1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Place garbage collection safepoints at appropriate locations in the IR. This 10 // does not make relocation semantics or variable liveness explicit. That's 11 // done by RewriteStatepointsForGC. 12 // 13 // Terminology: 14 // - A call is said to be "parseable" if there is a stack map generated for the 15 // return PC of the call. A runtime can determine where values listed in the 16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located 17 // on the stack when the code is suspended inside such a call. Every parse 18 // point is represented by a call wrapped in an gc.statepoint intrinsic. 19 // - A "poll" is an explicit check in the generated code to determine if the 20 // runtime needs the generated code to cooperate by calling a helper routine 21 // and thus suspending its execution at a known state. The call to the helper 22 // routine will be parseable. The (gc & runtime specific) logic of a poll is 23 // assumed to be provided in a function of the name "gc.safepoint_poll". 24 // 25 // We aim to insert polls such that running code can quickly be brought to a 26 // well defined state for inspection by the collector. In the current 27 // implementation, this is done via the insertion of poll sites at method entry 28 // and the backedge of most loops. We try to avoid inserting more polls than 29 // are necessary to ensure a finite period between poll sites. This is not 30 // because the poll itself is expensive in the generated code; it's not. Polls 31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid 32 // perturbing the optimization of the method as much as we can. 33 // 34 // We also need to make most call sites parseable. The callee might execute a 35 // poll (or otherwise be inspected by the GC). If so, the entire stack 36 // (including the suspended frame of the current method) must be parseable. 37 // 38 // This pass will insert: 39 // - Call parse points ("call safepoints") for any call which may need to 40 // reach a safepoint during the execution of the callee function. 41 // - Backedge safepoint polls and entry safepoint polls to ensure that 42 // executing code reaches a safepoint poll in a finite amount of time. 43 // 44 // We do not currently support return statepoints, but adding them would not 45 // be hard. They are not required for correctness - entry safepoints are an 46 // alternative - but some GCs may prefer them. Patches welcome. 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/InitializePasses.h" 51 #include "llvm/Pass.h" 52 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/CFG.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/ScalarEvolution.h" 58 #include "llvm/Analysis/TargetLibraryInfo.h" 59 #include "llvm/IR/Dominators.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/LegacyPassManager.h" 62 #include "llvm/IR/Statepoint.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 70 #define DEBUG_TYPE "safepoint-placement" 71 72 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted"); 73 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted"); 74 75 STATISTIC(CallInLoop, 76 "Number of loops without safepoints due to calls in loop"); 77 STATISTIC(FiniteExecution, 78 "Number of loops without safepoints finite execution"); 79 80 using namespace llvm; 81 82 // Ignore opportunities to avoid placing safepoints on backedges, useful for 83 // validation 84 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden, 85 cl::init(false)); 86 87 /// How narrow does the trip count of a loop have to be to have to be considered 88 /// "counted"? Counted loops do not get safepoints at backedges. 89 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width", 90 cl::Hidden, cl::init(32)); 91 92 // If true, split the backedge of a loop when placing the safepoint, otherwise 93 // split the latch block itself. Both are useful to support for 94 // experimentation, but in practice, it looks like splitting the backedge 95 // optimizes better. 96 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden, 97 cl::init(false)); 98 99 namespace { 100 101 /// An analysis pass whose purpose is to identify each of the backedges in 102 /// the function which require a safepoint poll to be inserted. 103 struct PlaceBackedgeSafepointsImpl : public FunctionPass { 104 static char ID; 105 106 /// The output of the pass - gives a list of each backedge (described by 107 /// pointing at the branch) which need a poll inserted. 108 std::vector<Instruction *> PollLocations; 109 110 /// True unless we're running spp-no-calls in which case we need to disable 111 /// the call-dependent placement opts. 112 bool CallSafepointsEnabled; 113 114 ScalarEvolution *SE = nullptr; 115 DominatorTree *DT = nullptr; 116 LoopInfo *LI = nullptr; 117 TargetLibraryInfo *TLI = nullptr; 118 119 PlaceBackedgeSafepointsImpl(bool CallSafepoints = false) 120 : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) { 121 initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry()); 122 } 123 124 bool runOnLoop(Loop *); 125 void runOnLoopAndSubLoops(Loop *L) { 126 // Visit all the subloops 127 for (Loop *I : *L) 128 runOnLoopAndSubLoops(I); 129 runOnLoop(L); 130 } 131 132 bool runOnFunction(Function &F) override { 133 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 134 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 135 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 136 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 137 for (Loop *I : *LI) { 138 runOnLoopAndSubLoops(I); 139 } 140 return false; 141 } 142 143 void getAnalysisUsage(AnalysisUsage &AU) const override { 144 AU.addRequired<DominatorTreeWrapperPass>(); 145 AU.addRequired<ScalarEvolutionWrapperPass>(); 146 AU.addRequired<LoopInfoWrapperPass>(); 147 AU.addRequired<TargetLibraryInfoWrapperPass>(); 148 // We no longer modify the IR at all in this pass. Thus all 149 // analysis are preserved. 150 AU.setPreservesAll(); 151 } 152 }; 153 } 154 155 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false)); 156 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false)); 157 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false)); 158 159 namespace { 160 struct PlaceSafepoints : public FunctionPass { 161 static char ID; // Pass identification, replacement for typeid 162 163 PlaceSafepoints() : FunctionPass(ID) { 164 initializePlaceSafepointsPass(*PassRegistry::getPassRegistry()); 165 } 166 bool runOnFunction(Function &F) override; 167 168 void getAnalysisUsage(AnalysisUsage &AU) const override { 169 // We modify the graph wholesale (inlining, block insertion, etc). We 170 // preserve nothing at the moment. We could potentially preserve dom tree 171 // if that was worth doing 172 AU.addRequired<TargetLibraryInfoWrapperPass>(); 173 } 174 }; 175 } 176 177 // Insert a safepoint poll immediately before the given instruction. Does 178 // not handle the parsability of state at the runtime call, that's the 179 // callers job. 180 static void 181 InsertSafepointPoll(Instruction *InsertBefore, 182 std::vector<CallBase *> &ParsePointsNeeded /*rval*/, 183 const TargetLibraryInfo &TLI); 184 185 static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) { 186 if (callsGCLeafFunction(Call, TLI)) 187 return false; 188 if (auto *CI = dyn_cast<CallInst>(Call)) { 189 if (CI->isInlineAsm()) 190 return false; 191 } 192 193 return !(isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) || 194 isa<GCResultInst>(Call)); 195 } 196 197 /// Returns true if this loop is known to contain a call safepoint which 198 /// must unconditionally execute on any iteration of the loop which returns 199 /// to the loop header via an edge from Pred. Returns a conservative correct 200 /// answer; i.e. false is always valid. 201 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header, 202 BasicBlock *Pred, 203 DominatorTree &DT, 204 const TargetLibraryInfo &TLI) { 205 // In general, we're looking for any cut of the graph which ensures 206 // there's a call safepoint along every edge between Header and Pred. 207 // For the moment, we look only for the 'cuts' that consist of a single call 208 // instruction in a block which is dominated by the Header and dominates the 209 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain 210 // of such dominating blocks gets substantially more occurrences than just 211 // checking the Pred and Header blocks themselves. This may be due to the 212 // density of loop exit conditions caused by range and null checks. 213 // TODO: structure this as an analysis pass, cache the result for subloops, 214 // avoid dom tree recalculations 215 assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?"); 216 217 BasicBlock *Current = Pred; 218 while (true) { 219 for (Instruction &I : *Current) { 220 if (auto *Call = dyn_cast<CallBase>(&I)) 221 // Note: Technically, needing a safepoint isn't quite the right 222 // condition here. We should instead be checking if the target method 223 // has an 224 // unconditional poll. In practice, this is only a theoretical concern 225 // since we don't have any methods with conditional-only safepoint 226 // polls. 227 if (needsStatepoint(Call, TLI)) 228 return true; 229 } 230 231 if (Current == Header) 232 break; 233 Current = DT.getNode(Current)->getIDom()->getBlock(); 234 } 235 236 return false; 237 } 238 239 /// Returns true if this loop is known to terminate in a finite number of 240 /// iterations. Note that this function may return false for a loop which 241 /// does actual terminate in a finite constant number of iterations due to 242 /// conservatism in the analysis. 243 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE, 244 BasicBlock *Pred) { 245 // A conservative bound on the loop as a whole. 246 const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L); 247 if (!isa<SCEVCouldNotCompute>(MaxTrips) && 248 SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN( 249 CountedLoopTripWidth)) 250 return true; 251 252 // If this is a conditional branch to the header with the alternate path 253 // being outside the loop, we can ask questions about the execution frequency 254 // of the exit block. 255 if (L->isLoopExiting(Pred)) { 256 // This returns an exact expression only. TODO: We really only need an 257 // upper bound here, but SE doesn't expose that. 258 const SCEV *MaxExec = SE->getExitCount(L, Pred); 259 if (!isa<SCEVCouldNotCompute>(MaxExec) && 260 SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN( 261 CountedLoopTripWidth)) 262 return true; 263 } 264 265 return /* not finite */ false; 266 } 267 268 static void scanOneBB(Instruction *Start, Instruction *End, 269 std::vector<CallInst *> &Calls, 270 DenseSet<BasicBlock *> &Seen, 271 std::vector<BasicBlock *> &Worklist) { 272 for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(), 273 BBE1 = BasicBlock::iterator(End); 274 BBI != BBE0 && BBI != BBE1; BBI++) { 275 if (CallInst *CI = dyn_cast<CallInst>(&*BBI)) 276 Calls.push_back(CI); 277 278 // FIXME: This code does not handle invokes 279 assert(!isa<InvokeInst>(&*BBI) && 280 "support for invokes in poll code needed"); 281 282 // Only add the successor blocks if we reach the terminator instruction 283 // without encountering end first 284 if (BBI->isTerminator()) { 285 BasicBlock *BB = BBI->getParent(); 286 for (BasicBlock *Succ : successors(BB)) { 287 if (Seen.insert(Succ).second) { 288 Worklist.push_back(Succ); 289 } 290 } 291 } 292 } 293 } 294 295 static void scanInlinedCode(Instruction *Start, Instruction *End, 296 std::vector<CallInst *> &Calls, 297 DenseSet<BasicBlock *> &Seen) { 298 Calls.clear(); 299 std::vector<BasicBlock *> Worklist; 300 Seen.insert(Start->getParent()); 301 scanOneBB(Start, End, Calls, Seen, Worklist); 302 while (!Worklist.empty()) { 303 BasicBlock *BB = Worklist.back(); 304 Worklist.pop_back(); 305 scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist); 306 } 307 } 308 309 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) { 310 // Loop through all loop latches (branches controlling backedges). We need 311 // to place a safepoint on every backedge (potentially). 312 // Note: In common usage, there will be only one edge due to LoopSimplify 313 // having run sometime earlier in the pipeline, but this code must be correct 314 // w.r.t. loops with multiple backedges. 315 BasicBlock *Header = L->getHeader(); 316 SmallVector<BasicBlock*, 16> LoopLatches; 317 L->getLoopLatches(LoopLatches); 318 for (BasicBlock *Pred : LoopLatches) { 319 assert(L->contains(Pred)); 320 321 // Make a policy decision about whether this loop needs a safepoint or 322 // not. Note that this is about unburdening the optimizer in loops, not 323 // avoiding the runtime cost of the actual safepoint. 324 if (!AllBackedges) { 325 if (mustBeFiniteCountedLoop(L, SE, Pred)) { 326 LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n"); 327 FiniteExecution++; 328 continue; 329 } 330 if (CallSafepointsEnabled && 331 containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) { 332 // Note: This is only semantically legal since we won't do any further 333 // IPO or inlining before the actual call insertion.. If we hadn't, we 334 // might latter loose this call safepoint. 335 LLVM_DEBUG( 336 dbgs() 337 << "skipping safepoint placement due to unconditional call\n"); 338 CallInLoop++; 339 continue; 340 } 341 } 342 343 // TODO: We can create an inner loop which runs a finite number of 344 // iterations with an outer loop which contains a safepoint. This would 345 // not help runtime performance that much, but it might help our ability to 346 // optimize the inner loop. 347 348 // Safepoint insertion would involve creating a new basic block (as the 349 // target of the current backedge) which does the safepoint (of all live 350 // variables) and branches to the true header 351 Instruction *Term = Pred->getTerminator(); 352 353 LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term); 354 355 PollLocations.push_back(Term); 356 } 357 358 return false; 359 } 360 361 /// Returns true if an entry safepoint is not required before this callsite in 362 /// the caller function. 363 static bool doesNotRequireEntrySafepointBefore(CallBase *Call) { 364 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) { 365 switch (II->getIntrinsicID()) { 366 case Intrinsic::experimental_gc_statepoint: 367 case Intrinsic::experimental_patchpoint_void: 368 case Intrinsic::experimental_patchpoint_i64: 369 // The can wrap an actual call which may grow the stack by an unbounded 370 // amount or run forever. 371 return false; 372 default: 373 // Most LLVM intrinsics are things which do not expand to actual calls, or 374 // at least if they do, are leaf functions that cause only finite stack 375 // growth. In particular, the optimizer likes to form things like memsets 376 // out of stores in the original IR. Another important example is 377 // llvm.localescape which must occur in the entry block. Inserting a 378 // safepoint before it is not legal since it could push the localescape 379 // out of the entry block. 380 return true; 381 } 382 } 383 return false; 384 } 385 386 static Instruction *findLocationForEntrySafepoint(Function &F, 387 DominatorTree &DT) { 388 389 // Conceptually, this poll needs to be on method entry, but in 390 // practice, we place it as late in the entry block as possible. We 391 // can place it as late as we want as long as it dominates all calls 392 // that can grow the stack. This, combined with backedge polls, 393 // give us all the progress guarantees we need. 394 395 // hasNextInstruction and nextInstruction are used to iterate 396 // through a "straight line" execution sequence. 397 398 auto HasNextInstruction = [](Instruction *I) { 399 if (!I->isTerminator()) 400 return true; 401 402 BasicBlock *nextBB = I->getParent()->getUniqueSuccessor(); 403 return nextBB && (nextBB->getUniquePredecessor() != nullptr); 404 }; 405 406 auto NextInstruction = [&](Instruction *I) { 407 assert(HasNextInstruction(I) && 408 "first check if there is a next instruction!"); 409 410 if (I->isTerminator()) 411 return &I->getParent()->getUniqueSuccessor()->front(); 412 return &*++I->getIterator(); 413 }; 414 415 Instruction *Cursor = nullptr; 416 for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor); 417 Cursor = NextInstruction(Cursor)) { 418 419 // We need to ensure a safepoint poll occurs before any 'real' call. The 420 // easiest way to ensure finite execution between safepoints in the face of 421 // recursive and mutually recursive functions is to enforce that each take 422 // a safepoint. Additionally, we need to ensure a poll before any call 423 // which can grow the stack by an unbounded amount. This isn't required 424 // for GC semantics per se, but is a common requirement for languages 425 // which detect stack overflow via guard pages and then throw exceptions. 426 if (auto *Call = dyn_cast<CallBase>(Cursor)) { 427 if (doesNotRequireEntrySafepointBefore(Call)) 428 continue; 429 break; 430 } 431 } 432 433 assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) && 434 "either we stopped because of a call, or because of terminator"); 435 436 return Cursor; 437 } 438 439 const char GCSafepointPollName[] = "gc.safepoint_poll"; 440 441 static bool isGCSafepointPoll(Function &F) { 442 return F.getName().equals(GCSafepointPollName); 443 } 444 445 /// Returns true if this function should be rewritten to include safepoint 446 /// polls and parseable call sites. The main point of this function is to be 447 /// an extension point for custom logic. 448 static bool shouldRewriteFunction(Function &F) { 449 // TODO: This should check the GCStrategy 450 if (F.hasGC()) { 451 const auto &FunctionGCName = F.getGC(); 452 const StringRef StatepointExampleName("statepoint-example"); 453 const StringRef CoreCLRName("coreclr"); 454 return (StatepointExampleName == FunctionGCName) || 455 (CoreCLRName == FunctionGCName); 456 } else 457 return false; 458 } 459 460 // TODO: These should become properties of the GCStrategy, possibly with 461 // command line overrides. 462 static bool enableEntrySafepoints(Function &F) { return !NoEntry; } 463 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; } 464 static bool enableCallSafepoints(Function &F) { return !NoCall; } 465 466 bool PlaceSafepoints::runOnFunction(Function &F) { 467 if (F.isDeclaration() || F.empty()) { 468 // This is a declaration, nothing to do. Must exit early to avoid crash in 469 // dom tree calculation 470 return false; 471 } 472 473 if (isGCSafepointPoll(F)) { 474 // Given we're inlining this inside of safepoint poll insertion, this 475 // doesn't make any sense. Note that we do make any contained calls 476 // parseable after we inline a poll. 477 return false; 478 } 479 480 if (!shouldRewriteFunction(F)) 481 return false; 482 483 const TargetLibraryInfo &TLI = 484 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 485 486 bool Modified = false; 487 488 // In various bits below, we rely on the fact that uses are reachable from 489 // defs. When there are basic blocks unreachable from the entry, dominance 490 // and reachablity queries return non-sensical results. Thus, we preprocess 491 // the function to ensure these properties hold. 492 Modified |= removeUnreachableBlocks(F); 493 494 // STEP 1 - Insert the safepoint polling locations. We do not need to 495 // actually insert parse points yet. That will be done for all polls and 496 // calls in a single pass. 497 498 DominatorTree DT; 499 DT.recalculate(F); 500 501 SmallVector<Instruction *, 16> PollsNeeded; 502 std::vector<CallBase *> ParsePointNeeded; 503 504 if (enableBackedgeSafepoints(F)) { 505 // Construct a pass manager to run the LoopPass backedge logic. We 506 // need the pass manager to handle scheduling all the loop passes 507 // appropriately. Doing this by hand is painful and just not worth messing 508 // with for the moment. 509 legacy::FunctionPassManager FPM(F.getParent()); 510 bool CanAssumeCallSafepoints = enableCallSafepoints(F); 511 auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints); 512 FPM.add(PBS); 513 FPM.run(F); 514 515 // We preserve dominance information when inserting the poll, otherwise 516 // we'd have to recalculate this on every insert 517 DT.recalculate(F); 518 519 auto &PollLocations = PBS->PollLocations; 520 521 auto OrderByBBName = [](Instruction *a, Instruction *b) { 522 return a->getParent()->getName() < b->getParent()->getName(); 523 }; 524 // We need the order of list to be stable so that naming ends up stable 525 // when we split edges. This makes test cases much easier to write. 526 llvm::sort(PollLocations, OrderByBBName); 527 528 // We can sometimes end up with duplicate poll locations. This happens if 529 // a single loop is visited more than once. The fact this happens seems 530 // wrong, but it does happen for the split-backedge.ll test case. 531 PollLocations.erase(std::unique(PollLocations.begin(), 532 PollLocations.end()), 533 PollLocations.end()); 534 535 // Insert a poll at each point the analysis pass identified 536 // The poll location must be the terminator of a loop latch block. 537 for (Instruction *Term : PollLocations) { 538 // We are inserting a poll, the function is modified 539 Modified = true; 540 541 if (SplitBackedge) { 542 // Split the backedge of the loop and insert the poll within that new 543 // basic block. This creates a loop with two latches per original 544 // latch (which is non-ideal), but this appears to be easier to 545 // optimize in practice than inserting the poll immediately before the 546 // latch test. 547 548 // Since this is a latch, at least one of the successors must dominate 549 // it. Its possible that we have a) duplicate edges to the same header 550 // and b) edges to distinct loop headers. We need to insert pools on 551 // each. 552 SetVector<BasicBlock *> Headers; 553 for (unsigned i = 0; i < Term->getNumSuccessors(); i++) { 554 BasicBlock *Succ = Term->getSuccessor(i); 555 if (DT.dominates(Succ, Term->getParent())) { 556 Headers.insert(Succ); 557 } 558 } 559 assert(!Headers.empty() && "poll location is not a loop latch?"); 560 561 // The split loop structure here is so that we only need to recalculate 562 // the dominator tree once. Alternatively, we could just keep it up to 563 // date and use a more natural merged loop. 564 SetVector<BasicBlock *> SplitBackedges; 565 for (BasicBlock *Header : Headers) { 566 BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT); 567 PollsNeeded.push_back(NewBB->getTerminator()); 568 NumBackedgeSafepoints++; 569 } 570 } else { 571 // Split the latch block itself, right before the terminator. 572 PollsNeeded.push_back(Term); 573 NumBackedgeSafepoints++; 574 } 575 } 576 } 577 578 if (enableEntrySafepoints(F)) { 579 if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) { 580 PollsNeeded.push_back(Location); 581 Modified = true; 582 NumEntrySafepoints++; 583 } 584 // TODO: else we should assert that there was, in fact, a policy choice to 585 // not insert a entry safepoint poll. 586 } 587 588 // Now that we've identified all the needed safepoint poll locations, insert 589 // safepoint polls themselves. 590 for (Instruction *PollLocation : PollsNeeded) { 591 std::vector<CallBase *> RuntimeCalls; 592 InsertSafepointPoll(PollLocation, RuntimeCalls, TLI); 593 llvm::append_range(ParsePointNeeded, RuntimeCalls); 594 } 595 596 return Modified; 597 } 598 599 char PlaceBackedgeSafepointsImpl::ID = 0; 600 char PlaceSafepoints::ID = 0; 601 602 FunctionPass *llvm::createPlaceSafepointsPass() { 603 return new PlaceSafepoints(); 604 } 605 606 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl, 607 "place-backedge-safepoints-impl", 608 "Place Backedge Safepoints", false, false) 609 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 610 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 611 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 612 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl, 613 "place-backedge-safepoints-impl", 614 "Place Backedge Safepoints", false, false) 615 616 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints", 617 false, false) 618 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints", 619 false, false) 620 621 static void 622 InsertSafepointPoll(Instruction *InsertBefore, 623 std::vector<CallBase *> &ParsePointsNeeded /*rval*/, 624 const TargetLibraryInfo &TLI) { 625 BasicBlock *OrigBB = InsertBefore->getParent(); 626 Module *M = InsertBefore->getModule(); 627 assert(M && "must be part of a module"); 628 629 // Inline the safepoint poll implementation - this will get all the branch, 630 // control flow, etc.. Most importantly, it will introduce the actual slow 631 // path call - where we need to insert a safepoint (parsepoint). 632 633 auto *F = M->getFunction(GCSafepointPollName); 634 assert(F && "gc.safepoint_poll function is missing"); 635 assert(F->getValueType() == 636 FunctionType::get(Type::getVoidTy(M->getContext()), false) && 637 "gc.safepoint_poll declared with wrong type"); 638 assert(!F->empty() && "gc.safepoint_poll must be a non-empty function"); 639 CallInst *PollCall = CallInst::Create(F, "", InsertBefore); 640 641 // Record some information about the call site we're replacing 642 BasicBlock::iterator Before(PollCall), After(PollCall); 643 bool IsBegin = false; 644 if (Before == OrigBB->begin()) 645 IsBegin = true; 646 else 647 Before--; 648 649 After++; 650 assert(After != OrigBB->end() && "must have successor"); 651 652 // Do the actual inlining 653 InlineFunctionInfo IFI; 654 bool InlineStatus = InlineFunction(*PollCall, IFI).isSuccess(); 655 assert(InlineStatus && "inline must succeed"); 656 (void)InlineStatus; // suppress warning in release-asserts 657 658 // Check post-conditions 659 assert(IFI.StaticAllocas.empty() && "can't have allocs"); 660 661 std::vector<CallInst *> Calls; // new calls 662 DenseSet<BasicBlock *> BBs; // new BBs + insertee 663 664 // Include only the newly inserted instructions, Note: begin may not be valid 665 // if we inserted to the beginning of the basic block 666 BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before); 667 668 // If your poll function includes an unreachable at the end, that's not 669 // valid. Bugpoint likes to create this, so check for it. 670 assert(isPotentiallyReachable(&*Start, &*After) && 671 "malformed poll function"); 672 673 scanInlinedCode(&*Start, &*After, Calls, BBs); 674 assert(!Calls.empty() && "slow path not found for safepoint poll"); 675 676 // Record the fact we need a parsable state at the runtime call contained in 677 // the poll function. This is required so that the runtime knows how to 678 // parse the last frame when we actually take the safepoint (i.e. execute 679 // the slow path) 680 assert(ParsePointsNeeded.empty()); 681 for (auto *CI : Calls) { 682 // No safepoint needed or wanted 683 if (!needsStatepoint(CI, TLI)) 684 continue; 685 686 // These are likely runtime calls. Should we assert that via calling 687 // convention or something? 688 ParsePointsNeeded.push_back(CI); 689 } 690 assert(ParsePointsNeeded.size() <= Calls.size()); 691 } 692