1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass reassociates commutative expressions in an order that is designed 10 // to promote better constant propagation, GCSE, LICM, PRE, etc. 11 // 12 // For example: 4 + (x + 5) -> x + (4 + 5) 13 // 14 // In the implementation of this algorithm, constants are assigned rank = 0, 15 // function arguments are rank = 1, and other values are assigned ranks 16 // corresponding to the reverse post order traversal of current function 17 // (starting at 2), which effectively gives values in deep loops higher rank 18 // than values not in loops. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/Reassociate.h" 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/PatternMatch.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <utility> 62 63 using namespace llvm; 64 using namespace reassociate; 65 using namespace PatternMatch; 66 67 #define DEBUG_TYPE "reassociate" 68 69 STATISTIC(NumChanged, "Number of insts reassociated"); 70 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 71 STATISTIC(NumFactor , "Number of multiplies factored"); 72 73 #ifndef NDEBUG 74 /// Print out the expression identified in the Ops list. 75 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 76 Module *M = I->getModule(); 77 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 78 << *Ops[0].Op->getType() << '\t'; 79 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 80 dbgs() << "[ "; 81 Ops[i].Op->printAsOperand(dbgs(), false, M); 82 dbgs() << ", #" << Ops[i].Rank << "] "; 83 } 84 } 85 #endif 86 87 /// Utility class representing a non-constant Xor-operand. We classify 88 /// non-constant Xor-Operands into two categories: 89 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 90 /// C2) 91 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 92 /// constant. 93 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 94 /// operand as "E | 0" 95 class llvm::reassociate::XorOpnd { 96 public: 97 XorOpnd(Value *V); 98 99 bool isInvalid() const { return SymbolicPart == nullptr; } 100 bool isOrExpr() const { return isOr; } 101 Value *getValue() const { return OrigVal; } 102 Value *getSymbolicPart() const { return SymbolicPart; } 103 unsigned getSymbolicRank() const { return SymbolicRank; } 104 const APInt &getConstPart() const { return ConstPart; } 105 106 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 107 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 108 109 private: 110 Value *OrigVal; 111 Value *SymbolicPart; 112 APInt ConstPart; 113 unsigned SymbolicRank; 114 bool isOr; 115 }; 116 117 XorOpnd::XorOpnd(Value *V) { 118 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 119 OrigVal = V; 120 Instruction *I = dyn_cast<Instruction>(V); 121 SymbolicRank = 0; 122 123 if (I && (I->getOpcode() == Instruction::Or || 124 I->getOpcode() == Instruction::And)) { 125 Value *V0 = I->getOperand(0); 126 Value *V1 = I->getOperand(1); 127 const APInt *C; 128 if (match(V0, m_APInt(C))) 129 std::swap(V0, V1); 130 131 if (match(V1, m_APInt(C))) { 132 ConstPart = *C; 133 SymbolicPart = V0; 134 isOr = (I->getOpcode() == Instruction::Or); 135 return; 136 } 137 } 138 139 // view the operand as "V | 0" 140 SymbolicPart = V; 141 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits()); 142 isOr = true; 143 } 144 145 /// Return true if V is an instruction of the specified opcode and if it 146 /// only has one use. 147 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 148 auto *I = dyn_cast<Instruction>(V); 149 if (I && I->hasOneUse() && I->getOpcode() == Opcode) 150 if (!isa<FPMathOperator>(I) || I->isFast()) 151 return cast<BinaryOperator>(I); 152 return nullptr; 153 } 154 155 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 156 unsigned Opcode2) { 157 auto *I = dyn_cast<Instruction>(V); 158 if (I && I->hasOneUse() && 159 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2)) 160 if (!isa<FPMathOperator>(I) || I->isFast()) 161 return cast<BinaryOperator>(I); 162 return nullptr; 163 } 164 165 void ReassociatePass::BuildRankMap(Function &F, 166 ReversePostOrderTraversal<Function*> &RPOT) { 167 unsigned Rank = 2; 168 169 // Assign distinct ranks to function arguments. 170 for (auto &Arg : F.args()) { 171 ValueRankMap[&Arg] = ++Rank; 172 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 173 << "\n"); 174 } 175 176 // Traverse basic blocks in ReversePostOrder 177 for (BasicBlock *BB : RPOT) { 178 unsigned BBRank = RankMap[BB] = ++Rank << 16; 179 180 // Walk the basic block, adding precomputed ranks for any instructions that 181 // we cannot move. This ensures that the ranks for these instructions are 182 // all different in the block. 183 for (Instruction &I : *BB) 184 if (mayBeMemoryDependent(I)) 185 ValueRankMap[&I] = ++BBRank; 186 } 187 } 188 189 unsigned ReassociatePass::getRank(Value *V) { 190 Instruction *I = dyn_cast<Instruction>(V); 191 if (!I) { 192 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 193 return 0; // Otherwise it's a global or constant, rank 0. 194 } 195 196 if (unsigned Rank = ValueRankMap[I]) 197 return Rank; // Rank already known? 198 199 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 200 // we can reassociate expressions for code motion! Since we do not recurse 201 // for PHI nodes, we cannot have infinite recursion here, because there 202 // cannot be loops in the value graph that do not go through PHI nodes. 203 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 204 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 205 Rank = std::max(Rank, getRank(I->getOperand(i))); 206 207 // If this is a 'not' or 'neg' instruction, do not count it for rank. This 208 // assures us that X and ~X will have the same rank. 209 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) && 210 !match(I, m_FNeg(m_Value()))) 211 ++Rank; 212 213 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank 214 << "\n"); 215 216 return ValueRankMap[I] = Rank; 217 } 218 219 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 220 void ReassociatePass::canonicalizeOperands(Instruction *I) { 221 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 222 assert(I->isCommutative() && "Expected commutative operator."); 223 224 Value *LHS = I->getOperand(0); 225 Value *RHS = I->getOperand(1); 226 if (LHS == RHS || isa<Constant>(RHS)) 227 return; 228 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 229 cast<BinaryOperator>(I)->swapOperands(); 230 } 231 232 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 233 Instruction *InsertBefore, Value *FlagsOp) { 234 if (S1->getType()->isIntOrIntVectorTy()) 235 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 236 else { 237 BinaryOperator *Res = 238 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 239 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 240 return Res; 241 } 242 } 243 244 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 245 Instruction *InsertBefore, Value *FlagsOp) { 246 if (S1->getType()->isIntOrIntVectorTy()) 247 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 248 else { 249 BinaryOperator *Res = 250 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 251 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 252 return Res; 253 } 254 } 255 256 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name, 257 Instruction *InsertBefore, Value *FlagsOp) { 258 if (S1->getType()->isIntOrIntVectorTy()) 259 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 260 else { 261 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore); 262 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 263 return Res; 264 } 265 } 266 267 /// Replace 0-X with X*-1. 268 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 269 assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) && 270 "Expected a Negate!"); 271 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0. 272 unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0; 273 Type *Ty = Neg->getType(); 274 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 275 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 276 277 BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg); 278 Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op. 279 Res->takeName(Neg); 280 Neg->replaceAllUsesWith(Res); 281 Res->setDebugLoc(Neg->getDebugLoc()); 282 return Res; 283 } 284 285 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 286 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 287 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 288 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 289 /// even x in Bitwidth-bit arithmetic. 290 static unsigned CarmichaelShift(unsigned Bitwidth) { 291 if (Bitwidth < 3) 292 return Bitwidth - 1; 293 return Bitwidth - 2; 294 } 295 296 /// Add the extra weight 'RHS' to the existing weight 'LHS', 297 /// reducing the combined weight using any special properties of the operation. 298 /// The existing weight LHS represents the computation X op X op ... op X where 299 /// X occurs LHS times. The combined weight represents X op X op ... op X with 300 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 301 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 302 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 303 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 304 // If we were working with infinite precision arithmetic then the combined 305 // weight would be LHS + RHS. But we are using finite precision arithmetic, 306 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 307 // for nilpotent operations and addition, but not for idempotent operations 308 // and multiplication), so it is important to correctly reduce the combined 309 // weight back into range if wrapping would be wrong. 310 311 // If RHS is zero then the weight didn't change. 312 if (RHS.isMinValue()) 313 return; 314 // If LHS is zero then the combined weight is RHS. 315 if (LHS.isMinValue()) { 316 LHS = RHS; 317 return; 318 } 319 // From this point on we know that neither LHS nor RHS is zero. 320 321 if (Instruction::isIdempotent(Opcode)) { 322 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 323 // weight of 1. Keeping weights at zero or one also means that wrapping is 324 // not a problem. 325 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 326 return; // Return a weight of 1. 327 } 328 if (Instruction::isNilpotent(Opcode)) { 329 // Nilpotent means X op X === 0, so reduce weights modulo 2. 330 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 331 LHS = 0; // 1 + 1 === 0 modulo 2. 332 return; 333 } 334 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 335 // TODO: Reduce the weight by exploiting nsw/nuw? 336 LHS += RHS; 337 return; 338 } 339 340 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 341 "Unknown associative operation!"); 342 unsigned Bitwidth = LHS.getBitWidth(); 343 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 344 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 345 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 346 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 347 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 348 // which by a happy accident means that they can always be represented using 349 // Bitwidth bits. 350 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 351 // the Carmichael number). 352 if (Bitwidth > 3) { 353 /// CM - The value of Carmichael's lambda function. 354 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 355 // Any weight W >= Threshold can be replaced with W - CM. 356 APInt Threshold = CM + Bitwidth; 357 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 358 // For Bitwidth 4 or more the following sum does not overflow. 359 LHS += RHS; 360 while (LHS.uge(Threshold)) 361 LHS -= CM; 362 } else { 363 // To avoid problems with overflow do everything the same as above but using 364 // a larger type. 365 unsigned CM = 1U << CarmichaelShift(Bitwidth); 366 unsigned Threshold = CM + Bitwidth; 367 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 368 "Weights not reduced!"); 369 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 370 while (Total >= Threshold) 371 Total -= CM; 372 LHS = Total; 373 } 374 } 375 376 using RepeatedValue = std::pair<Value*, APInt>; 377 378 /// Given an associative binary expression, return the leaf 379 /// nodes in Ops along with their weights (how many times the leaf occurs). The 380 /// original expression is the same as 381 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 382 /// op 383 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 384 /// op 385 /// ... 386 /// op 387 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 388 /// 389 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 390 /// 391 /// This routine may modify the function, in which case it returns 'true'. The 392 /// changes it makes may well be destructive, changing the value computed by 'I' 393 /// to something completely different. Thus if the routine returns 'true' then 394 /// you MUST either replace I with a new expression computed from the Ops array, 395 /// or use RewriteExprTree to put the values back in. 396 /// 397 /// A leaf node is either not a binary operation of the same kind as the root 398 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 399 /// opcode), or is the same kind of binary operator but has a use which either 400 /// does not belong to the expression, or does belong to the expression but is 401 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 402 /// of the expression, while for non-leaf nodes (except for the root 'I') every 403 /// use is a non-leaf node of the expression. 404 /// 405 /// For example: 406 /// expression graph node names 407 /// 408 /// + | I 409 /// / \ | 410 /// + + | A, B 411 /// / \ / \ | 412 /// * + * | C, D, E 413 /// / \ / \ / \ | 414 /// + * | F, G 415 /// 416 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 417 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 418 /// 419 /// The expression is maximal: if some instruction is a binary operator of the 420 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 421 /// then the instruction also belongs to the expression, is not a leaf node of 422 /// it, and its operands also belong to the expression (but may be leaf nodes). 423 /// 424 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 425 /// order to ensure that every non-root node in the expression has *exactly one* 426 /// use by a non-leaf node of the expression. This destruction means that the 427 /// caller MUST either replace 'I' with a new expression or use something like 428 /// RewriteExprTree to put the values back in if the routine indicates that it 429 /// made a change by returning 'true'. 430 /// 431 /// In the above example either the right operand of A or the left operand of B 432 /// will be replaced by undef. If it is B's operand then this gives: 433 /// 434 /// + | I 435 /// / \ | 436 /// + + | A, B - operand of B replaced with undef 437 /// / \ \ | 438 /// * + * | C, D, E 439 /// / \ / \ / \ | 440 /// + * | F, G 441 /// 442 /// Note that such undef operands can only be reached by passing through 'I'. 443 /// For example, if you visit operands recursively starting from a leaf node 444 /// then you will never see such an undef operand unless you get back to 'I', 445 /// which requires passing through a phi node. 446 /// 447 /// Note that this routine may also mutate binary operators of the wrong type 448 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 449 /// of the expression) if it can turn them into binary operators of the right 450 /// type and thus make the expression bigger. 451 static bool LinearizeExprTree(Instruction *I, 452 SmallVectorImpl<RepeatedValue> &Ops) { 453 assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) && 454 "Expected a UnaryOperator or BinaryOperator!"); 455 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 456 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 457 unsigned Opcode = I->getOpcode(); 458 assert(I->isAssociative() && I->isCommutative() && 459 "Expected an associative and commutative operation!"); 460 461 // Visit all operands of the expression, keeping track of their weight (the 462 // number of paths from the expression root to the operand, or if you like 463 // the number of times that operand occurs in the linearized expression). 464 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 465 // while A has weight two. 466 467 // Worklist of non-leaf nodes (their operands are in the expression too) along 468 // with their weights, representing a certain number of paths to the operator. 469 // If an operator occurs in the worklist multiple times then we found multiple 470 // ways to get to it. 471 SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight) 472 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 473 bool Changed = false; 474 475 // Leaves of the expression are values that either aren't the right kind of 476 // operation (eg: a constant, or a multiply in an add tree), or are, but have 477 // some uses that are not inside the expression. For example, in I = X + X, 478 // X = A + B, the value X has two uses (by I) that are in the expression. If 479 // X has any other uses, for example in a return instruction, then we consider 480 // X to be a leaf, and won't analyze it further. When we first visit a value, 481 // if it has more than one use then at first we conservatively consider it to 482 // be a leaf. Later, as the expression is explored, we may discover some more 483 // uses of the value from inside the expression. If all uses turn out to be 484 // from within the expression (and the value is a binary operator of the right 485 // kind) then the value is no longer considered to be a leaf, and its operands 486 // are explored. 487 488 // Leaves - Keeps track of the set of putative leaves as well as the number of 489 // paths to each leaf seen so far. 490 using LeafMap = DenseMap<Value *, APInt>; 491 LeafMap Leaves; // Leaf -> Total weight so far. 492 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 493 494 #ifndef NDEBUG 495 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme. 496 #endif 497 while (!Worklist.empty()) { 498 std::pair<Instruction*, APInt> P = Worklist.pop_back_val(); 499 I = P.first; // We examine the operands of this binary operator. 500 501 for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands. 502 Value *Op = I->getOperand(OpIdx); 503 APInt Weight = P.second; // Number of paths to this operand. 504 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 505 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 506 507 // If this is a binary operation of the right kind with only one use then 508 // add its operands to the expression. 509 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 510 assert(Visited.insert(Op).second && "Not first visit!"); 511 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 512 Worklist.push_back(std::make_pair(BO, Weight)); 513 continue; 514 } 515 516 // Appears to be a leaf. Is the operand already in the set of leaves? 517 LeafMap::iterator It = Leaves.find(Op); 518 if (It == Leaves.end()) { 519 // Not in the leaf map. Must be the first time we saw this operand. 520 assert(Visited.insert(Op).second && "Not first visit!"); 521 if (!Op->hasOneUse()) { 522 // This value has uses not accounted for by the expression, so it is 523 // not safe to modify. Mark it as being a leaf. 524 LLVM_DEBUG(dbgs() 525 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 526 LeafOrder.push_back(Op); 527 Leaves[Op] = Weight; 528 continue; 529 } 530 // No uses outside the expression, try morphing it. 531 } else { 532 // Already in the leaf map. 533 assert(It != Leaves.end() && Visited.count(Op) && 534 "In leaf map but not visited!"); 535 536 // Update the number of paths to the leaf. 537 IncorporateWeight(It->second, Weight, Opcode); 538 539 #if 0 // TODO: Re-enable once PR13021 is fixed. 540 // The leaf already has one use from inside the expression. As we want 541 // exactly one such use, drop this new use of the leaf. 542 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 543 I->setOperand(OpIdx, UndefValue::get(I->getType())); 544 Changed = true; 545 546 // If the leaf is a binary operation of the right kind and we now see 547 // that its multiple original uses were in fact all by nodes belonging 548 // to the expression, then no longer consider it to be a leaf and add 549 // its operands to the expression. 550 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 551 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 552 Worklist.push_back(std::make_pair(BO, It->second)); 553 Leaves.erase(It); 554 continue; 555 } 556 #endif 557 558 // If we still have uses that are not accounted for by the expression 559 // then it is not safe to modify the value. 560 if (!Op->hasOneUse()) 561 continue; 562 563 // No uses outside the expression, try morphing it. 564 Weight = It->second; 565 Leaves.erase(It); // Since the value may be morphed below. 566 } 567 568 // At this point we have a value which, first of all, is not a binary 569 // expression of the right kind, and secondly, is only used inside the 570 // expression. This means that it can safely be modified. See if we 571 // can usefully morph it into an expression of the right kind. 572 assert((!isa<Instruction>(Op) || 573 cast<Instruction>(Op)->getOpcode() != Opcode 574 || (isa<FPMathOperator>(Op) && 575 !cast<Instruction>(Op)->isFast())) && 576 "Should have been handled above!"); 577 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 578 579 // If this is a multiply expression, turn any internal negations into 580 // multiplies by -1 so they can be reassociated. 581 if (Instruction *Tmp = dyn_cast<Instruction>(Op)) 582 if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) || 583 (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) { 584 LLVM_DEBUG(dbgs() 585 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 586 Tmp = LowerNegateToMultiply(Tmp); 587 LLVM_DEBUG(dbgs() << *Tmp << '\n'); 588 Worklist.push_back(std::make_pair(Tmp, Weight)); 589 Changed = true; 590 continue; 591 } 592 593 // Failed to morph into an expression of the right type. This really is 594 // a leaf. 595 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 596 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 597 LeafOrder.push_back(Op); 598 Leaves[Op] = Weight; 599 } 600 } 601 602 // The leaves, repeated according to their weights, represent the linearized 603 // form of the expression. 604 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 605 Value *V = LeafOrder[i]; 606 LeafMap::iterator It = Leaves.find(V); 607 if (It == Leaves.end()) 608 // Node initially thought to be a leaf wasn't. 609 continue; 610 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 611 APInt Weight = It->second; 612 if (Weight.isMinValue()) 613 // Leaf already output or weight reduction eliminated it. 614 continue; 615 // Ensure the leaf is only output once. 616 It->second = 0; 617 Ops.push_back(std::make_pair(V, Weight)); 618 } 619 620 // For nilpotent operations or addition there may be no operands, for example 621 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 622 // in both cases the weight reduces to 0 causing the value to be skipped. 623 if (Ops.empty()) { 624 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 625 assert(Identity && "Associative operation without identity!"); 626 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 627 } 628 629 return Changed; 630 } 631 632 /// Now that the operands for this expression tree are 633 /// linearized and optimized, emit them in-order. 634 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 635 SmallVectorImpl<ValueEntry> &Ops) { 636 assert(Ops.size() > 1 && "Single values should be used directly!"); 637 638 // Since our optimizations should never increase the number of operations, the 639 // new expression can usually be written reusing the existing binary operators 640 // from the original expression tree, without creating any new instructions, 641 // though the rewritten expression may have a completely different topology. 642 // We take care to not change anything if the new expression will be the same 643 // as the original. If more than trivial changes (like commuting operands) 644 // were made then we are obliged to clear out any optional subclass data like 645 // nsw flags. 646 647 /// NodesToRewrite - Nodes from the original expression available for writing 648 /// the new expression into. 649 SmallVector<BinaryOperator*, 8> NodesToRewrite; 650 unsigned Opcode = I->getOpcode(); 651 BinaryOperator *Op = I; 652 653 /// NotRewritable - The operands being written will be the leaves of the new 654 /// expression and must not be used as inner nodes (via NodesToRewrite) by 655 /// mistake. Inner nodes are always reassociable, and usually leaves are not 656 /// (if they were they would have been incorporated into the expression and so 657 /// would not be leaves), so most of the time there is no danger of this. But 658 /// in rare cases a leaf may become reassociable if an optimization kills uses 659 /// of it, or it may momentarily become reassociable during rewriting (below) 660 /// due it being removed as an operand of one of its uses. Ensure that misuse 661 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 662 /// leaves and refusing to reuse any of them as inner nodes. 663 SmallPtrSet<Value*, 8> NotRewritable; 664 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 665 NotRewritable.insert(Ops[i].Op); 666 667 // ExpressionChanged - Non-null if the rewritten expression differs from the 668 // original in some non-trivial way, requiring the clearing of optional flags. 669 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 670 BinaryOperator *ExpressionChanged = nullptr; 671 for (unsigned i = 0; ; ++i) { 672 // The last operation (which comes earliest in the IR) is special as both 673 // operands will come from Ops, rather than just one with the other being 674 // a subexpression. 675 if (i+2 == Ops.size()) { 676 Value *NewLHS = Ops[i].Op; 677 Value *NewRHS = Ops[i+1].Op; 678 Value *OldLHS = Op->getOperand(0); 679 Value *OldRHS = Op->getOperand(1); 680 681 if (NewLHS == OldLHS && NewRHS == OldRHS) 682 // Nothing changed, leave it alone. 683 break; 684 685 if (NewLHS == OldRHS && NewRHS == OldLHS) { 686 // The order of the operands was reversed. Swap them. 687 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 688 Op->swapOperands(); 689 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 690 MadeChange = true; 691 ++NumChanged; 692 break; 693 } 694 695 // The new operation differs non-trivially from the original. Overwrite 696 // the old operands with the new ones. 697 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 698 if (NewLHS != OldLHS) { 699 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 700 if (BO && !NotRewritable.count(BO)) 701 NodesToRewrite.push_back(BO); 702 Op->setOperand(0, NewLHS); 703 } 704 if (NewRHS != OldRHS) { 705 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 706 if (BO && !NotRewritable.count(BO)) 707 NodesToRewrite.push_back(BO); 708 Op->setOperand(1, NewRHS); 709 } 710 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 711 712 ExpressionChanged = Op; 713 MadeChange = true; 714 ++NumChanged; 715 716 break; 717 } 718 719 // Not the last operation. The left-hand side will be a sub-expression 720 // while the right-hand side will be the current element of Ops. 721 Value *NewRHS = Ops[i].Op; 722 if (NewRHS != Op->getOperand(1)) { 723 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 724 if (NewRHS == Op->getOperand(0)) { 725 // The new right-hand side was already present as the left operand. If 726 // we are lucky then swapping the operands will sort out both of them. 727 Op->swapOperands(); 728 } else { 729 // Overwrite with the new right-hand side. 730 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 731 if (BO && !NotRewritable.count(BO)) 732 NodesToRewrite.push_back(BO); 733 Op->setOperand(1, NewRHS); 734 ExpressionChanged = Op; 735 } 736 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 737 MadeChange = true; 738 ++NumChanged; 739 } 740 741 // Now deal with the left-hand side. If this is already an operation node 742 // from the original expression then just rewrite the rest of the expression 743 // into it. 744 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 745 if (BO && !NotRewritable.count(BO)) { 746 Op = BO; 747 continue; 748 } 749 750 // Otherwise, grab a spare node from the original expression and use that as 751 // the left-hand side. If there are no nodes left then the optimizers made 752 // an expression with more nodes than the original! This usually means that 753 // they did something stupid but it might mean that the problem was just too 754 // hard (finding the mimimal number of multiplications needed to realize a 755 // multiplication expression is NP-complete). Whatever the reason, smart or 756 // stupid, create a new node if there are none left. 757 BinaryOperator *NewOp; 758 if (NodesToRewrite.empty()) { 759 Constant *Undef = UndefValue::get(I->getType()); 760 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 761 Undef, Undef, "", I); 762 if (NewOp->getType()->isFPOrFPVectorTy()) 763 NewOp->setFastMathFlags(I->getFastMathFlags()); 764 } else { 765 NewOp = NodesToRewrite.pop_back_val(); 766 } 767 768 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 769 Op->setOperand(0, NewOp); 770 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 771 ExpressionChanged = Op; 772 MadeChange = true; 773 ++NumChanged; 774 Op = NewOp; 775 } 776 777 // If the expression changed non-trivially then clear out all subclass data 778 // starting from the operator specified in ExpressionChanged, and compactify 779 // the operators to just before the expression root to guarantee that the 780 // expression tree is dominated by all of Ops. 781 if (ExpressionChanged) 782 do { 783 // Preserve FastMathFlags. 784 if (isa<FPMathOperator>(I)) { 785 FastMathFlags Flags = I->getFastMathFlags(); 786 ExpressionChanged->clearSubclassOptionalData(); 787 ExpressionChanged->setFastMathFlags(Flags); 788 } else 789 ExpressionChanged->clearSubclassOptionalData(); 790 791 if (ExpressionChanged == I) 792 break; 793 794 // Discard any debug info related to the expressions that has changed (we 795 // can leave debug infor related to the root, since the result of the 796 // expression tree should be the same even after reassociation). 797 replaceDbgUsesWithUndef(ExpressionChanged); 798 799 ExpressionChanged->moveBefore(I); 800 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 801 } while (true); 802 803 // Throw away any left over nodes from the original expression. 804 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 805 RedoInsts.insert(NodesToRewrite[i]); 806 } 807 808 /// Insert instructions before the instruction pointed to by BI, 809 /// that computes the negative version of the value specified. The negative 810 /// version of the value is returned, and BI is left pointing at the instruction 811 /// that should be processed next by the reassociation pass. 812 /// Also add intermediate instructions to the redo list that are modified while 813 /// pushing the negates through adds. These will be revisited to see if 814 /// additional opportunities have been exposed. 815 static Value *NegateValue(Value *V, Instruction *BI, 816 ReassociatePass::OrderedSet &ToRedo) { 817 if (auto *C = dyn_cast<Constant>(V)) 818 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) : 819 ConstantExpr::getNeg(C); 820 821 // We are trying to expose opportunity for reassociation. One of the things 822 // that we want to do to achieve this is to push a negation as deep into an 823 // expression chain as possible, to expose the add instructions. In practice, 824 // this means that we turn this: 825 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 826 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 827 // the constants. We assume that instcombine will clean up the mess later if 828 // we introduce tons of unnecessary negation instructions. 829 // 830 if (BinaryOperator *I = 831 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 832 // Push the negates through the add. 833 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 834 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 835 if (I->getOpcode() == Instruction::Add) { 836 I->setHasNoUnsignedWrap(false); 837 I->setHasNoSignedWrap(false); 838 } 839 840 // We must move the add instruction here, because the neg instructions do 841 // not dominate the old add instruction in general. By moving it, we are 842 // assured that the neg instructions we just inserted dominate the 843 // instruction we are about to insert after them. 844 // 845 I->moveBefore(BI); 846 I->setName(I->getName()+".neg"); 847 848 // Add the intermediate negates to the redo list as processing them later 849 // could expose more reassociating opportunities. 850 ToRedo.insert(I); 851 return I; 852 } 853 854 // Okay, we need to materialize a negated version of V with an instruction. 855 // Scan the use lists of V to see if we have one already. 856 for (User *U : V->users()) { 857 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value()))) 858 continue; 859 860 // We found one! Now we have to make sure that the definition dominates 861 // this use. We do this by moving it to the entry block (if it is a 862 // non-instruction value) or right after the definition. These negates will 863 // be zapped by reassociate later, so we don't need much finesse here. 864 Instruction *TheNeg = cast<Instruction>(U); 865 866 // Verify that the negate is in this function, V might be a constant expr. 867 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 868 continue; 869 870 bool FoundCatchSwitch = false; 871 872 BasicBlock::iterator InsertPt; 873 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 874 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 875 InsertPt = II->getNormalDest()->begin(); 876 } else { 877 InsertPt = ++InstInput->getIterator(); 878 } 879 880 const BasicBlock *BB = InsertPt->getParent(); 881 882 // Make sure we don't move anything before PHIs or exception 883 // handling pads. 884 while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) || 885 InsertPt->isEHPad())) { 886 if (isa<CatchSwitchInst>(InsertPt)) 887 // A catchswitch cannot have anything in the block except 888 // itself and PHIs. We'll bail out below. 889 FoundCatchSwitch = true; 890 ++InsertPt; 891 } 892 } else { 893 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 894 } 895 896 // We found a catchswitch in the block where we want to move the 897 // neg. We cannot move anything into that block. Bail and just 898 // create the neg before BI, as if we hadn't found an existing 899 // neg. 900 if (FoundCatchSwitch) 901 break; 902 903 TheNeg->moveBefore(&*InsertPt); 904 if (TheNeg->getOpcode() == Instruction::Sub) { 905 TheNeg->setHasNoUnsignedWrap(false); 906 TheNeg->setHasNoSignedWrap(false); 907 } else { 908 TheNeg->andIRFlags(BI); 909 } 910 ToRedo.insert(TheNeg); 911 return TheNeg; 912 } 913 914 // Insert a 'neg' instruction that subtracts the value from zero to get the 915 // negation. 916 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 917 ToRedo.insert(NewNeg); 918 return NewNeg; 919 } 920 921 /// Return true if we should break up this subtract of X-Y into (X + -Y). 922 static bool ShouldBreakUpSubtract(Instruction *Sub) { 923 // If this is a negation, we can't split it up! 924 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 925 return false; 926 927 // Don't breakup X - undef. 928 if (isa<UndefValue>(Sub->getOperand(1))) 929 return false; 930 931 // Don't bother to break this up unless either the LHS is an associable add or 932 // subtract or if this is only used by one. 933 Value *V0 = Sub->getOperand(0); 934 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 935 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 936 return true; 937 Value *V1 = Sub->getOperand(1); 938 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 939 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 940 return true; 941 Value *VB = Sub->user_back(); 942 if (Sub->hasOneUse() && 943 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 944 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 945 return true; 946 947 return false; 948 } 949 950 /// If we have (X-Y), and if either X is an add, or if this is only used by an 951 /// add, transform this into (X+(0-Y)) to promote better reassociation. 952 static BinaryOperator *BreakUpSubtract(Instruction *Sub, 953 ReassociatePass::OrderedSet &ToRedo) { 954 // Convert a subtract into an add and a neg instruction. This allows sub 955 // instructions to be commuted with other add instructions. 956 // 957 // Calculate the negative value of Operand 1 of the sub instruction, 958 // and set it as the RHS of the add instruction we just made. 959 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 960 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 961 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 962 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 963 New->takeName(Sub); 964 965 // Everyone now refers to the add instruction. 966 Sub->replaceAllUsesWith(New); 967 New->setDebugLoc(Sub->getDebugLoc()); 968 969 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); 970 return New; 971 } 972 973 /// If this is a shift of a reassociable multiply or is used by one, change 974 /// this into a multiply by a constant to assist with further reassociation. 975 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 976 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 977 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1))); 978 979 BinaryOperator *Mul = 980 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 981 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 982 Mul->takeName(Shl); 983 984 // Everyone now refers to the mul instruction. 985 Shl->replaceAllUsesWith(Mul); 986 Mul->setDebugLoc(Shl->getDebugLoc()); 987 988 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 989 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 990 // handling. 991 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 992 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 993 if (NSW && NUW) 994 Mul->setHasNoSignedWrap(true); 995 Mul->setHasNoUnsignedWrap(NUW); 996 return Mul; 997 } 998 999 /// Scan backwards and forwards among values with the same rank as element i 1000 /// to see if X exists. If X does not exist, return i. This is useful when 1001 /// scanning for 'x' when we see '-x' because they both get the same rank. 1002 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 1003 unsigned i, Value *X) { 1004 unsigned XRank = Ops[i].Rank; 1005 unsigned e = Ops.size(); 1006 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1007 if (Ops[j].Op == X) 1008 return j; 1009 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1010 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1011 if (I1->isIdenticalTo(I2)) 1012 return j; 1013 } 1014 // Scan backwards. 1015 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1016 if (Ops[j].Op == X) 1017 return j; 1018 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1019 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1020 if (I1->isIdenticalTo(I2)) 1021 return j; 1022 } 1023 return i; 1024 } 1025 1026 /// Emit a tree of add instructions, summing Ops together 1027 /// and returning the result. Insert the tree before I. 1028 static Value *EmitAddTreeOfValues(Instruction *I, 1029 SmallVectorImpl<WeakTrackingVH> &Ops) { 1030 if (Ops.size() == 1) return Ops.back(); 1031 1032 Value *V1 = Ops.back(); 1033 Ops.pop_back(); 1034 Value *V2 = EmitAddTreeOfValues(I, Ops); 1035 return CreateAdd(V2, V1, "reass.add", I, I); 1036 } 1037 1038 /// If V is an expression tree that is a multiplication sequence, 1039 /// and if this sequence contains a multiply by Factor, 1040 /// remove Factor from the tree and return the new tree. 1041 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1042 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1043 if (!BO) 1044 return nullptr; 1045 1046 SmallVector<RepeatedValue, 8> Tree; 1047 MadeChange |= LinearizeExprTree(BO, Tree); 1048 SmallVector<ValueEntry, 8> Factors; 1049 Factors.reserve(Tree.size()); 1050 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1051 RepeatedValue E = Tree[i]; 1052 Factors.append(E.second.getZExtValue(), 1053 ValueEntry(getRank(E.first), E.first)); 1054 } 1055 1056 bool FoundFactor = false; 1057 bool NeedsNegate = false; 1058 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1059 if (Factors[i].Op == Factor) { 1060 FoundFactor = true; 1061 Factors.erase(Factors.begin()+i); 1062 break; 1063 } 1064 1065 // If this is a negative version of this factor, remove it. 1066 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1067 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1068 if (FC1->getValue() == -FC2->getValue()) { 1069 FoundFactor = NeedsNegate = true; 1070 Factors.erase(Factors.begin()+i); 1071 break; 1072 } 1073 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1074 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1075 const APFloat &F1 = FC1->getValueAPF(); 1076 APFloat F2(FC2->getValueAPF()); 1077 F2.changeSign(); 1078 if (F1.compare(F2) == APFloat::cmpEqual) { 1079 FoundFactor = NeedsNegate = true; 1080 Factors.erase(Factors.begin() + i); 1081 break; 1082 } 1083 } 1084 } 1085 } 1086 1087 if (!FoundFactor) { 1088 // Make sure to restore the operands to the expression tree. 1089 RewriteExprTree(BO, Factors); 1090 return nullptr; 1091 } 1092 1093 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1094 1095 // If this was just a single multiply, remove the multiply and return the only 1096 // remaining operand. 1097 if (Factors.size() == 1) { 1098 RedoInsts.insert(BO); 1099 V = Factors[0].Op; 1100 } else { 1101 RewriteExprTree(BO, Factors); 1102 V = BO; 1103 } 1104 1105 if (NeedsNegate) 1106 V = CreateNeg(V, "neg", &*InsertPt, BO); 1107 1108 return V; 1109 } 1110 1111 /// If V is a single-use multiply, recursively add its operands as factors, 1112 /// otherwise add V to the list of factors. 1113 /// 1114 /// Ops is the top-level list of add operands we're trying to factor. 1115 static void FindSingleUseMultiplyFactors(Value *V, 1116 SmallVectorImpl<Value*> &Factors) { 1117 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1118 if (!BO) { 1119 Factors.push_back(V); 1120 return; 1121 } 1122 1123 // Otherwise, add the LHS and RHS to the list of factors. 1124 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1125 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1126 } 1127 1128 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1129 /// This optimizes based on identities. If it can be reduced to a single Value, 1130 /// it is returned, otherwise the Ops list is mutated as necessary. 1131 static Value *OptimizeAndOrXor(unsigned Opcode, 1132 SmallVectorImpl<ValueEntry> &Ops) { 1133 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1134 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1135 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1136 // First, check for X and ~X in the operand list. 1137 assert(i < Ops.size()); 1138 Value *X; 1139 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^. 1140 unsigned FoundX = FindInOperandList(Ops, i, X); 1141 if (FoundX != i) { 1142 if (Opcode == Instruction::And) // ...&X&~X = 0 1143 return Constant::getNullValue(X->getType()); 1144 1145 if (Opcode == Instruction::Or) // ...|X|~X = -1 1146 return Constant::getAllOnesValue(X->getType()); 1147 } 1148 } 1149 1150 // Next, check for duplicate pairs of values, which we assume are next to 1151 // each other, due to our sorting criteria. 1152 assert(i < Ops.size()); 1153 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1154 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1155 // Drop duplicate values for And and Or. 1156 Ops.erase(Ops.begin()+i); 1157 --i; --e; 1158 ++NumAnnihil; 1159 continue; 1160 } 1161 1162 // Drop pairs of values for Xor. 1163 assert(Opcode == Instruction::Xor); 1164 if (e == 2) 1165 return Constant::getNullValue(Ops[0].Op->getType()); 1166 1167 // Y ^ X^X -> Y 1168 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1169 i -= 1; e -= 2; 1170 ++NumAnnihil; 1171 } 1172 } 1173 return nullptr; 1174 } 1175 1176 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1177 /// instruction with the given two operands, and return the resulting 1178 /// instruction. There are two special cases: 1) if the constant operand is 0, 1179 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1180 /// be returned. 1181 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1182 const APInt &ConstOpnd) { 1183 if (ConstOpnd.isNullValue()) 1184 return nullptr; 1185 1186 if (ConstOpnd.isAllOnesValue()) 1187 return Opnd; 1188 1189 Instruction *I = BinaryOperator::CreateAnd( 1190 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1191 InsertBefore); 1192 I->setDebugLoc(InsertBefore->getDebugLoc()); 1193 return I; 1194 } 1195 1196 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1197 // into "R ^ C", where C would be 0, and R is a symbolic value. 1198 // 1199 // If it was successful, true is returned, and the "R" and "C" is returned 1200 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1201 // and both "Res" and "ConstOpnd" remain unchanged. 1202 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1203 APInt &ConstOpnd, Value *&Res) { 1204 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1205 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1206 // = (x & ~c1) ^ (c1 ^ c2) 1207 // It is useful only when c1 == c2. 1208 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isNullValue()) 1209 return false; 1210 1211 if (!Opnd1->getValue()->hasOneUse()) 1212 return false; 1213 1214 const APInt &C1 = Opnd1->getConstPart(); 1215 if (C1 != ConstOpnd) 1216 return false; 1217 1218 Value *X = Opnd1->getSymbolicPart(); 1219 Res = createAndInstr(I, X, ~C1); 1220 // ConstOpnd was C2, now C1 ^ C2. 1221 ConstOpnd ^= C1; 1222 1223 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1224 RedoInsts.insert(T); 1225 return true; 1226 } 1227 1228 // Helper function of OptimizeXor(). It tries to simplify 1229 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1230 // symbolic value. 1231 // 1232 // If it was successful, true is returned, and the "R" and "C" is returned 1233 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1234 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1235 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1236 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1237 XorOpnd *Opnd2, APInt &ConstOpnd, 1238 Value *&Res) { 1239 Value *X = Opnd1->getSymbolicPart(); 1240 if (X != Opnd2->getSymbolicPart()) 1241 return false; 1242 1243 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1244 int DeadInstNum = 1; 1245 if (Opnd1->getValue()->hasOneUse()) 1246 DeadInstNum++; 1247 if (Opnd2->getValue()->hasOneUse()) 1248 DeadInstNum++; 1249 1250 // Xor-Rule 2: 1251 // (x | c1) ^ (x & c2) 1252 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1253 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1254 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1255 // 1256 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1257 if (Opnd2->isOrExpr()) 1258 std::swap(Opnd1, Opnd2); 1259 1260 const APInt &C1 = Opnd1->getConstPart(); 1261 const APInt &C2 = Opnd2->getConstPart(); 1262 APInt C3((~C1) ^ C2); 1263 1264 // Do not increase code size! 1265 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1266 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1267 if (NewInstNum > DeadInstNum) 1268 return false; 1269 } 1270 1271 Res = createAndInstr(I, X, C3); 1272 ConstOpnd ^= C1; 1273 } else if (Opnd1->isOrExpr()) { 1274 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1275 // 1276 const APInt &C1 = Opnd1->getConstPart(); 1277 const APInt &C2 = Opnd2->getConstPart(); 1278 APInt C3 = C1 ^ C2; 1279 1280 // Do not increase code size 1281 if (!C3.isNullValue() && !C3.isAllOnesValue()) { 1282 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1283 if (NewInstNum > DeadInstNum) 1284 return false; 1285 } 1286 1287 Res = createAndInstr(I, X, C3); 1288 ConstOpnd ^= C3; 1289 } else { 1290 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1291 // 1292 const APInt &C1 = Opnd1->getConstPart(); 1293 const APInt &C2 = Opnd2->getConstPart(); 1294 APInt C3 = C1 ^ C2; 1295 Res = createAndInstr(I, X, C3); 1296 } 1297 1298 // Put the original operands in the Redo list; hope they will be deleted 1299 // as dead code. 1300 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1301 RedoInsts.insert(T); 1302 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1303 RedoInsts.insert(T); 1304 1305 return true; 1306 } 1307 1308 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1309 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1310 /// necessary. 1311 Value *ReassociatePass::OptimizeXor(Instruction *I, 1312 SmallVectorImpl<ValueEntry> &Ops) { 1313 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1314 return V; 1315 1316 if (Ops.size() == 1) 1317 return nullptr; 1318 1319 SmallVector<XorOpnd, 8> Opnds; 1320 SmallVector<XorOpnd*, 8> OpndPtrs; 1321 Type *Ty = Ops[0].Op->getType(); 1322 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1323 1324 // Step 1: Convert ValueEntry to XorOpnd 1325 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1326 Value *V = Ops[i].Op; 1327 const APInt *C; 1328 // TODO: Support non-splat vectors. 1329 if (match(V, m_APInt(C))) { 1330 ConstOpnd ^= *C; 1331 } else { 1332 XorOpnd O(V); 1333 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1334 Opnds.push_back(O); 1335 } 1336 } 1337 1338 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1339 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1340 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1341 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1342 // when new elements are added to the vector. 1343 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1344 OpndPtrs.push_back(&Opnds[i]); 1345 1346 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1347 // the same symbolic value cluster together. For instance, the input operand 1348 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1349 // ("x | 123", "x & 789", "y & 456"). 1350 // 1351 // The purpose is twofold: 1352 // 1) Cluster together the operands sharing the same symbolic-value. 1353 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1354 // could potentially shorten crital path, and expose more loop-invariants. 1355 // Note that values' rank are basically defined in RPO order (FIXME). 1356 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1357 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1358 // "z" in the order of X-Y-Z is better than any other orders. 1359 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) { 1360 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1361 }); 1362 1363 // Step 3: Combine adjacent operands 1364 XorOpnd *PrevOpnd = nullptr; 1365 bool Changed = false; 1366 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1367 XorOpnd *CurrOpnd = OpndPtrs[i]; 1368 // The combined value 1369 Value *CV; 1370 1371 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1372 if (!ConstOpnd.isNullValue() && 1373 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1374 Changed = true; 1375 if (CV) 1376 *CurrOpnd = XorOpnd(CV); 1377 else { 1378 CurrOpnd->Invalidate(); 1379 continue; 1380 } 1381 } 1382 1383 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1384 PrevOpnd = CurrOpnd; 1385 continue; 1386 } 1387 1388 // step 3.2: When previous and current operands share the same symbolic 1389 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1390 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1391 // Remove previous operand 1392 PrevOpnd->Invalidate(); 1393 if (CV) { 1394 *CurrOpnd = XorOpnd(CV); 1395 PrevOpnd = CurrOpnd; 1396 } else { 1397 CurrOpnd->Invalidate(); 1398 PrevOpnd = nullptr; 1399 } 1400 Changed = true; 1401 } 1402 } 1403 1404 // Step 4: Reassemble the Ops 1405 if (Changed) { 1406 Ops.clear(); 1407 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1408 XorOpnd &O = Opnds[i]; 1409 if (O.isInvalid()) 1410 continue; 1411 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1412 Ops.push_back(VE); 1413 } 1414 if (!ConstOpnd.isNullValue()) { 1415 Value *C = ConstantInt::get(Ty, ConstOpnd); 1416 ValueEntry VE(getRank(C), C); 1417 Ops.push_back(VE); 1418 } 1419 unsigned Sz = Ops.size(); 1420 if (Sz == 1) 1421 return Ops.back().Op; 1422 if (Sz == 0) { 1423 assert(ConstOpnd.isNullValue()); 1424 return ConstantInt::get(Ty, ConstOpnd); 1425 } 1426 } 1427 1428 return nullptr; 1429 } 1430 1431 /// Optimize a series of operands to an 'add' instruction. This 1432 /// optimizes based on identities. If it can be reduced to a single Value, it 1433 /// is returned, otherwise the Ops list is mutated as necessary. 1434 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1435 SmallVectorImpl<ValueEntry> &Ops) { 1436 // Scan the operand lists looking for X and -X pairs. If we find any, we 1437 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1438 // scan for any 1439 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1440 1441 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1442 Value *TheOp = Ops[i].Op; 1443 // Check to see if we've seen this operand before. If so, we factor all 1444 // instances of the operand together. Due to our sorting criteria, we know 1445 // that these need to be next to each other in the vector. 1446 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1447 // Rescan the list, remove all instances of this operand from the expr. 1448 unsigned NumFound = 0; 1449 do { 1450 Ops.erase(Ops.begin()+i); 1451 ++NumFound; 1452 } while (i != Ops.size() && Ops[i].Op == TheOp); 1453 1454 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp 1455 << '\n'); 1456 ++NumFactor; 1457 1458 // Insert a new multiply. 1459 Type *Ty = TheOp->getType(); 1460 Constant *C = Ty->isIntOrIntVectorTy() ? 1461 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1462 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1463 1464 // Now that we have inserted a multiply, optimize it. This allows us to 1465 // handle cases that require multiple factoring steps, such as this: 1466 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1467 RedoInsts.insert(Mul); 1468 1469 // If every add operand was a duplicate, return the multiply. 1470 if (Ops.empty()) 1471 return Mul; 1472 1473 // Otherwise, we had some input that didn't have the dupe, such as 1474 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1475 // things being added by this operation. 1476 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1477 1478 --i; 1479 e = Ops.size(); 1480 continue; 1481 } 1482 1483 // Check for X and -X or X and ~X in the operand list. 1484 Value *X; 1485 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) && 1486 !match(TheOp, m_FNeg(m_Value(X)))) 1487 continue; 1488 1489 unsigned FoundX = FindInOperandList(Ops, i, X); 1490 if (FoundX == i) 1491 continue; 1492 1493 // Remove X and -X from the operand list. 1494 if (Ops.size() == 2 && 1495 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value())))) 1496 return Constant::getNullValue(X->getType()); 1497 1498 // Remove X and ~X from the operand list. 1499 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value()))) 1500 return Constant::getAllOnesValue(X->getType()); 1501 1502 Ops.erase(Ops.begin()+i); 1503 if (i < FoundX) 1504 --FoundX; 1505 else 1506 --i; // Need to back up an extra one. 1507 Ops.erase(Ops.begin()+FoundX); 1508 ++NumAnnihil; 1509 --i; // Revisit element. 1510 e -= 2; // Removed two elements. 1511 1512 // if X and ~X we append -1 to the operand list. 1513 if (match(TheOp, m_Not(m_Value()))) { 1514 Value *V = Constant::getAllOnesValue(X->getType()); 1515 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1516 e += 1; 1517 } 1518 } 1519 1520 // Scan the operand list, checking to see if there are any common factors 1521 // between operands. Consider something like A*A+A*B*C+D. We would like to 1522 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1523 // To efficiently find this, we count the number of times a factor occurs 1524 // for any ADD operands that are MULs. 1525 DenseMap<Value*, unsigned> FactorOccurrences; 1526 1527 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1528 // where they are actually the same multiply. 1529 unsigned MaxOcc = 0; 1530 Value *MaxOccVal = nullptr; 1531 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1532 BinaryOperator *BOp = 1533 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1534 if (!BOp) 1535 continue; 1536 1537 // Compute all of the factors of this added value. 1538 SmallVector<Value*, 8> Factors; 1539 FindSingleUseMultiplyFactors(BOp, Factors); 1540 assert(Factors.size() > 1 && "Bad linearize!"); 1541 1542 // Add one to FactorOccurrences for each unique factor in this op. 1543 SmallPtrSet<Value*, 8> Duplicates; 1544 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1545 Value *Factor = Factors[i]; 1546 if (!Duplicates.insert(Factor).second) 1547 continue; 1548 1549 unsigned Occ = ++FactorOccurrences[Factor]; 1550 if (Occ > MaxOcc) { 1551 MaxOcc = Occ; 1552 MaxOccVal = Factor; 1553 } 1554 1555 // If Factor is a negative constant, add the negated value as a factor 1556 // because we can percolate the negate out. Watch for minint, which 1557 // cannot be positivified. 1558 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1559 if (CI->isNegative() && !CI->isMinValue(true)) { 1560 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1561 if (!Duplicates.insert(Factor).second) 1562 continue; 1563 unsigned Occ = ++FactorOccurrences[Factor]; 1564 if (Occ > MaxOcc) { 1565 MaxOcc = Occ; 1566 MaxOccVal = Factor; 1567 } 1568 } 1569 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1570 if (CF->isNegative()) { 1571 APFloat F(CF->getValueAPF()); 1572 F.changeSign(); 1573 Factor = ConstantFP::get(CF->getContext(), F); 1574 if (!Duplicates.insert(Factor).second) 1575 continue; 1576 unsigned Occ = ++FactorOccurrences[Factor]; 1577 if (Occ > MaxOcc) { 1578 MaxOcc = Occ; 1579 MaxOccVal = Factor; 1580 } 1581 } 1582 } 1583 } 1584 } 1585 1586 // If any factor occurred more than one time, we can pull it out. 1587 if (MaxOcc > 1) { 1588 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal 1589 << '\n'); 1590 ++NumFactor; 1591 1592 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1593 // this, we could otherwise run into situations where removing a factor 1594 // from an expression will drop a use of maxocc, and this can cause 1595 // RemoveFactorFromExpression on successive values to behave differently. 1596 Instruction *DummyInst = 1597 I->getType()->isIntOrIntVectorTy() 1598 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1599 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1600 1601 SmallVector<WeakTrackingVH, 4> NewMulOps; 1602 for (unsigned i = 0; i != Ops.size(); ++i) { 1603 // Only try to remove factors from expressions we're allowed to. 1604 BinaryOperator *BOp = 1605 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1606 if (!BOp) 1607 continue; 1608 1609 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1610 // The factorized operand may occur several times. Convert them all in 1611 // one fell swoop. 1612 for (unsigned j = Ops.size(); j != i;) { 1613 --j; 1614 if (Ops[j].Op == Ops[i].Op) { 1615 NewMulOps.push_back(V); 1616 Ops.erase(Ops.begin()+j); 1617 } 1618 } 1619 --i; 1620 } 1621 } 1622 1623 // No need for extra uses anymore. 1624 DummyInst->deleteValue(); 1625 1626 unsigned NumAddedValues = NewMulOps.size(); 1627 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1628 1629 // Now that we have inserted the add tree, optimize it. This allows us to 1630 // handle cases that require multiple factoring steps, such as this: 1631 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1632 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1633 (void)NumAddedValues; 1634 if (Instruction *VI = dyn_cast<Instruction>(V)) 1635 RedoInsts.insert(VI); 1636 1637 // Create the multiply. 1638 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1639 1640 // Rerun associate on the multiply in case the inner expression turned into 1641 // a multiply. We want to make sure that we keep things in canonical form. 1642 RedoInsts.insert(V2); 1643 1644 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1645 // entire result expression is just the multiply "A*(B+C)". 1646 if (Ops.empty()) 1647 return V2; 1648 1649 // Otherwise, we had some input that didn't have the factor, such as 1650 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1651 // things being added by this operation. 1652 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1653 } 1654 1655 return nullptr; 1656 } 1657 1658 /// Build up a vector of value/power pairs factoring a product. 1659 /// 1660 /// Given a series of multiplication operands, build a vector of factors and 1661 /// the powers each is raised to when forming the final product. Sort them in 1662 /// the order of descending power. 1663 /// 1664 /// (x*x) -> [(x, 2)] 1665 /// ((x*x)*x) -> [(x, 3)] 1666 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1667 /// 1668 /// \returns Whether any factors have a power greater than one. 1669 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1670 SmallVectorImpl<Factor> &Factors) { 1671 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1672 // Compute the sum of powers of simplifiable factors. 1673 unsigned FactorPowerSum = 0; 1674 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1675 Value *Op = Ops[Idx-1].Op; 1676 1677 // Count the number of occurrences of this value. 1678 unsigned Count = 1; 1679 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1680 ++Count; 1681 // Track for simplification all factors which occur 2 or more times. 1682 if (Count > 1) 1683 FactorPowerSum += Count; 1684 } 1685 1686 // We can only simplify factors if the sum of the powers of our simplifiable 1687 // factors is 4 or higher. When that is the case, we will *always* have 1688 // a simplification. This is an important invariant to prevent cyclicly 1689 // trying to simplify already minimal formations. 1690 if (FactorPowerSum < 4) 1691 return false; 1692 1693 // Now gather the simplifiable factors, removing them from Ops. 1694 FactorPowerSum = 0; 1695 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1696 Value *Op = Ops[Idx-1].Op; 1697 1698 // Count the number of occurrences of this value. 1699 unsigned Count = 1; 1700 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1701 ++Count; 1702 if (Count == 1) 1703 continue; 1704 // Move an even number of occurrences to Factors. 1705 Count &= ~1U; 1706 Idx -= Count; 1707 FactorPowerSum += Count; 1708 Factors.push_back(Factor(Op, Count)); 1709 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1710 } 1711 1712 // None of the adjustments above should have reduced the sum of factor powers 1713 // below our mininum of '4'. 1714 assert(FactorPowerSum >= 4); 1715 1716 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) { 1717 return LHS.Power > RHS.Power; 1718 }); 1719 return true; 1720 } 1721 1722 /// Build a tree of multiplies, computing the product of Ops. 1723 static Value *buildMultiplyTree(IRBuilder<> &Builder, 1724 SmallVectorImpl<Value*> &Ops) { 1725 if (Ops.size() == 1) 1726 return Ops.back(); 1727 1728 Value *LHS = Ops.pop_back_val(); 1729 do { 1730 if (LHS->getType()->isIntOrIntVectorTy()) 1731 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1732 else 1733 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1734 } while (!Ops.empty()); 1735 1736 return LHS; 1737 } 1738 1739 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1740 /// 1741 /// Given a vector of values raised to various powers, where no two values are 1742 /// equal and the powers are sorted in decreasing order, compute the minimal 1743 /// DAG of multiplies to compute the final product, and return that product 1744 /// value. 1745 Value * 1746 ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder, 1747 SmallVectorImpl<Factor> &Factors) { 1748 assert(Factors[0].Power); 1749 SmallVector<Value *, 4> OuterProduct; 1750 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1751 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1752 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1753 LastIdx = Idx; 1754 continue; 1755 } 1756 1757 // We want to multiply across all the factors with the same power so that 1758 // we can raise them to that power as a single entity. Build a mini tree 1759 // for that. 1760 SmallVector<Value *, 4> InnerProduct; 1761 InnerProduct.push_back(Factors[LastIdx].Base); 1762 do { 1763 InnerProduct.push_back(Factors[Idx].Base); 1764 ++Idx; 1765 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1766 1767 // Reset the base value of the first factor to the new expression tree. 1768 // We'll remove all the factors with the same power in a second pass. 1769 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1770 if (Instruction *MI = dyn_cast<Instruction>(M)) 1771 RedoInsts.insert(MI); 1772 1773 LastIdx = Idx; 1774 } 1775 // Unique factors with equal powers -- we've folded them into the first one's 1776 // base. 1777 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1778 [](const Factor &LHS, const Factor &RHS) { 1779 return LHS.Power == RHS.Power; 1780 }), 1781 Factors.end()); 1782 1783 // Iteratively collect the base of each factor with an add power into the 1784 // outer product, and halve each power in preparation for squaring the 1785 // expression. 1786 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1787 if (Factors[Idx].Power & 1) 1788 OuterProduct.push_back(Factors[Idx].Base); 1789 Factors[Idx].Power >>= 1; 1790 } 1791 if (Factors[0].Power) { 1792 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1793 OuterProduct.push_back(SquareRoot); 1794 OuterProduct.push_back(SquareRoot); 1795 } 1796 if (OuterProduct.size() == 1) 1797 return OuterProduct.front(); 1798 1799 Value *V = buildMultiplyTree(Builder, OuterProduct); 1800 return V; 1801 } 1802 1803 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1804 SmallVectorImpl<ValueEntry> &Ops) { 1805 // We can only optimize the multiplies when there is a chain of more than 1806 // three, such that a balanced tree might require fewer total multiplies. 1807 if (Ops.size() < 4) 1808 return nullptr; 1809 1810 // Try to turn linear trees of multiplies without other uses of the 1811 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1812 // re-use. 1813 SmallVector<Factor, 4> Factors; 1814 if (!collectMultiplyFactors(Ops, Factors)) 1815 return nullptr; // All distinct factors, so nothing left for us to do. 1816 1817 IRBuilder<> Builder(I); 1818 // The reassociate transformation for FP operations is performed only 1819 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1820 // to the newly generated operations. 1821 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1822 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1823 1824 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1825 if (Ops.empty()) 1826 return V; 1827 1828 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1829 Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry); 1830 return nullptr; 1831 } 1832 1833 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1834 SmallVectorImpl<ValueEntry> &Ops) { 1835 // Now that we have the linearized expression tree, try to optimize it. 1836 // Start by folding any constants that we found. 1837 Constant *Cst = nullptr; 1838 unsigned Opcode = I->getOpcode(); 1839 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1840 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1841 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1842 } 1843 // If there was nothing but constants then we are done. 1844 if (Ops.empty()) 1845 return Cst; 1846 1847 // Put the combined constant back at the end of the operand list, except if 1848 // there is no point. For example, an add of 0 gets dropped here, while a 1849 // multiplication by zero turns the whole expression into zero. 1850 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1851 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1852 return Cst; 1853 Ops.push_back(ValueEntry(0, Cst)); 1854 } 1855 1856 if (Ops.size() == 1) return Ops[0].Op; 1857 1858 // Handle destructive annihilation due to identities between elements in the 1859 // argument list here. 1860 unsigned NumOps = Ops.size(); 1861 switch (Opcode) { 1862 default: break; 1863 case Instruction::And: 1864 case Instruction::Or: 1865 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1866 return Result; 1867 break; 1868 1869 case Instruction::Xor: 1870 if (Value *Result = OptimizeXor(I, Ops)) 1871 return Result; 1872 break; 1873 1874 case Instruction::Add: 1875 case Instruction::FAdd: 1876 if (Value *Result = OptimizeAdd(I, Ops)) 1877 return Result; 1878 break; 1879 1880 case Instruction::Mul: 1881 case Instruction::FMul: 1882 if (Value *Result = OptimizeMul(I, Ops)) 1883 return Result; 1884 break; 1885 } 1886 1887 if (Ops.size() != NumOps) 1888 return OptimizeExpression(I, Ops); 1889 return nullptr; 1890 } 1891 1892 // Remove dead instructions and if any operands are trivially dead add them to 1893 // Insts so they will be removed as well. 1894 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 1895 OrderedSet &Insts) { 1896 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1897 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end()); 1898 ValueRankMap.erase(I); 1899 Insts.remove(I); 1900 RedoInsts.remove(I); 1901 I->eraseFromParent(); 1902 for (auto Op : Ops) 1903 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1904 if (OpInst->use_empty()) 1905 Insts.insert(OpInst); 1906 } 1907 1908 /// Zap the given instruction, adding interesting operands to the work list. 1909 void ReassociatePass::EraseInst(Instruction *I) { 1910 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1911 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 1912 1913 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 1914 // Erase the dead instruction. 1915 ValueRankMap.erase(I); 1916 RedoInsts.remove(I); 1917 I->eraseFromParent(); 1918 // Optimize its operands. 1919 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 1920 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 1921 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 1922 // If this is a node in an expression tree, climb to the expression root 1923 // and add that since that's where optimization actually happens. 1924 unsigned Opcode = Op->getOpcode(); 1925 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 1926 Visited.insert(Op).second) 1927 Op = Op->user_back(); 1928 1929 // The instruction we're going to push may be coming from a 1930 // dead block, and Reassociate skips the processing of unreachable 1931 // blocks because it's a waste of time and also because it can 1932 // lead to infinite loop due to LLVM's non-standard definition 1933 // of dominance. 1934 if (ValueRankMap.find(Op) != ValueRankMap.end()) 1935 RedoInsts.insert(Op); 1936 } 1937 1938 MadeChange = true; 1939 } 1940 1941 /// Recursively analyze an expression to build a list of instructions that have 1942 /// negative floating-point constant operands. The caller can then transform 1943 /// the list to create positive constants for better reassociation and CSE. 1944 static void getNegatibleInsts(Value *V, 1945 SmallVectorImpl<Instruction *> &Candidates) { 1946 // Handle only one-use instructions. Combining negations does not justify 1947 // replicating instructions. 1948 Instruction *I; 1949 if (!match(V, m_OneUse(m_Instruction(I)))) 1950 return; 1951 1952 // Handle expressions of multiplications and divisions. 1953 // TODO: This could look through floating-point casts. 1954 const APFloat *C; 1955 switch (I->getOpcode()) { 1956 case Instruction::FMul: 1957 // Not expecting non-canonical code here. Bail out and wait. 1958 if (match(I->getOperand(0), m_Constant())) 1959 break; 1960 1961 if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) { 1962 Candidates.push_back(I); 1963 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n'); 1964 } 1965 getNegatibleInsts(I->getOperand(0), Candidates); 1966 getNegatibleInsts(I->getOperand(1), Candidates); 1967 break; 1968 case Instruction::FDiv: 1969 // Not expecting non-canonical code here. Bail out and wait. 1970 if (match(I->getOperand(0), m_Constant()) && 1971 match(I->getOperand(1), m_Constant())) 1972 break; 1973 1974 if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) || 1975 (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) { 1976 Candidates.push_back(I); 1977 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n'); 1978 } 1979 getNegatibleInsts(I->getOperand(0), Candidates); 1980 getNegatibleInsts(I->getOperand(1), Candidates); 1981 break; 1982 default: 1983 break; 1984 } 1985 } 1986 1987 /// Given an fadd/fsub with an operand that is a one-use instruction 1988 /// (the fadd/fsub), try to change negative floating-point constants into 1989 /// positive constants to increase potential for reassociation and CSE. 1990 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I, 1991 Instruction *Op, 1992 Value *OtherOp) { 1993 assert((I->getOpcode() == Instruction::FAdd || 1994 I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub"); 1995 1996 // Collect instructions with negative FP constants from the subtree that ends 1997 // in Op. 1998 SmallVector<Instruction *, 4> Candidates; 1999 getNegatibleInsts(Op, Candidates); 2000 if (Candidates.empty()) 2001 return nullptr; 2002 2003 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 2004 // resulting subtract will be broken up later. This can get us into an 2005 // infinite loop during reassociation. 2006 bool IsFSub = I->getOpcode() == Instruction::FSub; 2007 bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1; 2008 if (NeedsSubtract && ShouldBreakUpSubtract(I)) 2009 return nullptr; 2010 2011 for (Instruction *Negatible : Candidates) { 2012 const APFloat *C; 2013 if (match(Negatible->getOperand(0), m_APFloat(C))) { 2014 assert(!match(Negatible->getOperand(1), m_Constant()) && 2015 "Expecting only 1 constant operand"); 2016 assert(C->isNegative() && "Expected negative FP constant"); 2017 Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C))); 2018 MadeChange = true; 2019 } 2020 if (match(Negatible->getOperand(1), m_APFloat(C))) { 2021 assert(!match(Negatible->getOperand(0), m_Constant()) && 2022 "Expecting only 1 constant operand"); 2023 assert(C->isNegative() && "Expected negative FP constant"); 2024 Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C))); 2025 MadeChange = true; 2026 } 2027 } 2028 assert(MadeChange == true && "Negative constant candidate was not changed"); 2029 2030 // Negations cancelled out. 2031 if (Candidates.size() % 2 == 0) 2032 return I; 2033 2034 // Negate the final operand in the expression by flipping the opcode of this 2035 // fadd/fsub. 2036 assert(Candidates.size() % 2 == 1 && "Expected odd number"); 2037 IRBuilder<> Builder(I); 2038 Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I) 2039 : Builder.CreateFSubFMF(OtherOp, Op, I); 2040 I->replaceAllUsesWith(NewInst); 2041 RedoInsts.insert(I); 2042 return dyn_cast<Instruction>(NewInst); 2043 } 2044 2045 /// Canonicalize expressions that contain a negative floating-point constant 2046 /// of the following form: 2047 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree) 2048 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree) 2049 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree) 2050 /// 2051 /// The fadd/fsub opcode may be switched to allow folding a negation into the 2052 /// input instruction. 2053 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) { 2054 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n'); 2055 Value *X; 2056 Instruction *Op; 2057 if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op))))) 2058 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2059 I = R; 2060 if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X)))) 2061 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2062 I = R; 2063 if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op))))) 2064 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2065 I = R; 2066 return I; 2067 } 2068 2069 /// Inspect and optimize the given instruction. Note that erasing 2070 /// instructions is not allowed. 2071 void ReassociatePass::OptimizeInst(Instruction *I) { 2072 // Only consider operations that we understand. 2073 if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I)) 2074 return; 2075 2076 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2077 // If an operand of this shift is a reassociable multiply, or if the shift 2078 // is used by a reassociable multiply or add, turn into a multiply. 2079 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2080 (I->hasOneUse() && 2081 (isReassociableOp(I->user_back(), Instruction::Mul) || 2082 isReassociableOp(I->user_back(), Instruction::Add)))) { 2083 Instruction *NI = ConvertShiftToMul(I); 2084 RedoInsts.insert(I); 2085 MadeChange = true; 2086 I = NI; 2087 } 2088 2089 // Commute binary operators, to canonicalize the order of their operands. 2090 // This can potentially expose more CSE opportunities, and makes writing other 2091 // transformations simpler. 2092 if (I->isCommutative()) 2093 canonicalizeOperands(I); 2094 2095 // Canonicalize negative constants out of expressions. 2096 if (Instruction *Res = canonicalizeNegFPConstants(I)) 2097 I = Res; 2098 2099 // Don't optimize floating-point instructions unless they are 'fast'. 2100 if (I->getType()->isFPOrFPVectorTy() && !I->isFast()) 2101 return; 2102 2103 // Do not reassociate boolean (i1) expressions. We want to preserve the 2104 // original order of evaluation for short-circuited comparisons that 2105 // SimplifyCFG has folded to AND/OR expressions. If the expression 2106 // is not further optimized, it is likely to be transformed back to a 2107 // short-circuited form for code gen, and the source order may have been 2108 // optimized for the most likely conditions. 2109 if (I->getType()->isIntegerTy(1)) 2110 return; 2111 2112 // If this is a subtract instruction which is not already in negate form, 2113 // see if we can convert it to X+-Y. 2114 if (I->getOpcode() == Instruction::Sub) { 2115 if (ShouldBreakUpSubtract(I)) { 2116 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2117 RedoInsts.insert(I); 2118 MadeChange = true; 2119 I = NI; 2120 } else if (match(I, m_Neg(m_Value()))) { 2121 // Otherwise, this is a negation. See if the operand is a multiply tree 2122 // and if this is not an inner node of a multiply tree. 2123 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2124 (!I->hasOneUse() || 2125 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2126 Instruction *NI = LowerNegateToMultiply(I); 2127 // If the negate was simplified, revisit the users to see if we can 2128 // reassociate further. 2129 for (User *U : NI->users()) { 2130 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2131 RedoInsts.insert(Tmp); 2132 } 2133 RedoInsts.insert(I); 2134 MadeChange = true; 2135 I = NI; 2136 } 2137 } 2138 } else if (I->getOpcode() == Instruction::FNeg || 2139 I->getOpcode() == Instruction::FSub) { 2140 if (ShouldBreakUpSubtract(I)) { 2141 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2142 RedoInsts.insert(I); 2143 MadeChange = true; 2144 I = NI; 2145 } else if (match(I, m_FNeg(m_Value()))) { 2146 // Otherwise, this is a negation. See if the operand is a multiply tree 2147 // and if this is not an inner node of a multiply tree. 2148 Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) : 2149 I->getOperand(0); 2150 if (isReassociableOp(Op, Instruction::FMul) && 2151 (!I->hasOneUse() || 2152 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2153 // If the negate was simplified, revisit the users to see if we can 2154 // reassociate further. 2155 Instruction *NI = LowerNegateToMultiply(I); 2156 for (User *U : NI->users()) { 2157 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2158 RedoInsts.insert(Tmp); 2159 } 2160 RedoInsts.insert(I); 2161 MadeChange = true; 2162 I = NI; 2163 } 2164 } 2165 } 2166 2167 // If this instruction is an associative binary operator, process it. 2168 if (!I->isAssociative()) return; 2169 BinaryOperator *BO = cast<BinaryOperator>(I); 2170 2171 // If this is an interior node of a reassociable tree, ignore it until we 2172 // get to the root of the tree, to avoid N^2 analysis. 2173 unsigned Opcode = BO->getOpcode(); 2174 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2175 // During the initial run we will get to the root of the tree. 2176 // But if we get here while we are redoing instructions, there is no 2177 // guarantee that the root will be visited. So Redo later 2178 if (BO->user_back() != BO && 2179 BO->getParent() == BO->user_back()->getParent()) 2180 RedoInsts.insert(BO->user_back()); 2181 return; 2182 } 2183 2184 // If this is an add tree that is used by a sub instruction, ignore it 2185 // until we process the subtract. 2186 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2187 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2188 return; 2189 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2190 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2191 return; 2192 2193 ReassociateExpression(BO); 2194 } 2195 2196 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2197 // First, walk the expression tree, linearizing the tree, collecting the 2198 // operand information. 2199 SmallVector<RepeatedValue, 8> Tree; 2200 MadeChange |= LinearizeExprTree(I, Tree); 2201 SmallVector<ValueEntry, 8> Ops; 2202 Ops.reserve(Tree.size()); 2203 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2204 RepeatedValue E = Tree[i]; 2205 Ops.append(E.second.getZExtValue(), 2206 ValueEntry(getRank(E.first), E.first)); 2207 } 2208 2209 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2210 2211 // Now that we have linearized the tree to a list and have gathered all of 2212 // the operands and their ranks, sort the operands by their rank. Use a 2213 // stable_sort so that values with equal ranks will have their relative 2214 // positions maintained (and so the compiler is deterministic). Note that 2215 // this sorts so that the highest ranking values end up at the beginning of 2216 // the vector. 2217 llvm::stable_sort(Ops); 2218 2219 // Now that we have the expression tree in a convenient 2220 // sorted form, optimize it globally if possible. 2221 if (Value *V = OptimizeExpression(I, Ops)) { 2222 if (V == I) 2223 // Self-referential expression in unreachable code. 2224 return; 2225 // This expression tree simplified to something that isn't a tree, 2226 // eliminate it. 2227 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2228 I->replaceAllUsesWith(V); 2229 if (Instruction *VI = dyn_cast<Instruction>(V)) 2230 if (I->getDebugLoc()) 2231 VI->setDebugLoc(I->getDebugLoc()); 2232 RedoInsts.insert(I); 2233 ++NumAnnihil; 2234 return; 2235 } 2236 2237 // We want to sink immediates as deeply as possible except in the case where 2238 // this is a multiply tree used only by an add, and the immediate is a -1. 2239 // In this case we reassociate to put the negation on the outside so that we 2240 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2241 if (I->hasOneUse()) { 2242 if (I->getOpcode() == Instruction::Mul && 2243 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2244 isa<ConstantInt>(Ops.back().Op) && 2245 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2246 ValueEntry Tmp = Ops.pop_back_val(); 2247 Ops.insert(Ops.begin(), Tmp); 2248 } else if (I->getOpcode() == Instruction::FMul && 2249 cast<Instruction>(I->user_back())->getOpcode() == 2250 Instruction::FAdd && 2251 isa<ConstantFP>(Ops.back().Op) && 2252 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2253 ValueEntry Tmp = Ops.pop_back_val(); 2254 Ops.insert(Ops.begin(), Tmp); 2255 } 2256 } 2257 2258 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2259 2260 if (Ops.size() == 1) { 2261 if (Ops[0].Op == I) 2262 // Self-referential expression in unreachable code. 2263 return; 2264 2265 // This expression tree simplified to something that isn't a tree, 2266 // eliminate it. 2267 I->replaceAllUsesWith(Ops[0].Op); 2268 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2269 OI->setDebugLoc(I->getDebugLoc()); 2270 RedoInsts.insert(I); 2271 return; 2272 } 2273 2274 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 2275 // Find the pair with the highest count in the pairmap and move it to the 2276 // back of the list so that it can later be CSE'd. 2277 // example: 2278 // a*b*c*d*e 2279 // if c*e is the most "popular" pair, we can express this as 2280 // (((c*e)*d)*b)*a 2281 unsigned Max = 1; 2282 unsigned BestRank = 0; 2283 std::pair<unsigned, unsigned> BestPair; 2284 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 2285 for (unsigned i = 0; i < Ops.size() - 1; ++i) 2286 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2287 unsigned Score = 0; 2288 Value *Op0 = Ops[i].Op; 2289 Value *Op1 = Ops[j].Op; 2290 if (std::less<Value *>()(Op1, Op0)) 2291 std::swap(Op0, Op1); 2292 auto it = PairMap[Idx].find({Op0, Op1}); 2293 if (it != PairMap[Idx].end()) { 2294 // Functions like BreakUpSubtract() can erase the Values we're using 2295 // as keys and create new Values after we built the PairMap. There's a 2296 // small chance that the new nodes can have the same address as 2297 // something already in the table. We shouldn't accumulate the stored 2298 // score in that case as it refers to the wrong Value. 2299 if (it->second.isValid()) 2300 Score += it->second.Score; 2301 } 2302 2303 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 2304 if (Score > Max || (Score == Max && MaxRank < BestRank)) { 2305 BestPair = {i, j}; 2306 Max = Score; 2307 BestRank = MaxRank; 2308 } 2309 } 2310 if (Max > 1) { 2311 auto Op0 = Ops[BestPair.first]; 2312 auto Op1 = Ops[BestPair.second]; 2313 Ops.erase(&Ops[BestPair.second]); 2314 Ops.erase(&Ops[BestPair.first]); 2315 Ops.push_back(Op0); 2316 Ops.push_back(Op1); 2317 } 2318 } 2319 // Now that we ordered and optimized the expressions, splat them back into 2320 // the expression tree, removing any unneeded nodes. 2321 RewriteExprTree(I, Ops); 2322 } 2323 2324 void 2325 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 2326 // Make a "pairmap" of how often each operand pair occurs. 2327 for (BasicBlock *BI : RPOT) { 2328 for (Instruction &I : *BI) { 2329 if (!I.isAssociative()) 2330 continue; 2331 2332 // Ignore nodes that aren't at the root of trees. 2333 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 2334 continue; 2335 2336 // Collect all operands in a single reassociable expression. 2337 // Since Reassociate has already been run once, we can assume things 2338 // are already canonical according to Reassociation's regime. 2339 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 2340 SmallVector<Value *, 8> Ops; 2341 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 2342 Value *Op = Worklist.pop_back_val(); 2343 Instruction *OpI = dyn_cast<Instruction>(Op); 2344 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 2345 Ops.push_back(Op); 2346 continue; 2347 } 2348 // Be paranoid about self-referencing expressions in unreachable code. 2349 if (OpI->getOperand(0) != OpI) 2350 Worklist.push_back(OpI->getOperand(0)); 2351 if (OpI->getOperand(1) != OpI) 2352 Worklist.push_back(OpI->getOperand(1)); 2353 } 2354 // Skip extremely long expressions. 2355 if (Ops.size() > GlobalReassociateLimit) 2356 continue; 2357 2358 // Add all pairwise combinations of operands to the pair map. 2359 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 2360 SmallSet<std::pair<Value *, Value*>, 32> Visited; 2361 for (unsigned i = 0; i < Ops.size() - 1; ++i) { 2362 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2363 // Canonicalize operand orderings. 2364 Value *Op0 = Ops[i]; 2365 Value *Op1 = Ops[j]; 2366 if (std::less<Value *>()(Op1, Op0)) 2367 std::swap(Op0, Op1); 2368 if (!Visited.insert({Op0, Op1}).second) 2369 continue; 2370 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}}); 2371 if (!res.second) { 2372 // If either key value has been erased then we've got the same 2373 // address by coincidence. That can't happen here because nothing is 2374 // erasing values but it can happen by the time we're querying the 2375 // map. 2376 assert(res.first->second.isValid() && "WeakVH invalidated"); 2377 ++res.first->second.Score; 2378 } 2379 } 2380 } 2381 } 2382 } 2383 } 2384 2385 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2386 // Get the functions basic blocks in Reverse Post Order. This order is used by 2387 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2388 // blocks (it has been seen that the analysis in this pass could hang when 2389 // analysing dead basic blocks). 2390 ReversePostOrderTraversal<Function *> RPOT(&F); 2391 2392 // Calculate the rank map for F. 2393 BuildRankMap(F, RPOT); 2394 2395 // Build the pair map before running reassociate. 2396 // Technically this would be more accurate if we did it after one round 2397 // of reassociation, but in practice it doesn't seem to help much on 2398 // real-world code, so don't waste the compile time running reassociate 2399 // twice. 2400 // If a user wants, they could expicitly run reassociate twice in their 2401 // pass pipeline for further potential gains. 2402 // It might also be possible to update the pair map during runtime, but the 2403 // overhead of that may be large if there's many reassociable chains. 2404 BuildPairMap(RPOT); 2405 2406 MadeChange = false; 2407 2408 // Traverse the same blocks that were analysed by BuildRankMap. 2409 for (BasicBlock *BI : RPOT) { 2410 assert(RankMap.count(&*BI) && "BB should be ranked."); 2411 // Optimize every instruction in the basic block. 2412 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2413 if (isInstructionTriviallyDead(&*II)) { 2414 EraseInst(&*II++); 2415 } else { 2416 OptimizeInst(&*II); 2417 assert(II->getParent() == &*BI && "Moved to a different block!"); 2418 ++II; 2419 } 2420 2421 // Make a copy of all the instructions to be redone so we can remove dead 2422 // instructions. 2423 OrderedSet ToRedo(RedoInsts); 2424 // Iterate over all instructions to be reevaluated and remove trivially dead 2425 // instructions. If any operand of the trivially dead instruction becomes 2426 // dead mark it for deletion as well. Continue this process until all 2427 // trivially dead instructions have been removed. 2428 while (!ToRedo.empty()) { 2429 Instruction *I = ToRedo.pop_back_val(); 2430 if (isInstructionTriviallyDead(I)) { 2431 RecursivelyEraseDeadInsts(I, ToRedo); 2432 MadeChange = true; 2433 } 2434 } 2435 2436 // Now that we have removed dead instructions, we can reoptimize the 2437 // remaining instructions. 2438 while (!RedoInsts.empty()) { 2439 Instruction *I = RedoInsts.front(); 2440 RedoInsts.erase(RedoInsts.begin()); 2441 if (isInstructionTriviallyDead(I)) 2442 EraseInst(I); 2443 else 2444 OptimizeInst(I); 2445 } 2446 } 2447 2448 // We are done with the rank map and pair map. 2449 RankMap.clear(); 2450 ValueRankMap.clear(); 2451 for (auto &Entry : PairMap) 2452 Entry.clear(); 2453 2454 if (MadeChange) { 2455 PreservedAnalyses PA; 2456 PA.preserveSet<CFGAnalyses>(); 2457 PA.preserve<GlobalsAA>(); 2458 return PA; 2459 } 2460 2461 return PreservedAnalyses::all(); 2462 } 2463 2464 namespace { 2465 2466 class ReassociateLegacyPass : public FunctionPass { 2467 ReassociatePass Impl; 2468 2469 public: 2470 static char ID; // Pass identification, replacement for typeid 2471 2472 ReassociateLegacyPass() : FunctionPass(ID) { 2473 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2474 } 2475 2476 bool runOnFunction(Function &F) override { 2477 if (skipFunction(F)) 2478 return false; 2479 2480 FunctionAnalysisManager DummyFAM; 2481 auto PA = Impl.run(F, DummyFAM); 2482 return !PA.areAllPreserved(); 2483 } 2484 2485 void getAnalysisUsage(AnalysisUsage &AU) const override { 2486 AU.setPreservesCFG(); 2487 AU.addPreserved<GlobalsAAWrapperPass>(); 2488 } 2489 }; 2490 2491 } // end anonymous namespace 2492 2493 char ReassociateLegacyPass::ID = 0; 2494 2495 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2496 "Reassociate expressions", false, false) 2497 2498 // Public interface to the Reassociate pass 2499 FunctionPass *llvm::createReassociatePass() { 2500 return new ReassociateLegacyPass(); 2501 } 2502