1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements the new LLVM's Global Value Numbering pass. 11 /// GVN partitions values computed by a function into congruence classes. 12 /// Values ending up in the same congruence class are guaranteed to be the same 13 /// for every execution of the program. In that respect, congruency is a 14 /// compile-time approximation of equivalence of values at runtime. 15 /// The algorithm implemented here uses a sparse formulation and it's based 16 /// on the ideas described in the paper: 17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from 18 /// Karthik Gargi. 19 /// 20 /// A brief overview of the algorithm: The algorithm is essentially the same as 21 /// the standard RPO value numbering algorithm (a good reference is the paper 22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference: 23 /// The RPO algorithm proceeds, on every iteration, to process every reachable 24 /// block and every instruction in that block. This is because the standard RPO 25 /// algorithm does not track what things have the same value number, it only 26 /// tracks what the value number of a given operation is (the mapping is 27 /// operation -> value number). Thus, when a value number of an operation 28 /// changes, it must reprocess everything to ensure all uses of a value number 29 /// get updated properly. In constrast, the sparse algorithm we use *also* 30 /// tracks what operations have a given value number (IE it also tracks the 31 /// reverse mapping from value number -> operations with that value number), so 32 /// that it only needs to reprocess the instructions that are affected when 33 /// something's value number changes. The vast majority of complexity and code 34 /// in this file is devoted to tracking what value numbers could change for what 35 /// instructions when various things happen. The rest of the algorithm is 36 /// devoted to performing symbolic evaluation, forward propagation, and 37 /// simplification of operations based on the value numbers deduced so far 38 /// 39 /// In order to make the GVN mostly-complete, we use a technique derived from 40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time 41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA 42 /// based GVN algorithms is related to their inability to detect equivalence 43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)). 44 /// We resolve this issue by generating the equivalent "phi of ops" form for 45 /// each op of phis we see, in a way that only takes polynomial time to resolve. 46 /// 47 /// We also do not perform elimination by using any published algorithm. All 48 /// published algorithms are O(Instructions). Instead, we use a technique that 49 /// is O(number of operations with the same value number), enabling us to skip 50 /// trying to eliminate things that have unique value numbers. 51 // 52 //===----------------------------------------------------------------------===// 53 54 #include "llvm/Transforms/Scalar/NewGVN.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/BitVector.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseMapInfo.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 #include "llvm/ADT/GraphTraits.h" 62 #include "llvm/ADT/Hashing.h" 63 #include "llvm/ADT/PointerIntPair.h" 64 #include "llvm/ADT/PostOrderIterator.h" 65 #include "llvm/ADT/SetOperations.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/SparseBitVector.h" 69 #include "llvm/ADT/Statistic.h" 70 #include "llvm/ADT/iterator_range.h" 71 #include "llvm/Analysis/AliasAnalysis.h" 72 #include "llvm/Analysis/AssumptionCache.h" 73 #include "llvm/Analysis/CFGPrinter.h" 74 #include "llvm/Analysis/ConstantFolding.h" 75 #include "llvm/Analysis/GlobalsModRef.h" 76 #include "llvm/Analysis/InstructionSimplify.h" 77 #include "llvm/Analysis/MemoryBuiltins.h" 78 #include "llvm/Analysis/MemorySSA.h" 79 #include "llvm/Analysis/TargetLibraryInfo.h" 80 #include "llvm/IR/Argument.h" 81 #include "llvm/IR/BasicBlock.h" 82 #include "llvm/IR/Constant.h" 83 #include "llvm/IR/Constants.h" 84 #include "llvm/IR/Dominators.h" 85 #include "llvm/IR/Function.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/PatternMatch.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/Use.h" 95 #include "llvm/IR/User.h" 96 #include "llvm/IR/Value.h" 97 #include "llvm/InitializePasses.h" 98 #include "llvm/Pass.h" 99 #include "llvm/Support/Allocator.h" 100 #include "llvm/Support/ArrayRecycler.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/DebugCounter.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/PointerLikeTypeTraits.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Transforms/Scalar.h" 109 #include "llvm/Transforms/Scalar/GVNExpression.h" 110 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include "llvm/Transforms/Utils/PredicateInfo.h" 113 #include "llvm/Transforms/Utils/VNCoercion.h" 114 #include <algorithm> 115 #include <cassert> 116 #include <cstdint> 117 #include <iterator> 118 #include <map> 119 #include <memory> 120 #include <set> 121 #include <string> 122 #include <tuple> 123 #include <utility> 124 #include <vector> 125 126 using namespace llvm; 127 using namespace llvm::GVNExpression; 128 using namespace llvm::VNCoercion; 129 using namespace llvm::PatternMatch; 130 131 #define DEBUG_TYPE "newgvn" 132 133 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted"); 134 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted"); 135 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified"); 136 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same"); 137 STATISTIC(NumGVNMaxIterations, 138 "Maximum Number of iterations it took to converge GVN"); 139 STATISTIC(NumGVNLeaderChanges, "Number of leader changes"); 140 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes"); 141 STATISTIC(NumGVNAvoidedSortedLeaderChanges, 142 "Number of avoided sorted leader changes"); 143 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated"); 144 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created"); 145 STATISTIC(NumGVNPHIOfOpsEliminations, 146 "Number of things eliminated using PHI of ops"); 147 DEBUG_COUNTER(VNCounter, "newgvn-vn", 148 "Controls which instructions are value numbered"); 149 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi", 150 "Controls which instructions we create phi of ops for"); 151 // Currently store defining access refinement is too slow due to basicaa being 152 // egregiously slow. This flag lets us keep it working while we work on this 153 // issue. 154 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement", 155 cl::init(false), cl::Hidden); 156 157 /// Currently, the generation "phi of ops" can result in correctness issues. 158 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true), 159 cl::Hidden); 160 161 //===----------------------------------------------------------------------===// 162 // GVN Pass 163 //===----------------------------------------------------------------------===// 164 165 // Anchor methods. 166 namespace llvm { 167 namespace GVNExpression { 168 169 Expression::~Expression() = default; 170 BasicExpression::~BasicExpression() = default; 171 CallExpression::~CallExpression() = default; 172 LoadExpression::~LoadExpression() = default; 173 StoreExpression::~StoreExpression() = default; 174 AggregateValueExpression::~AggregateValueExpression() = default; 175 PHIExpression::~PHIExpression() = default; 176 177 } // end namespace GVNExpression 178 } // end namespace llvm 179 180 namespace { 181 182 // Tarjan's SCC finding algorithm with Nuutila's improvements 183 // SCCIterator is actually fairly complex for the simple thing we want. 184 // It also wants to hand us SCC's that are unrelated to the phi node we ask 185 // about, and have us process them there or risk redoing work. 186 // Graph traits over a filter iterator also doesn't work that well here. 187 // This SCC finder is specialized to walk use-def chains, and only follows 188 // instructions, 189 // not generic values (arguments, etc). 190 struct TarjanSCC { 191 TarjanSCC() : Components(1) {} 192 193 void Start(const Instruction *Start) { 194 if (Root.lookup(Start) == 0) 195 FindSCC(Start); 196 } 197 198 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const { 199 unsigned ComponentID = ValueToComponent.lookup(V); 200 201 assert(ComponentID > 0 && 202 "Asking for a component for a value we never processed"); 203 return Components[ComponentID]; 204 } 205 206 private: 207 void FindSCC(const Instruction *I) { 208 Root[I] = ++DFSNum; 209 // Store the DFS Number we had before it possibly gets incremented. 210 unsigned int OurDFS = DFSNum; 211 for (auto &Op : I->operands()) { 212 if (auto *InstOp = dyn_cast<Instruction>(Op)) { 213 if (Root.lookup(Op) == 0) 214 FindSCC(InstOp); 215 if (!InComponent.count(Op)) 216 Root[I] = std::min(Root.lookup(I), Root.lookup(Op)); 217 } 218 } 219 // See if we really were the root of a component, by seeing if we still have 220 // our DFSNumber. If we do, we are the root of the component, and we have 221 // completed a component. If we do not, we are not the root of a component, 222 // and belong on the component stack. 223 if (Root.lookup(I) == OurDFS) { 224 unsigned ComponentID = Components.size(); 225 Components.resize(Components.size() + 1); 226 auto &Component = Components.back(); 227 Component.insert(I); 228 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n"); 229 InComponent.insert(I); 230 ValueToComponent[I] = ComponentID; 231 // Pop a component off the stack and label it. 232 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) { 233 auto *Member = Stack.back(); 234 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n"); 235 Component.insert(Member); 236 InComponent.insert(Member); 237 ValueToComponent[Member] = ComponentID; 238 Stack.pop_back(); 239 } 240 } else { 241 // Part of a component, push to stack 242 Stack.push_back(I); 243 } 244 } 245 246 unsigned int DFSNum = 1; 247 SmallPtrSet<const Value *, 8> InComponent; 248 DenseMap<const Value *, unsigned int> Root; 249 SmallVector<const Value *, 8> Stack; 250 251 // Store the components as vector of ptr sets, because we need the topo order 252 // of SCC's, but not individual member order 253 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components; 254 255 DenseMap<const Value *, unsigned> ValueToComponent; 256 }; 257 258 // Congruence classes represent the set of expressions/instructions 259 // that are all the same *during some scope in the function*. 260 // That is, because of the way we perform equality propagation, and 261 // because of memory value numbering, it is not correct to assume 262 // you can willy-nilly replace any member with any other at any 263 // point in the function. 264 // 265 // For any Value in the Member set, it is valid to replace any dominated member 266 // with that Value. 267 // 268 // Every congruence class has a leader, and the leader is used to symbolize 269 // instructions in a canonical way (IE every operand of an instruction that is a 270 // member of the same congruence class will always be replaced with leader 271 // during symbolization). To simplify symbolization, we keep the leader as a 272 // constant if class can be proved to be a constant value. Otherwise, the 273 // leader is the member of the value set with the smallest DFS number. Each 274 // congruence class also has a defining expression, though the expression may be 275 // null. If it exists, it can be used for forward propagation and reassociation 276 // of values. 277 278 // For memory, we also track a representative MemoryAccess, and a set of memory 279 // members for MemoryPhis (which have no real instructions). Note that for 280 // memory, it seems tempting to try to split the memory members into a 281 // MemoryCongruenceClass or something. Unfortunately, this does not work 282 // easily. The value numbering of a given memory expression depends on the 283 // leader of the memory congruence class, and the leader of memory congruence 284 // class depends on the value numbering of a given memory expression. This 285 // leads to wasted propagation, and in some cases, missed optimization. For 286 // example: If we had value numbered two stores together before, but now do not, 287 // we move them to a new value congruence class. This in turn will move at one 288 // of the memorydefs to a new memory congruence class. Which in turn, affects 289 // the value numbering of the stores we just value numbered (because the memory 290 // congruence class is part of the value number). So while theoretically 291 // possible to split them up, it turns out to be *incredibly* complicated to get 292 // it to work right, because of the interdependency. While structurally 293 // slightly messier, it is algorithmically much simpler and faster to do what we 294 // do here, and track them both at once in the same class. 295 // Note: The default iterators for this class iterate over values 296 class CongruenceClass { 297 public: 298 using MemberType = Value; 299 using MemberSet = SmallPtrSet<MemberType *, 4>; 300 using MemoryMemberType = MemoryPhi; 301 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>; 302 303 explicit CongruenceClass(unsigned ID) : ID(ID) {} 304 CongruenceClass(unsigned ID, Value *Leader, const Expression *E) 305 : ID(ID), RepLeader(Leader), DefiningExpr(E) {} 306 307 unsigned getID() const { return ID; } 308 309 // True if this class has no members left. This is mainly used for assertion 310 // purposes, and for skipping empty classes. 311 bool isDead() const { 312 // If it's both dead from a value perspective, and dead from a memory 313 // perspective, it's really dead. 314 return empty() && memory_empty(); 315 } 316 317 // Leader functions 318 Value *getLeader() const { return RepLeader; } 319 void setLeader(Value *Leader) { RepLeader = Leader; } 320 const std::pair<Value *, unsigned int> &getNextLeader() const { 321 return NextLeader; 322 } 323 void resetNextLeader() { NextLeader = {nullptr, ~0}; } 324 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) { 325 if (LeaderPair.second < NextLeader.second) 326 NextLeader = LeaderPair; 327 } 328 329 Value *getStoredValue() const { return RepStoredValue; } 330 void setStoredValue(Value *Leader) { RepStoredValue = Leader; } 331 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; } 332 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; } 333 334 // Forward propagation info 335 const Expression *getDefiningExpr() const { return DefiningExpr; } 336 337 // Value member set 338 bool empty() const { return Members.empty(); } 339 unsigned size() const { return Members.size(); } 340 MemberSet::const_iterator begin() const { return Members.begin(); } 341 MemberSet::const_iterator end() const { return Members.end(); } 342 void insert(MemberType *M) { Members.insert(M); } 343 void erase(MemberType *M) { Members.erase(M); } 344 void swap(MemberSet &Other) { Members.swap(Other); } 345 346 // Memory member set 347 bool memory_empty() const { return MemoryMembers.empty(); } 348 unsigned memory_size() const { return MemoryMembers.size(); } 349 MemoryMemberSet::const_iterator memory_begin() const { 350 return MemoryMembers.begin(); 351 } 352 MemoryMemberSet::const_iterator memory_end() const { 353 return MemoryMembers.end(); 354 } 355 iterator_range<MemoryMemberSet::const_iterator> memory() const { 356 return make_range(memory_begin(), memory_end()); 357 } 358 359 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); } 360 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); } 361 362 // Store count 363 unsigned getStoreCount() const { return StoreCount; } 364 void incStoreCount() { ++StoreCount; } 365 void decStoreCount() { 366 assert(StoreCount != 0 && "Store count went negative"); 367 --StoreCount; 368 } 369 370 // True if this class has no memory members. 371 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); } 372 373 // Return true if two congruence classes are equivalent to each other. This 374 // means that every field but the ID number and the dead field are equivalent. 375 bool isEquivalentTo(const CongruenceClass *Other) const { 376 if (!Other) 377 return false; 378 if (this == Other) 379 return true; 380 381 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) != 382 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue, 383 Other->RepMemoryAccess)) 384 return false; 385 if (DefiningExpr != Other->DefiningExpr) 386 if (!DefiningExpr || !Other->DefiningExpr || 387 *DefiningExpr != *Other->DefiningExpr) 388 return false; 389 390 if (Members.size() != Other->Members.size()) 391 return false; 392 393 return llvm::set_is_subset(Members, Other->Members); 394 } 395 396 private: 397 unsigned ID; 398 399 // Representative leader. 400 Value *RepLeader = nullptr; 401 402 // The most dominating leader after our current leader, because the member set 403 // is not sorted and is expensive to keep sorted all the time. 404 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U}; 405 406 // If this is represented by a store, the value of the store. 407 Value *RepStoredValue = nullptr; 408 409 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory 410 // access. 411 const MemoryAccess *RepMemoryAccess = nullptr; 412 413 // Defining Expression. 414 const Expression *DefiningExpr = nullptr; 415 416 // Actual members of this class. 417 MemberSet Members; 418 419 // This is the set of MemoryPhis that exist in the class. MemoryDefs and 420 // MemoryUses have real instructions representing them, so we only need to 421 // track MemoryPhis here. 422 MemoryMemberSet MemoryMembers; 423 424 // Number of stores in this congruence class. 425 // This is used so we can detect store equivalence changes properly. 426 int StoreCount = 0; 427 }; 428 429 } // end anonymous namespace 430 431 namespace llvm { 432 433 struct ExactEqualsExpression { 434 const Expression &E; 435 436 explicit ExactEqualsExpression(const Expression &E) : E(E) {} 437 438 hash_code getComputedHash() const { return E.getComputedHash(); } 439 440 bool operator==(const Expression &Other) const { 441 return E.exactlyEquals(Other); 442 } 443 }; 444 445 template <> struct DenseMapInfo<const Expression *> { 446 static const Expression *getEmptyKey() { 447 auto Val = static_cast<uintptr_t>(-1); 448 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 449 return reinterpret_cast<const Expression *>(Val); 450 } 451 452 static const Expression *getTombstoneKey() { 453 auto Val = static_cast<uintptr_t>(~1U); 454 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 455 return reinterpret_cast<const Expression *>(Val); 456 } 457 458 static unsigned getHashValue(const Expression *E) { 459 return E->getComputedHash(); 460 } 461 462 static unsigned getHashValue(const ExactEqualsExpression &E) { 463 return E.getComputedHash(); 464 } 465 466 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) { 467 if (RHS == getTombstoneKey() || RHS == getEmptyKey()) 468 return false; 469 return LHS == *RHS; 470 } 471 472 static bool isEqual(const Expression *LHS, const Expression *RHS) { 473 if (LHS == RHS) 474 return true; 475 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() || 476 LHS == getEmptyKey() || RHS == getEmptyKey()) 477 return false; 478 // Compare hashes before equality. This is *not* what the hashtable does, 479 // since it is computing it modulo the number of buckets, whereas we are 480 // using the full hash keyspace. Since the hashes are precomputed, this 481 // check is *much* faster than equality. 482 if (LHS->getComputedHash() != RHS->getComputedHash()) 483 return false; 484 return *LHS == *RHS; 485 } 486 }; 487 488 } // end namespace llvm 489 490 namespace { 491 492 class NewGVN { 493 Function &F; 494 DominatorTree *DT = nullptr; 495 const TargetLibraryInfo *TLI = nullptr; 496 AliasAnalysis *AA = nullptr; 497 MemorySSA *MSSA = nullptr; 498 MemorySSAWalker *MSSAWalker = nullptr; 499 AssumptionCache *AC = nullptr; 500 const DataLayout &DL; 501 std::unique_ptr<PredicateInfo> PredInfo; 502 503 // These are the only two things the create* functions should have 504 // side-effects on due to allocating memory. 505 mutable BumpPtrAllocator ExpressionAllocator; 506 mutable ArrayRecycler<Value *> ArgRecycler; 507 mutable TarjanSCC SCCFinder; 508 const SimplifyQuery SQ; 509 510 // Number of function arguments, used by ranking 511 unsigned int NumFuncArgs = 0; 512 513 // RPOOrdering of basic blocks 514 DenseMap<const DomTreeNode *, unsigned> RPOOrdering; 515 516 // Congruence class info. 517 518 // This class is called INITIAL in the paper. It is the class everything 519 // startsout in, and represents any value. Being an optimistic analysis, 520 // anything in the TOP class has the value TOP, which is indeterminate and 521 // equivalent to everything. 522 CongruenceClass *TOPClass = nullptr; 523 std::vector<CongruenceClass *> CongruenceClasses; 524 unsigned NextCongruenceNum = 0; 525 526 // Value Mappings. 527 DenseMap<Value *, CongruenceClass *> ValueToClass; 528 DenseMap<Value *, const Expression *> ValueToExpression; 529 530 // Value PHI handling, used to make equivalence between phi(op, op) and 531 // op(phi, phi). 532 // These mappings just store various data that would normally be part of the 533 // IR. 534 SmallPtrSet<const Instruction *, 8> PHINodeUses; 535 536 DenseMap<const Value *, bool> OpSafeForPHIOfOps; 537 538 // Map a temporary instruction we created to a parent block. 539 DenseMap<const Value *, BasicBlock *> TempToBlock; 540 541 // Map between the already in-program instructions and the temporary phis we 542 // created that they are known equivalent to. 543 DenseMap<const Value *, PHINode *> RealToTemp; 544 545 // In order to know when we should re-process instructions that have 546 // phi-of-ops, we track the set of expressions that they needed as 547 // leaders. When we discover new leaders for those expressions, we process the 548 // associated phi-of-op instructions again in case they have changed. The 549 // other way they may change is if they had leaders, and those leaders 550 // disappear. However, at the point they have leaders, there are uses of the 551 // relevant operands in the created phi node, and so they will get reprocessed 552 // through the normal user marking we perform. 553 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers; 554 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>> 555 ExpressionToPhiOfOps; 556 557 // Map from temporary operation to MemoryAccess. 558 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory; 559 560 // Set of all temporary instructions we created. 561 // Note: This will include instructions that were just created during value 562 // numbering. The way to test if something is using them is to check 563 // RealToTemp. 564 DenseSet<Instruction *> AllTempInstructions; 565 566 // This is the set of instructions to revisit on a reachability change. At 567 // the end of the main iteration loop it will contain at least all the phi of 568 // ops instructions that will be changed to phis, as well as regular phis. 569 // During the iteration loop, it may contain other things, such as phi of ops 570 // instructions that used edge reachability to reach a result, and so need to 571 // be revisited when the edge changes, independent of whether the phi they 572 // depended on changes. 573 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange; 574 575 // Mapping from predicate info we used to the instructions we used it with. 576 // In order to correctly ensure propagation, we must keep track of what 577 // comparisons we used, so that when the values of the comparisons change, we 578 // propagate the information to the places we used the comparison. 579 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>> 580 PredicateToUsers; 581 582 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for 583 // stores, we no longer can rely solely on the def-use chains of MemorySSA. 584 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>> 585 MemoryToUsers; 586 587 // A table storing which memorydefs/phis represent a memory state provably 588 // equivalent to another memory state. 589 // We could use the congruence class machinery, but the MemoryAccess's are 590 // abstract memory states, so they can only ever be equivalent to each other, 591 // and not to constants, etc. 592 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass; 593 594 // We could, if we wanted, build MemoryPhiExpressions and 595 // MemoryVariableExpressions, etc, and value number them the same way we value 596 // number phi expressions. For the moment, this seems like overkill. They 597 // can only exist in one of three states: they can be TOP (equal to 598 // everything), Equivalent to something else, or unique. Because we do not 599 // create expressions for them, we need to simulate leader change not just 600 // when they change class, but when they change state. Note: We can do the 601 // same thing for phis, and avoid having phi expressions if we wanted, We 602 // should eventually unify in one direction or the other, so this is a little 603 // bit of an experiment in which turns out easier to maintain. 604 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique }; 605 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState; 606 607 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle }; 608 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState; 609 610 // Expression to class mapping. 611 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>; 612 ExpressionClassMap ExpressionToClass; 613 614 // We have a single expression that represents currently DeadExpressions. 615 // For dead expressions we can prove will stay dead, we mark them with 616 // DFS number zero. However, it's possible in the case of phi nodes 617 // for us to assume/prove all arguments are dead during fixpointing. 618 // We use DeadExpression for that case. 619 DeadExpression *SingletonDeadExpression = nullptr; 620 621 // Which values have changed as a result of leader changes. 622 SmallPtrSet<Value *, 8> LeaderChanges; 623 624 // Reachability info. 625 using BlockEdge = BasicBlockEdge; 626 DenseSet<BlockEdge> ReachableEdges; 627 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks; 628 629 // This is a bitvector because, on larger functions, we may have 630 // thousands of touched instructions at once (entire blocks, 631 // instructions with hundreds of uses, etc). Even with optimization 632 // for when we mark whole blocks as touched, when this was a 633 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all 634 // the time in GVN just managing this list. The bitvector, on the 635 // other hand, efficiently supports test/set/clear of both 636 // individual and ranges, as well as "find next element" This 637 // enables us to use it as a worklist with essentially 0 cost. 638 BitVector TouchedInstructions; 639 640 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange; 641 642 #ifndef NDEBUG 643 // Debugging for how many times each block and instruction got processed. 644 DenseMap<const Value *, unsigned> ProcessedCount; 645 #endif 646 647 // DFS info. 648 // This contains a mapping from Instructions to DFS numbers. 649 // The numbering starts at 1. An instruction with DFS number zero 650 // means that the instruction is dead. 651 DenseMap<const Value *, unsigned> InstrDFS; 652 653 // This contains the mapping DFS numbers to instructions. 654 SmallVector<Value *, 32> DFSToInstr; 655 656 // Deletion info. 657 SmallPtrSet<Instruction *, 8> InstructionsToErase; 658 659 public: 660 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC, 661 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA, 662 const DataLayout &DL) 663 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL), 664 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)), 665 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false, 666 /*CanUseUndef=*/false) {} 667 668 bool runGVN(); 669 670 private: 671 /// Helper struct return a Expression with an optional extra dependency. 672 struct ExprResult { 673 const Expression *Expr; 674 Value *ExtraDep; 675 const PredicateBase *PredDep; 676 677 ExprResult(const Expression *Expr, Value *ExtraDep = nullptr, 678 const PredicateBase *PredDep = nullptr) 679 : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {} 680 ExprResult(const ExprResult &) = delete; 681 ExprResult(ExprResult &&Other) 682 : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) { 683 Other.Expr = nullptr; 684 Other.ExtraDep = nullptr; 685 Other.PredDep = nullptr; 686 } 687 ExprResult &operator=(const ExprResult &Other) = delete; 688 ExprResult &operator=(ExprResult &&Other) = delete; 689 690 ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); } 691 692 operator bool() const { return Expr; } 693 694 static ExprResult none() { return {nullptr, nullptr, nullptr}; } 695 static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) { 696 return {Expr, ExtraDep, nullptr}; 697 } 698 static ExprResult some(const Expression *Expr, 699 const PredicateBase *PredDep) { 700 return {Expr, nullptr, PredDep}; 701 } 702 static ExprResult some(const Expression *Expr, Value *ExtraDep, 703 const PredicateBase *PredDep) { 704 return {Expr, ExtraDep, PredDep}; 705 } 706 }; 707 708 // Expression handling. 709 ExprResult createExpression(Instruction *) const; 710 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *, 711 Instruction *) const; 712 713 // Our canonical form for phi arguments is a pair of incoming value, incoming 714 // basic block. 715 using ValPair = std::pair<Value *, BasicBlock *>; 716 717 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *, 718 BasicBlock *, bool &HasBackEdge, 719 bool &OriginalOpsConstant) const; 720 const DeadExpression *createDeadExpression() const; 721 const VariableExpression *createVariableExpression(Value *) const; 722 const ConstantExpression *createConstantExpression(Constant *) const; 723 const Expression *createVariableOrConstant(Value *V) const; 724 const UnknownExpression *createUnknownExpression(Instruction *) const; 725 const StoreExpression *createStoreExpression(StoreInst *, 726 const MemoryAccess *) const; 727 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *, 728 const MemoryAccess *) const; 729 const CallExpression *createCallExpression(CallInst *, 730 const MemoryAccess *) const; 731 const AggregateValueExpression * 732 createAggregateValueExpression(Instruction *) const; 733 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const; 734 735 // Congruence class handling. 736 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) { 737 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E); 738 CongruenceClasses.emplace_back(result); 739 return result; 740 } 741 742 CongruenceClass *createMemoryClass(MemoryAccess *MA) { 743 auto *CC = createCongruenceClass(nullptr, nullptr); 744 CC->setMemoryLeader(MA); 745 return CC; 746 } 747 748 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) { 749 auto *CC = getMemoryClass(MA); 750 if (CC->getMemoryLeader() != MA) 751 CC = createMemoryClass(MA); 752 return CC; 753 } 754 755 CongruenceClass *createSingletonCongruenceClass(Value *Member) { 756 CongruenceClass *CClass = createCongruenceClass(Member, nullptr); 757 CClass->insert(Member); 758 ValueToClass[Member] = CClass; 759 return CClass; 760 } 761 762 void initializeCongruenceClasses(Function &F); 763 const Expression *makePossiblePHIOfOps(Instruction *, 764 SmallPtrSetImpl<Value *> &); 765 Value *findLeaderForInst(Instruction *ValueOp, 766 SmallPtrSetImpl<Value *> &Visited, 767 MemoryAccess *MemAccess, Instruction *OrigInst, 768 BasicBlock *PredBB); 769 bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock, 770 SmallPtrSetImpl<const Value *> &Visited, 771 SmallVectorImpl<Instruction *> &Worklist); 772 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock, 773 SmallPtrSetImpl<const Value *> &); 774 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue); 775 void removePhiOfOps(Instruction *I, PHINode *PHITemp); 776 777 // Value number an Instruction or MemoryPhi. 778 void valueNumberMemoryPhi(MemoryPhi *); 779 void valueNumberInstruction(Instruction *); 780 781 // Symbolic evaluation. 782 ExprResult checkExprResults(Expression *, Instruction *, Value *) const; 783 ExprResult performSymbolicEvaluation(Value *, 784 SmallPtrSetImpl<Value *> &) const; 785 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *, 786 Instruction *, 787 MemoryAccess *) const; 788 const Expression *performSymbolicLoadEvaluation(Instruction *) const; 789 const Expression *performSymbolicStoreEvaluation(Instruction *) const; 790 ExprResult performSymbolicCallEvaluation(Instruction *) const; 791 void sortPHIOps(MutableArrayRef<ValPair> Ops) const; 792 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>, 793 Instruction *I, 794 BasicBlock *PHIBlock) const; 795 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const; 796 ExprResult performSymbolicCmpEvaluation(Instruction *) const; 797 ExprResult performSymbolicPredicateInfoEvaluation(Instruction *) const; 798 799 // Congruence finding. 800 bool someEquivalentDominates(const Instruction *, const Instruction *) const; 801 Value *lookupOperandLeader(Value *) const; 802 CongruenceClass *getClassForExpression(const Expression *E) const; 803 void performCongruenceFinding(Instruction *, const Expression *); 804 void moveValueToNewCongruenceClass(Instruction *, const Expression *, 805 CongruenceClass *, CongruenceClass *); 806 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *, 807 CongruenceClass *, CongruenceClass *); 808 Value *getNextValueLeader(CongruenceClass *) const; 809 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const; 810 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To); 811 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const; 812 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const; 813 bool isMemoryAccessTOP(const MemoryAccess *) const; 814 815 // Ranking 816 unsigned int getRank(const Value *) const; 817 bool shouldSwapOperands(const Value *, const Value *) const; 818 819 // Reachability handling. 820 void updateReachableEdge(BasicBlock *, BasicBlock *); 821 void processOutgoingEdges(Instruction *, BasicBlock *); 822 Value *findConditionEquivalence(Value *) const; 823 824 // Elimination. 825 struct ValueDFS; 826 void convertClassToDFSOrdered(const CongruenceClass &, 827 SmallVectorImpl<ValueDFS> &, 828 DenseMap<const Value *, unsigned int> &, 829 SmallPtrSetImpl<Instruction *> &) const; 830 void convertClassToLoadsAndStores(const CongruenceClass &, 831 SmallVectorImpl<ValueDFS> &) const; 832 833 bool eliminateInstructions(Function &); 834 void replaceInstruction(Instruction *, Value *); 835 void markInstructionForDeletion(Instruction *); 836 void deleteInstructionsInBlock(BasicBlock *); 837 Value *findPHIOfOpsLeader(const Expression *, const Instruction *, 838 const BasicBlock *) const; 839 840 // Various instruction touch utilities 841 template <typename Map, typename KeyType> 842 void touchAndErase(Map &, const KeyType &); 843 void markUsersTouched(Value *); 844 void markMemoryUsersTouched(const MemoryAccess *); 845 void markMemoryDefTouched(const MemoryAccess *); 846 void markPredicateUsersTouched(Instruction *); 847 void markValueLeaderChangeTouched(CongruenceClass *CC); 848 void markMemoryLeaderChangeTouched(CongruenceClass *CC); 849 void markPhiOfOpsChanged(const Expression *E); 850 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const; 851 void addAdditionalUsers(Value *To, Value *User) const; 852 void addAdditionalUsers(ExprResult &Res, Instruction *User) const; 853 854 // Main loop of value numbering 855 void iterateTouchedInstructions(); 856 857 // Utilities. 858 void cleanupTables(); 859 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned); 860 void updateProcessedCount(const Value *V); 861 void verifyMemoryCongruency() const; 862 void verifyIterationSettled(Function &F); 863 void verifyStoreExpressions() const; 864 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &, 865 const MemoryAccess *, const MemoryAccess *) const; 866 BasicBlock *getBlockForValue(Value *V) const; 867 void deleteExpression(const Expression *E) const; 868 MemoryUseOrDef *getMemoryAccess(const Instruction *) const; 869 MemoryPhi *getMemoryAccess(const BasicBlock *) const; 870 template <class T, class Range> T *getMinDFSOfRange(const Range &) const; 871 872 unsigned InstrToDFSNum(const Value *V) const { 873 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses"); 874 return InstrDFS.lookup(V); 875 } 876 877 unsigned InstrToDFSNum(const MemoryAccess *MA) const { 878 return MemoryToDFSNum(MA); 879 } 880 881 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; } 882 883 // Given a MemoryAccess, return the relevant instruction DFS number. Note: 884 // This deliberately takes a value so it can be used with Use's, which will 885 // auto-convert to Value's but not to MemoryAccess's. 886 unsigned MemoryToDFSNum(const Value *MA) const { 887 assert(isa<MemoryAccess>(MA) && 888 "This should not be used with instructions"); 889 return isa<MemoryUseOrDef>(MA) 890 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst()) 891 : InstrDFS.lookup(MA); 892 } 893 894 bool isCycleFree(const Instruction *) const; 895 bool isBackedge(BasicBlock *From, BasicBlock *To) const; 896 897 // Debug counter info. When verifying, we have to reset the value numbering 898 // debug counter to the same state it started in to get the same results. 899 int64_t StartingVNCounter = 0; 900 }; 901 902 } // end anonymous namespace 903 904 template <typename T> 905 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) { 906 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) 907 return false; 908 return LHS.MemoryExpression::equals(RHS); 909 } 910 911 bool LoadExpression::equals(const Expression &Other) const { 912 return equalsLoadStoreHelper(*this, Other); 913 } 914 915 bool StoreExpression::equals(const Expression &Other) const { 916 if (!equalsLoadStoreHelper(*this, Other)) 917 return false; 918 // Make sure that store vs store includes the value operand. 919 if (const auto *S = dyn_cast<StoreExpression>(&Other)) 920 if (getStoredValue() != S->getStoredValue()) 921 return false; 922 return true; 923 } 924 925 // Determine if the edge From->To is a backedge 926 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const { 927 return From == To || 928 RPOOrdering.lookup(DT->getNode(From)) >= 929 RPOOrdering.lookup(DT->getNode(To)); 930 } 931 932 #ifndef NDEBUG 933 static std::string getBlockName(const BasicBlock *B) { 934 return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr); 935 } 936 #endif 937 938 // Get a MemoryAccess for an instruction, fake or real. 939 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const { 940 auto *Result = MSSA->getMemoryAccess(I); 941 return Result ? Result : TempToMemory.lookup(I); 942 } 943 944 // Get a MemoryPhi for a basic block. These are all real. 945 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const { 946 return MSSA->getMemoryAccess(BB); 947 } 948 949 // Get the basic block from an instruction/memory value. 950 BasicBlock *NewGVN::getBlockForValue(Value *V) const { 951 if (auto *I = dyn_cast<Instruction>(V)) { 952 auto *Parent = I->getParent(); 953 if (Parent) 954 return Parent; 955 Parent = TempToBlock.lookup(V); 956 assert(Parent && "Every fake instruction should have a block"); 957 return Parent; 958 } 959 960 auto *MP = dyn_cast<MemoryPhi>(V); 961 assert(MP && "Should have been an instruction or a MemoryPhi"); 962 return MP->getBlock(); 963 } 964 965 // Delete a definitely dead expression, so it can be reused by the expression 966 // allocator. Some of these are not in creation functions, so we have to accept 967 // const versions. 968 void NewGVN::deleteExpression(const Expression *E) const { 969 assert(isa<BasicExpression>(E)); 970 auto *BE = cast<BasicExpression>(E); 971 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler); 972 ExpressionAllocator.Deallocate(E); 973 } 974 975 // If V is a predicateinfo copy, get the thing it is a copy of. 976 static Value *getCopyOf(const Value *V) { 977 if (auto *II = dyn_cast<IntrinsicInst>(V)) 978 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 979 return II->getOperand(0); 980 return nullptr; 981 } 982 983 // Return true if V is really PN, even accounting for predicateinfo copies. 984 static bool isCopyOfPHI(const Value *V, const PHINode *PN) { 985 return V == PN || getCopyOf(V) == PN; 986 } 987 988 static bool isCopyOfAPHI(const Value *V) { 989 auto *CO = getCopyOf(V); 990 return CO && isa<PHINode>(CO); 991 } 992 993 // Sort PHI Operands into a canonical order. What we use here is an RPO 994 // order. The BlockInstRange numbers are generated in an RPO walk of the basic 995 // blocks. 996 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const { 997 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) { 998 return BlockInstRange.lookup(P1.second).first < 999 BlockInstRange.lookup(P2.second).first; 1000 }); 1001 } 1002 1003 // Return true if V is a value that will always be available (IE can 1004 // be placed anywhere) in the function. We don't do globals here 1005 // because they are often worse to put in place. 1006 static bool alwaysAvailable(Value *V) { 1007 return isa<Constant>(V) || isa<Argument>(V); 1008 } 1009 1010 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is 1011 // the original instruction we are creating a PHIExpression for (but may not be 1012 // a phi node). We require, as an invariant, that all the PHIOperands in the 1013 // same block are sorted the same way. sortPHIOps will sort them into a 1014 // canonical order. 1015 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands, 1016 const Instruction *I, 1017 BasicBlock *PHIBlock, 1018 bool &HasBackedge, 1019 bool &OriginalOpsConstant) const { 1020 unsigned NumOps = PHIOperands.size(); 1021 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock); 1022 1023 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1024 E->setType(PHIOperands.begin()->first->getType()); 1025 E->setOpcode(Instruction::PHI); 1026 1027 // Filter out unreachable phi operands. 1028 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) { 1029 auto *BB = P.second; 1030 if (auto *PHIOp = dyn_cast<PHINode>(I)) 1031 if (isCopyOfPHI(P.first, PHIOp)) 1032 return false; 1033 if (!ReachableEdges.count({BB, PHIBlock})) 1034 return false; 1035 // Things in TOPClass are equivalent to everything. 1036 if (ValueToClass.lookup(P.first) == TOPClass) 1037 return false; 1038 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first); 1039 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock); 1040 return lookupOperandLeader(P.first) != I; 1041 }); 1042 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E), 1043 [&](const ValPair &P) -> Value * { 1044 return lookupOperandLeader(P.first); 1045 }); 1046 return E; 1047 } 1048 1049 // Set basic expression info (Arguments, type, opcode) for Expression 1050 // E from Instruction I in block B. 1051 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const { 1052 bool AllConstant = true; 1053 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 1054 E->setType(GEP->getSourceElementType()); 1055 else 1056 E->setType(I->getType()); 1057 E->setOpcode(I->getOpcode()); 1058 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1059 1060 // Transform the operand array into an operand leader array, and keep track of 1061 // whether all members are constant. 1062 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) { 1063 auto Operand = lookupOperandLeader(O); 1064 AllConstant = AllConstant && isa<Constant>(Operand); 1065 return Operand; 1066 }); 1067 1068 return AllConstant; 1069 } 1070 1071 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T, 1072 Value *Arg1, Value *Arg2, 1073 Instruction *I) const { 1074 auto *E = new (ExpressionAllocator) BasicExpression(2); 1075 1076 E->setType(T); 1077 E->setOpcode(Opcode); 1078 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1079 if (Instruction::isCommutative(Opcode)) { 1080 // Ensure that commutative instructions that only differ by a permutation 1081 // of their operands get the same value number by sorting the operand value 1082 // numbers. Since all commutative instructions have two operands it is more 1083 // efficient to sort by hand rather than using, say, std::sort. 1084 if (shouldSwapOperands(Arg1, Arg2)) 1085 std::swap(Arg1, Arg2); 1086 } 1087 E->op_push_back(lookupOperandLeader(Arg1)); 1088 E->op_push_back(lookupOperandLeader(Arg2)); 1089 1090 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ); 1091 if (auto Simplified = checkExprResults(E, I, V)) { 1092 addAdditionalUsers(Simplified, I); 1093 return Simplified.Expr; 1094 } 1095 return E; 1096 } 1097 1098 // Take a Value returned by simplification of Expression E/Instruction 1099 // I, and see if it resulted in a simpler expression. If so, return 1100 // that expression. 1101 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I, 1102 Value *V) const { 1103 if (!V) 1104 return ExprResult::none(); 1105 1106 if (auto *C = dyn_cast<Constant>(V)) { 1107 if (I) 1108 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1109 << " constant " << *C << "\n"); 1110 NumGVNOpsSimplified++; 1111 assert(isa<BasicExpression>(E) && 1112 "We should always have had a basic expression here"); 1113 deleteExpression(E); 1114 return ExprResult::some(createConstantExpression(C)); 1115 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1116 if (I) 1117 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1118 << " variable " << *V << "\n"); 1119 deleteExpression(E); 1120 return ExprResult::some(createVariableExpression(V)); 1121 } 1122 1123 CongruenceClass *CC = ValueToClass.lookup(V); 1124 if (CC) { 1125 if (CC->getLeader() && CC->getLeader() != I) { 1126 return ExprResult::some(createVariableOrConstant(CC->getLeader()), V); 1127 } 1128 if (CC->getDefiningExpr()) { 1129 if (I) 1130 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1131 << " expression " << *CC->getDefiningExpr() << "\n"); 1132 NumGVNOpsSimplified++; 1133 deleteExpression(E); 1134 return ExprResult::some(CC->getDefiningExpr(), V); 1135 } 1136 } 1137 1138 return ExprResult::none(); 1139 } 1140 1141 // Create a value expression from the instruction I, replacing operands with 1142 // their leaders. 1143 1144 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const { 1145 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands()); 1146 1147 bool AllConstant = setBasicExpressionInfo(I, E); 1148 1149 if (I->isCommutative()) { 1150 // Ensure that commutative instructions that only differ by a permutation 1151 // of their operands get the same value number by sorting the operand value 1152 // numbers. Since all commutative instructions have two operands it is more 1153 // efficient to sort by hand rather than using, say, std::sort. 1154 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 1155 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) 1156 E->swapOperands(0, 1); 1157 } 1158 // Perform simplification. 1159 if (auto *CI = dyn_cast<CmpInst>(I)) { 1160 // Sort the operand value numbers so x<y and y>x get the same value 1161 // number. 1162 CmpInst::Predicate Predicate = CI->getPredicate(); 1163 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) { 1164 E->swapOperands(0, 1); 1165 Predicate = CmpInst::getSwappedPredicate(Predicate); 1166 } 1167 E->setOpcode((CI->getOpcode() << 8) | Predicate); 1168 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands 1169 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() && 1170 "Wrong types on cmp instruction"); 1171 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() && 1172 E->getOperand(1)->getType() == I->getOperand(1)->getType())); 1173 Value *V = 1174 SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ); 1175 if (auto Simplified = checkExprResults(E, I, V)) 1176 return Simplified; 1177 } else if (isa<SelectInst>(I)) { 1178 if (isa<Constant>(E->getOperand(0)) || 1179 E->getOperand(1) == E->getOperand(2)) { 1180 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() && 1181 E->getOperand(2)->getType() == I->getOperand(2)->getType()); 1182 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1), 1183 E->getOperand(2), SQ); 1184 if (auto Simplified = checkExprResults(E, I, V)) 1185 return Simplified; 1186 } 1187 } else if (I->isBinaryOp()) { 1188 Value *V = 1189 SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ); 1190 if (auto Simplified = checkExprResults(E, I, V)) 1191 return Simplified; 1192 } else if (auto *CI = dyn_cast<CastInst>(I)) { 1193 Value *V = 1194 SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ); 1195 if (auto Simplified = checkExprResults(E, I, V)) 1196 return Simplified; 1197 } else if (isa<GetElementPtrInst>(I)) { 1198 Value *V = SimplifyGEPInst( 1199 E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ); 1200 if (auto Simplified = checkExprResults(E, I, V)) 1201 return Simplified; 1202 } else if (AllConstant) { 1203 // We don't bother trying to simplify unless all of the operands 1204 // were constant. 1205 // TODO: There are a lot of Simplify*'s we could call here, if we 1206 // wanted to. The original motivating case for this code was a 1207 // zext i1 false to i8, which we don't have an interface to 1208 // simplify (IE there is no SimplifyZExt). 1209 1210 SmallVector<Constant *, 8> C; 1211 for (Value *Arg : E->operands()) 1212 C.emplace_back(cast<Constant>(Arg)); 1213 1214 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI)) 1215 if (auto Simplified = checkExprResults(E, I, V)) 1216 return Simplified; 1217 } 1218 return ExprResult::some(E); 1219 } 1220 1221 const AggregateValueExpression * 1222 NewGVN::createAggregateValueExpression(Instruction *I) const { 1223 if (auto *II = dyn_cast<InsertValueInst>(I)) { 1224 auto *E = new (ExpressionAllocator) 1225 AggregateValueExpression(I->getNumOperands(), II->getNumIndices()); 1226 setBasicExpressionInfo(I, E); 1227 E->allocateIntOperands(ExpressionAllocator); 1228 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E)); 1229 return E; 1230 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1231 auto *E = new (ExpressionAllocator) 1232 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices()); 1233 setBasicExpressionInfo(EI, E); 1234 E->allocateIntOperands(ExpressionAllocator); 1235 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E)); 1236 return E; 1237 } 1238 llvm_unreachable("Unhandled type of aggregate value operation"); 1239 } 1240 1241 const DeadExpression *NewGVN::createDeadExpression() const { 1242 // DeadExpression has no arguments and all DeadExpression's are the same, 1243 // so we only need one of them. 1244 return SingletonDeadExpression; 1245 } 1246 1247 const VariableExpression *NewGVN::createVariableExpression(Value *V) const { 1248 auto *E = new (ExpressionAllocator) VariableExpression(V); 1249 E->setOpcode(V->getValueID()); 1250 return E; 1251 } 1252 1253 const Expression *NewGVN::createVariableOrConstant(Value *V) const { 1254 if (auto *C = dyn_cast<Constant>(V)) 1255 return createConstantExpression(C); 1256 return createVariableExpression(V); 1257 } 1258 1259 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const { 1260 auto *E = new (ExpressionAllocator) ConstantExpression(C); 1261 E->setOpcode(C->getValueID()); 1262 return E; 1263 } 1264 1265 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const { 1266 auto *E = new (ExpressionAllocator) UnknownExpression(I); 1267 E->setOpcode(I->getOpcode()); 1268 return E; 1269 } 1270 1271 const CallExpression * 1272 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const { 1273 // FIXME: Add operand bundles for calls. 1274 // FIXME: Allow commutative matching for intrinsics. 1275 auto *E = 1276 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA); 1277 setBasicExpressionInfo(CI, E); 1278 return E; 1279 } 1280 1281 // Return true if some equivalent of instruction Inst dominates instruction U. 1282 bool NewGVN::someEquivalentDominates(const Instruction *Inst, 1283 const Instruction *U) const { 1284 auto *CC = ValueToClass.lookup(Inst); 1285 // This must be an instruction because we are only called from phi nodes 1286 // in the case that the value it needs to check against is an instruction. 1287 1288 // The most likely candidates for dominance are the leader and the next leader. 1289 // The leader or nextleader will dominate in all cases where there is an 1290 // equivalent that is higher up in the dom tree. 1291 // We can't *only* check them, however, because the 1292 // dominator tree could have an infinite number of non-dominating siblings 1293 // with instructions that are in the right congruence class. 1294 // A 1295 // B C D E F G 1296 // | 1297 // H 1298 // Instruction U could be in H, with equivalents in every other sibling. 1299 // Depending on the rpo order picked, the leader could be the equivalent in 1300 // any of these siblings. 1301 if (!CC) 1302 return false; 1303 if (alwaysAvailable(CC->getLeader())) 1304 return true; 1305 if (DT->dominates(cast<Instruction>(CC->getLeader()), U)) 1306 return true; 1307 if (CC->getNextLeader().first && 1308 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U)) 1309 return true; 1310 return llvm::any_of(*CC, [&](const Value *Member) { 1311 return Member != CC->getLeader() && 1312 DT->dominates(cast<Instruction>(Member), U); 1313 }); 1314 } 1315 1316 // See if we have a congruence class and leader for this operand, and if so, 1317 // return it. Otherwise, return the operand itself. 1318 Value *NewGVN::lookupOperandLeader(Value *V) const { 1319 CongruenceClass *CC = ValueToClass.lookup(V); 1320 if (CC) { 1321 // Everything in TOP is represented by undef, as it can be any value. 1322 // We do have to make sure we get the type right though, so we can't set the 1323 // RepLeader to undef. 1324 if (CC == TOPClass) 1325 return UndefValue::get(V->getType()); 1326 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 1327 } 1328 1329 return V; 1330 } 1331 1332 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const { 1333 auto *CC = getMemoryClass(MA); 1334 assert(CC->getMemoryLeader() && 1335 "Every MemoryAccess should be mapped to a congruence class with a " 1336 "representative memory access"); 1337 return CC->getMemoryLeader(); 1338 } 1339 1340 // Return true if the MemoryAccess is really equivalent to everything. This is 1341 // equivalent to the lattice value "TOP" in most lattices. This is the initial 1342 // state of all MemoryAccesses. 1343 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const { 1344 return getMemoryClass(MA) == TOPClass; 1345 } 1346 1347 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp, 1348 LoadInst *LI, 1349 const MemoryAccess *MA) const { 1350 auto *E = 1351 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA)); 1352 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1353 E->setType(LoadType); 1354 1355 // Give store and loads same opcode so they value number together. 1356 E->setOpcode(0); 1357 E->op_push_back(PointerOp); 1358 1359 // TODO: Value number heap versions. We may be able to discover 1360 // things alias analysis can't on it's own (IE that a store and a 1361 // load have the same value, and thus, it isn't clobbering the load). 1362 return E; 1363 } 1364 1365 const StoreExpression * 1366 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const { 1367 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand()); 1368 auto *E = new (ExpressionAllocator) 1369 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA); 1370 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1371 E->setType(SI->getValueOperand()->getType()); 1372 1373 // Give store and loads same opcode so they value number together. 1374 E->setOpcode(0); 1375 E->op_push_back(lookupOperandLeader(SI->getPointerOperand())); 1376 1377 // TODO: Value number heap versions. We may be able to discover 1378 // things alias analysis can't on it's own (IE that a store and a 1379 // load have the same value, and thus, it isn't clobbering the load). 1380 return E; 1381 } 1382 1383 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const { 1384 // Unlike loads, we never try to eliminate stores, so we do not check if they 1385 // are simple and avoid value numbering them. 1386 auto *SI = cast<StoreInst>(I); 1387 auto *StoreAccess = getMemoryAccess(SI); 1388 // Get the expression, if any, for the RHS of the MemoryDef. 1389 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess(); 1390 if (EnableStoreRefinement) 1391 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess); 1392 // If we bypassed the use-def chains, make sure we add a use. 1393 StoreRHS = lookupMemoryLeader(StoreRHS); 1394 if (StoreRHS != StoreAccess->getDefiningAccess()) 1395 addMemoryUsers(StoreRHS, StoreAccess); 1396 // If we are defined by ourselves, use the live on entry def. 1397 if (StoreRHS == StoreAccess) 1398 StoreRHS = MSSA->getLiveOnEntryDef(); 1399 1400 if (SI->isSimple()) { 1401 // See if we are defined by a previous store expression, it already has a 1402 // value, and it's the same value as our current store. FIXME: Right now, we 1403 // only do this for simple stores, we should expand to cover memcpys, etc. 1404 const auto *LastStore = createStoreExpression(SI, StoreRHS); 1405 const auto *LastCC = ExpressionToClass.lookup(LastStore); 1406 // We really want to check whether the expression we matched was a store. No 1407 // easy way to do that. However, we can check that the class we found has a 1408 // store, which, assuming the value numbering state is not corrupt, is 1409 // sufficient, because we must also be equivalent to that store's expression 1410 // for it to be in the same class as the load. 1411 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue()) 1412 return LastStore; 1413 // Also check if our value operand is defined by a load of the same memory 1414 // location, and the memory state is the same as it was then (otherwise, it 1415 // could have been overwritten later. See test32 in 1416 // transforms/DeadStoreElimination/simple.ll). 1417 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue())) 1418 if ((lookupOperandLeader(LI->getPointerOperand()) == 1419 LastStore->getOperand(0)) && 1420 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) == 1421 StoreRHS)) 1422 return LastStore; 1423 deleteExpression(LastStore); 1424 } 1425 1426 // If the store is not equivalent to anything, value number it as a store that 1427 // produces a unique memory state (instead of using it's MemoryUse, we use 1428 // it's MemoryDef). 1429 return createStoreExpression(SI, StoreAccess); 1430 } 1431 1432 // See if we can extract the value of a loaded pointer from a load, a store, or 1433 // a memory instruction. 1434 const Expression * 1435 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr, 1436 LoadInst *LI, Instruction *DepInst, 1437 MemoryAccess *DefiningAccess) const { 1438 assert((!LI || LI->isSimple()) && "Not a simple load"); 1439 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) { 1440 // Can't forward from non-atomic to atomic without violating memory model. 1441 // Also don't need to coerce if they are the same type, we will just 1442 // propagate. 1443 if (LI->isAtomic() > DepSI->isAtomic() || 1444 LoadType == DepSI->getValueOperand()->getType()) 1445 return nullptr; 1446 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL); 1447 if (Offset >= 0) { 1448 if (auto *C = dyn_cast<Constant>( 1449 lookupOperandLeader(DepSI->getValueOperand()))) { 1450 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI 1451 << " to constant " << *C << "\n"); 1452 return createConstantExpression( 1453 getConstantStoreValueForLoad(C, Offset, LoadType, DL)); 1454 } 1455 } 1456 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) { 1457 // Can't forward from non-atomic to atomic without violating memory model. 1458 if (LI->isAtomic() > DepLI->isAtomic()) 1459 return nullptr; 1460 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL); 1461 if (Offset >= 0) { 1462 // We can coerce a constant load into a load. 1463 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI))) 1464 if (auto *PossibleConstant = 1465 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) { 1466 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI 1467 << " to constant " << *PossibleConstant << "\n"); 1468 return createConstantExpression(PossibleConstant); 1469 } 1470 } 1471 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1472 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL); 1473 if (Offset >= 0) { 1474 if (auto *PossibleConstant = 1475 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) { 1476 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI 1477 << " to constant " << *PossibleConstant << "\n"); 1478 return createConstantExpression(PossibleConstant); 1479 } 1480 } 1481 } 1482 1483 // All of the below are only true if the loaded pointer is produced 1484 // by the dependent instruction. 1485 if (LoadPtr != lookupOperandLeader(DepInst) && 1486 !AA->isMustAlias(LoadPtr, DepInst)) 1487 return nullptr; 1488 // If this load really doesn't depend on anything, then we must be loading an 1489 // undef value. This can happen when loading for a fresh allocation with no 1490 // intervening stores, for example. Note that this is only true in the case 1491 // that the result of the allocation is pointer equal to the load ptr. 1492 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || 1493 isAlignedAllocLikeFn(DepInst, TLI)) { 1494 return createConstantExpression(UndefValue::get(LoadType)); 1495 } 1496 // If this load occurs either right after a lifetime begin, 1497 // then the loaded value is undefined. 1498 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) { 1499 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1500 return createConstantExpression(UndefValue::get(LoadType)); 1501 } 1502 // If this load follows a calloc (which zero initializes memory), 1503 // then the loaded value is zero 1504 else if (isCallocLikeFn(DepInst, TLI)) { 1505 return createConstantExpression(Constant::getNullValue(LoadType)); 1506 } 1507 1508 return nullptr; 1509 } 1510 1511 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const { 1512 auto *LI = cast<LoadInst>(I); 1513 1514 // We can eliminate in favor of non-simple loads, but we won't be able to 1515 // eliminate the loads themselves. 1516 if (!LI->isSimple()) 1517 return nullptr; 1518 1519 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand()); 1520 // Load of undef is undef. 1521 if (isa<UndefValue>(LoadAddressLeader)) 1522 return createConstantExpression(UndefValue::get(LI->getType())); 1523 MemoryAccess *OriginalAccess = getMemoryAccess(I); 1524 MemoryAccess *DefiningAccess = 1525 MSSAWalker->getClobberingMemoryAccess(OriginalAccess); 1526 1527 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) { 1528 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) { 1529 Instruction *DefiningInst = MD->getMemoryInst(); 1530 // If the defining instruction is not reachable, replace with undef. 1531 if (!ReachableBlocks.count(DefiningInst->getParent())) 1532 return createConstantExpression(UndefValue::get(LI->getType())); 1533 // This will handle stores and memory insts. We only do if it the 1534 // defining access has a different type, or it is a pointer produced by 1535 // certain memory operations that cause the memory to have a fixed value 1536 // (IE things like calloc). 1537 if (const auto *CoercionResult = 1538 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI, 1539 DefiningInst, DefiningAccess)) 1540 return CoercionResult; 1541 } 1542 } 1543 1544 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI, 1545 DefiningAccess); 1546 // If our MemoryLeader is not our defining access, add a use to the 1547 // MemoryLeader, so that we get reprocessed when it changes. 1548 if (LE->getMemoryLeader() != DefiningAccess) 1549 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess); 1550 return LE; 1551 } 1552 1553 NewGVN::ExprResult 1554 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const { 1555 auto *PI = PredInfo->getPredicateInfoFor(I); 1556 if (!PI) 1557 return ExprResult::none(); 1558 1559 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n"); 1560 1561 const Optional<PredicateConstraint> &Constraint = PI->getConstraint(); 1562 if (!Constraint) 1563 return ExprResult::none(); 1564 1565 CmpInst::Predicate Predicate = Constraint->Predicate; 1566 Value *CmpOp0 = I->getOperand(0); 1567 Value *CmpOp1 = Constraint->OtherOp; 1568 1569 Value *FirstOp = lookupOperandLeader(CmpOp0); 1570 Value *SecondOp = lookupOperandLeader(CmpOp1); 1571 Value *AdditionallyUsedValue = CmpOp0; 1572 1573 // Sort the ops. 1574 if (shouldSwapOperands(FirstOp, SecondOp)) { 1575 std::swap(FirstOp, SecondOp); 1576 Predicate = CmpInst::getSwappedPredicate(Predicate); 1577 AdditionallyUsedValue = CmpOp1; 1578 } 1579 1580 if (Predicate == CmpInst::ICMP_EQ) 1581 return ExprResult::some(createVariableOrConstant(FirstOp), 1582 AdditionallyUsedValue, PI); 1583 1584 // Handle the special case of floating point. 1585 if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) && 1586 !cast<ConstantFP>(FirstOp)->isZero()) 1587 return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)), 1588 AdditionallyUsedValue, PI); 1589 1590 return ExprResult::none(); 1591 } 1592 1593 // Evaluate read only and pure calls, and create an expression result. 1594 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const { 1595 auto *CI = cast<CallInst>(I); 1596 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1597 // Intrinsics with the returned attribute are copies of arguments. 1598 if (auto *ReturnedValue = II->getReturnedArgOperand()) { 1599 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 1600 if (auto Res = performSymbolicPredicateInfoEvaluation(I)) 1601 return Res; 1602 return ExprResult::some(createVariableOrConstant(ReturnedValue)); 1603 } 1604 } 1605 if (AA->doesNotAccessMemory(CI)) { 1606 return ExprResult::some( 1607 createCallExpression(CI, TOPClass->getMemoryLeader())); 1608 } else if (AA->onlyReadsMemory(CI)) { 1609 if (auto *MA = MSSA->getMemoryAccess(CI)) { 1610 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA); 1611 return ExprResult::some(createCallExpression(CI, DefiningAccess)); 1612 } else // MSSA determined that CI does not access memory. 1613 return ExprResult::some( 1614 createCallExpression(CI, TOPClass->getMemoryLeader())); 1615 } 1616 return ExprResult::none(); 1617 } 1618 1619 // Retrieve the memory class for a given MemoryAccess. 1620 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const { 1621 auto *Result = MemoryAccessToClass.lookup(MA); 1622 assert(Result && "Should have found memory class"); 1623 return Result; 1624 } 1625 1626 // Update the MemoryAccess equivalence table to say that From is equal to To, 1627 // and return true if this is different from what already existed in the table. 1628 bool NewGVN::setMemoryClass(const MemoryAccess *From, 1629 CongruenceClass *NewClass) { 1630 assert(NewClass && 1631 "Every MemoryAccess should be getting mapped to a non-null class"); 1632 LLVM_DEBUG(dbgs() << "Setting " << *From); 1633 LLVM_DEBUG(dbgs() << " equivalent to congruence class "); 1634 LLVM_DEBUG(dbgs() << NewClass->getID() 1635 << " with current MemoryAccess leader "); 1636 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n"); 1637 1638 auto LookupResult = MemoryAccessToClass.find(From); 1639 bool Changed = false; 1640 // If it's already in the table, see if the value changed. 1641 if (LookupResult != MemoryAccessToClass.end()) { 1642 auto *OldClass = LookupResult->second; 1643 if (OldClass != NewClass) { 1644 // If this is a phi, we have to handle memory member updates. 1645 if (auto *MP = dyn_cast<MemoryPhi>(From)) { 1646 OldClass->memory_erase(MP); 1647 NewClass->memory_insert(MP); 1648 // This may have killed the class if it had no non-memory members 1649 if (OldClass->getMemoryLeader() == From) { 1650 if (OldClass->definesNoMemory()) { 1651 OldClass->setMemoryLeader(nullptr); 1652 } else { 1653 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 1654 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 1655 << OldClass->getID() << " to " 1656 << *OldClass->getMemoryLeader() 1657 << " due to removal of a memory member " << *From 1658 << "\n"); 1659 markMemoryLeaderChangeTouched(OldClass); 1660 } 1661 } 1662 } 1663 // It wasn't equivalent before, and now it is. 1664 LookupResult->second = NewClass; 1665 Changed = true; 1666 } 1667 } 1668 1669 return Changed; 1670 } 1671 1672 // Determine if a instruction is cycle-free. That means the values in the 1673 // instruction don't depend on any expressions that can change value as a result 1674 // of the instruction. For example, a non-cycle free instruction would be v = 1675 // phi(0, v+1). 1676 bool NewGVN::isCycleFree(const Instruction *I) const { 1677 // In order to compute cycle-freeness, we do SCC finding on the instruction, 1678 // and see what kind of SCC it ends up in. If it is a singleton, it is 1679 // cycle-free. If it is not in a singleton, it is only cycle free if the 1680 // other members are all phi nodes (as they do not compute anything, they are 1681 // copies). 1682 auto ICS = InstCycleState.lookup(I); 1683 if (ICS == ICS_Unknown) { 1684 SCCFinder.Start(I); 1685 auto &SCC = SCCFinder.getComponentFor(I); 1686 // It's cycle free if it's size 1 or the SCC is *only* phi nodes. 1687 if (SCC.size() == 1) 1688 InstCycleState.insert({I, ICS_CycleFree}); 1689 else { 1690 bool AllPhis = llvm::all_of(SCC, [](const Value *V) { 1691 return isa<PHINode>(V) || isCopyOfAPHI(V); 1692 }); 1693 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle; 1694 for (auto *Member : SCC) 1695 if (auto *MemberPhi = dyn_cast<PHINode>(Member)) 1696 InstCycleState.insert({MemberPhi, ICS}); 1697 } 1698 } 1699 if (ICS == ICS_Cycle) 1700 return false; 1701 return true; 1702 } 1703 1704 // Evaluate PHI nodes symbolically and create an expression result. 1705 const Expression * 1706 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps, 1707 Instruction *I, 1708 BasicBlock *PHIBlock) const { 1709 // True if one of the incoming phi edges is a backedge. 1710 bool HasBackedge = false; 1711 // All constant tracks the state of whether all the *original* phi operands 1712 // This is really shorthand for "this phi cannot cycle due to forward 1713 // change in value of the phi is guaranteed not to later change the value of 1714 // the phi. IE it can't be v = phi(undef, v+1) 1715 bool OriginalOpsConstant = true; 1716 auto *E = cast<PHIExpression>(createPHIExpression( 1717 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant)); 1718 // We match the semantics of SimplifyPhiNode from InstructionSimplify here. 1719 // See if all arguments are the same. 1720 // We track if any were undef because they need special handling. 1721 bool HasUndef = false; 1722 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) { 1723 if (isa<UndefValue>(Arg)) { 1724 HasUndef = true; 1725 return false; 1726 } 1727 return true; 1728 }); 1729 // If we are left with no operands, it's dead. 1730 if (Filtered.empty()) { 1731 // If it has undef at this point, it means there are no-non-undef arguments, 1732 // and thus, the value of the phi node must be undef. 1733 if (HasUndef) { 1734 LLVM_DEBUG( 1735 dbgs() << "PHI Node " << *I 1736 << " has no non-undef arguments, valuing it as undef\n"); 1737 return createConstantExpression(UndefValue::get(I->getType())); 1738 } 1739 1740 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n"); 1741 deleteExpression(E); 1742 return createDeadExpression(); 1743 } 1744 Value *AllSameValue = *(Filtered.begin()); 1745 ++Filtered.begin(); 1746 // Can't use std::equal here, sadly, because filter.begin moves. 1747 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) { 1748 // In LLVM's non-standard representation of phi nodes, it's possible to have 1749 // phi nodes with cycles (IE dependent on other phis that are .... dependent 1750 // on the original phi node), especially in weird CFG's where some arguments 1751 // are unreachable, or uninitialized along certain paths. This can cause 1752 // infinite loops during evaluation. We work around this by not trying to 1753 // really evaluate them independently, but instead using a variable 1754 // expression to say if one is equivalent to the other. 1755 // We also special case undef, so that if we have an undef, we can't use the 1756 // common value unless it dominates the phi block. 1757 if (HasUndef) { 1758 // If we have undef and at least one other value, this is really a 1759 // multivalued phi, and we need to know if it's cycle free in order to 1760 // evaluate whether we can ignore the undef. The other parts of this are 1761 // just shortcuts. If there is no backedge, or all operands are 1762 // constants, it also must be cycle free. 1763 if (HasBackedge && !OriginalOpsConstant && 1764 !isa<UndefValue>(AllSameValue) && !isCycleFree(I)) 1765 return E; 1766 1767 // Only have to check for instructions 1768 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue)) 1769 if (!someEquivalentDominates(AllSameInst, I)) 1770 return E; 1771 } 1772 // Can't simplify to something that comes later in the iteration. 1773 // Otherwise, when and if it changes congruence class, we will never catch 1774 // up. We will always be a class behind it. 1775 if (isa<Instruction>(AllSameValue) && 1776 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I)) 1777 return E; 1778 NumGVNPhisAllSame++; 1779 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue 1780 << "\n"); 1781 deleteExpression(E); 1782 return createVariableOrConstant(AllSameValue); 1783 } 1784 return E; 1785 } 1786 1787 const Expression * 1788 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const { 1789 if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1790 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 1791 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) 1792 // EI is an extract from one of our with.overflow intrinsics. Synthesize 1793 // a semantically equivalent expression instead of an extract value 1794 // expression. 1795 return createBinaryExpression(WO->getBinaryOp(), EI->getType(), 1796 WO->getLHS(), WO->getRHS(), I); 1797 } 1798 1799 return createAggregateValueExpression(I); 1800 } 1801 1802 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const { 1803 assert(isa<CmpInst>(I) && "Expected a cmp instruction."); 1804 1805 auto *CI = cast<CmpInst>(I); 1806 // See if our operands are equal to those of a previous predicate, and if so, 1807 // if it implies true or false. 1808 auto Op0 = lookupOperandLeader(CI->getOperand(0)); 1809 auto Op1 = lookupOperandLeader(CI->getOperand(1)); 1810 auto OurPredicate = CI->getPredicate(); 1811 if (shouldSwapOperands(Op0, Op1)) { 1812 std::swap(Op0, Op1); 1813 OurPredicate = CI->getSwappedPredicate(); 1814 } 1815 1816 // Avoid processing the same info twice. 1817 const PredicateBase *LastPredInfo = nullptr; 1818 // See if we know something about the comparison itself, like it is the target 1819 // of an assume. 1820 auto *CmpPI = PredInfo->getPredicateInfoFor(I); 1821 if (dyn_cast_or_null<PredicateAssume>(CmpPI)) 1822 return ExprResult::some( 1823 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1824 1825 if (Op0 == Op1) { 1826 // This condition does not depend on predicates, no need to add users 1827 if (CI->isTrueWhenEqual()) 1828 return ExprResult::some( 1829 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1830 else if (CI->isFalseWhenEqual()) 1831 return ExprResult::some( 1832 createConstantExpression(ConstantInt::getFalse(CI->getType()))); 1833 } 1834 1835 // NOTE: Because we are comparing both operands here and below, and using 1836 // previous comparisons, we rely on fact that predicateinfo knows to mark 1837 // comparisons that use renamed operands as users of the earlier comparisons. 1838 // It is *not* enough to just mark predicateinfo renamed operands as users of 1839 // the earlier comparisons, because the *other* operand may have changed in a 1840 // previous iteration. 1841 // Example: 1842 // icmp slt %a, %b 1843 // %b.0 = ssa.copy(%b) 1844 // false branch: 1845 // icmp slt %c, %b.0 1846 1847 // %c and %a may start out equal, and thus, the code below will say the second 1848 // %icmp is false. c may become equal to something else, and in that case the 1849 // %second icmp *must* be reexamined, but would not if only the renamed 1850 // %operands are considered users of the icmp. 1851 1852 // *Currently* we only check one level of comparisons back, and only mark one 1853 // level back as touched when changes happen. If you modify this code to look 1854 // back farther through comparisons, you *must* mark the appropriate 1855 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if 1856 // we know something just from the operands themselves 1857 1858 // See if our operands have predicate info, so that we may be able to derive 1859 // something from a previous comparison. 1860 for (const auto &Op : CI->operands()) { 1861 auto *PI = PredInfo->getPredicateInfoFor(Op); 1862 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) { 1863 if (PI == LastPredInfo) 1864 continue; 1865 LastPredInfo = PI; 1866 // In phi of ops cases, we may have predicate info that we are evaluating 1867 // in a different context. 1868 if (!DT->dominates(PBranch->To, getBlockForValue(I))) 1869 continue; 1870 // TODO: Along the false edge, we may know more things too, like 1871 // icmp of 1872 // same operands is false. 1873 // TODO: We only handle actual comparison conditions below, not 1874 // and/or. 1875 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition); 1876 if (!BranchCond) 1877 continue; 1878 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0)); 1879 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1)); 1880 auto BranchPredicate = BranchCond->getPredicate(); 1881 if (shouldSwapOperands(BranchOp0, BranchOp1)) { 1882 std::swap(BranchOp0, BranchOp1); 1883 BranchPredicate = BranchCond->getSwappedPredicate(); 1884 } 1885 if (BranchOp0 == Op0 && BranchOp1 == Op1) { 1886 if (PBranch->TrueEdge) { 1887 // If we know the previous predicate is true and we are in the true 1888 // edge then we may be implied true or false. 1889 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate, 1890 OurPredicate)) { 1891 return ExprResult::some( 1892 createConstantExpression(ConstantInt::getTrue(CI->getType())), 1893 PI); 1894 } 1895 1896 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate, 1897 OurPredicate)) { 1898 return ExprResult::some( 1899 createConstantExpression(ConstantInt::getFalse(CI->getType())), 1900 PI); 1901 } 1902 } else { 1903 // Just handle the ne and eq cases, where if we have the same 1904 // operands, we may know something. 1905 if (BranchPredicate == OurPredicate) { 1906 // Same predicate, same ops,we know it was false, so this is false. 1907 return ExprResult::some( 1908 createConstantExpression(ConstantInt::getFalse(CI->getType())), 1909 PI); 1910 } else if (BranchPredicate == 1911 CmpInst::getInversePredicate(OurPredicate)) { 1912 // Inverse predicate, we know the other was false, so this is true. 1913 return ExprResult::some( 1914 createConstantExpression(ConstantInt::getTrue(CI->getType())), 1915 PI); 1916 } 1917 } 1918 } 1919 } 1920 } 1921 // Create expression will take care of simplifyCmpInst 1922 return createExpression(I); 1923 } 1924 1925 // Substitute and symbolize the value before value numbering. 1926 NewGVN::ExprResult 1927 NewGVN::performSymbolicEvaluation(Value *V, 1928 SmallPtrSetImpl<Value *> &Visited) const { 1929 1930 const Expression *E = nullptr; 1931 if (auto *C = dyn_cast<Constant>(V)) 1932 E = createConstantExpression(C); 1933 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1934 E = createVariableExpression(V); 1935 } else { 1936 // TODO: memory intrinsics. 1937 // TODO: Some day, we should do the forward propagation and reassociation 1938 // parts of the algorithm. 1939 auto *I = cast<Instruction>(V); 1940 switch (I->getOpcode()) { 1941 case Instruction::ExtractValue: 1942 case Instruction::InsertValue: 1943 E = performSymbolicAggrValueEvaluation(I); 1944 break; 1945 case Instruction::PHI: { 1946 SmallVector<ValPair, 3> Ops; 1947 auto *PN = cast<PHINode>(I); 1948 for (unsigned i = 0; i < PN->getNumOperands(); ++i) 1949 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)}); 1950 // Sort to ensure the invariant createPHIExpression requires is met. 1951 sortPHIOps(Ops); 1952 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I)); 1953 } break; 1954 case Instruction::Call: 1955 return performSymbolicCallEvaluation(I); 1956 break; 1957 case Instruction::Store: 1958 E = performSymbolicStoreEvaluation(I); 1959 break; 1960 case Instruction::Load: 1961 E = performSymbolicLoadEvaluation(I); 1962 break; 1963 case Instruction::BitCast: 1964 case Instruction::AddrSpaceCast: 1965 return createExpression(I); 1966 break; 1967 case Instruction::ICmp: 1968 case Instruction::FCmp: 1969 return performSymbolicCmpEvaluation(I); 1970 break; 1971 case Instruction::FNeg: 1972 case Instruction::Add: 1973 case Instruction::FAdd: 1974 case Instruction::Sub: 1975 case Instruction::FSub: 1976 case Instruction::Mul: 1977 case Instruction::FMul: 1978 case Instruction::UDiv: 1979 case Instruction::SDiv: 1980 case Instruction::FDiv: 1981 case Instruction::URem: 1982 case Instruction::SRem: 1983 case Instruction::FRem: 1984 case Instruction::Shl: 1985 case Instruction::LShr: 1986 case Instruction::AShr: 1987 case Instruction::And: 1988 case Instruction::Or: 1989 case Instruction::Xor: 1990 case Instruction::Trunc: 1991 case Instruction::ZExt: 1992 case Instruction::SExt: 1993 case Instruction::FPToUI: 1994 case Instruction::FPToSI: 1995 case Instruction::UIToFP: 1996 case Instruction::SIToFP: 1997 case Instruction::FPTrunc: 1998 case Instruction::FPExt: 1999 case Instruction::PtrToInt: 2000 case Instruction::IntToPtr: 2001 case Instruction::Select: 2002 case Instruction::ExtractElement: 2003 case Instruction::InsertElement: 2004 case Instruction::GetElementPtr: 2005 return createExpression(I); 2006 break; 2007 case Instruction::ShuffleVector: 2008 // FIXME: Add support for shufflevector to createExpression. 2009 return ExprResult::none(); 2010 default: 2011 return ExprResult::none(); 2012 } 2013 } 2014 return ExprResult::some(E); 2015 } 2016 2017 // Look up a container of values/instructions in a map, and touch all the 2018 // instructions in the container. Then erase value from the map. 2019 template <typename Map, typename KeyType> 2020 void NewGVN::touchAndErase(Map &M, const KeyType &Key) { 2021 const auto Result = M.find_as(Key); 2022 if (Result != M.end()) { 2023 for (const typename Map::mapped_type::value_type Mapped : Result->second) 2024 TouchedInstructions.set(InstrToDFSNum(Mapped)); 2025 M.erase(Result); 2026 } 2027 } 2028 2029 void NewGVN::addAdditionalUsers(Value *To, Value *User) const { 2030 assert(User && To != User); 2031 if (isa<Instruction>(To)) 2032 AdditionalUsers[To].insert(User); 2033 } 2034 2035 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const { 2036 if (Res.ExtraDep && Res.ExtraDep != User) 2037 addAdditionalUsers(Res.ExtraDep, User); 2038 Res.ExtraDep = nullptr; 2039 2040 if (Res.PredDep) { 2041 if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep)) 2042 PredicateToUsers[PBranch->Condition].insert(User); 2043 else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep)) 2044 PredicateToUsers[PAssume->Condition].insert(User); 2045 } 2046 Res.PredDep = nullptr; 2047 } 2048 2049 void NewGVN::markUsersTouched(Value *V) { 2050 // Now mark the users as touched. 2051 for (auto *User : V->users()) { 2052 assert(isa<Instruction>(User) && "Use of value not within an instruction?"); 2053 TouchedInstructions.set(InstrToDFSNum(User)); 2054 } 2055 touchAndErase(AdditionalUsers, V); 2056 } 2057 2058 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const { 2059 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n"); 2060 MemoryToUsers[To].insert(U); 2061 } 2062 2063 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) { 2064 TouchedInstructions.set(MemoryToDFSNum(MA)); 2065 } 2066 2067 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) { 2068 if (isa<MemoryUse>(MA)) 2069 return; 2070 for (auto U : MA->users()) 2071 TouchedInstructions.set(MemoryToDFSNum(U)); 2072 touchAndErase(MemoryToUsers, MA); 2073 } 2074 2075 // Touch all the predicates that depend on this instruction. 2076 void NewGVN::markPredicateUsersTouched(Instruction *I) { 2077 touchAndErase(PredicateToUsers, I); 2078 } 2079 2080 // Mark users affected by a memory leader change. 2081 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) { 2082 for (auto M : CC->memory()) 2083 markMemoryDefTouched(M); 2084 } 2085 2086 // Touch the instructions that need to be updated after a congruence class has a 2087 // leader change, and mark changed values. 2088 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) { 2089 for (auto M : *CC) { 2090 if (auto *I = dyn_cast<Instruction>(M)) 2091 TouchedInstructions.set(InstrToDFSNum(I)); 2092 LeaderChanges.insert(M); 2093 } 2094 } 2095 2096 // Give a range of things that have instruction DFS numbers, this will return 2097 // the member of the range with the smallest dfs number. 2098 template <class T, class Range> 2099 T *NewGVN::getMinDFSOfRange(const Range &R) const { 2100 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U}; 2101 for (const auto X : R) { 2102 auto DFSNum = InstrToDFSNum(X); 2103 if (DFSNum < MinDFS.second) 2104 MinDFS = {X, DFSNum}; 2105 } 2106 return MinDFS.first; 2107 } 2108 2109 // This function returns the MemoryAccess that should be the next leader of 2110 // congruence class CC, under the assumption that the current leader is going to 2111 // disappear. 2112 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const { 2113 // TODO: If this ends up to slow, we can maintain a next memory leader like we 2114 // do for regular leaders. 2115 // Make sure there will be a leader to find. 2116 assert(!CC->definesNoMemory() && "Can't get next leader if there is none"); 2117 if (CC->getStoreCount() > 0) { 2118 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first)) 2119 return getMemoryAccess(NL); 2120 // Find the store with the minimum DFS number. 2121 auto *V = getMinDFSOfRange<Value>(make_filter_range( 2122 *CC, [&](const Value *V) { return isa<StoreInst>(V); })); 2123 return getMemoryAccess(cast<StoreInst>(V)); 2124 } 2125 assert(CC->getStoreCount() == 0); 2126 2127 // Given our assertion, hitting this part must mean 2128 // !OldClass->memory_empty() 2129 if (CC->memory_size() == 1) 2130 return *CC->memory_begin(); 2131 return getMinDFSOfRange<const MemoryPhi>(CC->memory()); 2132 } 2133 2134 // This function returns the next value leader of a congruence class, under the 2135 // assumption that the current leader is going away. This should end up being 2136 // the next most dominating member. 2137 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const { 2138 // We don't need to sort members if there is only 1, and we don't care about 2139 // sorting the TOP class because everything either gets out of it or is 2140 // unreachable. 2141 2142 if (CC->size() == 1 || CC == TOPClass) { 2143 return *(CC->begin()); 2144 } else if (CC->getNextLeader().first) { 2145 ++NumGVNAvoidedSortedLeaderChanges; 2146 return CC->getNextLeader().first; 2147 } else { 2148 ++NumGVNSortedLeaderChanges; 2149 // NOTE: If this ends up to slow, we can maintain a dual structure for 2150 // member testing/insertion, or keep things mostly sorted, and sort only 2151 // here, or use SparseBitVector or .... 2152 return getMinDFSOfRange<Value>(*CC); 2153 } 2154 } 2155 2156 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to 2157 // the memory members, etc for the move. 2158 // 2159 // The invariants of this function are: 2160 // 2161 // - I must be moving to NewClass from OldClass 2162 // - The StoreCount of OldClass and NewClass is expected to have been updated 2163 // for I already if it is a store. 2164 // - The OldClass memory leader has not been updated yet if I was the leader. 2165 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I, 2166 MemoryAccess *InstMA, 2167 CongruenceClass *OldClass, 2168 CongruenceClass *NewClass) { 2169 // If the leader is I, and we had a representative MemoryAccess, it should 2170 // be the MemoryAccess of OldClass. 2171 assert((!InstMA || !OldClass->getMemoryLeader() || 2172 OldClass->getLeader() != I || 2173 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) == 2174 MemoryAccessToClass.lookup(InstMA)) && 2175 "Representative MemoryAccess mismatch"); 2176 // First, see what happens to the new class 2177 if (!NewClass->getMemoryLeader()) { 2178 // Should be a new class, or a store becoming a leader of a new class. 2179 assert(NewClass->size() == 1 || 2180 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1)); 2181 NewClass->setMemoryLeader(InstMA); 2182 // Mark it touched if we didn't just create a singleton 2183 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2184 << NewClass->getID() 2185 << " due to new memory instruction becoming leader\n"); 2186 markMemoryLeaderChangeTouched(NewClass); 2187 } 2188 setMemoryClass(InstMA, NewClass); 2189 // Now, fixup the old class if necessary 2190 if (OldClass->getMemoryLeader() == InstMA) { 2191 if (!OldClass->definesNoMemory()) { 2192 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 2193 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2194 << OldClass->getID() << " to " 2195 << *OldClass->getMemoryLeader() 2196 << " due to removal of old leader " << *InstMA << "\n"); 2197 markMemoryLeaderChangeTouched(OldClass); 2198 } else 2199 OldClass->setMemoryLeader(nullptr); 2200 } 2201 } 2202 2203 // Move a value, currently in OldClass, to be part of NewClass 2204 // Update OldClass and NewClass for the move (including changing leaders, etc). 2205 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E, 2206 CongruenceClass *OldClass, 2207 CongruenceClass *NewClass) { 2208 if (I == OldClass->getNextLeader().first) 2209 OldClass->resetNextLeader(); 2210 2211 OldClass->erase(I); 2212 NewClass->insert(I); 2213 2214 if (NewClass->getLeader() != I) 2215 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)}); 2216 // Handle our special casing of stores. 2217 if (auto *SI = dyn_cast<StoreInst>(I)) { 2218 OldClass->decStoreCount(); 2219 // Okay, so when do we want to make a store a leader of a class? 2220 // If we have a store defined by an earlier load, we want the earlier load 2221 // to lead the class. 2222 // If we have a store defined by something else, we want the store to lead 2223 // the class so everything else gets the "something else" as a value. 2224 // If we have a store as the single member of the class, we want the store 2225 // as the leader 2226 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) { 2227 // If it's a store expression we are using, it means we are not equivalent 2228 // to something earlier. 2229 if (auto *SE = dyn_cast<StoreExpression>(E)) { 2230 NewClass->setStoredValue(SE->getStoredValue()); 2231 markValueLeaderChangeTouched(NewClass); 2232 // Shift the new class leader to be the store 2233 LLVM_DEBUG(dbgs() << "Changing leader of congruence class " 2234 << NewClass->getID() << " from " 2235 << *NewClass->getLeader() << " to " << *SI 2236 << " because store joined class\n"); 2237 // If we changed the leader, we have to mark it changed because we don't 2238 // know what it will do to symbolic evaluation. 2239 NewClass->setLeader(SI); 2240 } 2241 // We rely on the code below handling the MemoryAccess change. 2242 } 2243 NewClass->incStoreCount(); 2244 } 2245 // True if there is no memory instructions left in a class that had memory 2246 // instructions before. 2247 2248 // If it's not a memory use, set the MemoryAccess equivalence 2249 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I)); 2250 if (InstMA) 2251 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass); 2252 ValueToClass[I] = NewClass; 2253 // See if we destroyed the class or need to swap leaders. 2254 if (OldClass->empty() && OldClass != TOPClass) { 2255 if (OldClass->getDefiningExpr()) { 2256 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr() 2257 << " from table\n"); 2258 // We erase it as an exact expression to make sure we don't just erase an 2259 // equivalent one. 2260 auto Iter = ExpressionToClass.find_as( 2261 ExactEqualsExpression(*OldClass->getDefiningExpr())); 2262 if (Iter != ExpressionToClass.end()) 2263 ExpressionToClass.erase(Iter); 2264 #ifdef EXPENSIVE_CHECKS 2265 assert( 2266 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) && 2267 "We erased the expression we just inserted, which should not happen"); 2268 #endif 2269 } 2270 } else if (OldClass->getLeader() == I) { 2271 // When the leader changes, the value numbering of 2272 // everything may change due to symbolization changes, so we need to 2273 // reprocess. 2274 LLVM_DEBUG(dbgs() << "Value class leader change for class " 2275 << OldClass->getID() << "\n"); 2276 ++NumGVNLeaderChanges; 2277 // Destroy the stored value if there are no more stores to represent it. 2278 // Note that this is basically clean up for the expression removal that 2279 // happens below. If we remove stores from a class, we may leave it as a 2280 // class of equivalent memory phis. 2281 if (OldClass->getStoreCount() == 0) { 2282 if (OldClass->getStoredValue()) 2283 OldClass->setStoredValue(nullptr); 2284 } 2285 OldClass->setLeader(getNextValueLeader(OldClass)); 2286 OldClass->resetNextLeader(); 2287 markValueLeaderChangeTouched(OldClass); 2288 } 2289 } 2290 2291 // For a given expression, mark the phi of ops instructions that could have 2292 // changed as a result. 2293 void NewGVN::markPhiOfOpsChanged(const Expression *E) { 2294 touchAndErase(ExpressionToPhiOfOps, E); 2295 } 2296 2297 // Perform congruence finding on a given value numbering expression. 2298 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) { 2299 // This is guaranteed to return something, since it will at least find 2300 // TOP. 2301 2302 CongruenceClass *IClass = ValueToClass.lookup(I); 2303 assert(IClass && "Should have found a IClass"); 2304 // Dead classes should have been eliminated from the mapping. 2305 assert(!IClass->isDead() && "Found a dead class"); 2306 2307 CongruenceClass *EClass = nullptr; 2308 if (const auto *VE = dyn_cast<VariableExpression>(E)) { 2309 EClass = ValueToClass.lookup(VE->getVariableValue()); 2310 } else if (isa<DeadExpression>(E)) { 2311 EClass = TOPClass; 2312 } 2313 if (!EClass) { 2314 auto lookupResult = ExpressionToClass.insert({E, nullptr}); 2315 2316 // If it's not in the value table, create a new congruence class. 2317 if (lookupResult.second) { 2318 CongruenceClass *NewClass = createCongruenceClass(nullptr, E); 2319 auto place = lookupResult.first; 2320 place->second = NewClass; 2321 2322 // Constants and variables should always be made the leader. 2323 if (const auto *CE = dyn_cast<ConstantExpression>(E)) { 2324 NewClass->setLeader(CE->getConstantValue()); 2325 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) { 2326 StoreInst *SI = SE->getStoreInst(); 2327 NewClass->setLeader(SI); 2328 NewClass->setStoredValue(SE->getStoredValue()); 2329 // The RepMemoryAccess field will be filled in properly by the 2330 // moveValueToNewCongruenceClass call. 2331 } else { 2332 NewClass->setLeader(I); 2333 } 2334 assert(!isa<VariableExpression>(E) && 2335 "VariableExpression should have been handled already"); 2336 2337 EClass = NewClass; 2338 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I 2339 << " using expression " << *E << " at " 2340 << NewClass->getID() << " and leader " 2341 << *(NewClass->getLeader())); 2342 if (NewClass->getStoredValue()) 2343 LLVM_DEBUG(dbgs() << " and stored value " 2344 << *(NewClass->getStoredValue())); 2345 LLVM_DEBUG(dbgs() << "\n"); 2346 } else { 2347 EClass = lookupResult.first->second; 2348 if (isa<ConstantExpression>(E)) 2349 assert((isa<Constant>(EClass->getLeader()) || 2350 (EClass->getStoredValue() && 2351 isa<Constant>(EClass->getStoredValue()))) && 2352 "Any class with a constant expression should have a " 2353 "constant leader"); 2354 2355 assert(EClass && "Somehow don't have an eclass"); 2356 2357 assert(!EClass->isDead() && "We accidentally looked up a dead class"); 2358 } 2359 } 2360 bool ClassChanged = IClass != EClass; 2361 bool LeaderChanged = LeaderChanges.erase(I); 2362 if (ClassChanged || LeaderChanged) { 2363 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " 2364 << *E << "\n"); 2365 if (ClassChanged) { 2366 moveValueToNewCongruenceClass(I, E, IClass, EClass); 2367 markPhiOfOpsChanged(E); 2368 } 2369 2370 markUsersTouched(I); 2371 if (MemoryAccess *MA = getMemoryAccess(I)) 2372 markMemoryUsersTouched(MA); 2373 if (auto *CI = dyn_cast<CmpInst>(I)) 2374 markPredicateUsersTouched(CI); 2375 } 2376 // If we changed the class of the store, we want to ensure nothing finds the 2377 // old store expression. In particular, loads do not compare against stored 2378 // value, so they will find old store expressions (and associated class 2379 // mappings) if we leave them in the table. 2380 if (ClassChanged && isa<StoreInst>(I)) { 2381 auto *OldE = ValueToExpression.lookup(I); 2382 // It could just be that the old class died. We don't want to erase it if we 2383 // just moved classes. 2384 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) { 2385 // Erase this as an exact expression to ensure we don't erase expressions 2386 // equivalent to it. 2387 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE)); 2388 if (Iter != ExpressionToClass.end()) 2389 ExpressionToClass.erase(Iter); 2390 } 2391 } 2392 ValueToExpression[I] = E; 2393 } 2394 2395 // Process the fact that Edge (from, to) is reachable, including marking 2396 // any newly reachable blocks and instructions for processing. 2397 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) { 2398 // Check if the Edge was reachable before. 2399 if (ReachableEdges.insert({From, To}).second) { 2400 // If this block wasn't reachable before, all instructions are touched. 2401 if (ReachableBlocks.insert(To).second) { 2402 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2403 << " marked reachable\n"); 2404 const auto &InstRange = BlockInstRange.lookup(To); 2405 TouchedInstructions.set(InstRange.first, InstRange.second); 2406 } else { 2407 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2408 << " was reachable, but new edge {" 2409 << getBlockName(From) << "," << getBlockName(To) 2410 << "} to it found\n"); 2411 2412 // We've made an edge reachable to an existing block, which may 2413 // impact predicates. Otherwise, only mark the phi nodes as touched, as 2414 // they are the only thing that depend on new edges. Anything using their 2415 // values will get propagated to if necessary. 2416 if (MemoryAccess *MemPhi = getMemoryAccess(To)) 2417 TouchedInstructions.set(InstrToDFSNum(MemPhi)); 2418 2419 // FIXME: We should just add a union op on a Bitvector and 2420 // SparseBitVector. We can do it word by word faster than we are doing it 2421 // here. 2422 for (auto InstNum : RevisitOnReachabilityChange[To]) 2423 TouchedInstructions.set(InstNum); 2424 } 2425 } 2426 } 2427 2428 // Given a predicate condition (from a switch, cmp, or whatever) and a block, 2429 // see if we know some constant value for it already. 2430 Value *NewGVN::findConditionEquivalence(Value *Cond) const { 2431 auto Result = lookupOperandLeader(Cond); 2432 return isa<Constant>(Result) ? Result : nullptr; 2433 } 2434 2435 // Process the outgoing edges of a block for reachability. 2436 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) { 2437 // Evaluate reachability of terminator instruction. 2438 Value *Cond; 2439 BasicBlock *TrueSucc, *FalseSucc; 2440 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) { 2441 Value *CondEvaluated = findConditionEquivalence(Cond); 2442 if (!CondEvaluated) { 2443 if (auto *I = dyn_cast<Instruction>(Cond)) { 2444 SmallPtrSet<Value *, 4> Visited; 2445 auto Res = performSymbolicEvaluation(I, Visited); 2446 if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) { 2447 CondEvaluated = CE->getConstantValue(); 2448 addAdditionalUsers(Res, I); 2449 } else { 2450 // Did not use simplification result, no need to add the extra 2451 // dependency. 2452 Res.ExtraDep = nullptr; 2453 } 2454 } else if (isa<ConstantInt>(Cond)) { 2455 CondEvaluated = Cond; 2456 } 2457 } 2458 ConstantInt *CI; 2459 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) { 2460 if (CI->isOne()) { 2461 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2462 << " evaluated to true\n"); 2463 updateReachableEdge(B, TrueSucc); 2464 } else if (CI->isZero()) { 2465 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2466 << " evaluated to false\n"); 2467 updateReachableEdge(B, FalseSucc); 2468 } 2469 } else { 2470 updateReachableEdge(B, TrueSucc); 2471 updateReachableEdge(B, FalseSucc); 2472 } 2473 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 2474 // For switches, propagate the case values into the case 2475 // destinations. 2476 2477 Value *SwitchCond = SI->getCondition(); 2478 Value *CondEvaluated = findConditionEquivalence(SwitchCond); 2479 // See if we were able to turn this switch statement into a constant. 2480 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) { 2481 auto *CondVal = cast<ConstantInt>(CondEvaluated); 2482 // We should be able to get case value for this. 2483 auto Case = *SI->findCaseValue(CondVal); 2484 if (Case.getCaseSuccessor() == SI->getDefaultDest()) { 2485 // We proved the value is outside of the range of the case. 2486 // We can't do anything other than mark the default dest as reachable, 2487 // and go home. 2488 updateReachableEdge(B, SI->getDefaultDest()); 2489 return; 2490 } 2491 // Now get where it goes and mark it reachable. 2492 BasicBlock *TargetBlock = Case.getCaseSuccessor(); 2493 updateReachableEdge(B, TargetBlock); 2494 } else { 2495 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 2496 BasicBlock *TargetBlock = SI->getSuccessor(i); 2497 updateReachableEdge(B, TargetBlock); 2498 } 2499 } 2500 } else { 2501 // Otherwise this is either unconditional, or a type we have no 2502 // idea about. Just mark successors as reachable. 2503 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 2504 BasicBlock *TargetBlock = TI->getSuccessor(i); 2505 updateReachableEdge(B, TargetBlock); 2506 } 2507 2508 // This also may be a memory defining terminator, in which case, set it 2509 // equivalent only to itself. 2510 // 2511 auto *MA = getMemoryAccess(TI); 2512 if (MA && !isa<MemoryUse>(MA)) { 2513 auto *CC = ensureLeaderOfMemoryClass(MA); 2514 if (setMemoryClass(MA, CC)) 2515 markMemoryUsersTouched(MA); 2516 } 2517 } 2518 } 2519 2520 // Remove the PHI of Ops PHI for I 2521 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) { 2522 InstrDFS.erase(PHITemp); 2523 // It's still a temp instruction. We keep it in the array so it gets erased. 2524 // However, it's no longer used by I, or in the block 2525 TempToBlock.erase(PHITemp); 2526 RealToTemp.erase(I); 2527 // We don't remove the users from the phi node uses. This wastes a little 2528 // time, but such is life. We could use two sets to track which were there 2529 // are the start of NewGVN, and which were added, but right nowt he cost of 2530 // tracking is more than the cost of checking for more phi of ops. 2531 } 2532 2533 // Add PHI Op in BB as a PHI of operations version of ExistingValue. 2534 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB, 2535 Instruction *ExistingValue) { 2536 InstrDFS[Op] = InstrToDFSNum(ExistingValue); 2537 AllTempInstructions.insert(Op); 2538 TempToBlock[Op] = BB; 2539 RealToTemp[ExistingValue] = Op; 2540 // Add all users to phi node use, as they are now uses of the phi of ops phis 2541 // and may themselves be phi of ops. 2542 for (auto *U : ExistingValue->users()) 2543 if (auto *UI = dyn_cast<Instruction>(U)) 2544 PHINodeUses.insert(UI); 2545 } 2546 2547 static bool okayForPHIOfOps(const Instruction *I) { 2548 if (!EnablePhiOfOps) 2549 return false; 2550 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) || 2551 isa<LoadInst>(I); 2552 } 2553 2554 bool NewGVN::OpIsSafeForPHIOfOpsHelper( 2555 Value *V, const BasicBlock *PHIBlock, 2556 SmallPtrSetImpl<const Value *> &Visited, 2557 SmallVectorImpl<Instruction *> &Worklist) { 2558 2559 if (!isa<Instruction>(V)) 2560 return true; 2561 auto OISIt = OpSafeForPHIOfOps.find(V); 2562 if (OISIt != OpSafeForPHIOfOps.end()) 2563 return OISIt->second; 2564 2565 // Keep walking until we either dominate the phi block, or hit a phi, or run 2566 // out of things to check. 2567 if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) { 2568 OpSafeForPHIOfOps.insert({V, true}); 2569 return true; 2570 } 2571 // PHI in the same block. 2572 if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) { 2573 OpSafeForPHIOfOps.insert({V, false}); 2574 return false; 2575 } 2576 2577 auto *OrigI = cast<Instruction>(V); 2578 for (auto *Op : OrigI->operand_values()) { 2579 if (!isa<Instruction>(Op)) 2580 continue; 2581 // Stop now if we find an unsafe operand. 2582 auto OISIt = OpSafeForPHIOfOps.find(OrigI); 2583 if (OISIt != OpSafeForPHIOfOps.end()) { 2584 if (!OISIt->second) { 2585 OpSafeForPHIOfOps.insert({V, false}); 2586 return false; 2587 } 2588 continue; 2589 } 2590 if (!Visited.insert(Op).second) 2591 continue; 2592 Worklist.push_back(cast<Instruction>(Op)); 2593 } 2594 return true; 2595 } 2596 2597 // Return true if this operand will be safe to use for phi of ops. 2598 // 2599 // The reason some operands are unsafe is that we are not trying to recursively 2600 // translate everything back through phi nodes. We actually expect some lookups 2601 // of expressions to fail. In particular, a lookup where the expression cannot 2602 // exist in the predecessor. This is true even if the expression, as shown, can 2603 // be determined to be constant. 2604 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock, 2605 SmallPtrSetImpl<const Value *> &Visited) { 2606 SmallVector<Instruction *, 4> Worklist; 2607 if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist)) 2608 return false; 2609 while (!Worklist.empty()) { 2610 auto *I = Worklist.pop_back_val(); 2611 if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist)) 2612 return false; 2613 } 2614 OpSafeForPHIOfOps.insert({V, true}); 2615 return true; 2616 } 2617 2618 // Try to find a leader for instruction TransInst, which is a phi translated 2619 // version of something in our original program. Visited is used to ensure we 2620 // don't infinite loop during translations of cycles. OrigInst is the 2621 // instruction in the original program, and PredBB is the predecessor we 2622 // translated it through. 2623 Value *NewGVN::findLeaderForInst(Instruction *TransInst, 2624 SmallPtrSetImpl<Value *> &Visited, 2625 MemoryAccess *MemAccess, Instruction *OrigInst, 2626 BasicBlock *PredBB) { 2627 unsigned IDFSNum = InstrToDFSNum(OrigInst); 2628 // Make sure it's marked as a temporary instruction. 2629 AllTempInstructions.insert(TransInst); 2630 // and make sure anything that tries to add it's DFS number is 2631 // redirected to the instruction we are making a phi of ops 2632 // for. 2633 TempToBlock.insert({TransInst, PredBB}); 2634 InstrDFS.insert({TransInst, IDFSNum}); 2635 2636 auto Res = performSymbolicEvaluation(TransInst, Visited); 2637 const Expression *E = Res.Expr; 2638 addAdditionalUsers(Res, OrigInst); 2639 InstrDFS.erase(TransInst); 2640 AllTempInstructions.erase(TransInst); 2641 TempToBlock.erase(TransInst); 2642 if (MemAccess) 2643 TempToMemory.erase(TransInst); 2644 if (!E) 2645 return nullptr; 2646 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB); 2647 if (!FoundVal) { 2648 ExpressionToPhiOfOps[E].insert(OrigInst); 2649 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst 2650 << " in block " << getBlockName(PredBB) << "\n"); 2651 return nullptr; 2652 } 2653 if (auto *SI = dyn_cast<StoreInst>(FoundVal)) 2654 FoundVal = SI->getValueOperand(); 2655 return FoundVal; 2656 } 2657 2658 // When we see an instruction that is an op of phis, generate the equivalent phi 2659 // of ops form. 2660 const Expression * 2661 NewGVN::makePossiblePHIOfOps(Instruction *I, 2662 SmallPtrSetImpl<Value *> &Visited) { 2663 if (!okayForPHIOfOps(I)) 2664 return nullptr; 2665 2666 if (!Visited.insert(I).second) 2667 return nullptr; 2668 // For now, we require the instruction be cycle free because we don't 2669 // *always* create a phi of ops for instructions that could be done as phi 2670 // of ops, we only do it if we think it is useful. If we did do it all the 2671 // time, we could remove the cycle free check. 2672 if (!isCycleFree(I)) 2673 return nullptr; 2674 2675 SmallPtrSet<const Value *, 8> ProcessedPHIs; 2676 // TODO: We don't do phi translation on memory accesses because it's 2677 // complicated. For a load, we'd need to be able to simulate a new memoryuse, 2678 // which we don't have a good way of doing ATM. 2679 auto *MemAccess = getMemoryAccess(I); 2680 // If the memory operation is defined by a memory operation this block that 2681 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi 2682 // can't help, as it would still be killed by that memory operation. 2683 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) && 2684 MemAccess->getDefiningAccess()->getBlock() == I->getParent()) 2685 return nullptr; 2686 2687 // Convert op of phis to phi of ops 2688 SmallPtrSet<const Value *, 10> VisitedOps; 2689 SmallVector<Value *, 4> Ops(I->operand_values()); 2690 BasicBlock *SamePHIBlock = nullptr; 2691 PHINode *OpPHI = nullptr; 2692 if (!DebugCounter::shouldExecute(PHIOfOpsCounter)) 2693 return nullptr; 2694 for (auto *Op : Ops) { 2695 if (!isa<PHINode>(Op)) { 2696 auto *ValuePHI = RealToTemp.lookup(Op); 2697 if (!ValuePHI) 2698 continue; 2699 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n"); 2700 Op = ValuePHI; 2701 } 2702 OpPHI = cast<PHINode>(Op); 2703 if (!SamePHIBlock) { 2704 SamePHIBlock = getBlockForValue(OpPHI); 2705 } else if (SamePHIBlock != getBlockForValue(OpPHI)) { 2706 LLVM_DEBUG( 2707 dbgs() 2708 << "PHIs for operands are not all in the same block, aborting\n"); 2709 return nullptr; 2710 } 2711 // No point in doing this for one-operand phis. 2712 if (OpPHI->getNumOperands() == 1) { 2713 OpPHI = nullptr; 2714 continue; 2715 } 2716 } 2717 2718 if (!OpPHI) 2719 return nullptr; 2720 2721 SmallVector<ValPair, 4> PHIOps; 2722 SmallPtrSet<Value *, 4> Deps; 2723 auto *PHIBlock = getBlockForValue(OpPHI); 2724 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I)); 2725 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) { 2726 auto *PredBB = OpPHI->getIncomingBlock(PredNum); 2727 Value *FoundVal = nullptr; 2728 SmallPtrSet<Value *, 4> CurrentDeps; 2729 // We could just skip unreachable edges entirely but it's tricky to do 2730 // with rewriting existing phi nodes. 2731 if (ReachableEdges.count({PredBB, PHIBlock})) { 2732 // Clone the instruction, create an expression from it that is 2733 // translated back into the predecessor, and see if we have a leader. 2734 Instruction *ValueOp = I->clone(); 2735 if (MemAccess) 2736 TempToMemory.insert({ValueOp, MemAccess}); 2737 bool SafeForPHIOfOps = true; 2738 VisitedOps.clear(); 2739 for (auto &Op : ValueOp->operands()) { 2740 auto *OrigOp = &*Op; 2741 // When these operand changes, it could change whether there is a 2742 // leader for us or not, so we have to add additional users. 2743 if (isa<PHINode>(Op)) { 2744 Op = Op->DoPHITranslation(PHIBlock, PredBB); 2745 if (Op != OrigOp && Op != I) 2746 CurrentDeps.insert(Op); 2747 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) { 2748 if (getBlockForValue(ValuePHI) == PHIBlock) 2749 Op = ValuePHI->getIncomingValueForBlock(PredBB); 2750 } 2751 // If we phi-translated the op, it must be safe. 2752 SafeForPHIOfOps = 2753 SafeForPHIOfOps && 2754 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps)); 2755 } 2756 // FIXME: For those things that are not safe we could generate 2757 // expressions all the way down, and see if this comes out to a 2758 // constant. For anything where that is true, and unsafe, we should 2759 // have made a phi-of-ops (or value numbered it equivalent to something) 2760 // for the pieces already. 2761 FoundVal = !SafeForPHIOfOps ? nullptr 2762 : findLeaderForInst(ValueOp, Visited, 2763 MemAccess, I, PredBB); 2764 ValueOp->deleteValue(); 2765 if (!FoundVal) { 2766 // We failed to find a leader for the current ValueOp, but this might 2767 // change in case of the translated operands change. 2768 if (SafeForPHIOfOps) 2769 for (auto Dep : CurrentDeps) 2770 addAdditionalUsers(Dep, I); 2771 2772 return nullptr; 2773 } 2774 Deps.insert(CurrentDeps.begin(), CurrentDeps.end()); 2775 } else { 2776 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block " 2777 << getBlockName(PredBB) 2778 << " because the block is unreachable\n"); 2779 FoundVal = UndefValue::get(I->getType()); 2780 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2781 } 2782 2783 PHIOps.push_back({FoundVal, PredBB}); 2784 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in " 2785 << getBlockName(PredBB) << "\n"); 2786 } 2787 for (auto Dep : Deps) 2788 addAdditionalUsers(Dep, I); 2789 sortPHIOps(PHIOps); 2790 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock); 2791 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) { 2792 LLVM_DEBUG( 2793 dbgs() 2794 << "Not creating real PHI of ops because it simplified to existing " 2795 "value or constant\n"); 2796 // We have leaders for all operands, but do not create a real PHI node with 2797 // those leaders as operands, so the link between the operands and the 2798 // PHI-of-ops is not materialized in the IR. If any of those leaders 2799 // changes, the PHI-of-op may change also, so we need to add the operands as 2800 // additional users. 2801 for (auto &O : PHIOps) 2802 addAdditionalUsers(O.first, I); 2803 2804 return E; 2805 } 2806 auto *ValuePHI = RealToTemp.lookup(I); 2807 bool NewPHI = false; 2808 if (!ValuePHI) { 2809 ValuePHI = 2810 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops"); 2811 addPhiOfOps(ValuePHI, PHIBlock, I); 2812 NewPHI = true; 2813 NumGVNPHIOfOpsCreated++; 2814 } 2815 if (NewPHI) { 2816 for (auto PHIOp : PHIOps) 2817 ValuePHI->addIncoming(PHIOp.first, PHIOp.second); 2818 } else { 2819 TempToBlock[ValuePHI] = PHIBlock; 2820 unsigned int i = 0; 2821 for (auto PHIOp : PHIOps) { 2822 ValuePHI->setIncomingValue(i, PHIOp.first); 2823 ValuePHI->setIncomingBlock(i, PHIOp.second); 2824 ++i; 2825 } 2826 } 2827 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2828 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I 2829 << "\n"); 2830 2831 return E; 2832 } 2833 2834 // The algorithm initially places the values of the routine in the TOP 2835 // congruence class. The leader of TOP is the undetermined value `undef`. 2836 // When the algorithm has finished, values still in TOP are unreachable. 2837 void NewGVN::initializeCongruenceClasses(Function &F) { 2838 NextCongruenceNum = 0; 2839 2840 // Note that even though we use the live on entry def as a representative 2841 // MemoryAccess, it is *not* the same as the actual live on entry def. We 2842 // have no real equivalemnt to undef for MemoryAccesses, and so we really 2843 // should be checking whether the MemoryAccess is top if we want to know if it 2844 // is equivalent to everything. Otherwise, what this really signifies is that 2845 // the access "it reaches all the way back to the beginning of the function" 2846 2847 // Initialize all other instructions to be in TOP class. 2848 TOPClass = createCongruenceClass(nullptr, nullptr); 2849 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef()); 2850 // The live on entry def gets put into it's own class 2851 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] = 2852 createMemoryClass(MSSA->getLiveOnEntryDef()); 2853 2854 for (auto DTN : nodes(DT)) { 2855 BasicBlock *BB = DTN->getBlock(); 2856 // All MemoryAccesses are equivalent to live on entry to start. They must 2857 // be initialized to something so that initial changes are noticed. For 2858 // the maximal answer, we initialize them all to be the same as 2859 // liveOnEntry. 2860 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB); 2861 if (MemoryBlockDefs) 2862 for (const auto &Def : *MemoryBlockDefs) { 2863 MemoryAccessToClass[&Def] = TOPClass; 2864 auto *MD = dyn_cast<MemoryDef>(&Def); 2865 // Insert the memory phis into the member list. 2866 if (!MD) { 2867 const MemoryPhi *MP = cast<MemoryPhi>(&Def); 2868 TOPClass->memory_insert(MP); 2869 MemoryPhiState.insert({MP, MPS_TOP}); 2870 } 2871 2872 if (MD && isa<StoreInst>(MD->getMemoryInst())) 2873 TOPClass->incStoreCount(); 2874 } 2875 2876 // FIXME: This is trying to discover which instructions are uses of phi 2877 // nodes. We should move this into one of the myriad of places that walk 2878 // all the operands already. 2879 for (auto &I : *BB) { 2880 if (isa<PHINode>(&I)) 2881 for (auto *U : I.users()) 2882 if (auto *UInst = dyn_cast<Instruction>(U)) 2883 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst)) 2884 PHINodeUses.insert(UInst); 2885 // Don't insert void terminators into the class. We don't value number 2886 // them, and they just end up sitting in TOP. 2887 if (I.isTerminator() && I.getType()->isVoidTy()) 2888 continue; 2889 TOPClass->insert(&I); 2890 ValueToClass[&I] = TOPClass; 2891 } 2892 } 2893 2894 // Initialize arguments to be in their own unique congruence classes 2895 for (auto &FA : F.args()) 2896 createSingletonCongruenceClass(&FA); 2897 } 2898 2899 void NewGVN::cleanupTables() { 2900 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) { 2901 LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID() 2902 << " has " << CongruenceClasses[i]->size() 2903 << " members\n"); 2904 // Make sure we delete the congruence class (probably worth switching to 2905 // a unique_ptr at some point. 2906 delete CongruenceClasses[i]; 2907 CongruenceClasses[i] = nullptr; 2908 } 2909 2910 // Destroy the value expressions 2911 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(), 2912 AllTempInstructions.end()); 2913 AllTempInstructions.clear(); 2914 2915 // We have to drop all references for everything first, so there are no uses 2916 // left as we delete them. 2917 for (auto *I : TempInst) { 2918 I->dropAllReferences(); 2919 } 2920 2921 while (!TempInst.empty()) { 2922 auto *I = TempInst.pop_back_val(); 2923 I->deleteValue(); 2924 } 2925 2926 ValueToClass.clear(); 2927 ArgRecycler.clear(ExpressionAllocator); 2928 ExpressionAllocator.Reset(); 2929 CongruenceClasses.clear(); 2930 ExpressionToClass.clear(); 2931 ValueToExpression.clear(); 2932 RealToTemp.clear(); 2933 AdditionalUsers.clear(); 2934 ExpressionToPhiOfOps.clear(); 2935 TempToBlock.clear(); 2936 TempToMemory.clear(); 2937 PHINodeUses.clear(); 2938 OpSafeForPHIOfOps.clear(); 2939 ReachableBlocks.clear(); 2940 ReachableEdges.clear(); 2941 #ifndef NDEBUG 2942 ProcessedCount.clear(); 2943 #endif 2944 InstrDFS.clear(); 2945 InstructionsToErase.clear(); 2946 DFSToInstr.clear(); 2947 BlockInstRange.clear(); 2948 TouchedInstructions.clear(); 2949 MemoryAccessToClass.clear(); 2950 PredicateToUsers.clear(); 2951 MemoryToUsers.clear(); 2952 RevisitOnReachabilityChange.clear(); 2953 } 2954 2955 // Assign local DFS number mapping to instructions, and leave space for Value 2956 // PHI's. 2957 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B, 2958 unsigned Start) { 2959 unsigned End = Start; 2960 if (MemoryAccess *MemPhi = getMemoryAccess(B)) { 2961 InstrDFS[MemPhi] = End++; 2962 DFSToInstr.emplace_back(MemPhi); 2963 } 2964 2965 // Then the real block goes next. 2966 for (auto &I : *B) { 2967 // There's no need to call isInstructionTriviallyDead more than once on 2968 // an instruction. Therefore, once we know that an instruction is dead 2969 // we change its DFS number so that it doesn't get value numbered. 2970 if (isInstructionTriviallyDead(&I, TLI)) { 2971 InstrDFS[&I] = 0; 2972 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n"); 2973 markInstructionForDeletion(&I); 2974 continue; 2975 } 2976 if (isa<PHINode>(&I)) 2977 RevisitOnReachabilityChange[B].set(End); 2978 InstrDFS[&I] = End++; 2979 DFSToInstr.emplace_back(&I); 2980 } 2981 2982 // All of the range functions taken half-open ranges (open on the end side). 2983 // So we do not subtract one from count, because at this point it is one 2984 // greater than the last instruction. 2985 return std::make_pair(Start, End); 2986 } 2987 2988 void NewGVN::updateProcessedCount(const Value *V) { 2989 #ifndef NDEBUG 2990 if (ProcessedCount.count(V) == 0) { 2991 ProcessedCount.insert({V, 1}); 2992 } else { 2993 ++ProcessedCount[V]; 2994 assert(ProcessedCount[V] < 100 && 2995 "Seem to have processed the same Value a lot"); 2996 } 2997 #endif 2998 } 2999 3000 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes 3001 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) { 3002 // If all the arguments are the same, the MemoryPhi has the same value as the 3003 // argument. Filter out unreachable blocks and self phis from our operands. 3004 // TODO: We could do cycle-checking on the memory phis to allow valueizing for 3005 // self-phi checking. 3006 const BasicBlock *PHIBlock = MP->getBlock(); 3007 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) { 3008 return cast<MemoryAccess>(U) != MP && 3009 !isMemoryAccessTOP(cast<MemoryAccess>(U)) && 3010 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock}); 3011 }); 3012 // If all that is left is nothing, our memoryphi is undef. We keep it as 3013 // InitialClass. Note: The only case this should happen is if we have at 3014 // least one self-argument. 3015 if (Filtered.begin() == Filtered.end()) { 3016 if (setMemoryClass(MP, TOPClass)) 3017 markMemoryUsersTouched(MP); 3018 return; 3019 } 3020 3021 // Transform the remaining operands into operand leaders. 3022 // FIXME: mapped_iterator should have a range version. 3023 auto LookupFunc = [&](const Use &U) { 3024 return lookupMemoryLeader(cast<MemoryAccess>(U)); 3025 }; 3026 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc); 3027 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc); 3028 3029 // and now check if all the elements are equal. 3030 // Sadly, we can't use std::equals since these are random access iterators. 3031 const auto *AllSameValue = *MappedBegin; 3032 ++MappedBegin; 3033 bool AllEqual = std::all_of( 3034 MappedBegin, MappedEnd, 3035 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; }); 3036 3037 if (AllEqual) 3038 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue 3039 << "\n"); 3040 else 3041 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n"); 3042 // If it's equal to something, it's in that class. Otherwise, it has to be in 3043 // a class where it is the leader (other things may be equivalent to it, but 3044 // it needs to start off in its own class, which means it must have been the 3045 // leader, and it can't have stopped being the leader because it was never 3046 // removed). 3047 CongruenceClass *CC = 3048 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP); 3049 auto OldState = MemoryPhiState.lookup(MP); 3050 assert(OldState != MPS_Invalid && "Invalid memory phi state"); 3051 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique; 3052 MemoryPhiState[MP] = NewState; 3053 if (setMemoryClass(MP, CC) || OldState != NewState) 3054 markMemoryUsersTouched(MP); 3055 } 3056 3057 // Value number a single instruction, symbolically evaluating, performing 3058 // congruence finding, and updating mappings. 3059 void NewGVN::valueNumberInstruction(Instruction *I) { 3060 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n"); 3061 if (!I->isTerminator()) { 3062 const Expression *Symbolized = nullptr; 3063 SmallPtrSet<Value *, 2> Visited; 3064 if (DebugCounter::shouldExecute(VNCounter)) { 3065 auto Res = performSymbolicEvaluation(I, Visited); 3066 Symbolized = Res.Expr; 3067 addAdditionalUsers(Res, I); 3068 3069 // Make a phi of ops if necessary 3070 if (Symbolized && !isa<ConstantExpression>(Symbolized) && 3071 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) { 3072 auto *PHIE = makePossiblePHIOfOps(I, Visited); 3073 // If we created a phi of ops, use it. 3074 // If we couldn't create one, make sure we don't leave one lying around 3075 if (PHIE) { 3076 Symbolized = PHIE; 3077 } else if (auto *Op = RealToTemp.lookup(I)) { 3078 removePhiOfOps(I, Op); 3079 } 3080 } 3081 } else { 3082 // Mark the instruction as unused so we don't value number it again. 3083 InstrDFS[I] = 0; 3084 } 3085 // If we couldn't come up with a symbolic expression, use the unknown 3086 // expression 3087 if (Symbolized == nullptr) 3088 Symbolized = createUnknownExpression(I); 3089 performCongruenceFinding(I, Symbolized); 3090 } else { 3091 // Handle terminators that return values. All of them produce values we 3092 // don't currently understand. We don't place non-value producing 3093 // terminators in a class. 3094 if (!I->getType()->isVoidTy()) { 3095 auto *Symbolized = createUnknownExpression(I); 3096 performCongruenceFinding(I, Symbolized); 3097 } 3098 processOutgoingEdges(I, I->getParent()); 3099 } 3100 } 3101 3102 // Check if there is a path, using single or equal argument phi nodes, from 3103 // First to Second. 3104 bool NewGVN::singleReachablePHIPath( 3105 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First, 3106 const MemoryAccess *Second) const { 3107 if (First == Second) 3108 return true; 3109 if (MSSA->isLiveOnEntryDef(First)) 3110 return false; 3111 3112 // This is not perfect, but as we're just verifying here, we can live with 3113 // the loss of precision. The real solution would be that of doing strongly 3114 // connected component finding in this routine, and it's probably not worth 3115 // the complexity for the time being. So, we just keep a set of visited 3116 // MemoryAccess and return true when we hit a cycle. 3117 if (Visited.count(First)) 3118 return true; 3119 Visited.insert(First); 3120 3121 const auto *EndDef = First; 3122 for (auto *ChainDef : optimized_def_chain(First)) { 3123 if (ChainDef == Second) 3124 return true; 3125 if (MSSA->isLiveOnEntryDef(ChainDef)) 3126 return false; 3127 EndDef = ChainDef; 3128 } 3129 auto *MP = cast<MemoryPhi>(EndDef); 3130 auto ReachableOperandPred = [&](const Use &U) { 3131 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()}); 3132 }; 3133 auto FilteredPhiArgs = 3134 make_filter_range(MP->operands(), ReachableOperandPred); 3135 SmallVector<const Value *, 32> OperandList; 3136 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList)); 3137 bool Okay = is_splat(OperandList); 3138 if (Okay) 3139 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]), 3140 Second); 3141 return false; 3142 } 3143 3144 // Verify the that the memory equivalence table makes sense relative to the 3145 // congruence classes. Note that this checking is not perfect, and is currently 3146 // subject to very rare false negatives. It is only useful for 3147 // testing/debugging. 3148 void NewGVN::verifyMemoryCongruency() const { 3149 #ifndef NDEBUG 3150 // Verify that the memory table equivalence and memory member set match 3151 for (const auto *CC : CongruenceClasses) { 3152 if (CC == TOPClass || CC->isDead()) 3153 continue; 3154 if (CC->getStoreCount() != 0) { 3155 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) && 3156 "Any class with a store as a leader should have a " 3157 "representative stored value"); 3158 assert(CC->getMemoryLeader() && 3159 "Any congruence class with a store should have a " 3160 "representative access"); 3161 } 3162 3163 if (CC->getMemoryLeader()) 3164 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC && 3165 "Representative MemoryAccess does not appear to be reverse " 3166 "mapped properly"); 3167 for (auto M : CC->memory()) 3168 assert(MemoryAccessToClass.lookup(M) == CC && 3169 "Memory member does not appear to be reverse mapped properly"); 3170 } 3171 3172 // Anything equivalent in the MemoryAccess table should be in the same 3173 // congruence class. 3174 3175 // Filter out the unreachable and trivially dead entries, because they may 3176 // never have been updated if the instructions were not processed. 3177 auto ReachableAccessPred = 3178 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) { 3179 bool Result = ReachableBlocks.count(Pair.first->getBlock()); 3180 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) || 3181 MemoryToDFSNum(Pair.first) == 0) 3182 return false; 3183 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first)) 3184 return !isInstructionTriviallyDead(MemDef->getMemoryInst()); 3185 3186 // We could have phi nodes which operands are all trivially dead, 3187 // so we don't process them. 3188 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) { 3189 for (auto &U : MemPHI->incoming_values()) { 3190 if (auto *I = dyn_cast<Instruction>(&*U)) { 3191 if (!isInstructionTriviallyDead(I)) 3192 return true; 3193 } 3194 } 3195 return false; 3196 } 3197 3198 return true; 3199 }; 3200 3201 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred); 3202 for (auto KV : Filtered) { 3203 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) { 3204 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader()); 3205 if (FirstMUD && SecondMUD) { 3206 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS; 3207 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) || 3208 ValueToClass.lookup(FirstMUD->getMemoryInst()) == 3209 ValueToClass.lookup(SecondMUD->getMemoryInst())) && 3210 "The instructions for these memory operations should have " 3211 "been in the same congruence class or reachable through" 3212 "a single argument phi"); 3213 } 3214 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) { 3215 // We can only sanely verify that MemoryDefs in the operand list all have 3216 // the same class. 3217 auto ReachableOperandPred = [&](const Use &U) { 3218 return ReachableEdges.count( 3219 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) && 3220 isa<MemoryDef>(U); 3221 3222 }; 3223 // All arguments should in the same class, ignoring unreachable arguments 3224 auto FilteredPhiArgs = 3225 make_filter_range(FirstMP->operands(), ReachableOperandPred); 3226 SmallVector<const CongruenceClass *, 16> PhiOpClasses; 3227 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(), 3228 std::back_inserter(PhiOpClasses), [&](const Use &U) { 3229 const MemoryDef *MD = cast<MemoryDef>(U); 3230 return ValueToClass.lookup(MD->getMemoryInst()); 3231 }); 3232 assert(is_splat(PhiOpClasses) && 3233 "All MemoryPhi arguments should be in the same class"); 3234 } 3235 } 3236 #endif 3237 } 3238 3239 // Verify that the sparse propagation we did actually found the maximal fixpoint 3240 // We do this by storing the value to class mapping, touching all instructions, 3241 // and redoing the iteration to see if anything changed. 3242 void NewGVN::verifyIterationSettled(Function &F) { 3243 #ifndef NDEBUG 3244 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n"); 3245 if (DebugCounter::isCounterSet(VNCounter)) 3246 DebugCounter::setCounterValue(VNCounter, StartingVNCounter); 3247 3248 // Note that we have to store the actual classes, as we may change existing 3249 // classes during iteration. This is because our memory iteration propagation 3250 // is not perfect, and so may waste a little work. But it should generate 3251 // exactly the same congruence classes we have now, with different IDs. 3252 std::map<const Value *, CongruenceClass> BeforeIteration; 3253 3254 for (auto &KV : ValueToClass) { 3255 if (auto *I = dyn_cast<Instruction>(KV.first)) 3256 // Skip unused/dead instructions. 3257 if (InstrToDFSNum(I) == 0) 3258 continue; 3259 BeforeIteration.insert({KV.first, *KV.second}); 3260 } 3261 3262 TouchedInstructions.set(); 3263 TouchedInstructions.reset(0); 3264 iterateTouchedInstructions(); 3265 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>> 3266 EqualClasses; 3267 for (const auto &KV : ValueToClass) { 3268 if (auto *I = dyn_cast<Instruction>(KV.first)) 3269 // Skip unused/dead instructions. 3270 if (InstrToDFSNum(I) == 0) 3271 continue; 3272 // We could sink these uses, but i think this adds a bit of clarity here as 3273 // to what we are comparing. 3274 auto *BeforeCC = &BeforeIteration.find(KV.first)->second; 3275 auto *AfterCC = KV.second; 3276 // Note that the classes can't change at this point, so we memoize the set 3277 // that are equal. 3278 if (!EqualClasses.count({BeforeCC, AfterCC})) { 3279 assert(BeforeCC->isEquivalentTo(AfterCC) && 3280 "Value number changed after main loop completed!"); 3281 EqualClasses.insert({BeforeCC, AfterCC}); 3282 } 3283 } 3284 #endif 3285 } 3286 3287 // Verify that for each store expression in the expression to class mapping, 3288 // only the latest appears, and multiple ones do not appear. 3289 // Because loads do not use the stored value when doing equality with stores, 3290 // if we don't erase the old store expressions from the table, a load can find 3291 // a no-longer valid StoreExpression. 3292 void NewGVN::verifyStoreExpressions() const { 3293 #ifndef NDEBUG 3294 // This is the only use of this, and it's not worth defining a complicated 3295 // densemapinfo hash/equality function for it. 3296 std::set< 3297 std::pair<const Value *, 3298 std::tuple<const Value *, const CongruenceClass *, Value *>>> 3299 StoreExpressionSet; 3300 for (const auto &KV : ExpressionToClass) { 3301 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) { 3302 // Make sure a version that will conflict with loads is not already there 3303 auto Res = StoreExpressionSet.insert( 3304 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second, 3305 SE->getStoredValue())}); 3306 bool Okay = Res.second; 3307 // It's okay to have the same expression already in there if it is 3308 // identical in nature. 3309 // This can happen when the leader of the stored value changes over time. 3310 if (!Okay) 3311 Okay = (std::get<1>(Res.first->second) == KV.second) && 3312 (lookupOperandLeader(std::get<2>(Res.first->second)) == 3313 lookupOperandLeader(SE->getStoredValue())); 3314 assert(Okay && "Stored expression conflict exists in expression table"); 3315 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst()); 3316 assert(ValueExpr && ValueExpr->equals(*SE) && 3317 "StoreExpression in ExpressionToClass is not latest " 3318 "StoreExpression for value"); 3319 } 3320 } 3321 #endif 3322 } 3323 3324 // This is the main value numbering loop, it iterates over the initial touched 3325 // instruction set, propagating value numbers, marking things touched, etc, 3326 // until the set of touched instructions is completely empty. 3327 void NewGVN::iterateTouchedInstructions() { 3328 unsigned int Iterations = 0; 3329 // Figure out where touchedinstructions starts 3330 int FirstInstr = TouchedInstructions.find_first(); 3331 // Nothing set, nothing to iterate, just return. 3332 if (FirstInstr == -1) 3333 return; 3334 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr)); 3335 while (TouchedInstructions.any()) { 3336 ++Iterations; 3337 // Walk through all the instructions in all the blocks in RPO. 3338 // TODO: As we hit a new block, we should push and pop equalities into a 3339 // table lookupOperandLeader can use, to catch things PredicateInfo 3340 // might miss, like edge-only equivalences. 3341 for (unsigned InstrNum : TouchedInstructions.set_bits()) { 3342 3343 // This instruction was found to be dead. We don't bother looking 3344 // at it again. 3345 if (InstrNum == 0) { 3346 TouchedInstructions.reset(InstrNum); 3347 continue; 3348 } 3349 3350 Value *V = InstrFromDFSNum(InstrNum); 3351 const BasicBlock *CurrBlock = getBlockForValue(V); 3352 3353 // If we hit a new block, do reachability processing. 3354 if (CurrBlock != LastBlock) { 3355 LastBlock = CurrBlock; 3356 bool BlockReachable = ReachableBlocks.count(CurrBlock); 3357 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock); 3358 3359 // If it's not reachable, erase any touched instructions and move on. 3360 if (!BlockReachable) { 3361 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second); 3362 LLVM_DEBUG(dbgs() << "Skipping instructions in block " 3363 << getBlockName(CurrBlock) 3364 << " because it is unreachable\n"); 3365 continue; 3366 } 3367 updateProcessedCount(CurrBlock); 3368 } 3369 // Reset after processing (because we may mark ourselves as touched when 3370 // we propagate equalities). 3371 TouchedInstructions.reset(InstrNum); 3372 3373 if (auto *MP = dyn_cast<MemoryPhi>(V)) { 3374 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n"); 3375 valueNumberMemoryPhi(MP); 3376 } else if (auto *I = dyn_cast<Instruction>(V)) { 3377 valueNumberInstruction(I); 3378 } else { 3379 llvm_unreachable("Should have been a MemoryPhi or Instruction"); 3380 } 3381 updateProcessedCount(V); 3382 } 3383 } 3384 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations); 3385 } 3386 3387 // This is the main transformation entry point. 3388 bool NewGVN::runGVN() { 3389 if (DebugCounter::isCounterSet(VNCounter)) 3390 StartingVNCounter = DebugCounter::getCounterValue(VNCounter); 3391 bool Changed = false; 3392 NumFuncArgs = F.arg_size(); 3393 MSSAWalker = MSSA->getWalker(); 3394 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression(); 3395 3396 // Count number of instructions for sizing of hash tables, and come 3397 // up with a global dfs numbering for instructions. 3398 unsigned ICount = 1; 3399 // Add an empty instruction to account for the fact that we start at 1 3400 DFSToInstr.emplace_back(nullptr); 3401 // Note: We want ideal RPO traversal of the blocks, which is not quite the 3402 // same as dominator tree order, particularly with regard whether backedges 3403 // get visited first or second, given a block with multiple successors. 3404 // If we visit in the wrong order, we will end up performing N times as many 3405 // iterations. 3406 // The dominator tree does guarantee that, for a given dom tree node, it's 3407 // parent must occur before it in the RPO ordering. Thus, we only need to sort 3408 // the siblings. 3409 ReversePostOrderTraversal<Function *> RPOT(&F); 3410 unsigned Counter = 0; 3411 for (auto &B : RPOT) { 3412 auto *Node = DT->getNode(B); 3413 assert(Node && "RPO and Dominator tree should have same reachability"); 3414 RPOOrdering[Node] = ++Counter; 3415 } 3416 // Sort dominator tree children arrays into RPO. 3417 for (auto &B : RPOT) { 3418 auto *Node = DT->getNode(B); 3419 if (Node->getNumChildren() > 1) 3420 llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) { 3421 return RPOOrdering[A] < RPOOrdering[B]; 3422 }); 3423 } 3424 3425 // Now a standard depth first ordering of the domtree is equivalent to RPO. 3426 for (auto DTN : depth_first(DT->getRootNode())) { 3427 BasicBlock *B = DTN->getBlock(); 3428 const auto &BlockRange = assignDFSNumbers(B, ICount); 3429 BlockInstRange.insert({B, BlockRange}); 3430 ICount += BlockRange.second - BlockRange.first; 3431 } 3432 initializeCongruenceClasses(F); 3433 3434 TouchedInstructions.resize(ICount); 3435 // Ensure we don't end up resizing the expressionToClass map, as 3436 // that can be quite expensive. At most, we have one expression per 3437 // instruction. 3438 ExpressionToClass.reserve(ICount); 3439 3440 // Initialize the touched instructions to include the entry block. 3441 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock()); 3442 TouchedInstructions.set(InstRange.first, InstRange.second); 3443 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock()) 3444 << " marked reachable\n"); 3445 ReachableBlocks.insert(&F.getEntryBlock()); 3446 3447 iterateTouchedInstructions(); 3448 verifyMemoryCongruency(); 3449 verifyIterationSettled(F); 3450 verifyStoreExpressions(); 3451 3452 Changed |= eliminateInstructions(F); 3453 3454 // Delete all instructions marked for deletion. 3455 for (Instruction *ToErase : InstructionsToErase) { 3456 if (!ToErase->use_empty()) 3457 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType())); 3458 3459 assert(ToErase->getParent() && 3460 "BB containing ToErase deleted unexpectedly!"); 3461 ToErase->eraseFromParent(); 3462 } 3463 Changed |= !InstructionsToErase.empty(); 3464 3465 // Delete all unreachable blocks. 3466 auto UnreachableBlockPred = [&](const BasicBlock &BB) { 3467 return !ReachableBlocks.count(&BB); 3468 }; 3469 3470 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) { 3471 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB) 3472 << " is unreachable\n"); 3473 deleteInstructionsInBlock(&BB); 3474 Changed = true; 3475 } 3476 3477 cleanupTables(); 3478 return Changed; 3479 } 3480 3481 struct NewGVN::ValueDFS { 3482 int DFSIn = 0; 3483 int DFSOut = 0; 3484 int LocalNum = 0; 3485 3486 // Only one of Def and U will be set. 3487 // The bool in the Def tells us whether the Def is the stored value of a 3488 // store. 3489 PointerIntPair<Value *, 1, bool> Def; 3490 Use *U = nullptr; 3491 3492 bool operator<(const ValueDFS &Other) const { 3493 // It's not enough that any given field be less than - we have sets 3494 // of fields that need to be evaluated together to give a proper ordering. 3495 // For example, if you have; 3496 // DFS (1, 3) 3497 // Val 0 3498 // DFS (1, 2) 3499 // Val 50 3500 // We want the second to be less than the first, but if we just go field 3501 // by field, we will get to Val 0 < Val 50 and say the first is less than 3502 // the second. We only want it to be less than if the DFS orders are equal. 3503 // 3504 // Each LLVM instruction only produces one value, and thus the lowest-level 3505 // differentiator that really matters for the stack (and what we use as as a 3506 // replacement) is the local dfs number. 3507 // Everything else in the structure is instruction level, and only affects 3508 // the order in which we will replace operands of a given instruction. 3509 // 3510 // For a given instruction (IE things with equal dfsin, dfsout, localnum), 3511 // the order of replacement of uses does not matter. 3512 // IE given, 3513 // a = 5 3514 // b = a + a 3515 // When you hit b, you will have two valuedfs with the same dfsin, out, and 3516 // localnum. 3517 // The .val will be the same as well. 3518 // The .u's will be different. 3519 // You will replace both, and it does not matter what order you replace them 3520 // in (IE whether you replace operand 2, then operand 1, or operand 1, then 3521 // operand 2). 3522 // Similarly for the case of same dfsin, dfsout, localnum, but different 3523 // .val's 3524 // a = 5 3525 // b = 6 3526 // c = a + b 3527 // in c, we will a valuedfs for a, and one for b,with everything the same 3528 // but .val and .u. 3529 // It does not matter what order we replace these operands in. 3530 // You will always end up with the same IR, and this is guaranteed. 3531 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) < 3532 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def, 3533 Other.U); 3534 } 3535 }; 3536 3537 // This function converts the set of members for a congruence class from values, 3538 // to sets of defs and uses with associated DFS info. The total number of 3539 // reachable uses for each value is stored in UseCount, and instructions that 3540 // seem 3541 // dead (have no non-dead uses) are stored in ProbablyDead. 3542 void NewGVN::convertClassToDFSOrdered( 3543 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet, 3544 DenseMap<const Value *, unsigned int> &UseCounts, 3545 SmallPtrSetImpl<Instruction *> &ProbablyDead) const { 3546 for (auto D : Dense) { 3547 // First add the value. 3548 BasicBlock *BB = getBlockForValue(D); 3549 // Constants are handled prior to ever calling this function, so 3550 // we should only be left with instructions as members. 3551 assert(BB && "Should have figured out a basic block for value"); 3552 ValueDFS VDDef; 3553 DomTreeNode *DomNode = DT->getNode(BB); 3554 VDDef.DFSIn = DomNode->getDFSNumIn(); 3555 VDDef.DFSOut = DomNode->getDFSNumOut(); 3556 // If it's a store, use the leader of the value operand, if it's always 3557 // available, or the value operand. TODO: We could do dominance checks to 3558 // find a dominating leader, but not worth it ATM. 3559 if (auto *SI = dyn_cast<StoreInst>(D)) { 3560 auto Leader = lookupOperandLeader(SI->getValueOperand()); 3561 if (alwaysAvailable(Leader)) { 3562 VDDef.Def.setPointer(Leader); 3563 } else { 3564 VDDef.Def.setPointer(SI->getValueOperand()); 3565 VDDef.Def.setInt(true); 3566 } 3567 } else { 3568 VDDef.Def.setPointer(D); 3569 } 3570 assert(isa<Instruction>(D) && 3571 "The dense set member should always be an instruction"); 3572 Instruction *Def = cast<Instruction>(D); 3573 VDDef.LocalNum = InstrToDFSNum(D); 3574 DFSOrderedSet.push_back(VDDef); 3575 // If there is a phi node equivalent, add it 3576 if (auto *PN = RealToTemp.lookup(Def)) { 3577 auto *PHIE = 3578 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def)); 3579 if (PHIE) { 3580 VDDef.Def.setInt(false); 3581 VDDef.Def.setPointer(PN); 3582 VDDef.LocalNum = 0; 3583 DFSOrderedSet.push_back(VDDef); 3584 } 3585 } 3586 3587 unsigned int UseCount = 0; 3588 // Now add the uses. 3589 for (auto &U : Def->uses()) { 3590 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 3591 // Don't try to replace into dead uses 3592 if (InstructionsToErase.count(I)) 3593 continue; 3594 ValueDFS VDUse; 3595 // Put the phi node uses in the incoming block. 3596 BasicBlock *IBlock; 3597 if (auto *P = dyn_cast<PHINode>(I)) { 3598 IBlock = P->getIncomingBlock(U); 3599 // Make phi node users appear last in the incoming block 3600 // they are from. 3601 VDUse.LocalNum = InstrDFS.size() + 1; 3602 } else { 3603 IBlock = getBlockForValue(I); 3604 VDUse.LocalNum = InstrToDFSNum(I); 3605 } 3606 3607 // Skip uses in unreachable blocks, as we're going 3608 // to delete them. 3609 if (ReachableBlocks.count(IBlock) == 0) 3610 continue; 3611 3612 DomTreeNode *DomNode = DT->getNode(IBlock); 3613 VDUse.DFSIn = DomNode->getDFSNumIn(); 3614 VDUse.DFSOut = DomNode->getDFSNumOut(); 3615 VDUse.U = &U; 3616 ++UseCount; 3617 DFSOrderedSet.emplace_back(VDUse); 3618 } 3619 } 3620 3621 // If there are no uses, it's probably dead (but it may have side-effects, 3622 // so not definitely dead. Otherwise, store the number of uses so we can 3623 // track if it becomes dead later). 3624 if (UseCount == 0) 3625 ProbablyDead.insert(Def); 3626 else 3627 UseCounts[Def] = UseCount; 3628 } 3629 } 3630 3631 // This function converts the set of members for a congruence class from values, 3632 // to the set of defs for loads and stores, with associated DFS info. 3633 void NewGVN::convertClassToLoadsAndStores( 3634 const CongruenceClass &Dense, 3635 SmallVectorImpl<ValueDFS> &LoadsAndStores) const { 3636 for (auto D : Dense) { 3637 if (!isa<LoadInst>(D) && !isa<StoreInst>(D)) 3638 continue; 3639 3640 BasicBlock *BB = getBlockForValue(D); 3641 ValueDFS VD; 3642 DomTreeNode *DomNode = DT->getNode(BB); 3643 VD.DFSIn = DomNode->getDFSNumIn(); 3644 VD.DFSOut = DomNode->getDFSNumOut(); 3645 VD.Def.setPointer(D); 3646 3647 // If it's an instruction, use the real local dfs number. 3648 if (auto *I = dyn_cast<Instruction>(D)) 3649 VD.LocalNum = InstrToDFSNum(I); 3650 else 3651 llvm_unreachable("Should have been an instruction"); 3652 3653 LoadsAndStores.emplace_back(VD); 3654 } 3655 } 3656 3657 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 3658 patchReplacementInstruction(I, Repl); 3659 I->replaceAllUsesWith(Repl); 3660 } 3661 3662 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) { 3663 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 3664 ++NumGVNBlocksDeleted; 3665 3666 // Delete the instructions backwards, as it has a reduced likelihood of having 3667 // to update as many def-use and use-def chains. Start after the terminator. 3668 auto StartPoint = BB->rbegin(); 3669 ++StartPoint; 3670 // Note that we explicitly recalculate BB->rend() on each iteration, 3671 // as it may change when we remove the first instruction. 3672 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) { 3673 Instruction &Inst = *I++; 3674 if (!Inst.use_empty()) 3675 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType())); 3676 if (isa<LandingPadInst>(Inst)) 3677 continue; 3678 salvageKnowledge(&Inst, AC); 3679 3680 Inst.eraseFromParent(); 3681 ++NumGVNInstrDeleted; 3682 } 3683 // Now insert something that simplifycfg will turn into an unreachable. 3684 Type *Int8Ty = Type::getInt8Ty(BB->getContext()); 3685 new StoreInst(UndefValue::get(Int8Ty), 3686 Constant::getNullValue(Int8Ty->getPointerTo()), 3687 BB->getTerminator()); 3688 } 3689 3690 void NewGVN::markInstructionForDeletion(Instruction *I) { 3691 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n"); 3692 InstructionsToErase.insert(I); 3693 } 3694 3695 void NewGVN::replaceInstruction(Instruction *I, Value *V) { 3696 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n"); 3697 patchAndReplaceAllUsesWith(I, V); 3698 // We save the actual erasing to avoid invalidating memory 3699 // dependencies until we are done with everything. 3700 markInstructionForDeletion(I); 3701 } 3702 3703 namespace { 3704 3705 // This is a stack that contains both the value and dfs info of where 3706 // that value is valid. 3707 class ValueDFSStack { 3708 public: 3709 Value *back() const { return ValueStack.back(); } 3710 std::pair<int, int> dfs_back() const { return DFSStack.back(); } 3711 3712 void push_back(Value *V, int DFSIn, int DFSOut) { 3713 ValueStack.emplace_back(V); 3714 DFSStack.emplace_back(DFSIn, DFSOut); 3715 } 3716 3717 bool empty() const { return DFSStack.empty(); } 3718 3719 bool isInScope(int DFSIn, int DFSOut) const { 3720 if (empty()) 3721 return false; 3722 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second; 3723 } 3724 3725 void popUntilDFSScope(int DFSIn, int DFSOut) { 3726 3727 // These two should always be in sync at this point. 3728 assert(ValueStack.size() == DFSStack.size() && 3729 "Mismatch between ValueStack and DFSStack"); 3730 while ( 3731 !DFSStack.empty() && 3732 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) { 3733 DFSStack.pop_back(); 3734 ValueStack.pop_back(); 3735 } 3736 } 3737 3738 private: 3739 SmallVector<Value *, 8> ValueStack; 3740 SmallVector<std::pair<int, int>, 8> DFSStack; 3741 }; 3742 3743 } // end anonymous namespace 3744 3745 // Given an expression, get the congruence class for it. 3746 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const { 3747 if (auto *VE = dyn_cast<VariableExpression>(E)) 3748 return ValueToClass.lookup(VE->getVariableValue()); 3749 else if (isa<DeadExpression>(E)) 3750 return TOPClass; 3751 return ExpressionToClass.lookup(E); 3752 } 3753 3754 // Given a value and a basic block we are trying to see if it is available in, 3755 // see if the value has a leader available in that block. 3756 Value *NewGVN::findPHIOfOpsLeader(const Expression *E, 3757 const Instruction *OrigInst, 3758 const BasicBlock *BB) const { 3759 // It would already be constant if we could make it constant 3760 if (auto *CE = dyn_cast<ConstantExpression>(E)) 3761 return CE->getConstantValue(); 3762 if (auto *VE = dyn_cast<VariableExpression>(E)) { 3763 auto *V = VE->getVariableValue(); 3764 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB)) 3765 return VE->getVariableValue(); 3766 } 3767 3768 auto *CC = getClassForExpression(E); 3769 if (!CC) 3770 return nullptr; 3771 if (alwaysAvailable(CC->getLeader())) 3772 return CC->getLeader(); 3773 3774 for (auto Member : *CC) { 3775 auto *MemberInst = dyn_cast<Instruction>(Member); 3776 if (MemberInst == OrigInst) 3777 continue; 3778 // Anything that isn't an instruction is always available. 3779 if (!MemberInst) 3780 return Member; 3781 if (DT->dominates(getBlockForValue(MemberInst), BB)) 3782 return Member; 3783 } 3784 return nullptr; 3785 } 3786 3787 bool NewGVN::eliminateInstructions(Function &F) { 3788 // This is a non-standard eliminator. The normal way to eliminate is 3789 // to walk the dominator tree in order, keeping track of available 3790 // values, and eliminating them. However, this is mildly 3791 // pointless. It requires doing lookups on every instruction, 3792 // regardless of whether we will ever eliminate it. For 3793 // instructions part of most singleton congruence classes, we know we 3794 // will never eliminate them. 3795 3796 // Instead, this eliminator looks at the congruence classes directly, sorts 3797 // them into a DFS ordering of the dominator tree, and then we just 3798 // perform elimination straight on the sets by walking the congruence 3799 // class member uses in order, and eliminate the ones dominated by the 3800 // last member. This is worst case O(E log E) where E = number of 3801 // instructions in a single congruence class. In theory, this is all 3802 // instructions. In practice, it is much faster, as most instructions are 3803 // either in singleton congruence classes or can't possibly be eliminated 3804 // anyway (if there are no overlapping DFS ranges in class). 3805 // When we find something not dominated, it becomes the new leader 3806 // for elimination purposes. 3807 // TODO: If we wanted to be faster, We could remove any members with no 3808 // overlapping ranges while sorting, as we will never eliminate anything 3809 // with those members, as they don't dominate anything else in our set. 3810 3811 bool AnythingReplaced = false; 3812 3813 // Since we are going to walk the domtree anyway, and we can't guarantee the 3814 // DFS numbers are updated, we compute some ourselves. 3815 DT->updateDFSNumbers(); 3816 3817 // Go through all of our phi nodes, and kill the arguments associated with 3818 // unreachable edges. 3819 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) { 3820 for (auto &Operand : PHI->incoming_values()) 3821 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) { 3822 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI 3823 << " for block " 3824 << getBlockName(PHI->getIncomingBlock(Operand)) 3825 << " with undef due to it being unreachable\n"); 3826 Operand.set(UndefValue::get(PHI->getType())); 3827 } 3828 }; 3829 // Replace unreachable phi arguments. 3830 // At this point, RevisitOnReachabilityChange only contains: 3831 // 3832 // 1. PHIs 3833 // 2. Temporaries that will convert to PHIs 3834 // 3. Operations that are affected by an unreachable edge but do not fit into 3835 // 1 or 2 (rare). 3836 // So it is a slight overshoot of what we want. We could make it exact by 3837 // using two SparseBitVectors per block. 3838 DenseMap<const BasicBlock *, unsigned> ReachablePredCount; 3839 for (auto &KV : ReachableEdges) 3840 ReachablePredCount[KV.getEnd()]++; 3841 for (auto &BBPair : RevisitOnReachabilityChange) { 3842 for (auto InstNum : BBPair.second) { 3843 auto *Inst = InstrFromDFSNum(InstNum); 3844 auto *PHI = dyn_cast<PHINode>(Inst); 3845 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst)); 3846 if (!PHI) 3847 continue; 3848 auto *BB = BBPair.first; 3849 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues()) 3850 ReplaceUnreachablePHIArgs(PHI, BB); 3851 } 3852 } 3853 3854 // Map to store the use counts 3855 DenseMap<const Value *, unsigned int> UseCounts; 3856 for (auto *CC : reverse(CongruenceClasses)) { 3857 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID() 3858 << "\n"); 3859 // Track the equivalent store info so we can decide whether to try 3860 // dead store elimination. 3861 SmallVector<ValueDFS, 8> PossibleDeadStores; 3862 SmallPtrSet<Instruction *, 8> ProbablyDead; 3863 if (CC->isDead() || CC->empty()) 3864 continue; 3865 // Everything still in the TOP class is unreachable or dead. 3866 if (CC == TOPClass) { 3867 for (auto M : *CC) { 3868 auto *VTE = ValueToExpression.lookup(M); 3869 if (VTE && isa<DeadExpression>(VTE)) 3870 markInstructionForDeletion(cast<Instruction>(M)); 3871 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) || 3872 InstructionsToErase.count(cast<Instruction>(M))) && 3873 "Everything in TOP should be unreachable or dead at this " 3874 "point"); 3875 } 3876 continue; 3877 } 3878 3879 assert(CC->getLeader() && "We should have had a leader"); 3880 // If this is a leader that is always available, and it's a 3881 // constant or has no equivalences, just replace everything with 3882 // it. We then update the congruence class with whatever members 3883 // are left. 3884 Value *Leader = 3885 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 3886 if (alwaysAvailable(Leader)) { 3887 CongruenceClass::MemberSet MembersLeft; 3888 for (auto M : *CC) { 3889 Value *Member = M; 3890 // Void things have no uses we can replace. 3891 if (Member == Leader || !isa<Instruction>(Member) || 3892 Member->getType()->isVoidTy()) { 3893 MembersLeft.insert(Member); 3894 continue; 3895 } 3896 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " 3897 << *Member << "\n"); 3898 auto *I = cast<Instruction>(Member); 3899 assert(Leader != I && "About to accidentally remove our leader"); 3900 replaceInstruction(I, Leader); 3901 AnythingReplaced = true; 3902 } 3903 CC->swap(MembersLeft); 3904 } else { 3905 // If this is a singleton, we can skip it. 3906 if (CC->size() != 1 || RealToTemp.count(Leader)) { 3907 // This is a stack because equality replacement/etc may place 3908 // constants in the middle of the member list, and we want to use 3909 // those constant values in preference to the current leader, over 3910 // the scope of those constants. 3911 ValueDFSStack EliminationStack; 3912 3913 // Convert the members to DFS ordered sets and then merge them. 3914 SmallVector<ValueDFS, 8> DFSOrderedSet; 3915 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead); 3916 3917 // Sort the whole thing. 3918 llvm::sort(DFSOrderedSet); 3919 for (auto &VD : DFSOrderedSet) { 3920 int MemberDFSIn = VD.DFSIn; 3921 int MemberDFSOut = VD.DFSOut; 3922 Value *Def = VD.Def.getPointer(); 3923 bool FromStore = VD.Def.getInt(); 3924 Use *U = VD.U; 3925 // We ignore void things because we can't get a value from them. 3926 if (Def && Def->getType()->isVoidTy()) 3927 continue; 3928 auto *DefInst = dyn_cast_or_null<Instruction>(Def); 3929 if (DefInst && AllTempInstructions.count(DefInst)) { 3930 auto *PN = cast<PHINode>(DefInst); 3931 3932 // If this is a value phi and that's the expression we used, insert 3933 // it into the program 3934 // remove from temp instruction list. 3935 AllTempInstructions.erase(PN); 3936 auto *DefBlock = getBlockForValue(Def); 3937 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def 3938 << " into block " 3939 << getBlockName(getBlockForValue(Def)) << "\n"); 3940 PN->insertBefore(&DefBlock->front()); 3941 Def = PN; 3942 NumGVNPHIOfOpsEliminations++; 3943 } 3944 3945 if (EliminationStack.empty()) { 3946 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n"); 3947 } else { 3948 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are (" 3949 << EliminationStack.dfs_back().first << "," 3950 << EliminationStack.dfs_back().second << ")\n"); 3951 } 3952 3953 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << "," 3954 << MemberDFSOut << ")\n"); 3955 // First, we see if we are out of scope or empty. If so, 3956 // and there equivalences, we try to replace the top of 3957 // stack with equivalences (if it's on the stack, it must 3958 // not have been eliminated yet). 3959 // Then we synchronize to our current scope, by 3960 // popping until we are back within a DFS scope that 3961 // dominates the current member. 3962 // Then, what happens depends on a few factors 3963 // If the stack is now empty, we need to push 3964 // If we have a constant or a local equivalence we want to 3965 // start using, we also push. 3966 // Otherwise, we walk along, processing members who are 3967 // dominated by this scope, and eliminate them. 3968 bool ShouldPush = Def && EliminationStack.empty(); 3969 bool OutOfScope = 3970 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut); 3971 3972 if (OutOfScope || ShouldPush) { 3973 // Sync to our current scope. 3974 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 3975 bool ShouldPush = Def && EliminationStack.empty(); 3976 if (ShouldPush) { 3977 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut); 3978 } 3979 } 3980 3981 // Skip the Def's, we only want to eliminate on their uses. But mark 3982 // dominated defs as dead. 3983 if (Def) { 3984 // For anything in this case, what and how we value number 3985 // guarantees that any side-effets that would have occurred (ie 3986 // throwing, etc) can be proven to either still occur (because it's 3987 // dominated by something that has the same side-effects), or never 3988 // occur. Otherwise, we would not have been able to prove it value 3989 // equivalent to something else. For these things, we can just mark 3990 // it all dead. Note that this is different from the "ProbablyDead" 3991 // set, which may not be dominated by anything, and thus, are only 3992 // easy to prove dead if they are also side-effect free. Note that 3993 // because stores are put in terms of the stored value, we skip 3994 // stored values here. If the stored value is really dead, it will 3995 // still be marked for deletion when we process it in its own class. 3996 if (!EliminationStack.empty() && Def != EliminationStack.back() && 3997 isa<Instruction>(Def) && !FromStore) 3998 markInstructionForDeletion(cast<Instruction>(Def)); 3999 continue; 4000 } 4001 // At this point, we know it is a Use we are trying to possibly 4002 // replace. 4003 4004 assert(isa<Instruction>(U->get()) && 4005 "Current def should have been an instruction"); 4006 assert(isa<Instruction>(U->getUser()) && 4007 "Current user should have been an instruction"); 4008 4009 // If the thing we are replacing into is already marked to be dead, 4010 // this use is dead. Note that this is true regardless of whether 4011 // we have anything dominating the use or not. We do this here 4012 // because we are already walking all the uses anyway. 4013 Instruction *InstUse = cast<Instruction>(U->getUser()); 4014 if (InstructionsToErase.count(InstUse)) { 4015 auto &UseCount = UseCounts[U->get()]; 4016 if (--UseCount == 0) { 4017 ProbablyDead.insert(cast<Instruction>(U->get())); 4018 } 4019 } 4020 4021 // If we get to this point, and the stack is empty we must have a use 4022 // with nothing we can use to eliminate this use, so just skip it. 4023 if (EliminationStack.empty()) 4024 continue; 4025 4026 Value *DominatingLeader = EliminationStack.back(); 4027 4028 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader); 4029 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy; 4030 if (isSSACopy) 4031 DominatingLeader = II->getOperand(0); 4032 4033 // Don't replace our existing users with ourselves. 4034 if (U->get() == DominatingLeader) 4035 continue; 4036 LLVM_DEBUG(dbgs() 4037 << "Found replacement " << *DominatingLeader << " for " 4038 << *U->get() << " in " << *(U->getUser()) << "\n"); 4039 4040 // If we replaced something in an instruction, handle the patching of 4041 // metadata. Skip this if we are replacing predicateinfo with its 4042 // original operand, as we already know we can just drop it. 4043 auto *ReplacedInst = cast<Instruction>(U->get()); 4044 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst); 4045 if (!PI || DominatingLeader != PI->OriginalOp) 4046 patchReplacementInstruction(ReplacedInst, DominatingLeader); 4047 U->set(DominatingLeader); 4048 // This is now a use of the dominating leader, which means if the 4049 // dominating leader was dead, it's now live! 4050 auto &LeaderUseCount = UseCounts[DominatingLeader]; 4051 // It's about to be alive again. 4052 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader)) 4053 ProbablyDead.erase(cast<Instruction>(DominatingLeader)); 4054 // For copy instructions, we use their operand as a leader, 4055 // which means we remove a user of the copy and it may become dead. 4056 if (isSSACopy) { 4057 unsigned &IIUseCount = UseCounts[II]; 4058 if (--IIUseCount == 0) 4059 ProbablyDead.insert(II); 4060 } 4061 ++LeaderUseCount; 4062 AnythingReplaced = true; 4063 } 4064 } 4065 } 4066 4067 // At this point, anything still in the ProbablyDead set is actually dead if 4068 // would be trivially dead. 4069 for (auto *I : ProbablyDead) 4070 if (wouldInstructionBeTriviallyDead(I)) 4071 markInstructionForDeletion(I); 4072 4073 // Cleanup the congruence class. 4074 CongruenceClass::MemberSet MembersLeft; 4075 for (auto *Member : *CC) 4076 if (!isa<Instruction>(Member) || 4077 !InstructionsToErase.count(cast<Instruction>(Member))) 4078 MembersLeft.insert(Member); 4079 CC->swap(MembersLeft); 4080 4081 // If we have possible dead stores to look at, try to eliminate them. 4082 if (CC->getStoreCount() > 0) { 4083 convertClassToLoadsAndStores(*CC, PossibleDeadStores); 4084 llvm::sort(PossibleDeadStores); 4085 ValueDFSStack EliminationStack; 4086 for (auto &VD : PossibleDeadStores) { 4087 int MemberDFSIn = VD.DFSIn; 4088 int MemberDFSOut = VD.DFSOut; 4089 Instruction *Member = cast<Instruction>(VD.Def.getPointer()); 4090 if (EliminationStack.empty() || 4091 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) { 4092 // Sync to our current scope. 4093 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4094 if (EliminationStack.empty()) { 4095 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut); 4096 continue; 4097 } 4098 } 4099 // We already did load elimination, so nothing to do here. 4100 if (isa<LoadInst>(Member)) 4101 continue; 4102 assert(!EliminationStack.empty()); 4103 Instruction *Leader = cast<Instruction>(EliminationStack.back()); 4104 (void)Leader; 4105 assert(DT->dominates(Leader->getParent(), Member->getParent())); 4106 // Member is dominater by Leader, and thus dead 4107 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member 4108 << " that is dominated by " << *Leader << "\n"); 4109 markInstructionForDeletion(Member); 4110 CC->erase(Member); 4111 ++NumGVNDeadStores; 4112 } 4113 } 4114 } 4115 return AnythingReplaced; 4116 } 4117 4118 // This function provides global ranking of operations so that we can place them 4119 // in a canonical order. Note that rank alone is not necessarily enough for a 4120 // complete ordering, as constants all have the same rank. However, generally, 4121 // we will simplify an operation with all constants so that it doesn't matter 4122 // what order they appear in. 4123 unsigned int NewGVN::getRank(const Value *V) const { 4124 // Prefer constants to undef to anything else 4125 // Undef is a constant, have to check it first. 4126 // Prefer smaller constants to constantexprs 4127 if (isa<ConstantExpr>(V)) 4128 return 2; 4129 if (isa<UndefValue>(V)) 4130 return 1; 4131 if (isa<Constant>(V)) 4132 return 0; 4133 else if (auto *A = dyn_cast<Argument>(V)) 4134 return 3 + A->getArgNo(); 4135 4136 // Need to shift the instruction DFS by number of arguments + 3 to account for 4137 // the constant and argument ranking above. 4138 unsigned Result = InstrToDFSNum(V); 4139 if (Result > 0) 4140 return 4 + NumFuncArgs + Result; 4141 // Unreachable or something else, just return a really large number. 4142 return ~0; 4143 } 4144 4145 // This is a function that says whether two commutative operations should 4146 // have their order swapped when canonicalizing. 4147 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const { 4148 // Because we only care about a total ordering, and don't rewrite expressions 4149 // in this order, we order by rank, which will give a strict weak ordering to 4150 // everything but constants, and then we order by pointer address. 4151 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B); 4152 } 4153 4154 namespace { 4155 4156 class NewGVNLegacyPass : public FunctionPass { 4157 public: 4158 // Pass identification, replacement for typeid. 4159 static char ID; 4160 4161 NewGVNLegacyPass() : FunctionPass(ID) { 4162 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 4163 } 4164 4165 bool runOnFunction(Function &F) override; 4166 4167 private: 4168 void getAnalysisUsage(AnalysisUsage &AU) const override { 4169 AU.addRequired<AssumptionCacheTracker>(); 4170 AU.addRequired<DominatorTreeWrapperPass>(); 4171 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4172 AU.addRequired<MemorySSAWrapperPass>(); 4173 AU.addRequired<AAResultsWrapperPass>(); 4174 AU.addPreserved<DominatorTreeWrapperPass>(); 4175 AU.addPreserved<GlobalsAAWrapperPass>(); 4176 } 4177 }; 4178 4179 } // end anonymous namespace 4180 4181 bool NewGVNLegacyPass::runOnFunction(Function &F) { 4182 if (skipFunction(F)) 4183 return false; 4184 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4185 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 4186 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 4187 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 4188 &getAnalysis<MemorySSAWrapperPass>().getMSSA(), 4189 F.getParent()->getDataLayout()) 4190 .runGVN(); 4191 } 4192 4193 char NewGVNLegacyPass::ID = 0; 4194 4195 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering", 4196 false, false) 4197 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4198 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 4199 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4200 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4201 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4202 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4203 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false, 4204 false) 4205 4206 // createGVNPass - The public interface to this file. 4207 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); } 4208 4209 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) { 4210 // Apparently the order in which we get these results matter for 4211 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep 4212 // the same order here, just in case. 4213 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4214 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4215 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4216 auto &AA = AM.getResult<AAManager>(F); 4217 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 4218 bool Changed = 4219 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout()) 4220 .runGVN(); 4221 if (!Changed) 4222 return PreservedAnalyses::all(); 4223 PreservedAnalyses PA; 4224 PA.preserve<DominatorTreeAnalysis>(); 4225 return PA; 4226 } 4227