1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Place garbage collection safepoints at appropriate locations in the IR. This 10 // does not make relocation semantics or variable liveness explicit. That's 11 // done by RewriteStatepointsForGC. 12 // 13 // Terminology: 14 // - A call is said to be "parseable" if there is a stack map generated for the 15 // return PC of the call. A runtime can determine where values listed in the 16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located 17 // on the stack when the code is suspended inside such a call. Every parse 18 // point is represented by a call wrapped in an gc.statepoint intrinsic. 19 // - A "poll" is an explicit check in the generated code to determine if the 20 // runtime needs the generated code to cooperate by calling a helper routine 21 // and thus suspending its execution at a known state. The call to the helper 22 // routine will be parseable. The (gc & runtime specific) logic of a poll is 23 // assumed to be provided in a function of the name "gc.safepoint_poll". 24 // 25 // We aim to insert polls such that running code can quickly be brought to a 26 // well defined state for inspection by the collector. In the current 27 // implementation, this is done via the insertion of poll sites at method entry 28 // and the backedge of most loops. We try to avoid inserting more polls than 29 // are necessary to ensure a finite period between poll sites. This is not 30 // because the poll itself is expensive in the generated code; it's not. Polls 31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid 32 // perturbing the optimization of the method as much as we can. 33 // 34 // We also need to make most call sites parseable. The callee might execute a 35 // poll (or otherwise be inspected by the GC). If so, the entire stack 36 // (including the suspended frame of the current method) must be parseable. 37 // 38 // This pass will insert: 39 // - Call parse points ("call safepoints") for any call which may need to 40 // reach a safepoint during the execution of the callee function. 41 // - Backedge safepoint polls and entry safepoint polls to ensure that 42 // executing code reaches a safepoint poll in a finite amount of time. 43 // 44 // We do not currently support return statepoints, but adding them would not 45 // be hard. They are not required for correctness - entry safepoints are an 46 // alternative - but some GCs may prefer them. Patches welcome. 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/Transforms/Scalar/PlaceSafepoints.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/Statistic.h" 56 #include "llvm/Analysis/CFG.h" 57 #include "llvm/Analysis/LoopInfo.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/TargetLibraryInfo.h" 60 #include "llvm/IR/Dominators.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/LegacyPassManager.h" 63 #include "llvm/IR/Statepoint.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "place-safepoints" 74 75 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted"); 76 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted"); 77 78 STATISTIC(CallInLoop, 79 "Number of loops without safepoints due to calls in loop"); 80 STATISTIC(FiniteExecution, 81 "Number of loops without safepoints finite execution"); 82 83 // Ignore opportunities to avoid placing safepoints on backedges, useful for 84 // validation 85 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden, 86 cl::init(false)); 87 88 /// How narrow does the trip count of a loop have to be to have to be considered 89 /// "counted"? Counted loops do not get safepoints at backedges. 90 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width", 91 cl::Hidden, cl::init(32)); 92 93 // If true, split the backedge of a loop when placing the safepoint, otherwise 94 // split the latch block itself. Both are useful to support for 95 // experimentation, but in practice, it looks like splitting the backedge 96 // optimizes better. 97 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden, 98 cl::init(false)); 99 100 namespace { 101 /// An analysis pass whose purpose is to identify each of the backedges in 102 /// the function which require a safepoint poll to be inserted. 103 class PlaceBackedgeSafepointsLegacyPass : public FunctionPass { 104 public: 105 static char ID; 106 107 /// The output of the pass - gives a list of each backedge (described by 108 /// pointing at the branch) which need a poll inserted. 109 std::vector<Instruction *> PollLocations; 110 111 /// True unless we're running spp-no-calls in which case we need to disable 112 /// the call-dependent placement opts. 113 bool CallSafepointsEnabled; 114 115 PlaceBackedgeSafepointsLegacyPass(bool CallSafepoints = false) 116 : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) { 117 initializePlaceBackedgeSafepointsLegacyPassPass( 118 *PassRegistry::getPassRegistry()); 119 } 120 121 bool runOnLoop(Loop *); 122 123 void runOnLoopAndSubLoops(Loop *L) { 124 // Visit all the subloops 125 for (Loop *I : *L) 126 runOnLoopAndSubLoops(I); 127 runOnLoop(L); 128 } 129 130 bool runOnFunction(Function &F) override { 131 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 132 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 133 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 134 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 135 for (Loop *I : *LI) { 136 runOnLoopAndSubLoops(I); 137 } 138 return false; 139 } 140 141 void getAnalysisUsage(AnalysisUsage &AU) const override { 142 AU.addRequired<DominatorTreeWrapperPass>(); 143 AU.addRequired<ScalarEvolutionWrapperPass>(); 144 AU.addRequired<LoopInfoWrapperPass>(); 145 AU.addRequired<TargetLibraryInfoWrapperPass>(); 146 // We no longer modify the IR at all in this pass. Thus all 147 // analysis are preserved. 148 AU.setPreservesAll(); 149 } 150 151 private: 152 ScalarEvolution *SE = nullptr; 153 DominatorTree *DT = nullptr; 154 LoopInfo *LI = nullptr; 155 TargetLibraryInfo *TLI = nullptr; 156 }; 157 } // namespace 158 159 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false)); 160 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false)); 161 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false)); 162 163 char PlaceBackedgeSafepointsLegacyPass::ID = 0; 164 165 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsLegacyPass, 166 "place-backedge-safepoints-impl", 167 "Place Backedge Safepoints", false, false) 168 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 171 INITIALIZE_PASS_END(PlaceBackedgeSafepointsLegacyPass, 172 "place-backedge-safepoints-impl", 173 "Place Backedge Safepoints", false, false) 174 175 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header, 176 BasicBlock *Pred, 177 DominatorTree &DT, 178 const TargetLibraryInfo &TLI); 179 180 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE, 181 BasicBlock *Pred); 182 183 static Instruction *findLocationForEntrySafepoint(Function &F, 184 DominatorTree &DT); 185 186 static bool isGCSafepointPoll(Function &F); 187 static bool shouldRewriteFunction(Function &F); 188 static bool enableEntrySafepoints(Function &F); 189 static bool enableBackedgeSafepoints(Function &F); 190 static bool enableCallSafepoints(Function &F); 191 192 static void 193 InsertSafepointPoll(Instruction *InsertBefore, 194 std::vector<CallBase *> &ParsePointsNeeded /*rval*/, 195 const TargetLibraryInfo &TLI); 196 197 bool PlaceBackedgeSafepointsLegacyPass::runOnLoop(Loop *L) { 198 // Loop through all loop latches (branches controlling backedges). We need 199 // to place a safepoint on every backedge (potentially). 200 // Note: In common usage, there will be only one edge due to LoopSimplify 201 // having run sometime earlier in the pipeline, but this code must be correct 202 // w.r.t. loops with multiple backedges. 203 BasicBlock *Header = L->getHeader(); 204 SmallVector<BasicBlock *, 16> LoopLatches; 205 L->getLoopLatches(LoopLatches); 206 for (BasicBlock *Pred : LoopLatches) { 207 assert(L->contains(Pred)); 208 209 // Make a policy decision about whether this loop needs a safepoint or 210 // not. Note that this is about unburdening the optimizer in loops, not 211 // avoiding the runtime cost of the actual safepoint. 212 if (!AllBackedges) { 213 if (mustBeFiniteCountedLoop(L, SE, Pred)) { 214 LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n"); 215 FiniteExecution++; 216 continue; 217 } 218 if (CallSafepointsEnabled && 219 containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) { 220 // Note: This is only semantically legal since we won't do any further 221 // IPO or inlining before the actual call insertion.. If we hadn't, we 222 // might latter loose this call safepoint. 223 LLVM_DEBUG( 224 dbgs() 225 << "skipping safepoint placement due to unconditional call\n"); 226 CallInLoop++; 227 continue; 228 } 229 } 230 231 // TODO: We can create an inner loop which runs a finite number of 232 // iterations with an outer loop which contains a safepoint. This would 233 // not help runtime performance that much, but it might help our ability to 234 // optimize the inner loop. 235 236 // Safepoint insertion would involve creating a new basic block (as the 237 // target of the current backedge) which does the safepoint (of all live 238 // variables) and branches to the true header 239 Instruction *Term = Pred->getTerminator(); 240 241 LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term); 242 243 PollLocations.push_back(Term); 244 } 245 246 return false; 247 } 248 249 bool PlaceSafepointsPass::runImpl(Function &F, const TargetLibraryInfo &TLI) { 250 if (F.isDeclaration() || F.empty()) { 251 // This is a declaration, nothing to do. Must exit early to avoid crash in 252 // dom tree calculation 253 return false; 254 } 255 256 if (isGCSafepointPoll(F)) { 257 // Given we're inlining this inside of safepoint poll insertion, this 258 // doesn't make any sense. Note that we do make any contained calls 259 // parseable after we inline a poll. 260 return false; 261 } 262 263 if (!shouldRewriteFunction(F)) 264 return false; 265 266 bool Modified = false; 267 268 // In various bits below, we rely on the fact that uses are reachable from 269 // defs. When there are basic blocks unreachable from the entry, dominance 270 // and reachablity queries return non-sensical results. Thus, we preprocess 271 // the function to ensure these properties hold. 272 Modified |= removeUnreachableBlocks(F); 273 274 // STEP 1 - Insert the safepoint polling locations. We do not need to 275 // actually insert parse points yet. That will be done for all polls and 276 // calls in a single pass. 277 278 DominatorTree DT; 279 DT.recalculate(F); 280 281 SmallVector<Instruction *, 16> PollsNeeded; 282 std::vector<CallBase *> ParsePointNeeded; 283 284 if (enableBackedgeSafepoints(F)) { 285 // Construct a pass manager to run the LoopPass backedge logic. We 286 // need the pass manager to handle scheduling all the loop passes 287 // appropriately. Doing this by hand is painful and just not worth messing 288 // with for the moment. 289 legacy::FunctionPassManager FPM(F.getParent()); 290 bool CanAssumeCallSafepoints = enableCallSafepoints(F); 291 auto *PBS = new PlaceBackedgeSafepointsLegacyPass(CanAssumeCallSafepoints); 292 FPM.add(PBS); 293 FPM.run(F); 294 295 // We preserve dominance information when inserting the poll, otherwise 296 // we'd have to recalculate this on every insert 297 DT.recalculate(F); 298 299 auto &PollLocations = PBS->PollLocations; 300 301 auto OrderByBBName = [](Instruction *a, Instruction *b) { 302 return a->getParent()->getName() < b->getParent()->getName(); 303 }; 304 // We need the order of list to be stable so that naming ends up stable 305 // when we split edges. This makes test cases much easier to write. 306 llvm::sort(PollLocations, OrderByBBName); 307 308 // We can sometimes end up with duplicate poll locations. This happens if 309 // a single loop is visited more than once. The fact this happens seems 310 // wrong, but it does happen for the split-backedge.ll test case. 311 PollLocations.erase(std::unique(PollLocations.begin(), PollLocations.end()), 312 PollLocations.end()); 313 314 // Insert a poll at each point the analysis pass identified 315 // The poll location must be the terminator of a loop latch block. 316 for (Instruction *Term : PollLocations) { 317 // We are inserting a poll, the function is modified 318 Modified = true; 319 320 if (SplitBackedge) { 321 // Split the backedge of the loop and insert the poll within that new 322 // basic block. This creates a loop with two latches per original 323 // latch (which is non-ideal), but this appears to be easier to 324 // optimize in practice than inserting the poll immediately before the 325 // latch test. 326 327 // Since this is a latch, at least one of the successors must dominate 328 // it. Its possible that we have a) duplicate edges to the same header 329 // and b) edges to distinct loop headers. We need to insert pools on 330 // each. 331 SetVector<BasicBlock *> Headers; 332 for (unsigned i = 0; i < Term->getNumSuccessors(); i++) { 333 BasicBlock *Succ = Term->getSuccessor(i); 334 if (DT.dominates(Succ, Term->getParent())) { 335 Headers.insert(Succ); 336 } 337 } 338 assert(!Headers.empty() && "poll location is not a loop latch?"); 339 340 // The split loop structure here is so that we only need to recalculate 341 // the dominator tree once. Alternatively, we could just keep it up to 342 // date and use a more natural merged loop. 343 SetVector<BasicBlock *> SplitBackedges; 344 for (BasicBlock *Header : Headers) { 345 BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT); 346 PollsNeeded.push_back(NewBB->getTerminator()); 347 NumBackedgeSafepoints++; 348 } 349 } else { 350 // Split the latch block itself, right before the terminator. 351 PollsNeeded.push_back(Term); 352 NumBackedgeSafepoints++; 353 } 354 } 355 } 356 357 if (enableEntrySafepoints(F)) { 358 if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) { 359 PollsNeeded.push_back(Location); 360 Modified = true; 361 NumEntrySafepoints++; 362 } 363 // TODO: else we should assert that there was, in fact, a policy choice to 364 // not insert a entry safepoint poll. 365 } 366 367 // Now that we've identified all the needed safepoint poll locations, insert 368 // safepoint polls themselves. 369 for (Instruction *PollLocation : PollsNeeded) { 370 std::vector<CallBase *> RuntimeCalls; 371 InsertSafepointPoll(PollLocation, RuntimeCalls, TLI); 372 llvm::append_range(ParsePointNeeded, RuntimeCalls); 373 } 374 375 return Modified; 376 } 377 378 PreservedAnalyses PlaceSafepointsPass::run(Function &F, 379 FunctionAnalysisManager &AM) { 380 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 381 382 if (!runImpl(F, TLI)) 383 return PreservedAnalyses::all(); 384 385 // TODO: can we preserve more? 386 return PreservedAnalyses::none(); 387 } 388 389 static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) { 390 if (callsGCLeafFunction(Call, TLI)) 391 return false; 392 if (auto *CI = dyn_cast<CallInst>(Call)) { 393 if (CI->isInlineAsm()) 394 return false; 395 } 396 397 return !(isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) || 398 isa<GCResultInst>(Call)); 399 } 400 401 /// Returns true if this loop is known to contain a call safepoint which 402 /// must unconditionally execute on any iteration of the loop which returns 403 /// to the loop header via an edge from Pred. Returns a conservative correct 404 /// answer; i.e. false is always valid. 405 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header, 406 BasicBlock *Pred, 407 DominatorTree &DT, 408 const TargetLibraryInfo &TLI) { 409 // In general, we're looking for any cut of the graph which ensures 410 // there's a call safepoint along every edge between Header and Pred. 411 // For the moment, we look only for the 'cuts' that consist of a single call 412 // instruction in a block which is dominated by the Header and dominates the 413 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain 414 // of such dominating blocks gets substantially more occurrences than just 415 // checking the Pred and Header blocks themselves. This may be due to the 416 // density of loop exit conditions caused by range and null checks. 417 // TODO: structure this as an analysis pass, cache the result for subloops, 418 // avoid dom tree recalculations 419 assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?"); 420 421 BasicBlock *Current = Pred; 422 while (true) { 423 for (Instruction &I : *Current) { 424 if (auto *Call = dyn_cast<CallBase>(&I)) 425 // Note: Technically, needing a safepoint isn't quite the right 426 // condition here. We should instead be checking if the target method 427 // has an 428 // unconditional poll. In practice, this is only a theoretical concern 429 // since we don't have any methods with conditional-only safepoint 430 // polls. 431 if (needsStatepoint(Call, TLI)) 432 return true; 433 } 434 435 if (Current == Header) 436 break; 437 Current = DT.getNode(Current)->getIDom()->getBlock(); 438 } 439 440 return false; 441 } 442 443 /// Returns true if this loop is known to terminate in a finite number of 444 /// iterations. Note that this function may return false for a loop which 445 /// does actual terminate in a finite constant number of iterations due to 446 /// conservatism in the analysis. 447 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE, 448 BasicBlock *Pred) { 449 // A conservative bound on the loop as a whole. 450 const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L); 451 if (!isa<SCEVCouldNotCompute>(MaxTrips) && 452 SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN( 453 CountedLoopTripWidth)) 454 return true; 455 456 // If this is a conditional branch to the header with the alternate path 457 // being outside the loop, we can ask questions about the execution frequency 458 // of the exit block. 459 if (L->isLoopExiting(Pred)) { 460 // This returns an exact expression only. TODO: We really only need an 461 // upper bound here, but SE doesn't expose that. 462 const SCEV *MaxExec = SE->getExitCount(L, Pred); 463 if (!isa<SCEVCouldNotCompute>(MaxExec) && 464 SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN( 465 CountedLoopTripWidth)) 466 return true; 467 } 468 469 return /* not finite */ false; 470 } 471 472 static void scanOneBB(Instruction *Start, Instruction *End, 473 std::vector<CallInst *> &Calls, 474 DenseSet<BasicBlock *> &Seen, 475 std::vector<BasicBlock *> &Worklist) { 476 for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(), 477 BBE1 = BasicBlock::iterator(End); 478 BBI != BBE0 && BBI != BBE1; BBI++) { 479 if (CallInst *CI = dyn_cast<CallInst>(&*BBI)) 480 Calls.push_back(CI); 481 482 // FIXME: This code does not handle invokes 483 assert(!isa<InvokeInst>(&*BBI) && 484 "support for invokes in poll code needed"); 485 486 // Only add the successor blocks if we reach the terminator instruction 487 // without encountering end first 488 if (BBI->isTerminator()) { 489 BasicBlock *BB = BBI->getParent(); 490 for (BasicBlock *Succ : successors(BB)) { 491 if (Seen.insert(Succ).second) { 492 Worklist.push_back(Succ); 493 } 494 } 495 } 496 } 497 } 498 499 static void scanInlinedCode(Instruction *Start, Instruction *End, 500 std::vector<CallInst *> &Calls, 501 DenseSet<BasicBlock *> &Seen) { 502 Calls.clear(); 503 std::vector<BasicBlock *> Worklist; 504 Seen.insert(Start->getParent()); 505 scanOneBB(Start, End, Calls, Seen, Worklist); 506 while (!Worklist.empty()) { 507 BasicBlock *BB = Worklist.back(); 508 Worklist.pop_back(); 509 scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist); 510 } 511 } 512 513 /// Returns true if an entry safepoint is not required before this callsite in 514 /// the caller function. 515 static bool doesNotRequireEntrySafepointBefore(CallBase *Call) { 516 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) { 517 switch (II->getIntrinsicID()) { 518 case Intrinsic::experimental_gc_statepoint: 519 case Intrinsic::experimental_patchpoint_void: 520 case Intrinsic::experimental_patchpoint_i64: 521 // The can wrap an actual call which may grow the stack by an unbounded 522 // amount or run forever. 523 return false; 524 default: 525 // Most LLVM intrinsics are things which do not expand to actual calls, or 526 // at least if they do, are leaf functions that cause only finite stack 527 // growth. In particular, the optimizer likes to form things like memsets 528 // out of stores in the original IR. Another important example is 529 // llvm.localescape which must occur in the entry block. Inserting a 530 // safepoint before it is not legal since it could push the localescape 531 // out of the entry block. 532 return true; 533 } 534 } 535 return false; 536 } 537 538 static Instruction *findLocationForEntrySafepoint(Function &F, 539 DominatorTree &DT) { 540 541 // Conceptually, this poll needs to be on method entry, but in 542 // practice, we place it as late in the entry block as possible. We 543 // can place it as late as we want as long as it dominates all calls 544 // that can grow the stack. This, combined with backedge polls, 545 // give us all the progress guarantees we need. 546 547 // hasNextInstruction and nextInstruction are used to iterate 548 // through a "straight line" execution sequence. 549 550 auto HasNextInstruction = [](Instruction *I) { 551 if (!I->isTerminator()) 552 return true; 553 554 BasicBlock *nextBB = I->getParent()->getUniqueSuccessor(); 555 return nextBB && (nextBB->getUniquePredecessor() != nullptr); 556 }; 557 558 auto NextInstruction = [&](Instruction *I) { 559 assert(HasNextInstruction(I) && 560 "first check if there is a next instruction!"); 561 562 if (I->isTerminator()) 563 return &I->getParent()->getUniqueSuccessor()->front(); 564 return &*++I->getIterator(); 565 }; 566 567 Instruction *Cursor = nullptr; 568 for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor); 569 Cursor = NextInstruction(Cursor)) { 570 571 // We need to ensure a safepoint poll occurs before any 'real' call. The 572 // easiest way to ensure finite execution between safepoints in the face of 573 // recursive and mutually recursive functions is to enforce that each take 574 // a safepoint. Additionally, we need to ensure a poll before any call 575 // which can grow the stack by an unbounded amount. This isn't required 576 // for GC semantics per se, but is a common requirement for languages 577 // which detect stack overflow via guard pages and then throw exceptions. 578 if (auto *Call = dyn_cast<CallBase>(Cursor)) { 579 if (doesNotRequireEntrySafepointBefore(Call)) 580 continue; 581 break; 582 } 583 } 584 585 assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) && 586 "either we stopped because of a call, or because of terminator"); 587 588 return Cursor; 589 } 590 591 const char GCSafepointPollName[] = "gc.safepoint_poll"; 592 593 static bool isGCSafepointPoll(Function &F) { 594 return F.getName().equals(GCSafepointPollName); 595 } 596 597 /// Returns true if this function should be rewritten to include safepoint 598 /// polls and parseable call sites. The main point of this function is to be 599 /// an extension point for custom logic. 600 static bool shouldRewriteFunction(Function &F) { 601 // TODO: This should check the GCStrategy 602 if (F.hasGC()) { 603 const auto &FunctionGCName = F.getGC(); 604 const StringRef StatepointExampleName("statepoint-example"); 605 const StringRef CoreCLRName("coreclr"); 606 return (StatepointExampleName == FunctionGCName) || 607 (CoreCLRName == FunctionGCName); 608 } else 609 return false; 610 } 611 612 // TODO: These should become properties of the GCStrategy, possibly with 613 // command line overrides. 614 static bool enableEntrySafepoints(Function &F) { return !NoEntry; } 615 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; } 616 static bool enableCallSafepoints(Function &F) { return !NoCall; } 617 618 // Insert a safepoint poll immediately before the given instruction. Does 619 // not handle the parsability of state at the runtime call, that's the 620 // callers job. 621 static void 622 InsertSafepointPoll(Instruction *InsertBefore, 623 std::vector<CallBase *> &ParsePointsNeeded /*rval*/, 624 const TargetLibraryInfo &TLI) { 625 BasicBlock *OrigBB = InsertBefore->getParent(); 626 Module *M = InsertBefore->getModule(); 627 assert(M && "must be part of a module"); 628 629 // Inline the safepoint poll implementation - this will get all the branch, 630 // control flow, etc.. Most importantly, it will introduce the actual slow 631 // path call - where we need to insert a safepoint (parsepoint). 632 633 auto *F = M->getFunction(GCSafepointPollName); 634 assert(F && "gc.safepoint_poll function is missing"); 635 assert(F->getValueType() == 636 FunctionType::get(Type::getVoidTy(M->getContext()), false) && 637 "gc.safepoint_poll declared with wrong type"); 638 assert(!F->empty() && "gc.safepoint_poll must be a non-empty function"); 639 CallInst *PollCall = CallInst::Create(F, "", InsertBefore); 640 641 // Record some information about the call site we're replacing 642 BasicBlock::iterator Before(PollCall), After(PollCall); 643 bool IsBegin = false; 644 if (Before == OrigBB->begin()) 645 IsBegin = true; 646 else 647 Before--; 648 649 After++; 650 assert(After != OrigBB->end() && "must have successor"); 651 652 // Do the actual inlining 653 InlineFunctionInfo IFI; 654 bool InlineStatus = InlineFunction(*PollCall, IFI).isSuccess(); 655 assert(InlineStatus && "inline must succeed"); 656 (void)InlineStatus; // suppress warning in release-asserts 657 658 // Check post-conditions 659 assert(IFI.StaticAllocas.empty() && "can't have allocs"); 660 661 std::vector<CallInst *> Calls; // new calls 662 DenseSet<BasicBlock *> BBs; // new BBs + insertee 663 664 // Include only the newly inserted instructions, Note: begin may not be valid 665 // if we inserted to the beginning of the basic block 666 BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before); 667 668 // If your poll function includes an unreachable at the end, that's not 669 // valid. Bugpoint likes to create this, so check for it. 670 assert(isPotentiallyReachable(&*Start, &*After) && 671 "malformed poll function"); 672 673 scanInlinedCode(&*Start, &*After, Calls, BBs); 674 assert(!Calls.empty() && "slow path not found for safepoint poll"); 675 676 // Record the fact we need a parsable state at the runtime call contained in 677 // the poll function. This is required so that the runtime knows how to 678 // parse the last frame when we actually take the safepoint (i.e. execute 679 // the slow path) 680 assert(ParsePointsNeeded.empty()); 681 for (auto *CI : Calls) { 682 // No safepoint needed or wanted 683 if (!needsStatepoint(CI, TLI)) 684 continue; 685 686 // These are likely runtime calls. Should we assert that via calling 687 // convention or something? 688 ParsePointsNeeded.push_back(CI); 689 } 690 assert(ParsePointsNeeded.size() <= Calls.size()); 691 } 692