1 //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Place garbage collection safepoints at appropriate locations in the IR. This 10 // does not make relocation semantics or variable liveness explicit. That's 11 // done by RewriteStatepointsForGC. 12 // 13 // Terminology: 14 // - A call is said to be "parseable" if there is a stack map generated for the 15 // return PC of the call. A runtime can determine where values listed in the 16 // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located 17 // on the stack when the code is suspended inside such a call. Every parse 18 // point is represented by a call wrapped in an gc.statepoint intrinsic. 19 // - A "poll" is an explicit check in the generated code to determine if the 20 // runtime needs the generated code to cooperate by calling a helper routine 21 // and thus suspending its execution at a known state. The call to the helper 22 // routine will be parseable. The (gc & runtime specific) logic of a poll is 23 // assumed to be provided in a function of the name "gc.safepoint_poll". 24 // 25 // We aim to insert polls such that running code can quickly be brought to a 26 // well defined state for inspection by the collector. In the current 27 // implementation, this is done via the insertion of poll sites at method entry 28 // and the backedge of most loops. We try to avoid inserting more polls than 29 // are necessary to ensure a finite period between poll sites. This is not 30 // because the poll itself is expensive in the generated code; it's not. Polls 31 // do tend to impact the optimizer itself in negative ways; we'd like to avoid 32 // perturbing the optimization of the method as much as we can. 33 // 34 // We also need to make most call sites parseable. The callee might execute a 35 // poll (or otherwise be inspected by the GC). If so, the entire stack 36 // (including the suspended frame of the current method) must be parseable. 37 // 38 // This pass will insert: 39 // - Call parse points ("call safepoints") for any call which may need to 40 // reach a safepoint during the execution of the callee function. 41 // - Backedge safepoint polls and entry safepoint polls to ensure that 42 // executing code reaches a safepoint poll in a finite amount of time. 43 // 44 // We do not currently support return statepoints, but adding them would not 45 // be hard. They are not required for correctness - entry safepoints are an 46 // alternative - but some GCs may prefer them. Patches welcome. 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/Pass.h" 51 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/Statistic.h" 54 #include "llvm/Analysis/CFG.h" 55 #include "llvm/Analysis/ScalarEvolution.h" 56 #include "llvm/Analysis/TargetLibraryInfo.h" 57 #include "llvm/Transforms/Utils/Local.h" 58 #include "llvm/IR/Dominators.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/LegacyPassManager.h" 61 #include "llvm/IR/Statepoint.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 68 #define DEBUG_TYPE "safepoint-placement" 69 70 STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted"); 71 STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted"); 72 73 STATISTIC(CallInLoop, 74 "Number of loops without safepoints due to calls in loop"); 75 STATISTIC(FiniteExecution, 76 "Number of loops without safepoints finite execution"); 77 78 using namespace llvm; 79 80 // Ignore opportunities to avoid placing safepoints on backedges, useful for 81 // validation 82 static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden, 83 cl::init(false)); 84 85 /// How narrow does the trip count of a loop have to be to have to be considered 86 /// "counted"? Counted loops do not get safepoints at backedges. 87 static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width", 88 cl::Hidden, cl::init(32)); 89 90 // If true, split the backedge of a loop when placing the safepoint, otherwise 91 // split the latch block itself. Both are useful to support for 92 // experimentation, but in practice, it looks like splitting the backedge 93 // optimizes better. 94 static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden, 95 cl::init(false)); 96 97 namespace { 98 99 /// An analysis pass whose purpose is to identify each of the backedges in 100 /// the function which require a safepoint poll to be inserted. 101 struct PlaceBackedgeSafepointsImpl : public FunctionPass { 102 static char ID; 103 104 /// The output of the pass - gives a list of each backedge (described by 105 /// pointing at the branch) which need a poll inserted. 106 std::vector<Instruction *> PollLocations; 107 108 /// True unless we're running spp-no-calls in which case we need to disable 109 /// the call-dependent placement opts. 110 bool CallSafepointsEnabled; 111 112 ScalarEvolution *SE = nullptr; 113 DominatorTree *DT = nullptr; 114 LoopInfo *LI = nullptr; 115 TargetLibraryInfo *TLI = nullptr; 116 117 PlaceBackedgeSafepointsImpl(bool CallSafepoints = false) 118 : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) { 119 initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry()); 120 } 121 122 bool runOnLoop(Loop *); 123 void runOnLoopAndSubLoops(Loop *L) { 124 // Visit all the subloops 125 for (Loop *I : *L) 126 runOnLoopAndSubLoops(I); 127 runOnLoop(L); 128 } 129 130 bool runOnFunction(Function &F) override { 131 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 132 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 133 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 134 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 135 for (Loop *I : *LI) { 136 runOnLoopAndSubLoops(I); 137 } 138 return false; 139 } 140 141 void getAnalysisUsage(AnalysisUsage &AU) const override { 142 AU.addRequired<DominatorTreeWrapperPass>(); 143 AU.addRequired<ScalarEvolutionWrapperPass>(); 144 AU.addRequired<LoopInfoWrapperPass>(); 145 AU.addRequired<TargetLibraryInfoWrapperPass>(); 146 // We no longer modify the IR at all in this pass. Thus all 147 // analysis are preserved. 148 AU.setPreservesAll(); 149 } 150 }; 151 } 152 153 static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false)); 154 static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false)); 155 static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false)); 156 157 namespace { 158 struct PlaceSafepoints : public FunctionPass { 159 static char ID; // Pass identification, replacement for typeid 160 161 PlaceSafepoints() : FunctionPass(ID) { 162 initializePlaceSafepointsPass(*PassRegistry::getPassRegistry()); 163 } 164 bool runOnFunction(Function &F) override; 165 166 void getAnalysisUsage(AnalysisUsage &AU) const override { 167 // We modify the graph wholesale (inlining, block insertion, etc). We 168 // preserve nothing at the moment. We could potentially preserve dom tree 169 // if that was worth doing 170 AU.addRequired<TargetLibraryInfoWrapperPass>(); 171 } 172 }; 173 } 174 175 // Insert a safepoint poll immediately before the given instruction. Does 176 // not handle the parsability of state at the runtime call, that's the 177 // callers job. 178 static void 179 InsertSafepointPoll(Instruction *InsertBefore, 180 std::vector<CallBase *> &ParsePointsNeeded /*rval*/, 181 const TargetLibraryInfo &TLI); 182 183 static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) { 184 if (callsGCLeafFunction(Call, TLI)) 185 return false; 186 if (auto *CI = dyn_cast<CallInst>(Call)) { 187 if (CI->isInlineAsm()) 188 return false; 189 } 190 191 return !(isStatepoint(Call) || isGCRelocate(Call) || isGCResult(Call)); 192 } 193 194 /// Returns true if this loop is known to contain a call safepoint which 195 /// must unconditionally execute on any iteration of the loop which returns 196 /// to the loop header via an edge from Pred. Returns a conservative correct 197 /// answer; i.e. false is always valid. 198 static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header, 199 BasicBlock *Pred, 200 DominatorTree &DT, 201 const TargetLibraryInfo &TLI) { 202 // In general, we're looking for any cut of the graph which ensures 203 // there's a call safepoint along every edge between Header and Pred. 204 // For the moment, we look only for the 'cuts' that consist of a single call 205 // instruction in a block which is dominated by the Header and dominates the 206 // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain 207 // of such dominating blocks gets substantially more occurrences than just 208 // checking the Pred and Header blocks themselves. This may be due to the 209 // density of loop exit conditions caused by range and null checks. 210 // TODO: structure this as an analysis pass, cache the result for subloops, 211 // avoid dom tree recalculations 212 assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?"); 213 214 BasicBlock *Current = Pred; 215 while (true) { 216 for (Instruction &I : *Current) { 217 if (auto *Call = dyn_cast<CallBase>(&I)) 218 // Note: Technically, needing a safepoint isn't quite the right 219 // condition here. We should instead be checking if the target method 220 // has an 221 // unconditional poll. In practice, this is only a theoretical concern 222 // since we don't have any methods with conditional-only safepoint 223 // polls. 224 if (needsStatepoint(Call, TLI)) 225 return true; 226 } 227 228 if (Current == Header) 229 break; 230 Current = DT.getNode(Current)->getIDom()->getBlock(); 231 } 232 233 return false; 234 } 235 236 /// Returns true if this loop is known to terminate in a finite number of 237 /// iterations. Note that this function may return false for a loop which 238 /// does actual terminate in a finite constant number of iterations due to 239 /// conservatism in the analysis. 240 static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE, 241 BasicBlock *Pred) { 242 // A conservative bound on the loop as a whole. 243 const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L); 244 if (MaxTrips != SE->getCouldNotCompute() && 245 SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN( 246 CountedLoopTripWidth)) 247 return true; 248 249 // If this is a conditional branch to the header with the alternate path 250 // being outside the loop, we can ask questions about the execution frequency 251 // of the exit block. 252 if (L->isLoopExiting(Pred)) { 253 // This returns an exact expression only. TODO: We really only need an 254 // upper bound here, but SE doesn't expose that. 255 const SCEV *MaxExec = SE->getExitCount(L, Pred); 256 if (MaxExec != SE->getCouldNotCompute() && 257 SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN( 258 CountedLoopTripWidth)) 259 return true; 260 } 261 262 return /* not finite */ false; 263 } 264 265 static void scanOneBB(Instruction *Start, Instruction *End, 266 std::vector<CallInst *> &Calls, 267 DenseSet<BasicBlock *> &Seen, 268 std::vector<BasicBlock *> &Worklist) { 269 for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(), 270 BBE1 = BasicBlock::iterator(End); 271 BBI != BBE0 && BBI != BBE1; BBI++) { 272 if (CallInst *CI = dyn_cast<CallInst>(&*BBI)) 273 Calls.push_back(CI); 274 275 // FIXME: This code does not handle invokes 276 assert(!isa<InvokeInst>(&*BBI) && 277 "support for invokes in poll code needed"); 278 279 // Only add the successor blocks if we reach the terminator instruction 280 // without encountering end first 281 if (BBI->isTerminator()) { 282 BasicBlock *BB = BBI->getParent(); 283 for (BasicBlock *Succ : successors(BB)) { 284 if (Seen.insert(Succ).second) { 285 Worklist.push_back(Succ); 286 } 287 } 288 } 289 } 290 } 291 292 static void scanInlinedCode(Instruction *Start, Instruction *End, 293 std::vector<CallInst *> &Calls, 294 DenseSet<BasicBlock *> &Seen) { 295 Calls.clear(); 296 std::vector<BasicBlock *> Worklist; 297 Seen.insert(Start->getParent()); 298 scanOneBB(Start, End, Calls, Seen, Worklist); 299 while (!Worklist.empty()) { 300 BasicBlock *BB = Worklist.back(); 301 Worklist.pop_back(); 302 scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist); 303 } 304 } 305 306 bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) { 307 // Loop through all loop latches (branches controlling backedges). We need 308 // to place a safepoint on every backedge (potentially). 309 // Note: In common usage, there will be only one edge due to LoopSimplify 310 // having run sometime earlier in the pipeline, but this code must be correct 311 // w.r.t. loops with multiple backedges. 312 BasicBlock *Header = L->getHeader(); 313 SmallVector<BasicBlock*, 16> LoopLatches; 314 L->getLoopLatches(LoopLatches); 315 for (BasicBlock *Pred : LoopLatches) { 316 assert(L->contains(Pred)); 317 318 // Make a policy decision about whether this loop needs a safepoint or 319 // not. Note that this is about unburdening the optimizer in loops, not 320 // avoiding the runtime cost of the actual safepoint. 321 if (!AllBackedges) { 322 if (mustBeFiniteCountedLoop(L, SE, Pred)) { 323 LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n"); 324 FiniteExecution++; 325 continue; 326 } 327 if (CallSafepointsEnabled && 328 containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) { 329 // Note: This is only semantically legal since we won't do any further 330 // IPO or inlining before the actual call insertion.. If we hadn't, we 331 // might latter loose this call safepoint. 332 LLVM_DEBUG( 333 dbgs() 334 << "skipping safepoint placement due to unconditional call\n"); 335 CallInLoop++; 336 continue; 337 } 338 } 339 340 // TODO: We can create an inner loop which runs a finite number of 341 // iterations with an outer loop which contains a safepoint. This would 342 // not help runtime performance that much, but it might help our ability to 343 // optimize the inner loop. 344 345 // Safepoint insertion would involve creating a new basic block (as the 346 // target of the current backedge) which does the safepoint (of all live 347 // variables) and branches to the true header 348 Instruction *Term = Pred->getTerminator(); 349 350 LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term); 351 352 PollLocations.push_back(Term); 353 } 354 355 return false; 356 } 357 358 /// Returns true if an entry safepoint is not required before this callsite in 359 /// the caller function. 360 static bool doesNotRequireEntrySafepointBefore(CallBase *Call) { 361 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) { 362 switch (II->getIntrinsicID()) { 363 case Intrinsic::experimental_gc_statepoint: 364 case Intrinsic::experimental_patchpoint_void: 365 case Intrinsic::experimental_patchpoint_i64: 366 // The can wrap an actual call which may grow the stack by an unbounded 367 // amount or run forever. 368 return false; 369 default: 370 // Most LLVM intrinsics are things which do not expand to actual calls, or 371 // at least if they do, are leaf functions that cause only finite stack 372 // growth. In particular, the optimizer likes to form things like memsets 373 // out of stores in the original IR. Another important example is 374 // llvm.localescape which must occur in the entry block. Inserting a 375 // safepoint before it is not legal since it could push the localescape 376 // out of the entry block. 377 return true; 378 } 379 } 380 return false; 381 } 382 383 static Instruction *findLocationForEntrySafepoint(Function &F, 384 DominatorTree &DT) { 385 386 // Conceptually, this poll needs to be on method entry, but in 387 // practice, we place it as late in the entry block as possible. We 388 // can place it as late as we want as long as it dominates all calls 389 // that can grow the stack. This, combined with backedge polls, 390 // give us all the progress guarantees we need. 391 392 // hasNextInstruction and nextInstruction are used to iterate 393 // through a "straight line" execution sequence. 394 395 auto HasNextInstruction = [](Instruction *I) { 396 if (!I->isTerminator()) 397 return true; 398 399 BasicBlock *nextBB = I->getParent()->getUniqueSuccessor(); 400 return nextBB && (nextBB->getUniquePredecessor() != nullptr); 401 }; 402 403 auto NextInstruction = [&](Instruction *I) { 404 assert(HasNextInstruction(I) && 405 "first check if there is a next instruction!"); 406 407 if (I->isTerminator()) 408 return &I->getParent()->getUniqueSuccessor()->front(); 409 return &*++I->getIterator(); 410 }; 411 412 Instruction *Cursor = nullptr; 413 for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor); 414 Cursor = NextInstruction(Cursor)) { 415 416 // We need to ensure a safepoint poll occurs before any 'real' call. The 417 // easiest way to ensure finite execution between safepoints in the face of 418 // recursive and mutually recursive functions is to enforce that each take 419 // a safepoint. Additionally, we need to ensure a poll before any call 420 // which can grow the stack by an unbounded amount. This isn't required 421 // for GC semantics per se, but is a common requirement for languages 422 // which detect stack overflow via guard pages and then throw exceptions. 423 if (auto *Call = dyn_cast<CallBase>(Cursor)) { 424 if (doesNotRequireEntrySafepointBefore(Call)) 425 continue; 426 break; 427 } 428 } 429 430 assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) && 431 "either we stopped because of a call, or because of terminator"); 432 433 return Cursor; 434 } 435 436 static const char *const GCSafepointPollName = "gc.safepoint_poll"; 437 438 static bool isGCSafepointPoll(Function &F) { 439 return F.getName().equals(GCSafepointPollName); 440 } 441 442 /// Returns true if this function should be rewritten to include safepoint 443 /// polls and parseable call sites. The main point of this function is to be 444 /// an extension point for custom logic. 445 static bool shouldRewriteFunction(Function &F) { 446 // TODO: This should check the GCStrategy 447 if (F.hasGC()) { 448 const auto &FunctionGCName = F.getGC(); 449 const StringRef StatepointExampleName("statepoint-example"); 450 const StringRef CoreCLRName("coreclr"); 451 return (StatepointExampleName == FunctionGCName) || 452 (CoreCLRName == FunctionGCName); 453 } else 454 return false; 455 } 456 457 // TODO: These should become properties of the GCStrategy, possibly with 458 // command line overrides. 459 static bool enableEntrySafepoints(Function &F) { return !NoEntry; } 460 static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; } 461 static bool enableCallSafepoints(Function &F) { return !NoCall; } 462 463 bool PlaceSafepoints::runOnFunction(Function &F) { 464 if (F.isDeclaration() || F.empty()) { 465 // This is a declaration, nothing to do. Must exit early to avoid crash in 466 // dom tree calculation 467 return false; 468 } 469 470 if (isGCSafepointPoll(F)) { 471 // Given we're inlining this inside of safepoint poll insertion, this 472 // doesn't make any sense. Note that we do make any contained calls 473 // parseable after we inline a poll. 474 return false; 475 } 476 477 if (!shouldRewriteFunction(F)) 478 return false; 479 480 const TargetLibraryInfo &TLI = 481 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 482 483 bool Modified = false; 484 485 // In various bits below, we rely on the fact that uses are reachable from 486 // defs. When there are basic blocks unreachable from the entry, dominance 487 // and reachablity queries return non-sensical results. Thus, we preprocess 488 // the function to ensure these properties hold. 489 Modified |= removeUnreachableBlocks(F); 490 491 // STEP 1 - Insert the safepoint polling locations. We do not need to 492 // actually insert parse points yet. That will be done for all polls and 493 // calls in a single pass. 494 495 DominatorTree DT; 496 DT.recalculate(F); 497 498 SmallVector<Instruction *, 16> PollsNeeded; 499 std::vector<CallBase *> ParsePointNeeded; 500 501 if (enableBackedgeSafepoints(F)) { 502 // Construct a pass manager to run the LoopPass backedge logic. We 503 // need the pass manager to handle scheduling all the loop passes 504 // appropriately. Doing this by hand is painful and just not worth messing 505 // with for the moment. 506 legacy::FunctionPassManager FPM(F.getParent()); 507 bool CanAssumeCallSafepoints = enableCallSafepoints(F); 508 auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints); 509 FPM.add(PBS); 510 FPM.run(F); 511 512 // We preserve dominance information when inserting the poll, otherwise 513 // we'd have to recalculate this on every insert 514 DT.recalculate(F); 515 516 auto &PollLocations = PBS->PollLocations; 517 518 auto OrderByBBName = [](Instruction *a, Instruction *b) { 519 return a->getParent()->getName() < b->getParent()->getName(); 520 }; 521 // We need the order of list to be stable so that naming ends up stable 522 // when we split edges. This makes test cases much easier to write. 523 llvm::sort(PollLocations, OrderByBBName); 524 525 // We can sometimes end up with duplicate poll locations. This happens if 526 // a single loop is visited more than once. The fact this happens seems 527 // wrong, but it does happen for the split-backedge.ll test case. 528 PollLocations.erase(std::unique(PollLocations.begin(), 529 PollLocations.end()), 530 PollLocations.end()); 531 532 // Insert a poll at each point the analysis pass identified 533 // The poll location must be the terminator of a loop latch block. 534 for (Instruction *Term : PollLocations) { 535 // We are inserting a poll, the function is modified 536 Modified = true; 537 538 if (SplitBackedge) { 539 // Split the backedge of the loop and insert the poll within that new 540 // basic block. This creates a loop with two latches per original 541 // latch (which is non-ideal), but this appears to be easier to 542 // optimize in practice than inserting the poll immediately before the 543 // latch test. 544 545 // Since this is a latch, at least one of the successors must dominate 546 // it. Its possible that we have a) duplicate edges to the same header 547 // and b) edges to distinct loop headers. We need to insert pools on 548 // each. 549 SetVector<BasicBlock *> Headers; 550 for (unsigned i = 0; i < Term->getNumSuccessors(); i++) { 551 BasicBlock *Succ = Term->getSuccessor(i); 552 if (DT.dominates(Succ, Term->getParent())) { 553 Headers.insert(Succ); 554 } 555 } 556 assert(!Headers.empty() && "poll location is not a loop latch?"); 557 558 // The split loop structure here is so that we only need to recalculate 559 // the dominator tree once. Alternatively, we could just keep it up to 560 // date and use a more natural merged loop. 561 SetVector<BasicBlock *> SplitBackedges; 562 for (BasicBlock *Header : Headers) { 563 BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT); 564 PollsNeeded.push_back(NewBB->getTerminator()); 565 NumBackedgeSafepoints++; 566 } 567 } else { 568 // Split the latch block itself, right before the terminator. 569 PollsNeeded.push_back(Term); 570 NumBackedgeSafepoints++; 571 } 572 } 573 } 574 575 if (enableEntrySafepoints(F)) { 576 if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) { 577 PollsNeeded.push_back(Location); 578 Modified = true; 579 NumEntrySafepoints++; 580 } 581 // TODO: else we should assert that there was, in fact, a policy choice to 582 // not insert a entry safepoint poll. 583 } 584 585 // Now that we've identified all the needed safepoint poll locations, insert 586 // safepoint polls themselves. 587 for (Instruction *PollLocation : PollsNeeded) { 588 std::vector<CallBase *> RuntimeCalls; 589 InsertSafepointPoll(PollLocation, RuntimeCalls, TLI); 590 ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(), 591 RuntimeCalls.end()); 592 } 593 594 return Modified; 595 } 596 597 char PlaceBackedgeSafepointsImpl::ID = 0; 598 char PlaceSafepoints::ID = 0; 599 600 FunctionPass *llvm::createPlaceSafepointsPass() { 601 return new PlaceSafepoints(); 602 } 603 604 INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl, 605 "place-backedge-safepoints-impl", 606 "Place Backedge Safepoints", false, false) 607 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 608 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 609 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 610 INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl, 611 "place-backedge-safepoints-impl", 612 "Place Backedge Safepoints", false, false) 613 614 INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints", 615 false, false) 616 INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints", 617 false, false) 618 619 static void 620 InsertSafepointPoll(Instruction *InsertBefore, 621 std::vector<CallBase *> &ParsePointsNeeded /*rval*/, 622 const TargetLibraryInfo &TLI) { 623 BasicBlock *OrigBB = InsertBefore->getParent(); 624 Module *M = InsertBefore->getModule(); 625 assert(M && "must be part of a module"); 626 627 // Inline the safepoint poll implementation - this will get all the branch, 628 // control flow, etc.. Most importantly, it will introduce the actual slow 629 // path call - where we need to insert a safepoint (parsepoint). 630 631 auto *F = M->getFunction(GCSafepointPollName); 632 assert(F && "gc.safepoint_poll function is missing"); 633 assert(F->getValueType() == 634 FunctionType::get(Type::getVoidTy(M->getContext()), false) && 635 "gc.safepoint_poll declared with wrong type"); 636 assert(!F->empty() && "gc.safepoint_poll must be a non-empty function"); 637 CallInst *PollCall = CallInst::Create(F, "", InsertBefore); 638 639 // Record some information about the call site we're replacing 640 BasicBlock::iterator Before(PollCall), After(PollCall); 641 bool IsBegin = false; 642 if (Before == OrigBB->begin()) 643 IsBegin = true; 644 else 645 Before--; 646 647 After++; 648 assert(After != OrigBB->end() && "must have successor"); 649 650 // Do the actual inlining 651 InlineFunctionInfo IFI; 652 bool InlineStatus = InlineFunction(PollCall, IFI); 653 assert(InlineStatus && "inline must succeed"); 654 (void)InlineStatus; // suppress warning in release-asserts 655 656 // Check post-conditions 657 assert(IFI.StaticAllocas.empty() && "can't have allocs"); 658 659 std::vector<CallInst *> Calls; // new calls 660 DenseSet<BasicBlock *> BBs; // new BBs + insertee 661 662 // Include only the newly inserted instructions, Note: begin may not be valid 663 // if we inserted to the beginning of the basic block 664 BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before); 665 666 // If your poll function includes an unreachable at the end, that's not 667 // valid. Bugpoint likes to create this, so check for it. 668 assert(isPotentiallyReachable(&*Start, &*After) && 669 "malformed poll function"); 670 671 scanInlinedCode(&*Start, &*After, Calls, BBs); 672 assert(!Calls.empty() && "slow path not found for safepoint poll"); 673 674 // Record the fact we need a parsable state at the runtime call contained in 675 // the poll function. This is required so that the runtime knows how to 676 // parse the last frame when we actually take the safepoint (i.e. execute 677 // the slow path) 678 assert(ParsePointsNeeded.empty()); 679 for (auto *CI : Calls) { 680 // No safepoint needed or wanted 681 if (!needsStatepoint(CI, TLI)) 682 continue; 683 684 // These are likely runtime calls. Should we assert that via calling 685 // convention or something? 686 ParsePointsNeeded.push_back(CI); 687 } 688 assert(ParsePointsNeeded.size() <= Calls.size()); 689 } 690