1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Place garbage collection safepoints at appropriate locations in the IR. This 10 // does not make relocation semantics or variable liveness explicit. That's 11 // done by RewriteStatepointsForGC. 12 // 13 // Terminology: 14 // - A call is said to be "parseable" if there is a stack map generated for the 15 // return PC of the call. A runtime can determine where values listed in the 16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located 17 // on the stack when the code is suspended inside such a call. Every parse 18 // point is represented by a call wrapped in an gc.statepoint intrinsic. 19 // - A "poll" is an explicit check in the generated code to determine if the 20 // runtime needs the generated code to cooperate by calling a helper routine 21 // and thus suspending its execution at a known state. The call to the helper 22 // routine will be parseable. The (gc & runtime specific) logic of a poll is 23 // assumed to be provided in a function of the name "gc.safepoint_poll". 24 // 25 // We aim to insert polls such that running code can quickly be brought to a 26 // well defined state for inspection by the collector. In the current 27 // implementation, this is done via the insertion of poll sites at method entry 28 // and the backedge of most loops. We try to avoid inserting more polls than 29 // are necessary to ensure a finite period between poll sites. This is not 30 // because the poll itself is expensive in the generated code; it's not. Polls 31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid 32 // perturbing the optimization of the method as much as we can. 33 // 34 // We also need to make most call sites parseable. The callee might execute a 35 // poll (or otherwise be inspected by the GC). If so, the entire stack 36 // (including the suspended frame of the current method) must be parseable. 37 // 38 // This pass will insert: 39 // - Call parse points ("call safepoints") for any call which may need to 40 // reach a safepoint during the execution of the callee function. 41 // - Backedge safepoint polls and entry safepoint polls to ensure that 42 // executing code reaches a safepoint poll in a finite amount of time. 43 // 44 // We do not currently support return statepoints, but adding them would not 45 // be hard. They are not required for correctness - entry safepoints are an 46 // alternative - but some GCs may prefer them. Patches welcome. 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/InitializePasses.h" 51 #include "llvm/Pass.h" 52 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/CFG.h" 56 #include "llvm/Analysis/ScalarEvolution.h" 57 #include "llvm/Analysis/TargetLibraryInfo.h" 58 #include "llvm/Transforms/Utils/Local.h" 59 #include "llvm/IR/Dominators.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/LegacyPassManager.h" 62 #include "llvm/IR/Statepoint.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 69 #define DEBUG_TYPE "safepoint-placement" 70 71 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted"); 72 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted"); 73 74 STATISTIC(CallInLoop, 75 "Number of loops without safepoints due to calls in loop"); 76 STATISTIC(FiniteExecution, 77 "Number of loops without safepoints finite execution"); 78 79 using namespace llvm; 80 81 // Ignore opportunities to avoid placing safepoints on backedges, useful for 82 // validation 83 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden, 84 cl::init(false)); 85 86 /// How narrow does the trip count of a loop have to be to have to be considered 87 /// "counted"? Counted loops do not get safepoints at backedges. 88 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width", 89 cl::Hidden, cl::init(32)); 90 91 // If true, split the backedge of a loop when placing the safepoint, otherwise 92 // split the latch block itself. Both are useful to support for 93 // experimentation, but in practice, it looks like splitting the backedge 94 // optimizes better. 95 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden, 96 cl::init(false)); 97 98 namespace { 99 100 /// An analysis pass whose purpose is to identify each of the backedges in 101 /// the function which require a safepoint poll to be inserted. 102 struct PlaceBackedgeSafepointsImpl : public FunctionPass { 103 static char ID; 104 105 /// The output of the pass - gives a list of each backedge (described by 106 /// pointing at the branch) which need a poll inserted. 107 std::vector<Instruction *> PollLocations; 108 109 /// True unless we're running spp-no-calls in which case we need to disable 110 /// the call-dependent placement opts. 111 bool CallSafepointsEnabled; 112 113 ScalarEvolution *SE = nullptr; 114 DominatorTree *DT = nullptr; 115 LoopInfo *LI = nullptr; 116 TargetLibraryInfo *TLI = nullptr; 117 118 PlaceBackedgeSafepointsImpl(bool CallSafepoints = false) 119 : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) { 120 initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry()); 121 } 122 123 bool runOnLoop(Loop *); 124 void runOnLoopAndSubLoops(Loop *L) { 125 // Visit all the subloops 126 for (Loop *I : *L) 127 runOnLoopAndSubLoops(I); 128 runOnLoop(L); 129 } 130 131 bool runOnFunction(Function &F) override { 132 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 133 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 134 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 135 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 136 for (Loop *I : *LI) { 137 runOnLoopAndSubLoops(I); 138 } 139 return false; 140 } 141 142 void getAnalysisUsage(AnalysisUsage &AU) const override { 143 AU.addRequired<DominatorTreeWrapperPass>(); 144 AU.addRequired<ScalarEvolutionWrapperPass>(); 145 AU.addRequired<LoopInfoWrapperPass>(); 146 AU.addRequired<TargetLibraryInfoWrapperPass>(); 147 // We no longer modify the IR at all in this pass. Thus all 148 // analysis are preserved. 149 AU.setPreservesAll(); 150 } 151 }; 152 } 153 154 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false)); 155 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false)); 156 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false)); 157 158 namespace { 159 struct PlaceSafepoints : public FunctionPass { 160 static char ID; // Pass identification, replacement for typeid 161 162 PlaceSafepoints() : FunctionPass(ID) { 163 initializePlaceSafepointsPass(*PassRegistry::getPassRegistry()); 164 } 165 bool runOnFunction(Function &F) override; 166 167 void getAnalysisUsage(AnalysisUsage &AU) const override { 168 // We modify the graph wholesale (inlining, block insertion, etc). We 169 // preserve nothing at the moment. We could potentially preserve dom tree 170 // if that was worth doing 171 AU.addRequired<TargetLibraryInfoWrapperPass>(); 172 } 173 }; 174 } 175 176 // Insert a safepoint poll immediately before the given instruction. Does 177 // not handle the parsability of state at the runtime call, that's the 178 // callers job. 179 static void 180 InsertSafepointPoll(Instruction *InsertBefore, 181 std::vector<CallBase *> &ParsePointsNeeded /*rval*/, 182 const TargetLibraryInfo &TLI); 183 184 static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) { 185 if (callsGCLeafFunction(Call, TLI)) 186 return false; 187 if (auto *CI = dyn_cast<CallInst>(Call)) { 188 if (CI->isInlineAsm()) 189 return false; 190 } 191 192 return !(isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) || 193 isa<GCResultInst>(Call)); 194 } 195 196 /// Returns true if this loop is known to contain a call safepoint which 197 /// must unconditionally execute on any iteration of the loop which returns 198 /// to the loop header via an edge from Pred. Returns a conservative correct 199 /// answer; i.e. false is always valid. 200 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header, 201 BasicBlock *Pred, 202 DominatorTree &DT, 203 const TargetLibraryInfo &TLI) { 204 // In general, we're looking for any cut of the graph which ensures 205 // there's a call safepoint along every edge between Header and Pred. 206 // For the moment, we look only for the 'cuts' that consist of a single call 207 // instruction in a block which is dominated by the Header and dominates the 208 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain 209 // of such dominating blocks gets substantially more occurrences than just 210 // checking the Pred and Header blocks themselves. This may be due to the 211 // density of loop exit conditions caused by range and null checks. 212 // TODO: structure this as an analysis pass, cache the result for subloops, 213 // avoid dom tree recalculations 214 assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?"); 215 216 BasicBlock *Current = Pred; 217 while (true) { 218 for (Instruction &I : *Current) { 219 if (auto *Call = dyn_cast<CallBase>(&I)) 220 // Note: Technically, needing a safepoint isn't quite the right 221 // condition here. We should instead be checking if the target method 222 // has an 223 // unconditional poll. In practice, this is only a theoretical concern 224 // since we don't have any methods with conditional-only safepoint 225 // polls. 226 if (needsStatepoint(Call, TLI)) 227 return true; 228 } 229 230 if (Current == Header) 231 break; 232 Current = DT.getNode(Current)->getIDom()->getBlock(); 233 } 234 235 return false; 236 } 237 238 /// Returns true if this loop is known to terminate in a finite number of 239 /// iterations. Note that this function may return false for a loop which 240 /// does actual terminate in a finite constant number of iterations due to 241 /// conservatism in the analysis. 242 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE, 243 BasicBlock *Pred) { 244 // A conservative bound on the loop as a whole. 245 const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L); 246 if (MaxTrips != SE->getCouldNotCompute() && 247 SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN( 248 CountedLoopTripWidth)) 249 return true; 250 251 // If this is a conditional branch to the header with the alternate path 252 // being outside the loop, we can ask questions about the execution frequency 253 // of the exit block. 254 if (L->isLoopExiting(Pred)) { 255 // This returns an exact expression only. TODO: We really only need an 256 // upper bound here, but SE doesn't expose that. 257 const SCEV *MaxExec = SE->getExitCount(L, Pred); 258 if (MaxExec != SE->getCouldNotCompute() && 259 SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN( 260 CountedLoopTripWidth)) 261 return true; 262 } 263 264 return /* not finite */ false; 265 } 266 267 static void scanOneBB(Instruction *Start, Instruction *End, 268 std::vector<CallInst *> &Calls, 269 DenseSet<BasicBlock *> &Seen, 270 std::vector<BasicBlock *> &Worklist) { 271 for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(), 272 BBE1 = BasicBlock::iterator(End); 273 BBI != BBE0 && BBI != BBE1; BBI++) { 274 if (CallInst *CI = dyn_cast<CallInst>(&*BBI)) 275 Calls.push_back(CI); 276 277 // FIXME: This code does not handle invokes 278 assert(!isa<InvokeInst>(&*BBI) && 279 "support for invokes in poll code needed"); 280 281 // Only add the successor blocks if we reach the terminator instruction 282 // without encountering end first 283 if (BBI->isTerminator()) { 284 BasicBlock *BB = BBI->getParent(); 285 for (BasicBlock *Succ : successors(BB)) { 286 if (Seen.insert(Succ).second) { 287 Worklist.push_back(Succ); 288 } 289 } 290 } 291 } 292 } 293 294 static void scanInlinedCode(Instruction *Start, Instruction *End, 295 std::vector<CallInst *> &Calls, 296 DenseSet<BasicBlock *> &Seen) { 297 Calls.clear(); 298 std::vector<BasicBlock *> Worklist; 299 Seen.insert(Start->getParent()); 300 scanOneBB(Start, End, Calls, Seen, Worklist); 301 while (!Worklist.empty()) { 302 BasicBlock *BB = Worklist.back(); 303 Worklist.pop_back(); 304 scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist); 305 } 306 } 307 308 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) { 309 // Loop through all loop latches (branches controlling backedges). We need 310 // to place a safepoint on every backedge (potentially). 311 // Note: In common usage, there will be only one edge due to LoopSimplify 312 // having run sometime earlier in the pipeline, but this code must be correct 313 // w.r.t. loops with multiple backedges. 314 BasicBlock *Header = L->getHeader(); 315 SmallVector<BasicBlock*, 16> LoopLatches; 316 L->getLoopLatches(LoopLatches); 317 for (BasicBlock *Pred : LoopLatches) { 318 assert(L->contains(Pred)); 319 320 // Make a policy decision about whether this loop needs a safepoint or 321 // not. Note that this is about unburdening the optimizer in loops, not 322 // avoiding the runtime cost of the actual safepoint. 323 if (!AllBackedges) { 324 if (mustBeFiniteCountedLoop(L, SE, Pred)) { 325 LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n"); 326 FiniteExecution++; 327 continue; 328 } 329 if (CallSafepointsEnabled && 330 containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) { 331 // Note: This is only semantically legal since we won't do any further 332 // IPO or inlining before the actual call insertion.. If we hadn't, we 333 // might latter loose this call safepoint. 334 LLVM_DEBUG( 335 dbgs() 336 << "skipping safepoint placement due to unconditional call\n"); 337 CallInLoop++; 338 continue; 339 } 340 } 341 342 // TODO: We can create an inner loop which runs a finite number of 343 // iterations with an outer loop which contains a safepoint. This would 344 // not help runtime performance that much, but it might help our ability to 345 // optimize the inner loop. 346 347 // Safepoint insertion would involve creating a new basic block (as the 348 // target of the current backedge) which does the safepoint (of all live 349 // variables) and branches to the true header 350 Instruction *Term = Pred->getTerminator(); 351 352 LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term); 353 354 PollLocations.push_back(Term); 355 } 356 357 return false; 358 } 359 360 /// Returns true if an entry safepoint is not required before this callsite in 361 /// the caller function. 362 static bool doesNotRequireEntrySafepointBefore(CallBase *Call) { 363 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) { 364 switch (II->getIntrinsicID()) { 365 case Intrinsic::experimental_gc_statepoint: 366 case Intrinsic::experimental_patchpoint_void: 367 case Intrinsic::experimental_patchpoint_i64: 368 // The can wrap an actual call which may grow the stack by an unbounded 369 // amount or run forever. 370 return false; 371 default: 372 // Most LLVM intrinsics are things which do not expand to actual calls, or 373 // at least if they do, are leaf functions that cause only finite stack 374 // growth. In particular, the optimizer likes to form things like memsets 375 // out of stores in the original IR. Another important example is 376 // llvm.localescape which must occur in the entry block. Inserting a 377 // safepoint before it is not legal since it could push the localescape 378 // out of the entry block. 379 return true; 380 } 381 } 382 return false; 383 } 384 385 static Instruction *findLocationForEntrySafepoint(Function &F, 386 DominatorTree &DT) { 387 388 // Conceptually, this poll needs to be on method entry, but in 389 // practice, we place it as late in the entry block as possible. We 390 // can place it as late as we want as long as it dominates all calls 391 // that can grow the stack. This, combined with backedge polls, 392 // give us all the progress guarantees we need. 393 394 // hasNextInstruction and nextInstruction are used to iterate 395 // through a "straight line" execution sequence. 396 397 auto HasNextInstruction = [](Instruction *I) { 398 if (!I->isTerminator()) 399 return true; 400 401 BasicBlock *nextBB = I->getParent()->getUniqueSuccessor(); 402 return nextBB && (nextBB->getUniquePredecessor() != nullptr); 403 }; 404 405 auto NextInstruction = [&](Instruction *I) { 406 assert(HasNextInstruction(I) && 407 "first check if there is a next instruction!"); 408 409 if (I->isTerminator()) 410 return &I->getParent()->getUniqueSuccessor()->front(); 411 return &*++I->getIterator(); 412 }; 413 414 Instruction *Cursor = nullptr; 415 for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor); 416 Cursor = NextInstruction(Cursor)) { 417 418 // We need to ensure a safepoint poll occurs before any 'real' call. The 419 // easiest way to ensure finite execution between safepoints in the face of 420 // recursive and mutually recursive functions is to enforce that each take 421 // a safepoint. Additionally, we need to ensure a poll before any call 422 // which can grow the stack by an unbounded amount. This isn't required 423 // for GC semantics per se, but is a common requirement for languages 424 // which detect stack overflow via guard pages and then throw exceptions. 425 if (auto *Call = dyn_cast<CallBase>(Cursor)) { 426 if (doesNotRequireEntrySafepointBefore(Call)) 427 continue; 428 break; 429 } 430 } 431 432 assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) && 433 "either we stopped because of a call, or because of terminator"); 434 435 return Cursor; 436 } 437 438 static const char *const GCSafepointPollName = "gc.safepoint_poll"; 439 440 static bool isGCSafepointPoll(Function &F) { 441 return F.getName().equals(GCSafepointPollName); 442 } 443 444 /// Returns true if this function should be rewritten to include safepoint 445 /// polls and parseable call sites. The main point of this function is to be 446 /// an extension point for custom logic. 447 static bool shouldRewriteFunction(Function &F) { 448 // TODO: This should check the GCStrategy 449 if (F.hasGC()) { 450 const auto &FunctionGCName = F.getGC(); 451 const StringRef StatepointExampleName("statepoint-example"); 452 const StringRef CoreCLRName("coreclr"); 453 return (StatepointExampleName == FunctionGCName) || 454 (CoreCLRName == FunctionGCName); 455 } else 456 return false; 457 } 458 459 // TODO: These should become properties of the GCStrategy, possibly with 460 // command line overrides. 461 static bool enableEntrySafepoints(Function &F) { return !NoEntry; } 462 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; } 463 static bool enableCallSafepoints(Function &F) { return !NoCall; } 464 465 bool PlaceSafepoints::runOnFunction(Function &F) { 466 if (F.isDeclaration() || F.empty()) { 467 // This is a declaration, nothing to do. Must exit early to avoid crash in 468 // dom tree calculation 469 return false; 470 } 471 472 if (isGCSafepointPoll(F)) { 473 // Given we're inlining this inside of safepoint poll insertion, this 474 // doesn't make any sense. Note that we do make any contained calls 475 // parseable after we inline a poll. 476 return false; 477 } 478 479 if (!shouldRewriteFunction(F)) 480 return false; 481 482 const TargetLibraryInfo &TLI = 483 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 484 485 bool Modified = false; 486 487 // In various bits below, we rely on the fact that uses are reachable from 488 // defs. When there are basic blocks unreachable from the entry, dominance 489 // and reachablity queries return non-sensical results. Thus, we preprocess 490 // the function to ensure these properties hold. 491 Modified |= removeUnreachableBlocks(F); 492 493 // STEP 1 - Insert the safepoint polling locations. We do not need to 494 // actually insert parse points yet. That will be done for all polls and 495 // calls in a single pass. 496 497 DominatorTree DT; 498 DT.recalculate(F); 499 500 SmallVector<Instruction *, 16> PollsNeeded; 501 std::vector<CallBase *> ParsePointNeeded; 502 503 if (enableBackedgeSafepoints(F)) { 504 // Construct a pass manager to run the LoopPass backedge logic. We 505 // need the pass manager to handle scheduling all the loop passes 506 // appropriately. Doing this by hand is painful and just not worth messing 507 // with for the moment. 508 legacy::FunctionPassManager FPM(F.getParent()); 509 bool CanAssumeCallSafepoints = enableCallSafepoints(F); 510 auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints); 511 FPM.add(PBS); 512 FPM.run(F); 513 514 // We preserve dominance information when inserting the poll, otherwise 515 // we'd have to recalculate this on every insert 516 DT.recalculate(F); 517 518 auto &PollLocations = PBS->PollLocations; 519 520 auto OrderByBBName = [](Instruction *a, Instruction *b) { 521 return a->getParent()->getName() < b->getParent()->getName(); 522 }; 523 // We need the order of list to be stable so that naming ends up stable 524 // when we split edges. This makes test cases much easier to write. 525 llvm::sort(PollLocations, OrderByBBName); 526 527 // We can sometimes end up with duplicate poll locations. This happens if 528 // a single loop is visited more than once. The fact this happens seems 529 // wrong, but it does happen for the split-backedge.ll test case. 530 PollLocations.erase(std::unique(PollLocations.begin(), 531 PollLocations.end()), 532 PollLocations.end()); 533 534 // Insert a poll at each point the analysis pass identified 535 // The poll location must be the terminator of a loop latch block. 536 for (Instruction *Term : PollLocations) { 537 // We are inserting a poll, the function is modified 538 Modified = true; 539 540 if (SplitBackedge) { 541 // Split the backedge of the loop and insert the poll within that new 542 // basic block. This creates a loop with two latches per original 543 // latch (which is non-ideal), but this appears to be easier to 544 // optimize in practice than inserting the poll immediately before the 545 // latch test. 546 547 // Since this is a latch, at least one of the successors must dominate 548 // it. Its possible that we have a) duplicate edges to the same header 549 // and b) edges to distinct loop headers. We need to insert pools on 550 // each. 551 SetVector<BasicBlock *> Headers; 552 for (unsigned i = 0; i < Term->getNumSuccessors(); i++) { 553 BasicBlock *Succ = Term->getSuccessor(i); 554 if (DT.dominates(Succ, Term->getParent())) { 555 Headers.insert(Succ); 556 } 557 } 558 assert(!Headers.empty() && "poll location is not a loop latch?"); 559 560 // The split loop structure here is so that we only need to recalculate 561 // the dominator tree once. Alternatively, we could just keep it up to 562 // date and use a more natural merged loop. 563 SetVector<BasicBlock *> SplitBackedges; 564 for (BasicBlock *Header : Headers) { 565 BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT); 566 PollsNeeded.push_back(NewBB->getTerminator()); 567 NumBackedgeSafepoints++; 568 } 569 } else { 570 // Split the latch block itself, right before the terminator. 571 PollsNeeded.push_back(Term); 572 NumBackedgeSafepoints++; 573 } 574 } 575 } 576 577 if (enableEntrySafepoints(F)) { 578 if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) { 579 PollsNeeded.push_back(Location); 580 Modified = true; 581 NumEntrySafepoints++; 582 } 583 // TODO: else we should assert that there was, in fact, a policy choice to 584 // not insert a entry safepoint poll. 585 } 586 587 // Now that we've identified all the needed safepoint poll locations, insert 588 // safepoint polls themselves. 589 for (Instruction *PollLocation : PollsNeeded) { 590 std::vector<CallBase *> RuntimeCalls; 591 InsertSafepointPoll(PollLocation, RuntimeCalls, TLI); 592 ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(), 593 RuntimeCalls.end()); 594 } 595 596 return Modified; 597 } 598 599 char PlaceBackedgeSafepointsImpl::ID = 0; 600 char PlaceSafepoints::ID = 0; 601 602 FunctionPass *llvm::createPlaceSafepointsPass() { 603 return new PlaceSafepoints(); 604 } 605 606 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl, 607 "place-backedge-safepoints-impl", 608 "Place Backedge Safepoints", false, false) 609 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 610 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 611 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 612 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl, 613 "place-backedge-safepoints-impl", 614 "Place Backedge Safepoints", false, false) 615 616 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints", 617 false, false) 618 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints", 619 false, false) 620 621 static void 622 InsertSafepointPoll(Instruction *InsertBefore, 623 std::vector<CallBase *> &ParsePointsNeeded /*rval*/, 624 const TargetLibraryInfo &TLI) { 625 BasicBlock *OrigBB = InsertBefore->getParent(); 626 Module *M = InsertBefore->getModule(); 627 assert(M && "must be part of a module"); 628 629 // Inline the safepoint poll implementation - this will get all the branch, 630 // control flow, etc.. Most importantly, it will introduce the actual slow 631 // path call - where we need to insert a safepoint (parsepoint). 632 633 auto *F = M->getFunction(GCSafepointPollName); 634 assert(F && "gc.safepoint_poll function is missing"); 635 assert(F->getValueType() == 636 FunctionType::get(Type::getVoidTy(M->getContext()), false) && 637 "gc.safepoint_poll declared with wrong type"); 638 assert(!F->empty() && "gc.safepoint_poll must be a non-empty function"); 639 CallInst *PollCall = CallInst::Create(F, "", InsertBefore); 640 641 // Record some information about the call site we're replacing 642 BasicBlock::iterator Before(PollCall), After(PollCall); 643 bool IsBegin = false; 644 if (Before == OrigBB->begin()) 645 IsBegin = true; 646 else 647 Before--; 648 649 After++; 650 assert(After != OrigBB->end() && "must have successor"); 651 652 // Do the actual inlining 653 InlineFunctionInfo IFI; 654 bool InlineStatus = InlineFunction(*PollCall, IFI).isSuccess(); 655 assert(InlineStatus && "inline must succeed"); 656 (void)InlineStatus; // suppress warning in release-asserts 657 658 // Check post-conditions 659 assert(IFI.StaticAllocas.empty() && "can't have allocs"); 660 661 std::vector<CallInst *> Calls; // new calls 662 DenseSet<BasicBlock *> BBs; // new BBs + insertee 663 664 // Include only the newly inserted instructions, Note: begin may not be valid 665 // if we inserted to the beginning of the basic block 666 BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before); 667 668 // If your poll function includes an unreachable at the end, that's not 669 // valid. Bugpoint likes to create this, so check for it. 670 assert(isPotentiallyReachable(&*Start, &*After) && 671 "malformed poll function"); 672 673 scanInlinedCode(&*Start, &*After, Calls, BBs); 674 assert(!Calls.empty() && "slow path not found for safepoint poll"); 675 676 // Record the fact we need a parsable state at the runtime call contained in 677 // the poll function. This is required so that the runtime knows how to 678 // parse the last frame when we actually take the safepoint (i.e. execute 679 // the slow path) 680 assert(ParsePointsNeeded.empty()); 681 for (auto *CI : Calls) { 682 // No safepoint needed or wanted 683 if (!needsStatepoint(CI, TLI)) 684 continue; 685 686 // These are likely runtime calls. Should we assert that via calling 687 // convention or something? 688 ParsePointsNeeded.push_back(CI); 689 } 690 assert(ParsePointsNeeded.size() <= Calls.size()); 691 } 692