1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass reassociates commutative expressions in an order that is designed 10 // to promote better constant propagation, GCSE, LICM, PRE, etc. 11 // 12 // For example: 4 + (x + 5) -> x + (4 + 5) 13 // 14 // In the implementation of this algorithm, constants are assigned rank = 0, 15 // function arguments are rank = 1, and other values are assigned ranks 16 // corresponding to the reverse post order traversal of current function 17 // (starting at 2), which effectively gives values in deep loops higher rank 18 // than values not in loops. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/Reassociate.h" 23 #include "llvm/ADT/APFloat.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/PostOrderIterator.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/Analysis/BasicAliasAnalysis.h" 33 #include "llvm/Analysis/GlobalsModRef.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/PatternMatch.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueHandle.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <utility> 64 65 using namespace llvm; 66 using namespace reassociate; 67 using namespace PatternMatch; 68 69 #define DEBUG_TYPE "reassociate" 70 71 STATISTIC(NumChanged, "Number of insts reassociated"); 72 STATISTIC(NumAnnihil, "Number of expr tree annihilated"); 73 STATISTIC(NumFactor , "Number of multiplies factored"); 74 75 #ifndef NDEBUG 76 /// Print out the expression identified in the Ops list. 77 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) { 78 Module *M = I->getModule(); 79 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " " 80 << *Ops[0].Op->getType() << '\t'; 81 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 82 dbgs() << "[ "; 83 Ops[i].Op->printAsOperand(dbgs(), false, M); 84 dbgs() << ", #" << Ops[i].Rank << "] "; 85 } 86 } 87 #endif 88 89 /// Utility class representing a non-constant Xor-operand. We classify 90 /// non-constant Xor-Operands into two categories: 91 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0 92 /// C2) 93 /// C2.1) The operand is in the form of "X | C", where C is a non-zero 94 /// constant. 95 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this 96 /// operand as "E | 0" 97 class llvm::reassociate::XorOpnd { 98 public: 99 XorOpnd(Value *V); 100 101 bool isInvalid() const { return SymbolicPart == nullptr; } 102 bool isOrExpr() const { return isOr; } 103 Value *getValue() const { return OrigVal; } 104 Value *getSymbolicPart() const { return SymbolicPart; } 105 unsigned getSymbolicRank() const { return SymbolicRank; } 106 const APInt &getConstPart() const { return ConstPart; } 107 108 void Invalidate() { SymbolicPart = OrigVal = nullptr; } 109 void setSymbolicRank(unsigned R) { SymbolicRank = R; } 110 111 private: 112 Value *OrigVal; 113 Value *SymbolicPart; 114 APInt ConstPart; 115 unsigned SymbolicRank; 116 bool isOr; 117 }; 118 119 XorOpnd::XorOpnd(Value *V) { 120 assert(!isa<ConstantInt>(V) && "No ConstantInt"); 121 OrigVal = V; 122 Instruction *I = dyn_cast<Instruction>(V); 123 SymbolicRank = 0; 124 125 if (I && (I->getOpcode() == Instruction::Or || 126 I->getOpcode() == Instruction::And)) { 127 Value *V0 = I->getOperand(0); 128 Value *V1 = I->getOperand(1); 129 const APInt *C; 130 if (match(V0, m_APInt(C))) 131 std::swap(V0, V1); 132 133 if (match(V1, m_APInt(C))) { 134 ConstPart = *C; 135 SymbolicPart = V0; 136 isOr = (I->getOpcode() == Instruction::Or); 137 return; 138 } 139 } 140 141 // view the operand as "V | 0" 142 SymbolicPart = V; 143 ConstPart = APInt::getZero(V->getType()->getScalarSizeInBits()); 144 isOr = true; 145 } 146 147 /// Return true if V is an instruction of the specified opcode and if it 148 /// only has one use. 149 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) { 150 auto *I = dyn_cast<Instruction>(V); 151 if (I && I->hasOneUse() && I->getOpcode() == Opcode) 152 if (!isa<FPMathOperator>(I) || I->isFast()) 153 return cast<BinaryOperator>(I); 154 return nullptr; 155 } 156 157 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1, 158 unsigned Opcode2) { 159 auto *I = dyn_cast<Instruction>(V); 160 if (I && I->hasOneUse() && 161 (I->getOpcode() == Opcode1 || I->getOpcode() == Opcode2)) 162 if (!isa<FPMathOperator>(I) || I->isFast()) 163 return cast<BinaryOperator>(I); 164 return nullptr; 165 } 166 167 void ReassociatePass::BuildRankMap(Function &F, 168 ReversePostOrderTraversal<Function*> &RPOT) { 169 unsigned Rank = 2; 170 171 // Assign distinct ranks to function arguments. 172 for (auto &Arg : F.args()) { 173 ValueRankMap[&Arg] = ++Rank; 174 LLVM_DEBUG(dbgs() << "Calculated Rank[" << Arg.getName() << "] = " << Rank 175 << "\n"); 176 } 177 178 // Traverse basic blocks in ReversePostOrder. 179 for (BasicBlock *BB : RPOT) { 180 unsigned BBRank = RankMap[BB] = ++Rank << 16; 181 182 // Walk the basic block, adding precomputed ranks for any instructions that 183 // we cannot move. This ensures that the ranks for these instructions are 184 // all different in the block. 185 for (Instruction &I : *BB) 186 if (mayBeMemoryDependent(I)) 187 ValueRankMap[&I] = ++BBRank; 188 } 189 } 190 191 unsigned ReassociatePass::getRank(Value *V) { 192 Instruction *I = dyn_cast<Instruction>(V); 193 if (!I) { 194 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument. 195 return 0; // Otherwise it's a global or constant, rank 0. 196 } 197 198 if (unsigned Rank = ValueRankMap[I]) 199 return Rank; // Rank already known? 200 201 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that 202 // we can reassociate expressions for code motion! Since we do not recurse 203 // for PHI nodes, we cannot have infinite recursion here, because there 204 // cannot be loops in the value graph that do not go through PHI nodes. 205 unsigned Rank = 0, MaxRank = RankMap[I->getParent()]; 206 for (unsigned i = 0, e = I->getNumOperands(); i != e && Rank != MaxRank; ++i) 207 Rank = std::max(Rank, getRank(I->getOperand(i))); 208 209 // If this is a 'not' or 'neg' instruction, do not count it for rank. This 210 // assures us that X and ~X will have the same rank. 211 if (!match(I, m_Not(m_Value())) && !match(I, m_Neg(m_Value())) && 212 !match(I, m_FNeg(m_Value()))) 213 ++Rank; 214 215 LLVM_DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank 216 << "\n"); 217 218 return ValueRankMap[I] = Rank; 219 } 220 221 // Canonicalize constants to RHS. Otherwise, sort the operands by rank. 222 void ReassociatePass::canonicalizeOperands(Instruction *I) { 223 assert(isa<BinaryOperator>(I) && "Expected binary operator."); 224 assert(I->isCommutative() && "Expected commutative operator."); 225 226 Value *LHS = I->getOperand(0); 227 Value *RHS = I->getOperand(1); 228 if (LHS == RHS || isa<Constant>(RHS)) 229 return; 230 if (isa<Constant>(LHS) || getRank(RHS) < getRank(LHS)) 231 cast<BinaryOperator>(I)->swapOperands(); 232 } 233 234 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name, 235 Instruction *InsertBefore, Value *FlagsOp) { 236 if (S1->getType()->isIntOrIntVectorTy()) 237 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore); 238 else { 239 BinaryOperator *Res = 240 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore); 241 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 242 return Res; 243 } 244 } 245 246 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name, 247 Instruction *InsertBefore, Value *FlagsOp) { 248 if (S1->getType()->isIntOrIntVectorTy()) 249 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore); 250 else { 251 BinaryOperator *Res = 252 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore); 253 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags()); 254 return Res; 255 } 256 } 257 258 static Instruction *CreateNeg(Value *S1, const Twine &Name, 259 Instruction *InsertBefore, Value *FlagsOp) { 260 if (S1->getType()->isIntOrIntVectorTy()) 261 return BinaryOperator::CreateNeg(S1, Name, InsertBefore); 262 263 if (auto *FMFSource = dyn_cast<Instruction>(FlagsOp)) 264 return UnaryOperator::CreateFNegFMF(S1, FMFSource, Name, InsertBefore); 265 266 return UnaryOperator::CreateFNeg(S1, Name, InsertBefore); 267 } 268 269 /// Replace 0-X with X*-1. 270 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) { 271 assert((isa<UnaryOperator>(Neg) || isa<BinaryOperator>(Neg)) && 272 "Expected a Negate!"); 273 // FIXME: It's not safe to lower a unary FNeg into a FMul by -1.0. 274 unsigned OpNo = isa<BinaryOperator>(Neg) ? 1 : 0; 275 Type *Ty = Neg->getType(); 276 Constant *NegOne = Ty->isIntOrIntVectorTy() ? 277 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0); 278 279 BinaryOperator *Res = CreateMul(Neg->getOperand(OpNo), NegOne, "", Neg, Neg); 280 Neg->setOperand(OpNo, Constant::getNullValue(Ty)); // Drop use of op. 281 Res->takeName(Neg); 282 Neg->replaceAllUsesWith(Res); 283 Res->setDebugLoc(Neg->getDebugLoc()); 284 return Res; 285 } 286 287 /// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael 288 /// function. This means that x^(2^k) === 1 mod 2^Bitwidth for 289 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic. 290 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every 291 /// even x in Bitwidth-bit arithmetic. 292 static unsigned CarmichaelShift(unsigned Bitwidth) { 293 if (Bitwidth < 3) 294 return Bitwidth - 1; 295 return Bitwidth - 2; 296 } 297 298 /// Add the extra weight 'RHS' to the existing weight 'LHS', 299 /// reducing the combined weight using any special properties of the operation. 300 /// The existing weight LHS represents the computation X op X op ... op X where 301 /// X occurs LHS times. The combined weight represents X op X op ... op X with 302 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined 303 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even; 304 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second. 305 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) { 306 // If we were working with infinite precision arithmetic then the combined 307 // weight would be LHS + RHS. But we are using finite precision arithmetic, 308 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct 309 // for nilpotent operations and addition, but not for idempotent operations 310 // and multiplication), so it is important to correctly reduce the combined 311 // weight back into range if wrapping would be wrong. 312 313 // If RHS is zero then the weight didn't change. 314 if (RHS.isMinValue()) 315 return; 316 // If LHS is zero then the combined weight is RHS. 317 if (LHS.isMinValue()) { 318 LHS = RHS; 319 return; 320 } 321 // From this point on we know that neither LHS nor RHS is zero. 322 323 if (Instruction::isIdempotent(Opcode)) { 324 // Idempotent means X op X === X, so any non-zero weight is equivalent to a 325 // weight of 1. Keeping weights at zero or one also means that wrapping is 326 // not a problem. 327 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 328 return; // Return a weight of 1. 329 } 330 if (Instruction::isNilpotent(Opcode)) { 331 // Nilpotent means X op X === 0, so reduce weights modulo 2. 332 assert(LHS == 1 && RHS == 1 && "Weights not reduced!"); 333 LHS = 0; // 1 + 1 === 0 modulo 2. 334 return; 335 } 336 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) { 337 // TODO: Reduce the weight by exploiting nsw/nuw? 338 LHS += RHS; 339 return; 340 } 341 342 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) && 343 "Unknown associative operation!"); 344 unsigned Bitwidth = LHS.getBitWidth(); 345 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth 346 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth 347 // bit number x, since either x is odd in which case x^CM = 1, or x is even in 348 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples 349 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth) 350 // which by a happy accident means that they can always be represented using 351 // Bitwidth bits. 352 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than 353 // the Carmichael number). 354 if (Bitwidth > 3) { 355 /// CM - The value of Carmichael's lambda function. 356 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth)); 357 // Any weight W >= Threshold can be replaced with W - CM. 358 APInt Threshold = CM + Bitwidth; 359 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!"); 360 // For Bitwidth 4 or more the following sum does not overflow. 361 LHS += RHS; 362 while (LHS.uge(Threshold)) 363 LHS -= CM; 364 } else { 365 // To avoid problems with overflow do everything the same as above but using 366 // a larger type. 367 unsigned CM = 1U << CarmichaelShift(Bitwidth); 368 unsigned Threshold = CM + Bitwidth; 369 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold && 370 "Weights not reduced!"); 371 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue(); 372 while (Total >= Threshold) 373 Total -= CM; 374 LHS = Total; 375 } 376 } 377 378 using RepeatedValue = std::pair<Value*, APInt>; 379 380 /// Given an associative binary expression, return the leaf 381 /// nodes in Ops along with their weights (how many times the leaf occurs). The 382 /// original expression is the same as 383 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times 384 /// op 385 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times 386 /// op 387 /// ... 388 /// op 389 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times 390 /// 391 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct. 392 /// 393 /// This routine may modify the function, in which case it returns 'true'. The 394 /// changes it makes may well be destructive, changing the value computed by 'I' 395 /// to something completely different. Thus if the routine returns 'true' then 396 /// you MUST either replace I with a new expression computed from the Ops array, 397 /// or use RewriteExprTree to put the values back in. 398 /// 399 /// A leaf node is either not a binary operation of the same kind as the root 400 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different 401 /// opcode), or is the same kind of binary operator but has a use which either 402 /// does not belong to the expression, or does belong to the expression but is 403 /// a leaf node. Every leaf node has at least one use that is a non-leaf node 404 /// of the expression, while for non-leaf nodes (except for the root 'I') every 405 /// use is a non-leaf node of the expression. 406 /// 407 /// For example: 408 /// expression graph node names 409 /// 410 /// + | I 411 /// / \ | 412 /// + + | A, B 413 /// / \ / \ | 414 /// * + * | C, D, E 415 /// / \ / \ / \ | 416 /// + * | F, G 417 /// 418 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in 419 /// that order) (C, 1), (E, 1), (F, 2), (G, 2). 420 /// 421 /// The expression is maximal: if some instruction is a binary operator of the 422 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression, 423 /// then the instruction also belongs to the expression, is not a leaf node of 424 /// it, and its operands also belong to the expression (but may be leaf nodes). 425 /// 426 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in 427 /// order to ensure that every non-root node in the expression has *exactly one* 428 /// use by a non-leaf node of the expression. This destruction means that the 429 /// caller MUST either replace 'I' with a new expression or use something like 430 /// RewriteExprTree to put the values back in if the routine indicates that it 431 /// made a change by returning 'true'. 432 /// 433 /// In the above example either the right operand of A or the left operand of B 434 /// will be replaced by undef. If it is B's operand then this gives: 435 /// 436 /// + | I 437 /// / \ | 438 /// + + | A, B - operand of B replaced with undef 439 /// / \ \ | 440 /// * + * | C, D, E 441 /// / \ / \ / \ | 442 /// + * | F, G 443 /// 444 /// Note that such undef operands can only be reached by passing through 'I'. 445 /// For example, if you visit operands recursively starting from a leaf node 446 /// then you will never see such an undef operand unless you get back to 'I', 447 /// which requires passing through a phi node. 448 /// 449 /// Note that this routine may also mutate binary operators of the wrong type 450 /// that have all uses inside the expression (i.e. only used by non-leaf nodes 451 /// of the expression) if it can turn them into binary operators of the right 452 /// type and thus make the expression bigger. 453 static bool LinearizeExprTree(Instruction *I, 454 SmallVectorImpl<RepeatedValue> &Ops) { 455 assert((isa<UnaryOperator>(I) || isa<BinaryOperator>(I)) && 456 "Expected a UnaryOperator or BinaryOperator!"); 457 LLVM_DEBUG(dbgs() << "LINEARIZE: " << *I << '\n'); 458 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits(); 459 unsigned Opcode = I->getOpcode(); 460 assert(I->isAssociative() && I->isCommutative() && 461 "Expected an associative and commutative operation!"); 462 463 // Visit all operands of the expression, keeping track of their weight (the 464 // number of paths from the expression root to the operand, or if you like 465 // the number of times that operand occurs in the linearized expression). 466 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1 467 // while A has weight two. 468 469 // Worklist of non-leaf nodes (their operands are in the expression too) along 470 // with their weights, representing a certain number of paths to the operator. 471 // If an operator occurs in the worklist multiple times then we found multiple 472 // ways to get to it. 473 SmallVector<std::pair<Instruction*, APInt>, 8> Worklist; // (Op, Weight) 474 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1))); 475 bool Changed = false; 476 477 // Leaves of the expression are values that either aren't the right kind of 478 // operation (eg: a constant, or a multiply in an add tree), or are, but have 479 // some uses that are not inside the expression. For example, in I = X + X, 480 // X = A + B, the value X has two uses (by I) that are in the expression. If 481 // X has any other uses, for example in a return instruction, then we consider 482 // X to be a leaf, and won't analyze it further. When we first visit a value, 483 // if it has more than one use then at first we conservatively consider it to 484 // be a leaf. Later, as the expression is explored, we may discover some more 485 // uses of the value from inside the expression. If all uses turn out to be 486 // from within the expression (and the value is a binary operator of the right 487 // kind) then the value is no longer considered to be a leaf, and its operands 488 // are explored. 489 490 // Leaves - Keeps track of the set of putative leaves as well as the number of 491 // paths to each leaf seen so far. 492 using LeafMap = DenseMap<Value *, APInt>; 493 LeafMap Leaves; // Leaf -> Total weight so far. 494 SmallVector<Value *, 8> LeafOrder; // Ensure deterministic leaf output order. 495 496 #ifndef NDEBUG 497 SmallPtrSet<Value *, 8> Visited; // For sanity checking the iteration scheme. 498 #endif 499 while (!Worklist.empty()) { 500 std::pair<Instruction*, APInt> P = Worklist.pop_back_val(); 501 I = P.first; // We examine the operands of this binary operator. 502 503 for (unsigned OpIdx = 0; OpIdx < I->getNumOperands(); ++OpIdx) { // Visit operands. 504 Value *Op = I->getOperand(OpIdx); 505 APInt Weight = P.second; // Number of paths to this operand. 506 LLVM_DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n"); 507 assert(!Op->use_empty() && "No uses, so how did we get to it?!"); 508 509 // If this is a binary operation of the right kind with only one use then 510 // add its operands to the expression. 511 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 512 assert(Visited.insert(Op).second && "Not first visit!"); 513 LLVM_DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n"); 514 Worklist.push_back(std::make_pair(BO, Weight)); 515 continue; 516 } 517 518 // Appears to be a leaf. Is the operand already in the set of leaves? 519 LeafMap::iterator It = Leaves.find(Op); 520 if (It == Leaves.end()) { 521 // Not in the leaf map. Must be the first time we saw this operand. 522 assert(Visited.insert(Op).second && "Not first visit!"); 523 if (!Op->hasOneUse()) { 524 // This value has uses not accounted for by the expression, so it is 525 // not safe to modify. Mark it as being a leaf. 526 LLVM_DEBUG(dbgs() 527 << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n"); 528 LeafOrder.push_back(Op); 529 Leaves[Op] = Weight; 530 continue; 531 } 532 // No uses outside the expression, try morphing it. 533 } else { 534 // Already in the leaf map. 535 assert(It != Leaves.end() && Visited.count(Op) && 536 "In leaf map but not visited!"); 537 538 // Update the number of paths to the leaf. 539 IncorporateWeight(It->second, Weight, Opcode); 540 541 #if 0 // TODO: Re-enable once PR13021 is fixed. 542 // The leaf already has one use from inside the expression. As we want 543 // exactly one such use, drop this new use of the leaf. 544 assert(!Op->hasOneUse() && "Only one use, but we got here twice!"); 545 I->setOperand(OpIdx, UndefValue::get(I->getType())); 546 Changed = true; 547 548 // If the leaf is a binary operation of the right kind and we now see 549 // that its multiple original uses were in fact all by nodes belonging 550 // to the expression, then no longer consider it to be a leaf and add 551 // its operands to the expression. 552 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) { 553 LLVM_DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n"); 554 Worklist.push_back(std::make_pair(BO, It->second)); 555 Leaves.erase(It); 556 continue; 557 } 558 #endif 559 560 // If we still have uses that are not accounted for by the expression 561 // then it is not safe to modify the value. 562 if (!Op->hasOneUse()) 563 continue; 564 565 // No uses outside the expression, try morphing it. 566 Weight = It->second; 567 Leaves.erase(It); // Since the value may be morphed below. 568 } 569 570 // At this point we have a value which, first of all, is not a binary 571 // expression of the right kind, and secondly, is only used inside the 572 // expression. This means that it can safely be modified. See if we 573 // can usefully morph it into an expression of the right kind. 574 assert((!isa<Instruction>(Op) || 575 cast<Instruction>(Op)->getOpcode() != Opcode 576 || (isa<FPMathOperator>(Op) && 577 !cast<Instruction>(Op)->isFast())) && 578 "Should have been handled above!"); 579 assert(Op->hasOneUse() && "Has uses outside the expression tree!"); 580 581 // If this is a multiply expression, turn any internal negations into 582 // multiplies by -1 so they can be reassociated. 583 if (Instruction *Tmp = dyn_cast<Instruction>(Op)) 584 if ((Opcode == Instruction::Mul && match(Tmp, m_Neg(m_Value()))) || 585 (Opcode == Instruction::FMul && match(Tmp, m_FNeg(m_Value())))) { 586 LLVM_DEBUG(dbgs() 587 << "MORPH LEAF: " << *Op << " (" << Weight << ") TO "); 588 Tmp = LowerNegateToMultiply(Tmp); 589 LLVM_DEBUG(dbgs() << *Tmp << '\n'); 590 Worklist.push_back(std::make_pair(Tmp, Weight)); 591 Changed = true; 592 continue; 593 } 594 595 // Failed to morph into an expression of the right type. This really is 596 // a leaf. 597 LLVM_DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n"); 598 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?"); 599 LeafOrder.push_back(Op); 600 Leaves[Op] = Weight; 601 } 602 } 603 604 // The leaves, repeated according to their weights, represent the linearized 605 // form of the expression. 606 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) { 607 Value *V = LeafOrder[i]; 608 LeafMap::iterator It = Leaves.find(V); 609 if (It == Leaves.end()) 610 // Node initially thought to be a leaf wasn't. 611 continue; 612 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!"); 613 APInt Weight = It->second; 614 if (Weight.isMinValue()) 615 // Leaf already output or weight reduction eliminated it. 616 continue; 617 // Ensure the leaf is only output once. 618 It->second = 0; 619 Ops.push_back(std::make_pair(V, Weight)); 620 } 621 622 // For nilpotent operations or addition there may be no operands, for example 623 // because the expression was "X xor X" or consisted of 2^Bitwidth additions: 624 // in both cases the weight reduces to 0 causing the value to be skipped. 625 if (Ops.empty()) { 626 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType()); 627 assert(Identity && "Associative operation without identity!"); 628 Ops.emplace_back(Identity, APInt(Bitwidth, 1)); 629 } 630 631 return Changed; 632 } 633 634 /// Now that the operands for this expression tree are 635 /// linearized and optimized, emit them in-order. 636 void ReassociatePass::RewriteExprTree(BinaryOperator *I, 637 SmallVectorImpl<ValueEntry> &Ops) { 638 assert(Ops.size() > 1 && "Single values should be used directly!"); 639 640 // Since our optimizations should never increase the number of operations, the 641 // new expression can usually be written reusing the existing binary operators 642 // from the original expression tree, without creating any new instructions, 643 // though the rewritten expression may have a completely different topology. 644 // We take care to not change anything if the new expression will be the same 645 // as the original. If more than trivial changes (like commuting operands) 646 // were made then we are obliged to clear out any optional subclass data like 647 // nsw flags. 648 649 /// NodesToRewrite - Nodes from the original expression available for writing 650 /// the new expression into. 651 SmallVector<BinaryOperator*, 8> NodesToRewrite; 652 unsigned Opcode = I->getOpcode(); 653 BinaryOperator *Op = I; 654 655 /// NotRewritable - The operands being written will be the leaves of the new 656 /// expression and must not be used as inner nodes (via NodesToRewrite) by 657 /// mistake. Inner nodes are always reassociable, and usually leaves are not 658 /// (if they were they would have been incorporated into the expression and so 659 /// would not be leaves), so most of the time there is no danger of this. But 660 /// in rare cases a leaf may become reassociable if an optimization kills uses 661 /// of it, or it may momentarily become reassociable during rewriting (below) 662 /// due it being removed as an operand of one of its uses. Ensure that misuse 663 /// of leaf nodes as inner nodes cannot occur by remembering all of the future 664 /// leaves and refusing to reuse any of them as inner nodes. 665 SmallPtrSet<Value*, 8> NotRewritable; 666 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 667 NotRewritable.insert(Ops[i].Op); 668 669 // ExpressionChanged - Non-null if the rewritten expression differs from the 670 // original in some non-trivial way, requiring the clearing of optional flags. 671 // Flags are cleared from the operator in ExpressionChanged up to I inclusive. 672 BinaryOperator *ExpressionChanged = nullptr; 673 for (unsigned i = 0; ; ++i) { 674 // The last operation (which comes earliest in the IR) is special as both 675 // operands will come from Ops, rather than just one with the other being 676 // a subexpression. 677 if (i+2 == Ops.size()) { 678 Value *NewLHS = Ops[i].Op; 679 Value *NewRHS = Ops[i+1].Op; 680 Value *OldLHS = Op->getOperand(0); 681 Value *OldRHS = Op->getOperand(1); 682 683 if (NewLHS == OldLHS && NewRHS == OldRHS) 684 // Nothing changed, leave it alone. 685 break; 686 687 if (NewLHS == OldRHS && NewRHS == OldLHS) { 688 // The order of the operands was reversed. Swap them. 689 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 690 Op->swapOperands(); 691 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 692 MadeChange = true; 693 ++NumChanged; 694 break; 695 } 696 697 // The new operation differs non-trivially from the original. Overwrite 698 // the old operands with the new ones. 699 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 700 if (NewLHS != OldLHS) { 701 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode); 702 if (BO && !NotRewritable.count(BO)) 703 NodesToRewrite.push_back(BO); 704 Op->setOperand(0, NewLHS); 705 } 706 if (NewRHS != OldRHS) { 707 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode); 708 if (BO && !NotRewritable.count(BO)) 709 NodesToRewrite.push_back(BO); 710 Op->setOperand(1, NewRHS); 711 } 712 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 713 714 ExpressionChanged = Op; 715 MadeChange = true; 716 ++NumChanged; 717 718 break; 719 } 720 721 // Not the last operation. The left-hand side will be a sub-expression 722 // while the right-hand side will be the current element of Ops. 723 Value *NewRHS = Ops[i].Op; 724 if (NewRHS != Op->getOperand(1)) { 725 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 726 if (NewRHS == Op->getOperand(0)) { 727 // The new right-hand side was already present as the left operand. If 728 // we are lucky then swapping the operands will sort out both of them. 729 Op->swapOperands(); 730 } else { 731 // Overwrite with the new right-hand side. 732 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode); 733 if (BO && !NotRewritable.count(BO)) 734 NodesToRewrite.push_back(BO); 735 Op->setOperand(1, NewRHS); 736 ExpressionChanged = Op; 737 } 738 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 739 MadeChange = true; 740 ++NumChanged; 741 } 742 743 // Now deal with the left-hand side. If this is already an operation node 744 // from the original expression then just rewrite the rest of the expression 745 // into it. 746 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode); 747 if (BO && !NotRewritable.count(BO)) { 748 Op = BO; 749 continue; 750 } 751 752 // Otherwise, grab a spare node from the original expression and use that as 753 // the left-hand side. If there are no nodes left then the optimizers made 754 // an expression with more nodes than the original! This usually means that 755 // they did something stupid but it might mean that the problem was just too 756 // hard (finding the mimimal number of multiplications needed to realize a 757 // multiplication expression is NP-complete). Whatever the reason, smart or 758 // stupid, create a new node if there are none left. 759 BinaryOperator *NewOp; 760 if (NodesToRewrite.empty()) { 761 Constant *Undef = UndefValue::get(I->getType()); 762 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode), 763 Undef, Undef, "", I); 764 if (NewOp->getType()->isFPOrFPVectorTy()) 765 NewOp->setFastMathFlags(I->getFastMathFlags()); 766 } else { 767 NewOp = NodesToRewrite.pop_back_val(); 768 } 769 770 LLVM_DEBUG(dbgs() << "RA: " << *Op << '\n'); 771 Op->setOperand(0, NewOp); 772 LLVM_DEBUG(dbgs() << "TO: " << *Op << '\n'); 773 ExpressionChanged = Op; 774 MadeChange = true; 775 ++NumChanged; 776 Op = NewOp; 777 } 778 779 // If the expression changed non-trivially then clear out all subclass data 780 // starting from the operator specified in ExpressionChanged, and compactify 781 // the operators to just before the expression root to guarantee that the 782 // expression tree is dominated by all of Ops. 783 if (ExpressionChanged) 784 do { 785 // Preserve FastMathFlags. 786 if (isa<FPMathOperator>(I)) { 787 FastMathFlags Flags = I->getFastMathFlags(); 788 ExpressionChanged->clearSubclassOptionalData(); 789 ExpressionChanged->setFastMathFlags(Flags); 790 } else 791 ExpressionChanged->clearSubclassOptionalData(); 792 793 if (ExpressionChanged == I) 794 break; 795 796 // Discard any debug info related to the expressions that has changed (we 797 // can leave debug infor related to the root, since the result of the 798 // expression tree should be the same even after reassociation). 799 replaceDbgUsesWithUndef(ExpressionChanged); 800 801 ExpressionChanged->moveBefore(I); 802 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin()); 803 } while (true); 804 805 // Throw away any left over nodes from the original expression. 806 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i) 807 RedoInsts.insert(NodesToRewrite[i]); 808 } 809 810 /// Insert instructions before the instruction pointed to by BI, 811 /// that computes the negative version of the value specified. The negative 812 /// version of the value is returned, and BI is left pointing at the instruction 813 /// that should be processed next by the reassociation pass. 814 /// Also add intermediate instructions to the redo list that are modified while 815 /// pushing the negates through adds. These will be revisited to see if 816 /// additional opportunities have been exposed. 817 static Value *NegateValue(Value *V, Instruction *BI, 818 ReassociatePass::OrderedSet &ToRedo) { 819 if (auto *C = dyn_cast<Constant>(V)) 820 return C->getType()->isFPOrFPVectorTy() ? ConstantExpr::getFNeg(C) : 821 ConstantExpr::getNeg(C); 822 823 // We are trying to expose opportunity for reassociation. One of the things 824 // that we want to do to achieve this is to push a negation as deep into an 825 // expression chain as possible, to expose the add instructions. In practice, 826 // this means that we turn this: 827 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D 828 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate 829 // the constants. We assume that instcombine will clean up the mess later if 830 // we introduce tons of unnecessary negation instructions. 831 // 832 if (BinaryOperator *I = 833 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) { 834 // Push the negates through the add. 835 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo)); 836 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo)); 837 if (I->getOpcode() == Instruction::Add) { 838 I->setHasNoUnsignedWrap(false); 839 I->setHasNoSignedWrap(false); 840 } 841 842 // We must move the add instruction here, because the neg instructions do 843 // not dominate the old add instruction in general. By moving it, we are 844 // assured that the neg instructions we just inserted dominate the 845 // instruction we are about to insert after them. 846 // 847 I->moveBefore(BI); 848 I->setName(I->getName()+".neg"); 849 850 // Add the intermediate negates to the redo list as processing them later 851 // could expose more reassociating opportunities. 852 ToRedo.insert(I); 853 return I; 854 } 855 856 // Okay, we need to materialize a negated version of V with an instruction. 857 // Scan the use lists of V to see if we have one already. 858 for (User *U : V->users()) { 859 if (!match(U, m_Neg(m_Value())) && !match(U, m_FNeg(m_Value()))) 860 continue; 861 862 // We found one! Now we have to make sure that the definition dominates 863 // this use. We do this by moving it to the entry block (if it is a 864 // non-instruction value) or right after the definition. These negates will 865 // be zapped by reassociate later, so we don't need much finesse here. 866 Instruction *TheNeg = cast<Instruction>(U); 867 868 // Verify that the negate is in this function, V might be a constant expr. 869 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent()) 870 continue; 871 872 bool FoundCatchSwitch = false; 873 874 BasicBlock::iterator InsertPt; 875 if (Instruction *InstInput = dyn_cast<Instruction>(V)) { 876 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) { 877 InsertPt = II->getNormalDest()->begin(); 878 } else { 879 InsertPt = ++InstInput->getIterator(); 880 } 881 882 const BasicBlock *BB = InsertPt->getParent(); 883 884 // Make sure we don't move anything before PHIs or exception 885 // handling pads. 886 while (InsertPt != BB->end() && (isa<PHINode>(InsertPt) || 887 InsertPt->isEHPad())) { 888 if (isa<CatchSwitchInst>(InsertPt)) 889 // A catchswitch cannot have anything in the block except 890 // itself and PHIs. We'll bail out below. 891 FoundCatchSwitch = true; 892 ++InsertPt; 893 } 894 } else { 895 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin(); 896 } 897 898 // We found a catchswitch in the block where we want to move the 899 // neg. We cannot move anything into that block. Bail and just 900 // create the neg before BI, as if we hadn't found an existing 901 // neg. 902 if (FoundCatchSwitch) 903 break; 904 905 TheNeg->moveBefore(&*InsertPt); 906 if (TheNeg->getOpcode() == Instruction::Sub) { 907 TheNeg->setHasNoUnsignedWrap(false); 908 TheNeg->setHasNoSignedWrap(false); 909 } else { 910 TheNeg->andIRFlags(BI); 911 } 912 ToRedo.insert(TheNeg); 913 return TheNeg; 914 } 915 916 // Insert a 'neg' instruction that subtracts the value from zero to get the 917 // negation. 918 Instruction *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI); 919 ToRedo.insert(NewNeg); 920 return NewNeg; 921 } 922 923 // See if this `or` looks like an load widening reduction, i.e. that it 924 // consists of an `or`/`shl`/`zext`/`load` nodes only. Note that we don't 925 // ensure that the pattern is *really* a load widening reduction, 926 // we do not ensure that it can really be replaced with a widened load, 927 // only that it mostly looks like one. 928 static bool isLoadCombineCandidate(Instruction *Or) { 929 SmallVector<Instruction *, 8> Worklist; 930 SmallSet<Instruction *, 8> Visited; 931 932 auto Enqueue = [&](Value *V) { 933 auto *I = dyn_cast<Instruction>(V); 934 // Each node of an `or` reduction must be an instruction, 935 if (!I) 936 return false; // Node is certainly not part of an `or` load reduction. 937 // Only process instructions we have never processed before. 938 if (Visited.insert(I).second) 939 Worklist.emplace_back(I); 940 return true; // Will need to look at parent nodes. 941 }; 942 943 if (!Enqueue(Or)) 944 return false; // Not an `or` reduction pattern. 945 946 while (!Worklist.empty()) { 947 auto *I = Worklist.pop_back_val(); 948 949 // Okay, which instruction is this node? 950 switch (I->getOpcode()) { 951 case Instruction::Or: 952 // Got an `or` node. That's fine, just recurse into it's operands. 953 for (Value *Op : I->operands()) 954 if (!Enqueue(Op)) 955 return false; // Not an `or` reduction pattern. 956 continue; 957 958 case Instruction::Shl: 959 case Instruction::ZExt: 960 // `shl`/`zext` nodes are fine, just recurse into their base operand. 961 if (!Enqueue(I->getOperand(0))) 962 return false; // Not an `or` reduction pattern. 963 continue; 964 965 case Instruction::Load: 966 // Perfect, `load` node means we've reached an edge of the graph. 967 continue; 968 969 default: // Unknown node. 970 return false; // Not an `or` reduction pattern. 971 } 972 } 973 974 return true; 975 } 976 977 /// Return true if it may be profitable to convert this (X|Y) into (X+Y). 978 static bool shouldConvertOrWithNoCommonBitsToAdd(Instruction *Or) { 979 // Don't bother to convert this up unless either the LHS is an associable add 980 // or subtract or mul or if this is only used by one of the above. 981 // This is only a compile-time improvement, it is not needed for correctness! 982 auto isInteresting = [](Value *V) { 983 for (auto Op : {Instruction::Add, Instruction::Sub, Instruction::Mul, 984 Instruction::Shl}) 985 if (isReassociableOp(V, Op)) 986 return true; 987 return false; 988 }; 989 990 if (any_of(Or->operands(), isInteresting)) 991 return true; 992 993 Value *VB = Or->user_back(); 994 if (Or->hasOneUse() && isInteresting(VB)) 995 return true; 996 997 return false; 998 } 999 1000 /// If we have (X|Y), and iff X and Y have no common bits set, 1001 /// transform this into (X+Y) to allow arithmetics reassociation. 1002 static BinaryOperator *convertOrWithNoCommonBitsToAdd(Instruction *Or) { 1003 // Convert an or into an add. 1004 BinaryOperator *New = 1005 CreateAdd(Or->getOperand(0), Or->getOperand(1), "", Or, Or); 1006 New->setHasNoSignedWrap(); 1007 New->setHasNoUnsignedWrap(); 1008 New->takeName(Or); 1009 1010 // Everyone now refers to the add instruction. 1011 Or->replaceAllUsesWith(New); 1012 New->setDebugLoc(Or->getDebugLoc()); 1013 1014 LLVM_DEBUG(dbgs() << "Converted or into an add: " << *New << '\n'); 1015 return New; 1016 } 1017 1018 /// Return true if we should break up this subtract of X-Y into (X + -Y). 1019 static bool ShouldBreakUpSubtract(Instruction *Sub) { 1020 // If this is a negation, we can't split it up! 1021 if (match(Sub, m_Neg(m_Value())) || match(Sub, m_FNeg(m_Value()))) 1022 return false; 1023 1024 // Don't breakup X - undef. 1025 if (isa<UndefValue>(Sub->getOperand(1))) 1026 return false; 1027 1028 // Don't bother to break this up unless either the LHS is an associable add or 1029 // subtract or if this is only used by one. 1030 Value *V0 = Sub->getOperand(0); 1031 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) || 1032 isReassociableOp(V0, Instruction::Sub, Instruction::FSub)) 1033 return true; 1034 Value *V1 = Sub->getOperand(1); 1035 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) || 1036 isReassociableOp(V1, Instruction::Sub, Instruction::FSub)) 1037 return true; 1038 Value *VB = Sub->user_back(); 1039 if (Sub->hasOneUse() && 1040 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) || 1041 isReassociableOp(VB, Instruction::Sub, Instruction::FSub))) 1042 return true; 1043 1044 return false; 1045 } 1046 1047 /// If we have (X-Y), and if either X is an add, or if this is only used by an 1048 /// add, transform this into (X+(0-Y)) to promote better reassociation. 1049 static BinaryOperator *BreakUpSubtract(Instruction *Sub, 1050 ReassociatePass::OrderedSet &ToRedo) { 1051 // Convert a subtract into an add and a neg instruction. This allows sub 1052 // instructions to be commuted with other add instructions. 1053 // 1054 // Calculate the negative value of Operand 1 of the sub instruction, 1055 // and set it as the RHS of the add instruction we just made. 1056 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo); 1057 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub); 1058 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op. 1059 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op. 1060 New->takeName(Sub); 1061 1062 // Everyone now refers to the add instruction. 1063 Sub->replaceAllUsesWith(New); 1064 New->setDebugLoc(Sub->getDebugLoc()); 1065 1066 LLVM_DEBUG(dbgs() << "Negated: " << *New << '\n'); 1067 return New; 1068 } 1069 1070 /// If this is a shift of a reassociable multiply or is used by one, change 1071 /// this into a multiply by a constant to assist with further reassociation. 1072 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) { 1073 Constant *MulCst = ConstantInt::get(Shl->getType(), 1); 1074 auto *SA = cast<ConstantInt>(Shl->getOperand(1)); 1075 MulCst = ConstantExpr::getShl(MulCst, SA); 1076 1077 BinaryOperator *Mul = 1078 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl); 1079 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op. 1080 Mul->takeName(Shl); 1081 1082 // Everyone now refers to the mul instruction. 1083 Shl->replaceAllUsesWith(Mul); 1084 Mul->setDebugLoc(Shl->getDebugLoc()); 1085 1086 // We can safely preserve the nuw flag in all cases. It's also safe to turn a 1087 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special 1088 // handling. It can be preserved as long as we're not left shifting by 1089 // bitwidth - 1. 1090 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap(); 1091 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap(); 1092 unsigned BitWidth = Shl->getType()->getIntegerBitWidth(); 1093 if (NSW && (NUW || SA->getValue().ult(BitWidth - 1))) 1094 Mul->setHasNoSignedWrap(true); 1095 Mul->setHasNoUnsignedWrap(NUW); 1096 return Mul; 1097 } 1098 1099 /// Scan backwards and forwards among values with the same rank as element i 1100 /// to see if X exists. If X does not exist, return i. This is useful when 1101 /// scanning for 'x' when we see '-x' because they both get the same rank. 1102 static unsigned FindInOperandList(const SmallVectorImpl<ValueEntry> &Ops, 1103 unsigned i, Value *X) { 1104 unsigned XRank = Ops[i].Rank; 1105 unsigned e = Ops.size(); 1106 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) { 1107 if (Ops[j].Op == X) 1108 return j; 1109 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1110 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1111 if (I1->isIdenticalTo(I2)) 1112 return j; 1113 } 1114 // Scan backwards. 1115 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) { 1116 if (Ops[j].Op == X) 1117 return j; 1118 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op)) 1119 if (Instruction *I2 = dyn_cast<Instruction>(X)) 1120 if (I1->isIdenticalTo(I2)) 1121 return j; 1122 } 1123 return i; 1124 } 1125 1126 /// Emit a tree of add instructions, summing Ops together 1127 /// and returning the result. Insert the tree before I. 1128 static Value *EmitAddTreeOfValues(Instruction *I, 1129 SmallVectorImpl<WeakTrackingVH> &Ops) { 1130 if (Ops.size() == 1) return Ops.back(); 1131 1132 Value *V1 = Ops.pop_back_val(); 1133 Value *V2 = EmitAddTreeOfValues(I, Ops); 1134 return CreateAdd(V2, V1, "reass.add", I, I); 1135 } 1136 1137 /// If V is an expression tree that is a multiplication sequence, 1138 /// and if this sequence contains a multiply by Factor, 1139 /// remove Factor from the tree and return the new tree. 1140 Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) { 1141 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1142 if (!BO) 1143 return nullptr; 1144 1145 SmallVector<RepeatedValue, 8> Tree; 1146 MadeChange |= LinearizeExprTree(BO, Tree); 1147 SmallVector<ValueEntry, 8> Factors; 1148 Factors.reserve(Tree.size()); 1149 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 1150 RepeatedValue E = Tree[i]; 1151 Factors.append(E.second.getZExtValue(), 1152 ValueEntry(getRank(E.first), E.first)); 1153 } 1154 1155 bool FoundFactor = false; 1156 bool NeedsNegate = false; 1157 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1158 if (Factors[i].Op == Factor) { 1159 FoundFactor = true; 1160 Factors.erase(Factors.begin()+i); 1161 break; 1162 } 1163 1164 // If this is a negative version of this factor, remove it. 1165 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) { 1166 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op)) 1167 if (FC1->getValue() == -FC2->getValue()) { 1168 FoundFactor = NeedsNegate = true; 1169 Factors.erase(Factors.begin()+i); 1170 break; 1171 } 1172 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) { 1173 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) { 1174 const APFloat &F1 = FC1->getValueAPF(); 1175 APFloat F2(FC2->getValueAPF()); 1176 F2.changeSign(); 1177 if (F1 == F2) { 1178 FoundFactor = NeedsNegate = true; 1179 Factors.erase(Factors.begin() + i); 1180 break; 1181 } 1182 } 1183 } 1184 } 1185 1186 if (!FoundFactor) { 1187 // Make sure to restore the operands to the expression tree. 1188 RewriteExprTree(BO, Factors); 1189 return nullptr; 1190 } 1191 1192 BasicBlock::iterator InsertPt = ++BO->getIterator(); 1193 1194 // If this was just a single multiply, remove the multiply and return the only 1195 // remaining operand. 1196 if (Factors.size() == 1) { 1197 RedoInsts.insert(BO); 1198 V = Factors[0].Op; 1199 } else { 1200 RewriteExprTree(BO, Factors); 1201 V = BO; 1202 } 1203 1204 if (NeedsNegate) 1205 V = CreateNeg(V, "neg", &*InsertPt, BO); 1206 1207 return V; 1208 } 1209 1210 /// If V is a single-use multiply, recursively add its operands as factors, 1211 /// otherwise add V to the list of factors. 1212 /// 1213 /// Ops is the top-level list of add operands we're trying to factor. 1214 static void FindSingleUseMultiplyFactors(Value *V, 1215 SmallVectorImpl<Value*> &Factors) { 1216 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul); 1217 if (!BO) { 1218 Factors.push_back(V); 1219 return; 1220 } 1221 1222 // Otherwise, add the LHS and RHS to the list of factors. 1223 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors); 1224 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors); 1225 } 1226 1227 /// Optimize a series of operands to an 'and', 'or', or 'xor' instruction. 1228 /// This optimizes based on identities. If it can be reduced to a single Value, 1229 /// it is returned, otherwise the Ops list is mutated as necessary. 1230 static Value *OptimizeAndOrXor(unsigned Opcode, 1231 SmallVectorImpl<ValueEntry> &Ops) { 1232 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs. 1233 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1. 1234 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1235 // First, check for X and ~X in the operand list. 1236 assert(i < Ops.size()); 1237 Value *X; 1238 if (match(Ops[i].Op, m_Not(m_Value(X)))) { // Cannot occur for ^. 1239 unsigned FoundX = FindInOperandList(Ops, i, X); 1240 if (FoundX != i) { 1241 if (Opcode == Instruction::And) // ...&X&~X = 0 1242 return Constant::getNullValue(X->getType()); 1243 1244 if (Opcode == Instruction::Or) // ...|X|~X = -1 1245 return Constant::getAllOnesValue(X->getType()); 1246 } 1247 } 1248 1249 // Next, check for duplicate pairs of values, which we assume are next to 1250 // each other, due to our sorting criteria. 1251 assert(i < Ops.size()); 1252 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) { 1253 if (Opcode == Instruction::And || Opcode == Instruction::Or) { 1254 // Drop duplicate values for And and Or. 1255 Ops.erase(Ops.begin()+i); 1256 --i; --e; 1257 ++NumAnnihil; 1258 continue; 1259 } 1260 1261 // Drop pairs of values for Xor. 1262 assert(Opcode == Instruction::Xor); 1263 if (e == 2) 1264 return Constant::getNullValue(Ops[0].Op->getType()); 1265 1266 // Y ^ X^X -> Y 1267 Ops.erase(Ops.begin()+i, Ops.begin()+i+2); 1268 i -= 1; e -= 2; 1269 ++NumAnnihil; 1270 } 1271 } 1272 return nullptr; 1273 } 1274 1275 /// Helper function of CombineXorOpnd(). It creates a bitwise-and 1276 /// instruction with the given two operands, and return the resulting 1277 /// instruction. There are two special cases: 1) if the constant operand is 0, 1278 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will 1279 /// be returned. 1280 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd, 1281 const APInt &ConstOpnd) { 1282 if (ConstOpnd.isZero()) 1283 return nullptr; 1284 1285 if (ConstOpnd.isAllOnes()) 1286 return Opnd; 1287 1288 Instruction *I = BinaryOperator::CreateAnd( 1289 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra", 1290 InsertBefore); 1291 I->setDebugLoc(InsertBefore->getDebugLoc()); 1292 return I; 1293 } 1294 1295 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd" 1296 // into "R ^ C", where C would be 0, and R is a symbolic value. 1297 // 1298 // If it was successful, true is returned, and the "R" and "C" is returned 1299 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned, 1300 // and both "Res" and "ConstOpnd" remain unchanged. 1301 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1302 APInt &ConstOpnd, Value *&Res) { 1303 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2 1304 // = ((x | c1) ^ c1) ^ (c1 ^ c2) 1305 // = (x & ~c1) ^ (c1 ^ c2) 1306 // It is useful only when c1 == c2. 1307 if (!Opnd1->isOrExpr() || Opnd1->getConstPart().isZero()) 1308 return false; 1309 1310 if (!Opnd1->getValue()->hasOneUse()) 1311 return false; 1312 1313 const APInt &C1 = Opnd1->getConstPart(); 1314 if (C1 != ConstOpnd) 1315 return false; 1316 1317 Value *X = Opnd1->getSymbolicPart(); 1318 Res = createAndInstr(I, X, ~C1); 1319 // ConstOpnd was C2, now C1 ^ C2. 1320 ConstOpnd ^= C1; 1321 1322 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1323 RedoInsts.insert(T); 1324 return true; 1325 } 1326 1327 // Helper function of OptimizeXor(). It tries to simplify 1328 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a 1329 // symbolic value. 1330 // 1331 // If it was successful, true is returned, and the "R" and "C" is returned 1332 // via "Res" and "ConstOpnd", respectively (If the entire expression is 1333 // evaluated to a constant, the Res is set to NULL); otherwise, false is 1334 // returned, and both "Res" and "ConstOpnd" remain unchanged. 1335 bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, 1336 XorOpnd *Opnd2, APInt &ConstOpnd, 1337 Value *&Res) { 1338 Value *X = Opnd1->getSymbolicPart(); 1339 if (X != Opnd2->getSymbolicPart()) 1340 return false; 1341 1342 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.) 1343 int DeadInstNum = 1; 1344 if (Opnd1->getValue()->hasOneUse()) 1345 DeadInstNum++; 1346 if (Opnd2->getValue()->hasOneUse()) 1347 DeadInstNum++; 1348 1349 // Xor-Rule 2: 1350 // (x | c1) ^ (x & c2) 1351 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1 1352 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1 1353 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3 1354 // 1355 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) { 1356 if (Opnd2->isOrExpr()) 1357 std::swap(Opnd1, Opnd2); 1358 1359 const APInt &C1 = Opnd1->getConstPart(); 1360 const APInt &C2 = Opnd2->getConstPart(); 1361 APInt C3((~C1) ^ C2); 1362 1363 // Do not increase code size! 1364 if (!C3.isZero() && !C3.isAllOnes()) { 1365 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1366 if (NewInstNum > DeadInstNum) 1367 return false; 1368 } 1369 1370 Res = createAndInstr(I, X, C3); 1371 ConstOpnd ^= C1; 1372 } else if (Opnd1->isOrExpr()) { 1373 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2 1374 // 1375 const APInt &C1 = Opnd1->getConstPart(); 1376 const APInt &C2 = Opnd2->getConstPart(); 1377 APInt C3 = C1 ^ C2; 1378 1379 // Do not increase code size 1380 if (!C3.isZero() && !C3.isAllOnes()) { 1381 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2; 1382 if (NewInstNum > DeadInstNum) 1383 return false; 1384 } 1385 1386 Res = createAndInstr(I, X, C3); 1387 ConstOpnd ^= C3; 1388 } else { 1389 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2)) 1390 // 1391 const APInt &C1 = Opnd1->getConstPart(); 1392 const APInt &C2 = Opnd2->getConstPart(); 1393 APInt C3 = C1 ^ C2; 1394 Res = createAndInstr(I, X, C3); 1395 } 1396 1397 // Put the original operands in the Redo list; hope they will be deleted 1398 // as dead code. 1399 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue())) 1400 RedoInsts.insert(T); 1401 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue())) 1402 RedoInsts.insert(T); 1403 1404 return true; 1405 } 1406 1407 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced 1408 /// to a single Value, it is returned, otherwise the Ops list is mutated as 1409 /// necessary. 1410 Value *ReassociatePass::OptimizeXor(Instruction *I, 1411 SmallVectorImpl<ValueEntry> &Ops) { 1412 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops)) 1413 return V; 1414 1415 if (Ops.size() == 1) 1416 return nullptr; 1417 1418 SmallVector<XorOpnd, 8> Opnds; 1419 SmallVector<XorOpnd*, 8> OpndPtrs; 1420 Type *Ty = Ops[0].Op->getType(); 1421 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0); 1422 1423 // Step 1: Convert ValueEntry to XorOpnd 1424 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1425 Value *V = Ops[i].Op; 1426 const APInt *C; 1427 // TODO: Support non-splat vectors. 1428 if (match(V, m_APInt(C))) { 1429 ConstOpnd ^= *C; 1430 } else { 1431 XorOpnd O(V); 1432 O.setSymbolicRank(getRank(O.getSymbolicPart())); 1433 Opnds.push_back(O); 1434 } 1435 } 1436 1437 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds". 1438 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate 1439 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop 1440 // with the previous loop --- the iterator of the "Opnds" may be invalidated 1441 // when new elements are added to the vector. 1442 for (unsigned i = 0, e = Opnds.size(); i != e; ++i) 1443 OpndPtrs.push_back(&Opnds[i]); 1444 1445 // Step 2: Sort the Xor-Operands in a way such that the operands containing 1446 // the same symbolic value cluster together. For instance, the input operand 1447 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into: 1448 // ("x | 123", "x & 789", "y & 456"). 1449 // 1450 // The purpose is twofold: 1451 // 1) Cluster together the operands sharing the same symbolic-value. 1452 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which 1453 // could potentially shorten crital path, and expose more loop-invariants. 1454 // Note that values' rank are basically defined in RPO order (FIXME). 1455 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier 1456 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2", 1457 // "z" in the order of X-Y-Z is better than any other orders. 1458 llvm::stable_sort(OpndPtrs, [](XorOpnd *LHS, XorOpnd *RHS) { 1459 return LHS->getSymbolicRank() < RHS->getSymbolicRank(); 1460 }); 1461 1462 // Step 3: Combine adjacent operands 1463 XorOpnd *PrevOpnd = nullptr; 1464 bool Changed = false; 1465 for (unsigned i = 0, e = Opnds.size(); i < e; i++) { 1466 XorOpnd *CurrOpnd = OpndPtrs[i]; 1467 // The combined value 1468 Value *CV; 1469 1470 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd" 1471 if (!ConstOpnd.isZero() && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) { 1472 Changed = true; 1473 if (CV) 1474 *CurrOpnd = XorOpnd(CV); 1475 else { 1476 CurrOpnd->Invalidate(); 1477 continue; 1478 } 1479 } 1480 1481 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) { 1482 PrevOpnd = CurrOpnd; 1483 continue; 1484 } 1485 1486 // step 3.2: When previous and current operands share the same symbolic 1487 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd" 1488 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) { 1489 // Remove previous operand 1490 PrevOpnd->Invalidate(); 1491 if (CV) { 1492 *CurrOpnd = XorOpnd(CV); 1493 PrevOpnd = CurrOpnd; 1494 } else { 1495 CurrOpnd->Invalidate(); 1496 PrevOpnd = nullptr; 1497 } 1498 Changed = true; 1499 } 1500 } 1501 1502 // Step 4: Reassemble the Ops 1503 if (Changed) { 1504 Ops.clear(); 1505 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) { 1506 XorOpnd &O = Opnds[i]; 1507 if (O.isInvalid()) 1508 continue; 1509 ValueEntry VE(getRank(O.getValue()), O.getValue()); 1510 Ops.push_back(VE); 1511 } 1512 if (!ConstOpnd.isZero()) { 1513 Value *C = ConstantInt::get(Ty, ConstOpnd); 1514 ValueEntry VE(getRank(C), C); 1515 Ops.push_back(VE); 1516 } 1517 unsigned Sz = Ops.size(); 1518 if (Sz == 1) 1519 return Ops.back().Op; 1520 if (Sz == 0) { 1521 assert(ConstOpnd.isZero()); 1522 return ConstantInt::get(Ty, ConstOpnd); 1523 } 1524 } 1525 1526 return nullptr; 1527 } 1528 1529 /// Optimize a series of operands to an 'add' instruction. This 1530 /// optimizes based on identities. If it can be reduced to a single Value, it 1531 /// is returned, otherwise the Ops list is mutated as necessary. 1532 Value *ReassociatePass::OptimizeAdd(Instruction *I, 1533 SmallVectorImpl<ValueEntry> &Ops) { 1534 // Scan the operand lists looking for X and -X pairs. If we find any, we 1535 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it, 1536 // scan for any 1537 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z. 1538 1539 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1540 Value *TheOp = Ops[i].Op; 1541 // Check to see if we've seen this operand before. If so, we factor all 1542 // instances of the operand together. Due to our sorting criteria, we know 1543 // that these need to be next to each other in the vector. 1544 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) { 1545 // Rescan the list, remove all instances of this operand from the expr. 1546 unsigned NumFound = 0; 1547 do { 1548 Ops.erase(Ops.begin()+i); 1549 ++NumFound; 1550 } while (i != Ops.size() && Ops[i].Op == TheOp); 1551 1552 LLVM_DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp 1553 << '\n'); 1554 ++NumFactor; 1555 1556 // Insert a new multiply. 1557 Type *Ty = TheOp->getType(); 1558 Constant *C = Ty->isIntOrIntVectorTy() ? 1559 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound); 1560 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I); 1561 1562 // Now that we have inserted a multiply, optimize it. This allows us to 1563 // handle cases that require multiple factoring steps, such as this: 1564 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6 1565 RedoInsts.insert(Mul); 1566 1567 // If every add operand was a duplicate, return the multiply. 1568 if (Ops.empty()) 1569 return Mul; 1570 1571 // Otherwise, we had some input that didn't have the dupe, such as 1572 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of 1573 // things being added by this operation. 1574 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul)); 1575 1576 --i; 1577 e = Ops.size(); 1578 continue; 1579 } 1580 1581 // Check for X and -X or X and ~X in the operand list. 1582 Value *X; 1583 if (!match(TheOp, m_Neg(m_Value(X))) && !match(TheOp, m_Not(m_Value(X))) && 1584 !match(TheOp, m_FNeg(m_Value(X)))) 1585 continue; 1586 1587 unsigned FoundX = FindInOperandList(Ops, i, X); 1588 if (FoundX == i) 1589 continue; 1590 1591 // Remove X and -X from the operand list. 1592 if (Ops.size() == 2 && 1593 (match(TheOp, m_Neg(m_Value())) || match(TheOp, m_FNeg(m_Value())))) 1594 return Constant::getNullValue(X->getType()); 1595 1596 // Remove X and ~X from the operand list. 1597 if (Ops.size() == 2 && match(TheOp, m_Not(m_Value()))) 1598 return Constant::getAllOnesValue(X->getType()); 1599 1600 Ops.erase(Ops.begin()+i); 1601 if (i < FoundX) 1602 --FoundX; 1603 else 1604 --i; // Need to back up an extra one. 1605 Ops.erase(Ops.begin()+FoundX); 1606 ++NumAnnihil; 1607 --i; // Revisit element. 1608 e -= 2; // Removed two elements. 1609 1610 // if X and ~X we append -1 to the operand list. 1611 if (match(TheOp, m_Not(m_Value()))) { 1612 Value *V = Constant::getAllOnesValue(X->getType()); 1613 Ops.insert(Ops.end(), ValueEntry(getRank(V), V)); 1614 e += 1; 1615 } 1616 } 1617 1618 // Scan the operand list, checking to see if there are any common factors 1619 // between operands. Consider something like A*A+A*B*C+D. We would like to 1620 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies. 1621 // To efficiently find this, we count the number of times a factor occurs 1622 // for any ADD operands that are MULs. 1623 DenseMap<Value*, unsigned> FactorOccurrences; 1624 1625 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4) 1626 // where they are actually the same multiply. 1627 unsigned MaxOcc = 0; 1628 Value *MaxOccVal = nullptr; 1629 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1630 BinaryOperator *BOp = 1631 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1632 if (!BOp) 1633 continue; 1634 1635 // Compute all of the factors of this added value. 1636 SmallVector<Value*, 8> Factors; 1637 FindSingleUseMultiplyFactors(BOp, Factors); 1638 assert(Factors.size() > 1 && "Bad linearize!"); 1639 1640 // Add one to FactorOccurrences for each unique factor in this op. 1641 SmallPtrSet<Value*, 8> Duplicates; 1642 for (unsigned i = 0, e = Factors.size(); i != e; ++i) { 1643 Value *Factor = Factors[i]; 1644 if (!Duplicates.insert(Factor).second) 1645 continue; 1646 1647 unsigned Occ = ++FactorOccurrences[Factor]; 1648 if (Occ > MaxOcc) { 1649 MaxOcc = Occ; 1650 MaxOccVal = Factor; 1651 } 1652 1653 // If Factor is a negative constant, add the negated value as a factor 1654 // because we can percolate the negate out. Watch for minint, which 1655 // cannot be positivified. 1656 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) { 1657 if (CI->isNegative() && !CI->isMinValue(true)) { 1658 Factor = ConstantInt::get(CI->getContext(), -CI->getValue()); 1659 if (!Duplicates.insert(Factor).second) 1660 continue; 1661 unsigned Occ = ++FactorOccurrences[Factor]; 1662 if (Occ > MaxOcc) { 1663 MaxOcc = Occ; 1664 MaxOccVal = Factor; 1665 } 1666 } 1667 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) { 1668 if (CF->isNegative()) { 1669 APFloat F(CF->getValueAPF()); 1670 F.changeSign(); 1671 Factor = ConstantFP::get(CF->getContext(), F); 1672 if (!Duplicates.insert(Factor).second) 1673 continue; 1674 unsigned Occ = ++FactorOccurrences[Factor]; 1675 if (Occ > MaxOcc) { 1676 MaxOcc = Occ; 1677 MaxOccVal = Factor; 1678 } 1679 } 1680 } 1681 } 1682 } 1683 1684 // If any factor occurred more than one time, we can pull it out. 1685 if (MaxOcc > 1) { 1686 LLVM_DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal 1687 << '\n'); 1688 ++NumFactor; 1689 1690 // Create a new instruction that uses the MaxOccVal twice. If we don't do 1691 // this, we could otherwise run into situations where removing a factor 1692 // from an expression will drop a use of maxocc, and this can cause 1693 // RemoveFactorFromExpression on successive values to behave differently. 1694 Instruction *DummyInst = 1695 I->getType()->isIntOrIntVectorTy() 1696 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal) 1697 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal); 1698 1699 SmallVector<WeakTrackingVH, 4> NewMulOps; 1700 for (unsigned i = 0; i != Ops.size(); ++i) { 1701 // Only try to remove factors from expressions we're allowed to. 1702 BinaryOperator *BOp = 1703 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul); 1704 if (!BOp) 1705 continue; 1706 1707 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) { 1708 // The factorized operand may occur several times. Convert them all in 1709 // one fell swoop. 1710 for (unsigned j = Ops.size(); j != i;) { 1711 --j; 1712 if (Ops[j].Op == Ops[i].Op) { 1713 NewMulOps.push_back(V); 1714 Ops.erase(Ops.begin()+j); 1715 } 1716 } 1717 --i; 1718 } 1719 } 1720 1721 // No need for extra uses anymore. 1722 DummyInst->deleteValue(); 1723 1724 unsigned NumAddedValues = NewMulOps.size(); 1725 Value *V = EmitAddTreeOfValues(I, NewMulOps); 1726 1727 // Now that we have inserted the add tree, optimize it. This allows us to 1728 // handle cases that require multiple factoring steps, such as this: 1729 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C)) 1730 assert(NumAddedValues > 1 && "Each occurrence should contribute a value"); 1731 (void)NumAddedValues; 1732 if (Instruction *VI = dyn_cast<Instruction>(V)) 1733 RedoInsts.insert(VI); 1734 1735 // Create the multiply. 1736 Instruction *V2 = CreateMul(V, MaxOccVal, "reass.mul", I, I); 1737 1738 // Rerun associate on the multiply in case the inner expression turned into 1739 // a multiply. We want to make sure that we keep things in canonical form. 1740 RedoInsts.insert(V2); 1741 1742 // If every add operand included the factor (e.g. "A*B + A*C"), then the 1743 // entire result expression is just the multiply "A*(B+C)". 1744 if (Ops.empty()) 1745 return V2; 1746 1747 // Otherwise, we had some input that didn't have the factor, such as 1748 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of 1749 // things being added by this operation. 1750 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2)); 1751 } 1752 1753 return nullptr; 1754 } 1755 1756 /// Build up a vector of value/power pairs factoring a product. 1757 /// 1758 /// Given a series of multiplication operands, build a vector of factors and 1759 /// the powers each is raised to when forming the final product. Sort them in 1760 /// the order of descending power. 1761 /// 1762 /// (x*x) -> [(x, 2)] 1763 /// ((x*x)*x) -> [(x, 3)] 1764 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)] 1765 /// 1766 /// \returns Whether any factors have a power greater than one. 1767 static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops, 1768 SmallVectorImpl<Factor> &Factors) { 1769 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this. 1770 // Compute the sum of powers of simplifiable factors. 1771 unsigned FactorPowerSum = 0; 1772 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) { 1773 Value *Op = Ops[Idx-1].Op; 1774 1775 // Count the number of occurrences of this value. 1776 unsigned Count = 1; 1777 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx) 1778 ++Count; 1779 // Track for simplification all factors which occur 2 or more times. 1780 if (Count > 1) 1781 FactorPowerSum += Count; 1782 } 1783 1784 // We can only simplify factors if the sum of the powers of our simplifiable 1785 // factors is 4 or higher. When that is the case, we will *always* have 1786 // a simplification. This is an important invariant to prevent cyclicly 1787 // trying to simplify already minimal formations. 1788 if (FactorPowerSum < 4) 1789 return false; 1790 1791 // Now gather the simplifiable factors, removing them from Ops. 1792 FactorPowerSum = 0; 1793 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) { 1794 Value *Op = Ops[Idx-1].Op; 1795 1796 // Count the number of occurrences of this value. 1797 unsigned Count = 1; 1798 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx) 1799 ++Count; 1800 if (Count == 1) 1801 continue; 1802 // Move an even number of occurrences to Factors. 1803 Count &= ~1U; 1804 Idx -= Count; 1805 FactorPowerSum += Count; 1806 Factors.push_back(Factor(Op, Count)); 1807 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count); 1808 } 1809 1810 // None of the adjustments above should have reduced the sum of factor powers 1811 // below our mininum of '4'. 1812 assert(FactorPowerSum >= 4); 1813 1814 llvm::stable_sort(Factors, [](const Factor &LHS, const Factor &RHS) { 1815 return LHS.Power > RHS.Power; 1816 }); 1817 return true; 1818 } 1819 1820 /// Build a tree of multiplies, computing the product of Ops. 1821 static Value *buildMultiplyTree(IRBuilderBase &Builder, 1822 SmallVectorImpl<Value*> &Ops) { 1823 if (Ops.size() == 1) 1824 return Ops.back(); 1825 1826 Value *LHS = Ops.pop_back_val(); 1827 do { 1828 if (LHS->getType()->isIntOrIntVectorTy()) 1829 LHS = Builder.CreateMul(LHS, Ops.pop_back_val()); 1830 else 1831 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val()); 1832 } while (!Ops.empty()); 1833 1834 return LHS; 1835 } 1836 1837 /// Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*... 1838 /// 1839 /// Given a vector of values raised to various powers, where no two values are 1840 /// equal and the powers are sorted in decreasing order, compute the minimal 1841 /// DAG of multiplies to compute the final product, and return that product 1842 /// value. 1843 Value * 1844 ReassociatePass::buildMinimalMultiplyDAG(IRBuilderBase &Builder, 1845 SmallVectorImpl<Factor> &Factors) { 1846 assert(Factors[0].Power); 1847 SmallVector<Value *, 4> OuterProduct; 1848 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size(); 1849 Idx < Size && Factors[Idx].Power > 0; ++Idx) { 1850 if (Factors[Idx].Power != Factors[LastIdx].Power) { 1851 LastIdx = Idx; 1852 continue; 1853 } 1854 1855 // We want to multiply across all the factors with the same power so that 1856 // we can raise them to that power as a single entity. Build a mini tree 1857 // for that. 1858 SmallVector<Value *, 4> InnerProduct; 1859 InnerProduct.push_back(Factors[LastIdx].Base); 1860 do { 1861 InnerProduct.push_back(Factors[Idx].Base); 1862 ++Idx; 1863 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power); 1864 1865 // Reset the base value of the first factor to the new expression tree. 1866 // We'll remove all the factors with the same power in a second pass. 1867 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct); 1868 if (Instruction *MI = dyn_cast<Instruction>(M)) 1869 RedoInsts.insert(MI); 1870 1871 LastIdx = Idx; 1872 } 1873 // Unique factors with equal powers -- we've folded them into the first one's 1874 // base. 1875 Factors.erase(std::unique(Factors.begin(), Factors.end(), 1876 [](const Factor &LHS, const Factor &RHS) { 1877 return LHS.Power == RHS.Power; 1878 }), 1879 Factors.end()); 1880 1881 // Iteratively collect the base of each factor with an add power into the 1882 // outer product, and halve each power in preparation for squaring the 1883 // expression. 1884 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) { 1885 if (Factors[Idx].Power & 1) 1886 OuterProduct.push_back(Factors[Idx].Base); 1887 Factors[Idx].Power >>= 1; 1888 } 1889 if (Factors[0].Power) { 1890 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors); 1891 OuterProduct.push_back(SquareRoot); 1892 OuterProduct.push_back(SquareRoot); 1893 } 1894 if (OuterProduct.size() == 1) 1895 return OuterProduct.front(); 1896 1897 Value *V = buildMultiplyTree(Builder, OuterProduct); 1898 return V; 1899 } 1900 1901 Value *ReassociatePass::OptimizeMul(BinaryOperator *I, 1902 SmallVectorImpl<ValueEntry> &Ops) { 1903 // We can only optimize the multiplies when there is a chain of more than 1904 // three, such that a balanced tree might require fewer total multiplies. 1905 if (Ops.size() < 4) 1906 return nullptr; 1907 1908 // Try to turn linear trees of multiplies without other uses of the 1909 // intermediate stages into minimal multiply DAGs with perfect sub-expression 1910 // re-use. 1911 SmallVector<Factor, 4> Factors; 1912 if (!collectMultiplyFactors(Ops, Factors)) 1913 return nullptr; // All distinct factors, so nothing left for us to do. 1914 1915 IRBuilder<> Builder(I); 1916 // The reassociate transformation for FP operations is performed only 1917 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags 1918 // to the newly generated operations. 1919 if (auto FPI = dyn_cast<FPMathOperator>(I)) 1920 Builder.setFastMathFlags(FPI->getFastMathFlags()); 1921 1922 Value *V = buildMinimalMultiplyDAG(Builder, Factors); 1923 if (Ops.empty()) 1924 return V; 1925 1926 ValueEntry NewEntry = ValueEntry(getRank(V), V); 1927 Ops.insert(llvm::lower_bound(Ops, NewEntry), NewEntry); 1928 return nullptr; 1929 } 1930 1931 Value *ReassociatePass::OptimizeExpression(BinaryOperator *I, 1932 SmallVectorImpl<ValueEntry> &Ops) { 1933 // Now that we have the linearized expression tree, try to optimize it. 1934 // Start by folding any constants that we found. 1935 Constant *Cst = nullptr; 1936 unsigned Opcode = I->getOpcode(); 1937 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) { 1938 Constant *C = cast<Constant>(Ops.pop_back_val().Op); 1939 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C; 1940 } 1941 // If there was nothing but constants then we are done. 1942 if (Ops.empty()) 1943 return Cst; 1944 1945 // Put the combined constant back at the end of the operand list, except if 1946 // there is no point. For example, an add of 0 gets dropped here, while a 1947 // multiplication by zero turns the whole expression into zero. 1948 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) { 1949 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType())) 1950 return Cst; 1951 Ops.push_back(ValueEntry(0, Cst)); 1952 } 1953 1954 if (Ops.size() == 1) return Ops[0].Op; 1955 1956 // Handle destructive annihilation due to identities between elements in the 1957 // argument list here. 1958 unsigned NumOps = Ops.size(); 1959 switch (Opcode) { 1960 default: break; 1961 case Instruction::And: 1962 case Instruction::Or: 1963 if (Value *Result = OptimizeAndOrXor(Opcode, Ops)) 1964 return Result; 1965 break; 1966 1967 case Instruction::Xor: 1968 if (Value *Result = OptimizeXor(I, Ops)) 1969 return Result; 1970 break; 1971 1972 case Instruction::Add: 1973 case Instruction::FAdd: 1974 if (Value *Result = OptimizeAdd(I, Ops)) 1975 return Result; 1976 break; 1977 1978 case Instruction::Mul: 1979 case Instruction::FMul: 1980 if (Value *Result = OptimizeMul(I, Ops)) 1981 return Result; 1982 break; 1983 } 1984 1985 if (Ops.size() != NumOps) 1986 return OptimizeExpression(I, Ops); 1987 return nullptr; 1988 } 1989 1990 // Remove dead instructions and if any operands are trivially dead add them to 1991 // Insts so they will be removed as well. 1992 void ReassociatePass::RecursivelyEraseDeadInsts(Instruction *I, 1993 OrderedSet &Insts) { 1994 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 1995 SmallVector<Value *, 4> Ops(I->operands()); 1996 ValueRankMap.erase(I); 1997 Insts.remove(I); 1998 RedoInsts.remove(I); 1999 llvm::salvageDebugInfo(*I); 2000 I->eraseFromParent(); 2001 for (auto Op : Ops) 2002 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 2003 if (OpInst->use_empty()) 2004 Insts.insert(OpInst); 2005 } 2006 2007 /// Zap the given instruction, adding interesting operands to the work list. 2008 void ReassociatePass::EraseInst(Instruction *I) { 2009 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!"); 2010 LLVM_DEBUG(dbgs() << "Erasing dead inst: "; I->dump()); 2011 2012 SmallVector<Value *, 8> Ops(I->operands()); 2013 // Erase the dead instruction. 2014 ValueRankMap.erase(I); 2015 RedoInsts.remove(I); 2016 llvm::salvageDebugInfo(*I); 2017 I->eraseFromParent(); 2018 // Optimize its operands. 2019 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes. 2020 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2021 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) { 2022 // If this is a node in an expression tree, climb to the expression root 2023 // and add that since that's where optimization actually happens. 2024 unsigned Opcode = Op->getOpcode(); 2025 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode && 2026 Visited.insert(Op).second) 2027 Op = Op->user_back(); 2028 2029 // The instruction we're going to push may be coming from a 2030 // dead block, and Reassociate skips the processing of unreachable 2031 // blocks because it's a waste of time and also because it can 2032 // lead to infinite loop due to LLVM's non-standard definition 2033 // of dominance. 2034 if (ValueRankMap.find(Op) != ValueRankMap.end()) 2035 RedoInsts.insert(Op); 2036 } 2037 2038 MadeChange = true; 2039 } 2040 2041 /// Recursively analyze an expression to build a list of instructions that have 2042 /// negative floating-point constant operands. The caller can then transform 2043 /// the list to create positive constants for better reassociation and CSE. 2044 static void getNegatibleInsts(Value *V, 2045 SmallVectorImpl<Instruction *> &Candidates) { 2046 // Handle only one-use instructions. Combining negations does not justify 2047 // replicating instructions. 2048 Instruction *I; 2049 if (!match(V, m_OneUse(m_Instruction(I)))) 2050 return; 2051 2052 // Handle expressions of multiplications and divisions. 2053 // TODO: This could look through floating-point casts. 2054 const APFloat *C; 2055 switch (I->getOpcode()) { 2056 case Instruction::FMul: 2057 // Not expecting non-canonical code here. Bail out and wait. 2058 if (match(I->getOperand(0), m_Constant())) 2059 break; 2060 2061 if (match(I->getOperand(1), m_APFloat(C)) && C->isNegative()) { 2062 Candidates.push_back(I); 2063 LLVM_DEBUG(dbgs() << "FMul with negative constant: " << *I << '\n'); 2064 } 2065 getNegatibleInsts(I->getOperand(0), Candidates); 2066 getNegatibleInsts(I->getOperand(1), Candidates); 2067 break; 2068 case Instruction::FDiv: 2069 // Not expecting non-canonical code here. Bail out and wait. 2070 if (match(I->getOperand(0), m_Constant()) && 2071 match(I->getOperand(1), m_Constant())) 2072 break; 2073 2074 if ((match(I->getOperand(0), m_APFloat(C)) && C->isNegative()) || 2075 (match(I->getOperand(1), m_APFloat(C)) && C->isNegative())) { 2076 Candidates.push_back(I); 2077 LLVM_DEBUG(dbgs() << "FDiv with negative constant: " << *I << '\n'); 2078 } 2079 getNegatibleInsts(I->getOperand(0), Candidates); 2080 getNegatibleInsts(I->getOperand(1), Candidates); 2081 break; 2082 default: 2083 break; 2084 } 2085 } 2086 2087 /// Given an fadd/fsub with an operand that is a one-use instruction 2088 /// (the fadd/fsub), try to change negative floating-point constants into 2089 /// positive constants to increase potential for reassociation and CSE. 2090 Instruction *ReassociatePass::canonicalizeNegFPConstantsForOp(Instruction *I, 2091 Instruction *Op, 2092 Value *OtherOp) { 2093 assert((I->getOpcode() == Instruction::FAdd || 2094 I->getOpcode() == Instruction::FSub) && "Expected fadd/fsub"); 2095 2096 // Collect instructions with negative FP constants from the subtree that ends 2097 // in Op. 2098 SmallVector<Instruction *, 4> Candidates; 2099 getNegatibleInsts(Op, Candidates); 2100 if (Candidates.empty()) 2101 return nullptr; 2102 2103 // Don't canonicalize x + (-Constant * y) -> x - (Constant * y), if the 2104 // resulting subtract will be broken up later. This can get us into an 2105 // infinite loop during reassociation. 2106 bool IsFSub = I->getOpcode() == Instruction::FSub; 2107 bool NeedsSubtract = !IsFSub && Candidates.size() % 2 == 1; 2108 if (NeedsSubtract && ShouldBreakUpSubtract(I)) 2109 return nullptr; 2110 2111 for (Instruction *Negatible : Candidates) { 2112 const APFloat *C; 2113 if (match(Negatible->getOperand(0), m_APFloat(C))) { 2114 assert(!match(Negatible->getOperand(1), m_Constant()) && 2115 "Expecting only 1 constant operand"); 2116 assert(C->isNegative() && "Expected negative FP constant"); 2117 Negatible->setOperand(0, ConstantFP::get(Negatible->getType(), abs(*C))); 2118 MadeChange = true; 2119 } 2120 if (match(Negatible->getOperand(1), m_APFloat(C))) { 2121 assert(!match(Negatible->getOperand(0), m_Constant()) && 2122 "Expecting only 1 constant operand"); 2123 assert(C->isNegative() && "Expected negative FP constant"); 2124 Negatible->setOperand(1, ConstantFP::get(Negatible->getType(), abs(*C))); 2125 MadeChange = true; 2126 } 2127 } 2128 assert(MadeChange == true && "Negative constant candidate was not changed"); 2129 2130 // Negations cancelled out. 2131 if (Candidates.size() % 2 == 0) 2132 return I; 2133 2134 // Negate the final operand in the expression by flipping the opcode of this 2135 // fadd/fsub. 2136 assert(Candidates.size() % 2 == 1 && "Expected odd number"); 2137 IRBuilder<> Builder(I); 2138 Value *NewInst = IsFSub ? Builder.CreateFAddFMF(OtherOp, Op, I) 2139 : Builder.CreateFSubFMF(OtherOp, Op, I); 2140 I->replaceAllUsesWith(NewInst); 2141 RedoInsts.insert(I); 2142 return dyn_cast<Instruction>(NewInst); 2143 } 2144 2145 /// Canonicalize expressions that contain a negative floating-point constant 2146 /// of the following form: 2147 /// OtherOp + (subtree) -> OtherOp {+/-} (canonical subtree) 2148 /// (subtree) + OtherOp -> OtherOp {+/-} (canonical subtree) 2149 /// OtherOp - (subtree) -> OtherOp {+/-} (canonical subtree) 2150 /// 2151 /// The fadd/fsub opcode may be switched to allow folding a negation into the 2152 /// input instruction. 2153 Instruction *ReassociatePass::canonicalizeNegFPConstants(Instruction *I) { 2154 LLVM_DEBUG(dbgs() << "Combine negations for: " << *I << '\n'); 2155 Value *X; 2156 Instruction *Op; 2157 if (match(I, m_FAdd(m_Value(X), m_OneUse(m_Instruction(Op))))) 2158 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2159 I = R; 2160 if (match(I, m_FAdd(m_OneUse(m_Instruction(Op)), m_Value(X)))) 2161 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2162 I = R; 2163 if (match(I, m_FSub(m_Value(X), m_OneUse(m_Instruction(Op))))) 2164 if (Instruction *R = canonicalizeNegFPConstantsForOp(I, Op, X)) 2165 I = R; 2166 return I; 2167 } 2168 2169 /// Inspect and optimize the given instruction. Note that erasing 2170 /// instructions is not allowed. 2171 void ReassociatePass::OptimizeInst(Instruction *I) { 2172 // Only consider operations that we understand. 2173 if (!isa<UnaryOperator>(I) && !isa<BinaryOperator>(I)) 2174 return; 2175 2176 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1))) 2177 // If an operand of this shift is a reassociable multiply, or if the shift 2178 // is used by a reassociable multiply or add, turn into a multiply. 2179 if (isReassociableOp(I->getOperand(0), Instruction::Mul) || 2180 (I->hasOneUse() && 2181 (isReassociableOp(I->user_back(), Instruction::Mul) || 2182 isReassociableOp(I->user_back(), Instruction::Add)))) { 2183 Instruction *NI = ConvertShiftToMul(I); 2184 RedoInsts.insert(I); 2185 MadeChange = true; 2186 I = NI; 2187 } 2188 2189 // Commute binary operators, to canonicalize the order of their operands. 2190 // This can potentially expose more CSE opportunities, and makes writing other 2191 // transformations simpler. 2192 if (I->isCommutative()) 2193 canonicalizeOperands(I); 2194 2195 // Canonicalize negative constants out of expressions. 2196 if (Instruction *Res = canonicalizeNegFPConstants(I)) 2197 I = Res; 2198 2199 // Don't optimize floating-point instructions unless they are 'fast'. 2200 if (I->getType()->isFPOrFPVectorTy() && !I->isFast()) 2201 return; 2202 2203 // Do not reassociate boolean (i1) expressions. We want to preserve the 2204 // original order of evaluation for short-circuited comparisons that 2205 // SimplifyCFG has folded to AND/OR expressions. If the expression 2206 // is not further optimized, it is likely to be transformed back to a 2207 // short-circuited form for code gen, and the source order may have been 2208 // optimized for the most likely conditions. 2209 if (I->getType()->isIntegerTy(1)) 2210 return; 2211 2212 // If this is a bitwise or instruction of operands 2213 // with no common bits set, convert it to X+Y. 2214 if (I->getOpcode() == Instruction::Or && 2215 shouldConvertOrWithNoCommonBitsToAdd(I) && !isLoadCombineCandidate(I) && 2216 haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), 2217 I->getModule()->getDataLayout(), /*AC=*/nullptr, I, 2218 /*DT=*/nullptr)) { 2219 Instruction *NI = convertOrWithNoCommonBitsToAdd(I); 2220 RedoInsts.insert(I); 2221 MadeChange = true; 2222 I = NI; 2223 } 2224 2225 // If this is a subtract instruction which is not already in negate form, 2226 // see if we can convert it to X+-Y. 2227 if (I->getOpcode() == Instruction::Sub) { 2228 if (ShouldBreakUpSubtract(I)) { 2229 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2230 RedoInsts.insert(I); 2231 MadeChange = true; 2232 I = NI; 2233 } else if (match(I, m_Neg(m_Value()))) { 2234 // Otherwise, this is a negation. See if the operand is a multiply tree 2235 // and if this is not an inner node of a multiply tree. 2236 if (isReassociableOp(I->getOperand(1), Instruction::Mul) && 2237 (!I->hasOneUse() || 2238 !isReassociableOp(I->user_back(), Instruction::Mul))) { 2239 Instruction *NI = LowerNegateToMultiply(I); 2240 // If the negate was simplified, revisit the users to see if we can 2241 // reassociate further. 2242 for (User *U : NI->users()) { 2243 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2244 RedoInsts.insert(Tmp); 2245 } 2246 RedoInsts.insert(I); 2247 MadeChange = true; 2248 I = NI; 2249 } 2250 } 2251 } else if (I->getOpcode() == Instruction::FNeg || 2252 I->getOpcode() == Instruction::FSub) { 2253 if (ShouldBreakUpSubtract(I)) { 2254 Instruction *NI = BreakUpSubtract(I, RedoInsts); 2255 RedoInsts.insert(I); 2256 MadeChange = true; 2257 I = NI; 2258 } else if (match(I, m_FNeg(m_Value()))) { 2259 // Otherwise, this is a negation. See if the operand is a multiply tree 2260 // and if this is not an inner node of a multiply tree. 2261 Value *Op = isa<BinaryOperator>(I) ? I->getOperand(1) : 2262 I->getOperand(0); 2263 if (isReassociableOp(Op, Instruction::FMul) && 2264 (!I->hasOneUse() || 2265 !isReassociableOp(I->user_back(), Instruction::FMul))) { 2266 // If the negate was simplified, revisit the users to see if we can 2267 // reassociate further. 2268 Instruction *NI = LowerNegateToMultiply(I); 2269 for (User *U : NI->users()) { 2270 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U)) 2271 RedoInsts.insert(Tmp); 2272 } 2273 RedoInsts.insert(I); 2274 MadeChange = true; 2275 I = NI; 2276 } 2277 } 2278 } 2279 2280 // If this instruction is an associative binary operator, process it. 2281 if (!I->isAssociative()) return; 2282 BinaryOperator *BO = cast<BinaryOperator>(I); 2283 2284 // If this is an interior node of a reassociable tree, ignore it until we 2285 // get to the root of the tree, to avoid N^2 analysis. 2286 unsigned Opcode = BO->getOpcode(); 2287 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) { 2288 // During the initial run we will get to the root of the tree. 2289 // But if we get here while we are redoing instructions, there is no 2290 // guarantee that the root will be visited. So Redo later 2291 if (BO->user_back() != BO && 2292 BO->getParent() == BO->user_back()->getParent()) 2293 RedoInsts.insert(BO->user_back()); 2294 return; 2295 } 2296 2297 // If this is an add tree that is used by a sub instruction, ignore it 2298 // until we process the subtract. 2299 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add && 2300 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub) 2301 return; 2302 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd && 2303 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub) 2304 return; 2305 2306 ReassociateExpression(BO); 2307 } 2308 2309 void ReassociatePass::ReassociateExpression(BinaryOperator *I) { 2310 // First, walk the expression tree, linearizing the tree, collecting the 2311 // operand information. 2312 SmallVector<RepeatedValue, 8> Tree; 2313 MadeChange |= LinearizeExprTree(I, Tree); 2314 SmallVector<ValueEntry, 8> Ops; 2315 Ops.reserve(Tree.size()); 2316 for (unsigned i = 0, e = Tree.size(); i != e; ++i) { 2317 RepeatedValue E = Tree[i]; 2318 Ops.append(E.second.getZExtValue(), 2319 ValueEntry(getRank(E.first), E.first)); 2320 } 2321 2322 LLVM_DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2323 2324 // Now that we have linearized the tree to a list and have gathered all of 2325 // the operands and their ranks, sort the operands by their rank. Use a 2326 // stable_sort so that values with equal ranks will have their relative 2327 // positions maintained (and so the compiler is deterministic). Note that 2328 // this sorts so that the highest ranking values end up at the beginning of 2329 // the vector. 2330 llvm::stable_sort(Ops); 2331 2332 // Now that we have the expression tree in a convenient 2333 // sorted form, optimize it globally if possible. 2334 if (Value *V = OptimizeExpression(I, Ops)) { 2335 if (V == I) 2336 // Self-referential expression in unreachable code. 2337 return; 2338 // This expression tree simplified to something that isn't a tree, 2339 // eliminate it. 2340 LLVM_DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n'); 2341 I->replaceAllUsesWith(V); 2342 if (Instruction *VI = dyn_cast<Instruction>(V)) 2343 if (I->getDebugLoc()) 2344 VI->setDebugLoc(I->getDebugLoc()); 2345 RedoInsts.insert(I); 2346 ++NumAnnihil; 2347 return; 2348 } 2349 2350 // We want to sink immediates as deeply as possible except in the case where 2351 // this is a multiply tree used only by an add, and the immediate is a -1. 2352 // In this case we reassociate to put the negation on the outside so that we 2353 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y 2354 if (I->hasOneUse()) { 2355 if (I->getOpcode() == Instruction::Mul && 2356 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add && 2357 isa<ConstantInt>(Ops.back().Op) && 2358 cast<ConstantInt>(Ops.back().Op)->isMinusOne()) { 2359 ValueEntry Tmp = Ops.pop_back_val(); 2360 Ops.insert(Ops.begin(), Tmp); 2361 } else if (I->getOpcode() == Instruction::FMul && 2362 cast<Instruction>(I->user_back())->getOpcode() == 2363 Instruction::FAdd && 2364 isa<ConstantFP>(Ops.back().Op) && 2365 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) { 2366 ValueEntry Tmp = Ops.pop_back_val(); 2367 Ops.insert(Ops.begin(), Tmp); 2368 } 2369 } 2370 2371 LLVM_DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n'); 2372 2373 if (Ops.size() == 1) { 2374 if (Ops[0].Op == I) 2375 // Self-referential expression in unreachable code. 2376 return; 2377 2378 // This expression tree simplified to something that isn't a tree, 2379 // eliminate it. 2380 I->replaceAllUsesWith(Ops[0].Op); 2381 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op)) 2382 OI->setDebugLoc(I->getDebugLoc()); 2383 RedoInsts.insert(I); 2384 return; 2385 } 2386 2387 if (Ops.size() > 2 && Ops.size() <= GlobalReassociateLimit) { 2388 // Find the pair with the highest count in the pairmap and move it to the 2389 // back of the list so that it can later be CSE'd. 2390 // example: 2391 // a*b*c*d*e 2392 // if c*e is the most "popular" pair, we can express this as 2393 // (((c*e)*d)*b)*a 2394 unsigned Max = 1; 2395 unsigned BestRank = 0; 2396 std::pair<unsigned, unsigned> BestPair; 2397 unsigned Idx = I->getOpcode() - Instruction::BinaryOpsBegin; 2398 for (unsigned i = 0; i < Ops.size() - 1; ++i) 2399 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2400 unsigned Score = 0; 2401 Value *Op0 = Ops[i].Op; 2402 Value *Op1 = Ops[j].Op; 2403 if (std::less<Value *>()(Op1, Op0)) 2404 std::swap(Op0, Op1); 2405 auto it = PairMap[Idx].find({Op0, Op1}); 2406 if (it != PairMap[Idx].end()) { 2407 // Functions like BreakUpSubtract() can erase the Values we're using 2408 // as keys and create new Values after we built the PairMap. There's a 2409 // small chance that the new nodes can have the same address as 2410 // something already in the table. We shouldn't accumulate the stored 2411 // score in that case as it refers to the wrong Value. 2412 if (it->second.isValid()) 2413 Score += it->second.Score; 2414 } 2415 2416 unsigned MaxRank = std::max(Ops[i].Rank, Ops[j].Rank); 2417 if (Score > Max || (Score == Max && MaxRank < BestRank)) { 2418 BestPair = {i, j}; 2419 Max = Score; 2420 BestRank = MaxRank; 2421 } 2422 } 2423 if (Max > 1) { 2424 auto Op0 = Ops[BestPair.first]; 2425 auto Op1 = Ops[BestPair.second]; 2426 Ops.erase(&Ops[BestPair.second]); 2427 Ops.erase(&Ops[BestPair.first]); 2428 Ops.push_back(Op0); 2429 Ops.push_back(Op1); 2430 } 2431 } 2432 // Now that we ordered and optimized the expressions, splat them back into 2433 // the expression tree, removing any unneeded nodes. 2434 RewriteExprTree(I, Ops); 2435 } 2436 2437 void 2438 ReassociatePass::BuildPairMap(ReversePostOrderTraversal<Function *> &RPOT) { 2439 // Make a "pairmap" of how often each operand pair occurs. 2440 for (BasicBlock *BI : RPOT) { 2441 for (Instruction &I : *BI) { 2442 if (!I.isAssociative()) 2443 continue; 2444 2445 // Ignore nodes that aren't at the root of trees. 2446 if (I.hasOneUse() && I.user_back()->getOpcode() == I.getOpcode()) 2447 continue; 2448 2449 // Collect all operands in a single reassociable expression. 2450 // Since Reassociate has already been run once, we can assume things 2451 // are already canonical according to Reassociation's regime. 2452 SmallVector<Value *, 8> Worklist = { I.getOperand(0), I.getOperand(1) }; 2453 SmallVector<Value *, 8> Ops; 2454 while (!Worklist.empty() && Ops.size() <= GlobalReassociateLimit) { 2455 Value *Op = Worklist.pop_back_val(); 2456 Instruction *OpI = dyn_cast<Instruction>(Op); 2457 if (!OpI || OpI->getOpcode() != I.getOpcode() || !OpI->hasOneUse()) { 2458 Ops.push_back(Op); 2459 continue; 2460 } 2461 // Be paranoid about self-referencing expressions in unreachable code. 2462 if (OpI->getOperand(0) != OpI) 2463 Worklist.push_back(OpI->getOperand(0)); 2464 if (OpI->getOperand(1) != OpI) 2465 Worklist.push_back(OpI->getOperand(1)); 2466 } 2467 // Skip extremely long expressions. 2468 if (Ops.size() > GlobalReassociateLimit) 2469 continue; 2470 2471 // Add all pairwise combinations of operands to the pair map. 2472 unsigned BinaryIdx = I.getOpcode() - Instruction::BinaryOpsBegin; 2473 SmallSet<std::pair<Value *, Value*>, 32> Visited; 2474 for (unsigned i = 0; i < Ops.size() - 1; ++i) { 2475 for (unsigned j = i + 1; j < Ops.size(); ++j) { 2476 // Canonicalize operand orderings. 2477 Value *Op0 = Ops[i]; 2478 Value *Op1 = Ops[j]; 2479 if (std::less<Value *>()(Op1, Op0)) 2480 std::swap(Op0, Op1); 2481 if (!Visited.insert({Op0, Op1}).second) 2482 continue; 2483 auto res = PairMap[BinaryIdx].insert({{Op0, Op1}, {Op0, Op1, 1}}); 2484 if (!res.second) { 2485 // If either key value has been erased then we've got the same 2486 // address by coincidence. That can't happen here because nothing is 2487 // erasing values but it can happen by the time we're querying the 2488 // map. 2489 assert(res.first->second.isValid() && "WeakVH invalidated"); 2490 ++res.first->second.Score; 2491 } 2492 } 2493 } 2494 } 2495 } 2496 } 2497 2498 PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) { 2499 // Get the functions basic blocks in Reverse Post Order. This order is used by 2500 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic 2501 // blocks (it has been seen that the analysis in this pass could hang when 2502 // analysing dead basic blocks). 2503 ReversePostOrderTraversal<Function *> RPOT(&F); 2504 2505 // Calculate the rank map for F. 2506 BuildRankMap(F, RPOT); 2507 2508 // Build the pair map before running reassociate. 2509 // Technically this would be more accurate if we did it after one round 2510 // of reassociation, but in practice it doesn't seem to help much on 2511 // real-world code, so don't waste the compile time running reassociate 2512 // twice. 2513 // If a user wants, they could expicitly run reassociate twice in their 2514 // pass pipeline for further potential gains. 2515 // It might also be possible to update the pair map during runtime, but the 2516 // overhead of that may be large if there's many reassociable chains. 2517 BuildPairMap(RPOT); 2518 2519 MadeChange = false; 2520 2521 // Traverse the same blocks that were analysed by BuildRankMap. 2522 for (BasicBlock *BI : RPOT) { 2523 assert(RankMap.count(&*BI) && "BB should be ranked."); 2524 // Optimize every instruction in the basic block. 2525 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) 2526 if (isInstructionTriviallyDead(&*II)) { 2527 EraseInst(&*II++); 2528 } else { 2529 OptimizeInst(&*II); 2530 assert(II->getParent() == &*BI && "Moved to a different block!"); 2531 ++II; 2532 } 2533 2534 // Make a copy of all the instructions to be redone so we can remove dead 2535 // instructions. 2536 OrderedSet ToRedo(RedoInsts); 2537 // Iterate over all instructions to be reevaluated and remove trivially dead 2538 // instructions. If any operand of the trivially dead instruction becomes 2539 // dead mark it for deletion as well. Continue this process until all 2540 // trivially dead instructions have been removed. 2541 while (!ToRedo.empty()) { 2542 Instruction *I = ToRedo.pop_back_val(); 2543 if (isInstructionTriviallyDead(I)) { 2544 RecursivelyEraseDeadInsts(I, ToRedo); 2545 MadeChange = true; 2546 } 2547 } 2548 2549 // Now that we have removed dead instructions, we can reoptimize the 2550 // remaining instructions. 2551 while (!RedoInsts.empty()) { 2552 Instruction *I = RedoInsts.front(); 2553 RedoInsts.erase(RedoInsts.begin()); 2554 if (isInstructionTriviallyDead(I)) 2555 EraseInst(I); 2556 else 2557 OptimizeInst(I); 2558 } 2559 } 2560 2561 // We are done with the rank map and pair map. 2562 RankMap.clear(); 2563 ValueRankMap.clear(); 2564 for (auto &Entry : PairMap) 2565 Entry.clear(); 2566 2567 if (MadeChange) { 2568 PreservedAnalyses PA; 2569 PA.preserveSet<CFGAnalyses>(); 2570 return PA; 2571 } 2572 2573 return PreservedAnalyses::all(); 2574 } 2575 2576 namespace { 2577 2578 class ReassociateLegacyPass : public FunctionPass { 2579 ReassociatePass Impl; 2580 2581 public: 2582 static char ID; // Pass identification, replacement for typeid 2583 2584 ReassociateLegacyPass() : FunctionPass(ID) { 2585 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 2586 } 2587 2588 bool runOnFunction(Function &F) override { 2589 if (skipFunction(F)) 2590 return false; 2591 2592 FunctionAnalysisManager DummyFAM; 2593 auto PA = Impl.run(F, DummyFAM); 2594 return !PA.areAllPreserved(); 2595 } 2596 2597 void getAnalysisUsage(AnalysisUsage &AU) const override { 2598 AU.setPreservesCFG(); 2599 AU.addPreserved<AAResultsWrapperPass>(); 2600 AU.addPreserved<BasicAAWrapperPass>(); 2601 AU.addPreserved<GlobalsAAWrapperPass>(); 2602 } 2603 }; 2604 2605 } // end anonymous namespace 2606 2607 char ReassociateLegacyPass::ID = 0; 2608 2609 INITIALIZE_PASS(ReassociateLegacyPass, "reassociate", 2610 "Reassociate expressions", false, false) 2611 2612 // Public interface to the Reassociate pass 2613 FunctionPass *llvm::createReassociatePass() { 2614 return new ReassociateLegacyPass(); 2615 } 2616