xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/Reassociate.cpp (revision a8197ad3aa952a03fc2aeebc2eafe9bb9de54550)
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/IR/ValueHandle.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <utility>
62 
63 using namespace llvm;
64 using namespace reassociate;
65 using namespace PatternMatch;
66 
67 #define DEBUG_TYPE "reassociate"
68 
69 STATISTIC(NumChanged, "Number of insts reassociated");
70 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
71 STATISTIC(NumFactor , "Number of multiplies factored");
72 
73 #ifndef NDEBUG
74 /// Print out the expression identified in the Ops list.
75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
76   Module *M = I->getModule();
77   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
78        << *Ops[0].Op->getType() << '\t';
79   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
80     dbgs() << "[ ";
81     Ops[i].Op->printAsOperand(dbgs(), false, M);
82     dbgs() << ", #" << Ops[i].Rank << "] ";
83   }
84 }
85 #endif
86 
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
90 ///  C2)
91 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
92 ///          constant.
93 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 ///          operand as "E | 0"
95 class llvm::reassociate::XorOpnd {
96 public:
97   XorOpnd(Value *V);
98 
99   bool isInvalid() const { return SymbolicPart == nullptr; }
100   bool isOrExpr() const { return isOr; }
101   Value *getValue() const { return OrigVal; }
102   Value *getSymbolicPart() const { return SymbolicPart; }
103   unsigned getSymbolicRank() const { return SymbolicRank; }
104   const APInt &getConstPart() const { return ConstPart; }
105 
106   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
107   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
108 
109 private:
110   Value *OrigVal;
111   Value *SymbolicPart;
112   APInt ConstPart;
113   unsigned SymbolicRank;
114   bool isOr;
115 };
116 
117 XorOpnd::XorOpnd(Value *V) {
118   assert(!isa<ConstantInt>(V) && "No ConstantInt");
119   OrigVal = V;
120   Instruction *I = dyn_cast<Instruction>(V);
121   SymbolicRank = 0;
122 
123   if (I && (I->getOpcode() == Instruction::Or ||
124             I->getOpcode() == Instruction::And)) {
125     Value *V0 = I->getOperand(0);
126     Value *V1 = I->getOperand(1);
127     const APInt *C;
128     if (match(V0, m_APInt(C)))
129       std::swap(V0, V1);
130 
131     if (match(V1, m_APInt(C))) {
132       ConstPart = *C;
133       SymbolicPart = V0;
134       isOr = (I->getOpcode() == Instruction::Or);
135       return;
136     }
137   }
138 
139   // view the operand as "V | 0"
140   SymbolicPart = V;
141   ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
142   isOr = true;
143 }
144 
145 /// Return true if V is an instruction of the specified opcode and if it
146 /// only has one use.
147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
148   auto *I = dyn_cast<Instruction>(V);
149   if (I && I->hasOneUse() && I->getOpcode() == Opcode)
150     if (!isa<FPMathOperator>(I) || I->isFast())
151       return cast<BinaryOperator>(I);
152   return nullptr;
153 }
154 
155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
156                                         unsigned Opcode2) {
157   auto *I = dyn_cast<Instruction>(V);
158   if (I && I->hasOneUse() &&
159       (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2))
160     if (!isa<FPMathOperator>(I) || I->isFast())
161       return cast<BinaryOperator>(I);
162   return nullptr;
163 }
164 
165 void ReassociatePass::BuildRankMap(Function &F,
166                                    ReversePostOrderTraversal<Function*> &RPOT) {
167   unsigned Rank = 2;
168 
169   // Assign distinct ranks to function arguments.
170   for (auto &Arg : F.args()) {
171     ValueRankMap[&Arg] = ++Rank;
172     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
173                       << "\n");
174   }
175 
176   // Traverse basic blocks in ReversePostOrder
177   for (BasicBlock *BB : RPOT) {
178     unsigned BBRank = RankMap[BB] = ++Rank << 16;
179 
180     // Walk the basic block, adding precomputed ranks for any instructions that
181     // we cannot move.  This ensures that the ranks for these instructions are
182     // all different in the block.
183     for (Instruction &I : *BB)
184       if (mayBeMemoryDependent(I))
185         ValueRankMap[&I] = ++BBRank;
186   }
187 }
188 
189 unsigned ReassociatePass::getRank(Value *V) {
190   Instruction *I = dyn_cast<Instruction>(V);
191   if (!I) {
192     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
193     return 0;  // Otherwise it's a global or constant, rank 0.
194   }
195 
196   if (unsigned Rank = ValueRankMap[I])
197     return Rank;    // Rank already known?
198 
199   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
200   // we can reassociate expressions for code motion!  Since we do not recurse
201   // for PHI nodes, we cannot have infinite recursion here, because there
202   // cannot be loops in the value graph that do not go through PHI nodes.
203   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
204   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
205     Rank = std::max(Rank, getRank(I->getOperand(i)));
206 
207   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
208   // assures us that X and ~X will have the same rank.
209   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
210       !match(I, m_FNeg(m_Value())))
211     ++Rank;
212 
213   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
214                     << "\n");
215 
216   return ValueRankMap[I] = Rank;
217 }
218 
219 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
220 void ReassociatePass::canonicalizeOperands(Instruction *I) {
221   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
222   assert(I->isCommutative() && "Expected commutative operator.");
223 
224   Value *LHS = I->getOperand(0);
225   Value *RHS = I->getOperand(1);
226   if (LHS == RHS || isa<Constant>(RHS))
227     return;
228   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
229     cast<BinaryOperator>(I)->swapOperands();
230 }
231 
232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
233                                  Instruction *InsertBefore, Value *FlagsOp) {
234   if (S1->getType()->isIntOrIntVectorTy())
235     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
236   else {
237     BinaryOperator *Res =
238         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
239     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
240     return Res;
241   }
242 }
243 
244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
245                                  Instruction *InsertBefore, Value *FlagsOp) {
246   if (S1->getType()->isIntOrIntVectorTy())
247     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
248   else {
249     BinaryOperator *Res =
250       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
251     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
252     return Res;
253   }
254 }
255 
256 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
257                                  Instruction *InsertBefore, Value *FlagsOp) {
258   if (S1->getType()->isIntOrIntVectorTy())
259     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
260   else {
261     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
262     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
263     return Res;
264   }
265 }
266 
267 /// Replace 0-X with X*-1.
268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
269   assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
270          "Expected a Negate!");
271   // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
272   unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
273   Type *Ty = Neg->getType();
274   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
275     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
276 
277   BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
278   Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
279   Res->takeName(Neg);
280   Neg->replaceAllUsesWith(Res);
281   Res->setDebugLoc(Neg->getDebugLoc());
282   return Res;
283 }
284 
285 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
286 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
287 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
288 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
289 /// even x in Bitwidth-bit arithmetic.
290 static unsigned CarmichaelShift(unsigned Bitwidth) {
291   if (Bitwidth < 3)
292     return Bitwidth - 1;
293   return Bitwidth - 2;
294 }
295 
296 /// Add the extra weight 'RHS' to the existing weight 'LHS',
297 /// reducing the combined weight using any special properties of the operation.
298 /// The existing weight LHS represents the computation X op X op ... op X where
299 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
300 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
301 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
302 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
303 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
304   // If we were working with infinite precision arithmetic then the combined
305   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
306   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
307   // for nilpotent operations and addition, but not for idempotent operations
308   // and multiplication), so it is important to correctly reduce the combined
309   // weight back into range if wrapping would be wrong.
310 
311   // If RHS is zero then the weight didn't change.
312   if (RHS.isMinValue())
313     return;
314   // If LHS is zero then the combined weight is RHS.
315   if (LHS.isMinValue()) {
316     LHS = RHS;
317     return;
318   }
319   // From this point on we know that neither LHS nor RHS is zero.
320 
321   if (Instruction::isIdempotent(Opcode)) {
322     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
323     // weight of 1.  Keeping weights at zero or one also means that wrapping is
324     // not a problem.
325     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
326     return; // Return a weight of 1.
327   }
328   if (Instruction::isNilpotent(Opcode)) {
329     // Nilpotent means X op X === 0, so reduce weights modulo 2.
330     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
331     LHS = 0; // 1 + 1 === 0 modulo 2.
332     return;
333   }
334   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
335     // TODO: Reduce the weight by exploiting nsw/nuw?
336     LHS += RHS;
337     return;
338   }
339 
340   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
341          "Unknown associative operation!");
342   unsigned Bitwidth = LHS.getBitWidth();
343   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
344   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
345   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
346   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
347   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
348   // which by a happy accident means that they can always be represented using
349   // Bitwidth bits.
350   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
351   // the Carmichael number).
352   if (Bitwidth > 3) {
353     /// CM - The value of Carmichael's lambda function.
354     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
355     // Any weight W >= Threshold can be replaced with W - CM.
356     APInt Threshold = CM + Bitwidth;
357     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
358     // For Bitwidth 4 or more the following sum does not overflow.
359     LHS += RHS;
360     while (LHS.uge(Threshold))
361       LHS -= CM;
362   } else {
363     // To avoid problems with overflow do everything the same as above but using
364     // a larger type.
365     unsigned CM = 1U << CarmichaelShift(Bitwidth);
366     unsigned Threshold = CM + Bitwidth;
367     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
368            "Weights not reduced!");
369     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
370     while (Total >= Threshold)
371       Total -= CM;
372     LHS = Total;
373   }
374 }
375 
376 using RepeatedValue = std::pair<Value*, APInt>;
377 
378 /// Given an associative binary expression, return the leaf
379 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
380 /// original expression is the same as
381 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
382 /// op
383 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
384 /// op
385 ///   ...
386 /// op
387 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
388 ///
389 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
390 ///
391 /// This routine may modify the function, in which case it returns 'true'.  The
392 /// changes it makes may well be destructive, changing the value computed by 'I'
393 /// to something completely different.  Thus if the routine returns 'true' then
394 /// you MUST either replace I with a new expression computed from the Ops array,
395 /// or use RewriteExprTree to put the values back in.
396 ///
397 /// A leaf node is either not a binary operation of the same kind as the root
398 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
399 /// opcode), or is the same kind of binary operator but has a use which either
400 /// does not belong to the expression, or does belong to the expression but is
401 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
402 /// of the expression, while for non-leaf nodes (except for the root 'I') every
403 /// use is a non-leaf node of the expression.
404 ///
405 /// For example:
406 ///           expression graph        node names
407 ///
408 ///                     +        |        I
409 ///                    / \       |
410 ///                   +   +      |      A,  B
411 ///                  / \ / \     |
412 ///                 *   +   *    |    C,  D,  E
413 ///                / \ / \ / \   |
414 ///                   +   *      |      F,  G
415 ///
416 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
417 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
418 ///
419 /// The expression is maximal: if some instruction is a binary operator of the
420 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
421 /// then the instruction also belongs to the expression, is not a leaf node of
422 /// it, and its operands also belong to the expression (but may be leaf nodes).
423 ///
424 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
425 /// order to ensure that every non-root node in the expression has *exactly one*
426 /// use by a non-leaf node of the expression.  This destruction means that the
427 /// caller MUST either replace 'I' with a new expression or use something like
428 /// RewriteExprTree to put the values back in if the routine indicates that it
429 /// made a change by returning 'true'.
430 ///
431 /// In the above example either the right operand of A or the left operand of B
432 /// will be replaced by undef.  If it is B's operand then this gives:
433 ///
434 ///                     +        |        I
435 ///                    / \       |
436 ///                   +   +      |      A,  B - operand of B replaced with undef
437 ///                  / \   \     |
438 ///                 *   +   *    |    C,  D,  E
439 ///                / \ / \ / \   |
440 ///                   +   *      |      F,  G
441 ///
442 /// Note that such undef operands can only be reached by passing through 'I'.
443 /// For example, if you visit operands recursively starting from a leaf node
444 /// then you will never see such an undef operand unless you get back to 'I',
445 /// which requires passing through a phi node.
446 ///
447 /// Note that this routine may also mutate binary operators of the wrong type
448 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
449 /// of the expression) if it can turn them into binary operators of the right
450 /// type and thus make the expression bigger.
451 static bool LinearizeExprTree(Instruction *I,
452                               SmallVectorImpl<RepeatedValue> &Ops) {
453   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
454          "Expected a UnaryOperator or BinaryOperator!");
455   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
456   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
457   unsigned Opcode = I->getOpcode();
458   assert(I->isAssociative() && I->isCommutative() &&
459          "Expected an associative and commutative operation!");
460 
461   // Visit all operands of the expression, keeping track of their weight (the
462   // number of paths from the expression root to the operand, or if you like
463   // the number of times that operand occurs in the linearized expression).
464   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
465   // while A has weight two.
466 
467   // Worklist of non-leaf nodes (their operands are in the expression too) along
468   // with their weights, representing a certain number of paths to the operator.
469   // If an operator occurs in the worklist multiple times then we found multiple
470   // ways to get to it.
471   SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
472   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
473   bool Changed = false;
474 
475   // Leaves of the expression are values that either aren't the right kind of
476   // operation (eg: a constant, or a multiply in an add tree), or are, but have
477   // some uses that are not inside the expression.  For example, in I = X + X,
478   // X = A + B, the value X has two uses (by I) that are in the expression.  If
479   // X has any other uses, for example in a return instruction, then we consider
480   // X to be a leaf, and won't analyze it further.  When we first visit a value,
481   // if it has more than one use then at first we conservatively consider it to
482   // be a leaf.  Later, as the expression is explored, we may discover some more
483   // uses of the value from inside the expression.  If all uses turn out to be
484   // from within the expression (and the value is a binary operator of the right
485   // kind) then the value is no longer considered to be a leaf, and its operands
486   // are explored.
487 
488   // Leaves - Keeps track of the set of putative leaves as well as the number of
489   // paths to each leaf seen so far.
490   using LeafMap = DenseMap<Value *, APInt>;
491   LeafMap Leaves; // Leaf -> Total weight so far.
492   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
493 
494 #ifndef NDEBUG
495   SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme.
496 #endif
497   while (!Worklist.empty()) {
498     std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
499     I = P.first; // We examine the operands of this binary operator.
500 
501     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
502       Value *Op = I->getOperand(OpIdx);
503       APInt Weight = P.second; // Number of paths to this operand.
504       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
505       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
506 
507       // If this is a binary operation of the right kind with only one use then
508       // add its operands to the expression.
509       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
510         assert(Visited.insert(Op).second && "Not first visit!");
511         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
512         Worklist.push_back(std::make_pair(BO, Weight));
513         continue;
514       }
515 
516       // Appears to be a leaf.  Is the operand already in the set of leaves?
517       LeafMap::iterator It = Leaves.find(Op);
518       if (It == Leaves.end()) {
519         // Not in the leaf map.  Must be the first time we saw this operand.
520         assert(Visited.insert(Op).second && "Not first visit!");
521         if (!Op->hasOneUse()) {
522           // This value has uses not accounted for by the expression, so it is
523           // not safe to modify.  Mark it as being a leaf.
524           LLVM_DEBUG(dbgs()
525                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
526           LeafOrder.push_back(Op);
527           Leaves[Op] = Weight;
528           continue;
529         }
530         // No uses outside the expression, try morphing it.
531       } else {
532         // Already in the leaf map.
533         assert(It != Leaves.end() && Visited.count(Op) &&
534                "In leaf map but not visited!");
535 
536         // Update the number of paths to the leaf.
537         IncorporateWeight(It->second, Weight, Opcode);
538 
539 #if 0   // TODO: Re-enable once PR13021 is fixed.
540         // The leaf already has one use from inside the expression.  As we want
541         // exactly one such use, drop this new use of the leaf.
542         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
543         I->setOperand(OpIdx, UndefValue::get(I->getType()));
544         Changed = true;
545 
546         // If the leaf is a binary operation of the right kind and we now see
547         // that its multiple original uses were in fact all by nodes belonging
548         // to the expression, then no longer consider it to be a leaf and add
549         // its operands to the expression.
550         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
551           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
552           Worklist.push_back(std::make_pair(BO, It->second));
553           Leaves.erase(It);
554           continue;
555         }
556 #endif
557 
558         // If we still have uses that are not accounted for by the expression
559         // then it is not safe to modify the value.
560         if (!Op->hasOneUse())
561           continue;
562 
563         // No uses outside the expression, try morphing it.
564         Weight = It->second;
565         Leaves.erase(It); // Since the value may be morphed below.
566       }
567 
568       // At this point we have a value which, first of all, is not a binary
569       // expression of the right kind, and secondly, is only used inside the
570       // expression.  This means that it can safely be modified.  See if we
571       // can usefully morph it into an expression of the right kind.
572       assert((!isa<Instruction>(Op) ||
573               cast<Instruction>(Op)->getOpcode() != Opcode
574               || (isa<FPMathOperator>(Op) &&
575                   !cast<Instruction>(Op)->isFast())) &&
576              "Should have been handled above!");
577       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
578 
579       // If this is a multiply expression, turn any internal negations into
580       // multiplies by -1 so they can be reassociated.
581       if (Instruction *Tmp = dyn_cast<Instruction>(Op))
582         if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) ||
583             (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) {
584           LLVM_DEBUG(dbgs()
585                      << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
586           Tmp = LowerNegateToMultiply(Tmp);
587           LLVM_DEBUG(dbgs() << *Tmp << '\n');
588           Worklist.push_back(std::make_pair(Tmp, Weight));
589           Changed = true;
590           continue;
591         }
592 
593       // Failed to morph into an expression of the right type.  This really is
594       // a leaf.
595       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
596       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
597       LeafOrder.push_back(Op);
598       Leaves[Op] = Weight;
599     }
600   }
601 
602   // The leaves, repeated according to their weights, represent the linearized
603   // form of the expression.
604   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
605     Value *V = LeafOrder[i];
606     LeafMap::iterator It = Leaves.find(V);
607     if (It == Leaves.end())
608       // Node initially thought to be a leaf wasn't.
609       continue;
610     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
611     APInt Weight = It->second;
612     if (Weight.isMinValue())
613       // Leaf already output or weight reduction eliminated it.
614       continue;
615     // Ensure the leaf is only output once.
616     It->second = 0;
617     Ops.push_back(std::make_pair(V, Weight));
618   }
619 
620   // For nilpotent operations or addition there may be no operands, for example
621   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
622   // in both cases the weight reduces to 0 causing the value to be skipped.
623   if (Ops.empty()) {
624     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
625     assert(Identity && "Associative operation without identity!");
626     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
627   }
628 
629   return Changed;
630 }
631 
632 /// Now that the operands for this expression tree are
633 /// linearized and optimized, emit them in-order.
634 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
635                                       SmallVectorImpl<ValueEntry> &Ops) {
636   assert(Ops.size() > 1 && "Single values should be used directly!");
637 
638   // Since our optimizations should never increase the number of operations, the
639   // new expression can usually be written reusing the existing binary operators
640   // from the original expression tree, without creating any new instructions,
641   // though the rewritten expression may have a completely different topology.
642   // We take care to not change anything if the new expression will be the same
643   // as the original.  If more than trivial changes (like commuting operands)
644   // were made then we are obliged to clear out any optional subclass data like
645   // nsw flags.
646 
647   /// NodesToRewrite - Nodes from the original expression available for writing
648   /// the new expression into.
649   SmallVector<BinaryOperator*, 8> NodesToRewrite;
650   unsigned Opcode = I->getOpcode();
651   BinaryOperator *Op = I;
652 
653   /// NotRewritable - The operands being written will be the leaves of the new
654   /// expression and must not be used as inner nodes (via NodesToRewrite) by
655   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
656   /// (if they were they would have been incorporated into the expression and so
657   /// would not be leaves), so most of the time there is no danger of this.  But
658   /// in rare cases a leaf may become reassociable if an optimization kills uses
659   /// of it, or it may momentarily become reassociable during rewriting (below)
660   /// due it being removed as an operand of one of its uses.  Ensure that misuse
661   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
662   /// leaves and refusing to reuse any of them as inner nodes.
663   SmallPtrSet<Value*, 8> NotRewritable;
664   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
665     NotRewritable.insert(Ops[i].Op);
666 
667   // ExpressionChanged - Non-null if the rewritten expression differs from the
668   // original in some non-trivial way, requiring the clearing of optional flags.
669   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
670   BinaryOperator *ExpressionChanged = nullptr;
671   for (unsigned i = 0; ; ++i) {
672     // The last operation (which comes earliest in the IR) is special as both
673     // operands will come from Ops, rather than just one with the other being
674     // a subexpression.
675     if (i+2 == Ops.size()) {
676       Value *NewLHS = Ops[i].Op;
677       Value *NewRHS = Ops[i+1].Op;
678       Value *OldLHS = Op->getOperand(0);
679       Value *OldRHS = Op->getOperand(1);
680 
681       if (NewLHS == OldLHS && NewRHS == OldRHS)
682         // Nothing changed, leave it alone.
683         break;
684 
685       if (NewLHS == OldRHS && NewRHS == OldLHS) {
686         // The order of the operands was reversed.  Swap them.
687         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
688         Op->swapOperands();
689         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
690         MadeChange = true;
691         ++NumChanged;
692         break;
693       }
694 
695       // The new operation differs non-trivially from the original. Overwrite
696       // the old operands with the new ones.
697       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
698       if (NewLHS != OldLHS) {
699         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
700         if (BO && !NotRewritable.count(BO))
701           NodesToRewrite.push_back(BO);
702         Op->setOperand(0, NewLHS);
703       }
704       if (NewRHS != OldRHS) {
705         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
706         if (BO && !NotRewritable.count(BO))
707           NodesToRewrite.push_back(BO);
708         Op->setOperand(1, NewRHS);
709       }
710       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
711 
712       ExpressionChanged = Op;
713       MadeChange = true;
714       ++NumChanged;
715 
716       break;
717     }
718 
719     // Not the last operation.  The left-hand side will be a sub-expression
720     // while the right-hand side will be the current element of Ops.
721     Value *NewRHS = Ops[i].Op;
722     if (NewRHS != Op->getOperand(1)) {
723       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
724       if (NewRHS == Op->getOperand(0)) {
725         // The new right-hand side was already present as the left operand.  If
726         // we are lucky then swapping the operands will sort out both of them.
727         Op->swapOperands();
728       } else {
729         // Overwrite with the new right-hand side.
730         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
731         if (BO && !NotRewritable.count(BO))
732           NodesToRewrite.push_back(BO);
733         Op->setOperand(1, NewRHS);
734         ExpressionChanged = Op;
735       }
736       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
737       MadeChange = true;
738       ++NumChanged;
739     }
740 
741     // Now deal with the left-hand side.  If this is already an operation node
742     // from the original expression then just rewrite the rest of the expression
743     // into it.
744     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
745     if (BO && !NotRewritable.count(BO)) {
746       Op = BO;
747       continue;
748     }
749 
750     // Otherwise, grab a spare node from the original expression and use that as
751     // the left-hand side.  If there are no nodes left then the optimizers made
752     // an expression with more nodes than the original!  This usually means that
753     // they did something stupid but it might mean that the problem was just too
754     // hard (finding the mimimal number of multiplications needed to realize a
755     // multiplication expression is NP-complete).  Whatever the reason, smart or
756     // stupid, create a new node if there are none left.
757     BinaryOperator *NewOp;
758     if (NodesToRewrite.empty()) {
759       Constant *Undef = UndefValue::get(I->getType());
760       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
761                                      Undef, Undef, "", I);
762       if (NewOp->getType()->isFPOrFPVectorTy())
763         NewOp->setFastMathFlags(I->getFastMathFlags());
764     } else {
765       NewOp = NodesToRewrite.pop_back_val();
766     }
767 
768     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
769     Op->setOperand(0, NewOp);
770     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
771     ExpressionChanged = Op;
772     MadeChange = true;
773     ++NumChanged;
774     Op = NewOp;
775   }
776 
777   // If the expression changed non-trivially then clear out all subclass data
778   // starting from the operator specified in ExpressionChanged, and compactify
779   // the operators to just before the expression root to guarantee that the
780   // expression tree is dominated by all of Ops.
781   if (ExpressionChanged)
782     do {
783       // Preserve FastMathFlags.
784       if (isa<FPMathOperator>(I)) {
785         FastMathFlags Flags = I->getFastMathFlags();
786         ExpressionChanged->clearSubclassOptionalData();
787         ExpressionChanged->setFastMathFlags(Flags);
788       } else
789         ExpressionChanged->clearSubclassOptionalData();
790 
791       if (ExpressionChanged == I)
792         break;
793 
794       // Discard any debug info related to the expressions that has changed (we
795       // can leave debug infor related to the root, since the result of the
796       // expression tree should be the same even after reassociation).
797       replaceDbgUsesWithUndef(ExpressionChanged);
798 
799       ExpressionChanged->moveBefore(I);
800       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
801     } while (true);
802 
803   // Throw away any left over nodes from the original expression.
804   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
805     RedoInsts.insert(NodesToRewrite[i]);
806 }
807 
808 /// Insert instructions before the instruction pointed to by BI,
809 /// that computes the negative version of the value specified.  The negative
810 /// version of the value is returned, and BI is left pointing at the instruction
811 /// that should be processed next by the reassociation pass.
812 /// Also add intermediate instructions to the redo list that are modified while
813 /// pushing the negates through adds.  These will be revisited to see if
814 /// additional opportunities have been exposed.
815 static Value *NegateValue(Value *V, Instruction *BI,
816                           ReassociatePass::OrderedSet &ToRedo) {
817   if (auto *C = dyn_cast<Constant>(V))
818     return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) :
819                                               ConstantExpr::getNeg(C);
820 
821   // We are trying to expose opportunity for reassociation.  One of the things
822   // that we want to do to achieve this is to push a negation as deep into an
823   // expression chain as possible, to expose the add instructions.  In practice,
824   // this means that we turn this:
825   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
826   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
827   // the constants.  We assume that instcombine will clean up the mess later if
828   // we introduce tons of unnecessary negation instructions.
829   //
830   if (BinaryOperator *I =
831           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
832     // Push the negates through the add.
833     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
834     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
835     if (I->getOpcode() == Instruction::Add) {
836       I->setHasNoUnsignedWrap(false);
837       I->setHasNoSignedWrap(false);
838     }
839 
840     // We must move the add instruction here, because the neg instructions do
841     // not dominate the old add instruction in general.  By moving it, we are
842     // assured that the neg instructions we just inserted dominate the
843     // instruction we are about to insert after them.
844     //
845     I->moveBefore(BI);
846     I->setName(I->getName()+".neg");
847 
848     // Add the intermediate negates to the redo list as processing them later
849     // could expose more reassociating opportunities.
850     ToRedo.insert(I);
851     return I;
852   }
853 
854   // Okay, we need to materialize a negated version of V with an instruction.
855   // Scan the use lists of V to see if we have one already.
856   for (User *U : V->users()) {
857     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
858       continue;
859 
860     // We found one!  Now we have to make sure that the definition dominates
861     // this use.  We do this by moving it to the entry block (if it is a
862     // non-instruction value) or right after the definition.  These negates will
863     // be zapped by reassociate later, so we don't need much finesse here.
864     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
865 
866     // Verify that the negate is in this function, V might be a constant expr.
867     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
868       continue;
869 
870     bool FoundCatchSwitch = false;
871 
872     BasicBlock::iterator InsertPt;
873     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
874       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
875         InsertPt = II->getNormalDest()->begin();
876       } else {
877         InsertPt = ++InstInput->getIterator();
878       }
879 
880       const BasicBlock *BB = InsertPt->getParent();
881 
882       // Make sure we don't move anything before PHIs or exception
883       // handling pads.
884       while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) ||
885                                        InsertPt->isEHPad())) {
886         if (isa<CatchSwitchInst>(InsertPt))
887           // A catchswitch cannot have anything in the block except
888           // itself and PHIs.  We'll bail out below.
889           FoundCatchSwitch = true;
890         ++InsertPt;
891       }
892     } else {
893       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
894     }
895 
896     // We found a catchswitch in the block where we want to move the
897     // neg.  We cannot move anything into that block.  Bail and just
898     // create the neg before BI, as if we hadn't found an existing
899     // neg.
900     if (FoundCatchSwitch)
901       break;
902 
903     TheNeg->moveBefore(&*InsertPt);
904     if (TheNeg->getOpcode() == Instruction::Sub) {
905       TheNeg->setHasNoUnsignedWrap(false);
906       TheNeg->setHasNoSignedWrap(false);
907     } else {
908       TheNeg->andIRFlags(BI);
909     }
910     ToRedo.insert(TheNeg);
911     return TheNeg;
912   }
913 
914   // Insert a 'neg' instruction that subtracts the value from zero to get the
915   // negation.
916   BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
917   ToRedo.insert(NewNeg);
918   return NewNeg;
919 }
920 
921 /// Return true if we should break up this subtract of X-Y into (X + -Y).
922 static bool ShouldBreakUpSubtract(Instruction *Sub) {
923   // If this is a negation, we can't split it up!
924   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
925     return false;
926 
927   // Don't breakup X - undef.
928   if (isa<UndefValue>(Sub->getOperand(1)))
929     return false;
930 
931   // Don't bother to break this up unless either the LHS is an associable add or
932   // subtract or if this is only used by one.
933   Value *V0 = Sub->getOperand(0);
934   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
935       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
936     return true;
937   Value *V1 = Sub->getOperand(1);
938   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
939       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
940     return true;
941   Value *VB = Sub->user_back();
942   if (Sub->hasOneUse() &&
943       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
944        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
945     return true;
946 
947   return false;
948 }
949 
950 /// If we have (X-Y), and if either X is an add, or if this is only used by an
951 /// add, transform this into (X+(0-Y)) to promote better reassociation.
952 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
953                                        ReassociatePass::OrderedSet &ToRedo) {
954   // Convert a subtract into an add and a neg instruction. This allows sub
955   // instructions to be commuted with other add instructions.
956   //
957   // Calculate the negative value of Operand 1 of the sub instruction,
958   // and set it as the RHS of the add instruction we just made.
959   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
960   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
961   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
962   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
963   New->takeName(Sub);
964 
965   // Everyone now refers to the add instruction.
966   Sub->replaceAllUsesWith(New);
967   New->setDebugLoc(Sub->getDebugLoc());
968 
969   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
970   return New;
971 }
972 
973 /// If this is a shift of a reassociable multiply or is used by one, change
974 /// this into a multiply by a constant to assist with further reassociation.
975 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
976   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
977   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
978 
979   BinaryOperator *Mul =
980     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
981   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
982   Mul->takeName(Shl);
983 
984   // Everyone now refers to the mul instruction.
985   Shl->replaceAllUsesWith(Mul);
986   Mul->setDebugLoc(Shl->getDebugLoc());
987 
988   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
989   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
990   // handling.
991   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
992   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
993   if (NSW && NUW)
994     Mul->setHasNoSignedWrap(true);
995   Mul->setHasNoUnsignedWrap(NUW);
996   return Mul;
997 }
998 
999 /// Scan backwards and forwards among values with the same rank as element i
1000 /// to see if X exists.  If X does not exist, return i.  This is useful when
1001 /// scanning for 'x' when we see '-x' because they both get the same rank.
1002 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1003                                   unsigned i, Value *X) {
1004   unsigned XRank = Ops[i].Rank;
1005   unsigned e = Ops.size();
1006   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1007     if (Ops[j].Op == X)
1008       return j;
1009     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1010       if (Instruction *I2 = dyn_cast<Instruction>(X))
1011         if (I1->isIdenticalTo(I2))
1012           return j;
1013   }
1014   // Scan backwards.
1015   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1016     if (Ops[j].Op == X)
1017       return j;
1018     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1019       if (Instruction *I2 = dyn_cast<Instruction>(X))
1020         if (I1->isIdenticalTo(I2))
1021           return j;
1022   }
1023   return i;
1024 }
1025 
1026 /// Emit a tree of add instructions, summing Ops together
1027 /// and returning the result.  Insert the tree before I.
1028 static Value *EmitAddTreeOfValues(Instruction *I,
1029                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1030   if (Ops.size() == 1) return Ops.back();
1031 
1032   Value *V1 = Ops.back();
1033   Ops.pop_back();
1034   Value *V2 = EmitAddTreeOfValues(I, Ops);
1035   return CreateAdd(V2, V1, "reass.add", I, I);
1036 }
1037 
1038 /// If V is an expression tree that is a multiplication sequence,
1039 /// and if this sequence contains a multiply by Factor,
1040 /// remove Factor from the tree and return the new tree.
1041 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1042   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1043   if (!BO)
1044     return nullptr;
1045 
1046   SmallVector<RepeatedValue, 8> Tree;
1047   MadeChange |= LinearizeExprTree(BO, Tree);
1048   SmallVector<ValueEntry, 8> Factors;
1049   Factors.reserve(Tree.size());
1050   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1051     RepeatedValue E = Tree[i];
1052     Factors.append(E.second.getZExtValue(),
1053                    ValueEntry(getRank(E.first), E.first));
1054   }
1055 
1056   bool FoundFactor = false;
1057   bool NeedsNegate = false;
1058   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1059     if (Factors[i].Op == Factor) {
1060       FoundFactor = true;
1061       Factors.erase(Factors.begin()+i);
1062       break;
1063     }
1064 
1065     // If this is a negative version of this factor, remove it.
1066     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1067       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1068         if (FC1->getValue() == -FC2->getValue()) {
1069           FoundFactor = NeedsNegate = true;
1070           Factors.erase(Factors.begin()+i);
1071           break;
1072         }
1073     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1074       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1075         const APFloat &F1 = FC1->getValueAPF();
1076         APFloat F2(FC2->getValueAPF());
1077         F2.changeSign();
1078         if (F1.compare(F2) == APFloat::cmpEqual) {
1079           FoundFactor = NeedsNegate = true;
1080           Factors.erase(Factors.begin() + i);
1081           break;
1082         }
1083       }
1084     }
1085   }
1086 
1087   if (!FoundFactor) {
1088     // Make sure to restore the operands to the expression tree.
1089     RewriteExprTree(BO, Factors);
1090     return nullptr;
1091   }
1092 
1093   BasicBlock::iterator InsertPt = ++BO->getIterator();
1094 
1095   // If this was just a single multiply, remove the multiply and return the only
1096   // remaining operand.
1097   if (Factors.size() == 1) {
1098     RedoInsts.insert(BO);
1099     V = Factors[0].Op;
1100   } else {
1101     RewriteExprTree(BO, Factors);
1102     V = BO;
1103   }
1104 
1105   if (NeedsNegate)
1106     V = CreateNeg(V, "neg", &*InsertPt, BO);
1107 
1108   return V;
1109 }
1110 
1111 /// If V is a single-use multiply, recursively add its operands as factors,
1112 /// otherwise add V to the list of factors.
1113 ///
1114 /// Ops is the top-level list of add operands we're trying to factor.
1115 static void FindSingleUseMultiplyFactors(Value *V,
1116                                          SmallVectorImpl<Value*> &Factors) {
1117   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1118   if (!BO) {
1119     Factors.push_back(V);
1120     return;
1121   }
1122 
1123   // Otherwise, add the LHS and RHS to the list of factors.
1124   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1125   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1126 }
1127 
1128 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1129 /// This optimizes based on identities.  If it can be reduced to a single Value,
1130 /// it is returned, otherwise the Ops list is mutated as necessary.
1131 static Value *OptimizeAndOrXor(unsigned Opcode,
1132                                SmallVectorImpl<ValueEntry> &Ops) {
1133   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1134   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1135   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1136     // First, check for X and ~X in the operand list.
1137     assert(i < Ops.size());
1138     Value *X;
1139     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1140       unsigned FoundX = FindInOperandList(Ops, i, X);
1141       if (FoundX != i) {
1142         if (Opcode == Instruction::And)   // ...&X&~X = 0
1143           return Constant::getNullValue(X->getType());
1144 
1145         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1146           return Constant::getAllOnesValue(X->getType());
1147       }
1148     }
1149 
1150     // Next, check for duplicate pairs of values, which we assume are next to
1151     // each other, due to our sorting criteria.
1152     assert(i < Ops.size());
1153     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1154       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1155         // Drop duplicate values for And and Or.
1156         Ops.erase(Ops.begin()+i);
1157         --i; --e;
1158         ++NumAnnihil;
1159         continue;
1160       }
1161 
1162       // Drop pairs of values for Xor.
1163       assert(Opcode == Instruction::Xor);
1164       if (e == 2)
1165         return Constant::getNullValue(Ops[0].Op->getType());
1166 
1167       // Y ^ X^X -> Y
1168       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1169       i -= 1; e -= 2;
1170       ++NumAnnihil;
1171     }
1172   }
1173   return nullptr;
1174 }
1175 
1176 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1177 /// instruction with the given two operands, and return the resulting
1178 /// instruction. There are two special cases: 1) if the constant operand is 0,
1179 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1180 /// be returned.
1181 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1182                              const APInt &ConstOpnd) {
1183   if (ConstOpnd.isNullValue())
1184     return nullptr;
1185 
1186   if (ConstOpnd.isAllOnesValue())
1187     return Opnd;
1188 
1189   Instruction *I = BinaryOperator::CreateAnd(
1190       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1191       InsertBefore);
1192   I->setDebugLoc(InsertBefore->getDebugLoc());
1193   return I;
1194 }
1195 
1196 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1197 // into "R ^ C", where C would be 0, and R is a symbolic value.
1198 //
1199 // If it was successful, true is returned, and the "R" and "C" is returned
1200 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1201 // and both "Res" and "ConstOpnd" remain unchanged.
1202 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1203                                      APInt &ConstOpnd, Value *&Res) {
1204   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1205   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1206   //                       = (x & ~c1) ^ (c1 ^ c2)
1207   // It is useful only when c1 == c2.
1208   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue())
1209     return false;
1210 
1211   if (!Opnd1->getValue()->hasOneUse())
1212     return false;
1213 
1214   const APInt &C1 = Opnd1->getConstPart();
1215   if (C1 != ConstOpnd)
1216     return false;
1217 
1218   Value *X = Opnd1->getSymbolicPart();
1219   Res = createAndInstr(I, X, ~C1);
1220   // ConstOpnd was C2, now C1 ^ C2.
1221   ConstOpnd ^= C1;
1222 
1223   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1224     RedoInsts.insert(T);
1225   return true;
1226 }
1227 
1228 // Helper function of OptimizeXor(). It tries to simplify
1229 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1230 // symbolic value.
1231 //
1232 // If it was successful, true is returned, and the "R" and "C" is returned
1233 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1234 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1235 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1236 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1237                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1238                                      Value *&Res) {
1239   Value *X = Opnd1->getSymbolicPart();
1240   if (X != Opnd2->getSymbolicPart())
1241     return false;
1242 
1243   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1244   int DeadInstNum = 1;
1245   if (Opnd1->getValue()->hasOneUse())
1246     DeadInstNum++;
1247   if (Opnd2->getValue()->hasOneUse())
1248     DeadInstNum++;
1249 
1250   // Xor-Rule 2:
1251   //  (x | c1) ^ (x & c2)
1252   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1253   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1254   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1255   //
1256   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1257     if (Opnd2->isOrExpr())
1258       std::swap(Opnd1, Opnd2);
1259 
1260     const APInt &C1 = Opnd1->getConstPart();
1261     const APInt &C2 = Opnd2->getConstPart();
1262     APInt C3((~C1) ^ C2);
1263 
1264     // Do not increase code size!
1265     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1266       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1267       if (NewInstNum > DeadInstNum)
1268         return false;
1269     }
1270 
1271     Res = createAndInstr(I, X, C3);
1272     ConstOpnd ^= C1;
1273   } else if (Opnd1->isOrExpr()) {
1274     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1275     //
1276     const APInt &C1 = Opnd1->getConstPart();
1277     const APInt &C2 = Opnd2->getConstPart();
1278     APInt C3 = C1 ^ C2;
1279 
1280     // Do not increase code size
1281     if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1282       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1283       if (NewInstNum > DeadInstNum)
1284         return false;
1285     }
1286 
1287     Res = createAndInstr(I, X, C3);
1288     ConstOpnd ^= C3;
1289   } else {
1290     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1291     //
1292     const APInt &C1 = Opnd1->getConstPart();
1293     const APInt &C2 = Opnd2->getConstPart();
1294     APInt C3 = C1 ^ C2;
1295     Res = createAndInstr(I, X, C3);
1296   }
1297 
1298   // Put the original operands in the Redo list; hope they will be deleted
1299   // as dead code.
1300   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1301     RedoInsts.insert(T);
1302   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1303     RedoInsts.insert(T);
1304 
1305   return true;
1306 }
1307 
1308 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1309 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1310 /// necessary.
1311 Value *ReassociatePass::OptimizeXor(Instruction *I,
1312                                     SmallVectorImpl<ValueEntry> &Ops) {
1313   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1314     return V;
1315 
1316   if (Ops.size() == 1)
1317     return nullptr;
1318 
1319   SmallVector<XorOpnd, 8> Opnds;
1320   SmallVector<XorOpnd*, 8> OpndPtrs;
1321   Type *Ty = Ops[0].Op->getType();
1322   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1323 
1324   // Step 1: Convert ValueEntry to XorOpnd
1325   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1326     Value *V = Ops[i].Op;
1327     const APInt *C;
1328     // TODO: Support non-splat vectors.
1329     if (match(V, m_APInt(C))) {
1330       ConstOpnd ^= *C;
1331     } else {
1332       XorOpnd O(V);
1333       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1334       Opnds.push_back(O);
1335     }
1336   }
1337 
1338   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1339   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1340   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1341   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1342   //  when new elements are added to the vector.
1343   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1344     OpndPtrs.push_back(&Opnds[i]);
1345 
1346   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1347   //  the same symbolic value cluster together. For instance, the input operand
1348   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1349   //  ("x | 123", "x & 789", "y & 456").
1350   //
1351   //  The purpose is twofold:
1352   //  1) Cluster together the operands sharing the same symbolic-value.
1353   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1354   //     could potentially shorten crital path, and expose more loop-invariants.
1355   //     Note that values' rank are basically defined in RPO order (FIXME).
1356   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1357   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1358   //     "z" in the order of X-Y-Z is better than any other orders.
1359   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1360     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1361   });
1362 
1363   // Step 3: Combine adjacent operands
1364   XorOpnd *PrevOpnd = nullptr;
1365   bool Changed = false;
1366   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1367     XorOpnd *CurrOpnd = OpndPtrs[i];
1368     // The combined value
1369     Value *CV;
1370 
1371     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1372     if (!ConstOpnd.isNullValue() &&
1373         CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1374       Changed = true;
1375       if (CV)
1376         *CurrOpnd = XorOpnd(CV);
1377       else {
1378         CurrOpnd->Invalidate();
1379         continue;
1380       }
1381     }
1382 
1383     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1384       PrevOpnd = CurrOpnd;
1385       continue;
1386     }
1387 
1388     // step 3.2: When previous and current operands share the same symbolic
1389     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1390     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1391       // Remove previous operand
1392       PrevOpnd->Invalidate();
1393       if (CV) {
1394         *CurrOpnd = XorOpnd(CV);
1395         PrevOpnd = CurrOpnd;
1396       } else {
1397         CurrOpnd->Invalidate();
1398         PrevOpnd = nullptr;
1399       }
1400       Changed = true;
1401     }
1402   }
1403 
1404   // Step 4: Reassemble the Ops
1405   if (Changed) {
1406     Ops.clear();
1407     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1408       XorOpnd &O = Opnds[i];
1409       if (O.isInvalid())
1410         continue;
1411       ValueEntry VE(getRank(O.getValue()), O.getValue());
1412       Ops.push_back(VE);
1413     }
1414     if (!ConstOpnd.isNullValue()) {
1415       Value *C = ConstantInt::get(Ty, ConstOpnd);
1416       ValueEntry VE(getRank(C), C);
1417       Ops.push_back(VE);
1418     }
1419     unsigned Sz = Ops.size();
1420     if (Sz == 1)
1421       return Ops.back().Op;
1422     if (Sz == 0) {
1423       assert(ConstOpnd.isNullValue());
1424       return ConstantInt::get(Ty, ConstOpnd);
1425     }
1426   }
1427 
1428   return nullptr;
1429 }
1430 
1431 /// Optimize a series of operands to an 'add' instruction.  This
1432 /// optimizes based on identities.  If it can be reduced to a single Value, it
1433 /// is returned, otherwise the Ops list is mutated as necessary.
1434 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1435                                     SmallVectorImpl<ValueEntry> &Ops) {
1436   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1437   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1438   // scan for any
1439   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1440 
1441   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1442     Value *TheOp = Ops[i].Op;
1443     // Check to see if we've seen this operand before.  If so, we factor all
1444     // instances of the operand together.  Due to our sorting criteria, we know
1445     // that these need to be next to each other in the vector.
1446     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1447       // Rescan the list, remove all instances of this operand from the expr.
1448       unsigned NumFound = 0;
1449       do {
1450         Ops.erase(Ops.begin()+i);
1451         ++NumFound;
1452       } while (i != Ops.size() && Ops[i].Op == TheOp);
1453 
1454       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1455                         << '\n');
1456       ++NumFactor;
1457 
1458       // Insert a new multiply.
1459       Type *Ty = TheOp->getType();
1460       Constant *C = Ty->isIntOrIntVectorTy() ?
1461         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1462       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1463 
1464       // Now that we have inserted a multiply, optimize it. This allows us to
1465       // handle cases that require multiple factoring steps, such as this:
1466       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1467       RedoInsts.insert(Mul);
1468 
1469       // If every add operand was a duplicate, return the multiply.
1470       if (Ops.empty())
1471         return Mul;
1472 
1473       // Otherwise, we had some input that didn't have the dupe, such as
1474       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1475       // things being added by this operation.
1476       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1477 
1478       --i;
1479       e = Ops.size();
1480       continue;
1481     }
1482 
1483     // Check for X and -X or X and ~X in the operand list.
1484     Value *X;
1485     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1486         !match(TheOp, m_FNeg(m_Value(X))))
1487       continue;
1488 
1489     unsigned FoundX = FindInOperandList(Ops, i, X);
1490     if (FoundX == i)
1491       continue;
1492 
1493     // Remove X and -X from the operand list.
1494     if (Ops.size() == 2 &&
1495         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1496       return Constant::getNullValue(X->getType());
1497 
1498     // Remove X and ~X from the operand list.
1499     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1500       return Constant::getAllOnesValue(X->getType());
1501 
1502     Ops.erase(Ops.begin()+i);
1503     if (i < FoundX)
1504       --FoundX;
1505     else
1506       --i;   // Need to back up an extra one.
1507     Ops.erase(Ops.begin()+FoundX);
1508     ++NumAnnihil;
1509     --i;     // Revisit element.
1510     e -= 2;  // Removed two elements.
1511 
1512     // if X and ~X we append -1 to the operand list.
1513     if (match(TheOp, m_Not(m_Value()))) {
1514       Value *V = Constant::getAllOnesValue(X->getType());
1515       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1516       e += 1;
1517     }
1518   }
1519 
1520   // Scan the operand list, checking to see if there are any common factors
1521   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1522   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1523   // To efficiently find this, we count the number of times a factor occurs
1524   // for any ADD operands that are MULs.
1525   DenseMap<Value*, unsigned> FactorOccurrences;
1526 
1527   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1528   // where they are actually the same multiply.
1529   unsigned MaxOcc = 0;
1530   Value *MaxOccVal = nullptr;
1531   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1532     BinaryOperator *BOp =
1533         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1534     if (!BOp)
1535       continue;
1536 
1537     // Compute all of the factors of this added value.
1538     SmallVector<Value*, 8> Factors;
1539     FindSingleUseMultiplyFactors(BOp, Factors);
1540     assert(Factors.size() > 1 && "Bad linearize!");
1541 
1542     // Add one to FactorOccurrences for each unique factor in this op.
1543     SmallPtrSet<Value*, 8> Duplicates;
1544     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1545       Value *Factor = Factors[i];
1546       if (!Duplicates.insert(Factor).second)
1547         continue;
1548 
1549       unsigned Occ = ++FactorOccurrences[Factor];
1550       if (Occ > MaxOcc) {
1551         MaxOcc = Occ;
1552         MaxOccVal = Factor;
1553       }
1554 
1555       // If Factor is a negative constant, add the negated value as a factor
1556       // because we can percolate the negate out.  Watch for minint, which
1557       // cannot be positivified.
1558       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1559         if (CI->isNegative() && !CI->isMinValue(true)) {
1560           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1561           if (!Duplicates.insert(Factor).second)
1562             continue;
1563           unsigned Occ = ++FactorOccurrences[Factor];
1564           if (Occ > MaxOcc) {
1565             MaxOcc = Occ;
1566             MaxOccVal = Factor;
1567           }
1568         }
1569       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1570         if (CF->isNegative()) {
1571           APFloat F(CF->getValueAPF());
1572           F.changeSign();
1573           Factor = ConstantFP::get(CF->getContext(), F);
1574           if (!Duplicates.insert(Factor).second)
1575             continue;
1576           unsigned Occ = ++FactorOccurrences[Factor];
1577           if (Occ > MaxOcc) {
1578             MaxOcc = Occ;
1579             MaxOccVal = Factor;
1580           }
1581         }
1582       }
1583     }
1584   }
1585 
1586   // If any factor occurred more than one time, we can pull it out.
1587   if (MaxOcc > 1) {
1588     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1589                       << '\n');
1590     ++NumFactor;
1591 
1592     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1593     // this, we could otherwise run into situations where removing a factor
1594     // from an expression will drop a use of maxocc, and this can cause
1595     // RemoveFactorFromExpression on successive values to behave differently.
1596     Instruction *DummyInst =
1597         I->getType()->isIntOrIntVectorTy()
1598             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1599             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1600 
1601     SmallVector<WeakTrackingVH, 4> NewMulOps;
1602     for (unsigned i = 0; i != Ops.size(); ++i) {
1603       // Only try to remove factors from expressions we're allowed to.
1604       BinaryOperator *BOp =
1605           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1606       if (!BOp)
1607         continue;
1608 
1609       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1610         // The factorized operand may occur several times.  Convert them all in
1611         // one fell swoop.
1612         for (unsigned j = Ops.size(); j != i;) {
1613           --j;
1614           if (Ops[j].Op == Ops[i].Op) {
1615             NewMulOps.push_back(V);
1616             Ops.erase(Ops.begin()+j);
1617           }
1618         }
1619         --i;
1620       }
1621     }
1622 
1623     // No need for extra uses anymore.
1624     DummyInst->deleteValue();
1625 
1626     unsigned NumAddedValues = NewMulOps.size();
1627     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1628 
1629     // Now that we have inserted the add tree, optimize it. This allows us to
1630     // handle cases that require multiple factoring steps, such as this:
1631     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1632     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1633     (void)NumAddedValues;
1634     if (Instruction *VI = dyn_cast<Instruction>(V))
1635       RedoInsts.insert(VI);
1636 
1637     // Create the multiply.
1638     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1639 
1640     // Rerun associate on the multiply in case the inner expression turned into
1641     // a multiply.  We want to make sure that we keep things in canonical form.
1642     RedoInsts.insert(V2);
1643 
1644     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1645     // entire result expression is just the multiply "A*(B+C)".
1646     if (Ops.empty())
1647       return V2;
1648 
1649     // Otherwise, we had some input that didn't have the factor, such as
1650     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1651     // things being added by this operation.
1652     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1653   }
1654 
1655   return nullptr;
1656 }
1657 
1658 /// Build up a vector of value/power pairs factoring a product.
1659 ///
1660 /// Given a series of multiplication operands, build a vector of factors and
1661 /// the powers each is raised to when forming the final product. Sort them in
1662 /// the order of descending power.
1663 ///
1664 ///      (x*x)          -> [(x, 2)]
1665 ///     ((x*x)*x)       -> [(x, 3)]
1666 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1667 ///
1668 /// \returns Whether any factors have a power greater than one.
1669 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1670                                    SmallVectorImpl<Factor> &Factors) {
1671   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1672   // Compute the sum of powers of simplifiable factors.
1673   unsigned FactorPowerSum = 0;
1674   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1675     Value *Op = Ops[Idx-1].Op;
1676 
1677     // Count the number of occurrences of this value.
1678     unsigned Count = 1;
1679     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1680       ++Count;
1681     // Track for simplification all factors which occur 2 or more times.
1682     if (Count > 1)
1683       FactorPowerSum += Count;
1684   }
1685 
1686   // We can only simplify factors if the sum of the powers of our simplifiable
1687   // factors is 4 or higher. When that is the case, we will *always* have
1688   // a simplification. This is an important invariant to prevent cyclicly
1689   // trying to simplify already minimal formations.
1690   if (FactorPowerSum < 4)
1691     return false;
1692 
1693   // Now gather the simplifiable factors, removing them from Ops.
1694   FactorPowerSum = 0;
1695   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1696     Value *Op = Ops[Idx-1].Op;
1697 
1698     // Count the number of occurrences of this value.
1699     unsigned Count = 1;
1700     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1701       ++Count;
1702     if (Count == 1)
1703       continue;
1704     // Move an even number of occurrences to Factors.
1705     Count &= ~1U;
1706     Idx -= Count;
1707     FactorPowerSum += Count;
1708     Factors.push_back(Factor(Op, Count));
1709     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1710   }
1711 
1712   // None of the adjustments above should have reduced the sum of factor powers
1713   // below our mininum of '4'.
1714   assert(FactorPowerSum >= 4);
1715 
1716   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1717     return LHS.Power > RHS.Power;
1718   });
1719   return true;
1720 }
1721 
1722 /// Build a tree of multiplies, computing the product of Ops.
1723 static Value *buildMultiplyTree(IRBuilder<> &Builder,
1724                                 SmallVectorImpl<Value*> &Ops) {
1725   if (Ops.size() == 1)
1726     return Ops.back();
1727 
1728   Value *LHS = Ops.pop_back_val();
1729   do {
1730     if (LHS->getType()->isIntOrIntVectorTy())
1731       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1732     else
1733       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1734   } while (!Ops.empty());
1735 
1736   return LHS;
1737 }
1738 
1739 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1740 ///
1741 /// Given a vector of values raised to various powers, where no two values are
1742 /// equal and the powers are sorted in decreasing order, compute the minimal
1743 /// DAG of multiplies to compute the final product, and return that product
1744 /// value.
1745 Value *
1746 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1747                                          SmallVectorImpl<Factor> &Factors) {
1748   assert(Factors[0].Power);
1749   SmallVector<Value *, 4> OuterProduct;
1750   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1751        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1752     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1753       LastIdx = Idx;
1754       continue;
1755     }
1756 
1757     // We want to multiply across all the factors with the same power so that
1758     // we can raise them to that power as a single entity. Build a mini tree
1759     // for that.
1760     SmallVector<Value *, 4> InnerProduct;
1761     InnerProduct.push_back(Factors[LastIdx].Base);
1762     do {
1763       InnerProduct.push_back(Factors[Idx].Base);
1764       ++Idx;
1765     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1766 
1767     // Reset the base value of the first factor to the new expression tree.
1768     // We'll remove all the factors with the same power in a second pass.
1769     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1770     if (Instruction *MI = dyn_cast<Instruction>(M))
1771       RedoInsts.insert(MI);
1772 
1773     LastIdx = Idx;
1774   }
1775   // Unique factors with equal powers -- we've folded them into the first one's
1776   // base.
1777   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1778                             [](const Factor &LHS, const Factor &RHS) {
1779                               return LHS.Power == RHS.Power;
1780                             }),
1781                 Factors.end());
1782 
1783   // Iteratively collect the base of each factor with an add power into the
1784   // outer product, and halve each power in preparation for squaring the
1785   // expression.
1786   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1787     if (Factors[Idx].Power & 1)
1788       OuterProduct.push_back(Factors[Idx].Base);
1789     Factors[Idx].Power >>= 1;
1790   }
1791   if (Factors[0].Power) {
1792     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1793     OuterProduct.push_back(SquareRoot);
1794     OuterProduct.push_back(SquareRoot);
1795   }
1796   if (OuterProduct.size() == 1)
1797     return OuterProduct.front();
1798 
1799   Value *V = buildMultiplyTree(Builder, OuterProduct);
1800   return V;
1801 }
1802 
1803 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1804                                     SmallVectorImpl<ValueEntry> &Ops) {
1805   // We can only optimize the multiplies when there is a chain of more than
1806   // three, such that a balanced tree might require fewer total multiplies.
1807   if (Ops.size() < 4)
1808     return nullptr;
1809 
1810   // Try to turn linear trees of multiplies without other uses of the
1811   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1812   // re-use.
1813   SmallVector<Factor, 4> Factors;
1814   if (!collectMultiplyFactors(Ops, Factors))
1815     return nullptr; // All distinct factors, so nothing left for us to do.
1816 
1817   IRBuilder<> Builder(I);
1818   // The reassociate transformation for FP operations is performed only
1819   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1820   // to the newly generated operations.
1821   if (auto FPI = dyn_cast<FPMathOperator>(I))
1822     Builder.setFastMathFlags(FPI->getFastMathFlags());
1823 
1824   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1825   if (Ops.empty())
1826     return V;
1827 
1828   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1829   Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1830   return nullptr;
1831 }
1832 
1833 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1834                                            SmallVectorImpl<ValueEntry> &Ops) {
1835   // Now that we have the linearized expression tree, try to optimize it.
1836   // Start by folding any constants that we found.
1837   Constant *Cst = nullptr;
1838   unsigned Opcode = I->getOpcode();
1839   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1840     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1841     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1842   }
1843   // If there was nothing but constants then we are done.
1844   if (Ops.empty())
1845     return Cst;
1846 
1847   // Put the combined constant back at the end of the operand list, except if
1848   // there is no point.  For example, an add of 0 gets dropped here, while a
1849   // multiplication by zero turns the whole expression into zero.
1850   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1851     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1852       return Cst;
1853     Ops.push_back(ValueEntry(0, Cst));
1854   }
1855 
1856   if (Ops.size() == 1) return Ops[0].Op;
1857 
1858   // Handle destructive annihilation due to identities between elements in the
1859   // argument list here.
1860   unsigned NumOps = Ops.size();
1861   switch (Opcode) {
1862   default: break;
1863   case Instruction::And:
1864   case Instruction::Or:
1865     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1866       return Result;
1867     break;
1868 
1869   case Instruction::Xor:
1870     if (Value *Result = OptimizeXor(I, Ops))
1871       return Result;
1872     break;
1873 
1874   case Instruction::Add:
1875   case Instruction::FAdd:
1876     if (Value *Result = OptimizeAdd(I, Ops))
1877       return Result;
1878     break;
1879 
1880   case Instruction::Mul:
1881   case Instruction::FMul:
1882     if (Value *Result = OptimizeMul(I, Ops))
1883       return Result;
1884     break;
1885   }
1886 
1887   if (Ops.size() != NumOps)
1888     return OptimizeExpression(I, Ops);
1889   return nullptr;
1890 }
1891 
1892 // Remove dead instructions and if any operands are trivially dead add them to
1893 // Insts so they will be removed as well.
1894 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
1895                                                 OrderedSet &Insts) {
1896   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1897   SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1898   ValueRankMap.erase(I);
1899   Insts.remove(I);
1900   RedoInsts.remove(I);
1901   I->eraseFromParent();
1902   for (auto Op : Ops)
1903     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1904       if (OpInst->use_empty())
1905         Insts.insert(OpInst);
1906 }
1907 
1908 /// Zap the given instruction, adding interesting operands to the work list.
1909 void ReassociatePass::EraseInst(Instruction *I) {
1910   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1911   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1912 
1913   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1914   // Erase the dead instruction.
1915   ValueRankMap.erase(I);
1916   RedoInsts.remove(I);
1917   I->eraseFromParent();
1918   // Optimize its operands.
1919   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1920   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1921     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1922       // If this is a node in an expression tree, climb to the expression root
1923       // and add that since that's where optimization actually happens.
1924       unsigned Opcode = Op->getOpcode();
1925       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
1926              Visited.insert(Op).second)
1927         Op = Op->user_back();
1928 
1929       // The instruction we're going to push may be coming from a
1930       // dead block, and Reassociate skips the processing of unreachable
1931       // blocks because it's a waste of time and also because it can
1932       // lead to infinite loop due to LLVM's non-standard definition
1933       // of dominance.
1934       if (ValueRankMap.find(Op) != ValueRankMap.end())
1935         RedoInsts.insert(Op);
1936     }
1937 
1938   MadeChange = true;
1939 }
1940 
1941 // Canonicalize expressions of the following form:
1942 //  x + (-Constant * y) -> x - (Constant * y)
1943 //  x - (-Constant * y) -> x + (Constant * y)
1944 Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
1945   if (!I->hasOneUse() || I->getType()->isVectorTy())
1946     return nullptr;
1947 
1948   // Must be a fmul or fdiv instruction.
1949   unsigned Opcode = I->getOpcode();
1950   if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
1951     return nullptr;
1952 
1953   auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1954   auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1955 
1956   // Both operands are constant, let it get constant folded away.
1957   if (C0 && C1)
1958     return nullptr;
1959 
1960   ConstantFP *CF = C0 ? C0 : C1;
1961 
1962   // Must have one constant operand.
1963   if (!CF)
1964     return nullptr;
1965 
1966   // Must be a negative ConstantFP.
1967   if (!CF->isNegative())
1968     return nullptr;
1969 
1970   // User must be a binary operator with one or more uses.
1971   Instruction *User = I->user_back();
1972   if (!isa<BinaryOperator>(User) || User->use_empty())
1973     return nullptr;
1974 
1975   unsigned UserOpcode = User->getOpcode();
1976   if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
1977     return nullptr;
1978 
1979   // Subtraction is not commutative. Explicitly, the following transform is
1980   // not valid: (-Constant * y) - x  -> x + (Constant * y)
1981   if (!User->isCommutative() && User->getOperand(1) != I)
1982     return nullptr;
1983 
1984   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
1985   // resulting subtract will be broken up later.  This can get us into an
1986   // infinite loop during reassociation.
1987   if (UserOpcode == Instruction::FAdd && ShouldBreakUpSubtract(User))
1988     return nullptr;
1989 
1990   // Change the sign of the constant.
1991   APFloat Val = CF->getValueAPF();
1992   Val.changeSign();
1993   I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
1994 
1995   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1996   // ((-Const*y) + x) -> (x + (-Const*y)).
1997   if (User->getOperand(0) == I && User->isCommutative())
1998     cast<BinaryOperator>(User)->swapOperands();
1999 
2000   Value *Op0 = User->getOperand(0);
2001   Value *Op1 = User->getOperand(1);
2002   BinaryOperator *NI;
2003   switch (UserOpcode) {
2004   default:
2005     llvm_unreachable("Unexpected Opcode!");
2006   case Instruction::FAdd:
2007     NI = BinaryOperator::CreateFSub(Op0, Op1);
2008     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2009     break;
2010   case Instruction::FSub:
2011     NI = BinaryOperator::CreateFAdd(Op0, Op1);
2012     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2013     break;
2014   }
2015 
2016   NI->insertBefore(User);
2017   NI->setName(User->getName());
2018   User->replaceAllUsesWith(NI);
2019   NI->setDebugLoc(I->getDebugLoc());
2020   RedoInsts.insert(I);
2021   MadeChange = true;
2022   return NI;
2023 }
2024 
2025 /// Inspect and optimize the given instruction. Note that erasing
2026 /// instructions is not allowed.
2027 void ReassociatePass::OptimizeInst(Instruction *I) {
2028   // Only consider operations that we understand.
2029   if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2030     return;
2031 
2032   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2033     // If an operand of this shift is a reassociable multiply, or if the shift
2034     // is used by a reassociable multiply or add, turn into a multiply.
2035     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2036         (I->hasOneUse() &&
2037          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2038           isReassociableOp(I->user_back(), Instruction::Add)))) {
2039       Instruction *NI = ConvertShiftToMul(I);
2040       RedoInsts.insert(I);
2041       MadeChange = true;
2042       I = NI;
2043     }
2044 
2045   // Canonicalize negative constants out of expressions.
2046   if (Instruction *Res = canonicalizeNegConstExpr(I))
2047     I = Res;
2048 
2049   // Commute binary operators, to canonicalize the order of their operands.
2050   // This can potentially expose more CSE opportunities, and makes writing other
2051   // transformations simpler.
2052   if (I->isCommutative())
2053     canonicalizeOperands(I);
2054 
2055   // Don't optimize floating-point instructions unless they are 'fast'.
2056   if (I->getType()->isFPOrFPVectorTy() && !I->isFast())
2057     return;
2058 
2059   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2060   // original order of evaluation for short-circuited comparisons that
2061   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2062   // is not further optimized, it is likely to be transformed back to a
2063   // short-circuited form for code gen, and the source order may have been
2064   // optimized for the most likely conditions.
2065   if (I->getType()->isIntegerTy(1))
2066     return;
2067 
2068   // If this is a subtract instruction which is not already in negate form,
2069   // see if we can convert it to X+-Y.
2070   if (I->getOpcode() == Instruction::Sub) {
2071     if (ShouldBreakUpSubtract(I)) {
2072       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2073       RedoInsts.insert(I);
2074       MadeChange = true;
2075       I = NI;
2076     } else if (match(I, m_Neg(m_Value()))) {
2077       // Otherwise, this is a negation.  See if the operand is a multiply tree
2078       // and if this is not an inner node of a multiply tree.
2079       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2080           (!I->hasOneUse() ||
2081            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2082         Instruction *NI = LowerNegateToMultiply(I);
2083         // If the negate was simplified, revisit the users to see if we can
2084         // reassociate further.
2085         for (User *U : NI->users()) {
2086           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2087             RedoInsts.insert(Tmp);
2088         }
2089         RedoInsts.insert(I);
2090         MadeChange = true;
2091         I = NI;
2092       }
2093     }
2094   } else if (I->getOpcode() == Instruction::FNeg ||
2095              I->getOpcode() == Instruction::FSub) {
2096     if (ShouldBreakUpSubtract(I)) {
2097       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2098       RedoInsts.insert(I);
2099       MadeChange = true;
2100       I = NI;
2101     } else if (match(I, m_FNeg(m_Value()))) {
2102       // Otherwise, this is a negation.  See if the operand is a multiply tree
2103       // and if this is not an inner node of a multiply tree.
2104       Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2105                                            I->getOperand(0);
2106       if (isReassociableOp(Op, Instruction::FMul) &&
2107           (!I->hasOneUse() ||
2108            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2109         // If the negate was simplified, revisit the users to see if we can
2110         // reassociate further.
2111         Instruction *NI = LowerNegateToMultiply(I);
2112         for (User *U : NI->users()) {
2113           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2114             RedoInsts.insert(Tmp);
2115         }
2116         RedoInsts.insert(I);
2117         MadeChange = true;
2118         I = NI;
2119       }
2120     }
2121   }
2122 
2123   // If this instruction is an associative binary operator, process it.
2124   if (!I->isAssociative()) return;
2125   BinaryOperator *BO = cast<BinaryOperator>(I);
2126 
2127   // If this is an interior node of a reassociable tree, ignore it until we
2128   // get to the root of the tree, to avoid N^2 analysis.
2129   unsigned Opcode = BO->getOpcode();
2130   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2131     // During the initial run we will get to the root of the tree.
2132     // But if we get here while we are redoing instructions, there is no
2133     // guarantee that the root will be visited. So Redo later
2134     if (BO->user_back() != BO &&
2135         BO->getParent() == BO->user_back()->getParent())
2136       RedoInsts.insert(BO->user_back());
2137     return;
2138   }
2139 
2140   // If this is an add tree that is used by a sub instruction, ignore it
2141   // until we process the subtract.
2142   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2143       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2144     return;
2145   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2146       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2147     return;
2148 
2149   ReassociateExpression(BO);
2150 }
2151 
2152 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2153   // First, walk the expression tree, linearizing the tree, collecting the
2154   // operand information.
2155   SmallVector<RepeatedValue, 8> Tree;
2156   MadeChange |= LinearizeExprTree(I, Tree);
2157   SmallVector<ValueEntry, 8> Ops;
2158   Ops.reserve(Tree.size());
2159   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2160     RepeatedValue E = Tree[i];
2161     Ops.append(E.second.getZExtValue(),
2162                ValueEntry(getRank(E.first), E.first));
2163   }
2164 
2165   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2166 
2167   // Now that we have linearized the tree to a list and have gathered all of
2168   // the operands and their ranks, sort the operands by their rank.  Use a
2169   // stable_sort so that values with equal ranks will have their relative
2170   // positions maintained (and so the compiler is deterministic).  Note that
2171   // this sorts so that the highest ranking values end up at the beginning of
2172   // the vector.
2173   llvm::stable_sort(Ops);
2174 
2175   // Now that we have the expression tree in a convenient
2176   // sorted form, optimize it globally if possible.
2177   if (Value *V = OptimizeExpression(I, Ops)) {
2178     if (V == I)
2179       // Self-referential expression in unreachable code.
2180       return;
2181     // This expression tree simplified to something that isn't a tree,
2182     // eliminate it.
2183     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2184     I->replaceAllUsesWith(V);
2185     if (Instruction *VI = dyn_cast<Instruction>(V))
2186       if (I->getDebugLoc())
2187         VI->setDebugLoc(I->getDebugLoc());
2188     RedoInsts.insert(I);
2189     ++NumAnnihil;
2190     return;
2191   }
2192 
2193   // We want to sink immediates as deeply as possible except in the case where
2194   // this is a multiply tree used only by an add, and the immediate is a -1.
2195   // In this case we reassociate to put the negation on the outside so that we
2196   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2197   if (I->hasOneUse()) {
2198     if (I->getOpcode() == Instruction::Mul &&
2199         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2200         isa<ConstantInt>(Ops.back().Op) &&
2201         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2202       ValueEntry Tmp = Ops.pop_back_val();
2203       Ops.insert(Ops.begin(), Tmp);
2204     } else if (I->getOpcode() == Instruction::FMul &&
2205                cast<Instruction>(I->user_back())->getOpcode() ==
2206                    Instruction::FAdd &&
2207                isa<ConstantFP>(Ops.back().Op) &&
2208                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2209       ValueEntry Tmp = Ops.pop_back_val();
2210       Ops.insert(Ops.begin(), Tmp);
2211     }
2212   }
2213 
2214   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2215 
2216   if (Ops.size() == 1) {
2217     if (Ops[0].Op == I)
2218       // Self-referential expression in unreachable code.
2219       return;
2220 
2221     // This expression tree simplified to something that isn't a tree,
2222     // eliminate it.
2223     I->replaceAllUsesWith(Ops[0].Op);
2224     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2225       OI->setDebugLoc(I->getDebugLoc());
2226     RedoInsts.insert(I);
2227     return;
2228   }
2229 
2230   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2231     // Find the pair with the highest count in the pairmap and move it to the
2232     // back of the list so that it can later be CSE'd.
2233     // example:
2234     //   a*b*c*d*e
2235     // if c*e is the most "popular" pair, we can express this as
2236     //   (((c*e)*d)*b)*a
2237     unsigned Max = 1;
2238     unsigned BestRank = 0;
2239     std::pair<unsigned, unsigned> BestPair;
2240     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2241     for (unsigned i = 0; i < Ops.size() - 1; ++i)
2242       for (unsigned j = i + 1; j < Ops.size(); ++j) {
2243         unsigned Score = 0;
2244         Value *Op0 = Ops[i].Op;
2245         Value *Op1 = Ops[j].Op;
2246         if (std::less<Value *>()(Op1, Op0))
2247           std::swap(Op0, Op1);
2248         auto it = PairMap[Idx].find({Op0, Op1});
2249         if (it != PairMap[Idx].end()) {
2250           // Functions like BreakUpSubtract() can erase the Values we're using
2251           // as keys and create new Values after we built the PairMap. There's a
2252           // small chance that the new nodes can have the same address as
2253           // something already in the table. We shouldn't accumulate the stored
2254           // score in that case as it refers to the wrong Value.
2255           if (it->second.isValid())
2256             Score += it->second.Score;
2257         }
2258 
2259         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2260         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2261           BestPair = {i, j};
2262           Max = Score;
2263           BestRank = MaxRank;
2264         }
2265       }
2266     if (Max > 1) {
2267       auto Op0 = Ops[BestPair.first];
2268       auto Op1 = Ops[BestPair.second];
2269       Ops.erase(&Ops[BestPair.second]);
2270       Ops.erase(&Ops[BestPair.first]);
2271       Ops.push_back(Op0);
2272       Ops.push_back(Op1);
2273     }
2274   }
2275   // Now that we ordered and optimized the expressions, splat them back into
2276   // the expression tree, removing any unneeded nodes.
2277   RewriteExprTree(I, Ops);
2278 }
2279 
2280 void
2281 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2282   // Make a "pairmap" of how often each operand pair occurs.
2283   for (BasicBlock *BI : RPOT) {
2284     for (Instruction &I : *BI) {
2285       if (!I.isAssociative())
2286         continue;
2287 
2288       // Ignore nodes that aren't at the root of trees.
2289       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2290         continue;
2291 
2292       // Collect all operands in a single reassociable expression.
2293       // Since Reassociate has already been run once, we can assume things
2294       // are already canonical according to Reassociation's regime.
2295       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2296       SmallVector<Value *, 8> Ops;
2297       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2298         Value *Op = Worklist.pop_back_val();
2299         Instruction *OpI = dyn_cast<Instruction>(Op);
2300         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2301           Ops.push_back(Op);
2302           continue;
2303         }
2304         // Be paranoid about self-referencing expressions in unreachable code.
2305         if (OpI->getOperand(0) != OpI)
2306           Worklist.push_back(OpI->getOperand(0));
2307         if (OpI->getOperand(1) != OpI)
2308           Worklist.push_back(OpI->getOperand(1));
2309       }
2310       // Skip extremely long expressions.
2311       if (Ops.size() > GlobalReassociateLimit)
2312         continue;
2313 
2314       // Add all pairwise combinations of operands to the pair map.
2315       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2316       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2317       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2318         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2319           // Canonicalize operand orderings.
2320           Value *Op0 = Ops[i];
2321           Value *Op1 = Ops[j];
2322           if (std::less<Value *>()(Op1, Op0))
2323             std::swap(Op0, Op1);
2324           if (!Visited.insert({Op0, Op1}).second)
2325             continue;
2326           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2327           if (!res.second) {
2328             // If either key value has been erased then we've got the same
2329             // address by coincidence. That can't happen here because nothing is
2330             // erasing values but it can happen by the time we're querying the
2331             // map.
2332             assert(res.first->second.isValid() && "WeakVH invalidated");
2333             ++res.first->second.Score;
2334           }
2335         }
2336       }
2337     }
2338   }
2339 }
2340 
2341 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2342   // Get the functions basic blocks in Reverse Post Order. This order is used by
2343   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2344   // blocks (it has been seen that the analysis in this pass could hang when
2345   // analysing dead basic blocks).
2346   ReversePostOrderTraversal<Function *> RPOT(&F);
2347 
2348   // Calculate the rank map for F.
2349   BuildRankMap(F, RPOT);
2350 
2351   // Build the pair map before running reassociate.
2352   // Technically this would be more accurate if we did it after one round
2353   // of reassociation, but in practice it doesn't seem to help much on
2354   // real-world code, so don't waste the compile time running reassociate
2355   // twice.
2356   // If a user wants, they could expicitly run reassociate twice in their
2357   // pass pipeline for further potential gains.
2358   // It might also be possible to update the pair map during runtime, but the
2359   // overhead of that may be large if there's many reassociable chains.
2360   BuildPairMap(RPOT);
2361 
2362   MadeChange = false;
2363 
2364   // Traverse the same blocks that were analysed by BuildRankMap.
2365   for (BasicBlock *BI : RPOT) {
2366     assert(RankMap.count(&*BI) && "BB should be ranked.");
2367     // Optimize every instruction in the basic block.
2368     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2369       if (isInstructionTriviallyDead(&*II)) {
2370         EraseInst(&*II++);
2371       } else {
2372         OptimizeInst(&*II);
2373         assert(II->getParent() == &*BI && "Moved to a different block!");
2374         ++II;
2375       }
2376 
2377     // Make a copy of all the instructions to be redone so we can remove dead
2378     // instructions.
2379     OrderedSet ToRedo(RedoInsts);
2380     // Iterate over all instructions to be reevaluated and remove trivially dead
2381     // instructions. If any operand of the trivially dead instruction becomes
2382     // dead mark it for deletion as well. Continue this process until all
2383     // trivially dead instructions have been removed.
2384     while (!ToRedo.empty()) {
2385       Instruction *I = ToRedo.pop_back_val();
2386       if (isInstructionTriviallyDead(I)) {
2387         RecursivelyEraseDeadInsts(I, ToRedo);
2388         MadeChange = true;
2389       }
2390     }
2391 
2392     // Now that we have removed dead instructions, we can reoptimize the
2393     // remaining instructions.
2394     while (!RedoInsts.empty()) {
2395       Instruction *I = RedoInsts.front();
2396       RedoInsts.erase(RedoInsts.begin());
2397       if (isInstructionTriviallyDead(I))
2398         EraseInst(I);
2399       else
2400         OptimizeInst(I);
2401     }
2402   }
2403 
2404   // We are done with the rank map and pair map.
2405   RankMap.clear();
2406   ValueRankMap.clear();
2407   for (auto &Entry : PairMap)
2408     Entry.clear();
2409 
2410   if (MadeChange) {
2411     PreservedAnalyses PA;
2412     PA.preserveSet<CFGAnalyses>();
2413     PA.preserve<GlobalsAA>();
2414     return PA;
2415   }
2416 
2417   return PreservedAnalyses::all();
2418 }
2419 
2420 namespace {
2421 
2422   class ReassociateLegacyPass : public FunctionPass {
2423     ReassociatePass Impl;
2424 
2425   public:
2426     static char ID; // Pass identification, replacement for typeid
2427 
2428     ReassociateLegacyPass() : FunctionPass(ID) {
2429       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2430     }
2431 
2432     bool runOnFunction(Function &F) override {
2433       if (skipFunction(F))
2434         return false;
2435 
2436       FunctionAnalysisManager DummyFAM;
2437       auto PA = Impl.run(F, DummyFAM);
2438       return !PA.areAllPreserved();
2439     }
2440 
2441     void getAnalysisUsage(AnalysisUsage &AU) const override {
2442       AU.setPreservesCFG();
2443       AU.addPreserved<GlobalsAAWrapperPass>();
2444     }
2445   };
2446 
2447 } // end anonymous namespace
2448 
2449 char ReassociateLegacyPass::ID = 0;
2450 
2451 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2452                 "Reassociate expressions", false, false)
2453 
2454 // Public interface to the Reassociate pass
2455 FunctionPass *llvm::createReassociatePass() {
2456   return new ReassociateLegacyPass();
2457 }
2458