xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/Reassociate.cpp (revision 9a7f7b2480a9f332f7f7f19ee00dc1606dfd2265)
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates commutative expressions in an order that is designed
10 // to promote better constant propagation, GCSE, LICM, PRE, etc.
11 //
12 // For example: 4 + (x + 5) -> x + (4 + 5)
13 //
14 // In the implementation of this algorithm, constants are assigned rank = 0,
15 // function arguments are rank = 1, and other values are assigned ranks
16 // corresponding to the reverse post order traversal of current function
17 // (starting at 2), which effectively gives values in deep loops higher rank
18 // than values not in loops.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/Reassociate.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/BasicAliasAnalysis.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <utility>
63 
64 using namespace llvm;
65 using namespace reassociate;
66 using namespace PatternMatch;
67 
68 #define DEBUG_TYPE "reassociate"
69 
70 STATISTIC(NumChanged, "Number of insts reassociated");
71 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
72 STATISTIC(NumFactor , "Number of multiplies factored");
73 
74 static cl::opt<bool>
75     UseCSELocalOpt(DEBUG_TYPE "-use-cse-local",
76                    cl::desc("Only reorder expressions within a basic block "
77                             "when exposing CSE opportunities"),
78                    cl::init(true), cl::Hidden);
79 
80 #ifndef NDEBUG
81 /// Print out the expression identified in the Ops list.
82 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
83   Module *M = I->getModule();
84   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
85        << *Ops[0].Op->getType() << '\t';
86   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
87     dbgs() << "[ ";
88     Ops[i].Op->printAsOperand(dbgs(), false, M);
89     dbgs() << ", #" << Ops[i].Rank << "] ";
90   }
91 }
92 #endif
93 
94 /// Utility class representing a non-constant Xor-operand. We classify
95 /// non-constant Xor-Operands into two categories:
96 ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
97 ///  C2)
98 ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
99 ///          constant.
100 ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
101 ///          operand as "E | 0"
102 class llvm::reassociate::XorOpnd {
103 public:
104   XorOpnd(Value *V);
105 
106   bool isInvalid() const { return SymbolicPart == nullptr; }
107   bool isOrExpr() const { return isOr; }
108   Value *getValue() const { return OrigVal; }
109   Value *getSymbolicPart() const { return SymbolicPart; }
110   unsigned getSymbolicRank() const { return SymbolicRank; }
111   const APInt &getConstPart() const { return ConstPart; }
112 
113   void Invalidate() { SymbolicPart = OrigVal = nullptr; }
114   void setSymbolicRank(unsigned R) { SymbolicRank = R; }
115 
116 private:
117   Value *OrigVal;
118   Value *SymbolicPart;
119   APInt ConstPart;
120   unsigned SymbolicRank;
121   bool isOr;
122 };
123 
124 XorOpnd::XorOpnd(Value *V) {
125   assert(!isa<ConstantInt>(V) && "No ConstantInt");
126   OrigVal = V;
127   Instruction *I = dyn_cast<Instruction>(V);
128   SymbolicRank = 0;
129 
130   if (I && (I->getOpcode() == Instruction::Or ||
131             I->getOpcode() == Instruction::And)) {
132     Value *V0 = I->getOperand(0);
133     Value *V1 = I->getOperand(1);
134     const APInt *C;
135     if (match(V0, m_APInt(C)))
136       std::swap(V0, V1);
137 
138     if (match(V1, m_APInt(C))) {
139       ConstPart = *C;
140       SymbolicPart = V0;
141       isOr = (I->getOpcode() == Instruction::Or);
142       return;
143     }
144   }
145 
146   // view the operand as "V | 0"
147   SymbolicPart = V;
148   ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits());
149   isOr = true;
150 }
151 
152 /// Return true if I is an instruction with the FastMathFlags that are needed
153 /// for general reassociation set.  This is not the same as testing
154 /// Instruction::isAssociative() because it includes operations like fsub.
155 /// (This routine is only intended to be called for floating-point operations.)
156 static bool hasFPAssociativeFlags(Instruction *I) {
157   assert(I && isa<FPMathOperator>(I) && "Should only check FP ops");
158   return I->hasAllowReassoc() && I->hasNoSignedZeros();
159 }
160 
161 /// Return true if V is an instruction of the specified opcode and if it
162 /// only has one use.
163 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
164   auto *BO = dyn_cast<BinaryOperator>(V);
165   if (BO && BO->hasOneUse() && BO->getOpcode() == Opcode)
166     if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
167       return BO;
168   return nullptr;
169 }
170 
171 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
172                                         unsigned Opcode2) {
173   auto *BO = dyn_cast<BinaryOperator>(V);
174   if (BO && BO->hasOneUse() &&
175       (BO->getOpcode() == Opcode1 || BO->getOpcode() == Opcode2))
176     if (!isa<FPMathOperator>(BO) || hasFPAssociativeFlags(BO))
177       return BO;
178   return nullptr;
179 }
180 
181 void ReassociatePass::BuildRankMap(Function &F,
182                                    ReversePostOrderTraversal<Function*> &RPOT) {
183   unsigned Rank = 2;
184 
185   // Assign distinct ranks to function arguments.
186   for (auto &Arg : F.args()) {
187     ValueRankMap[&Arg] = ++Rank;
188     LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank
189                       << "\n");
190   }
191 
192   // Traverse basic blocks in ReversePostOrder.
193   for (BasicBlock *BB : RPOT) {
194     unsigned BBRank = RankMap[BB] = ++Rank << 16;
195 
196     // Walk the basic block, adding precomputed ranks for any instructions that
197     // we cannot move.  This ensures that the ranks for these instructions are
198     // all different in the block.
199     for (Instruction &I : *BB)
200       if (mayHaveNonDefUseDependency(I))
201         ValueRankMap[&I] = ++BBRank;
202   }
203 }
204 
205 unsigned ReassociatePass::getRank(Value *V) {
206   Instruction *I = dyn_cast<Instruction>(V);
207   if (!I) {
208     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
209     return 0;  // Otherwise it's a global or constant, rank 0.
210   }
211 
212   if (unsigned Rank = ValueRankMap[I])
213     return Rank;    // Rank already known?
214 
215   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
216   // we can reassociate expressions for code motion!  Since we do not recurse
217   // for PHI nodes, we cannot have infinite recursion here, because there
218   // cannot be loops in the value graph that do not go through PHI nodes.
219   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
220   for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i)
221     Rank = std::max(Rank, getRank(I->getOperand(i)));
222 
223   // If this is a 'not' or 'neg' instruction, do not count it for rank. This
224   // assures us that X and ~X will have the same rank.
225   if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) &&
226       !match(I, m_FNeg(m_Value())))
227     ++Rank;
228 
229   LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank
230                     << "\n");
231 
232   return ValueRankMap[I] = Rank;
233 }
234 
235 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
236 void ReassociatePass::canonicalizeOperands(Instruction *I) {
237   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
238   assert(I->isCommutative() && "Expected commutative operator.");
239 
240   Value *LHS = I->getOperand(0);
241   Value *RHS = I->getOperand(1);
242   if (LHS == RHS || isa<Constant>(RHS))
243     return;
244   if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS))
245     cast<BinaryOperator>(I)->swapOperands();
246 }
247 
248 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
249                                  Instruction *InsertBefore, Value *FlagsOp) {
250   if (S1->getType()->isIntOrIntVectorTy())
251     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
252   else {
253     BinaryOperator *Res =
254         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
255     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
256     return Res;
257   }
258 }
259 
260 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
261                                  Instruction *InsertBefore, Value *FlagsOp) {
262   if (S1->getType()->isIntOrIntVectorTy())
263     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
264   else {
265     BinaryOperator *Res =
266       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
267     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
268     return Res;
269   }
270 }
271 
272 static Instruction *CreateNeg(Value *S1, const Twine &Name,
273                               Instruction *InsertBefore, Value *FlagsOp) {
274   if (S1->getType()->isIntOrIntVectorTy())
275     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
276 
277   if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp))
278     return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore);
279 
280   return UnaryOperator::CreateFNeg(S1, Name, InsertBefore);
281 }
282 
283 /// Replace 0-X with X*-1.
284 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
285   assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) &&
286          "Expected a Negate!");
287   // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0.
288   unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0;
289   Type *Ty = Neg->getType();
290   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
291     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
292 
293   BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg);
294   Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op.
295   Res->takeName(Neg);
296   Neg->replaceAllUsesWith(Res);
297   Res->setDebugLoc(Neg->getDebugLoc());
298   return Res;
299 }
300 
301 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
302 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
303 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
304 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
305 /// even x in Bitwidth-bit arithmetic.
306 static unsigned CarmichaelShift(unsigned Bitwidth) {
307   if (Bitwidth < 3)
308     return Bitwidth - 1;
309   return Bitwidth - 2;
310 }
311 
312 /// Add the extra weight 'RHS' to the existing weight 'LHS',
313 /// reducing the combined weight using any special properties of the operation.
314 /// The existing weight LHS represents the computation X op X op ... op X where
315 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
316 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
317 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
318 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
319 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
320   // If we were working with infinite precision arithmetic then the combined
321   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
322   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
323   // for nilpotent operations and addition, but not for idempotent operations
324   // and multiplication), so it is important to correctly reduce the combined
325   // weight back into range if wrapping would be wrong.
326 
327   // If RHS is zero then the weight didn't change.
328   if (RHS.isMinValue())
329     return;
330   // If LHS is zero then the combined weight is RHS.
331   if (LHS.isMinValue()) {
332     LHS = RHS;
333     return;
334   }
335   // From this point on we know that neither LHS nor RHS is zero.
336 
337   if (Instruction::isIdempotent(Opcode)) {
338     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
339     // weight of 1.  Keeping weights at zero or one also means that wrapping is
340     // not a problem.
341     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
342     return; // Return a weight of 1.
343   }
344   if (Instruction::isNilpotent(Opcode)) {
345     // Nilpotent means X op X === 0, so reduce weights modulo 2.
346     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
347     LHS = 0; // 1 + 1 === 0 modulo 2.
348     return;
349   }
350   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
351     // TODO: Reduce the weight by exploiting nsw/nuw?
352     LHS += RHS;
353     return;
354   }
355 
356   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
357          "Unknown associative operation!");
358   unsigned Bitwidth = LHS.getBitWidth();
359   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
360   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
361   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
362   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
363   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
364   // which by a happy accident means that they can always be represented using
365   // Bitwidth bits.
366   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
367   // the Carmichael number).
368   if (Bitwidth > 3) {
369     /// CM - The value of Carmichael's lambda function.
370     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
371     // Any weight W >= Threshold can be replaced with W - CM.
372     APInt Threshold = CM + Bitwidth;
373     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
374     // For Bitwidth 4 or more the following sum does not overflow.
375     LHS += RHS;
376     while (LHS.uge(Threshold))
377       LHS -= CM;
378   } else {
379     // To avoid problems with overflow do everything the same as above but using
380     // a larger type.
381     unsigned CM = 1U << CarmichaelShift(Bitwidth);
382     unsigned Threshold = CM + Bitwidth;
383     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
384            "Weights not reduced!");
385     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
386     while (Total >= Threshold)
387       Total -= CM;
388     LHS = Total;
389   }
390 }
391 
392 using RepeatedValue = std::pair<Value*, APInt>;
393 
394 /// Given an associative binary expression, return the leaf
395 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
396 /// original expression is the same as
397 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
398 /// op
399 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
400 /// op
401 ///   ...
402 /// op
403 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
404 ///
405 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
406 ///
407 /// This routine may modify the function, in which case it returns 'true'.  The
408 /// changes it makes may well be destructive, changing the value computed by 'I'
409 /// to something completely different.  Thus if the routine returns 'true' then
410 /// you MUST either replace I with a new expression computed from the Ops array,
411 /// or use RewriteExprTree to put the values back in.
412 ///
413 /// A leaf node is either not a binary operation of the same kind as the root
414 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
415 /// opcode), or is the same kind of binary operator but has a use which either
416 /// does not belong to the expression, or does belong to the expression but is
417 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
418 /// of the expression, while for non-leaf nodes (except for the root 'I') every
419 /// use is a non-leaf node of the expression.
420 ///
421 /// For example:
422 ///           expression graph        node names
423 ///
424 ///                     +        |        I
425 ///                    / \       |
426 ///                   +   +      |      A,  B
427 ///                  / \ / \     |
428 ///                 *   +   *    |    C,  D,  E
429 ///                / \ / \ / \   |
430 ///                   +   *      |      F,  G
431 ///
432 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
433 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
434 ///
435 /// The expression is maximal: if some instruction is a binary operator of the
436 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
437 /// then the instruction also belongs to the expression, is not a leaf node of
438 /// it, and its operands also belong to the expression (but may be leaf nodes).
439 ///
440 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
441 /// order to ensure that every non-root node in the expression has *exactly one*
442 /// use by a non-leaf node of the expression.  This destruction means that the
443 /// caller MUST either replace 'I' with a new expression or use something like
444 /// RewriteExprTree to put the values back in if the routine indicates that it
445 /// made a change by returning 'true'.
446 ///
447 /// In the above example either the right operand of A or the left operand of B
448 /// will be replaced by undef.  If it is B's operand then this gives:
449 ///
450 ///                     +        |        I
451 ///                    / \       |
452 ///                   +   +      |      A,  B - operand of B replaced with undef
453 ///                  / \   \     |
454 ///                 *   +   *    |    C,  D,  E
455 ///                / \ / \ / \   |
456 ///                   +   *      |      F,  G
457 ///
458 /// Note that such undef operands can only be reached by passing through 'I'.
459 /// For example, if you visit operands recursively starting from a leaf node
460 /// then you will never see such an undef operand unless you get back to 'I',
461 /// which requires passing through a phi node.
462 ///
463 /// Note that this routine may also mutate binary operators of the wrong type
464 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
465 /// of the expression) if it can turn them into binary operators of the right
466 /// type and thus make the expression bigger.
467 static bool LinearizeExprTree(Instruction *I,
468                               SmallVectorImpl<RepeatedValue> &Ops,
469                               ReassociatePass::OrderedSet &ToRedo,
470                               bool &HasNUW) {
471   assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) &&
472          "Expected a UnaryOperator or BinaryOperator!");
473   LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
474   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
475   unsigned Opcode = I->getOpcode();
476   assert(I->isAssociative() && I->isCommutative() &&
477          "Expected an associative and commutative operation!");
478 
479   // Visit all operands of the expression, keeping track of their weight (the
480   // number of paths from the expression root to the operand, or if you like
481   // the number of times that operand occurs in the linearized expression).
482   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
483   // while A has weight two.
484 
485   // Worklist of non-leaf nodes (their operands are in the expression too) along
486   // with their weights, representing a certain number of paths to the operator.
487   // If an operator occurs in the worklist multiple times then we found multiple
488   // ways to get to it.
489   SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight)
490   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
491   bool Changed = false;
492 
493   // Leaves of the expression are values that either aren't the right kind of
494   // operation (eg: a constant, or a multiply in an add tree), or are, but have
495   // some uses that are not inside the expression.  For example, in I = X + X,
496   // X = A + B, the value X has two uses (by I) that are in the expression.  If
497   // X has any other uses, for example in a return instruction, then we consider
498   // X to be a leaf, and won't analyze it further.  When we first visit a value,
499   // if it has more than one use then at first we conservatively consider it to
500   // be a leaf.  Later, as the expression is explored, we may discover some more
501   // uses of the value from inside the expression.  If all uses turn out to be
502   // from within the expression (and the value is a binary operator of the right
503   // kind) then the value is no longer considered to be a leaf, and its operands
504   // are explored.
505 
506   // Leaves - Keeps track of the set of putative leaves as well as the number of
507   // paths to each leaf seen so far.
508   using LeafMap = DenseMap<Value *, APInt>;
509   LeafMap Leaves; // Leaf -> Total weight so far.
510   SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order.
511 
512 #ifndef NDEBUG
513   SmallPtrSet<Value *, 8> Visited; // For checking the iteration scheme.
514 #endif
515   while (!Worklist.empty()) {
516     std::pair<Instruction*, APInt> P = Worklist.pop_back_val();
517     I = P.first; // We examine the operands of this binary operator.
518 
519     if (isa<OverflowingBinaryOperator>(I))
520       HasNUW &= I->hasNoUnsignedWrap();
521 
522     for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands.
523       Value *Op = I->getOperand(OpIdx);
524       APInt Weight = P.second; // Number of paths to this operand.
525       LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
526       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
527 
528       // If this is a binary operation of the right kind with only one use then
529       // add its operands to the expression.
530       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
531         assert(Visited.insert(Op).second && "Not first visit!");
532         LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
533         Worklist.push_back(std::make_pair(BO, Weight));
534         continue;
535       }
536 
537       // Appears to be a leaf.  Is the operand already in the set of leaves?
538       LeafMap::iterator It = Leaves.find(Op);
539       if (It == Leaves.end()) {
540         // Not in the leaf map.  Must be the first time we saw this operand.
541         assert(Visited.insert(Op).second && "Not first visit!");
542         if (!Op->hasOneUse()) {
543           // This value has uses not accounted for by the expression, so it is
544           // not safe to modify.  Mark it as being a leaf.
545           LLVM_DEBUG(dbgs()
546                      << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
547           LeafOrder.push_back(Op);
548           Leaves[Op] = Weight;
549           continue;
550         }
551         // No uses outside the expression, try morphing it.
552       } else {
553         // Already in the leaf map.
554         assert(It != Leaves.end() && Visited.count(Op) &&
555                "In leaf map but not visited!");
556 
557         // Update the number of paths to the leaf.
558         IncorporateWeight(It->second, Weight, Opcode);
559 
560 #if 0   // TODO: Re-enable once PR13021 is fixed.
561         // The leaf already has one use from inside the expression.  As we want
562         // exactly one such use, drop this new use of the leaf.
563         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
564         I->setOperand(OpIdx, UndefValue::get(I->getType()));
565         Changed = true;
566 
567         // If the leaf is a binary operation of the right kind and we now see
568         // that its multiple original uses were in fact all by nodes belonging
569         // to the expression, then no longer consider it to be a leaf and add
570         // its operands to the expression.
571         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
572           LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
573           Worklist.push_back(std::make_pair(BO, It->second));
574           Leaves.erase(It);
575           continue;
576         }
577 #endif
578 
579         // If we still have uses that are not accounted for by the expression
580         // then it is not safe to modify the value.
581         if (!Op->hasOneUse())
582           continue;
583 
584         // No uses outside the expression, try morphing it.
585         Weight = It->second;
586         Leaves.erase(It); // Since the value may be morphed below.
587       }
588 
589       // At this point we have a value which, first of all, is not a binary
590       // expression of the right kind, and secondly, is only used inside the
591       // expression.  This means that it can safely be modified.  See if we
592       // can usefully morph it into an expression of the right kind.
593       assert((!isa<Instruction>(Op) ||
594               cast<Instruction>(Op)->getOpcode() != Opcode
595               || (isa<FPMathOperator>(Op) &&
596                   !hasFPAssociativeFlags(cast<Instruction>(Op)))) &&
597              "Should have been handled above!");
598       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
599 
600       // If this is a multiply expression, turn any internal negations into
601       // multiplies by -1 so they can be reassociated.  Add any users of the
602       // newly created multiplication by -1 to the redo list, so any
603       // reassociation opportunities that are exposed will be reassociated
604       // further.
605       Instruction *Neg;
606       if (((Opcode == Instruction::Mul && match(Op, m_Neg(m_Value()))) ||
607            (Opcode == Instruction::FMul && match(Op, m_FNeg(m_Value())))) &&
608            match(Op, m_Instruction(Neg))) {
609         LLVM_DEBUG(dbgs()
610                    << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
611         Instruction *Mul = LowerNegateToMultiply(Neg);
612         LLVM_DEBUG(dbgs() << *Mul << '\n');
613         Worklist.push_back(std::make_pair(Mul, Weight));
614         for (User *U : Mul->users()) {
615           if (BinaryOperator *UserBO = dyn_cast<BinaryOperator>(U))
616             ToRedo.insert(UserBO);
617         }
618         ToRedo.insert(Neg);
619         Changed = true;
620         continue;
621       }
622 
623       // Failed to morph into an expression of the right type.  This really is
624       // a leaf.
625       LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
626       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
627       LeafOrder.push_back(Op);
628       Leaves[Op] = Weight;
629     }
630   }
631 
632   // The leaves, repeated according to their weights, represent the linearized
633   // form of the expression.
634   for (Value *V : LeafOrder) {
635     LeafMap::iterator It = Leaves.find(V);
636     if (It == Leaves.end())
637       // Node initially thought to be a leaf wasn't.
638       continue;
639     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
640     APInt Weight = It->second;
641     if (Weight.isMinValue())
642       // Leaf already output or weight reduction eliminated it.
643       continue;
644     // Ensure the leaf is only output once.
645     It->second = 0;
646     Ops.push_back(std::make_pair(V, Weight));
647   }
648 
649   // For nilpotent operations or addition there may be no operands, for example
650   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
651   // in both cases the weight reduces to 0 causing the value to be skipped.
652   if (Ops.empty()) {
653     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
654     assert(Identity && "Associative operation without identity!");
655     Ops.emplace_back(Identity, APInt(Bitwidth, 1));
656   }
657 
658   return Changed;
659 }
660 
661 /// Now that the operands for this expression tree are
662 /// linearized and optimized, emit them in-order.
663 void ReassociatePass::RewriteExprTree(BinaryOperator *I,
664                                       SmallVectorImpl<ValueEntry> &Ops,
665                                       bool HasNUW) {
666   assert(Ops.size() > 1 && "Single values should be used directly!");
667 
668   // Since our optimizations should never increase the number of operations, the
669   // new expression can usually be written reusing the existing binary operators
670   // from the original expression tree, without creating any new instructions,
671   // though the rewritten expression may have a completely different topology.
672   // We take care to not change anything if the new expression will be the same
673   // as the original.  If more than trivial changes (like commuting operands)
674   // were made then we are obliged to clear out any optional subclass data like
675   // nsw flags.
676 
677   /// NodesToRewrite - Nodes from the original expression available for writing
678   /// the new expression into.
679   SmallVector<BinaryOperator*, 8> NodesToRewrite;
680   unsigned Opcode = I->getOpcode();
681   BinaryOperator *Op = I;
682 
683   /// NotRewritable - The operands being written will be the leaves of the new
684   /// expression and must not be used as inner nodes (via NodesToRewrite) by
685   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
686   /// (if they were they would have been incorporated into the expression and so
687   /// would not be leaves), so most of the time there is no danger of this.  But
688   /// in rare cases a leaf may become reassociable if an optimization kills uses
689   /// of it, or it may momentarily become reassociable during rewriting (below)
690   /// due it being removed as an operand of one of its uses.  Ensure that misuse
691   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
692   /// leaves and refusing to reuse any of them as inner nodes.
693   SmallPtrSet<Value*, 8> NotRewritable;
694   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
695     NotRewritable.insert(Ops[i].Op);
696 
697   // ExpressionChangedStart - Non-null if the rewritten expression differs from
698   // the original in some non-trivial way, requiring the clearing of optional
699   // flags. Flags are cleared from the operator in ExpressionChangedStart up to
700   // ExpressionChangedEnd inclusive.
701   BinaryOperator *ExpressionChangedStart = nullptr,
702                  *ExpressionChangedEnd = nullptr;
703   for (unsigned i = 0; ; ++i) {
704     // The last operation (which comes earliest in the IR) is special as both
705     // operands will come from Ops, rather than just one with the other being
706     // a subexpression.
707     if (i+2 == Ops.size()) {
708       Value *NewLHS = Ops[i].Op;
709       Value *NewRHS = Ops[i+1].Op;
710       Value *OldLHS = Op->getOperand(0);
711       Value *OldRHS = Op->getOperand(1);
712 
713       if (NewLHS == OldLHS && NewRHS == OldRHS)
714         // Nothing changed, leave it alone.
715         break;
716 
717       if (NewLHS == OldRHS && NewRHS == OldLHS) {
718         // The order of the operands was reversed.  Swap them.
719         LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
720         Op->swapOperands();
721         LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
722         MadeChange = true;
723         ++NumChanged;
724         break;
725       }
726 
727       // The new operation differs non-trivially from the original. Overwrite
728       // the old operands with the new ones.
729       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
730       if (NewLHS != OldLHS) {
731         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
732         if (BO && !NotRewritable.count(BO))
733           NodesToRewrite.push_back(BO);
734         Op->setOperand(0, NewLHS);
735       }
736       if (NewRHS != OldRHS) {
737         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
738         if (BO && !NotRewritable.count(BO))
739           NodesToRewrite.push_back(BO);
740         Op->setOperand(1, NewRHS);
741       }
742       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
743 
744       ExpressionChangedStart = Op;
745       if (!ExpressionChangedEnd)
746         ExpressionChangedEnd = Op;
747       MadeChange = true;
748       ++NumChanged;
749 
750       break;
751     }
752 
753     // Not the last operation.  The left-hand side will be a sub-expression
754     // while the right-hand side will be the current element of Ops.
755     Value *NewRHS = Ops[i].Op;
756     if (NewRHS != Op->getOperand(1)) {
757       LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
758       if (NewRHS == Op->getOperand(0)) {
759         // The new right-hand side was already present as the left operand.  If
760         // we are lucky then swapping the operands will sort out both of them.
761         Op->swapOperands();
762       } else {
763         // Overwrite with the new right-hand side.
764         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
765         if (BO && !NotRewritable.count(BO))
766           NodesToRewrite.push_back(BO);
767         Op->setOperand(1, NewRHS);
768         ExpressionChangedStart = Op;
769         if (!ExpressionChangedEnd)
770           ExpressionChangedEnd = Op;
771       }
772       LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
773       MadeChange = true;
774       ++NumChanged;
775     }
776 
777     // Now deal with the left-hand side.  If this is already an operation node
778     // from the original expression then just rewrite the rest of the expression
779     // into it.
780     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
781     if (BO && !NotRewritable.count(BO)) {
782       Op = BO;
783       continue;
784     }
785 
786     // Otherwise, grab a spare node from the original expression and use that as
787     // the left-hand side.  If there are no nodes left then the optimizers made
788     // an expression with more nodes than the original!  This usually means that
789     // they did something stupid but it might mean that the problem was just too
790     // hard (finding the mimimal number of multiplications needed to realize a
791     // multiplication expression is NP-complete).  Whatever the reason, smart or
792     // stupid, create a new node if there are none left.
793     BinaryOperator *NewOp;
794     if (NodesToRewrite.empty()) {
795       Constant *Undef = UndefValue::get(I->getType());
796       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
797                                      Undef, Undef, "", I);
798       if (isa<FPMathOperator>(NewOp))
799         NewOp->setFastMathFlags(I->getFastMathFlags());
800     } else {
801       NewOp = NodesToRewrite.pop_back_val();
802     }
803 
804     LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n');
805     Op->setOperand(0, NewOp);
806     LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n');
807     ExpressionChangedStart = Op;
808     if (!ExpressionChangedEnd)
809       ExpressionChangedEnd = Op;
810     MadeChange = true;
811     ++NumChanged;
812     Op = NewOp;
813   }
814 
815   // If the expression changed non-trivially then clear out all subclass data
816   // starting from the operator specified in ExpressionChanged, and compactify
817   // the operators to just before the expression root to guarantee that the
818   // expression tree is dominated by all of Ops.
819   if (ExpressionChangedStart) {
820     bool ClearFlags = true;
821     do {
822       // Preserve flags.
823       if (ClearFlags) {
824         if (isa<FPMathOperator>(I)) {
825           FastMathFlags Flags = I->getFastMathFlags();
826           ExpressionChangedStart->clearSubclassOptionalData();
827           ExpressionChangedStart->setFastMathFlags(Flags);
828         } else {
829           ExpressionChangedStart->clearSubclassOptionalData();
830           // Note that it doesn't hold for mul if one of the operands is zero.
831           // TODO: We can preserve NUW flag if we prove that all mul operands
832           // are non-zero.
833           if (HasNUW && ExpressionChangedStart->getOpcode() == Instruction::Add)
834             ExpressionChangedStart->setHasNoUnsignedWrap();
835         }
836       }
837 
838       if (ExpressionChangedStart == ExpressionChangedEnd)
839         ClearFlags = false;
840       if (ExpressionChangedStart == I)
841         break;
842 
843       // Discard any debug info related to the expressions that has changed (we
844       // can leave debug info related to the root and any operation that didn't
845       // change, since the result of the expression tree should be the same
846       // even after reassociation).
847       if (ClearFlags)
848         replaceDbgUsesWithUndef(ExpressionChangedStart);
849 
850       ExpressionChangedStart->moveBefore(I);
851       ExpressionChangedStart =
852           cast<BinaryOperator>(*ExpressionChangedStart->user_begin());
853     } while (true);
854   }
855 
856   // Throw away any left over nodes from the original expression.
857   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
858     RedoInsts.insert(NodesToRewrite[i]);
859 }
860 
861 /// Insert instructions before the instruction pointed to by BI,
862 /// that computes the negative version of the value specified.  The negative
863 /// version of the value is returned, and BI is left pointing at the instruction
864 /// that should be processed next by the reassociation pass.
865 /// Also add intermediate instructions to the redo list that are modified while
866 /// pushing the negates through adds.  These will be revisited to see if
867 /// additional opportunities have been exposed.
868 static Value *NegateValue(Value *V, Instruction *BI,
869                           ReassociatePass::OrderedSet &ToRedo) {
870   if (auto *C = dyn_cast<Constant>(V)) {
871     const DataLayout &DL = BI->getModule()->getDataLayout();
872     Constant *Res = C->getType()->isFPOrFPVectorTy()
873                         ? ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)
874                         : ConstantExpr::getNeg(C);
875     if (Res)
876       return Res;
877   }
878 
879   // We are trying to expose opportunity for reassociation.  One of the things
880   // that we want to do to achieve this is to push a negation as deep into an
881   // expression chain as possible, to expose the add instructions.  In practice,
882   // this means that we turn this:
883   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
884   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
885   // the constants.  We assume that instcombine will clean up the mess later if
886   // we introduce tons of unnecessary negation instructions.
887   //
888   if (BinaryOperator *I =
889           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
890     // Push the negates through the add.
891     I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
892     I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
893     if (I->getOpcode() == Instruction::Add) {
894       I->setHasNoUnsignedWrap(false);
895       I->setHasNoSignedWrap(false);
896     }
897 
898     // We must move the add instruction here, because the neg instructions do
899     // not dominate the old add instruction in general.  By moving it, we are
900     // assured that the neg instructions we just inserted dominate the
901     // instruction we are about to insert after them.
902     //
903     I->moveBefore(BI);
904     I->setName(I->getName()+".neg");
905 
906     // Add the intermediate negates to the redo list as processing them later
907     // could expose more reassociating opportunities.
908     ToRedo.insert(I);
909     return I;
910   }
911 
912   // Okay, we need to materialize a negated version of V with an instruction.
913   // Scan the use lists of V to see if we have one already.
914   for (User *U : V->users()) {
915     if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value())))
916       continue;
917 
918     // We found one!  Now we have to make sure that the definition dominates
919     // this use.  We do this by moving it to the entry block (if it is a
920     // non-instruction value) or right after the definition.  These negates will
921     // be zapped by reassociate later, so we don't need much finesse here.
922     Instruction *TheNeg = dyn_cast<Instruction>(U);
923 
924     // We can't safely propagate a vector zero constant with poison/undef lanes.
925     Constant *C;
926     if (match(TheNeg, m_BinOp(m_Constant(C), m_Value())) &&
927         C->containsUndefOrPoisonElement())
928       continue;
929 
930     // Verify that the negate is in this function, V might be a constant expr.
931     if (!TheNeg ||
932         TheNeg->getParent()->getParent() != BI->getParent()->getParent())
933       continue;
934 
935     BasicBlock::iterator InsertPt;
936     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
937       auto InsertPtOpt = InstInput->getInsertionPointAfterDef();
938       if (!InsertPtOpt)
939         continue;
940       InsertPt = *InsertPtOpt;
941     } else {
942       InsertPt = TheNeg->getFunction()
943                      ->getEntryBlock()
944                      .getFirstNonPHIOrDbg()
945                      ->getIterator();
946     }
947 
948     TheNeg->moveBefore(*InsertPt->getParent(), InsertPt);
949     if (TheNeg->getOpcode() == Instruction::Sub) {
950       TheNeg->setHasNoUnsignedWrap(false);
951       TheNeg->setHasNoSignedWrap(false);
952     } else {
953       TheNeg->andIRFlags(BI);
954     }
955     ToRedo.insert(TheNeg);
956     return TheNeg;
957   }
958 
959   // Insert a 'neg' instruction that subtracts the value from zero to get the
960   // negation.
961   Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
962   ToRedo.insert(NewNeg);
963   return NewNeg;
964 }
965 
966 // See if this `or` looks like an load widening reduction, i.e. that it
967 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't
968 // ensure that the pattern is *really* a load widening reduction,
969 // we do not ensure that it can really be replaced with a widened load,
970 // only that it mostly looks like one.
971 static bool isLoadCombineCandidate(Instruction *Or) {
972   SmallVector<Instruction *, 8> Worklist;
973   SmallSet<Instruction *, 8> Visited;
974 
975   auto Enqueue = [&](Value *V) {
976     auto *I = dyn_cast<Instruction>(V);
977     // Each node of an `or` reduction must be an instruction,
978     if (!I)
979       return false; // Node is certainly not part of an `or` load reduction.
980     // Only process instructions we have never processed before.
981     if (Visited.insert(I).second)
982       Worklist.emplace_back(I);
983     return true; // Will need to look at parent nodes.
984   };
985 
986   if (!Enqueue(Or))
987     return false; // Not an `or` reduction pattern.
988 
989   while (!Worklist.empty()) {
990     auto *I = Worklist.pop_back_val();
991 
992     // Okay, which instruction is this node?
993     switch (I->getOpcode()) {
994     case Instruction::Or:
995       // Got an `or` node. That's fine, just recurse into it's operands.
996       for (Value *Op : I->operands())
997         if (!Enqueue(Op))
998           return false; // Not an `or` reduction pattern.
999       continue;
1000 
1001     case Instruction::Shl:
1002     case Instruction::ZExt:
1003       // `shl`/`zext` nodes are fine, just recurse into their base operand.
1004       if (!Enqueue(I->getOperand(0)))
1005         return false; // Not an `or` reduction pattern.
1006       continue;
1007 
1008     case Instruction::Load:
1009       // Perfect, `load` node means we've reached an edge of the graph.
1010       continue;
1011 
1012     default:        // Unknown node.
1013       return false; // Not an `or` reduction pattern.
1014     }
1015   }
1016 
1017   return true;
1018 }
1019 
1020 /// Return true if it may be profitable to convert this (X|Y) into (X+Y).
1021 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) {
1022   // Don't bother to convert this up unless either the LHS is an associable add
1023   // or subtract or mul or if this is only used by one of the above.
1024   // This is only a compile-time improvement, it is not needed for correctness!
1025   auto isInteresting = [](Value *V) {
1026     for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul,
1027                     Instruction::Shl})
1028       if (isReassociableOp(V, Op))
1029         return true;
1030     return false;
1031   };
1032 
1033   if (any_of(Or->operands(), isInteresting))
1034     return true;
1035 
1036   Value *VB = Or->user_back();
1037   if (Or->hasOneUse() && isInteresting(VB))
1038     return true;
1039 
1040   return false;
1041 }
1042 
1043 /// If we have (X|Y), and iff X and Y have no common bits set,
1044 /// transform this into (X+Y) to allow arithmetics reassociation.
1045 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) {
1046   // Convert an or into an add.
1047   BinaryOperator *New =
1048       CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or);
1049   New->setHasNoSignedWrap();
1050   New->setHasNoUnsignedWrap();
1051   New->takeName(Or);
1052 
1053   // Everyone now refers to the add instruction.
1054   Or->replaceAllUsesWith(New);
1055   New->setDebugLoc(Or->getDebugLoc());
1056 
1057   LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n');
1058   return New;
1059 }
1060 
1061 /// Return true if we should break up this subtract of X-Y into (X + -Y).
1062 static bool ShouldBreakUpSubtract(Instruction *Sub) {
1063   // If this is a negation, we can't split it up!
1064   if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value())))
1065     return false;
1066 
1067   // Don't breakup X - undef.
1068   if (isa<UndefValue>(Sub->getOperand(1)))
1069     return false;
1070 
1071   // Don't bother to break this up unless either the LHS is an associable add or
1072   // subtract or if this is only used by one.
1073   Value *V0 = Sub->getOperand(0);
1074   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
1075       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
1076     return true;
1077   Value *V1 = Sub->getOperand(1);
1078   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
1079       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
1080     return true;
1081   Value *VB = Sub->user_back();
1082   if (Sub->hasOneUse() &&
1083       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1084        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
1085     return true;
1086 
1087   return false;
1088 }
1089 
1090 /// If we have (X-Y), and if either X is an add, or if this is only used by an
1091 /// add, transform this into (X+(0-Y)) to promote better reassociation.
1092 static BinaryOperator *BreakUpSubtract(Instruction *Sub,
1093                                        ReassociatePass::OrderedSet &ToRedo) {
1094   // Convert a subtract into an add and a neg instruction. This allows sub
1095   // instructions to be commuted with other add instructions.
1096   //
1097   // Calculate the negative value of Operand 1 of the sub instruction,
1098   // and set it as the RHS of the add instruction we just made.
1099   Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
1100   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
1101   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1102   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
1103   New->takeName(Sub);
1104 
1105   // Everyone now refers to the add instruction.
1106   Sub->replaceAllUsesWith(New);
1107   New->setDebugLoc(Sub->getDebugLoc());
1108 
1109   LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n');
1110   return New;
1111 }
1112 
1113 /// If this is a shift of a reassociable multiply or is used by one, change
1114 /// this into a multiply by a constant to assist with further reassociation.
1115 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1116   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1117   auto *SA = cast<ConstantInt>(Shl->getOperand(1));
1118   MulCst = ConstantExpr::getShl(MulCst, SA);
1119 
1120   BinaryOperator *Mul =
1121     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1122   Shl->setOperand(0, PoisonValue::get(Shl->getType())); // Drop use of op.
1123   Mul->takeName(Shl);
1124 
1125   // Everyone now refers to the mul instruction.
1126   Shl->replaceAllUsesWith(Mul);
1127   Mul->setDebugLoc(Shl->getDebugLoc());
1128 
1129   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
1130   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
1131   // handling.  It can be preserved as long as we're not left shifting by
1132   // bitwidth - 1.
1133   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1134   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1135   unsigned BitWidth = Shl->getType()->getIntegerBitWidth();
1136   if (NSW && (NUW || SA->getValue().ult(BitWidth - 1)))
1137     Mul->setHasNoSignedWrap(true);
1138   Mul->setHasNoUnsignedWrap(NUW);
1139   return Mul;
1140 }
1141 
1142 /// Scan backwards and forwards among values with the same rank as element i
1143 /// to see if X exists.  If X does not exist, return i.  This is useful when
1144 /// scanning for 'x' when we see '-x' because they both get the same rank.
1145 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops,
1146                                   unsigned i, Value *X) {
1147   unsigned XRank = Ops[i].Rank;
1148   unsigned e = Ops.size();
1149   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
1150     if (Ops[j].Op == X)
1151       return j;
1152     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1153       if (Instruction *I2 = dyn_cast<Instruction>(X))
1154         if (I1->isIdenticalTo(I2))
1155           return j;
1156   }
1157   // Scan backwards.
1158   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
1159     if (Ops[j].Op == X)
1160       return j;
1161     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1162       if (Instruction *I2 = dyn_cast<Instruction>(X))
1163         if (I1->isIdenticalTo(I2))
1164           return j;
1165   }
1166   return i;
1167 }
1168 
1169 /// Emit a tree of add instructions, summing Ops together
1170 /// and returning the result.  Insert the tree before I.
1171 static Value *EmitAddTreeOfValues(Instruction *I,
1172                                   SmallVectorImpl<WeakTrackingVH> &Ops) {
1173   if (Ops.size() == 1) return Ops.back();
1174 
1175   Value *V1 = Ops.pop_back_val();
1176   Value *V2 = EmitAddTreeOfValues(I, Ops);
1177   return CreateAdd(V2, V1, "reass.add", I, I);
1178 }
1179 
1180 /// If V is an expression tree that is a multiplication sequence,
1181 /// and if this sequence contains a multiply by Factor,
1182 /// remove Factor from the tree and return the new tree.
1183 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
1184   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1185   if (!BO)
1186     return nullptr;
1187 
1188   SmallVector<RepeatedValue, 8> Tree;
1189   bool HasNUW = true;
1190   MadeChange |= LinearizeExprTree(BO, Tree, RedoInsts, HasNUW);
1191   SmallVector<ValueEntry, 8> Factors;
1192   Factors.reserve(Tree.size());
1193   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1194     RepeatedValue E = Tree[i];
1195     Factors.append(E.second.getZExtValue(),
1196                    ValueEntry(getRank(E.first), E.first));
1197   }
1198 
1199   bool FoundFactor = false;
1200   bool NeedsNegate = false;
1201   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1202     if (Factors[i].Op == Factor) {
1203       FoundFactor = true;
1204       Factors.erase(Factors.begin()+i);
1205       break;
1206     }
1207 
1208     // If this is a negative version of this factor, remove it.
1209     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
1210       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1211         if (FC1->getValue() == -FC2->getValue()) {
1212           FoundFactor = NeedsNegate = true;
1213           Factors.erase(Factors.begin()+i);
1214           break;
1215         }
1216     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1217       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1218         const APFloat &F1 = FC1->getValueAPF();
1219         APFloat F2(FC2->getValueAPF());
1220         F2.changeSign();
1221         if (F1 == F2) {
1222           FoundFactor = NeedsNegate = true;
1223           Factors.erase(Factors.begin() + i);
1224           break;
1225         }
1226       }
1227     }
1228   }
1229 
1230   if (!FoundFactor) {
1231     // Make sure to restore the operands to the expression tree.
1232     RewriteExprTree(BO, Factors, HasNUW);
1233     return nullptr;
1234   }
1235 
1236   BasicBlock::iterator InsertPt = ++BO->getIterator();
1237 
1238   // If this was just a single multiply, remove the multiply and return the only
1239   // remaining operand.
1240   if (Factors.size() == 1) {
1241     RedoInsts.insert(BO);
1242     V = Factors[0].Op;
1243   } else {
1244     RewriteExprTree(BO, Factors, HasNUW);
1245     V = BO;
1246   }
1247 
1248   if (NeedsNegate)
1249     V = CreateNeg(V, "neg", &*InsertPt, BO);
1250 
1251   return V;
1252 }
1253 
1254 /// If V is a single-use multiply, recursively add its operands as factors,
1255 /// otherwise add V to the list of factors.
1256 ///
1257 /// Ops is the top-level list of add operands we're trying to factor.
1258 static void FindSingleUseMultiplyFactors(Value *V,
1259                                          SmallVectorImpl<Value*> &Factors) {
1260   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1261   if (!BO) {
1262     Factors.push_back(V);
1263     return;
1264   }
1265 
1266   // Otherwise, add the LHS and RHS to the list of factors.
1267   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1268   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
1269 }
1270 
1271 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1272 /// This optimizes based on identities.  If it can be reduced to a single Value,
1273 /// it is returned, otherwise the Ops list is mutated as necessary.
1274 static Value *OptimizeAndOrXor(unsigned Opcode,
1275                                SmallVectorImpl<ValueEntry> &Ops) {
1276   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1277   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1278   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1279     // First, check for X and ~X in the operand list.
1280     assert(i < Ops.size());
1281     Value *X;
1282     if (match(Ops[i].Op, m_Not(m_Value(X)))) {    // Cannot occur for ^.
1283       unsigned FoundX = FindInOperandList(Ops, i, X);
1284       if (FoundX != i) {
1285         if (Opcode == Instruction::And)   // ...&X&~X = 0
1286           return Constant::getNullValue(X->getType());
1287 
1288         if (Opcode == Instruction::Or)    // ...|X|~X = -1
1289           return Constant::getAllOnesValue(X->getType());
1290       }
1291     }
1292 
1293     // Next, check for duplicate pairs of values, which we assume are next to
1294     // each other, due to our sorting criteria.
1295     assert(i < Ops.size());
1296     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1297       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1298         // Drop duplicate values for And and Or.
1299         Ops.erase(Ops.begin()+i);
1300         --i; --e;
1301         ++NumAnnihil;
1302         continue;
1303       }
1304 
1305       // Drop pairs of values for Xor.
1306       assert(Opcode == Instruction::Xor);
1307       if (e == 2)
1308         return Constant::getNullValue(Ops[0].Op->getType());
1309 
1310       // Y ^ X^X -> Y
1311       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1312       i -= 1; e -= 2;
1313       ++NumAnnihil;
1314     }
1315   }
1316   return nullptr;
1317 }
1318 
1319 /// Helper function of CombineXorOpnd(). It creates a bitwise-and
1320 /// instruction with the given two operands, and return the resulting
1321 /// instruction. There are two special cases: 1) if the constant operand is 0,
1322 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1323 /// be returned.
1324 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1325                              const APInt &ConstOpnd) {
1326   if (ConstOpnd.isZero())
1327     return nullptr;
1328 
1329   if (ConstOpnd.isAllOnes())
1330     return Opnd;
1331 
1332   Instruction *I = BinaryOperator::CreateAnd(
1333       Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1334       InsertBefore);
1335   I->setDebugLoc(InsertBefore->getDebugLoc());
1336   return I;
1337 }
1338 
1339 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1340 // into "R ^ C", where C would be 0, and R is a symbolic value.
1341 //
1342 // If it was successful, true is returned, and the "R" and "C" is returned
1343 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1344 // and both "Res" and "ConstOpnd" remain unchanged.
1345 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1346                                      APInt &ConstOpnd, Value *&Res) {
1347   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1348   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
1349   //                       = (x & ~c1) ^ (c1 ^ c2)
1350   // It is useful only when c1 == c2.
1351   if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero())
1352     return false;
1353 
1354   if (!Opnd1->getValue()->hasOneUse())
1355     return false;
1356 
1357   const APInt &C1 = Opnd1->getConstPart();
1358   if (C1 != ConstOpnd)
1359     return false;
1360 
1361   Value *X = Opnd1->getSymbolicPart();
1362   Res = createAndInstr(I, X, ~C1);
1363   // ConstOpnd was C2, now C1 ^ C2.
1364   ConstOpnd ^= C1;
1365 
1366   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1367     RedoInsts.insert(T);
1368   return true;
1369 }
1370 
1371 // Helper function of OptimizeXor(). It tries to simplify
1372 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1373 // symbolic value.
1374 //
1375 // If it was successful, true is returned, and the "R" and "C" is returned
1376 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1377 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1378 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1379 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1380                                      XorOpnd *Opnd2, APInt &ConstOpnd,
1381                                      Value *&Res) {
1382   Value *X = Opnd1->getSymbolicPart();
1383   if (X != Opnd2->getSymbolicPart())
1384     return false;
1385 
1386   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1387   int DeadInstNum = 1;
1388   if (Opnd1->getValue()->hasOneUse())
1389     DeadInstNum++;
1390   if (Opnd2->getValue()->hasOneUse())
1391     DeadInstNum++;
1392 
1393   // Xor-Rule 2:
1394   //  (x | c1) ^ (x & c2)
1395   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1396   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
1397   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
1398   //
1399   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1400     if (Opnd2->isOrExpr())
1401       std::swap(Opnd1, Opnd2);
1402 
1403     const APInt &C1 = Opnd1->getConstPart();
1404     const APInt &C2 = Opnd2->getConstPart();
1405     APInt C3((~C1) ^ C2);
1406 
1407     // Do not increase code size!
1408     if (!C3.isZero() && !C3.isAllOnes()) {
1409       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1410       if (NewInstNum > DeadInstNum)
1411         return false;
1412     }
1413 
1414     Res = createAndInstr(I, X, C3);
1415     ConstOpnd ^= C1;
1416   } else if (Opnd1->isOrExpr()) {
1417     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1418     //
1419     const APInt &C1 = Opnd1->getConstPart();
1420     const APInt &C2 = Opnd2->getConstPart();
1421     APInt C3 = C1 ^ C2;
1422 
1423     // Do not increase code size
1424     if (!C3.isZero() && !C3.isAllOnes()) {
1425       int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
1426       if (NewInstNum > DeadInstNum)
1427         return false;
1428     }
1429 
1430     Res = createAndInstr(I, X, C3);
1431     ConstOpnd ^= C3;
1432   } else {
1433     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1434     //
1435     const APInt &C1 = Opnd1->getConstPart();
1436     const APInt &C2 = Opnd2->getConstPart();
1437     APInt C3 = C1 ^ C2;
1438     Res = createAndInstr(I, X, C3);
1439   }
1440 
1441   // Put the original operands in the Redo list; hope they will be deleted
1442   // as dead code.
1443   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1444     RedoInsts.insert(T);
1445   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1446     RedoInsts.insert(T);
1447 
1448   return true;
1449 }
1450 
1451 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1452 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1453 /// necessary.
1454 Value *ReassociatePass::OptimizeXor(Instruction *I,
1455                                     SmallVectorImpl<ValueEntry> &Ops) {
1456   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1457     return V;
1458 
1459   if (Ops.size() == 1)
1460     return nullptr;
1461 
1462   SmallVector<XorOpnd, 8> Opnds;
1463   SmallVector<XorOpnd*, 8> OpndPtrs;
1464   Type *Ty = Ops[0].Op->getType();
1465   APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
1466 
1467   // Step 1: Convert ValueEntry to XorOpnd
1468   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1469     Value *V = Ops[i].Op;
1470     const APInt *C;
1471     // TODO: Support non-splat vectors.
1472     if (match(V, m_APInt(C))) {
1473       ConstOpnd ^= *C;
1474     } else {
1475       XorOpnd O(V);
1476       O.setSymbolicRank(getRank(O.getSymbolicPart()));
1477       Opnds.push_back(O);
1478     }
1479   }
1480 
1481   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1482   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1483   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1484   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
1485   //  when new elements are added to the vector.
1486   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1487     OpndPtrs.push_back(&Opnds[i]);
1488 
1489   // Step 2: Sort the Xor-Operands in a way such that the operands containing
1490   //  the same symbolic value cluster together. For instance, the input operand
1491   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1492   //  ("x | 123", "x & 789", "y & 456").
1493   //
1494   //  The purpose is twofold:
1495   //  1) Cluster together the operands sharing the same symbolic-value.
1496   //  2) Operand having smaller symbolic-value-rank is permuted earlier, which
1497   //     could potentially shorten crital path, and expose more loop-invariants.
1498   //     Note that values' rank are basically defined in RPO order (FIXME).
1499   //     So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1500   //     than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1501   //     "z" in the order of X-Y-Z is better than any other orders.
1502   llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) {
1503     return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1504   });
1505 
1506   // Step 3: Combine adjacent operands
1507   XorOpnd *PrevOpnd = nullptr;
1508   bool Changed = false;
1509   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1510     XorOpnd *CurrOpnd = OpndPtrs[i];
1511     // The combined value
1512     Value *CV;
1513 
1514     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1515     if (!ConstOpnd.isZero() && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1516       Changed = true;
1517       if (CV)
1518         *CurrOpnd = XorOpnd(CV);
1519       else {
1520         CurrOpnd->Invalidate();
1521         continue;
1522       }
1523     }
1524 
1525     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1526       PrevOpnd = CurrOpnd;
1527       continue;
1528     }
1529 
1530     // step 3.2: When previous and current operands share the same symbolic
1531     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1532     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1533       // Remove previous operand
1534       PrevOpnd->Invalidate();
1535       if (CV) {
1536         *CurrOpnd = XorOpnd(CV);
1537         PrevOpnd = CurrOpnd;
1538       } else {
1539         CurrOpnd->Invalidate();
1540         PrevOpnd = nullptr;
1541       }
1542       Changed = true;
1543     }
1544   }
1545 
1546   // Step 4: Reassemble the Ops
1547   if (Changed) {
1548     Ops.clear();
1549     for (const XorOpnd &O : Opnds) {
1550       if (O.isInvalid())
1551         continue;
1552       ValueEntry VE(getRank(O.getValue()), O.getValue());
1553       Ops.push_back(VE);
1554     }
1555     if (!ConstOpnd.isZero()) {
1556       Value *C = ConstantInt::get(Ty, ConstOpnd);
1557       ValueEntry VE(getRank(C), C);
1558       Ops.push_back(VE);
1559     }
1560     unsigned Sz = Ops.size();
1561     if (Sz == 1)
1562       return Ops.back().Op;
1563     if (Sz == 0) {
1564       assert(ConstOpnd.isZero());
1565       return ConstantInt::get(Ty, ConstOpnd);
1566     }
1567   }
1568 
1569   return nullptr;
1570 }
1571 
1572 /// Optimize a series of operands to an 'add' instruction.  This
1573 /// optimizes based on identities.  If it can be reduced to a single Value, it
1574 /// is returned, otherwise the Ops list is mutated as necessary.
1575 Value *ReassociatePass::OptimizeAdd(Instruction *I,
1576                                     SmallVectorImpl<ValueEntry> &Ops) {
1577   // Scan the operand lists looking for X and -X pairs.  If we find any, we
1578   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
1579   // scan for any
1580   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1581 
1582   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1583     Value *TheOp = Ops[i].Op;
1584     // Check to see if we've seen this operand before.  If so, we factor all
1585     // instances of the operand together.  Due to our sorting criteria, we know
1586     // that these need to be next to each other in the vector.
1587     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1588       // Rescan the list, remove all instances of this operand from the expr.
1589       unsigned NumFound = 0;
1590       do {
1591         Ops.erase(Ops.begin()+i);
1592         ++NumFound;
1593       } while (i != Ops.size() && Ops[i].Op == TheOp);
1594 
1595       LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp
1596                         << '\n');
1597       ++NumFactor;
1598 
1599       // Insert a new multiply.
1600       Type *Ty = TheOp->getType();
1601       Constant *C = Ty->isIntOrIntVectorTy() ?
1602         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
1603       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
1604 
1605       // Now that we have inserted a multiply, optimize it. This allows us to
1606       // handle cases that require multiple factoring steps, such as this:
1607       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1608       RedoInsts.insert(Mul);
1609 
1610       // If every add operand was a duplicate, return the multiply.
1611       if (Ops.empty())
1612         return Mul;
1613 
1614       // Otherwise, we had some input that didn't have the dupe, such as
1615       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
1616       // things being added by this operation.
1617       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1618 
1619       --i;
1620       e = Ops.size();
1621       continue;
1622     }
1623 
1624     // Check for X and -X or X and ~X in the operand list.
1625     Value *X;
1626     if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) &&
1627         !match(TheOp, m_FNeg(m_Value(X))))
1628       continue;
1629 
1630     unsigned FoundX = FindInOperandList(Ops, i, X);
1631     if (FoundX == i)
1632       continue;
1633 
1634     // Remove X and -X from the operand list.
1635     if (Ops.size() == 2 &&
1636         (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value()))))
1637       return Constant::getNullValue(X->getType());
1638 
1639     // Remove X and ~X from the operand list.
1640     if (Ops.size() == 2 && match(TheOp, m_Not(m_Value())))
1641       return Constant::getAllOnesValue(X->getType());
1642 
1643     Ops.erase(Ops.begin()+i);
1644     if (i < FoundX)
1645       --FoundX;
1646     else
1647       --i;   // Need to back up an extra one.
1648     Ops.erase(Ops.begin()+FoundX);
1649     ++NumAnnihil;
1650     --i;     // Revisit element.
1651     e -= 2;  // Removed two elements.
1652 
1653     // if X and ~X we append -1 to the operand list.
1654     if (match(TheOp, m_Not(m_Value()))) {
1655       Value *V = Constant::getAllOnesValue(X->getType());
1656       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1657       e += 1;
1658     }
1659   }
1660 
1661   // Scan the operand list, checking to see if there are any common factors
1662   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
1663   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1664   // To efficiently find this, we count the number of times a factor occurs
1665   // for any ADD operands that are MULs.
1666   DenseMap<Value*, unsigned> FactorOccurrences;
1667 
1668   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1669   // where they are actually the same multiply.
1670   unsigned MaxOcc = 0;
1671   Value *MaxOccVal = nullptr;
1672   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1673     BinaryOperator *BOp =
1674         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1675     if (!BOp)
1676       continue;
1677 
1678     // Compute all of the factors of this added value.
1679     SmallVector<Value*, 8> Factors;
1680     FindSingleUseMultiplyFactors(BOp, Factors);
1681     assert(Factors.size() > 1 && "Bad linearize!");
1682 
1683     // Add one to FactorOccurrences for each unique factor in this op.
1684     SmallPtrSet<Value*, 8> Duplicates;
1685     for (Value *Factor : Factors) {
1686       if (!Duplicates.insert(Factor).second)
1687         continue;
1688 
1689       unsigned Occ = ++FactorOccurrences[Factor];
1690       if (Occ > MaxOcc) {
1691         MaxOcc = Occ;
1692         MaxOccVal = Factor;
1693       }
1694 
1695       // If Factor is a negative constant, add the negated value as a factor
1696       // because we can percolate the negate out.  Watch for minint, which
1697       // cannot be positivified.
1698       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
1699         if (CI->isNegative() && !CI->isMinValue(true)) {
1700           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1701           if (!Duplicates.insert(Factor).second)
1702             continue;
1703           unsigned Occ = ++FactorOccurrences[Factor];
1704           if (Occ > MaxOcc) {
1705             MaxOcc = Occ;
1706             MaxOccVal = Factor;
1707           }
1708         }
1709       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1710         if (CF->isNegative()) {
1711           APFloat F(CF->getValueAPF());
1712           F.changeSign();
1713           Factor = ConstantFP::get(CF->getContext(), F);
1714           if (!Duplicates.insert(Factor).second)
1715             continue;
1716           unsigned Occ = ++FactorOccurrences[Factor];
1717           if (Occ > MaxOcc) {
1718             MaxOcc = Occ;
1719             MaxOccVal = Factor;
1720           }
1721         }
1722       }
1723     }
1724   }
1725 
1726   // If any factor occurred more than one time, we can pull it out.
1727   if (MaxOcc > 1) {
1728     LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal
1729                       << '\n');
1730     ++NumFactor;
1731 
1732     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
1733     // this, we could otherwise run into situations where removing a factor
1734     // from an expression will drop a use of maxocc, and this can cause
1735     // RemoveFactorFromExpression on successive values to behave differently.
1736     Instruction *DummyInst =
1737         I->getType()->isIntOrIntVectorTy()
1738             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1739             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1740 
1741     SmallVector<WeakTrackingVH, 4> NewMulOps;
1742     for (unsigned i = 0; i != Ops.size(); ++i) {
1743       // Only try to remove factors from expressions we're allowed to.
1744       BinaryOperator *BOp =
1745           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
1746       if (!BOp)
1747         continue;
1748 
1749       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1750         // The factorized operand may occur several times.  Convert them all in
1751         // one fell swoop.
1752         for (unsigned j = Ops.size(); j != i;) {
1753           --j;
1754           if (Ops[j].Op == Ops[i].Op) {
1755             NewMulOps.push_back(V);
1756             Ops.erase(Ops.begin()+j);
1757           }
1758         }
1759         --i;
1760       }
1761     }
1762 
1763     // No need for extra uses anymore.
1764     DummyInst->deleteValue();
1765 
1766     unsigned NumAddedValues = NewMulOps.size();
1767     Value *V = EmitAddTreeOfValues(I, NewMulOps);
1768 
1769     // Now that we have inserted the add tree, optimize it. This allows us to
1770     // handle cases that require multiple factoring steps, such as this:
1771     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
1772     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1773     (void)NumAddedValues;
1774     if (Instruction *VI = dyn_cast<Instruction>(V))
1775       RedoInsts.insert(VI);
1776 
1777     // Create the multiply.
1778     Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I);
1779 
1780     // Rerun associate on the multiply in case the inner expression turned into
1781     // a multiply.  We want to make sure that we keep things in canonical form.
1782     RedoInsts.insert(V2);
1783 
1784     // If every add operand included the factor (e.g. "A*B + A*C"), then the
1785     // entire result expression is just the multiply "A*(B+C)".
1786     if (Ops.empty())
1787       return V2;
1788 
1789     // Otherwise, we had some input that didn't have the factor, such as
1790     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
1791     // things being added by this operation.
1792     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1793   }
1794 
1795   return nullptr;
1796 }
1797 
1798 /// Build up a vector of value/power pairs factoring a product.
1799 ///
1800 /// Given a series of multiplication operands, build a vector of factors and
1801 /// the powers each is raised to when forming the final product. Sort them in
1802 /// the order of descending power.
1803 ///
1804 ///      (x*x)          -> [(x, 2)]
1805 ///     ((x*x)*x)       -> [(x, 3)]
1806 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1807 ///
1808 /// \returns Whether any factors have a power greater than one.
1809 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1810                                    SmallVectorImpl<Factor> &Factors) {
1811   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1812   // Compute the sum of powers of simplifiable factors.
1813   unsigned FactorPowerSum = 0;
1814   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1815     Value *Op = Ops[Idx-1].Op;
1816 
1817     // Count the number of occurrences of this value.
1818     unsigned Count = 1;
1819     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1820       ++Count;
1821     // Track for simplification all factors which occur 2 or more times.
1822     if (Count > 1)
1823       FactorPowerSum += Count;
1824   }
1825 
1826   // We can only simplify factors if the sum of the powers of our simplifiable
1827   // factors is 4 or higher. When that is the case, we will *always* have
1828   // a simplification. This is an important invariant to prevent cyclicly
1829   // trying to simplify already minimal formations.
1830   if (FactorPowerSum < 4)
1831     return false;
1832 
1833   // Now gather the simplifiable factors, removing them from Ops.
1834   FactorPowerSum = 0;
1835   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1836     Value *Op = Ops[Idx-1].Op;
1837 
1838     // Count the number of occurrences of this value.
1839     unsigned Count = 1;
1840     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1841       ++Count;
1842     if (Count == 1)
1843       continue;
1844     // Move an even number of occurrences to Factors.
1845     Count &= ~1U;
1846     Idx -= Count;
1847     FactorPowerSum += Count;
1848     Factors.push_back(Factor(Op, Count));
1849     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1850   }
1851 
1852   // None of the adjustments above should have reduced the sum of factor powers
1853   // below our mininum of '4'.
1854   assert(FactorPowerSum >= 4);
1855 
1856   llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) {
1857     return LHS.Power > RHS.Power;
1858   });
1859   return true;
1860 }
1861 
1862 /// Build a tree of multiplies, computing the product of Ops.
1863 static Value *buildMultiplyTree(IRBuilderBase &Builder,
1864                                 SmallVectorImpl<Value*> &Ops) {
1865   if (Ops.size() == 1)
1866     return Ops.back();
1867 
1868   Value *LHS = Ops.pop_back_val();
1869   do {
1870     if (LHS->getType()->isIntOrIntVectorTy())
1871       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1872     else
1873       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
1874   } while (!Ops.empty());
1875 
1876   return LHS;
1877 }
1878 
1879 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1880 ///
1881 /// Given a vector of values raised to various powers, where no two values are
1882 /// equal and the powers are sorted in decreasing order, compute the minimal
1883 /// DAG of multiplies to compute the final product, and return that product
1884 /// value.
1885 Value *
1886 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder,
1887                                          SmallVectorImpl<Factor> &Factors) {
1888   assert(Factors[0].Power);
1889   SmallVector<Value *, 4> OuterProduct;
1890   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1891        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1892     if (Factors[Idx].Power != Factors[LastIdx].Power) {
1893       LastIdx = Idx;
1894       continue;
1895     }
1896 
1897     // We want to multiply across all the factors with the same power so that
1898     // we can raise them to that power as a single entity. Build a mini tree
1899     // for that.
1900     SmallVector<Value *, 4> InnerProduct;
1901     InnerProduct.push_back(Factors[LastIdx].Base);
1902     do {
1903       InnerProduct.push_back(Factors[Idx].Base);
1904       ++Idx;
1905     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1906 
1907     // Reset the base value of the first factor to the new expression tree.
1908     // We'll remove all the factors with the same power in a second pass.
1909     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1910     if (Instruction *MI = dyn_cast<Instruction>(M))
1911       RedoInsts.insert(MI);
1912 
1913     LastIdx = Idx;
1914   }
1915   // Unique factors with equal powers -- we've folded them into the first one's
1916   // base.
1917   Factors.erase(std::unique(Factors.begin(), Factors.end(),
1918                             [](const Factor &LHS, const Factor &RHS) {
1919                               return LHS.Power == RHS.Power;
1920                             }),
1921                 Factors.end());
1922 
1923   // Iteratively collect the base of each factor with an add power into the
1924   // outer product, and halve each power in preparation for squaring the
1925   // expression.
1926   for (Factor &F : Factors) {
1927     if (F.Power & 1)
1928       OuterProduct.push_back(F.Base);
1929     F.Power >>= 1;
1930   }
1931   if (Factors[0].Power) {
1932     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1933     OuterProduct.push_back(SquareRoot);
1934     OuterProduct.push_back(SquareRoot);
1935   }
1936   if (OuterProduct.size() == 1)
1937     return OuterProduct.front();
1938 
1939   Value *V = buildMultiplyTree(Builder, OuterProduct);
1940   return V;
1941 }
1942 
1943 Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1944                                     SmallVectorImpl<ValueEntry> &Ops) {
1945   // We can only optimize the multiplies when there is a chain of more than
1946   // three, such that a balanced tree might require fewer total multiplies.
1947   if (Ops.size() < 4)
1948     return nullptr;
1949 
1950   // Try to turn linear trees of multiplies without other uses of the
1951   // intermediate stages into minimal multiply DAGs with perfect sub-expression
1952   // re-use.
1953   SmallVector<Factor, 4> Factors;
1954   if (!collectMultiplyFactors(Ops, Factors))
1955     return nullptr; // All distinct factors, so nothing left for us to do.
1956 
1957   IRBuilder<> Builder(I);
1958   // The reassociate transformation for FP operations is performed only
1959   // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1960   // to the newly generated operations.
1961   if (auto FPI = dyn_cast<FPMathOperator>(I))
1962     Builder.setFastMathFlags(FPI->getFastMathFlags());
1963 
1964   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1965   if (Ops.empty())
1966     return V;
1967 
1968   ValueEntry NewEntry = ValueEntry(getRank(V), V);
1969   Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry);
1970   return nullptr;
1971 }
1972 
1973 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1974                                            SmallVectorImpl<ValueEntry> &Ops) {
1975   // Now that we have the linearized expression tree, try to optimize it.
1976   // Start by folding any constants that we found.
1977   const DataLayout &DL = I->getModule()->getDataLayout();
1978   Constant *Cst = nullptr;
1979   unsigned Opcode = I->getOpcode();
1980   while (!Ops.empty()) {
1981     if (auto *C = dyn_cast<Constant>(Ops.back().Op)) {
1982       if (!Cst) {
1983         Ops.pop_back();
1984         Cst = C;
1985         continue;
1986       }
1987       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, C, Cst, DL)) {
1988         Ops.pop_back();
1989         Cst = Res;
1990         continue;
1991       }
1992     }
1993     break;
1994   }
1995   // If there was nothing but constants then we are done.
1996   if (Ops.empty())
1997     return Cst;
1998 
1999   // Put the combined constant back at the end of the operand list, except if
2000   // there is no point.  For example, an add of 0 gets dropped here, while a
2001   // multiplication by zero turns the whole expression into zero.
2002   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
2003     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
2004       return Cst;
2005     Ops.push_back(ValueEntry(0, Cst));
2006   }
2007 
2008   if (Ops.size() == 1) return Ops[0].Op;
2009 
2010   // Handle destructive annihilation due to identities between elements in the
2011   // argument list here.
2012   unsigned NumOps = Ops.size();
2013   switch (Opcode) {
2014   default: break;
2015   case Instruction::And:
2016   case Instruction::Or:
2017     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
2018       return Result;
2019     break;
2020 
2021   case Instruction::Xor:
2022     if (Value *Result = OptimizeXor(I, Ops))
2023       return Result;
2024     break;
2025 
2026   case Instruction::Add:
2027   case Instruction::FAdd:
2028     if (Value *Result = OptimizeAdd(I, Ops))
2029       return Result;
2030     break;
2031 
2032   case Instruction::Mul:
2033   case Instruction::FMul:
2034     if (Value *Result = OptimizeMul(I, Ops))
2035       return Result;
2036     break;
2037   }
2038 
2039   if (Ops.size() != NumOps)
2040     return OptimizeExpression(I, Ops);
2041   return nullptr;
2042 }
2043 
2044 // Remove dead instructions and if any operands are trivially dead add them to
2045 // Insts so they will be removed as well.
2046 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I,
2047                                                 OrderedSet &Insts) {
2048   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2049   SmallVector<Value *, 4> Ops(I->operands());
2050   ValueRankMap.erase(I);
2051   Insts.remove(I);
2052   RedoInsts.remove(I);
2053   llvm::salvageDebugInfo(*I);
2054   I->eraseFromParent();
2055   for (auto *Op : Ops)
2056     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
2057       if (OpInst->use_empty())
2058         Insts.insert(OpInst);
2059 }
2060 
2061 /// Zap the given instruction, adding interesting operands to the work list.
2062 void ReassociatePass::EraseInst(Instruction *I) {
2063   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
2064   LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
2065 
2066   SmallVector<Value *, 8> Ops(I->operands());
2067   // Erase the dead instruction.
2068   ValueRankMap.erase(I);
2069   RedoInsts.remove(I);
2070   llvm::salvageDebugInfo(*I);
2071   I->eraseFromParent();
2072   // Optimize its operands.
2073   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
2074   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2075     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
2076       // If this is a node in an expression tree, climb to the expression root
2077       // and add that since that's where optimization actually happens.
2078       unsigned Opcode = Op->getOpcode();
2079       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
2080              Visited.insert(Op).second)
2081         Op = Op->user_back();
2082 
2083       // The instruction we're going to push may be coming from a
2084       // dead block, and Reassociate skips the processing of unreachable
2085       // blocks because it's a waste of time and also because it can
2086       // lead to infinite loop due to LLVM's non-standard definition
2087       // of dominance.
2088       if (ValueRankMap.contains(Op))
2089         RedoInsts.insert(Op);
2090     }
2091 
2092   MadeChange = true;
2093 }
2094 
2095 /// Recursively analyze an expression to build a list of instructions that have
2096 /// negative floating-point constant operands. The caller can then transform
2097 /// the list to create positive constants for better reassociation and CSE.
2098 static void getNegatibleInsts(Value *V,
2099                               SmallVectorImpl<Instruction *> &Candidates) {
2100   // Handle only one-use instructions. Combining negations does not justify
2101   // replicating instructions.
2102   Instruction *I;
2103   if (!match(V, m_OneUse(m_Instruction(I))))
2104     return;
2105 
2106   // Handle expressions of multiplications and divisions.
2107   // TODO: This could look through floating-point casts.
2108   const APFloat *C;
2109   switch (I->getOpcode()) {
2110     case Instruction::FMul:
2111       // Not expecting non-canonical code here. Bail out and wait.
2112       if (match(I->getOperand(0), m_Constant()))
2113         break;
2114 
2115       if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) {
2116         Candidates.push_back(I);
2117         LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n');
2118       }
2119       getNegatibleInsts(I->getOperand(0), Candidates);
2120       getNegatibleInsts(I->getOperand(1), Candidates);
2121       break;
2122     case Instruction::FDiv:
2123       // Not expecting non-canonical code here. Bail out and wait.
2124       if (match(I->getOperand(0), m_Constant()) &&
2125           match(I->getOperand(1), m_Constant()))
2126         break;
2127 
2128       if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) ||
2129           (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) {
2130         Candidates.push_back(I);
2131         LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n');
2132       }
2133       getNegatibleInsts(I->getOperand(0), Candidates);
2134       getNegatibleInsts(I->getOperand(1), Candidates);
2135       break;
2136     default:
2137       break;
2138   }
2139 }
2140 
2141 /// Given an fadd/fsub with an operand that is a one-use instruction
2142 /// (the fadd/fsub), try to change negative floating-point constants into
2143 /// positive constants to increase potential for reassociation and CSE.
2144 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I,
2145                                                               Instruction *Op,
2146                                                               Value *OtherOp) {
2147   assert((I->getOpcode() == Instruction::FAdd ||
2148           I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub");
2149 
2150   // Collect instructions with negative FP constants from the subtree that ends
2151   // in Op.
2152   SmallVector<Instruction *, 4> Candidates;
2153   getNegatibleInsts(Op, Candidates);
2154   if (Candidates.empty())
2155     return nullptr;
2156 
2157   // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the
2158   // resulting subtract will be broken up later.  This can get us into an
2159   // infinite loop during reassociation.
2160   bool IsFSub = I->getOpcode() == Instruction::FSub;
2161   bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1;
2162   if (NeedsSubtract && ShouldBreakUpSubtract(I))
2163     return nullptr;
2164 
2165   for (Instruction *Negatible : Candidates) {
2166     const APFloat *C;
2167     if (match(Negatible->getOperand(0), m_APFloat(C))) {
2168       assert(!match(Negatible->getOperand(1), m_Constant()) &&
2169              "Expecting only 1 constant operand");
2170       assert(C->isNegative() && "Expected negative FP constant");
2171       Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C)));
2172       MadeChange = true;
2173     }
2174     if (match(Negatible->getOperand(1), m_APFloat(C))) {
2175       assert(!match(Negatible->getOperand(0), m_Constant()) &&
2176              "Expecting only 1 constant operand");
2177       assert(C->isNegative() && "Expected negative FP constant");
2178       Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C)));
2179       MadeChange = true;
2180     }
2181   }
2182   assert(MadeChange == true && "Negative constant candidate was not changed");
2183 
2184   // Negations cancelled out.
2185   if (Candidates.size() % 2 == 0)
2186     return I;
2187 
2188   // Negate the final operand in the expression by flipping the opcode of this
2189   // fadd/fsub.
2190   assert(Candidates.size() % 2 == 1 && "Expected odd number");
2191   IRBuilder<> Builder(I);
2192   Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I)
2193                           : Builder.CreateFSubFMF(OtherOp, Op, I);
2194   I->replaceAllUsesWith(NewInst);
2195   RedoInsts.insert(I);
2196   return dyn_cast<Instruction>(NewInst);
2197 }
2198 
2199 /// Canonicalize expressions that contain a negative floating-point constant
2200 /// of the following form:
2201 ///   OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree)
2202 ///   (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree)
2203 ///   OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree)
2204 ///
2205 /// The fadd/fsub opcode may be switched to allow folding a negation into the
2206 /// input instruction.
2207 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) {
2208   LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n');
2209   Value *X;
2210   Instruction *Op;
2211   if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op)))))
2212     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2213       I = R;
2214   if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X))))
2215     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2216       I = R;
2217   if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op)))))
2218     if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X))
2219       I = R;
2220   return I;
2221 }
2222 
2223 /// Inspect and optimize the given instruction. Note that erasing
2224 /// instructions is not allowed.
2225 void ReassociatePass::OptimizeInst(Instruction *I) {
2226   // Only consider operations that we understand.
2227   if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I))
2228     return;
2229 
2230   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
2231     // If an operand of this shift is a reassociable multiply, or if the shift
2232     // is used by a reassociable multiply or add, turn into a multiply.
2233     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2234         (I->hasOneUse() &&
2235          (isReassociableOp(I->user_back(), Instruction::Mul) ||
2236           isReassociableOp(I->user_back(), Instruction::Add)))) {
2237       Instruction *NI = ConvertShiftToMul(I);
2238       RedoInsts.insert(I);
2239       MadeChange = true;
2240       I = NI;
2241     }
2242 
2243   // Commute binary operators, to canonicalize the order of their operands.
2244   // This can potentially expose more CSE opportunities, and makes writing other
2245   // transformations simpler.
2246   if (I->isCommutative())
2247     canonicalizeOperands(I);
2248 
2249   // Canonicalize negative constants out of expressions.
2250   if (Instruction *Res = canonicalizeNegFPConstants(I))
2251     I = Res;
2252 
2253   // Don't optimize floating-point instructions unless they have the
2254   // appropriate FastMathFlags for reassociation enabled.
2255   if (isa<FPMathOperator>(I) && !hasFPAssociativeFlags(I))
2256     return;
2257 
2258   // Do not reassociate boolean (i1) expressions.  We want to preserve the
2259   // original order of evaluation for short-circuited comparisons that
2260   // SimplifyCFG has folded to AND/OR expressions.  If the expression
2261   // is not further optimized, it is likely to be transformed back to a
2262   // short-circuited form for code gen, and the source order may have been
2263   // optimized for the most likely conditions.
2264   if (I->getType()->isIntegerTy(1))
2265     return;
2266 
2267   // If this is a bitwise or instruction of operands
2268   // with no common bits set, convert it to X+Y.
2269   if (I->getOpcode() == Instruction::Or &&
2270       shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) &&
2271       (cast<PossiblyDisjointInst>(I)->isDisjoint() ||
2272        haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1),
2273                            SimplifyQuery(I->getModule()->getDataLayout(),
2274                                          /*DT=*/nullptr, /*AC=*/nullptr, I)))) {
2275     Instruction *NI = convertOrWithNoCommonBitsToAdd(I);
2276     RedoInsts.insert(I);
2277     MadeChange = true;
2278     I = NI;
2279   }
2280 
2281   // If this is a subtract instruction which is not already in negate form,
2282   // see if we can convert it to X+-Y.
2283   if (I->getOpcode() == Instruction::Sub) {
2284     if (ShouldBreakUpSubtract(I)) {
2285       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2286       RedoInsts.insert(I);
2287       MadeChange = true;
2288       I = NI;
2289     } else if (match(I, m_Neg(m_Value()))) {
2290       // Otherwise, this is a negation.  See if the operand is a multiply tree
2291       // and if this is not an inner node of a multiply tree.
2292       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2293           (!I->hasOneUse() ||
2294            !isReassociableOp(I->user_back(), Instruction::Mul))) {
2295         Instruction *NI = LowerNegateToMultiply(I);
2296         // If the negate was simplified, revisit the users to see if we can
2297         // reassociate further.
2298         for (User *U : NI->users()) {
2299           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2300             RedoInsts.insert(Tmp);
2301         }
2302         RedoInsts.insert(I);
2303         MadeChange = true;
2304         I = NI;
2305       }
2306     }
2307   } else if (I->getOpcode() == Instruction::FNeg ||
2308              I->getOpcode() == Instruction::FSub) {
2309     if (ShouldBreakUpSubtract(I)) {
2310       Instruction *NI = BreakUpSubtract(I, RedoInsts);
2311       RedoInsts.insert(I);
2312       MadeChange = true;
2313       I = NI;
2314     } else if (match(I, m_FNeg(m_Value()))) {
2315       // Otherwise, this is a negation.  See if the operand is a multiply tree
2316       // and if this is not an inner node of a multiply tree.
2317       Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) :
2318                                            I->getOperand(0);
2319       if (isReassociableOp(Op, Instruction::FMul) &&
2320           (!I->hasOneUse() ||
2321            !isReassociableOp(I->user_back(), Instruction::FMul))) {
2322         // If the negate was simplified, revisit the users to see if we can
2323         // reassociate further.
2324         Instruction *NI = LowerNegateToMultiply(I);
2325         for (User *U : NI->users()) {
2326           if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2327             RedoInsts.insert(Tmp);
2328         }
2329         RedoInsts.insert(I);
2330         MadeChange = true;
2331         I = NI;
2332       }
2333     }
2334   }
2335 
2336   // If this instruction is an associative binary operator, process it.
2337   if (!I->isAssociative()) return;
2338   BinaryOperator *BO = cast<BinaryOperator>(I);
2339 
2340   // If this is an interior node of a reassociable tree, ignore it until we
2341   // get to the root of the tree, to avoid N^2 analysis.
2342   unsigned Opcode = BO->getOpcode();
2343   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2344     // During the initial run we will get to the root of the tree.
2345     // But if we get here while we are redoing instructions, there is no
2346     // guarantee that the root will be visited. So Redo later
2347     if (BO->user_back() != BO &&
2348         BO->getParent() == BO->user_back()->getParent())
2349       RedoInsts.insert(BO->user_back());
2350     return;
2351   }
2352 
2353   // If this is an add tree that is used by a sub instruction, ignore it
2354   // until we process the subtract.
2355   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
2356       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
2357     return;
2358   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2359       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2360     return;
2361 
2362   ReassociateExpression(BO);
2363 }
2364 
2365 void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
2366   // First, walk the expression tree, linearizing the tree, collecting the
2367   // operand information.
2368   SmallVector<RepeatedValue, 8> Tree;
2369   bool HasNUW = true;
2370   MadeChange |= LinearizeExprTree(I, Tree, RedoInsts, HasNUW);
2371   SmallVector<ValueEntry, 8> Ops;
2372   Ops.reserve(Tree.size());
2373   for (const RepeatedValue &E : Tree)
2374     Ops.append(E.second.getZExtValue(), ValueEntry(getRank(E.first), E.first));
2375 
2376   LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2377 
2378   // Now that we have linearized the tree to a list and have gathered all of
2379   // the operands and their ranks, sort the operands by their rank.  Use a
2380   // stable_sort so that values with equal ranks will have their relative
2381   // positions maintained (and so the compiler is deterministic).  Note that
2382   // this sorts so that the highest ranking values end up at the beginning of
2383   // the vector.
2384   llvm::stable_sort(Ops);
2385 
2386   // Now that we have the expression tree in a convenient
2387   // sorted form, optimize it globally if possible.
2388   if (Value *V = OptimizeExpression(I, Ops)) {
2389     if (V == I)
2390       // Self-referential expression in unreachable code.
2391       return;
2392     // This expression tree simplified to something that isn't a tree,
2393     // eliminate it.
2394     LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
2395     I->replaceAllUsesWith(V);
2396     if (Instruction *VI = dyn_cast<Instruction>(V))
2397       if (I->getDebugLoc())
2398         VI->setDebugLoc(I->getDebugLoc());
2399     RedoInsts.insert(I);
2400     ++NumAnnihil;
2401     return;
2402   }
2403 
2404   // We want to sink immediates as deeply as possible except in the case where
2405   // this is a multiply tree used only by an add, and the immediate is a -1.
2406   // In this case we reassociate to put the negation on the outside so that we
2407   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
2408   if (I->hasOneUse()) {
2409     if (I->getOpcode() == Instruction::Mul &&
2410         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2411         isa<ConstantInt>(Ops.back().Op) &&
2412         cast<ConstantInt>(Ops.back().Op)->isMinusOne()) {
2413       ValueEntry Tmp = Ops.pop_back_val();
2414       Ops.insert(Ops.begin(), Tmp);
2415     } else if (I->getOpcode() == Instruction::FMul &&
2416                cast<Instruction>(I->user_back())->getOpcode() ==
2417                    Instruction::FAdd &&
2418                isa<ConstantFP>(Ops.back().Op) &&
2419                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2420       ValueEntry Tmp = Ops.pop_back_val();
2421       Ops.insert(Ops.begin(), Tmp);
2422     }
2423   }
2424 
2425   LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
2426 
2427   if (Ops.size() == 1) {
2428     if (Ops[0].Op == I)
2429       // Self-referential expression in unreachable code.
2430       return;
2431 
2432     // This expression tree simplified to something that isn't a tree,
2433     // eliminate it.
2434     I->replaceAllUsesWith(Ops[0].Op);
2435     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2436       OI->setDebugLoc(I->getDebugLoc());
2437     RedoInsts.insert(I);
2438     return;
2439   }
2440 
2441   if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) {
2442     // Find the pair with the highest count in the pairmap and move it to the
2443     // back of the list so that it can later be CSE'd.
2444     // example:
2445     //   a*b*c*d*e
2446     // if c*e is the most "popular" pair, we can express this as
2447     //   (((c*e)*d)*b)*a
2448     unsigned Max = 1;
2449     unsigned BestRank = 0;
2450     std::pair<unsigned, unsigned> BestPair;
2451     unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin;
2452     unsigned LimitIdx = 0;
2453     // With the CSE-driven heuristic, we are about to slap two values at the
2454     // beginning of the expression whereas they could live very late in the CFG.
2455     // When using the CSE-local heuristic we avoid creating dependences from
2456     // completely unrelated part of the CFG by limiting the expression
2457     // reordering on the values that live in the first seen basic block.
2458     // The main idea is that we want to avoid forming expressions that would
2459     // become loop dependent.
2460     if (UseCSELocalOpt) {
2461       const BasicBlock *FirstSeenBB = nullptr;
2462       int StartIdx = Ops.size() - 1;
2463       // Skip the first value of the expression since we need at least two
2464       // values to materialize an expression. I.e., even if this value is
2465       // anchored in a different basic block, the actual first sub expression
2466       // will be anchored on the second value.
2467       for (int i = StartIdx - 1; i != -1; --i) {
2468         const Value *Val = Ops[i].Op;
2469         const auto *CurrLeafInstr = dyn_cast<Instruction>(Val);
2470         const BasicBlock *SeenBB = nullptr;
2471         if (!CurrLeafInstr) {
2472           // The value is free of any CFG dependencies.
2473           // Do as if it lives in the entry block.
2474           //
2475           // We do this to make sure all the values falling on this path are
2476           // seen through the same anchor point. The rationale is these values
2477           // can be combined together to from a sub expression free of any CFG
2478           // dependencies so we want them to stay together.
2479           // We could be cleverer and postpone the anchor down to the first
2480           // anchored value, but that's likely complicated to get right.
2481           // E.g., we wouldn't want to do that if that means being stuck in a
2482           // loop.
2483           //
2484           // For instance, we wouldn't want to change:
2485           // res = arg1 op arg2 op arg3 op ... op loop_val1 op loop_val2 ...
2486           // into
2487           // res = loop_val1 op arg1 op arg2 op arg3 op ... op loop_val2 ...
2488           // Because all the sub expressions with arg2..N would be stuck between
2489           // two loop dependent values.
2490           SeenBB = &I->getParent()->getParent()->getEntryBlock();
2491         } else {
2492           SeenBB = CurrLeafInstr->getParent();
2493         }
2494 
2495         if (!FirstSeenBB) {
2496           FirstSeenBB = SeenBB;
2497           continue;
2498         }
2499         if (FirstSeenBB != SeenBB) {
2500           // ith value is in a different basic block.
2501           // Rewind the index once to point to the last value on the same basic
2502           // block.
2503           LimitIdx = i + 1;
2504           LLVM_DEBUG(dbgs() << "CSE reordering: Consider values between ["
2505                             << LimitIdx << ", " << StartIdx << "]\n");
2506           break;
2507         }
2508       }
2509     }
2510     for (unsigned i = Ops.size() - 1; i > LimitIdx; --i) {
2511       // We must use int type to go below zero when LimitIdx is 0.
2512       for (int j = i - 1; j >= (int)LimitIdx; --j) {
2513         unsigned Score = 0;
2514         Value *Op0 = Ops[i].Op;
2515         Value *Op1 = Ops[j].Op;
2516         if (std::less<Value *>()(Op1, Op0))
2517           std::swap(Op0, Op1);
2518         auto it = PairMap[Idx].find({Op0, Op1});
2519         if (it != PairMap[Idx].end()) {
2520           // Functions like BreakUpSubtract() can erase the Values we're using
2521           // as keys and create new Values after we built the PairMap. There's a
2522           // small chance that the new nodes can have the same address as
2523           // something already in the table. We shouldn't accumulate the stored
2524           // score in that case as it refers to the wrong Value.
2525           if (it->second.isValid())
2526             Score += it->second.Score;
2527         }
2528 
2529         unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank);
2530 
2531         // By construction, the operands are sorted in reverse order of their
2532         // topological order.
2533         // So we tend to form (sub) expressions with values that are close to
2534         // each other.
2535         //
2536         // Now to expose more CSE opportunities we want to expose the pair of
2537         // operands that occur the most (as statically computed in
2538         // BuildPairMap.) as the first sub-expression.
2539         //
2540         // If two pairs occur as many times, we pick the one with the
2541         // lowest rank, meaning the one with both operands appearing first in
2542         // the topological order.
2543         if (Score > Max || (Score == Max && MaxRank < BestRank)) {
2544           BestPair = {j, i};
2545           Max = Score;
2546           BestRank = MaxRank;
2547         }
2548       }
2549     }
2550     if (Max > 1) {
2551       auto Op0 = Ops[BestPair.first];
2552       auto Op1 = Ops[BestPair.second];
2553       Ops.erase(&Ops[BestPair.second]);
2554       Ops.erase(&Ops[BestPair.first]);
2555       Ops.push_back(Op0);
2556       Ops.push_back(Op1);
2557     }
2558   }
2559   LLVM_DEBUG(dbgs() << "RAOut after CSE reorder:\t"; PrintOps(I, Ops);
2560              dbgs() << '\n');
2561   // Now that we ordered and optimized the expressions, splat them back into
2562   // the expression tree, removing any unneeded nodes.
2563   RewriteExprTree(I, Ops, HasNUW);
2564 }
2565 
2566 void
2567 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) {
2568   // Make a "pairmap" of how often each operand pair occurs.
2569   for (BasicBlock *BI : RPOT) {
2570     for (Instruction &I : *BI) {
2571       if (!I.isAssociative() || !I.isBinaryOp())
2572         continue;
2573 
2574       // Ignore nodes that aren't at the root of trees.
2575       if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode())
2576         continue;
2577 
2578       // Collect all operands in a single reassociable expression.
2579       // Since Reassociate has already been run once, we can assume things
2580       // are already canonical according to Reassociation's regime.
2581       SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) };
2582       SmallVector<Value *, 8> Ops;
2583       while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) {
2584         Value *Op = Worklist.pop_back_val();
2585         Instruction *OpI = dyn_cast<Instruction>(Op);
2586         if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) {
2587           Ops.push_back(Op);
2588           continue;
2589         }
2590         // Be paranoid about self-referencing expressions in unreachable code.
2591         if (OpI->getOperand(0) != OpI)
2592           Worklist.push_back(OpI->getOperand(0));
2593         if (OpI->getOperand(1) != OpI)
2594           Worklist.push_back(OpI->getOperand(1));
2595       }
2596       // Skip extremely long expressions.
2597       if (Ops.size() > GlobalReassociateLimit)
2598         continue;
2599 
2600       // Add all pairwise combinations of operands to the pair map.
2601       unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin;
2602       SmallSet<std::pair<Value *, Value*>, 32> Visited;
2603       for (unsigned i = 0; i < Ops.size() - 1; ++i) {
2604         for (unsigned j = i + 1; j < Ops.size(); ++j) {
2605           // Canonicalize operand orderings.
2606           Value *Op0 = Ops[i];
2607           Value *Op1 = Ops[j];
2608           if (std::less<Value *>()(Op1, Op0))
2609             std::swap(Op0, Op1);
2610           if (!Visited.insert({Op0, Op1}).second)
2611             continue;
2612           auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}});
2613           if (!res.second) {
2614             // If either key value has been erased then we've got the same
2615             // address by coincidence. That can't happen here because nothing is
2616             // erasing values but it can happen by the time we're querying the
2617             // map.
2618             assert(res.first->second.isValid() && "WeakVH invalidated");
2619             ++res.first->second.Score;
2620           }
2621         }
2622       }
2623     }
2624   }
2625 }
2626 
2627 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
2628   // Get the functions basic blocks in Reverse Post Order. This order is used by
2629   // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2630   // blocks (it has been seen that the analysis in this pass could hang when
2631   // analysing dead basic blocks).
2632   ReversePostOrderTraversal<Function *> RPOT(&F);
2633 
2634   // Calculate the rank map for F.
2635   BuildRankMap(F, RPOT);
2636 
2637   // Build the pair map before running reassociate.
2638   // Technically this would be more accurate if we did it after one round
2639   // of reassociation, but in practice it doesn't seem to help much on
2640   // real-world code, so don't waste the compile time running reassociate
2641   // twice.
2642   // If a user wants, they could expicitly run reassociate twice in their
2643   // pass pipeline for further potential gains.
2644   // It might also be possible to update the pair map during runtime, but the
2645   // overhead of that may be large if there's many reassociable chains.
2646   BuildPairMap(RPOT);
2647 
2648   MadeChange = false;
2649 
2650   // Traverse the same blocks that were analysed by BuildRankMap.
2651   for (BasicBlock *BI : RPOT) {
2652     assert(RankMap.count(&*BI) && "BB should be ranked.");
2653     // Optimize every instruction in the basic block.
2654     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
2655       if (isInstructionTriviallyDead(&*II)) {
2656         EraseInst(&*II++);
2657       } else {
2658         OptimizeInst(&*II);
2659         assert(II->getParent() == &*BI && "Moved to a different block!");
2660         ++II;
2661       }
2662 
2663     // Make a copy of all the instructions to be redone so we can remove dead
2664     // instructions.
2665     OrderedSet ToRedo(RedoInsts);
2666     // Iterate over all instructions to be reevaluated and remove trivially dead
2667     // instructions. If any operand of the trivially dead instruction becomes
2668     // dead mark it for deletion as well. Continue this process until all
2669     // trivially dead instructions have been removed.
2670     while (!ToRedo.empty()) {
2671       Instruction *I = ToRedo.pop_back_val();
2672       if (isInstructionTriviallyDead(I)) {
2673         RecursivelyEraseDeadInsts(I, ToRedo);
2674         MadeChange = true;
2675       }
2676     }
2677 
2678     // Now that we have removed dead instructions, we can reoptimize the
2679     // remaining instructions.
2680     while (!RedoInsts.empty()) {
2681       Instruction *I = RedoInsts.front();
2682       RedoInsts.erase(RedoInsts.begin());
2683       if (isInstructionTriviallyDead(I))
2684         EraseInst(I);
2685       else
2686         OptimizeInst(I);
2687     }
2688   }
2689 
2690   // We are done with the rank map and pair map.
2691   RankMap.clear();
2692   ValueRankMap.clear();
2693   for (auto &Entry : PairMap)
2694     Entry.clear();
2695 
2696   if (MadeChange) {
2697     PreservedAnalyses PA;
2698     PA.preserveSet<CFGAnalyses>();
2699     return PA;
2700   }
2701 
2702   return PreservedAnalyses::all();
2703 }
2704 
2705 namespace {
2706 
2707   class ReassociateLegacyPass : public FunctionPass {
2708     ReassociatePass Impl;
2709 
2710   public:
2711     static char ID; // Pass identification, replacement for typeid
2712 
2713     ReassociateLegacyPass() : FunctionPass(ID) {
2714       initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2715     }
2716 
2717     bool runOnFunction(Function &F) override {
2718       if (skipFunction(F))
2719         return false;
2720 
2721       FunctionAnalysisManager DummyFAM;
2722       auto PA = Impl.run(F, DummyFAM);
2723       return !PA.areAllPreserved();
2724     }
2725 
2726     void getAnalysisUsage(AnalysisUsage &AU) const override {
2727       AU.setPreservesCFG();
2728       AU.addPreserved<AAResultsWrapperPass>();
2729       AU.addPreserved<BasicAAWrapperPass>();
2730       AU.addPreserved<GlobalsAAWrapperPass>();
2731     }
2732   };
2733 
2734 } // end anonymous namespace
2735 
2736 char ReassociateLegacyPass::ID = 0;
2737 
2738 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2739                 "Reassociate expressions", false, false)
2740 
2741 // Public interface to the Reassociate pass
2742 FunctionPass *llvm::createReassociatePass() {
2743   return new ReassociateLegacyPass();
2744 }
2745