. 980 // Only process instructions we have never processed before. 981 if (Visited.insert(I).second) 982 Worklist.emplace_back(I); 983 return true; // Will need to look at parent nodes. 984 }; 985 986 if (!Enqueue(Or)) 987 return false; // Not an `or` reduction pattern. 988 989 while (!Worklist.empty()) { 990 auto *I = Worklist.pop_back_val(); 991 992 // Okay, which instruction is this node? 993 switch (I->getOpcode()) { 994 case Instruction::Or: 995 // Got an `or` node. That's fine, just recurse into it's operands. 996 for (Value *Op : I->operands()) 997 if (!Enqueue(Op)) 998 return false; // Not an `or` reduction pattern. 999 continue; 1000 1001 case Instruction::Shl: 1002 case Instruction::ZExt: 1003 // `shl`/`zext` nodes are fine, just recurse into their base operand. 1004 if (!Enqueue(I->getOperand(0))) 1005 return false; // Not an `or` reduction pattern. 1006 continue; 1007 1008 case Instruction::Load: 1009 // Perfect, `load` node means we've reached an edge of the graph. 1010 continue; 1011 1012 default: // Unknown node. 1013 return false; // Not an `or` reduction pattern. 1014 } 1015 } 1016 1017 return true; 1018 } 1019 1020 /// Return true if it may be profitable to convert this (X|Y) into (X+Y). 1021 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) { 1022 // Don't bother to convert this up unless either the LHS is an associable add 1023 // or subtract or mul or if this is only used by one of the above. 1024 // This is only a compile-time improvement, it is not needed for correctness! 1025 auto isInteresting = [](Value *V) { 1026 for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul, 1027 Instruction::Shl}) 1028 if (isReassociableOp(V, Op)) 1029 return true; 1030 return false; 1031 }; 1032 1033 if (any_of(Or->operands(), isInteresting)) 1034 return true; 1035 1036 Value *VB = Or->user_back(); 1037 if (Or->hasOneUse() && isInteresting(VB)) 1038 return true; 1039 1040 return false; 1041 } 1042 1043 /// If we have (X|Y), and iff X and Y have no common bits set, 1044 /// transform this into (X+Y) to allow arithmetics reassociation. 1045 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) { 1046 // Convert an or into an add. 1047 BinaryOperator *New = 1048 CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or); 1049 New->setHasNoSignedWrap(); 1050 New->setHasNoUnsignedWrap(); 1051 New->takeName(Or); 1052 1053 // Everyone now refers to the add instruction. 1054 Or->replaceAllUsesWith(New); 1055 New->setDebugLoc(Or->getDebugLoc()); 1056 1057 LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n'); 1058 return New; 1059 } 1060 1061 /// Return true if we should break up this subtract of X-Y into (X + -Y). 1062 static bool ShouldBreakUpSubtract(Instruction *Sub) { 1063 // If this is a negation, we can't split it up! 1064 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 1065 return false; 1066 1067 // Don't breakup X - undef. 1068 if (isa<UndefValue>(Sub->getOperand(1))) 1069 return false; 1070 1071 // Don't bother to break this up unless either the LHS is an associable add or 1072 // subtract or if this is only used by one. 1073 Value *V0 = Sub->getOperand(0); 1074 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 1075 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 1076 return true; 1077 Value *V1 = Sub->getOperand(1); 1078 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 1079 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 1080 return true; 1081 Value *VB = Sub->user_back(); 1082 if (Sub->hasOneUse() && 1083 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 1084 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 1085 return true; 1086 1087 return false; 1088 } 1089 1090 /// If we have (X-Y), and if either X is an add, or if this is only used by an 1091 /// add, transform this into (X+(0-Y)) to promote better reassociation. 1092 static BinaryOperator *BreakUpSubtract(Instruction *Sub, 1093 ReassociatePass::OrderedSet &ToRedo) { 1094 // Convert a subtract into an add and a neg instruction. This allows sub 1095 // instructions to be commuted with other add instructions. 1096 // 1097 // Calculate the negative value of Operand 1 of the sub instruction, 1098 // and set it as the RHS of the add instruction we just made. 1099 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 1100 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 1101 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 1102 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 1103 New->takeName(Sub); 1104 1105 // Everyone now refers to the add instruction. 1106 Sub->replaceAllUsesWith(New); 1107 New->setDebugLoc(Sub->getDebugLoc()); 1108 1109 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); 1110 return New; 1111 } 1112 1113 /// If this is a shift of a reassociable multiply or is used by one, change 1114 /// this into a multiply by a constant to assist with further reassociation. 1115 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 1116 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 1117 auto *SA = cast<ConstantInt>(Shl->getOperand(1)); 1118 MulCst = ConstantExpr::getShl(MulCst, SA); 1119 1120 BinaryOperator *Mul = 1121 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 1122 Shl->setOperand(0, PoisonValue::get(Shl->getType())); // Drop use of op. 1123 Mul->takeName(Shl); 1124 1125 // Everyone now refers to the mul instruction. 1126 Shl->replaceAllUsesWith(Mul); 1127 Mul->setDebugLoc(Shl->getDebugLoc()); 1128 1129 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 1130 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 1131 // handling. It can be preserved as long as we're not left shifting by 1132 // bitwidth - 1. 1133 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 1134 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 1135 unsigned BitWidth = Shl->getType()->getIntegerBitWidth(); 1136 if (NSW && (NUW || SA->getValue().ult(BitWidth - 1))) 1137 Mul->setHasNoSignedWrap(true); 1138 Mul->setHasNoUnsignedWrap(NUW); 1139 return Mul; 1140 } 1141 1142 /// Scan backwards and forwards among values with the same rank as element i 1143 /// to see if X exists. If X does not exist, return i. This is useful when 1144 /// scanning for 'x' when we see '-x' because they both get the same rank. 1145 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 1146 unsigned i, Value *X) { 1147 unsigned XRank = Ops[i].Rank; 1148 unsigned e = Ops.size(); 1149 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1150 if (Ops[j].Op == X) 1151 return j; 1152 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1153 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1154 if (I1->isIdenticalTo(I2)) 1155 return j; 1156 } 1157 // Scan backwards. 1158 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1159 if (Ops[j].Op == X) 1160 return j; 1161 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1162 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1163 if (I1->isIdenticalTo(I2)) 1164 return j; 1165 } 1166 return i; 1167 } 1168 1169 /// Emit a tree of add instructions, summing Ops together 1170 /// and returning the result. Insert the tree before I. 1171 static Value *EmitAddTreeOfValues(Instruction *I, 1172 SmallVectorImpl<WeakTrackingVH> &Ops) { 1173 if (Ops.size() == 1) return Ops.back(); 1174 1175 Value *V1 = Ops.pop_back_val(); 1176 Value *V2 = EmitAddTreeOfValues(I, Ops); 1177 return CreateAdd(V2, V1, "reass.add", I, I); 1178 } 1179 1180 /// If V is an expression tree that is a multiplication sequence, 1181 /// and if this sequence contains a multiply by Factor, 1182 /// remove Factor from the tree and return the new tree. 1183 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1184 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1185 if (!BO) 1186 return nullptr; 1187 1188 SmallVector<RepeatedValue, 8> Tree; 1189 bool HasNUW = true; 1190 MadeChange |= LinearizeExprTree(BO, Tree, RedoInsts, HasNUW); 1191 SmallVector<ValueEntry, 8> Factors; 1192 Factors.reserve(Tree.size()); 1193 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1194 RepeatedValue E = Tree[i]; 1195 Factors.append(E.second.getZExtValue(), 1196 ValueEntry(getRank(E.first), E.first)); 1197 } 1198 1199 bool FoundFactor = false; 1200 bool NeedsNegate = false; 1201 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1202 if (Factors[i].Op == Factor) { 1203 FoundFactor = true; 1204 Factors.erase(Factors.begin()+i); 1205 break; 1206 } 1207 1208 // If this is a negative version of this factor, remove it. 1209 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1210 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1211 if (FC1->getValue() == -FC2->getValue()) { 1212 FoundFactor = NeedsNegate = true; 1213 Factors.erase(Factors.begin()+i); 1214 break; 1215 } 1216 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1217 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1218 const APFloat &F1 = FC1->getValueAPF(); 1219 APFloat F2(FC2->getValueAPF()); 1220 F2.changeSign(); 1221 if (F1 == F2) { 1222 FoundFactor = NeedsNegate = true; 1223 Factors.erase(Factors.begin() + i); 1224 break; 1225 } 1226 } 1227 } 1228 } 1229 1230 if (!FoundFactor) { 1231 // Make sure to restore the operands to the expression tree. 1232 RewriteExprTree(BO, Factors, HasNUW); 1233 return nullptr; 1234 } 1235 1236 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1237 1238 // If this was just a single multiply, remove the multiply and return the only 1239 // remaining operand. 1240 if (Factors.size() == 1) { 1241 RedoInsts.insert(BO); 1242 V = Factors[0].Op; 1243 } else { 1244 RewriteExprTree(BO, Factors, HasNUW); 1245 V = BO; 1246 } 1247 1248 if (NeedsNegate) 1249 V = CreateNeg(V, "neg", &*InsertPt, BO); 1250 1251 return V; 1252 } 1253 1254 /// If V is a single-use multiply, recursively add its operands as factors, 1255 /// otherwise add V to the list of factors. 1256 /// 1257 /// Ops is the top-level list of add operands we're trying to factor. 1258 static void FindSingleUseMultiplyFactors(Value *V, 1259 SmallVectorImpl<Value*> &Factors) { 1260 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1261 if (!BO) { 1262 Factors.push_back(V); 1263 return; 1264 } 1265 1266 // Otherwise, add the LHS and RHS to the list of factors. 1267 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1268 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1269 } 1270 1271 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1272 /// This optimizes based on identities. If it can be reduced to a single Value, 1273 /// it is returned, otherwise the Ops list is mutated as necessary. 1274 static Value *OptimizeAndOrXor(unsigned Opcode, 1275 SmallVectorImpl<ValueEntry> &Ops) { 1276 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1277 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1278 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1279 // First, check for X and ~X in the operand list. 1280 assert(i < Ops.size()); 1281 Value *X; 1282 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^. 1283 unsigned FoundX = FindInOperandList(Ops, i, X); 1284 if (FoundX != i) { 1285 if (Opcode == Instruction::And) // ...&X&~X = 0 1286 return Constant::getNullValue(X->getType()); 1287 1288 if (Opcode == Instruction::Or) // ...|X|~X = -1 1289 return Constant::getAllOnesValue(X->getType()); 1290 } 1291 } 1292 1293 // Next, check for duplicate pairs of values, which we assume are next to 1294 // each other, due to our sorting criteria. 1295 assert(i < Ops.size()); 1296 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1297 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1298 // Drop duplicate values for And and Or. 1299 Ops.erase(Ops.begin()+i); 1300 --i; --e; 1301 ++NumAnnihil; 1302 continue; 1303 } 1304 1305 // Drop pairs of values for Xor. 1306 assert(Opcode == Instruction::Xor); 1307 if (e == 2) 1308 return Constant::getNullValue(Ops[0].Op->getType()); 1309 1310 // Y ^ X^X -> Y 1311 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1312 i -= 1; e -= 2; 1313 ++NumAnnihil; 1314 } 1315 } 1316 return nullptr; 1317 } 1318 1319 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1320 /// instruction with the given two operands, and return the resulting 1321 /// instruction. There are two special cases: 1) if the constant operand is 0, 1322 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1323 /// be returned. 1324 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1325 const APInt &ConstOpnd) { 1326 if (ConstOpnd.isZero()) 1327 return nullptr; 1328 1329 if (ConstOpnd.isAllOnes()) 1330 return Opnd; 1331 1332 Instruction *I = BinaryOperator::CreateAnd( 1333 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1334 InsertBefore); 1335 I->setDebugLoc(InsertBefore->getDebugLoc()); 1336 return I; 1337 } 1338 1339 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1340 // into "R ^ C", where C would be 0, and R is a symbolic value. 1341 // 1342 // If it was successful, true is returned, and the "R" and "C" is returned 1343 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1344 // and both "Res" and "ConstOpnd" remain unchanged. 1345 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1346 APInt &ConstOpnd, Value *&Res) { 1347 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1348 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1349 // = (x & ~c1) ^ (c1 ^ c2) 1350 // It is useful only when c1 == c2. 1351 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero()) 1352 return false; 1353 1354 if (!Opnd1->getValue()->hasOneUse()) 1355 return false; 1356 1357 const APInt &C1 = Opnd1->getConstPart(); 1358 if (C1 != ConstOpnd) 1359 return false; 1360 1361 Value *X = Opnd1->getSymbolicPart(); 1362 Res = createAndInstr(I, X, ~C1); 1363 // ConstOpnd was C2, now C1 ^ C2. 1364 ConstOpnd ^= C1; 1365 1366 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1367 RedoInsts.insert(T); 1368 return true; 1369 } 1370 1371 // Helper function of OptimizeXor(). It tries to simplify 1372 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1373 // symbolic value. 1374 // 1375 // If it was successful, true is returned, and the "R" and "C" is returned 1376 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1377 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1378 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1379 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1380 XorOpnd *Opnd2, APInt &ConstOpnd, 1381 Value *&Res) { 1382 Value *X = Opnd1->getSymbolicPart(); 1383 if (X != Opnd2->getSymbolicPart()) 1384 return false; 1385 1386 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1387 int DeadInstNum = 1; 1388 if (Opnd1->getValue()->hasOneUse()) 1389 DeadInstNum++; 1390 if (Opnd2->getValue()->hasOneUse()) 1391 DeadInstNum++; 1392 1393 // Xor-Rule 2: 1394 // (x | c1) ^ (x & c2) 1395 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1396 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1397 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1398 // 1399 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1400 if (Opnd2->isOrExpr()) 1401 std::swap(Opnd1, Opnd2); 1402 1403 const APInt &C1 = Opnd1->getConstPart(); 1404 const APInt &C2 = Opnd2->getConstPart(); 1405 APInt C3((~C1) ^ C2); 1406 1407 // Do not increase code size! 1408 if (!C3.isZero() && !C3.isAllOnes()) { 1409 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1410 if (NewInstNum > DeadInstNum) 1411 return false; 1412 } 1413 1414 Res = createAndInstr(I, X, C3); 1415 ConstOpnd ^= C1; 1416 } else if (Opnd1->isOrExpr()) { 1417 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1418 // 1419 const APInt &C1 = Opnd1->getConstPart(); 1420 const APInt &C2 = Opnd2->getConstPart(); 1421 APInt C3 = C1 ^ C2; 1422 1423 // Do not increase code size 1424 if (!C3.isZero() && !C3.isAllOnes()) { 1425 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1426 if (NewInstNum > DeadInstNum) 1427 return false; 1428 } 1429 1430 Res = createAndInstr(I, X, C3); 1431 ConstOpnd ^= C3; 1432 } else { 1433 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1434 // 1435 const APInt &C1 = Opnd1->getConstPart(); 1436 const APInt &C2 = Opnd2->getConstPart(); 1437 APInt C3 = C1 ^ C2; 1438 Res = createAndInstr(I, X, C3); 1439 } 1440 1441 // Put the original operands in the Redo list; hope they will be deleted 1442 // as dead code. 1443 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1444 RedoInsts.insert(T); 1445 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1446 RedoInsts.insert(T); 1447 1448 return true; 1449 } 1450 1451 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1452 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1453 /// necessary. 1454 Value *ReassociatePass::OptimizeXor(Instruction *I, 1455 SmallVectorImpl<ValueEntry> &Ops) { 1456 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1457 return V; 1458 1459 if (Ops.size() == 1) 1460 return nullptr; 1461 1462 SmallVector<XorOpnd, 8> Opnds; 1463 SmallVector<XorOpnd*, 8> OpndPtrs; 1464 Type *Ty = Ops[0].Op->getType(); 1465 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1466 1467 // Step 1: Convert ValueEntry to XorOpnd 1468 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1469 Value *V = Ops[i].Op; 1470 const APInt *C; 1471 // TODO: Support non-splat vectors. 1472 if (match(V, m_APInt(C))) { 1473 ConstOpnd ^= *C; 1474 } else { 1475 XorOpnd O(V); 1476 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1477 Opnds.push_back(O); 1478 } 1479 } 1480 1481 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1482 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1483 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1484 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1485 // when new elements are added to the vector. 1486 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1487 OpndPtrs.push_back(&Opnds[i]); 1488 1489 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1490 // the same symbolic value cluster together. For instance, the input operand 1491 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1492 // ("x | 123", "x & 789", "y & 456"). 1493 // 1494 // The purpose is twofold: 1495 // 1) Cluster together the operands sharing the same symbolic-value. 1496 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1497 // could potentially shorten crital path, and expose more loop-invariants. 1498 // Note that values' rank are basically defined in RPO order (FIXME). 1499 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1500 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1501 // "z" in the order of X-Y-Z is better than any other orders. 1502 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) { 1503 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1504 }); 1505 1506 // Step 3: Combine adjacent operands 1507 XorOpnd *PrevOpnd = nullptr; 1508 bool Changed = false; 1509 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1510 XorOpnd *CurrOpnd = OpndPtrs[i]; 1511 // The combined value 1512 Value *CV; 1513 1514 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1515 if (!ConstOpnd.isZero() && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1516 Changed = true; 1517 if (CV) 1518 *CurrOpnd = XorOpnd(CV); 1519 else { 1520 CurrOpnd->Invalidate(); 1521 continue; 1522 } 1523 } 1524 1525 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1526 PrevOpnd = CurrOpnd; 1527 continue; 1528 } 1529 1530 // step 3.2: When previous and current operands share the same symbolic 1531 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1532 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1533 // Remove previous operand 1534 PrevOpnd->Invalidate(); 1535 if (CV) { 1536 *CurrOpnd = XorOpnd(CV); 1537 PrevOpnd = CurrOpnd; 1538 } else { 1539 CurrOpnd->Invalidate(); 1540 PrevOpnd = nullptr; 1541 } 1542 Changed = true; 1543 } 1544 } 1545 1546 // Step 4: Reassemble the Ops 1547 if (Changed) { 1548 Ops.clear(); 1549 for (const XorOpnd &O : Opnds) { 1550 if (O.isInvalid()) 1551 continue; 1552 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1553 Ops.push_back(VE); 1554 } 1555 if (!ConstOpnd.isZero()) { 1556 Value *C = ConstantInt::get(Ty, ConstOpnd); 1557 ValueEntry VE(getRank(C), C); 1558 Ops.push_back(VE); 1559 } 1560 unsigned Sz = Ops.size(); 1561 if (Sz == 1) 1562 return Ops.back().Op; 1563 if (Sz == 0) { 1564 assert(ConstOpnd.isZero()); 1565 return ConstantInt::get(Ty, ConstOpnd); 1566 } 1567 } 1568 1569 return nullptr; 1570 } 1571 1572 /// Optimize a series of operands to an 'add' instruction. This 1573 /// optimizes based on identities. If it can be reduced to a single Value, it 1574 /// is returned, otherwise the Ops list is mutated as necessary. 1575 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1576 SmallVectorImpl<ValueEntry> &Ops) { 1577 // Scan the operand lists looking for X and -X pairs. If we find any, we 1578 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1579 // scan for any 1580 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1581 1582 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1583 Value *TheOp = Ops[i].Op; 1584 // Check to see if we've seen this operand before. If so, we factor all 1585 // instances of the operand together. Due to our sorting criteria, we know 1586 // that these need to be next to each other in the vector. 1587 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1588 // Rescan the list, remove all instances of this operand from the expr. 1589 unsigned NumFound = 0; 1590 do { 1591 Ops.erase(Ops.begin()+i); 1592 ++NumFound; 1593 } while (i != Ops.size() && Ops[i].Op == TheOp); 1594 1595 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp 1596 << '\n'); 1597 ++NumFactor; 1598 1599 // Insert a new multiply. 1600 Type *Ty = TheOp->getType(); 1601 Constant *C = Ty->isIntOrIntVectorTy() ? 1602 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1603 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1604 1605 // Now that we have inserted a multiply, optimize it. This allows us to 1606 // handle cases that require multiple factoring steps, such as this: 1607 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1608 RedoInsts.insert(Mul); 1609 1610 // If every add operand was a duplicate, return the multiply. 1611 if (Ops.empty()) 1612 return Mul; 1613 1614 // Otherwise, we had some input that didn't have the dupe, such as 1615 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1616 // things being added by this operation. 1617 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1618 1619 --i; 1620 e = Ops.size(); 1621 continue; 1622 } 1623 1624 // Check for X and -X or X and ~X in the operand list. 1625 Value *X; 1626 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) && 1627 !match(TheOp, m_FNeg(m_Value(X)))) 1628 continue; 1629 1630 unsigned FoundX = FindInOperandList(Ops, i, X); 1631 if (FoundX == i) 1632 continue; 1633 1634 // Remove X and -X from the operand list. 1635 if (Ops.size() == 2 && 1636 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value())))) 1637 return Constant::getNullValue(X->getType()); 1638 1639 // Remove X and ~X from the operand list. 1640 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value()))) 1641 return Constant::getAllOnesValue(X->getType()); 1642 1643 Ops.erase(Ops.begin()+i); 1644 if (i < FoundX) 1645 --FoundX; 1646 else 1647 --i; // Need to back up an extra one. 1648 Ops.erase(Ops.begin()+FoundX); 1649 ++NumAnnihil; 1650 --i; // Revisit element. 1651 e -= 2; // Removed two elements. 1652 1653 // if X and ~X we append -1 to the operand list. 1654 if (match(TheOp, m_Not(m_Value()))) { 1655 Value *V = Constant::getAllOnesValue(X->getType()); 1656 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1657 e += 1; 1658 } 1659 } 1660 1661 // Scan the operand list, checking to see if there are any common factors 1662 // between operands. Consider something like A*A+A*B*C+D. We would like to 1663 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1664 // To efficiently find this, we count the number of times a factor occurs 1665 // for any ADD operands that are MULs. 1666 DenseMap<Value*, unsigned> FactorOccurrences; 1667 1668 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1669 // where they are actually the same multiply. 1670 unsigned MaxOcc = 0; 1671 Value *MaxOccVal = nullptr; 1672 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1673 BinaryOperator *BOp = 1674 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1675 if (!BOp) 1676 continue; 1677 1678 // Compute all of the factors of this added value. 1679 SmallVector<Value*, 8> Factors; 1680 FindSingleUseMultiplyFactors(BOp, Factors); 1681 assert(Factors.size() > 1 && "Bad linearize!"); 1682 1683 // Add one to FactorOccurrences for each unique factor in this op. 1684 SmallPtrSet<Value*, 8> Duplicates; 1685 for (Value *Factor : Factors) { 1686 if (!Duplicates.insert(Factor).second) 1687 continue; 1688 1689 unsigned Occ = ++FactorOccurrences[Factor]; 1690 if (Occ > MaxOcc) { 1691 MaxOcc = Occ; 1692 MaxOccVal = Factor; 1693 } 1694 1695 // If Factor is a negative constant, add the negated value as a factor 1696 // because we can percolate the negate out. Watch for minint, which 1697 // cannot be positivified. 1698 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1699 if (CI->isNegative() && !CI->isMinValue(true)) { 1700 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1701 if (!Duplicates.insert(Factor).second) 1702 continue; 1703 unsigned Occ = ++FactorOccurrences[Factor]; 1704 if (Occ > MaxOcc) { 1705 MaxOcc = Occ; 1706 MaxOccVal = Factor; 1707 } 1708 } 1709 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1710 if (CF->isNegative()) { 1711 APFloat F(CF->getValueAPF()); 1712 F.changeSign(); 1713 Factor = ConstantFP::get(CF->getContext(), F); 1714 if (!Duplicates.insert(Factor).second) 1715 continue; 1716 unsigned Occ = ++FactorOccurrences[Factor]; 1717 if (Occ > MaxOcc) { 1718 MaxOcc = Occ; 1719 MaxOccVal = Factor; 1720 } 1721 } 1722 } 1723 } 1724 } 1725 1726 // If any factor occurred more than one time, we can pull it out. 1727 if (MaxOcc > 1) { 1728 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal 1729 << '\n'); 1730 ++NumFactor; 1731 1732 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1733 // this, we could otherwise run into situations where removing a factor 1734 // from an expression will drop a use of maxocc, and this can cause 1735 // RemoveFactorFromExpression on successive values to behave differently. 1736 Instruction *DummyInst = 1737 I->getType()->isIntOrIntVectorTy() 1738 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1739 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1740 1741 SmallVector<WeakTrackingVH, 4> NewMulOps; 1742 for (unsigned i = 0; i != Ops.size(); ++i) { 1743 // Only try to remove factors from expressions we're allowed to. 1744 BinaryOperator *BOp = 1745 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1746 if (!BOp) 1747 continue; 1748 1749 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1750 // The factorized operand may occur several times. Convert them all in 1751 // one fell swoop. 1752 for (unsigned j = Ops.size(); j != i;) { 1753 --j; 1754 if (Ops[j].Op == Ops[i].Op) { 1755 NewMulOps.push_back(V); 1756 Ops.erase(Ops.begin()+j); 1757 } 1758 } 1759 --i; 1760 } 1761 } 1762 1763 // No need for extra uses anymore. 1764 DummyInst->deleteValue(); 1765 1766 unsigned NumAddedValues = NewMulOps.size(); 1767 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1768 1769 // Now that we have inserted the add tree, optimize it. This allows us to 1770 // handle cases that require multiple factoring steps, such as this: 1771 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1772 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1773 (void)NumAddedValues; 1774 if (Instruction *VI = dyn_cast<Instruction>(V)) 1775 RedoInsts.insert(VI); 1776 1777 // Create the multiply. 1778 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1779 1780 // Rerun associate on the multiply in case the inner expression turned into 1781 // a multiply. We want to make sure that we keep things in canonical form. 1782 RedoInsts.insert(V2); 1783 1784 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1785 // entire result expression is just the multiply "A*(B+C)". 1786 if (Ops.empty()) 1787 return V2; 1788 1789 // Otherwise, we had some input that didn't have the factor, such as 1790 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1791 // things being added by this operation. 1792 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1793 } 1794 1795 return nullptr; 1796 } 1797 1798 /// Build up a vector of value/power pairs factoring a product. 1799 /// 1800 /// Given a series of multiplication operands, build a vector of factors and 1801 /// the powers each is raised to when forming the final product. Sort them in 1802 /// the order of descending power. 1803 /// 1804 /// (x*x) -> [(x, 2)] 1805 /// ((x*x)*x) -> [(x, 3)] 1806 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1807 /// 1808 /// \returns Whether any factors have a power greater than one. 1809 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1810 SmallVectorImpl<Factor> &Factors) { 1811 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1812 // Compute the sum of powers of simplifiable factors. 1813 unsigned FactorPowerSum = 0; 1814 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1815 Value *Op = Ops[Idx-1].Op; 1816 1817 // Count the number of occurrences of this value. 1818 unsigned Count = 1; 1819 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1820 ++Count; 1821 // Track for simplification all factors which occur 2 or more times. 1822 if (Count > 1) 1823 FactorPowerSum += Count; 1824 } 1825 1826 // We can only simplify factors if the sum of the powers of our simplifiable 1827 // factors is 4 or higher. When that is the case, we will *always* have 1828 // a simplification. This is an important invariant to prevent cyclicly 1829 // trying to simplify already minimal formations. 1830 if (FactorPowerSum < 4) 1831 return false; 1832 1833 // Now gather the simplifiable factors, removing them from Ops. 1834 FactorPowerSum = 0; 1835 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1836 Value *Op = Ops[Idx-1].Op; 1837 1838 // Count the number of occurrences of this value. 1839 unsigned Count = 1; 1840 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1841 ++Count; 1842 if (Count == 1) 1843 continue; 1844 // Move an even number of occurrences to Factors. 1845 Count &= ~1U; 1846 Idx -= Count; 1847 FactorPowerSum += Count; 1848 Factors.push_back(Factor(Op, Count)); 1849 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1850 } 1851 1852 // None of the adjustments above should have reduced the sum of factor powers 1853 // below our mininum of '4'. 1854 assert(FactorPowerSum >= 4); 1855 1856 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) { 1857 return LHS.Power > RHS.Power; 1858 }); 1859 return true; 1860 } 1861 1862 /// Build a tree of multiplies, computing the product of Ops. 1863 static Value *buildMultiplyTree(IRBuilderBase &Builder, 1864 SmallVectorImpl<Value*> &Ops) { 1865 if (Ops.size() == 1) 1866 return Ops.back(); 1867 1868 Value *LHS = Ops.pop_back_val(); 1869 do { 1870 if (LHS->getType()->isIntOrIntVectorTy()) 1871 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1872 else 1873 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1874 } while (!Ops.empty()); 1875 1876 return LHS; 1877 } 1878 1879 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1880 /// 1881 /// Given a vector of values raised to various powers, where no two values are 1882 /// equal and the powers are sorted in decreasing order, compute the minimal 1883 /// DAG of multiplies to compute the final product, and return that product 1884 /// value. 1885 Value * 1886 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder, 1887 SmallVectorImpl<Factor> &Factors) { 1888 assert(Factors[0].Power); 1889 SmallVector<Value *, 4> OuterProduct; 1890 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1891 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1892 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1893 LastIdx = Idx; 1894 continue; 1895 } 1896 1897 // We want to multiply across all the factors with the same power so that 1898 // we can raise them to that power as a single entity. Build a mini tree 1899 // for that. 1900 SmallVector<Value *, 4> InnerProduct; 1901 InnerProduct.push_back(Factors[LastIdx].Base); 1902 do { 1903 InnerProduct.push_back(Factors[Idx].Base); 1904 ++Idx; 1905 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1906 1907 // Reset the base value of the first factor to the new expression tree. 1908 // We'll remove all the factors with the same power in a second pass. 1909 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1910 if (Instruction *MI = dyn_cast<Instruction>(M)) 1911 RedoInsts.insert(MI); 1912 1913 LastIdx = Idx; 1914 } 1915 // Unique factors with equal powers -- we've folded them into the first one's 1916 // base. 1917 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1918 [](const Factor &LHS, const Factor &RHS) { 1919 return LHS.Power == RHS.Power; 1920 }), 1921 Factors.end()); 1922 1923 // Iteratively collect the base of each factor with an add power into the 1924 // outer product, and halve each power in preparation for squaring the 1925 // expression. 1926 for (Factor &F : Factors) { 1927 if (F.Power & 1) 1928 OuterProduct.push_back(F.Base); 1929 F.Power >>= 1; 1930 } 1931 if (Factors[0].Power) { 1932 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1933 OuterProduct.push_back(SquareRoot); 1934 OuterProduct.push_back(SquareRoot); 1935 } 1936 if (OuterProduct.size() == 1) 1937 return OuterProduct.front(); 1938 1939 Value *V = buildMultiplyTree(Builder, OuterProduct); 1940 return V; 1941 } 1942 1943 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1944 SmallVectorImpl<ValueEntry> &Ops) { 1945 // We can only optimize the multiplies when there is a chain of more than 1946 // three, such that a balanced tree might require fewer total multiplies. 1947 if (Ops.size() < 4) 1948 return nullptr; 1949 1950 // Try to turn linear trees of multiplies without other uses of the 1951 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1952 // re-use. 1953 SmallVector<Factor, 4> Factors; 1954 if (!collectMultiplyFactors(Ops, Factors)) 1955 return nullptr; // All distinct factors, so nothing left for us to do. 1956 1957 IRBuilder<> Builder(I); 1958 // The reassociate transformation for FP operations is performed only 1959 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1960 // to the newly generated operations. 1961 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1962 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1963 1964 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1965 if (Ops.empty()) 1966 return V; 1967 1968 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1969 Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry); 1970 return nullptr; 1971 } 1972 1973 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1974 SmallVectorImpl<ValueEntry> &Ops) { 1975 // Now that we have the linearized expression tree, try to optimize it. 1976 // Start by folding any constants that we found. 1977 const DataLayout &DL = I->getModule()->getDataLayout(); 1978 Constant *Cst = nullptr; 1979 unsigned Opcode = I->getOpcode(); 1980 while (!Ops.empty()) { 1981 if (auto *C = dyn_cast<Constant>(Ops.back().Op)) { 1982 if (!Cst) { 1983 Ops.pop_back(); 1984 Cst = C; 1985 continue; 1986 } 1987 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, C, Cst, DL)) { 1988 Ops.pop_back(); 1989 Cst = Res; 1990 continue; 1991 } 1992 } 1993 break; 1994 } 1995 // If there was nothing but constants then we are done. 1996 if (Ops.empty()) 1997 return Cst; 1998 1999 // Put the combined constant back at the end of the operand list, except if 2000 // there is no point. For example, an add of 0 gets dropped here, while a 2001 // multiplication by zero turns the whole expression into zero. 2002 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 2003 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 2004 return Cst; 2005 Ops.push_back(ValueEntry(0, Cst)); 2006 } 2007 2008 if (Ops.size() == 1) return Ops[0].Op; 2009 2010 // Handle destructive annihilation due to identities between elements in the 2011 // argument list here. 2012 unsigned NumOps = Ops.size(); 2013 switch (Opcode) { 2014 default: break; 2015 case Instruction::And: 2016 case Instruction::Or: 2017 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 2018 return Result; 2019 break; 2020 2021 case Instruction::Xor: 2022 if (Value *Result = OptimizeXor(I, Ops)) 2023 return Result; 2024 break; 2025 2026 case Instruction::Add: 2027 case Instruction::FAdd: 2028 if (Value *Result = OptimizeAdd(I, Ops)) 2029 return Result; 2030 break; 2031 2032 case Instruction::Mul: 2033 case Instruction::FMul: 2034 if (Value *Result = OptimizeMul(I, Ops)) 2035 return Result; 2036 break; 2037 } 2038 2039 if (Ops.size() != NumOps) 2040 return OptimizeExpression(I, Ops); 2041 return nullptr; 2042 } 2043 2044 // Remove dead instructions and if any operands are trivially dead add them to 2045 // Insts so they will be removed as well. 2046 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 2047 OrderedSet &Insts) { 2048 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 2049 SmallVector<Value *, 4> Ops(I->operands()); 2050 ValueRankMap.erase(I); 2051 Insts.remove(I); 2052 RedoInsts.remove(I); 2053 llvm::salvageDebugInfo(*I); 2054 I->eraseFromParent(); 2055 for (auto *Op : Ops) 2056 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 2057 if (OpInst->use_empty()) 2058 Insts.insert(OpInst); 2059 } 2060 2061 /// Zap the given instruction, adding interesting operands to the work list. 2062 void ReassociatePass::EraseInst(Instruction *I) { 2063 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 2064 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 2065 2066 SmallVector<Value *, 8> Ops(I->operands()); 2067 // Erase the dead instruction. 2068 ValueRankMap.erase(I); 2069 RedoInsts.remove(I); 2070 llvm::salvageDebugInfo(*I); 2071 I->eraseFromParent(); 2072 // Optimize its operands. 2073 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 2074 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2075 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 2076 // If this is a node in an expression tree, climb to the expression root 2077 // and add that since that's where optimization actually happens. 2078 unsigned Opcode = Op->getOpcode(); 2079 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 2080 Visited.insert(Op).second) 2081 Op = Op->user_back(); 2082 2083 // The instruction we're going to push may be coming from a 2084 // dead block, and Reassociate skips the processing of unreachable 2085 // blocks because it's a waste of time and also because it can 2086 // lead to infinite loop due to LLVM's non-standard definition 2087 // of dominance. 2088 if (ValueRankMap.contains(Op)) 2089 RedoInsts.insert(Op); 2090 } 2091 2092 MadeChange = true; 2093 } 2094 2095 /// Recursively analyze an expression to build a list of instructions that have 2096 /// negative floating-point constant operands. The caller can then transform 2097 /// the list to create positive constants for better reassociation and CSE. 2098 static void getNegatibleInsts(Value *V, 2099 SmallVectorImpl<Instruction *> &Candidates) { 2100 // Handle only one-use instructions. Combining negations does not justify 2101 // replicating instructions. 2102 Instruction *I; 2103 if (!match(V, m_OneUse(m_Instruction(I)))) 2104 return; 2105 2106 // Handle expressions of multiplications and divisions. 2107 // TODO: This could look through floating-point casts. 2108 const APFloat *C; 2109 switch (I->getOpcode()) { 2110 case Instruction::FMul: 2111 // Not expecting non-canonical code here. Bail out and wait. 2112 if (match(I->getOperand(0), m_Constant())) 2113 break; 2114 2115 if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) { 2116 Candidates.push_back(I); 2117 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n'); 2118 } 2119 getNegatibleInsts(I->getOperand(0), Candidates); 2120 getNegatibleInsts(I->getOperand(1), Candidates); 2121 break; 2122 case Instruction::FDiv: 2123 // Not expecting non-canonical code here. Bail out and wait. 2124 if (match(I->getOperand(0), m_Constant()) && 2125 match(I->getOperand(1), m_Constant())) 2126 break; 2127 2128 if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) || 2129 (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) { 2130 Candidates.push_back(I); 2131 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n'); 2132 } 2133 getNegatibleInsts(I->getOperand(0), Candidates); 2134 getNegatibleInsts(I->getOperand(1), Candidates); 2135 break; 2136 default: 2137 break; 2138 } 2139 } 2140 2141 /// Given an fadd/fsub with an operand that is a one-use instruction 2142 /// (the fadd/fsub), try to change negative floating-point constants into 2143 /// positive constants to increase potential for reassociation and CSE. 2144 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I, 2145 Instruction *Op, 2146 Value *OtherOp) { 2147 assert((I->getOpcode() == Instruction::FAdd || 2148 I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub"); 2149 2150 // Collect instructions with negative FP constants from the subtree that ends 2151 // in Op. 2152 SmallVector<Instruction *, 4> Candidates; 2153 getNegatibleInsts(Op, Candidates); 2154 if (Candidates.empty()) 2155 return nullptr; 2156 2157 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 2158 // resulting subtract will be broken up later. This can get us into an 2159 // infinite loop during reassociation. 2160 bool IsFSub = I->getOpcode() == Instruction::FSub; 2161 bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1; 2162 if (NeedsSubtract && ShouldBreakUpSubtract(I)) 2163 return nullptr; 2164 2165 for (Instruction *Negatible : Candidates) { 2166 const APFloat *C; 2167 if (match(Negatible->getOperand(0), m_APFloat(C))) { 2168 assert(!match(Negatible->getOperand(1), m_Constant()) && 2169 "Expecting only 1 constant operand"); 2170 assert(C->isNegative() && "Expected negative FP constant"); 2171 Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C))); 2172 MadeChange = true; 2173 } 2174 if (match(Negatible->getOperand(1), m_APFloat(C))) { 2175 assert(!match(Negatible->getOperand(0), m_Constant()) && 2176 "Expecting only 1 constant operand"); 2177 assert(C->isNegative() && "Expected negative FP constant"); 2178 Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C))); 2179 MadeChange = true; 2180 } 2181 } 2182 assert(MadeChange == true && "Negative constant candidate was not changed"); 2183 2184 // Negations cancelled out. 2185 if (Candidates.size() % 2 == 0) 2186 return I; 2187 2188 // Negate the final operand in the expression by flipping the opcode of this 2189 // fadd/fsub. 2190 assert(Candidates.size() % 2 == 1 && "Expected odd number"); 2191 IRBuilder<> Builder(I); 2192 Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I) 2193 : Builder.CreateFSubFMF(OtherOp, Op, I); 2194 I->replaceAllUsesWith(NewInst); 2195 RedoInsts.insert(I); 2196 return dyn_cast<Instruction>(NewInst); 2197 } 2198 2199 /// Canonicalize expressions that contain a negative floating-point constant 2200 /// of the following form: 2201 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree) 2202 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree) 2203 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree) 2204 /// 2205 /// The fadd/fsub opcode may be switched to allow folding a negation into the 2206 /// input instruction. 2207 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) { 2208 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n'); 2209 Value *X; 2210 Instruction *Op; 2211 if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op))))) 2212 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2213 I = R; 2214 if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X)))) 2215 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2216 I = R; 2217 if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op))))) 2218 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2219 I = R; 2220 return I; 2221 } 2222 2223 /// Inspect and optimize the given instruction. Note that erasing 2224 /// instructions is not allowed. 2225 void ReassociatePass::OptimizeInst(Instruction *I) { 2226 // Only consider operations that we understand. 2227 if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I)) 2228 return; 2229 2230 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2231 // If an operand of this shift is a reassociable multiply, or if the shift 2232 // is used by a reassociable multiply or add, turn into a multiply. 2233 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2234 (I->hasOneUse() && 2235 (isReassociableOp(I->user_back(), Instruction::Mul) || 2236 isReassociableOp(I->user_back(), Instruction::Add)))) { 2237 Instruction *NI = ConvertShiftToMul(I); 2238 RedoInsts.insert(I); 2239 MadeChange = true; 2240 I = NI; 2241 } 2242 2243 // Commute binary operators, to canonicalize the order of their operands. 2244 // This can potentially expose more CSE opportunities, and makes writing other 2245 // transformations simpler. 2246 if (I->isCommutative()) 2247 canonicalizeOperands(I); 2248 2249 // Canonicalize negative constants out of expressions. 2250 if (Instruction *Res = canonicalizeNegFPConstants(I)) 2251 I = Res; 2252 2253 // Don't optimize floating-point instructions unless they have the 2254 // appropriate FastMathFlags for reassociation enabled. 2255 if (isa<FPMathOperator>(I) && !hasFPAssociativeFlags(I)) 2256 return; 2257 2258 // Do not reassociate boolean (i1) expressions. We want to preserve the 2259 // original order of evaluation for short-circuited comparisons that 2260 // SimplifyCFG has folded to AND/OR expressions. If the expression 2261 // is not further optimized, it is likely to be transformed back to a 2262 // short-circuited form for code gen, and the source order may have been 2263 // optimized for the most likely conditions. 2264 if (I->getType()->isIntegerTy(1)) 2265 return; 2266 2267 // If this is a bitwise or instruction of operands 2268 // with no common bits set, convert it to X+Y. 2269 if (I->getOpcode() == Instruction::Or && 2270 shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) && 2271 (cast<PossiblyDisjointInst>(I)->isDisjoint() || 2272 haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), 2273 SimplifyQuery(I->getModule()->getDataLayout(), 2274 /*DT=*/nullptr, /*AC=*/nullptr, I)))) { 2275 Instruction *NI = convertOrWithNoCommonBitsToAdd(I); 2276 RedoInsts.insert(I); 2277 MadeChange = true; 2278 I = NI; 2279 } 2280 2281 // If this is a subtract instruction which is not already in negate form, 2282 // see if we can convert it to X+-Y. 2283 if (I->getOpcode() == Instruction::Sub) { 2284 if (ShouldBreakUpSubtract(I)) { 2285 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2286 RedoInsts.insert(I); 2287 MadeChange = true; 2288 I = NI; 2289 } else if (match(I, m_Neg(m_Value()))) { 2290 // Otherwise, this is a negation. See if the operand is a multiply tree 2291 // and if this is not an inner node of a multiply tree. 2292 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2293 (!I->hasOneUse() || 2294 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2295 Instruction *NI = LowerNegateToMultiply(I); 2296 // If the negate was simplified, revisit the users to see if we can 2297 // reassociate further. 2298 for (User *U : NI->users()) { 2299 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2300 RedoInsts.insert(Tmp); 2301 } 2302 RedoInsts.insert(I); 2303 MadeChange = true; 2304 I = NI; 2305 } 2306 } 2307 } else if (I->getOpcode() == Instruction::FNeg || 2308 I->getOpcode() == Instruction::FSub) { 2309 if (ShouldBreakUpSubtract(I)) { 2310 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2311 RedoInsts.insert(I); 2312 MadeChange = true; 2313 I = NI; 2314 } else if (match(I, m_FNeg(m_Value()))) { 2315 // Otherwise, this is a negation. See if the operand is a multiply tree 2316 // and if this is not an inner node of a multiply tree. 2317 Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) : 2318 I->getOperand(0); 2319 if (isReassociableOp(Op, Instruction::FMul) && 2320 (!I->hasOneUse() || 2321 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2322 // If the negate was simplified, revisit the users to see if we can 2323 // reassociate further. 2324 Instruction *NI = LowerNegateToMultiply(I); 2325 for (User *U : NI->users()) { 2326 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2327 RedoInsts.insert(Tmp); 2328 } 2329 RedoInsts.insert(I); 2330 MadeChange = true; 2331 I = NI; 2332 } 2333 } 2334 } 2335 2336 // If this instruction is an associative binary operator, process it. 2337 if (!I->isAssociative()) return; 2338 BinaryOperator *BO = cast<BinaryOperator>(I); 2339 2340 // If this is an interior node of a reassociable tree, ignore it until we 2341 // get to the root of the tree, to avoid N^2 analysis. 2342 unsigned Opcode = BO->getOpcode(); 2343 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2344 // During the initial run we will get to the root of the tree. 2345 // But if we get here while we are redoing instructions, there is no 2346 // guarantee that the root will be visited. So Redo later 2347 if (BO->user_back() != BO && 2348 BO->getParent() == BO->user_back()->getParent()) 2349 RedoInsts.insert(BO->user_back()); 2350 return; 2351 } 2352 2353 // If this is an add tree that is used by a sub instruction, ignore it 2354 // until we process the subtract. 2355 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2356 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2357 return; 2358 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2359 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2360 return; 2361 2362 ReassociateExpression(BO); 2363 } 2364 2365 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2366 // First, walk the expression tree, linearizing the tree, collecting the 2367 // operand information. 2368 SmallVector<RepeatedValue, 8> Tree; 2369 bool HasNUW = true; 2370 MadeChange |= LinearizeExprTree(I, Tree, RedoInsts, HasNUW); 2371 SmallVector<ValueEntry, 8> Ops; 2372 Ops.reserve(Tree.size()); 2373 for (const RepeatedValue &E : Tree) 2374 Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first)); 2375 2376 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2377 2378 // Now that we have linearized the tree to a list and have gathered all of 2379 // the operands and their ranks, sort the operands by their rank. Use a 2380 // stable_sort so that values with equal ranks will have their relative 2381 // positions maintained (and so the compiler is deterministic). Note that 2382 // this sorts so that the highest ranking values end up at the beginning of 2383 // the vector. 2384 llvm::stable_sort(Ops); 2385 2386 // Now that we have the expression tree in a convenient 2387 // sorted form, optimize it globally if possible. 2388 if (Value *V = OptimizeExpression(I, Ops)) { 2389 if (V == I) 2390 // Self-referential expression in unreachable code. 2391 return; 2392 // This expression tree simplified to something that isn't a tree, 2393 // eliminate it. 2394 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2395 I->replaceAllUsesWith(V); 2396 if (Instruction *VI = dyn_cast<Instruction>(V)) 2397 if (I->getDebugLoc()) 2398 VI->setDebugLoc(I->getDebugLoc()); 2399 RedoInsts.insert(I); 2400 ++NumAnnihil; 2401 return; 2402 } 2403 2404 // We want to sink immediates as deeply as possible except in the case where 2405 // this is a multiply tree used only by an add, and the immediate is a -1. 2406 // In this case we reassociate to put the negation on the outside so that we 2407 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2408 if (I->hasOneUse()) { 2409 if (I->getOpcode() == Instruction::Mul && 2410 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2411 isa<ConstantInt>(Ops.back().Op) && 2412 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2413 ValueEntry Tmp = Ops.pop_back_val(); 2414 Ops.insert(Ops.begin(), Tmp); 2415 } else if (I->getOpcode() == Instruction::FMul && 2416 cast<Instruction>(I->user_back())->getOpcode() == 2417 Instruction::FAdd && 2418 isa<ConstantFP>(Ops.back().Op) && 2419 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2420 ValueEntry Tmp = Ops.pop_back_val(); 2421 Ops.insert(Ops.begin(), Tmp); 2422 } 2423 } 2424 2425 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2426 2427 if (Ops.size() == 1) { 2428 if (Ops[0].Op == I) 2429 // Self-referential expression in unreachable code. 2430 return; 2431 2432 // This expression tree simplified to something that isn't a tree, 2433 // eliminate it. 2434 I->replaceAllUsesWith(Ops[0].Op); 2435 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2436 OI->setDebugLoc(I->getDebugLoc()); 2437 RedoInsts.insert(I); 2438 return; 2439 } 2440 2441 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 2442 // Find the pair with the highest count in the pairmap and move it to the 2443 // back of the list so that it can later be CSE'd. 2444 // example: 2445 // a*b*c*d*e 2446 // if c*e is the most "popular" pair, we can express this as 2447 // (((c*e)*d)*b)*a 2448 unsigned Max = 1; 2449 unsigned BestRank = 0; 2450 std::pair<unsigned, unsigned> BestPair; 2451 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 2452 unsigned LimitIdx = 0; 2453 // With the CSE-driven heuristic, we are about to slap two values at the 2454 // beginning of the expression whereas they could live very late in the CFG. 2455 // When using the CSE-local heuristic we avoid creating dependences from 2456 // completely unrelated part of the CFG by limiting the expression 2457 // reordering on the values that live in the first seen basic block. 2458 // The main idea is that we want to avoid forming expressions that would 2459 // become loop dependent. 2460 if (UseCSELocalOpt) { 2461 const BasicBlock *FirstSeenBB = nullptr; 2462 int StartIdx = Ops.size() - 1; 2463 // Skip the first value of the expression since we need at least two 2464 // values to materialize an expression. I.e., even if this value is 2465 // anchored in a different basic block, the actual first sub expression 2466 // will be anchored on the second value. 2467 for (int i = StartIdx - 1; i != -1; --i) { 2468 const Value *Val = Ops[i].Op; 2469 const auto *CurrLeafInstr = dyn_cast<Instruction>(Val); 2470 const BasicBlock *SeenBB = nullptr; 2471 if (!CurrLeafInstr) { 2472 // The value is free of any CFG dependencies. 2473 // Do as if it lives in the entry block. 2474 // 2475 // We do this to make sure all the values falling on this path are 2476 // seen through the same anchor point. The rationale is these values 2477 // can be combined together to from a sub expression free of any CFG 2478 // dependencies so we want them to stay together. 2479 // We could be cleverer and postpone the anchor down to the first 2480 // anchored value, but that's likely complicated to get right. 2481 // E.g., we wouldn't want to do that if that means being stuck in a 2482 // loop. 2483 // 2484 // For instance, we wouldn't want to change: 2485 // res = arg1 op arg2 op arg3 op ... op loop_val1 op loop_val2 ... 2486 // into 2487 // res = loop_val1 op arg1 op arg2 op arg3 op ... op loop_val2 ... 2488 // Because all the sub expressions with arg2..N would be stuck between 2489 // two loop dependent values. 2490 SeenBB = &I->getParent()->getParent()->getEntryBlock(); 2491 } else { 2492 SeenBB = CurrLeafInstr->getParent(); 2493 } 2494 2495 if (!FirstSeenBB) { 2496 FirstSeenBB = SeenBB; 2497 continue; 2498 } 2499 if (FirstSeenBB != SeenBB) { 2500 // ith value is in a different basic block. 2501 // Rewind the index once to point to the last value on the same basic 2502 // block. 2503 LimitIdx = i + 1; 2504 LLVM_DEBUG(dbgs() << "CSE reordering: Consider values between [" 2505 << LimitIdx << ", " << StartIdx << "]\n"); 2506 break; 2507 } 2508 } 2509 } 2510 for (unsigned i = Ops.size() - 1; i > LimitIdx; --i) { 2511 // We must use int type to go below zero when LimitIdx is 0. 2512 for (int j = i - 1; j >= (int)LimitIdx; --j) { 2513 unsigned Score = 0; 2514 Value *Op0 = Ops[i].Op; 2515 Value *Op1 = Ops[j].Op; 2516 if (std::less<Value *>()(Op1, Op0)) 2517 std::swap(Op0, Op1); 2518 auto it = PairMap[Idx].find({Op0, Op1}); 2519 if (it != PairMap[Idx].end()) { 2520 // Functions like BreakUpSubtract() can erase the Values we're using 2521 // as keys and create new Values after we built the PairMap. There's a 2522 // small chance that the new nodes can have the same address as 2523 // something already in the table. We shouldn't accumulate the stored 2524 // score in that case as it refers to the wrong Value. 2525 if (it->second.isValid()) 2526 Score += it->second.Score; 2527 } 2528 2529 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 2530 2531 // By construction, the operands are sorted in reverse order of their 2532 // topological order. 2533 // So we tend to form (sub) expressions with values that are close to 2534 // each other. 2535 // 2536 // Now to expose more CSE opportunities we want to expose the pair of 2537 // operands that occur the most (as statically computed in 2538 // BuildPairMap.) as the first sub-expression. 2539 // 2540 // If two pairs occur as many times, we pick the one with the 2541 // lowest rank, meaning the one with both operands appearing first in 2542 // the topological order. 2543 if (Score > Max || (Score == Max && MaxRank < BestRank)) { 2544 BestPair = {j, i}; 2545 Max = Score; 2546 BestRank = MaxRank; 2547 } 2548 } 2549 } 2550 if (Max > 1) { 2551 auto Op0 = Ops[BestPair.first]; 2552 auto Op1 = Ops[BestPair.second]; 2553 Ops.erase(&Ops[BestPair.second]); 2554 Ops.erase(&Ops[BestPair.first]); 2555 Ops.push_back(Op0); 2556 Ops.push_back(Op1); 2557 } 2558 } 2559 LLVM_DEBUG(dbgs() << "RAOut after CSE reorder:\t"; PrintOps(I, Ops); 2560 dbgs() << '\n'); 2561 // Now that we ordered and optimized the expressions, splat them back into 2562 // the expression tree, removing any unneeded nodes. 2563 RewriteExprTree(I, Ops, HasNUW); 2564 } 2565 2566 void 2567 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 2568 // Make a "pairmap" of how often each operand pair occurs. 2569 for (BasicBlock *BI : RPOT) { 2570 for (Instruction &I : *BI) { 2571 if (!I.isAssociative() || !I.isBinaryOp()) 2572 continue; 2573 2574 // Ignore nodes that aren't at the root of trees. 2575 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 2576 continue; 2577 2578 // Collect all operands in a single reassociable expression. 2579 // Since Reassociate has already been run once, we can assume things 2580 // are already canonical according to Reassociation's regime. 2581 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 2582 SmallVector<Value *, 8> Ops; 2583 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 2584 Value *Op = Worklist.pop_back_val(); 2585 Instruction *OpI = dyn_cast<Instruction>(Op); 2586 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 2587 Ops.push_back(Op); 2588 continue; 2589 } 2590 // Be paranoid about self-referencing expressions in unreachable code. 2591 if (OpI->getOperand(0) != OpI) 2592 Worklist.push_back(OpI->getOperand(0)); 2593 if (OpI->getOperand(1) != OpI) 2594 Worklist.push_back(OpI->getOperand(1)); 2595 } 2596 // Skip extremely long expressions. 2597 if (Ops.size() > GlobalReassociateLimit) 2598 continue; 2599 2600 // Add all pairwise combinations of operands to the pair map. 2601 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 2602 SmallSet<std::pair<Value *, Value*>, 32> Visited; 2603 for (unsigned i = 0; i < Ops.size() - 1; ++i) { 2604 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2605 // Canonicalize operand orderings. 2606 Value *Op0 = Ops[i]; 2607 Value *Op1 = Ops[j]; 2608 if (std::less<Value *>()(Op1, Op0)) 2609 std::swap(Op0, Op1); 2610 if (!Visited.insert({Op0, Op1}).second) 2611 continue; 2612 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}}); 2613 if (!res.second) { 2614 // If either key value has been erased then we've got the same 2615 // address by coincidence. That can't happen here because nothing is 2616 // erasing values but it can happen by the time we're querying the 2617 // map. 2618 assert(res.first->second.isValid() && "WeakVH invalidated"); 2619 ++res.first->second.Score; 2620 } 2621 } 2622 } 2623 } 2624 } 2625 } 2626 2627 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2628 // Get the functions basic blocks in Reverse Post Order. This order is used by 2629 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2630 // blocks (it has been seen that the analysis in this pass could hang when 2631 // analysing dead basic blocks). 2632 ReversePostOrderTraversal<Function *> RPOT(&F); 2633 2634 // Calculate the rank map for F. 2635 BuildRankMap(F, RPOT); 2636 2637 // Build the pair map before running reassociate. 2638 // Technically this would be more accurate if we did it after one round 2639 // of reassociation, but in practice it doesn't seem to help much on 2640 // real-world code, so don't waste the compile time running reassociate 2641 // twice. 2642 // If a user wants, they could expicitly run reassociate twice in their 2643 // pass pipeline for further potential gains. 2644 // It might also be possible to update the pair map during runtime, but the 2645 // overhead of that may be large if there's many reassociable chains. 2646 BuildPairMap(RPOT); 2647 2648 MadeChange = false; 2649 2650 // Traverse the same blocks that were analysed by BuildRankMap. 2651 for (BasicBlock *BI : RPOT) { 2652 assert(RankMap.count(&*BI) && "BB should be ranked."); 2653 // Optimize every instruction in the basic block. 2654 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2655 if (isInstructionTriviallyDead(&*II)) { 2656 EraseInst(&*II++); 2657 } else { 2658 OptimizeInst(&*II); 2659 assert(II->getParent() == &*BI && "Moved to a different block!"); 2660 ++II; 2661 } 2662 2663 // Make a copy of all the instructions to be redone so we can remove dead 2664 // instructions. 2665 OrderedSet ToRedo(RedoInsts); 2666 // Iterate over all instructions to be reevaluated and remove trivially dead 2667 // instructions. If any operand of the trivially dead instruction becomes 2668 // dead mark it for deletion as well. Continue this process until all 2669 // trivially dead instructions have been removed. 2670 while (!ToRedo.empty()) { 2671 Instruction *I = ToRedo.pop_back_val(); 2672 if (isInstructionTriviallyDead(I)) { 2673 RecursivelyEraseDeadInsts(I, ToRedo); 2674 MadeChange = true; 2675 } 2676 } 2677 2678 // Now that we have removed dead instructions, we can reoptimize the 2679 // remaining instructions. 2680 while (!RedoInsts.empty()) { 2681 Instruction *I = RedoInsts.front(); 2682 RedoInsts.erase(RedoInsts.begin()); 2683 if (isInstructionTriviallyDead(I)) 2684 EraseInst(I); 2685 else 2686 OptimizeInst(I); 2687 } 2688 } 2689 2690 // We are done with the rank map and pair map. 2691 RankMap.clear(); 2692 ValueRankMap.clear(); 2693 for (auto &Entry : PairMap) 2694 Entry.clear(); 2695 2696 if (MadeChange) { 2697 PreservedAnalyses PA; 2698 PA.preserveSet<CFGAnalyses>(); 2699 return PA; 2700 } 2701 2702 return PreservedAnalyses::all(); 2703 } 2704 2705 namespace { 2706 2707 class ReassociateLegacyPass : public FunctionPass { 2708 ReassociatePass Impl; 2709 2710 public: 2711 static char ID; // Pass identification, replacement for typeid 2712 2713 ReassociateLegacyPass() : FunctionPass(ID) { 2714 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2715 } 2716 2717 bool runOnFunction(Function &F) override { 2718 if (skipFunction(F)) 2719 return false; 2720 2721 FunctionAnalysisManager DummyFAM; 2722 auto PA = Impl.run(F, DummyFAM); 2723 return !PA.areAllPreserved(); 2724 } 2725 2726 void getAnalysisUsage(AnalysisUsage &AU) const override { 2727 AU.setPreservesCFG(); 2728 AU.addPreserved<AAResultsWrapperPass>(); 2729 AU.addPreserved<BasicAAWrapperPass>(); 2730 AU.addPreserved<GlobalsAAWrapperPass>(); 2731 } 2732 }; 2733 2734 } // end anonymous namespace 2735 2736 char ReassociateLegacyPass::ID = 0; 2737 2738 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2739 "Reassociate expressions", false, false) 2740 2741 // Public interface to the Reassociate pass 2742 FunctionPass *llvm::createReassociatePass() { 2743 return new ReassociateLegacyPass(); 2744 } 2745