1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Place garbage collection safepoints at appropriate locations in the IR. This 10 // does not make relocation semantics or variable liveness explicit. That's 11 // done by RewriteStatepointsForGC. 12 // 13 // Terminology: 14 // - A call is said to be "parseable" if there is a stack map generated for the 15 // return PC of the call. A runtime can determine where values listed in the 16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located 17 // on the stack when the code is suspended inside such a call. Every parse 18 // point is represented by a call wrapped in an gc.statepoint intrinsic. 19 // - A "poll" is an explicit check in the generated code to determine if the 20 // runtime needs the generated code to cooperate by calling a helper routine 21 // and thus suspending its execution at a known state. The call to the helper 22 // routine will be parseable. The (gc & runtime specific) logic of a poll is 23 // assumed to be provided in a function of the name "gc.safepoint_poll". 24 // 25 // We aim to insert polls such that running code can quickly be brought to a 26 // well defined state for inspection by the collector. In the current 27 // implementation, this is done via the insertion of poll sites at method entry 28 // and the backedge of most loops. We try to avoid inserting more polls than 29 // are necessary to ensure a finite period between poll sites. This is not 30 // because the poll itself is expensive in the generated code; it's not. Polls 31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid 32 // perturbing the optimization of the method as much as we can. 33 // 34 // We also need to make most call sites parseable. The callee might execute a 35 // poll (or otherwise be inspected by the GC). If so, the entire stack 36 // (including the suspended frame of the current method) must be parseable. 37 // 38 // This pass will insert: 39 // - Call parse points ("call safepoints") for any call which may need to 40 // reach a safepoint during the execution of the callee function. 41 // - Backedge safepoint polls and entry safepoint polls to ensure that 42 // executing code reaches a safepoint poll in a finite amount of time. 43 // 44 // We do not currently support return statepoints, but adding them would not 45 // be hard. They are not required for correctness - entry safepoints are an 46 // alternative - but some GCs may prefer them. Patches welcome. 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/Transforms/Scalar/PlaceSafepoints.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/CFG.h" 57 #include "llvm/Analysis/LoopInfo.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/TargetLibraryInfo.h" 60 #include "llvm/IR/Dominators.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/LegacyPassManager.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Statepoint.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Transforms/Scalar.h" 68 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 69 #include "llvm/Transforms/Utils/Cloning.h" 70 #include "llvm/Transforms/Utils/Local.h" 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "place-safepoints" 75 76 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted"); 77 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted"); 78 79 STATISTIC(CallInLoop, 80 "Number of loops without safepoints due to calls in loop"); 81 STATISTIC(FiniteExecution, 82 "Number of loops without safepoints finite execution"); 83 84 // Ignore opportunities to avoid placing safepoints on backedges, useful for 85 // validation 86 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden, 87 cl::init(false)); 88 89 /// How narrow does the trip count of a loop have to be to have to be considered 90 /// "counted"? Counted loops do not get safepoints at backedges. 91 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width", 92 cl::Hidden, cl::init(32)); 93 94 // If true, split the backedge of a loop when placing the safepoint, otherwise 95 // split the latch block itself. Both are useful to support for 96 // experimentation, but in practice, it looks like splitting the backedge 97 // optimizes better. 98 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden, 99 cl::init(false)); 100 101 namespace { 102 /// An analysis pass whose purpose is to identify each of the backedges in 103 /// the function which require a safepoint poll to be inserted. 104 class PlaceBackedgeSafepointsLegacyPass : public FunctionPass { 105 public: 106 static char ID; 107 108 /// The output of the pass - gives a list of each backedge (described by 109 /// pointing at the branch) which need a poll inserted. 110 std::vector<Instruction *> PollLocations; 111 112 /// True unless we're running spp-no-calls in which case we need to disable 113 /// the call-dependent placement opts. 114 bool CallSafepointsEnabled; 115 116 PlaceBackedgeSafepointsLegacyPass(bool CallSafepoints = false) 117 : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) { 118 initializePlaceBackedgeSafepointsLegacyPassPass( 119 *PassRegistry::getPassRegistry()); 120 } 121 122 bool runOnLoop(Loop *); 123 124 void runOnLoopAndSubLoops(Loop *L) { 125 // Visit all the subloops 126 for (Loop *I : *L) 127 runOnLoopAndSubLoops(I); 128 runOnLoop(L); 129 } 130 131 bool runOnFunction(Function &F) override { 132 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 133 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 134 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 135 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 136 for (Loop *I : *LI) { 137 runOnLoopAndSubLoops(I); 138 } 139 return false; 140 } 141 142 void getAnalysisUsage(AnalysisUsage &AU) const override { 143 AU.addRequired<DominatorTreeWrapperPass>(); 144 AU.addRequired<ScalarEvolutionWrapperPass>(); 145 AU.addRequired<LoopInfoWrapperPass>(); 146 AU.addRequired<TargetLibraryInfoWrapperPass>(); 147 // We no longer modify the IR at all in this pass. Thus all 148 // analysis are preserved. 149 AU.setPreservesAll(); 150 } 151 152 private: 153 ScalarEvolution *SE = nullptr; 154 DominatorTree *DT = nullptr; 155 LoopInfo *LI = nullptr; 156 TargetLibraryInfo *TLI = nullptr; 157 }; 158 } // namespace 159 160 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false)); 161 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false)); 162 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false)); 163 164 char PlaceBackedgeSafepointsLegacyPass::ID = 0; 165 166 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsLegacyPass, 167 "place-backedge-safepoints-impl", 168 "Place Backedge Safepoints", false, false) 169 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 172 INITIALIZE_PASS_END(PlaceBackedgeSafepointsLegacyPass, 173 "place-backedge-safepoints-impl", 174 "Place Backedge Safepoints", false, false) 175 176 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header, 177 BasicBlock *Pred, 178 DominatorTree &DT, 179 const TargetLibraryInfo &TLI); 180 181 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE, 182 BasicBlock *Pred); 183 184 static Instruction *findLocationForEntrySafepoint(Function &F, 185 DominatorTree &DT); 186 187 static bool isGCSafepointPoll(Function &F); 188 static bool shouldRewriteFunction(Function &F); 189 static bool enableEntrySafepoints(Function &F); 190 static bool enableBackedgeSafepoints(Function &F); 191 static bool enableCallSafepoints(Function &F); 192 193 static void 194 InsertSafepointPoll(BasicBlock::iterator InsertBefore, 195 std::vector<CallBase *> &ParsePointsNeeded /*rval*/, 196 const TargetLibraryInfo &TLI); 197 198 bool PlaceBackedgeSafepointsLegacyPass::runOnLoop(Loop *L) { 199 // Loop through all loop latches (branches controlling backedges). We need 200 // to place a safepoint on every backedge (potentially). 201 // Note: In common usage, there will be only one edge due to LoopSimplify 202 // having run sometime earlier in the pipeline, but this code must be correct 203 // w.r.t. loops with multiple backedges. 204 BasicBlock *Header = L->getHeader(); 205 SmallVector<BasicBlock *, 16> LoopLatches; 206 L->getLoopLatches(LoopLatches); 207 for (BasicBlock *Pred : LoopLatches) { 208 assert(L->contains(Pred)); 209 210 // Make a policy decision about whether this loop needs a safepoint or 211 // not. Note that this is about unburdening the optimizer in loops, not 212 // avoiding the runtime cost of the actual safepoint. 213 if (!AllBackedges) { 214 if (mustBeFiniteCountedLoop(L, SE, Pred)) { 215 LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n"); 216 FiniteExecution++; 217 continue; 218 } 219 if (CallSafepointsEnabled && 220 containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) { 221 // Note: This is only semantically legal since we won't do any further 222 // IPO or inlining before the actual call insertion.. If we hadn't, we 223 // might latter loose this call safepoint. 224 LLVM_DEBUG( 225 dbgs() 226 << "skipping safepoint placement due to unconditional call\n"); 227 CallInLoop++; 228 continue; 229 } 230 } 231 232 // TODO: We can create an inner loop which runs a finite number of 233 // iterations with an outer loop which contains a safepoint. This would 234 // not help runtime performance that much, but it might help our ability to 235 // optimize the inner loop. 236 237 // Safepoint insertion would involve creating a new basic block (as the 238 // target of the current backedge) which does the safepoint (of all live 239 // variables) and branches to the true header 240 Instruction *Term = Pred->getTerminator(); 241 242 LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term); 243 244 PollLocations.push_back(Term); 245 } 246 247 return false; 248 } 249 250 bool PlaceSafepointsPass::runImpl(Function &F, const TargetLibraryInfo &TLI) { 251 if (F.isDeclaration() || F.empty()) { 252 // This is a declaration, nothing to do. Must exit early to avoid crash in 253 // dom tree calculation 254 return false; 255 } 256 257 if (isGCSafepointPoll(F)) { 258 // Given we're inlining this inside of safepoint poll insertion, this 259 // doesn't make any sense. Note that we do make any contained calls 260 // parseable after we inline a poll. 261 return false; 262 } 263 264 if (!shouldRewriteFunction(F)) 265 return false; 266 267 bool Modified = false; 268 269 // In various bits below, we rely on the fact that uses are reachable from 270 // defs. When there are basic blocks unreachable from the entry, dominance 271 // and reachablity queries return non-sensical results. Thus, we preprocess 272 // the function to ensure these properties hold. 273 Modified |= removeUnreachableBlocks(F); 274 275 // STEP 1 - Insert the safepoint polling locations. We do not need to 276 // actually insert parse points yet. That will be done for all polls and 277 // calls in a single pass. 278 279 DominatorTree DT; 280 DT.recalculate(F); 281 282 SmallVector<Instruction *, 16> PollsNeeded; 283 std::vector<CallBase *> ParsePointNeeded; 284 285 if (enableBackedgeSafepoints(F)) { 286 // Construct a pass manager to run the LoopPass backedge logic. We 287 // need the pass manager to handle scheduling all the loop passes 288 // appropriately. Doing this by hand is painful and just not worth messing 289 // with for the moment. 290 legacy::FunctionPassManager FPM(F.getParent()); 291 bool CanAssumeCallSafepoints = enableCallSafepoints(F); 292 293 FPM.add(new TargetLibraryInfoWrapperPass(TLI)); 294 auto *PBS = new PlaceBackedgeSafepointsLegacyPass(CanAssumeCallSafepoints); 295 FPM.add(PBS); 296 FPM.run(F); 297 298 // We preserve dominance information when inserting the poll, otherwise 299 // we'd have to recalculate this on every insert 300 DT.recalculate(F); 301 302 auto &PollLocations = PBS->PollLocations; 303 304 auto OrderByBBName = [](Instruction *a, Instruction *b) { 305 return a->getParent()->getName() < b->getParent()->getName(); 306 }; 307 // We need the order of list to be stable so that naming ends up stable 308 // when we split edges. This makes test cases much easier to write. 309 llvm::sort(PollLocations, OrderByBBName); 310 311 // We can sometimes end up with duplicate poll locations. This happens if 312 // a single loop is visited more than once. The fact this happens seems 313 // wrong, but it does happen for the split-backedge.ll test case. 314 PollLocations.erase(llvm::unique(PollLocations), PollLocations.end()); 315 316 // Insert a poll at each point the analysis pass identified 317 // The poll location must be the terminator of a loop latch block. 318 for (Instruction *Term : PollLocations) { 319 // We are inserting a poll, the function is modified 320 Modified = true; 321 322 if (SplitBackedge) { 323 // Split the backedge of the loop and insert the poll within that new 324 // basic block. This creates a loop with two latches per original 325 // latch (which is non-ideal), but this appears to be easier to 326 // optimize in practice than inserting the poll immediately before the 327 // latch test. 328 329 // Since this is a latch, at least one of the successors must dominate 330 // it. Its possible that we have a) duplicate edges to the same header 331 // and b) edges to distinct loop headers. We need to insert pools on 332 // each. 333 SetVector<BasicBlock *> Headers; 334 for (unsigned i = 0; i < Term->getNumSuccessors(); i++) { 335 BasicBlock *Succ = Term->getSuccessor(i); 336 if (DT.dominates(Succ, Term->getParent())) { 337 Headers.insert(Succ); 338 } 339 } 340 assert(!Headers.empty() && "poll location is not a loop latch?"); 341 342 // The split loop structure here is so that we only need to recalculate 343 // the dominator tree once. Alternatively, we could just keep it up to 344 // date and use a more natural merged loop. 345 SetVector<BasicBlock *> SplitBackedges; 346 for (BasicBlock *Header : Headers) { 347 BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT); 348 PollsNeeded.push_back(NewBB->getTerminator()); 349 NumBackedgeSafepoints++; 350 } 351 } else { 352 // Split the latch block itself, right before the terminator. 353 PollsNeeded.push_back(Term); 354 NumBackedgeSafepoints++; 355 } 356 } 357 } 358 359 if (enableEntrySafepoints(F)) { 360 if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) { 361 PollsNeeded.push_back(Location); 362 Modified = true; 363 NumEntrySafepoints++; 364 } 365 // TODO: else we should assert that there was, in fact, a policy choice to 366 // not insert a entry safepoint poll. 367 } 368 369 // Now that we've identified all the needed safepoint poll locations, insert 370 // safepoint polls themselves. 371 for (Instruction *PollLocation : PollsNeeded) { 372 std::vector<CallBase *> RuntimeCalls; 373 InsertSafepointPoll(PollLocation->getIterator(), RuntimeCalls, TLI); 374 llvm::append_range(ParsePointNeeded, RuntimeCalls); 375 } 376 377 return Modified; 378 } 379 380 PreservedAnalyses PlaceSafepointsPass::run(Function &F, 381 FunctionAnalysisManager &AM) { 382 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 383 384 if (!runImpl(F, TLI)) 385 return PreservedAnalyses::all(); 386 387 // TODO: can we preserve more? 388 return PreservedAnalyses::none(); 389 } 390 391 static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) { 392 if (callsGCLeafFunction(Call, TLI)) 393 return false; 394 if (auto *CI = dyn_cast<CallInst>(Call)) { 395 if (CI->isInlineAsm()) 396 return false; 397 } 398 399 return !(isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) || 400 isa<GCResultInst>(Call)); 401 } 402 403 /// Returns true if this loop is known to contain a call safepoint which 404 /// must unconditionally execute on any iteration of the loop which returns 405 /// to the loop header via an edge from Pred. Returns a conservative correct 406 /// answer; i.e. false is always valid. 407 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header, 408 BasicBlock *Pred, 409 DominatorTree &DT, 410 const TargetLibraryInfo &TLI) { 411 // In general, we're looking for any cut of the graph which ensures 412 // there's a call safepoint along every edge between Header and Pred. 413 // For the moment, we look only for the 'cuts' that consist of a single call 414 // instruction in a block which is dominated by the Header and dominates the 415 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain 416 // of such dominating blocks gets substantially more occurrences than just 417 // checking the Pred and Header blocks themselves. This may be due to the 418 // density of loop exit conditions caused by range and null checks. 419 // TODO: structure this as an analysis pass, cache the result for subloops, 420 // avoid dom tree recalculations 421 assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?"); 422 423 BasicBlock *Current = Pred; 424 while (true) { 425 for (Instruction &I : *Current) { 426 if (auto *Call = dyn_cast<CallBase>(&I)) 427 // Note: Technically, needing a safepoint isn't quite the right 428 // condition here. We should instead be checking if the target method 429 // has an 430 // unconditional poll. In practice, this is only a theoretical concern 431 // since we don't have any methods with conditional-only safepoint 432 // polls. 433 if (needsStatepoint(Call, TLI)) 434 return true; 435 } 436 437 if (Current == Header) 438 break; 439 Current = DT.getNode(Current)->getIDom()->getBlock(); 440 } 441 442 return false; 443 } 444 445 /// Returns true if this loop is known to terminate in a finite number of 446 /// iterations. Note that this function may return false for a loop which 447 /// does actual terminate in a finite constant number of iterations due to 448 /// conservatism in the analysis. 449 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE, 450 BasicBlock *Pred) { 451 // A conservative bound on the loop as a whole. 452 const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L); 453 if (!isa<SCEVCouldNotCompute>(MaxTrips) && 454 SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN( 455 CountedLoopTripWidth)) 456 return true; 457 458 // If this is a conditional branch to the header with the alternate path 459 // being outside the loop, we can ask questions about the execution frequency 460 // of the exit block. 461 if (L->isLoopExiting(Pred)) { 462 // This returns an exact expression only. TODO: We really only need an 463 // upper bound here, but SE doesn't expose that. 464 const SCEV *MaxExec = SE->getExitCount(L, Pred); 465 if (!isa<SCEVCouldNotCompute>(MaxExec) && 466 SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN( 467 CountedLoopTripWidth)) 468 return true; 469 } 470 471 return /* not finite */ false; 472 } 473 474 static void scanOneBB(Instruction *Start, Instruction *End, 475 std::vector<CallInst *> &Calls, 476 DenseSet<BasicBlock *> &Seen, 477 std::vector<BasicBlock *> &Worklist) { 478 for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(), 479 BBE1 = BasicBlock::iterator(End); 480 BBI != BBE0 && BBI != BBE1; BBI++) { 481 if (CallInst *CI = dyn_cast<CallInst>(&*BBI)) 482 Calls.push_back(CI); 483 484 // FIXME: This code does not handle invokes 485 assert(!isa<InvokeInst>(&*BBI) && 486 "support for invokes in poll code needed"); 487 488 // Only add the successor blocks if we reach the terminator instruction 489 // without encountering end first 490 if (BBI->isTerminator()) { 491 BasicBlock *BB = BBI->getParent(); 492 for (BasicBlock *Succ : successors(BB)) { 493 if (Seen.insert(Succ).second) { 494 Worklist.push_back(Succ); 495 } 496 } 497 } 498 } 499 } 500 501 static void scanInlinedCode(Instruction *Start, Instruction *End, 502 std::vector<CallInst *> &Calls, 503 DenseSet<BasicBlock *> &Seen) { 504 Calls.clear(); 505 std::vector<BasicBlock *> Worklist; 506 Seen.insert(Start->getParent()); 507 scanOneBB(Start, End, Calls, Seen, Worklist); 508 while (!Worklist.empty()) { 509 BasicBlock *BB = Worklist.back(); 510 Worklist.pop_back(); 511 scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist); 512 } 513 } 514 515 /// Returns true if an entry safepoint is not required before this callsite in 516 /// the caller function. 517 static bool doesNotRequireEntrySafepointBefore(CallBase *Call) { 518 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) { 519 switch (II->getIntrinsicID()) { 520 case Intrinsic::experimental_gc_statepoint: 521 case Intrinsic::experimental_patchpoint_void: 522 case Intrinsic::experimental_patchpoint: 523 // The can wrap an actual call which may grow the stack by an unbounded 524 // amount or run forever. 525 return false; 526 default: 527 // Most LLVM intrinsics are things which do not expand to actual calls, or 528 // at least if they do, are leaf functions that cause only finite stack 529 // growth. In particular, the optimizer likes to form things like memsets 530 // out of stores in the original IR. Another important example is 531 // llvm.localescape which must occur in the entry block. Inserting a 532 // safepoint before it is not legal since it could push the localescape 533 // out of the entry block. 534 return true; 535 } 536 } 537 return false; 538 } 539 540 static Instruction *findLocationForEntrySafepoint(Function &F, 541 DominatorTree &DT) { 542 543 // Conceptually, this poll needs to be on method entry, but in 544 // practice, we place it as late in the entry block as possible. We 545 // can place it as late as we want as long as it dominates all calls 546 // that can grow the stack. This, combined with backedge polls, 547 // give us all the progress guarantees we need. 548 549 // hasNextInstruction and nextInstruction are used to iterate 550 // through a "straight line" execution sequence. 551 552 auto HasNextInstruction = [](Instruction *I) { 553 if (!I->isTerminator()) 554 return true; 555 556 BasicBlock *nextBB = I->getParent()->getUniqueSuccessor(); 557 return nextBB && (nextBB->getUniquePredecessor() != nullptr); 558 }; 559 560 auto NextInstruction = [&](Instruction *I) { 561 assert(HasNextInstruction(I) && 562 "first check if there is a next instruction!"); 563 564 if (I->isTerminator()) 565 return &I->getParent()->getUniqueSuccessor()->front(); 566 return &*++I->getIterator(); 567 }; 568 569 Instruction *Cursor = nullptr; 570 for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor); 571 Cursor = NextInstruction(Cursor)) { 572 573 // We need to ensure a safepoint poll occurs before any 'real' call. The 574 // easiest way to ensure finite execution between safepoints in the face of 575 // recursive and mutually recursive functions is to enforce that each take 576 // a safepoint. Additionally, we need to ensure a poll before any call 577 // which can grow the stack by an unbounded amount. This isn't required 578 // for GC semantics per se, but is a common requirement for languages 579 // which detect stack overflow via guard pages and then throw exceptions. 580 if (auto *Call = dyn_cast<CallBase>(Cursor)) { 581 if (doesNotRequireEntrySafepointBefore(Call)) 582 continue; 583 break; 584 } 585 } 586 587 assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) && 588 "either we stopped because of a call, or because of terminator"); 589 590 return Cursor; 591 } 592 593 const char GCSafepointPollName[] = "gc.safepoint_poll"; 594 595 static bool isGCSafepointPoll(Function &F) { 596 return F.getName() == GCSafepointPollName; 597 } 598 599 /// Returns true if this function should be rewritten to include safepoint 600 /// polls and parseable call sites. The main point of this function is to be 601 /// an extension point for custom logic. 602 static bool shouldRewriteFunction(Function &F) { 603 // TODO: This should check the GCStrategy 604 if (F.hasGC()) { 605 const auto &FunctionGCName = F.getGC(); 606 const StringRef StatepointExampleName("statepoint-example"); 607 const StringRef CoreCLRName("coreclr"); 608 return (StatepointExampleName == FunctionGCName) || 609 (CoreCLRName == FunctionGCName); 610 } else 611 return false; 612 } 613 614 // TODO: These should become properties of the GCStrategy, possibly with 615 // command line overrides. 616 static bool enableEntrySafepoints(Function &F) { return !NoEntry; } 617 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; } 618 static bool enableCallSafepoints(Function &F) { return !NoCall; } 619 620 // Insert a safepoint poll immediately before the given instruction. Does 621 // not handle the parsability of state at the runtime call, that's the 622 // callers job. 623 static void 624 InsertSafepointPoll(BasicBlock::iterator InsertBefore, 625 std::vector<CallBase *> &ParsePointsNeeded /*rval*/, 626 const TargetLibraryInfo &TLI) { 627 BasicBlock *OrigBB = InsertBefore->getParent(); 628 Module *M = InsertBefore->getModule(); 629 assert(M && "must be part of a module"); 630 631 // Inline the safepoint poll implementation - this will get all the branch, 632 // control flow, etc.. Most importantly, it will introduce the actual slow 633 // path call - where we need to insert a safepoint (parsepoint). 634 635 auto *F = M->getFunction(GCSafepointPollName); 636 assert(F && "gc.safepoint_poll function is missing"); 637 assert(F->getValueType() == 638 FunctionType::get(Type::getVoidTy(M->getContext()), false) && 639 "gc.safepoint_poll declared with wrong type"); 640 assert(!F->empty() && "gc.safepoint_poll must be a non-empty function"); 641 CallInst *PollCall = CallInst::Create(F, "", InsertBefore); 642 643 // Record some information about the call site we're replacing 644 BasicBlock::iterator Before(PollCall), After(PollCall); 645 bool IsBegin = false; 646 if (Before == OrigBB->begin()) 647 IsBegin = true; 648 else 649 Before--; 650 651 After++; 652 assert(After != OrigBB->end() && "must have successor"); 653 654 // Do the actual inlining 655 InlineFunctionInfo IFI; 656 bool InlineStatus = InlineFunction(*PollCall, IFI).isSuccess(); 657 assert(InlineStatus && "inline must succeed"); 658 (void)InlineStatus; // suppress warning in release-asserts 659 660 // Check post-conditions 661 assert(IFI.StaticAllocas.empty() && "can't have allocs"); 662 663 std::vector<CallInst *> Calls; // new calls 664 DenseSet<BasicBlock *> BBs; // new BBs + insertee 665 666 // Include only the newly inserted instructions, Note: begin may not be valid 667 // if we inserted to the beginning of the basic block 668 BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before); 669 670 // If your poll function includes an unreachable at the end, that's not 671 // valid. Bugpoint likes to create this, so check for it. 672 assert(isPotentiallyReachable(&*Start, &*After) && 673 "malformed poll function"); 674 675 scanInlinedCode(&*Start, &*After, Calls, BBs); 676 assert(!Calls.empty() && "slow path not found for safepoint poll"); 677 678 // Record the fact we need a parsable state at the runtime call contained in 679 // the poll function. This is required so that the runtime knows how to 680 // parse the last frame when we actually take the safepoint (i.e. execute 681 // the slow path) 682 assert(ParsePointsNeeded.empty()); 683 for (auto *CI : Calls) { 684 // No safepoint needed or wanted 685 if (!needsStatepoint(CI, TLI)) 686 continue; 687 688 // These are likely runtime calls. Should we assert that via calling 689 // convention or something? 690 ParsePointsNeeded.push_back(CI); 691 } 692 assert(ParsePointsNeeded.size() <= Calls.size()); 693 } 694