xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/NewGVN.cpp (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block.  This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number).  Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly.  In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes.  The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen.  The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm.  All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/InitializePasses.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
110 #include "llvm/Transforms/Utils/Local.h"
111 #include "llvm/Transforms/Utils/PredicateInfo.h"
112 #include "llvm/Transforms/Utils/VNCoercion.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstdint>
116 #include <iterator>
117 #include <map>
118 #include <memory>
119 #include <set>
120 #include <string>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 using namespace llvm::GVNExpression;
127 using namespace llvm::VNCoercion;
128 using namespace llvm::PatternMatch;
129 
130 #define DEBUG_TYPE "newgvn"
131 
132 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
133 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
134 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
135 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
136 STATISTIC(NumGVNMaxIterations,
137           "Maximum Number of iterations it took to converge GVN");
138 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
139 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
140 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
141           "Number of avoided sorted leader changes");
142 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
143 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
144 STATISTIC(NumGVNPHIOfOpsEliminations,
145           "Number of things eliminated using PHI of ops");
146 DEBUG_COUNTER(VNCounter, "newgvn-vn",
147               "Controls which instructions are value numbered");
148 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
149               "Controls which instructions we create phi of ops for");
150 // Currently store defining access refinement is too slow due to basicaa being
151 // egregiously slow.  This flag lets us keep it working while we work on this
152 // issue.
153 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
154                                            cl::init(false), cl::Hidden);
155 
156 /// Currently, the generation "phi of ops" can result in correctness issues.
157 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
158                                     cl::Hidden);
159 
160 //===----------------------------------------------------------------------===//
161 //                                GVN Pass
162 //===----------------------------------------------------------------------===//
163 
164 // Anchor methods.
165 namespace llvm {
166 namespace GVNExpression {
167 
168 Expression::~Expression() = default;
169 BasicExpression::~BasicExpression() = default;
170 CallExpression::~CallExpression() = default;
171 LoadExpression::~LoadExpression() = default;
172 StoreExpression::~StoreExpression() = default;
173 AggregateValueExpression::~AggregateValueExpression() = default;
174 PHIExpression::~PHIExpression() = default;
175 
176 } // end namespace GVNExpression
177 } // end namespace llvm
178 
179 namespace {
180 
181 // Tarjan's SCC finding algorithm with Nuutila's improvements
182 // SCCIterator is actually fairly complex for the simple thing we want.
183 // It also wants to hand us SCC's that are unrelated to the phi node we ask
184 // about, and have us process them there or risk redoing work.
185 // Graph traits over a filter iterator also doesn't work that well here.
186 // This SCC finder is specialized to walk use-def chains, and only follows
187 // instructions,
188 // not generic values (arguments, etc).
189 struct TarjanSCC {
190   TarjanSCC() : Components(1) {}
191 
192   void Start(const Instruction *Start) {
193     if (Root.lookup(Start) == 0)
194       FindSCC(Start);
195   }
196 
197   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
198     unsigned ComponentID = ValueToComponent.lookup(V);
199 
200     assert(ComponentID > 0 &&
201            "Asking for a component for a value we never processed");
202     return Components[ComponentID];
203   }
204 
205 private:
206   void FindSCC(const Instruction *I) {
207     Root[I] = ++DFSNum;
208     // Store the DFS Number we had before it possibly gets incremented.
209     unsigned int OurDFS = DFSNum;
210     for (const auto &Op : I->operands()) {
211       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
212         if (Root.lookup(Op) == 0)
213           FindSCC(InstOp);
214         if (!InComponent.count(Op))
215           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
216       }
217     }
218     // See if we really were the root of a component, by seeing if we still have
219     // our DFSNumber.  If we do, we are the root of the component, and we have
220     // completed a component. If we do not, we are not the root of a component,
221     // and belong on the component stack.
222     if (Root.lookup(I) == OurDFS) {
223       unsigned ComponentID = Components.size();
224       Components.resize(Components.size() + 1);
225       auto &Component = Components.back();
226       Component.insert(I);
227       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
228       InComponent.insert(I);
229       ValueToComponent[I] = ComponentID;
230       // Pop a component off the stack and label it.
231       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
232         auto *Member = Stack.back();
233         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
234         Component.insert(Member);
235         InComponent.insert(Member);
236         ValueToComponent[Member] = ComponentID;
237         Stack.pop_back();
238       }
239     } else {
240       // Part of a component, push to stack
241       Stack.push_back(I);
242     }
243   }
244 
245   unsigned int DFSNum = 1;
246   SmallPtrSet<const Value *, 8> InComponent;
247   DenseMap<const Value *, unsigned int> Root;
248   SmallVector<const Value *, 8> Stack;
249 
250   // Store the components as vector of ptr sets, because we need the topo order
251   // of SCC's, but not individual member order
252   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
253 
254   DenseMap<const Value *, unsigned> ValueToComponent;
255 };
256 
257 // Congruence classes represent the set of expressions/instructions
258 // that are all the same *during some scope in the function*.
259 // That is, because of the way we perform equality propagation, and
260 // because of memory value numbering, it is not correct to assume
261 // you can willy-nilly replace any member with any other at any
262 // point in the function.
263 //
264 // For any Value in the Member set, it is valid to replace any dominated member
265 // with that Value.
266 //
267 // Every congruence class has a leader, and the leader is used to symbolize
268 // instructions in a canonical way (IE every operand of an instruction that is a
269 // member of the same congruence class will always be replaced with leader
270 // during symbolization).  To simplify symbolization, we keep the leader as a
271 // constant if class can be proved to be a constant value.  Otherwise, the
272 // leader is the member of the value set with the smallest DFS number.  Each
273 // congruence class also has a defining expression, though the expression may be
274 // null.  If it exists, it can be used for forward propagation and reassociation
275 // of values.
276 
277 // For memory, we also track a representative MemoryAccess, and a set of memory
278 // members for MemoryPhis (which have no real instructions). Note that for
279 // memory, it seems tempting to try to split the memory members into a
280 // MemoryCongruenceClass or something.  Unfortunately, this does not work
281 // easily.  The value numbering of a given memory expression depends on the
282 // leader of the memory congruence class, and the leader of memory congruence
283 // class depends on the value numbering of a given memory expression.  This
284 // leads to wasted propagation, and in some cases, missed optimization.  For
285 // example: If we had value numbered two stores together before, but now do not,
286 // we move them to a new value congruence class.  This in turn will move at one
287 // of the memorydefs to a new memory congruence class.  Which in turn, affects
288 // the value numbering of the stores we just value numbered (because the memory
289 // congruence class is part of the value number).  So while theoretically
290 // possible to split them up, it turns out to be *incredibly* complicated to get
291 // it to work right, because of the interdependency.  While structurally
292 // slightly messier, it is algorithmically much simpler and faster to do what we
293 // do here, and track them both at once in the same class.
294 // Note: The default iterators for this class iterate over values
295 class CongruenceClass {
296 public:
297   using MemberType = Value;
298   using MemberSet = SmallPtrSet<MemberType *, 4>;
299   using MemoryMemberType = MemoryPhi;
300   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
301 
302   explicit CongruenceClass(unsigned ID) : ID(ID) {}
303   CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
304       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
305 
306   unsigned getID() const { return ID; }
307 
308   // True if this class has no members left.  This is mainly used for assertion
309   // purposes, and for skipping empty classes.
310   bool isDead() const {
311     // If it's both dead from a value perspective, and dead from a memory
312     // perspective, it's really dead.
313     return empty() && memory_empty();
314   }
315 
316   // Leader functions
317   Value *getLeader() const { return RepLeader; }
318   void setLeader(Value *Leader) { RepLeader = Leader; }
319   const std::pair<Value *, unsigned int> &getNextLeader() const {
320     return NextLeader;
321   }
322   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
323   void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
324     if (LeaderPair.second < NextLeader.second)
325       NextLeader = LeaderPair;
326   }
327 
328   Value *getStoredValue() const { return RepStoredValue; }
329   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
330   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
331   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
332 
333   // Forward propagation info
334   const Expression *getDefiningExpr() const { return DefiningExpr; }
335 
336   // Value member set
337   bool empty() const { return Members.empty(); }
338   unsigned size() const { return Members.size(); }
339   MemberSet::const_iterator begin() const { return Members.begin(); }
340   MemberSet::const_iterator end() const { return Members.end(); }
341   void insert(MemberType *M) { Members.insert(M); }
342   void erase(MemberType *M) { Members.erase(M); }
343   void swap(MemberSet &Other) { Members.swap(Other); }
344 
345   // Memory member set
346   bool memory_empty() const { return MemoryMembers.empty(); }
347   unsigned memory_size() const { return MemoryMembers.size(); }
348   MemoryMemberSet::const_iterator memory_begin() const {
349     return MemoryMembers.begin();
350   }
351   MemoryMemberSet::const_iterator memory_end() const {
352     return MemoryMembers.end();
353   }
354   iterator_range<MemoryMemberSet::const_iterator> memory() const {
355     return make_range(memory_begin(), memory_end());
356   }
357 
358   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
359   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
360 
361   // Store count
362   unsigned getStoreCount() const { return StoreCount; }
363   void incStoreCount() { ++StoreCount; }
364   void decStoreCount() {
365     assert(StoreCount != 0 && "Store count went negative");
366     --StoreCount;
367   }
368 
369   // True if this class has no memory members.
370   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
371 
372   // Return true if two congruence classes are equivalent to each other. This
373   // means that every field but the ID number and the dead field are equivalent.
374   bool isEquivalentTo(const CongruenceClass *Other) const {
375     if (!Other)
376       return false;
377     if (this == Other)
378       return true;
379 
380     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
381         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
382                  Other->RepMemoryAccess))
383       return false;
384     if (DefiningExpr != Other->DefiningExpr)
385       if (!DefiningExpr || !Other->DefiningExpr ||
386           *DefiningExpr != *Other->DefiningExpr)
387         return false;
388 
389     if (Members.size() != Other->Members.size())
390       return false;
391 
392     return llvm::set_is_subset(Members, Other->Members);
393   }
394 
395 private:
396   unsigned ID;
397 
398   // Representative leader.
399   Value *RepLeader = nullptr;
400 
401   // The most dominating leader after our current leader, because the member set
402   // is not sorted and is expensive to keep sorted all the time.
403   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
404 
405   // If this is represented by a store, the value of the store.
406   Value *RepStoredValue = nullptr;
407 
408   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
409   // access.
410   const MemoryAccess *RepMemoryAccess = nullptr;
411 
412   // Defining Expression.
413   const Expression *DefiningExpr = nullptr;
414 
415   // Actual members of this class.
416   MemberSet Members;
417 
418   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
419   // MemoryUses have real instructions representing them, so we only need to
420   // track MemoryPhis here.
421   MemoryMemberSet MemoryMembers;
422 
423   // Number of stores in this congruence class.
424   // This is used so we can detect store equivalence changes properly.
425   int StoreCount = 0;
426 };
427 
428 } // end anonymous namespace
429 
430 namespace llvm {
431 
432 struct ExactEqualsExpression {
433   const Expression &E;
434 
435   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
436 
437   hash_code getComputedHash() const { return E.getComputedHash(); }
438 
439   bool operator==(const Expression &Other) const {
440     return E.exactlyEquals(Other);
441   }
442 };
443 
444 template <> struct DenseMapInfo<const Expression *> {
445   static const Expression *getEmptyKey() {
446     auto Val = static_cast<uintptr_t>(-1);
447     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
448     return reinterpret_cast<const Expression *>(Val);
449   }
450 
451   static const Expression *getTombstoneKey() {
452     auto Val = static_cast<uintptr_t>(~1U);
453     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
454     return reinterpret_cast<const Expression *>(Val);
455   }
456 
457   static unsigned getHashValue(const Expression *E) {
458     return E->getComputedHash();
459   }
460 
461   static unsigned getHashValue(const ExactEqualsExpression &E) {
462     return E.getComputedHash();
463   }
464 
465   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
466     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
467       return false;
468     return LHS == *RHS;
469   }
470 
471   static bool isEqual(const Expression *LHS, const Expression *RHS) {
472     if (LHS == RHS)
473       return true;
474     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
475         LHS == getEmptyKey() || RHS == getEmptyKey())
476       return false;
477     // Compare hashes before equality.  This is *not* what the hashtable does,
478     // since it is computing it modulo the number of buckets, whereas we are
479     // using the full hash keyspace.  Since the hashes are precomputed, this
480     // check is *much* faster than equality.
481     if (LHS->getComputedHash() != RHS->getComputedHash())
482       return false;
483     return *LHS == *RHS;
484   }
485 };
486 
487 } // end namespace llvm
488 
489 namespace {
490 
491 class NewGVN {
492   Function &F;
493   DominatorTree *DT = nullptr;
494   const TargetLibraryInfo *TLI = nullptr;
495   AliasAnalysis *AA = nullptr;
496   MemorySSA *MSSA = nullptr;
497   MemorySSAWalker *MSSAWalker = nullptr;
498   AssumptionCache *AC = nullptr;
499   const DataLayout &DL;
500   std::unique_ptr<PredicateInfo> PredInfo;
501 
502   // These are the only two things the create* functions should have
503   // side-effects on due to allocating memory.
504   mutable BumpPtrAllocator ExpressionAllocator;
505   mutable ArrayRecycler<Value *> ArgRecycler;
506   mutable TarjanSCC SCCFinder;
507   const SimplifyQuery SQ;
508 
509   // Number of function arguments, used by ranking
510   unsigned int NumFuncArgs = 0;
511 
512   // RPOOrdering of basic blocks
513   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
514 
515   // Congruence class info.
516 
517   // This class is called INITIAL in the paper. It is the class everything
518   // startsout in, and represents any value. Being an optimistic analysis,
519   // anything in the TOP class has the value TOP, which is indeterminate and
520   // equivalent to everything.
521   CongruenceClass *TOPClass = nullptr;
522   std::vector<CongruenceClass *> CongruenceClasses;
523   unsigned NextCongruenceNum = 0;
524 
525   // Value Mappings.
526   DenseMap<Value *, CongruenceClass *> ValueToClass;
527   DenseMap<Value *, const Expression *> ValueToExpression;
528 
529   // Value PHI handling, used to make equivalence between phi(op, op) and
530   // op(phi, phi).
531   // These mappings just store various data that would normally be part of the
532   // IR.
533   SmallPtrSet<const Instruction *, 8> PHINodeUses;
534 
535   DenseMap<const Value *, bool> OpSafeForPHIOfOps;
536 
537   // Map a temporary instruction we created to a parent block.
538   DenseMap<const Value *, BasicBlock *> TempToBlock;
539 
540   // Map between the already in-program instructions and the temporary phis we
541   // created that they are known equivalent to.
542   DenseMap<const Value *, PHINode *> RealToTemp;
543 
544   // In order to know when we should re-process instructions that have
545   // phi-of-ops, we track the set of expressions that they needed as
546   // leaders. When we discover new leaders for those expressions, we process the
547   // associated phi-of-op instructions again in case they have changed.  The
548   // other way they may change is if they had leaders, and those leaders
549   // disappear.  However, at the point they have leaders, there are uses of the
550   // relevant operands in the created phi node, and so they will get reprocessed
551   // through the normal user marking we perform.
552   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
553   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
554       ExpressionToPhiOfOps;
555 
556   // Map from temporary operation to MemoryAccess.
557   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
558 
559   // Set of all temporary instructions we created.
560   // Note: This will include instructions that were just created during value
561   // numbering.  The way to test if something is using them is to check
562   // RealToTemp.
563   DenseSet<Instruction *> AllTempInstructions;
564 
565   // This is the set of instructions to revisit on a reachability change.  At
566   // the end of the main iteration loop it will contain at least all the phi of
567   // ops instructions that will be changed to phis, as well as regular phis.
568   // During the iteration loop, it may contain other things, such as phi of ops
569   // instructions that used edge reachability to reach a result, and so need to
570   // be revisited when the edge changes, independent of whether the phi they
571   // depended on changes.
572   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
573 
574   // Mapping from predicate info we used to the instructions we used it with.
575   // In order to correctly ensure propagation, we must keep track of what
576   // comparisons we used, so that when the values of the comparisons change, we
577   // propagate the information to the places we used the comparison.
578   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
579       PredicateToUsers;
580 
581   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
582   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
583   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
584       MemoryToUsers;
585 
586   // A table storing which memorydefs/phis represent a memory state provably
587   // equivalent to another memory state.
588   // We could use the congruence class machinery, but the MemoryAccess's are
589   // abstract memory states, so they can only ever be equivalent to each other,
590   // and not to constants, etc.
591   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
592 
593   // We could, if we wanted, build MemoryPhiExpressions and
594   // MemoryVariableExpressions, etc, and value number them the same way we value
595   // number phi expressions.  For the moment, this seems like overkill.  They
596   // can only exist in one of three states: they can be TOP (equal to
597   // everything), Equivalent to something else, or unique.  Because we do not
598   // create expressions for them, we need to simulate leader change not just
599   // when they change class, but when they change state.  Note: We can do the
600   // same thing for phis, and avoid having phi expressions if we wanted, We
601   // should eventually unify in one direction or the other, so this is a little
602   // bit of an experiment in which turns out easier to maintain.
603   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
604   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
605 
606   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
607   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
608 
609   // Expression to class mapping.
610   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
611   ExpressionClassMap ExpressionToClass;
612 
613   // We have a single expression that represents currently DeadExpressions.
614   // For dead expressions we can prove will stay dead, we mark them with
615   // DFS number zero.  However, it's possible in the case of phi nodes
616   // for us to assume/prove all arguments are dead during fixpointing.
617   // We use DeadExpression for that case.
618   DeadExpression *SingletonDeadExpression = nullptr;
619 
620   // Which values have changed as a result of leader changes.
621   SmallPtrSet<Value *, 8> LeaderChanges;
622 
623   // Reachability info.
624   using BlockEdge = BasicBlockEdge;
625   DenseSet<BlockEdge> ReachableEdges;
626   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
627 
628   // This is a bitvector because, on larger functions, we may have
629   // thousands of touched instructions at once (entire blocks,
630   // instructions with hundreds of uses, etc).  Even with optimization
631   // for when we mark whole blocks as touched, when this was a
632   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
633   // the time in GVN just managing this list.  The bitvector, on the
634   // other hand, efficiently supports test/set/clear of both
635   // individual and ranges, as well as "find next element" This
636   // enables us to use it as a worklist with essentially 0 cost.
637   BitVector TouchedInstructions;
638 
639   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
640   mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred;
641 
642 #ifndef NDEBUG
643   // Debugging for how many times each block and instruction got processed.
644   DenseMap<const Value *, unsigned> ProcessedCount;
645 #endif
646 
647   // DFS info.
648   // This contains a mapping from Instructions to DFS numbers.
649   // The numbering starts at 1. An instruction with DFS number zero
650   // means that the instruction is dead.
651   DenseMap<const Value *, unsigned> InstrDFS;
652 
653   // This contains the mapping DFS numbers to instructions.
654   SmallVector<Value *, 32> DFSToInstr;
655 
656   // Deletion info.
657   SmallPtrSet<Instruction *, 8> InstructionsToErase;
658 
659 public:
660   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
661          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
662          const DataLayout &DL)
663       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
664         PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
665         SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
666            /*CanUseUndef=*/false) {}
667 
668   bool runGVN();
669 
670 private:
671   /// Helper struct return a Expression with an optional extra dependency.
672   struct ExprResult {
673     const Expression *Expr;
674     Value *ExtraDep;
675     const PredicateBase *PredDep;
676 
677     ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
678                const PredicateBase *PredDep = nullptr)
679         : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
680     ExprResult(const ExprResult &) = delete;
681     ExprResult(ExprResult &&Other)
682         : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
683       Other.Expr = nullptr;
684       Other.ExtraDep = nullptr;
685       Other.PredDep = nullptr;
686     }
687     ExprResult &operator=(const ExprResult &Other) = delete;
688     ExprResult &operator=(ExprResult &&Other) = delete;
689 
690     ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
691 
692     operator bool() const { return Expr; }
693 
694     static ExprResult none() { return {nullptr, nullptr, nullptr}; }
695     static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
696       return {Expr, ExtraDep, nullptr};
697     }
698     static ExprResult some(const Expression *Expr,
699                            const PredicateBase *PredDep) {
700       return {Expr, nullptr, PredDep};
701     }
702     static ExprResult some(const Expression *Expr, Value *ExtraDep,
703                            const PredicateBase *PredDep) {
704       return {Expr, ExtraDep, PredDep};
705     }
706   };
707 
708   // Expression handling.
709   ExprResult createExpression(Instruction *) const;
710   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
711                                            Instruction *) const;
712 
713   // Our canonical form for phi arguments is a pair of incoming value, incoming
714   // basic block.
715   using ValPair = std::pair<Value *, BasicBlock *>;
716 
717   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
718                                      BasicBlock *, bool &HasBackEdge,
719                                      bool &OriginalOpsConstant) const;
720   const DeadExpression *createDeadExpression() const;
721   const VariableExpression *createVariableExpression(Value *) const;
722   const ConstantExpression *createConstantExpression(Constant *) const;
723   const Expression *createVariableOrConstant(Value *V) const;
724   const UnknownExpression *createUnknownExpression(Instruction *) const;
725   const StoreExpression *createStoreExpression(StoreInst *,
726                                                const MemoryAccess *) const;
727   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
728                                        const MemoryAccess *) const;
729   const CallExpression *createCallExpression(CallInst *,
730                                              const MemoryAccess *) const;
731   const AggregateValueExpression *
732   createAggregateValueExpression(Instruction *) const;
733   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
734 
735   // Congruence class handling.
736   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
737     auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
738     CongruenceClasses.emplace_back(result);
739     return result;
740   }
741 
742   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
743     auto *CC = createCongruenceClass(nullptr, nullptr);
744     CC->setMemoryLeader(MA);
745     return CC;
746   }
747 
748   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
749     auto *CC = getMemoryClass(MA);
750     if (CC->getMemoryLeader() != MA)
751       CC = createMemoryClass(MA);
752     return CC;
753   }
754 
755   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
756     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
757     CClass->insert(Member);
758     ValueToClass[Member] = CClass;
759     return CClass;
760   }
761 
762   void initializeCongruenceClasses(Function &F);
763   const Expression *makePossiblePHIOfOps(Instruction *,
764                                          SmallPtrSetImpl<Value *> &);
765   Value *findLeaderForInst(Instruction *ValueOp,
766                            SmallPtrSetImpl<Value *> &Visited,
767                            MemoryAccess *MemAccess, Instruction *OrigInst,
768                            BasicBlock *PredBB);
769   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
770                            SmallPtrSetImpl<const Value *> &);
771   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
772   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
773 
774   // Value number an Instruction or MemoryPhi.
775   void valueNumberMemoryPhi(MemoryPhi *);
776   void valueNumberInstruction(Instruction *);
777 
778   // Symbolic evaluation.
779   ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
780   ExprResult performSymbolicEvaluation(Value *,
781                                        SmallPtrSetImpl<Value *> &) const;
782   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
783                                                 Instruction *,
784                                                 MemoryAccess *) const;
785   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
786   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
787   ExprResult performSymbolicCallEvaluation(Instruction *) const;
788   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
789   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
790                                                  Instruction *I,
791                                                  BasicBlock *PHIBlock) const;
792   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
793   ExprResult performSymbolicCmpEvaluation(Instruction *) const;
794   ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const;
795 
796   // Congruence finding.
797   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
798   Value *lookupOperandLeader(Value *) const;
799   CongruenceClass *getClassForExpression(const Expression *E) const;
800   void performCongruenceFinding(Instruction *, const Expression *);
801   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
802                                      CongruenceClass *, CongruenceClass *);
803   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
804                                       CongruenceClass *, CongruenceClass *);
805   Value *getNextValueLeader(CongruenceClass *) const;
806   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
807   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
808   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
809   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
810   bool isMemoryAccessTOP(const MemoryAccess *) const;
811 
812   // Ranking
813   unsigned int getRank(const Value *) const;
814   bool shouldSwapOperands(const Value *, const Value *) const;
815   bool shouldSwapOperandsForIntrinsic(const Value *, const Value *,
816                                       const IntrinsicInst *I) const;
817 
818   // Reachability handling.
819   void updateReachableEdge(BasicBlock *, BasicBlock *);
820   void processOutgoingEdges(Instruction *, BasicBlock *);
821   Value *findConditionEquivalence(Value *) const;
822 
823   // Elimination.
824   struct ValueDFS;
825   void convertClassToDFSOrdered(const CongruenceClass &,
826                                 SmallVectorImpl<ValueDFS> &,
827                                 DenseMap<const Value *, unsigned int> &,
828                                 SmallPtrSetImpl<Instruction *> &) const;
829   void convertClassToLoadsAndStores(const CongruenceClass &,
830                                     SmallVectorImpl<ValueDFS> &) const;
831 
832   bool eliminateInstructions(Function &);
833   void replaceInstruction(Instruction *, Value *);
834   void markInstructionForDeletion(Instruction *);
835   void deleteInstructionsInBlock(BasicBlock *);
836   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
837                             const BasicBlock *) const;
838 
839   // Various instruction touch utilities
840   template <typename Map, typename KeyType>
841   void touchAndErase(Map &, const KeyType &);
842   void markUsersTouched(Value *);
843   void markMemoryUsersTouched(const MemoryAccess *);
844   void markMemoryDefTouched(const MemoryAccess *);
845   void markPredicateUsersTouched(Instruction *);
846   void markValueLeaderChangeTouched(CongruenceClass *CC);
847   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
848   void markPhiOfOpsChanged(const Expression *E);
849   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
850   void addAdditionalUsers(Value *To, Value *User) const;
851   void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
852 
853   // Main loop of value numbering
854   void iterateTouchedInstructions();
855 
856   // Utilities.
857   void cleanupTables();
858   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
859   void updateProcessedCount(const Value *V);
860   void verifyMemoryCongruency() const;
861   void verifyIterationSettled(Function &F);
862   void verifyStoreExpressions() const;
863   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
864                               const MemoryAccess *, const MemoryAccess *) const;
865   BasicBlock *getBlockForValue(Value *V) const;
866   void deleteExpression(const Expression *E) const;
867   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
868   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
869   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
870 
871   unsigned InstrToDFSNum(const Value *V) const {
872     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
873     return InstrDFS.lookup(V);
874   }
875 
876   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
877     return MemoryToDFSNum(MA);
878   }
879 
880   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
881 
882   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
883   // This deliberately takes a value so it can be used with Use's, which will
884   // auto-convert to Value's but not to MemoryAccess's.
885   unsigned MemoryToDFSNum(const Value *MA) const {
886     assert(isa<MemoryAccess>(MA) &&
887            "This should not be used with instructions");
888     return isa<MemoryUseOrDef>(MA)
889                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
890                : InstrDFS.lookup(MA);
891   }
892 
893   bool isCycleFree(const Instruction *) const;
894   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
895 
896   // Debug counter info.  When verifying, we have to reset the value numbering
897   // debug counter to the same state it started in to get the same results.
898   int64_t StartingVNCounter = 0;
899 };
900 
901 } // end anonymous namespace
902 
903 template <typename T>
904 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
905   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
906     return false;
907   return LHS.MemoryExpression::equals(RHS);
908 }
909 
910 bool LoadExpression::equals(const Expression &Other) const {
911   return equalsLoadStoreHelper(*this, Other);
912 }
913 
914 bool StoreExpression::equals(const Expression &Other) const {
915   if (!equalsLoadStoreHelper(*this, Other))
916     return false;
917   // Make sure that store vs store includes the value operand.
918   if (const auto *S = dyn_cast<StoreExpression>(&Other))
919     if (getStoredValue() != S->getStoredValue())
920       return false;
921   return true;
922 }
923 
924 // Determine if the edge From->To is a backedge
925 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
926   return From == To ||
927          RPOOrdering.lookup(DT->getNode(From)) >=
928              RPOOrdering.lookup(DT->getNode(To));
929 }
930 
931 #ifndef NDEBUG
932 static std::string getBlockName(const BasicBlock *B) {
933   return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
934 }
935 #endif
936 
937 // Get a MemoryAccess for an instruction, fake or real.
938 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
939   auto *Result = MSSA->getMemoryAccess(I);
940   return Result ? Result : TempToMemory.lookup(I);
941 }
942 
943 // Get a MemoryPhi for a basic block. These are all real.
944 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
945   return MSSA->getMemoryAccess(BB);
946 }
947 
948 // Get the basic block from an instruction/memory value.
949 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
950   if (auto *I = dyn_cast<Instruction>(V)) {
951     auto *Parent = I->getParent();
952     if (Parent)
953       return Parent;
954     Parent = TempToBlock.lookup(V);
955     assert(Parent && "Every fake instruction should have a block");
956     return Parent;
957   }
958 
959   auto *MP = dyn_cast<MemoryPhi>(V);
960   assert(MP && "Should have been an instruction or a MemoryPhi");
961   return MP->getBlock();
962 }
963 
964 // Delete a definitely dead expression, so it can be reused by the expression
965 // allocator.  Some of these are not in creation functions, so we have to accept
966 // const versions.
967 void NewGVN::deleteExpression(const Expression *E) const {
968   assert(isa<BasicExpression>(E));
969   auto *BE = cast<BasicExpression>(E);
970   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
971   ExpressionAllocator.Deallocate(E);
972 }
973 
974 // If V is a predicateinfo copy, get the thing it is a copy of.
975 static Value *getCopyOf(const Value *V) {
976   if (auto *II = dyn_cast<IntrinsicInst>(V))
977     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
978       return II->getOperand(0);
979   return nullptr;
980 }
981 
982 // Return true if V is really PN, even accounting for predicateinfo copies.
983 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
984   return V == PN || getCopyOf(V) == PN;
985 }
986 
987 static bool isCopyOfAPHI(const Value *V) {
988   auto *CO = getCopyOf(V);
989   return CO && isa<PHINode>(CO);
990 }
991 
992 // Sort PHI Operands into a canonical order.  What we use here is an RPO
993 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
994 // blocks.
995 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
996   llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
997     return BlockInstRange.lookup(P1.second).first <
998            BlockInstRange.lookup(P2.second).first;
999   });
1000 }
1001 
1002 // Return true if V is a value that will always be available (IE can
1003 // be placed anywhere) in the function.  We don't do globals here
1004 // because they are often worse to put in place.
1005 static bool alwaysAvailable(Value *V) {
1006   return isa<Constant>(V) || isa<Argument>(V);
1007 }
1008 
1009 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
1010 // the original instruction we are creating a PHIExpression for (but may not be
1011 // a phi node). We require, as an invariant, that all the PHIOperands in the
1012 // same block are sorted the same way. sortPHIOps will sort them into a
1013 // canonical order.
1014 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
1015                                            const Instruction *I,
1016                                            BasicBlock *PHIBlock,
1017                                            bool &HasBackedge,
1018                                            bool &OriginalOpsConstant) const {
1019   unsigned NumOps = PHIOperands.size();
1020   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
1021 
1022   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1023   E->setType(PHIOperands.begin()->first->getType());
1024   E->setOpcode(Instruction::PHI);
1025 
1026   // Filter out unreachable phi operands.
1027   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
1028     auto *BB = P.second;
1029     if (auto *PHIOp = dyn_cast<PHINode>(I))
1030       if (isCopyOfPHI(P.first, PHIOp))
1031         return false;
1032     if (!ReachableEdges.count({BB, PHIBlock}))
1033       return false;
1034     // Things in TOPClass are equivalent to everything.
1035     if (ValueToClass.lookup(P.first) == TOPClass)
1036       return false;
1037     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1038     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1039     return lookupOperandLeader(P.first) != I;
1040   });
1041   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1042                  [&](const ValPair &P) -> Value * {
1043                    return lookupOperandLeader(P.first);
1044                  });
1045   return E;
1046 }
1047 
1048 // Set basic expression info (Arguments, type, opcode) for Expression
1049 // E from Instruction I in block B.
1050 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1051   bool AllConstant = true;
1052   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1053     E->setType(GEP->getSourceElementType());
1054   else
1055     E->setType(I->getType());
1056   E->setOpcode(I->getOpcode());
1057   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1058 
1059   // Transform the operand array into an operand leader array, and keep track of
1060   // whether all members are constant.
1061   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1062     auto Operand = lookupOperandLeader(O);
1063     AllConstant = AllConstant && isa<Constant>(Operand);
1064     return Operand;
1065   });
1066 
1067   return AllConstant;
1068 }
1069 
1070 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1071                                                  Value *Arg1, Value *Arg2,
1072                                                  Instruction *I) const {
1073   auto *E = new (ExpressionAllocator) BasicExpression(2);
1074   // TODO: we need to remove context instruction after Value Tracking
1075   // can run without context instruction
1076   const SimplifyQuery Q = SQ.getWithInstruction(I);
1077 
1078   E->setType(T);
1079   E->setOpcode(Opcode);
1080   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1081   if (Instruction::isCommutative(Opcode)) {
1082     // Ensure that commutative instructions that only differ by a permutation
1083     // of their operands get the same value number by sorting the operand value
1084     // numbers.  Since all commutative instructions have two operands it is more
1085     // efficient to sort by hand rather than using, say, std::sort.
1086     if (shouldSwapOperands(Arg1, Arg2))
1087       std::swap(Arg1, Arg2);
1088   }
1089   E->op_push_back(lookupOperandLeader(Arg1));
1090   E->op_push_back(lookupOperandLeader(Arg2));
1091 
1092   Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q);
1093   if (auto Simplified = checkExprResults(E, I, V)) {
1094     addAdditionalUsers(Simplified, I);
1095     return Simplified.Expr;
1096   }
1097   return E;
1098 }
1099 
1100 // Take a Value returned by simplification of Expression E/Instruction
1101 // I, and see if it resulted in a simpler expression. If so, return
1102 // that expression.
1103 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
1104                                             Value *V) const {
1105   if (!V)
1106     return ExprResult::none();
1107 
1108   if (auto *C = dyn_cast<Constant>(V)) {
1109     if (I)
1110       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1111                         << " constant " << *C << "\n");
1112     NumGVNOpsSimplified++;
1113     assert(isa<BasicExpression>(E) &&
1114            "We should always have had a basic expression here");
1115     deleteExpression(E);
1116     return ExprResult::some(createConstantExpression(C));
1117   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1118     if (I)
1119       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1120                         << " variable " << *V << "\n");
1121     deleteExpression(E);
1122     return ExprResult::some(createVariableExpression(V));
1123   }
1124 
1125   CongruenceClass *CC = ValueToClass.lookup(V);
1126   if (CC) {
1127     if (CC->getLeader() && CC->getLeader() != I) {
1128       return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
1129     }
1130     if (CC->getDefiningExpr()) {
1131       if (I)
1132         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1133                           << " expression " << *CC->getDefiningExpr() << "\n");
1134       NumGVNOpsSimplified++;
1135       deleteExpression(E);
1136       return ExprResult::some(CC->getDefiningExpr(), V);
1137     }
1138   }
1139 
1140   return ExprResult::none();
1141 }
1142 
1143 // Create a value expression from the instruction I, replacing operands with
1144 // their leaders.
1145 
1146 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
1147   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1148   // TODO: we need to remove context instruction after Value Tracking
1149   // can run without context instruction
1150   const SimplifyQuery Q = SQ.getWithInstruction(I);
1151 
1152   bool AllConstant = setBasicExpressionInfo(I, E);
1153 
1154   if (I->isCommutative()) {
1155     // Ensure that commutative instructions that only differ by a permutation
1156     // of their operands get the same value number by sorting the operand value
1157     // numbers.  Since all commutative instructions have two operands it is more
1158     // efficient to sort by hand rather than using, say, std::sort.
1159     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1160     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1161       E->swapOperands(0, 1);
1162   }
1163   // Perform simplification.
1164   if (auto *CI = dyn_cast<CmpInst>(I)) {
1165     // Sort the operand value numbers so x<y and y>x get the same value
1166     // number.
1167     CmpInst::Predicate Predicate = CI->getPredicate();
1168     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1169       E->swapOperands(0, 1);
1170       Predicate = CmpInst::getSwappedPredicate(Predicate);
1171     }
1172     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1173     // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands
1174     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1175            "Wrong types on cmp instruction");
1176     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1177             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1178     Value *V =
1179         simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q);
1180     if (auto Simplified = checkExprResults(E, I, V))
1181       return Simplified;
1182   } else if (isa<SelectInst>(I)) {
1183     if (isa<Constant>(E->getOperand(0)) ||
1184         E->getOperand(1) == E->getOperand(2)) {
1185       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1186              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1187       Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1),
1188                                     E->getOperand(2), Q);
1189       if (auto Simplified = checkExprResults(E, I, V))
1190         return Simplified;
1191     }
1192   } else if (I->isBinaryOp()) {
1193     Value *V =
1194         simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q);
1195     if (auto Simplified = checkExprResults(E, I, V))
1196       return Simplified;
1197   } else if (auto *CI = dyn_cast<CastInst>(I)) {
1198     Value *V =
1199         simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q);
1200     if (auto Simplified = checkExprResults(E, I, V))
1201       return Simplified;
1202   } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1203     Value *V = simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(),
1204                                ArrayRef(std::next(E->op_begin()), E->op_end()),
1205                                GEPI->isInBounds(), Q);
1206     if (auto Simplified = checkExprResults(E, I, V))
1207       return Simplified;
1208   } else if (AllConstant) {
1209     // We don't bother trying to simplify unless all of the operands
1210     // were constant.
1211     // TODO: There are a lot of Simplify*'s we could call here, if we
1212     // wanted to.  The original motivating case for this code was a
1213     // zext i1 false to i8, which we don't have an interface to
1214     // simplify (IE there is no SimplifyZExt).
1215 
1216     SmallVector<Constant *, 8> C;
1217     for (Value *Arg : E->operands())
1218       C.emplace_back(cast<Constant>(Arg));
1219 
1220     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1221       if (auto Simplified = checkExprResults(E, I, V))
1222         return Simplified;
1223   }
1224   return ExprResult::some(E);
1225 }
1226 
1227 const AggregateValueExpression *
1228 NewGVN::createAggregateValueExpression(Instruction *I) const {
1229   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1230     auto *E = new (ExpressionAllocator)
1231         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1232     setBasicExpressionInfo(I, E);
1233     E->allocateIntOperands(ExpressionAllocator);
1234     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1235     return E;
1236   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1237     auto *E = new (ExpressionAllocator)
1238         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1239     setBasicExpressionInfo(EI, E);
1240     E->allocateIntOperands(ExpressionAllocator);
1241     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1242     return E;
1243   }
1244   llvm_unreachable("Unhandled type of aggregate value operation");
1245 }
1246 
1247 const DeadExpression *NewGVN::createDeadExpression() const {
1248   // DeadExpression has no arguments and all DeadExpression's are the same,
1249   // so we only need one of them.
1250   return SingletonDeadExpression;
1251 }
1252 
1253 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1254   auto *E = new (ExpressionAllocator) VariableExpression(V);
1255   E->setOpcode(V->getValueID());
1256   return E;
1257 }
1258 
1259 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1260   if (auto *C = dyn_cast<Constant>(V))
1261     return createConstantExpression(C);
1262   return createVariableExpression(V);
1263 }
1264 
1265 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1266   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1267   E->setOpcode(C->getValueID());
1268   return E;
1269 }
1270 
1271 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1272   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1273   E->setOpcode(I->getOpcode());
1274   return E;
1275 }
1276 
1277 const CallExpression *
1278 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1279   // FIXME: Add operand bundles for calls.
1280   // FIXME: Allow commutative matching for intrinsics.
1281   auto *E =
1282       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1283   setBasicExpressionInfo(CI, E);
1284   return E;
1285 }
1286 
1287 // Return true if some equivalent of instruction Inst dominates instruction U.
1288 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1289                                      const Instruction *U) const {
1290   auto *CC = ValueToClass.lookup(Inst);
1291    // This must be an instruction because we are only called from phi nodes
1292   // in the case that the value it needs to check against is an instruction.
1293 
1294   // The most likely candidates for dominance are the leader and the next leader.
1295   // The leader or nextleader will dominate in all cases where there is an
1296   // equivalent that is higher up in the dom tree.
1297   // We can't *only* check them, however, because the
1298   // dominator tree could have an infinite number of non-dominating siblings
1299   // with instructions that are in the right congruence class.
1300   //       A
1301   // B C D E F G
1302   // |
1303   // H
1304   // Instruction U could be in H,  with equivalents in every other sibling.
1305   // Depending on the rpo order picked, the leader could be the equivalent in
1306   // any of these siblings.
1307   if (!CC)
1308     return false;
1309   if (alwaysAvailable(CC->getLeader()))
1310     return true;
1311   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1312     return true;
1313   if (CC->getNextLeader().first &&
1314       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1315     return true;
1316   return llvm::any_of(*CC, [&](const Value *Member) {
1317     return Member != CC->getLeader() &&
1318            DT->dominates(cast<Instruction>(Member), U);
1319   });
1320 }
1321 
1322 // See if we have a congruence class and leader for this operand, and if so,
1323 // return it. Otherwise, return the operand itself.
1324 Value *NewGVN::lookupOperandLeader(Value *V) const {
1325   CongruenceClass *CC = ValueToClass.lookup(V);
1326   if (CC) {
1327     // Everything in TOP is represented by poison, as it can be any value.
1328     // We do have to make sure we get the type right though, so we can't set the
1329     // RepLeader to poison.
1330     if (CC == TOPClass)
1331       return PoisonValue::get(V->getType());
1332     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1333   }
1334 
1335   return V;
1336 }
1337 
1338 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1339   auto *CC = getMemoryClass(MA);
1340   assert(CC->getMemoryLeader() &&
1341          "Every MemoryAccess should be mapped to a congruence class with a "
1342          "representative memory access");
1343   return CC->getMemoryLeader();
1344 }
1345 
1346 // Return true if the MemoryAccess is really equivalent to everything. This is
1347 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1348 // state of all MemoryAccesses.
1349 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1350   return getMemoryClass(MA) == TOPClass;
1351 }
1352 
1353 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1354                                              LoadInst *LI,
1355                                              const MemoryAccess *MA) const {
1356   auto *E =
1357       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1358   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1359   E->setType(LoadType);
1360 
1361   // Give store and loads same opcode so they value number together.
1362   E->setOpcode(0);
1363   E->op_push_back(PointerOp);
1364 
1365   // TODO: Value number heap versions. We may be able to discover
1366   // things alias analysis can't on it's own (IE that a store and a
1367   // load have the same value, and thus, it isn't clobbering the load).
1368   return E;
1369 }
1370 
1371 const StoreExpression *
1372 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1373   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1374   auto *E = new (ExpressionAllocator)
1375       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1376   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1377   E->setType(SI->getValueOperand()->getType());
1378 
1379   // Give store and loads same opcode so they value number together.
1380   E->setOpcode(0);
1381   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1382 
1383   // TODO: Value number heap versions. We may be able to discover
1384   // things alias analysis can't on it's own (IE that a store and a
1385   // load have the same value, and thus, it isn't clobbering the load).
1386   return E;
1387 }
1388 
1389 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1390   // Unlike loads, we never try to eliminate stores, so we do not check if they
1391   // are simple and avoid value numbering them.
1392   auto *SI = cast<StoreInst>(I);
1393   auto *StoreAccess = getMemoryAccess(SI);
1394   // Get the expression, if any, for the RHS of the MemoryDef.
1395   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1396   if (EnableStoreRefinement)
1397     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1398   // If we bypassed the use-def chains, make sure we add a use.
1399   StoreRHS = lookupMemoryLeader(StoreRHS);
1400   if (StoreRHS != StoreAccess->getDefiningAccess())
1401     addMemoryUsers(StoreRHS, StoreAccess);
1402   // If we are defined by ourselves, use the live on entry def.
1403   if (StoreRHS == StoreAccess)
1404     StoreRHS = MSSA->getLiveOnEntryDef();
1405 
1406   if (SI->isSimple()) {
1407     // See if we are defined by a previous store expression, it already has a
1408     // value, and it's the same value as our current store. FIXME: Right now, we
1409     // only do this for simple stores, we should expand to cover memcpys, etc.
1410     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1411     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1412     // We really want to check whether the expression we matched was a store. No
1413     // easy way to do that. However, we can check that the class we found has a
1414     // store, which, assuming the value numbering state is not corrupt, is
1415     // sufficient, because we must also be equivalent to that store's expression
1416     // for it to be in the same class as the load.
1417     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1418       return LastStore;
1419     // Also check if our value operand is defined by a load of the same memory
1420     // location, and the memory state is the same as it was then (otherwise, it
1421     // could have been overwritten later. See test32 in
1422     // transforms/DeadStoreElimination/simple.ll).
1423     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1424       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1425            LastStore->getOperand(0)) &&
1426           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1427            StoreRHS))
1428         return LastStore;
1429     deleteExpression(LastStore);
1430   }
1431 
1432   // If the store is not equivalent to anything, value number it as a store that
1433   // produces a unique memory state (instead of using it's MemoryUse, we use
1434   // it's MemoryDef).
1435   return createStoreExpression(SI, StoreAccess);
1436 }
1437 
1438 // See if we can extract the value of a loaded pointer from a load, a store, or
1439 // a memory instruction.
1440 const Expression *
1441 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1442                                     LoadInst *LI, Instruction *DepInst,
1443                                     MemoryAccess *DefiningAccess) const {
1444   assert((!LI || LI->isSimple()) && "Not a simple load");
1445   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1446     // Can't forward from non-atomic to atomic without violating memory model.
1447     // Also don't need to coerce if they are the same type, we will just
1448     // propagate.
1449     if (LI->isAtomic() > DepSI->isAtomic() ||
1450         LoadType == DepSI->getValueOperand()->getType())
1451       return nullptr;
1452     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1453     if (Offset >= 0) {
1454       if (auto *C = dyn_cast<Constant>(
1455               lookupOperandLeader(DepSI->getValueOperand()))) {
1456         if (Constant *Res =
1457                 getConstantStoreValueForLoad(C, Offset, LoadType, DL)) {
1458           LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1459                             << " to constant " << *Res << "\n");
1460           return createConstantExpression(Res);
1461         }
1462       }
1463     }
1464   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1465     // Can't forward from non-atomic to atomic without violating memory model.
1466     if (LI->isAtomic() > DepLI->isAtomic())
1467       return nullptr;
1468     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1469     if (Offset >= 0) {
1470       // We can coerce a constant load into a load.
1471       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1472         if (auto *PossibleConstant =
1473                 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1474           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1475                             << " to constant " << *PossibleConstant << "\n");
1476           return createConstantExpression(PossibleConstant);
1477         }
1478     }
1479   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1480     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1481     if (Offset >= 0) {
1482       if (auto *PossibleConstant =
1483               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1484         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1485                           << " to constant " << *PossibleConstant << "\n");
1486         return createConstantExpression(PossibleConstant);
1487       }
1488     }
1489   }
1490 
1491   // All of the below are only true if the loaded pointer is produced
1492   // by the dependent instruction.
1493   if (LoadPtr != lookupOperandLeader(DepInst) &&
1494       !AA->isMustAlias(LoadPtr, DepInst))
1495     return nullptr;
1496   // If this load really doesn't depend on anything, then we must be loading an
1497   // undef value.  This can happen when loading for a fresh allocation with no
1498   // intervening stores, for example.  Note that this is only true in the case
1499   // that the result of the allocation is pointer equal to the load ptr.
1500   if (isa<AllocaInst>(DepInst)) {
1501     return createConstantExpression(UndefValue::get(LoadType));
1502   }
1503   // If this load occurs either right after a lifetime begin,
1504   // then the loaded value is undefined.
1505   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1506     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1507       return createConstantExpression(UndefValue::get(LoadType));
1508   } else if (auto *InitVal =
1509                  getInitialValueOfAllocation(DepInst, TLI, LoadType))
1510       return createConstantExpression(InitVal);
1511 
1512   return nullptr;
1513 }
1514 
1515 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1516   auto *LI = cast<LoadInst>(I);
1517 
1518   // We can eliminate in favor of non-simple loads, but we won't be able to
1519   // eliminate the loads themselves.
1520   if (!LI->isSimple())
1521     return nullptr;
1522 
1523   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1524   // Load of undef is UB.
1525   if (isa<UndefValue>(LoadAddressLeader))
1526     return createConstantExpression(PoisonValue::get(LI->getType()));
1527   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1528   MemoryAccess *DefiningAccess =
1529       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1530 
1531   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1532     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1533       Instruction *DefiningInst = MD->getMemoryInst();
1534       // If the defining instruction is not reachable, replace with poison.
1535       if (!ReachableBlocks.count(DefiningInst->getParent()))
1536         return createConstantExpression(PoisonValue::get(LI->getType()));
1537       // This will handle stores and memory insts.  We only do if it the
1538       // defining access has a different type, or it is a pointer produced by
1539       // certain memory operations that cause the memory to have a fixed value
1540       // (IE things like calloc).
1541       if (const auto *CoercionResult =
1542               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1543                                           DefiningInst, DefiningAccess))
1544         return CoercionResult;
1545     }
1546   }
1547 
1548   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1549                                         DefiningAccess);
1550   // If our MemoryLeader is not our defining access, add a use to the
1551   // MemoryLeader, so that we get reprocessed when it changes.
1552   if (LE->getMemoryLeader() != DefiningAccess)
1553     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1554   return LE;
1555 }
1556 
1557 NewGVN::ExprResult
1558 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const {
1559   auto *PI = PredInfo->getPredicateInfoFor(I);
1560   if (!PI)
1561     return ExprResult::none();
1562 
1563   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1564 
1565   const std::optional<PredicateConstraint> &Constraint = PI->getConstraint();
1566   if (!Constraint)
1567     return ExprResult::none();
1568 
1569   CmpInst::Predicate Predicate = Constraint->Predicate;
1570   Value *CmpOp0 = I->getOperand(0);
1571   Value *CmpOp1 = Constraint->OtherOp;
1572 
1573   Value *FirstOp = lookupOperandLeader(CmpOp0);
1574   Value *SecondOp = lookupOperandLeader(CmpOp1);
1575   Value *AdditionallyUsedValue = CmpOp0;
1576 
1577   // Sort the ops.
1578   if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) {
1579     std::swap(FirstOp, SecondOp);
1580     Predicate = CmpInst::getSwappedPredicate(Predicate);
1581     AdditionallyUsedValue = CmpOp1;
1582   }
1583 
1584   if (Predicate == CmpInst::ICMP_EQ)
1585     return ExprResult::some(createVariableOrConstant(FirstOp),
1586                             AdditionallyUsedValue, PI);
1587 
1588   // Handle the special case of floating point.
1589   if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1590       !cast<ConstantFP>(FirstOp)->isZero())
1591     return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
1592                             AdditionallyUsedValue, PI);
1593 
1594   return ExprResult::none();
1595 }
1596 
1597 // Evaluate read only and pure calls, and create an expression result.
1598 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1599   auto *CI = cast<CallInst>(I);
1600   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1601     // Intrinsics with the returned attribute are copies of arguments.
1602     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1603       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1604         if (auto Res = performSymbolicPredicateInfoEvaluation(II))
1605           return Res;
1606       return ExprResult::some(createVariableOrConstant(ReturnedValue));
1607     }
1608   }
1609 
1610   // FIXME: Currently the calls which may access the thread id may
1611   // be considered as not accessing the memory. But this is
1612   // problematic for coroutines, since coroutines may resume in a
1613   // different thread. So we disable the optimization here for the
1614   // correctness. However, it may block many other correct
1615   // optimizations. Revert this one when we detect the memory
1616   // accessing kind more precisely.
1617   if (CI->getFunction()->isPresplitCoroutine())
1618     return ExprResult::none();
1619 
1620   if (AA->doesNotAccessMemory(CI)) {
1621     return ExprResult::some(
1622         createCallExpression(CI, TOPClass->getMemoryLeader()));
1623   } else if (AA->onlyReadsMemory(CI)) {
1624     if (auto *MA = MSSA->getMemoryAccess(CI)) {
1625       auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1626       return ExprResult::some(createCallExpression(CI, DefiningAccess));
1627     } else // MSSA determined that CI does not access memory.
1628       return ExprResult::some(
1629           createCallExpression(CI, TOPClass->getMemoryLeader()));
1630   }
1631   return ExprResult::none();
1632 }
1633 
1634 // Retrieve the memory class for a given MemoryAccess.
1635 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1636   auto *Result = MemoryAccessToClass.lookup(MA);
1637   assert(Result && "Should have found memory class");
1638   return Result;
1639 }
1640 
1641 // Update the MemoryAccess equivalence table to say that From is equal to To,
1642 // and return true if this is different from what already existed in the table.
1643 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1644                             CongruenceClass *NewClass) {
1645   assert(NewClass &&
1646          "Every MemoryAccess should be getting mapped to a non-null class");
1647   LLVM_DEBUG(dbgs() << "Setting " << *From);
1648   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1649   LLVM_DEBUG(dbgs() << NewClass->getID()
1650                     << " with current MemoryAccess leader ");
1651   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1652 
1653   auto LookupResult = MemoryAccessToClass.find(From);
1654   bool Changed = false;
1655   // If it's already in the table, see if the value changed.
1656   if (LookupResult != MemoryAccessToClass.end()) {
1657     auto *OldClass = LookupResult->second;
1658     if (OldClass != NewClass) {
1659       // If this is a phi, we have to handle memory member updates.
1660       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1661         OldClass->memory_erase(MP);
1662         NewClass->memory_insert(MP);
1663         // This may have killed the class if it had no non-memory members
1664         if (OldClass->getMemoryLeader() == From) {
1665           if (OldClass->definesNoMemory()) {
1666             OldClass->setMemoryLeader(nullptr);
1667           } else {
1668             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1669             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1670                               << OldClass->getID() << " to "
1671                               << *OldClass->getMemoryLeader()
1672                               << " due to removal of a memory member " << *From
1673                               << "\n");
1674             markMemoryLeaderChangeTouched(OldClass);
1675           }
1676         }
1677       }
1678       // It wasn't equivalent before, and now it is.
1679       LookupResult->second = NewClass;
1680       Changed = true;
1681     }
1682   }
1683 
1684   return Changed;
1685 }
1686 
1687 // Determine if a instruction is cycle-free.  That means the values in the
1688 // instruction don't depend on any expressions that can change value as a result
1689 // of the instruction.  For example, a non-cycle free instruction would be v =
1690 // phi(0, v+1).
1691 bool NewGVN::isCycleFree(const Instruction *I) const {
1692   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1693   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1694   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1695   // other members are all phi nodes (as they do not compute anything, they are
1696   // copies).
1697   auto ICS = InstCycleState.lookup(I);
1698   if (ICS == ICS_Unknown) {
1699     SCCFinder.Start(I);
1700     auto &SCC = SCCFinder.getComponentFor(I);
1701     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1702     if (SCC.size() == 1)
1703       InstCycleState.insert({I, ICS_CycleFree});
1704     else {
1705       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1706         return isa<PHINode>(V) || isCopyOfAPHI(V);
1707       });
1708       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1709       for (const auto *Member : SCC)
1710         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1711           InstCycleState.insert({MemberPhi, ICS});
1712     }
1713   }
1714   if (ICS == ICS_Cycle)
1715     return false;
1716   return true;
1717 }
1718 
1719 // Evaluate PHI nodes symbolically and create an expression result.
1720 const Expression *
1721 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1722                                      Instruction *I,
1723                                      BasicBlock *PHIBlock) const {
1724   // True if one of the incoming phi edges is a backedge.
1725   bool HasBackedge = false;
1726   // All constant tracks the state of whether all the *original* phi operands
1727   // This is really shorthand for "this phi cannot cycle due to forward
1728   // change in value of the phi is guaranteed not to later change the value of
1729   // the phi. IE it can't be v = phi(undef, v+1)
1730   bool OriginalOpsConstant = true;
1731   auto *E = cast<PHIExpression>(createPHIExpression(
1732       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1733   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1734   // See if all arguments are the same.
1735   // We track if any were undef because they need special handling.
1736   bool HasUndef = false, HasPoison = false;
1737   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1738     if (isa<PoisonValue>(Arg)) {
1739       HasPoison = true;
1740       return false;
1741     }
1742     if (isa<UndefValue>(Arg)) {
1743       HasUndef = true;
1744       return false;
1745     }
1746     return true;
1747   });
1748   // If we are left with no operands, it's dead.
1749   if (Filtered.empty()) {
1750     // If it has undef or poison at this point, it means there are no-non-undef
1751     // arguments, and thus, the value of the phi node must be undef.
1752     if (HasUndef) {
1753       LLVM_DEBUG(
1754           dbgs() << "PHI Node " << *I
1755                  << " has no non-undef arguments, valuing it as undef\n");
1756       return createConstantExpression(UndefValue::get(I->getType()));
1757     }
1758     if (HasPoison) {
1759       LLVM_DEBUG(
1760           dbgs() << "PHI Node " << *I
1761                  << " has no non-poison arguments, valuing it as poison\n");
1762       return createConstantExpression(PoisonValue::get(I->getType()));
1763     }
1764 
1765     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1766     deleteExpression(E);
1767     return createDeadExpression();
1768   }
1769   Value *AllSameValue = *(Filtered.begin());
1770   ++Filtered.begin();
1771   // Can't use std::equal here, sadly, because filter.begin moves.
1772   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1773     // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
1774     // in the worst case).
1775     if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT))
1776       return E;
1777 
1778     // In LLVM's non-standard representation of phi nodes, it's possible to have
1779     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1780     // on the original phi node), especially in weird CFG's where some arguments
1781     // are unreachable, or uninitialized along certain paths.  This can cause
1782     // infinite loops during evaluation. We work around this by not trying to
1783     // really evaluate them independently, but instead using a variable
1784     // expression to say if one is equivalent to the other.
1785     // We also special case undef/poison, so that if we have an undef, we can't
1786     // use the common value unless it dominates the phi block.
1787     if (HasPoison || HasUndef) {
1788       // If we have undef and at least one other value, this is really a
1789       // multivalued phi, and we need to know if it's cycle free in order to
1790       // evaluate whether we can ignore the undef.  The other parts of this are
1791       // just shortcuts.  If there is no backedge, or all operands are
1792       // constants, it also must be cycle free.
1793       if (HasBackedge && !OriginalOpsConstant &&
1794           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1795         return E;
1796 
1797       // Only have to check for instructions
1798       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1799         if (!someEquivalentDominates(AllSameInst, I))
1800           return E;
1801     }
1802     // Can't simplify to something that comes later in the iteration.
1803     // Otherwise, when and if it changes congruence class, we will never catch
1804     // up. We will always be a class behind it.
1805     if (isa<Instruction>(AllSameValue) &&
1806         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1807       return E;
1808     NumGVNPhisAllSame++;
1809     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1810                       << "\n");
1811     deleteExpression(E);
1812     return createVariableOrConstant(AllSameValue);
1813   }
1814   return E;
1815 }
1816 
1817 const Expression *
1818 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1819   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1820     auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1821     if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1822       // EI is an extract from one of our with.overflow intrinsics. Synthesize
1823       // a semantically equivalent expression instead of an extract value
1824       // expression.
1825       return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1826                                     WO->getLHS(), WO->getRHS(), I);
1827   }
1828 
1829   return createAggregateValueExpression(I);
1830 }
1831 
1832 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1833   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1834 
1835   auto *CI = cast<CmpInst>(I);
1836   // See if our operands are equal to those of a previous predicate, and if so,
1837   // if it implies true or false.
1838   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1839   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1840   auto OurPredicate = CI->getPredicate();
1841   if (shouldSwapOperands(Op0, Op1)) {
1842     std::swap(Op0, Op1);
1843     OurPredicate = CI->getSwappedPredicate();
1844   }
1845 
1846   // Avoid processing the same info twice.
1847   const PredicateBase *LastPredInfo = nullptr;
1848   // See if we know something about the comparison itself, like it is the target
1849   // of an assume.
1850   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1851   if (isa_and_nonnull<PredicateAssume>(CmpPI))
1852     return ExprResult::some(
1853         createConstantExpression(ConstantInt::getTrue(CI->getType())));
1854 
1855   if (Op0 == Op1) {
1856     // This condition does not depend on predicates, no need to add users
1857     if (CI->isTrueWhenEqual())
1858       return ExprResult::some(
1859           createConstantExpression(ConstantInt::getTrue(CI->getType())));
1860     else if (CI->isFalseWhenEqual())
1861       return ExprResult::some(
1862           createConstantExpression(ConstantInt::getFalse(CI->getType())));
1863   }
1864 
1865   // NOTE: Because we are comparing both operands here and below, and using
1866   // previous comparisons, we rely on fact that predicateinfo knows to mark
1867   // comparisons that use renamed operands as users of the earlier comparisons.
1868   // It is *not* enough to just mark predicateinfo renamed operands as users of
1869   // the earlier comparisons, because the *other* operand may have changed in a
1870   // previous iteration.
1871   // Example:
1872   // icmp slt %a, %b
1873   // %b.0 = ssa.copy(%b)
1874   // false branch:
1875   // icmp slt %c, %b.0
1876 
1877   // %c and %a may start out equal, and thus, the code below will say the second
1878   // %icmp is false.  c may become equal to something else, and in that case the
1879   // %second icmp *must* be reexamined, but would not if only the renamed
1880   // %operands are considered users of the icmp.
1881 
1882   // *Currently* we only check one level of comparisons back, and only mark one
1883   // level back as touched when changes happen.  If you modify this code to look
1884   // back farther through comparisons, you *must* mark the appropriate
1885   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1886   // we know something just from the operands themselves
1887 
1888   // See if our operands have predicate info, so that we may be able to derive
1889   // something from a previous comparison.
1890   for (const auto &Op : CI->operands()) {
1891     auto *PI = PredInfo->getPredicateInfoFor(Op);
1892     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1893       if (PI == LastPredInfo)
1894         continue;
1895       LastPredInfo = PI;
1896       // In phi of ops cases, we may have predicate info that we are evaluating
1897       // in a different context.
1898       if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1899         continue;
1900       // TODO: Along the false edge, we may know more things too, like
1901       // icmp of
1902       // same operands is false.
1903       // TODO: We only handle actual comparison conditions below, not
1904       // and/or.
1905       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1906       if (!BranchCond)
1907         continue;
1908       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1909       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1910       auto BranchPredicate = BranchCond->getPredicate();
1911       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1912         std::swap(BranchOp0, BranchOp1);
1913         BranchPredicate = BranchCond->getSwappedPredicate();
1914       }
1915       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1916         if (PBranch->TrueEdge) {
1917           // If we know the previous predicate is true and we are in the true
1918           // edge then we may be implied true or false.
1919           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1920                                                   OurPredicate)) {
1921             return ExprResult::some(
1922                 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1923                 PI);
1924           }
1925 
1926           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1927                                                    OurPredicate)) {
1928             return ExprResult::some(
1929                 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1930                 PI);
1931           }
1932         } else {
1933           // Just handle the ne and eq cases, where if we have the same
1934           // operands, we may know something.
1935           if (BranchPredicate == OurPredicate) {
1936             // Same predicate, same ops,we know it was false, so this is false.
1937             return ExprResult::some(
1938                 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1939                 PI);
1940           } else if (BranchPredicate ==
1941                      CmpInst::getInversePredicate(OurPredicate)) {
1942             // Inverse predicate, we know the other was false, so this is true.
1943             return ExprResult::some(
1944                 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1945                 PI);
1946           }
1947         }
1948       }
1949     }
1950   }
1951   // Create expression will take care of simplifyCmpInst
1952   return createExpression(I);
1953 }
1954 
1955 // Substitute and symbolize the value before value numbering.
1956 NewGVN::ExprResult
1957 NewGVN::performSymbolicEvaluation(Value *V,
1958                                   SmallPtrSetImpl<Value *> &Visited) const {
1959 
1960   const Expression *E = nullptr;
1961   if (auto *C = dyn_cast<Constant>(V))
1962     E = createConstantExpression(C);
1963   else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1964     E = createVariableExpression(V);
1965   } else {
1966     // TODO: memory intrinsics.
1967     // TODO: Some day, we should do the forward propagation and reassociation
1968     // parts of the algorithm.
1969     auto *I = cast<Instruction>(V);
1970     switch (I->getOpcode()) {
1971     case Instruction::ExtractValue:
1972     case Instruction::InsertValue:
1973       E = performSymbolicAggrValueEvaluation(I);
1974       break;
1975     case Instruction::PHI: {
1976       SmallVector<ValPair, 3> Ops;
1977       auto *PN = cast<PHINode>(I);
1978       for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1979         Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1980       // Sort to ensure the invariant createPHIExpression requires is met.
1981       sortPHIOps(Ops);
1982       E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1983     } break;
1984     case Instruction::Call:
1985       return performSymbolicCallEvaluation(I);
1986       break;
1987     case Instruction::Store:
1988       E = performSymbolicStoreEvaluation(I);
1989       break;
1990     case Instruction::Load:
1991       E = performSymbolicLoadEvaluation(I);
1992       break;
1993     case Instruction::BitCast:
1994     case Instruction::AddrSpaceCast:
1995       return createExpression(I);
1996       break;
1997     case Instruction::ICmp:
1998     case Instruction::FCmp:
1999       return performSymbolicCmpEvaluation(I);
2000       break;
2001     case Instruction::FNeg:
2002     case Instruction::Add:
2003     case Instruction::FAdd:
2004     case Instruction::Sub:
2005     case Instruction::FSub:
2006     case Instruction::Mul:
2007     case Instruction::FMul:
2008     case Instruction::UDiv:
2009     case Instruction::SDiv:
2010     case Instruction::FDiv:
2011     case Instruction::URem:
2012     case Instruction::SRem:
2013     case Instruction::FRem:
2014     case Instruction::Shl:
2015     case Instruction::LShr:
2016     case Instruction::AShr:
2017     case Instruction::And:
2018     case Instruction::Or:
2019     case Instruction::Xor:
2020     case Instruction::Trunc:
2021     case Instruction::ZExt:
2022     case Instruction::SExt:
2023     case Instruction::FPToUI:
2024     case Instruction::FPToSI:
2025     case Instruction::UIToFP:
2026     case Instruction::SIToFP:
2027     case Instruction::FPTrunc:
2028     case Instruction::FPExt:
2029     case Instruction::PtrToInt:
2030     case Instruction::IntToPtr:
2031     case Instruction::Select:
2032     case Instruction::ExtractElement:
2033     case Instruction::InsertElement:
2034     case Instruction::GetElementPtr:
2035       return createExpression(I);
2036       break;
2037     case Instruction::ShuffleVector:
2038       // FIXME: Add support for shufflevector to createExpression.
2039       return ExprResult::none();
2040     default:
2041       return ExprResult::none();
2042     }
2043   }
2044   return ExprResult::some(E);
2045 }
2046 
2047 // Look up a container of values/instructions in a map, and touch all the
2048 // instructions in the container.  Then erase value from the map.
2049 template <typename Map, typename KeyType>
2050 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2051   const auto Result = M.find_as(Key);
2052   if (Result != M.end()) {
2053     for (const typename Map::mapped_type::value_type Mapped : Result->second)
2054       TouchedInstructions.set(InstrToDFSNum(Mapped));
2055     M.erase(Result);
2056   }
2057 }
2058 
2059 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2060   assert(User && To != User);
2061   if (isa<Instruction>(To))
2062     AdditionalUsers[To].insert(User);
2063 }
2064 
2065 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
2066   if (Res.ExtraDep && Res.ExtraDep != User)
2067     addAdditionalUsers(Res.ExtraDep, User);
2068   Res.ExtraDep = nullptr;
2069 
2070   if (Res.PredDep) {
2071     if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
2072       PredicateToUsers[PBranch->Condition].insert(User);
2073     else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
2074       PredicateToUsers[PAssume->Condition].insert(User);
2075   }
2076   Res.PredDep = nullptr;
2077 }
2078 
2079 void NewGVN::markUsersTouched(Value *V) {
2080   // Now mark the users as touched.
2081   for (auto *User : V->users()) {
2082     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2083     TouchedInstructions.set(InstrToDFSNum(User));
2084   }
2085   touchAndErase(AdditionalUsers, V);
2086 }
2087 
2088 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2089   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2090   MemoryToUsers[To].insert(U);
2091 }
2092 
2093 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2094   TouchedInstructions.set(MemoryToDFSNum(MA));
2095 }
2096 
2097 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2098   if (isa<MemoryUse>(MA))
2099     return;
2100   for (const auto *U : MA->users())
2101     TouchedInstructions.set(MemoryToDFSNum(U));
2102   touchAndErase(MemoryToUsers, MA);
2103 }
2104 
2105 // Touch all the predicates that depend on this instruction.
2106 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2107   touchAndErase(PredicateToUsers, I);
2108 }
2109 
2110 // Mark users affected by a memory leader change.
2111 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2112   for (const auto *M : CC->memory())
2113     markMemoryDefTouched(M);
2114 }
2115 
2116 // Touch the instructions that need to be updated after a congruence class has a
2117 // leader change, and mark changed values.
2118 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2119   for (auto *M : *CC) {
2120     if (auto *I = dyn_cast<Instruction>(M))
2121       TouchedInstructions.set(InstrToDFSNum(I));
2122     LeaderChanges.insert(M);
2123   }
2124 }
2125 
2126 // Give a range of things that have instruction DFS numbers, this will return
2127 // the member of the range with the smallest dfs number.
2128 template <class T, class Range>
2129 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2130   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2131   for (const auto X : R) {
2132     auto DFSNum = InstrToDFSNum(X);
2133     if (DFSNum < MinDFS.second)
2134       MinDFS = {X, DFSNum};
2135   }
2136   return MinDFS.first;
2137 }
2138 
2139 // This function returns the MemoryAccess that should be the next leader of
2140 // congruence class CC, under the assumption that the current leader is going to
2141 // disappear.
2142 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2143   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2144   // do for regular leaders.
2145   // Make sure there will be a leader to find.
2146   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2147   if (CC->getStoreCount() > 0) {
2148     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2149       return getMemoryAccess(NL);
2150     // Find the store with the minimum DFS number.
2151     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2152         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2153     return getMemoryAccess(cast<StoreInst>(V));
2154   }
2155   assert(CC->getStoreCount() == 0);
2156 
2157   // Given our assertion, hitting this part must mean
2158   // !OldClass->memory_empty()
2159   if (CC->memory_size() == 1)
2160     return *CC->memory_begin();
2161   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2162 }
2163 
2164 // This function returns the next value leader of a congruence class, under the
2165 // assumption that the current leader is going away.  This should end up being
2166 // the next most dominating member.
2167 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2168   // We don't need to sort members if there is only 1, and we don't care about
2169   // sorting the TOP class because everything either gets out of it or is
2170   // unreachable.
2171 
2172   if (CC->size() == 1 || CC == TOPClass) {
2173     return *(CC->begin());
2174   } else if (CC->getNextLeader().first) {
2175     ++NumGVNAvoidedSortedLeaderChanges;
2176     return CC->getNextLeader().first;
2177   } else {
2178     ++NumGVNSortedLeaderChanges;
2179     // NOTE: If this ends up to slow, we can maintain a dual structure for
2180     // member testing/insertion, or keep things mostly sorted, and sort only
2181     // here, or use SparseBitVector or ....
2182     return getMinDFSOfRange<Value>(*CC);
2183   }
2184 }
2185 
2186 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2187 // the memory members, etc for the move.
2188 //
2189 // The invariants of this function are:
2190 //
2191 // - I must be moving to NewClass from OldClass
2192 // - The StoreCount of OldClass and NewClass is expected to have been updated
2193 //   for I already if it is a store.
2194 // - The OldClass memory leader has not been updated yet if I was the leader.
2195 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2196                                             MemoryAccess *InstMA,
2197                                             CongruenceClass *OldClass,
2198                                             CongruenceClass *NewClass) {
2199   // If the leader is I, and we had a representative MemoryAccess, it should
2200   // be the MemoryAccess of OldClass.
2201   assert((!InstMA || !OldClass->getMemoryLeader() ||
2202           OldClass->getLeader() != I ||
2203           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2204               MemoryAccessToClass.lookup(InstMA)) &&
2205          "Representative MemoryAccess mismatch");
2206   // First, see what happens to the new class
2207   if (!NewClass->getMemoryLeader()) {
2208     // Should be a new class, or a store becoming a leader of a new class.
2209     assert(NewClass->size() == 1 ||
2210            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2211     NewClass->setMemoryLeader(InstMA);
2212     // Mark it touched if we didn't just create a singleton
2213     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2214                       << NewClass->getID()
2215                       << " due to new memory instruction becoming leader\n");
2216     markMemoryLeaderChangeTouched(NewClass);
2217   }
2218   setMemoryClass(InstMA, NewClass);
2219   // Now, fixup the old class if necessary
2220   if (OldClass->getMemoryLeader() == InstMA) {
2221     if (!OldClass->definesNoMemory()) {
2222       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2223       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2224                         << OldClass->getID() << " to "
2225                         << *OldClass->getMemoryLeader()
2226                         << " due to removal of old leader " << *InstMA << "\n");
2227       markMemoryLeaderChangeTouched(OldClass);
2228     } else
2229       OldClass->setMemoryLeader(nullptr);
2230   }
2231 }
2232 
2233 // Move a value, currently in OldClass, to be part of NewClass
2234 // Update OldClass and NewClass for the move (including changing leaders, etc).
2235 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2236                                            CongruenceClass *OldClass,
2237                                            CongruenceClass *NewClass) {
2238   if (I == OldClass->getNextLeader().first)
2239     OldClass->resetNextLeader();
2240 
2241   OldClass->erase(I);
2242   NewClass->insert(I);
2243 
2244   if (NewClass->getLeader() != I)
2245     NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2246   // Handle our special casing of stores.
2247   if (auto *SI = dyn_cast<StoreInst>(I)) {
2248     OldClass->decStoreCount();
2249     // Okay, so when do we want to make a store a leader of a class?
2250     // If we have a store defined by an earlier load, we want the earlier load
2251     // to lead the class.
2252     // If we have a store defined by something else, we want the store to lead
2253     // the class so everything else gets the "something else" as a value.
2254     // If we have a store as the single member of the class, we want the store
2255     // as the leader
2256     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2257       // If it's a store expression we are using, it means we are not equivalent
2258       // to something earlier.
2259       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2260         NewClass->setStoredValue(SE->getStoredValue());
2261         markValueLeaderChangeTouched(NewClass);
2262         // Shift the new class leader to be the store
2263         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2264                           << NewClass->getID() << " from "
2265                           << *NewClass->getLeader() << " to  " << *SI
2266                           << " because store joined class\n");
2267         // If we changed the leader, we have to mark it changed because we don't
2268         // know what it will do to symbolic evaluation.
2269         NewClass->setLeader(SI);
2270       }
2271       // We rely on the code below handling the MemoryAccess change.
2272     }
2273     NewClass->incStoreCount();
2274   }
2275   // True if there is no memory instructions left in a class that had memory
2276   // instructions before.
2277 
2278   // If it's not a memory use, set the MemoryAccess equivalence
2279   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2280   if (InstMA)
2281     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2282   ValueToClass[I] = NewClass;
2283   // See if we destroyed the class or need to swap leaders.
2284   if (OldClass->empty() && OldClass != TOPClass) {
2285     if (OldClass->getDefiningExpr()) {
2286       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2287                         << " from table\n");
2288       // We erase it as an exact expression to make sure we don't just erase an
2289       // equivalent one.
2290       auto Iter = ExpressionToClass.find_as(
2291           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2292       if (Iter != ExpressionToClass.end())
2293         ExpressionToClass.erase(Iter);
2294 #ifdef EXPENSIVE_CHECKS
2295       assert(
2296           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2297           "We erased the expression we just inserted, which should not happen");
2298 #endif
2299     }
2300   } else if (OldClass->getLeader() == I) {
2301     // When the leader changes, the value numbering of
2302     // everything may change due to symbolization changes, so we need to
2303     // reprocess.
2304     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2305                       << OldClass->getID() << "\n");
2306     ++NumGVNLeaderChanges;
2307     // Destroy the stored value if there are no more stores to represent it.
2308     // Note that this is basically clean up for the expression removal that
2309     // happens below.  If we remove stores from a class, we may leave it as a
2310     // class of equivalent memory phis.
2311     if (OldClass->getStoreCount() == 0) {
2312       if (OldClass->getStoredValue())
2313         OldClass->setStoredValue(nullptr);
2314     }
2315     OldClass->setLeader(getNextValueLeader(OldClass));
2316     OldClass->resetNextLeader();
2317     markValueLeaderChangeTouched(OldClass);
2318   }
2319 }
2320 
2321 // For a given expression, mark the phi of ops instructions that could have
2322 // changed as a result.
2323 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2324   touchAndErase(ExpressionToPhiOfOps, E);
2325 }
2326 
2327 // Perform congruence finding on a given value numbering expression.
2328 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2329   // This is guaranteed to return something, since it will at least find
2330   // TOP.
2331 
2332   CongruenceClass *IClass = ValueToClass.lookup(I);
2333   assert(IClass && "Should have found a IClass");
2334   // Dead classes should have been eliminated from the mapping.
2335   assert(!IClass->isDead() && "Found a dead class");
2336 
2337   CongruenceClass *EClass = nullptr;
2338   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2339     EClass = ValueToClass.lookup(VE->getVariableValue());
2340   } else if (isa<DeadExpression>(E)) {
2341     EClass = TOPClass;
2342   }
2343   if (!EClass) {
2344     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2345 
2346     // If it's not in the value table, create a new congruence class.
2347     if (lookupResult.second) {
2348       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2349       auto place = lookupResult.first;
2350       place->second = NewClass;
2351 
2352       // Constants and variables should always be made the leader.
2353       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2354         NewClass->setLeader(CE->getConstantValue());
2355       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2356         StoreInst *SI = SE->getStoreInst();
2357         NewClass->setLeader(SI);
2358         NewClass->setStoredValue(SE->getStoredValue());
2359         // The RepMemoryAccess field will be filled in properly by the
2360         // moveValueToNewCongruenceClass call.
2361       } else {
2362         NewClass->setLeader(I);
2363       }
2364       assert(!isa<VariableExpression>(E) &&
2365              "VariableExpression should have been handled already");
2366 
2367       EClass = NewClass;
2368       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2369                         << " using expression " << *E << " at "
2370                         << NewClass->getID() << " and leader "
2371                         << *(NewClass->getLeader()));
2372       if (NewClass->getStoredValue())
2373         LLVM_DEBUG(dbgs() << " and stored value "
2374                           << *(NewClass->getStoredValue()));
2375       LLVM_DEBUG(dbgs() << "\n");
2376     } else {
2377       EClass = lookupResult.first->second;
2378       if (isa<ConstantExpression>(E))
2379         assert((isa<Constant>(EClass->getLeader()) ||
2380                 (EClass->getStoredValue() &&
2381                  isa<Constant>(EClass->getStoredValue()))) &&
2382                "Any class with a constant expression should have a "
2383                "constant leader");
2384 
2385       assert(EClass && "Somehow don't have an eclass");
2386 
2387       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2388     }
2389   }
2390   bool ClassChanged = IClass != EClass;
2391   bool LeaderChanged = LeaderChanges.erase(I);
2392   if (ClassChanged || LeaderChanged) {
2393     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2394                       << *E << "\n");
2395     if (ClassChanged) {
2396       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2397       markPhiOfOpsChanged(E);
2398     }
2399 
2400     markUsersTouched(I);
2401     if (MemoryAccess *MA = getMemoryAccess(I))
2402       markMemoryUsersTouched(MA);
2403     if (auto *CI = dyn_cast<CmpInst>(I))
2404       markPredicateUsersTouched(CI);
2405   }
2406   // If we changed the class of the store, we want to ensure nothing finds the
2407   // old store expression.  In particular, loads do not compare against stored
2408   // value, so they will find old store expressions (and associated class
2409   // mappings) if we leave them in the table.
2410   if (ClassChanged && isa<StoreInst>(I)) {
2411     auto *OldE = ValueToExpression.lookup(I);
2412     // It could just be that the old class died. We don't want to erase it if we
2413     // just moved classes.
2414     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2415       // Erase this as an exact expression to ensure we don't erase expressions
2416       // equivalent to it.
2417       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2418       if (Iter != ExpressionToClass.end())
2419         ExpressionToClass.erase(Iter);
2420     }
2421   }
2422   ValueToExpression[I] = E;
2423 }
2424 
2425 // Process the fact that Edge (from, to) is reachable, including marking
2426 // any newly reachable blocks and instructions for processing.
2427 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2428   // Check if the Edge was reachable before.
2429   if (ReachableEdges.insert({From, To}).second) {
2430     // If this block wasn't reachable before, all instructions are touched.
2431     if (ReachableBlocks.insert(To).second) {
2432       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2433                         << " marked reachable\n");
2434       const auto &InstRange = BlockInstRange.lookup(To);
2435       TouchedInstructions.set(InstRange.first, InstRange.second);
2436     } else {
2437       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2438                         << " was reachable, but new edge {"
2439                         << getBlockName(From) << "," << getBlockName(To)
2440                         << "} to it found\n");
2441 
2442       // We've made an edge reachable to an existing block, which may
2443       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2444       // they are the only thing that depend on new edges. Anything using their
2445       // values will get propagated to if necessary.
2446       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2447         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2448 
2449       // FIXME: We should just add a union op on a Bitvector and
2450       // SparseBitVector.  We can do it word by word faster than we are doing it
2451       // here.
2452       for (auto InstNum : RevisitOnReachabilityChange[To])
2453         TouchedInstructions.set(InstNum);
2454     }
2455   }
2456 }
2457 
2458 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2459 // see if we know some constant value for it already.
2460 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2461   auto Result = lookupOperandLeader(Cond);
2462   return isa<Constant>(Result) ? Result : nullptr;
2463 }
2464 
2465 // Process the outgoing edges of a block for reachability.
2466 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2467   // Evaluate reachability of terminator instruction.
2468   Value *Cond;
2469   BasicBlock *TrueSucc, *FalseSucc;
2470   if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2471     Value *CondEvaluated = findConditionEquivalence(Cond);
2472     if (!CondEvaluated) {
2473       if (auto *I = dyn_cast<Instruction>(Cond)) {
2474         SmallPtrSet<Value *, 4> Visited;
2475         auto Res = performSymbolicEvaluation(I, Visited);
2476         if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
2477           CondEvaluated = CE->getConstantValue();
2478           addAdditionalUsers(Res, I);
2479         } else {
2480           // Did not use simplification result, no need to add the extra
2481           // dependency.
2482           Res.ExtraDep = nullptr;
2483         }
2484       } else if (isa<ConstantInt>(Cond)) {
2485         CondEvaluated = Cond;
2486       }
2487     }
2488     ConstantInt *CI;
2489     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2490       if (CI->isOne()) {
2491         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2492                           << " evaluated to true\n");
2493         updateReachableEdge(B, TrueSucc);
2494       } else if (CI->isZero()) {
2495         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2496                           << " evaluated to false\n");
2497         updateReachableEdge(B, FalseSucc);
2498       }
2499     } else {
2500       updateReachableEdge(B, TrueSucc);
2501       updateReachableEdge(B, FalseSucc);
2502     }
2503   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2504     // For switches, propagate the case values into the case
2505     // destinations.
2506 
2507     Value *SwitchCond = SI->getCondition();
2508     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2509     // See if we were able to turn this switch statement into a constant.
2510     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2511       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2512       // We should be able to get case value for this.
2513       auto Case = *SI->findCaseValue(CondVal);
2514       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2515         // We proved the value is outside of the range of the case.
2516         // We can't do anything other than mark the default dest as reachable,
2517         // and go home.
2518         updateReachableEdge(B, SI->getDefaultDest());
2519         return;
2520       }
2521       // Now get where it goes and mark it reachable.
2522       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2523       updateReachableEdge(B, TargetBlock);
2524     } else {
2525       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2526         BasicBlock *TargetBlock = SI->getSuccessor(i);
2527         updateReachableEdge(B, TargetBlock);
2528       }
2529     }
2530   } else {
2531     // Otherwise this is either unconditional, or a type we have no
2532     // idea about. Just mark successors as reachable.
2533     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2534       BasicBlock *TargetBlock = TI->getSuccessor(i);
2535       updateReachableEdge(B, TargetBlock);
2536     }
2537 
2538     // This also may be a memory defining terminator, in which case, set it
2539     // equivalent only to itself.
2540     //
2541     auto *MA = getMemoryAccess(TI);
2542     if (MA && !isa<MemoryUse>(MA)) {
2543       auto *CC = ensureLeaderOfMemoryClass(MA);
2544       if (setMemoryClass(MA, CC))
2545         markMemoryUsersTouched(MA);
2546     }
2547   }
2548 }
2549 
2550 // Remove the PHI of Ops PHI for I
2551 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2552   InstrDFS.erase(PHITemp);
2553   // It's still a temp instruction. We keep it in the array so it gets erased.
2554   // However, it's no longer used by I, or in the block
2555   TempToBlock.erase(PHITemp);
2556   RealToTemp.erase(I);
2557   // We don't remove the users from the phi node uses. This wastes a little
2558   // time, but such is life.  We could use two sets to track which were there
2559   // are the start of NewGVN, and which were added, but right nowt he cost of
2560   // tracking is more than the cost of checking for more phi of ops.
2561 }
2562 
2563 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2564 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2565                          Instruction *ExistingValue) {
2566   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2567   AllTempInstructions.insert(Op);
2568   TempToBlock[Op] = BB;
2569   RealToTemp[ExistingValue] = Op;
2570   // Add all users to phi node use, as they are now uses of the phi of ops phis
2571   // and may themselves be phi of ops.
2572   for (auto *U : ExistingValue->users())
2573     if (auto *UI = dyn_cast<Instruction>(U))
2574       PHINodeUses.insert(UI);
2575 }
2576 
2577 static bool okayForPHIOfOps(const Instruction *I) {
2578   if (!EnablePhiOfOps)
2579     return false;
2580   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2581          isa<LoadInst>(I);
2582 }
2583 
2584 // Return true if this operand will be safe to use for phi of ops.
2585 //
2586 // The reason some operands are unsafe is that we are not trying to recursively
2587 // translate everything back through phi nodes.  We actually expect some lookups
2588 // of expressions to fail.  In particular, a lookup where the expression cannot
2589 // exist in the predecessor.  This is true even if the expression, as shown, can
2590 // be determined to be constant.
2591 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2592                                  SmallPtrSetImpl<const Value *> &Visited) {
2593   SmallVector<Value *, 4> Worklist;
2594   Worklist.push_back(V);
2595   while (!Worklist.empty()) {
2596     auto *I = Worklist.pop_back_val();
2597     if (!isa<Instruction>(I))
2598       continue;
2599 
2600     auto OISIt = OpSafeForPHIOfOps.find(I);
2601     if (OISIt != OpSafeForPHIOfOps.end())
2602       return OISIt->second;
2603 
2604     // Keep walking until we either dominate the phi block, or hit a phi, or run
2605     // out of things to check.
2606     if (DT->properlyDominates(getBlockForValue(I), PHIBlock)) {
2607       OpSafeForPHIOfOps.insert({I, true});
2608       continue;
2609     }
2610     // PHI in the same block.
2611     if (isa<PHINode>(I) && getBlockForValue(I) == PHIBlock) {
2612       OpSafeForPHIOfOps.insert({I, false});
2613       return false;
2614     }
2615 
2616     auto *OrigI = cast<Instruction>(I);
2617     // When we hit an instruction that reads memory (load, call, etc), we must
2618     // consider any store that may happen in the loop. For now, we assume the
2619     // worst: there is a store in the loop that alias with this read.
2620     // The case where the load is outside the loop is already covered by the
2621     // dominator check above.
2622     // TODO: relax this condition
2623     if (OrigI->mayReadFromMemory())
2624       return false;
2625 
2626     // Check the operands of the current instruction.
2627     for (auto *Op : OrigI->operand_values()) {
2628       if (!isa<Instruction>(Op))
2629         continue;
2630       // Stop now if we find an unsafe operand.
2631       auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2632       if (OISIt != OpSafeForPHIOfOps.end()) {
2633         if (!OISIt->second) {
2634           OpSafeForPHIOfOps.insert({I, false});
2635           return false;
2636         }
2637         continue;
2638       }
2639       if (!Visited.insert(Op).second)
2640         continue;
2641       Worklist.push_back(cast<Instruction>(Op));
2642     }
2643   }
2644   OpSafeForPHIOfOps.insert({V, true});
2645   return true;
2646 }
2647 
2648 // Try to find a leader for instruction TransInst, which is a phi translated
2649 // version of something in our original program.  Visited is used to ensure we
2650 // don't infinite loop during translations of cycles.  OrigInst is the
2651 // instruction in the original program, and PredBB is the predecessor we
2652 // translated it through.
2653 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2654                                  SmallPtrSetImpl<Value *> &Visited,
2655                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2656                                  BasicBlock *PredBB) {
2657   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2658   // Make sure it's marked as a temporary instruction.
2659   AllTempInstructions.insert(TransInst);
2660   // and make sure anything that tries to add it's DFS number is
2661   // redirected to the instruction we are making a phi of ops
2662   // for.
2663   TempToBlock.insert({TransInst, PredBB});
2664   InstrDFS.insert({TransInst, IDFSNum});
2665 
2666   auto Res = performSymbolicEvaluation(TransInst, Visited);
2667   const Expression *E = Res.Expr;
2668   addAdditionalUsers(Res, OrigInst);
2669   InstrDFS.erase(TransInst);
2670   AllTempInstructions.erase(TransInst);
2671   TempToBlock.erase(TransInst);
2672   if (MemAccess)
2673     TempToMemory.erase(TransInst);
2674   if (!E)
2675     return nullptr;
2676   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2677   if (!FoundVal) {
2678     ExpressionToPhiOfOps[E].insert(OrigInst);
2679     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2680                       << " in block " << getBlockName(PredBB) << "\n");
2681     return nullptr;
2682   }
2683   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2684     FoundVal = SI->getValueOperand();
2685   return FoundVal;
2686 }
2687 
2688 // When we see an instruction that is an op of phis, generate the equivalent phi
2689 // of ops form.
2690 const Expression *
2691 NewGVN::makePossiblePHIOfOps(Instruction *I,
2692                              SmallPtrSetImpl<Value *> &Visited) {
2693   if (!okayForPHIOfOps(I))
2694     return nullptr;
2695 
2696   if (!Visited.insert(I).second)
2697     return nullptr;
2698   // For now, we require the instruction be cycle free because we don't
2699   // *always* create a phi of ops for instructions that could be done as phi
2700   // of ops, we only do it if we think it is useful.  If we did do it all the
2701   // time, we could remove the cycle free check.
2702   if (!isCycleFree(I))
2703     return nullptr;
2704 
2705   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2706   // TODO: We don't do phi translation on memory accesses because it's
2707   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2708   // which we don't have a good way of doing ATM.
2709   auto *MemAccess = getMemoryAccess(I);
2710   // If the memory operation is defined by a memory operation this block that
2711   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2712   // can't help, as it would still be killed by that memory operation.
2713   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2714       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2715     return nullptr;
2716 
2717   // Convert op of phis to phi of ops
2718   SmallPtrSet<const Value *, 10> VisitedOps;
2719   SmallVector<Value *, 4> Ops(I->operand_values());
2720   BasicBlock *SamePHIBlock = nullptr;
2721   PHINode *OpPHI = nullptr;
2722   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2723     return nullptr;
2724   for (auto *Op : Ops) {
2725     if (!isa<PHINode>(Op)) {
2726       auto *ValuePHI = RealToTemp.lookup(Op);
2727       if (!ValuePHI)
2728         continue;
2729       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2730       Op = ValuePHI;
2731     }
2732     OpPHI = cast<PHINode>(Op);
2733     if (!SamePHIBlock) {
2734       SamePHIBlock = getBlockForValue(OpPHI);
2735     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2736       LLVM_DEBUG(
2737           dbgs()
2738           << "PHIs for operands are not all in the same block, aborting\n");
2739       return nullptr;
2740     }
2741     // No point in doing this for one-operand phis.
2742     if (OpPHI->getNumOperands() == 1) {
2743       OpPHI = nullptr;
2744       continue;
2745     }
2746   }
2747 
2748   if (!OpPHI)
2749     return nullptr;
2750 
2751   SmallVector<ValPair, 4> PHIOps;
2752   SmallPtrSet<Value *, 4> Deps;
2753   auto *PHIBlock = getBlockForValue(OpPHI);
2754   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2755   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2756     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2757     Value *FoundVal = nullptr;
2758     SmallPtrSet<Value *, 4> CurrentDeps;
2759     // We could just skip unreachable edges entirely but it's tricky to do
2760     // with rewriting existing phi nodes.
2761     if (ReachableEdges.count({PredBB, PHIBlock})) {
2762       // Clone the instruction, create an expression from it that is
2763       // translated back into the predecessor, and see if we have a leader.
2764       Instruction *ValueOp = I->clone();
2765       if (MemAccess)
2766         TempToMemory.insert({ValueOp, MemAccess});
2767       bool SafeForPHIOfOps = true;
2768       VisitedOps.clear();
2769       for (auto &Op : ValueOp->operands()) {
2770         auto *OrigOp = &*Op;
2771         // When these operand changes, it could change whether there is a
2772         // leader for us or not, so we have to add additional users.
2773         if (isa<PHINode>(Op)) {
2774           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2775           if (Op != OrigOp && Op != I)
2776             CurrentDeps.insert(Op);
2777         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2778           if (getBlockForValue(ValuePHI) == PHIBlock)
2779             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2780         }
2781         // If we phi-translated the op, it must be safe.
2782         SafeForPHIOfOps =
2783             SafeForPHIOfOps &&
2784             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2785       }
2786       // FIXME: For those things that are not safe we could generate
2787       // expressions all the way down, and see if this comes out to a
2788       // constant.  For anything where that is true, and unsafe, we should
2789       // have made a phi-of-ops (or value numbered it equivalent to something)
2790       // for the pieces already.
2791       FoundVal = !SafeForPHIOfOps ? nullptr
2792                                   : findLeaderForInst(ValueOp, Visited,
2793                                                       MemAccess, I, PredBB);
2794       ValueOp->deleteValue();
2795       if (!FoundVal) {
2796         // We failed to find a leader for the current ValueOp, but this might
2797         // change in case of the translated operands change.
2798         if (SafeForPHIOfOps)
2799           for (auto *Dep : CurrentDeps)
2800             addAdditionalUsers(Dep, I);
2801 
2802         return nullptr;
2803       }
2804       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2805     } else {
2806       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2807                         << getBlockName(PredBB)
2808                         << " because the block is unreachable\n");
2809       FoundVal = PoisonValue::get(I->getType());
2810       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2811     }
2812 
2813     PHIOps.push_back({FoundVal, PredBB});
2814     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2815                       << getBlockName(PredBB) << "\n");
2816   }
2817   for (auto *Dep : Deps)
2818     addAdditionalUsers(Dep, I);
2819   sortPHIOps(PHIOps);
2820   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2821   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2822     LLVM_DEBUG(
2823         dbgs()
2824         << "Not creating real PHI of ops because it simplified to existing "
2825            "value or constant\n");
2826     // We have leaders for all operands, but do not create a real PHI node with
2827     // those leaders as operands, so the link between the operands and the
2828     // PHI-of-ops is not materialized in the IR. If any of those leaders
2829     // changes, the PHI-of-op may change also, so we need to add the operands as
2830     // additional users.
2831     for (auto &O : PHIOps)
2832       addAdditionalUsers(O.first, I);
2833 
2834     return E;
2835   }
2836   auto *ValuePHI = RealToTemp.lookup(I);
2837   bool NewPHI = false;
2838   if (!ValuePHI) {
2839     ValuePHI =
2840         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2841     addPhiOfOps(ValuePHI, PHIBlock, I);
2842     NewPHI = true;
2843     NumGVNPHIOfOpsCreated++;
2844   }
2845   if (NewPHI) {
2846     for (auto PHIOp : PHIOps)
2847       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2848   } else {
2849     TempToBlock[ValuePHI] = PHIBlock;
2850     unsigned int i = 0;
2851     for (auto PHIOp : PHIOps) {
2852       ValuePHI->setIncomingValue(i, PHIOp.first);
2853       ValuePHI->setIncomingBlock(i, PHIOp.second);
2854       ++i;
2855     }
2856   }
2857   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2858   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2859                     << "\n");
2860 
2861   return E;
2862 }
2863 
2864 // The algorithm initially places the values of the routine in the TOP
2865 // congruence class. The leader of TOP is the undetermined value `poison`.
2866 // When the algorithm has finished, values still in TOP are unreachable.
2867 void NewGVN::initializeCongruenceClasses(Function &F) {
2868   NextCongruenceNum = 0;
2869 
2870   // Note that even though we use the live on entry def as a representative
2871   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2872   // have no real equivalent to poison for MemoryAccesses, and so we really
2873   // should be checking whether the MemoryAccess is top if we want to know if it
2874   // is equivalent to everything.  Otherwise, what this really signifies is that
2875   // the access "it reaches all the way back to the beginning of the function"
2876 
2877   // Initialize all other instructions to be in TOP class.
2878   TOPClass = createCongruenceClass(nullptr, nullptr);
2879   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2880   //  The live on entry def gets put into it's own class
2881   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2882       createMemoryClass(MSSA->getLiveOnEntryDef());
2883 
2884   for (auto *DTN : nodes(DT)) {
2885     BasicBlock *BB = DTN->getBlock();
2886     // All MemoryAccesses are equivalent to live on entry to start. They must
2887     // be initialized to something so that initial changes are noticed. For
2888     // the maximal answer, we initialize them all to be the same as
2889     // liveOnEntry.
2890     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2891     if (MemoryBlockDefs)
2892       for (const auto &Def : *MemoryBlockDefs) {
2893         MemoryAccessToClass[&Def] = TOPClass;
2894         auto *MD = dyn_cast<MemoryDef>(&Def);
2895         // Insert the memory phis into the member list.
2896         if (!MD) {
2897           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2898           TOPClass->memory_insert(MP);
2899           MemoryPhiState.insert({MP, MPS_TOP});
2900         }
2901 
2902         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2903           TOPClass->incStoreCount();
2904       }
2905 
2906     // FIXME: This is trying to discover which instructions are uses of phi
2907     // nodes.  We should move this into one of the myriad of places that walk
2908     // all the operands already.
2909     for (auto &I : *BB) {
2910       if (isa<PHINode>(&I))
2911         for (auto *U : I.users())
2912           if (auto *UInst = dyn_cast<Instruction>(U))
2913             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2914               PHINodeUses.insert(UInst);
2915       // Don't insert void terminators into the class. We don't value number
2916       // them, and they just end up sitting in TOP.
2917       if (I.isTerminator() && I.getType()->isVoidTy())
2918         continue;
2919       TOPClass->insert(&I);
2920       ValueToClass[&I] = TOPClass;
2921     }
2922   }
2923 
2924   // Initialize arguments to be in their own unique congruence classes
2925   for (auto &FA : F.args())
2926     createSingletonCongruenceClass(&FA);
2927 }
2928 
2929 void NewGVN::cleanupTables() {
2930   for (CongruenceClass *&CC : CongruenceClasses) {
2931     LLVM_DEBUG(dbgs() << "Congruence class " << CC->getID() << " has "
2932                       << CC->size() << " members\n");
2933     // Make sure we delete the congruence class (probably worth switching to
2934     // a unique_ptr at some point.
2935     delete CC;
2936     CC = nullptr;
2937   }
2938 
2939   // Destroy the value expressions
2940   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2941                                          AllTempInstructions.end());
2942   AllTempInstructions.clear();
2943 
2944   // We have to drop all references for everything first, so there are no uses
2945   // left as we delete them.
2946   for (auto *I : TempInst) {
2947     I->dropAllReferences();
2948   }
2949 
2950   while (!TempInst.empty()) {
2951     auto *I = TempInst.pop_back_val();
2952     I->deleteValue();
2953   }
2954 
2955   ValueToClass.clear();
2956   ArgRecycler.clear(ExpressionAllocator);
2957   ExpressionAllocator.Reset();
2958   CongruenceClasses.clear();
2959   ExpressionToClass.clear();
2960   ValueToExpression.clear();
2961   RealToTemp.clear();
2962   AdditionalUsers.clear();
2963   ExpressionToPhiOfOps.clear();
2964   TempToBlock.clear();
2965   TempToMemory.clear();
2966   PHINodeUses.clear();
2967   OpSafeForPHIOfOps.clear();
2968   ReachableBlocks.clear();
2969   ReachableEdges.clear();
2970 #ifndef NDEBUG
2971   ProcessedCount.clear();
2972 #endif
2973   InstrDFS.clear();
2974   InstructionsToErase.clear();
2975   DFSToInstr.clear();
2976   BlockInstRange.clear();
2977   TouchedInstructions.clear();
2978   MemoryAccessToClass.clear();
2979   PredicateToUsers.clear();
2980   MemoryToUsers.clear();
2981   RevisitOnReachabilityChange.clear();
2982   IntrinsicInstPred.clear();
2983 }
2984 
2985 // Assign local DFS number mapping to instructions, and leave space for Value
2986 // PHI's.
2987 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2988                                                        unsigned Start) {
2989   unsigned End = Start;
2990   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2991     InstrDFS[MemPhi] = End++;
2992     DFSToInstr.emplace_back(MemPhi);
2993   }
2994 
2995   // Then the real block goes next.
2996   for (auto &I : *B) {
2997     // There's no need to call isInstructionTriviallyDead more than once on
2998     // an instruction. Therefore, once we know that an instruction is dead
2999     // we change its DFS number so that it doesn't get value numbered.
3000     if (isInstructionTriviallyDead(&I, TLI)) {
3001       InstrDFS[&I] = 0;
3002       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3003       markInstructionForDeletion(&I);
3004       continue;
3005     }
3006     if (isa<PHINode>(&I))
3007       RevisitOnReachabilityChange[B].set(End);
3008     InstrDFS[&I] = End++;
3009     DFSToInstr.emplace_back(&I);
3010   }
3011 
3012   // All of the range functions taken half-open ranges (open on the end side).
3013   // So we do not subtract one from count, because at this point it is one
3014   // greater than the last instruction.
3015   return std::make_pair(Start, End);
3016 }
3017 
3018 void NewGVN::updateProcessedCount(const Value *V) {
3019 #ifndef NDEBUG
3020   if (ProcessedCount.count(V) == 0) {
3021     ProcessedCount.insert({V, 1});
3022   } else {
3023     ++ProcessedCount[V];
3024     assert(ProcessedCount[V] < 100 &&
3025            "Seem to have processed the same Value a lot");
3026   }
3027 #endif
3028 }
3029 
3030 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3031 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3032   // If all the arguments are the same, the MemoryPhi has the same value as the
3033   // argument.  Filter out unreachable blocks and self phis from our operands.
3034   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3035   // self-phi checking.
3036   const BasicBlock *PHIBlock = MP->getBlock();
3037   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3038     return cast<MemoryAccess>(U) != MP &&
3039            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3040            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3041   });
3042   // If all that is left is nothing, our memoryphi is poison. We keep it as
3043   // InitialClass.  Note: The only case this should happen is if we have at
3044   // least one self-argument.
3045   if (Filtered.begin() == Filtered.end()) {
3046     if (setMemoryClass(MP, TOPClass))
3047       markMemoryUsersTouched(MP);
3048     return;
3049   }
3050 
3051   // Transform the remaining operands into operand leaders.
3052   // FIXME: mapped_iterator should have a range version.
3053   auto LookupFunc = [&](const Use &U) {
3054     return lookupMemoryLeader(cast<MemoryAccess>(U));
3055   };
3056   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3057   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3058 
3059   // and now check if all the elements are equal.
3060   // Sadly, we can't use std::equals since these are random access iterators.
3061   const auto *AllSameValue = *MappedBegin;
3062   ++MappedBegin;
3063   bool AllEqual = std::all_of(
3064       MappedBegin, MappedEnd,
3065       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3066 
3067   if (AllEqual)
3068     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3069                       << "\n");
3070   else
3071     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3072   // If it's equal to something, it's in that class. Otherwise, it has to be in
3073   // a class where it is the leader (other things may be equivalent to it, but
3074   // it needs to start off in its own class, which means it must have been the
3075   // leader, and it can't have stopped being the leader because it was never
3076   // removed).
3077   CongruenceClass *CC =
3078       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3079   auto OldState = MemoryPhiState.lookup(MP);
3080   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3081   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3082   MemoryPhiState[MP] = NewState;
3083   if (setMemoryClass(MP, CC) || OldState != NewState)
3084     markMemoryUsersTouched(MP);
3085 }
3086 
3087 // Value number a single instruction, symbolically evaluating, performing
3088 // congruence finding, and updating mappings.
3089 void NewGVN::valueNumberInstruction(Instruction *I) {
3090   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3091   if (!I->isTerminator()) {
3092     const Expression *Symbolized = nullptr;
3093     SmallPtrSet<Value *, 2> Visited;
3094     if (DebugCounter::shouldExecute(VNCounter)) {
3095       auto Res = performSymbolicEvaluation(I, Visited);
3096       Symbolized = Res.Expr;
3097       addAdditionalUsers(Res, I);
3098 
3099       // Make a phi of ops if necessary
3100       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3101           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3102         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3103         // If we created a phi of ops, use it.
3104         // If we couldn't create one, make sure we don't leave one lying around
3105         if (PHIE) {
3106           Symbolized = PHIE;
3107         } else if (auto *Op = RealToTemp.lookup(I)) {
3108           removePhiOfOps(I, Op);
3109         }
3110       }
3111     } else {
3112       // Mark the instruction as unused so we don't value number it again.
3113       InstrDFS[I] = 0;
3114     }
3115     // If we couldn't come up with a symbolic expression, use the unknown
3116     // expression
3117     if (Symbolized == nullptr)
3118       Symbolized = createUnknownExpression(I);
3119     performCongruenceFinding(I, Symbolized);
3120   } else {
3121     // Handle terminators that return values. All of them produce values we
3122     // don't currently understand.  We don't place non-value producing
3123     // terminators in a class.
3124     if (!I->getType()->isVoidTy()) {
3125       auto *Symbolized = createUnknownExpression(I);
3126       performCongruenceFinding(I, Symbolized);
3127     }
3128     processOutgoingEdges(I, I->getParent());
3129   }
3130 }
3131 
3132 // Check if there is a path, using single or equal argument phi nodes, from
3133 // First to Second.
3134 bool NewGVN::singleReachablePHIPath(
3135     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3136     const MemoryAccess *Second) const {
3137   if (First == Second)
3138     return true;
3139   if (MSSA->isLiveOnEntryDef(First))
3140     return false;
3141 
3142   // This is not perfect, but as we're just verifying here, we can live with
3143   // the loss of precision. The real solution would be that of doing strongly
3144   // connected component finding in this routine, and it's probably not worth
3145   // the complexity for the time being. So, we just keep a set of visited
3146   // MemoryAccess and return true when we hit a cycle.
3147   if (!Visited.insert(First).second)
3148     return true;
3149 
3150   const auto *EndDef = First;
3151   for (const auto *ChainDef : optimized_def_chain(First)) {
3152     if (ChainDef == Second)
3153       return true;
3154     if (MSSA->isLiveOnEntryDef(ChainDef))
3155       return false;
3156     EndDef = ChainDef;
3157   }
3158   auto *MP = cast<MemoryPhi>(EndDef);
3159   auto ReachableOperandPred = [&](const Use &U) {
3160     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3161   };
3162   auto FilteredPhiArgs =
3163       make_filter_range(MP->operands(), ReachableOperandPred);
3164   SmallVector<const Value *, 32> OperandList;
3165   llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3166   bool Okay = all_equal(OperandList);
3167   if (Okay)
3168     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3169                                   Second);
3170   return false;
3171 }
3172 
3173 // Verify the that the memory equivalence table makes sense relative to the
3174 // congruence classes.  Note that this checking is not perfect, and is currently
3175 // subject to very rare false negatives. It is only useful for
3176 // testing/debugging.
3177 void NewGVN::verifyMemoryCongruency() const {
3178 #ifndef NDEBUG
3179   // Verify that the memory table equivalence and memory member set match
3180   for (const auto *CC : CongruenceClasses) {
3181     if (CC == TOPClass || CC->isDead())
3182       continue;
3183     if (CC->getStoreCount() != 0) {
3184       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3185              "Any class with a store as a leader should have a "
3186              "representative stored value");
3187       assert(CC->getMemoryLeader() &&
3188              "Any congruence class with a store should have a "
3189              "representative access");
3190     }
3191 
3192     if (CC->getMemoryLeader())
3193       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3194              "Representative MemoryAccess does not appear to be reverse "
3195              "mapped properly");
3196     for (const auto *M : CC->memory())
3197       assert(MemoryAccessToClass.lookup(M) == CC &&
3198              "Memory member does not appear to be reverse mapped properly");
3199   }
3200 
3201   // Anything equivalent in the MemoryAccess table should be in the same
3202   // congruence class.
3203 
3204   // Filter out the unreachable and trivially dead entries, because they may
3205   // never have been updated if the instructions were not processed.
3206   auto ReachableAccessPred =
3207       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3208         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3209         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3210             MemoryToDFSNum(Pair.first) == 0)
3211           return false;
3212         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3213           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3214 
3215         // We could have phi nodes which operands are all trivially dead,
3216         // so we don't process them.
3217         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3218           for (const auto &U : MemPHI->incoming_values()) {
3219             if (auto *I = dyn_cast<Instruction>(&*U)) {
3220               if (!isInstructionTriviallyDead(I))
3221                 return true;
3222             }
3223           }
3224           return false;
3225         }
3226 
3227         return true;
3228       };
3229 
3230   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3231   for (auto KV : Filtered) {
3232     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3233       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3234       if (FirstMUD && SecondMUD) {
3235         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3236         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3237                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3238                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3239                "The instructions for these memory operations should have "
3240                "been in the same congruence class or reachable through"
3241                "a single argument phi");
3242       }
3243     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3244       // We can only sanely verify that MemoryDefs in the operand list all have
3245       // the same class.
3246       auto ReachableOperandPred = [&](const Use &U) {
3247         return ReachableEdges.count(
3248                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3249                isa<MemoryDef>(U);
3250 
3251       };
3252       // All arguments should in the same class, ignoring unreachable arguments
3253       auto FilteredPhiArgs =
3254           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3255       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3256       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3257                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3258                        const MemoryDef *MD = cast<MemoryDef>(U);
3259                        return ValueToClass.lookup(MD->getMemoryInst());
3260                      });
3261       assert(all_equal(PhiOpClasses) &&
3262              "All MemoryPhi arguments should be in the same class");
3263     }
3264   }
3265 #endif
3266 }
3267 
3268 // Verify that the sparse propagation we did actually found the maximal fixpoint
3269 // We do this by storing the value to class mapping, touching all instructions,
3270 // and redoing the iteration to see if anything changed.
3271 void NewGVN::verifyIterationSettled(Function &F) {
3272 #ifndef NDEBUG
3273   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3274   if (DebugCounter::isCounterSet(VNCounter))
3275     DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3276 
3277   // Note that we have to store the actual classes, as we may change existing
3278   // classes during iteration.  This is because our memory iteration propagation
3279   // is not perfect, and so may waste a little work.  But it should generate
3280   // exactly the same congruence classes we have now, with different IDs.
3281   std::map<const Value *, CongruenceClass> BeforeIteration;
3282 
3283   for (auto &KV : ValueToClass) {
3284     if (auto *I = dyn_cast<Instruction>(KV.first))
3285       // Skip unused/dead instructions.
3286       if (InstrToDFSNum(I) == 0)
3287         continue;
3288     BeforeIteration.insert({KV.first, *KV.second});
3289   }
3290 
3291   TouchedInstructions.set();
3292   TouchedInstructions.reset(0);
3293   OpSafeForPHIOfOps.clear();
3294   iterateTouchedInstructions();
3295   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3296       EqualClasses;
3297   for (const auto &KV : ValueToClass) {
3298     if (auto *I = dyn_cast<Instruction>(KV.first))
3299       // Skip unused/dead instructions.
3300       if (InstrToDFSNum(I) == 0)
3301         continue;
3302     // We could sink these uses, but i think this adds a bit of clarity here as
3303     // to what we are comparing.
3304     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3305     auto *AfterCC = KV.second;
3306     // Note that the classes can't change at this point, so we memoize the set
3307     // that are equal.
3308     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3309       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3310              "Value number changed after main loop completed!");
3311       EqualClasses.insert({BeforeCC, AfterCC});
3312     }
3313   }
3314 #endif
3315 }
3316 
3317 // Verify that for each store expression in the expression to class mapping,
3318 // only the latest appears, and multiple ones do not appear.
3319 // Because loads do not use the stored value when doing equality with stores,
3320 // if we don't erase the old store expressions from the table, a load can find
3321 // a no-longer valid StoreExpression.
3322 void NewGVN::verifyStoreExpressions() const {
3323 #ifndef NDEBUG
3324   // This is the only use of this, and it's not worth defining a complicated
3325   // densemapinfo hash/equality function for it.
3326   std::set<
3327       std::pair<const Value *,
3328                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3329       StoreExpressionSet;
3330   for (const auto &KV : ExpressionToClass) {
3331     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3332       // Make sure a version that will conflict with loads is not already there
3333       auto Res = StoreExpressionSet.insert(
3334           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3335                                               SE->getStoredValue())});
3336       bool Okay = Res.second;
3337       // It's okay to have the same expression already in there if it is
3338       // identical in nature.
3339       // This can happen when the leader of the stored value changes over time.
3340       if (!Okay)
3341         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3342                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3343                 lookupOperandLeader(SE->getStoredValue()));
3344       assert(Okay && "Stored expression conflict exists in expression table");
3345       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3346       assert(ValueExpr && ValueExpr->equals(*SE) &&
3347              "StoreExpression in ExpressionToClass is not latest "
3348              "StoreExpression for value");
3349     }
3350   }
3351 #endif
3352 }
3353 
3354 // This is the main value numbering loop, it iterates over the initial touched
3355 // instruction set, propagating value numbers, marking things touched, etc,
3356 // until the set of touched instructions is completely empty.
3357 void NewGVN::iterateTouchedInstructions() {
3358   uint64_t Iterations = 0;
3359   // Figure out where touchedinstructions starts
3360   int FirstInstr = TouchedInstructions.find_first();
3361   // Nothing set, nothing to iterate, just return.
3362   if (FirstInstr == -1)
3363     return;
3364   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3365   while (TouchedInstructions.any()) {
3366     ++Iterations;
3367     // Walk through all the instructions in all the blocks in RPO.
3368     // TODO: As we hit a new block, we should push and pop equalities into a
3369     // table lookupOperandLeader can use, to catch things PredicateInfo
3370     // might miss, like edge-only equivalences.
3371     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3372 
3373       // This instruction was found to be dead. We don't bother looking
3374       // at it again.
3375       if (InstrNum == 0) {
3376         TouchedInstructions.reset(InstrNum);
3377         continue;
3378       }
3379 
3380       Value *V = InstrFromDFSNum(InstrNum);
3381       const BasicBlock *CurrBlock = getBlockForValue(V);
3382 
3383       // If we hit a new block, do reachability processing.
3384       if (CurrBlock != LastBlock) {
3385         LastBlock = CurrBlock;
3386         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3387         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3388 
3389         // If it's not reachable, erase any touched instructions and move on.
3390         if (!BlockReachable) {
3391           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3392           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3393                             << getBlockName(CurrBlock)
3394                             << " because it is unreachable\n");
3395           continue;
3396         }
3397         updateProcessedCount(CurrBlock);
3398       }
3399       // Reset after processing (because we may mark ourselves as touched when
3400       // we propagate equalities).
3401       TouchedInstructions.reset(InstrNum);
3402 
3403       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3404         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3405         valueNumberMemoryPhi(MP);
3406       } else if (auto *I = dyn_cast<Instruction>(V)) {
3407         valueNumberInstruction(I);
3408       } else {
3409         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3410       }
3411       updateProcessedCount(V);
3412     }
3413   }
3414   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3415 }
3416 
3417 // This is the main transformation entry point.
3418 bool NewGVN::runGVN() {
3419   if (DebugCounter::isCounterSet(VNCounter))
3420     StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3421   bool Changed = false;
3422   NumFuncArgs = F.arg_size();
3423   MSSAWalker = MSSA->getWalker();
3424   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3425 
3426   // Count number of instructions for sizing of hash tables, and come
3427   // up with a global dfs numbering for instructions.
3428   unsigned ICount = 1;
3429   // Add an empty instruction to account for the fact that we start at 1
3430   DFSToInstr.emplace_back(nullptr);
3431   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3432   // same as dominator tree order, particularly with regard whether backedges
3433   // get visited first or second, given a block with multiple successors.
3434   // If we visit in the wrong order, we will end up performing N times as many
3435   // iterations.
3436   // The dominator tree does guarantee that, for a given dom tree node, it's
3437   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3438   // the siblings.
3439   ReversePostOrderTraversal<Function *> RPOT(&F);
3440   unsigned Counter = 0;
3441   for (auto &B : RPOT) {
3442     auto *Node = DT->getNode(B);
3443     assert(Node && "RPO and Dominator tree should have same reachability");
3444     RPOOrdering[Node] = ++Counter;
3445   }
3446   // Sort dominator tree children arrays into RPO.
3447   for (auto &B : RPOT) {
3448     auto *Node = DT->getNode(B);
3449     if (Node->getNumChildren() > 1)
3450       llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3451         return RPOOrdering[A] < RPOOrdering[B];
3452       });
3453   }
3454 
3455   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3456   for (auto *DTN : depth_first(DT->getRootNode())) {
3457     BasicBlock *B = DTN->getBlock();
3458     const auto &BlockRange = assignDFSNumbers(B, ICount);
3459     BlockInstRange.insert({B, BlockRange});
3460     ICount += BlockRange.second - BlockRange.first;
3461   }
3462   initializeCongruenceClasses(F);
3463 
3464   TouchedInstructions.resize(ICount);
3465   // Ensure we don't end up resizing the expressionToClass map, as
3466   // that can be quite expensive. At most, we have one expression per
3467   // instruction.
3468   ExpressionToClass.reserve(ICount);
3469 
3470   // Initialize the touched instructions to include the entry block.
3471   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3472   TouchedInstructions.set(InstRange.first, InstRange.second);
3473   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3474                     << " marked reachable\n");
3475   ReachableBlocks.insert(&F.getEntryBlock());
3476 
3477   iterateTouchedInstructions();
3478   verifyMemoryCongruency();
3479   verifyIterationSettled(F);
3480   verifyStoreExpressions();
3481 
3482   Changed |= eliminateInstructions(F);
3483 
3484   // Delete all instructions marked for deletion.
3485   for (Instruction *ToErase : InstructionsToErase) {
3486     if (!ToErase->use_empty())
3487       ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType()));
3488 
3489     assert(ToErase->getParent() &&
3490            "BB containing ToErase deleted unexpectedly!");
3491     ToErase->eraseFromParent();
3492   }
3493   Changed |= !InstructionsToErase.empty();
3494 
3495   // Delete all unreachable blocks.
3496   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3497     return !ReachableBlocks.count(&BB);
3498   };
3499 
3500   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3501     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3502                       << " is unreachable\n");
3503     deleteInstructionsInBlock(&BB);
3504     Changed = true;
3505   }
3506 
3507   cleanupTables();
3508   return Changed;
3509 }
3510 
3511 struct NewGVN::ValueDFS {
3512   int DFSIn = 0;
3513   int DFSOut = 0;
3514   int LocalNum = 0;
3515 
3516   // Only one of Def and U will be set.
3517   // The bool in the Def tells us whether the Def is the stored value of a
3518   // store.
3519   PointerIntPair<Value *, 1, bool> Def;
3520   Use *U = nullptr;
3521 
3522   bool operator<(const ValueDFS &Other) const {
3523     // It's not enough that any given field be less than - we have sets
3524     // of fields that need to be evaluated together to give a proper ordering.
3525     // For example, if you have;
3526     // DFS (1, 3)
3527     // Val 0
3528     // DFS (1, 2)
3529     // Val 50
3530     // We want the second to be less than the first, but if we just go field
3531     // by field, we will get to Val 0 < Val 50 and say the first is less than
3532     // the second. We only want it to be less than if the DFS orders are equal.
3533     //
3534     // Each LLVM instruction only produces one value, and thus the lowest-level
3535     // differentiator that really matters for the stack (and what we use as as a
3536     // replacement) is the local dfs number.
3537     // Everything else in the structure is instruction level, and only affects
3538     // the order in which we will replace operands of a given instruction.
3539     //
3540     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3541     // the order of replacement of uses does not matter.
3542     // IE given,
3543     //  a = 5
3544     //  b = a + a
3545     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3546     // localnum.
3547     // The .val will be the same as well.
3548     // The .u's will be different.
3549     // You will replace both, and it does not matter what order you replace them
3550     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3551     // operand 2).
3552     // Similarly for the case of same dfsin, dfsout, localnum, but different
3553     // .val's
3554     //  a = 5
3555     //  b  = 6
3556     //  c = a + b
3557     // in c, we will a valuedfs for a, and one for b,with everything the same
3558     // but .val  and .u.
3559     // It does not matter what order we replace these operands in.
3560     // You will always end up with the same IR, and this is guaranteed.
3561     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3562            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3563                     Other.U);
3564   }
3565 };
3566 
3567 // This function converts the set of members for a congruence class from values,
3568 // to sets of defs and uses with associated DFS info.  The total number of
3569 // reachable uses for each value is stored in UseCount, and instructions that
3570 // seem
3571 // dead (have no non-dead uses) are stored in ProbablyDead.
3572 void NewGVN::convertClassToDFSOrdered(
3573     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3574     DenseMap<const Value *, unsigned int> &UseCounts,
3575     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3576   for (auto *D : Dense) {
3577     // First add the value.
3578     BasicBlock *BB = getBlockForValue(D);
3579     // Constants are handled prior to ever calling this function, so
3580     // we should only be left with instructions as members.
3581     assert(BB && "Should have figured out a basic block for value");
3582     ValueDFS VDDef;
3583     DomTreeNode *DomNode = DT->getNode(BB);
3584     VDDef.DFSIn = DomNode->getDFSNumIn();
3585     VDDef.DFSOut = DomNode->getDFSNumOut();
3586     // If it's a store, use the leader of the value operand, if it's always
3587     // available, or the value operand.  TODO: We could do dominance checks to
3588     // find a dominating leader, but not worth it ATM.
3589     if (auto *SI = dyn_cast<StoreInst>(D)) {
3590       auto Leader = lookupOperandLeader(SI->getValueOperand());
3591       if (alwaysAvailable(Leader)) {
3592         VDDef.Def.setPointer(Leader);
3593       } else {
3594         VDDef.Def.setPointer(SI->getValueOperand());
3595         VDDef.Def.setInt(true);
3596       }
3597     } else {
3598       VDDef.Def.setPointer(D);
3599     }
3600     assert(isa<Instruction>(D) &&
3601            "The dense set member should always be an instruction");
3602     Instruction *Def = cast<Instruction>(D);
3603     VDDef.LocalNum = InstrToDFSNum(D);
3604     DFSOrderedSet.push_back(VDDef);
3605     // If there is a phi node equivalent, add it
3606     if (auto *PN = RealToTemp.lookup(Def)) {
3607       auto *PHIE =
3608           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3609       if (PHIE) {
3610         VDDef.Def.setInt(false);
3611         VDDef.Def.setPointer(PN);
3612         VDDef.LocalNum = 0;
3613         DFSOrderedSet.push_back(VDDef);
3614       }
3615     }
3616 
3617     unsigned int UseCount = 0;
3618     // Now add the uses.
3619     for (auto &U : Def->uses()) {
3620       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3621         // Don't try to replace into dead uses
3622         if (InstructionsToErase.count(I))
3623           continue;
3624         ValueDFS VDUse;
3625         // Put the phi node uses in the incoming block.
3626         BasicBlock *IBlock;
3627         if (auto *P = dyn_cast<PHINode>(I)) {
3628           IBlock = P->getIncomingBlock(U);
3629           // Make phi node users appear last in the incoming block
3630           // they are from.
3631           VDUse.LocalNum = InstrDFS.size() + 1;
3632         } else {
3633           IBlock = getBlockForValue(I);
3634           VDUse.LocalNum = InstrToDFSNum(I);
3635         }
3636 
3637         // Skip uses in unreachable blocks, as we're going
3638         // to delete them.
3639         if (!ReachableBlocks.contains(IBlock))
3640           continue;
3641 
3642         DomTreeNode *DomNode = DT->getNode(IBlock);
3643         VDUse.DFSIn = DomNode->getDFSNumIn();
3644         VDUse.DFSOut = DomNode->getDFSNumOut();
3645         VDUse.U = &U;
3646         ++UseCount;
3647         DFSOrderedSet.emplace_back(VDUse);
3648       }
3649     }
3650 
3651     // If there are no uses, it's probably dead (but it may have side-effects,
3652     // so not definitely dead. Otherwise, store the number of uses so we can
3653     // track if it becomes dead later).
3654     if (UseCount == 0)
3655       ProbablyDead.insert(Def);
3656     else
3657       UseCounts[Def] = UseCount;
3658   }
3659 }
3660 
3661 // This function converts the set of members for a congruence class from values,
3662 // to the set of defs for loads and stores, with associated DFS info.
3663 void NewGVN::convertClassToLoadsAndStores(
3664     const CongruenceClass &Dense,
3665     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3666   for (auto *D : Dense) {
3667     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3668       continue;
3669 
3670     BasicBlock *BB = getBlockForValue(D);
3671     ValueDFS VD;
3672     DomTreeNode *DomNode = DT->getNode(BB);
3673     VD.DFSIn = DomNode->getDFSNumIn();
3674     VD.DFSOut = DomNode->getDFSNumOut();
3675     VD.Def.setPointer(D);
3676 
3677     // If it's an instruction, use the real local dfs number.
3678     if (auto *I = dyn_cast<Instruction>(D))
3679       VD.LocalNum = InstrToDFSNum(I);
3680     else
3681       llvm_unreachable("Should have been an instruction");
3682 
3683     LoadsAndStores.emplace_back(VD);
3684   }
3685 }
3686 
3687 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3688   patchReplacementInstruction(I, Repl);
3689   I->replaceAllUsesWith(Repl);
3690 }
3691 
3692 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3693   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3694   ++NumGVNBlocksDeleted;
3695 
3696   // Delete the instructions backwards, as it has a reduced likelihood of having
3697   // to update as many def-use and use-def chains. Start after the terminator.
3698   auto StartPoint = BB->rbegin();
3699   ++StartPoint;
3700   // Note that we explicitly recalculate BB->rend() on each iteration,
3701   // as it may change when we remove the first instruction.
3702   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3703     Instruction &Inst = *I++;
3704     if (!Inst.use_empty())
3705       Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType()));
3706     if (isa<LandingPadInst>(Inst))
3707       continue;
3708     salvageKnowledge(&Inst, AC);
3709 
3710     Inst.eraseFromParent();
3711     ++NumGVNInstrDeleted;
3712   }
3713   // Now insert something that simplifycfg will turn into an unreachable.
3714   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3715   new StoreInst(PoisonValue::get(Int8Ty),
3716                 Constant::getNullValue(Int8Ty->getPointerTo()),
3717                 BB->getTerminator());
3718 }
3719 
3720 void NewGVN::markInstructionForDeletion(Instruction *I) {
3721   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3722   InstructionsToErase.insert(I);
3723 }
3724 
3725 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3726   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3727   patchAndReplaceAllUsesWith(I, V);
3728   // We save the actual erasing to avoid invalidating memory
3729   // dependencies until we are done with everything.
3730   markInstructionForDeletion(I);
3731 }
3732 
3733 namespace {
3734 
3735 // This is a stack that contains both the value and dfs info of where
3736 // that value is valid.
3737 class ValueDFSStack {
3738 public:
3739   Value *back() const { return ValueStack.back(); }
3740   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3741 
3742   void push_back(Value *V, int DFSIn, int DFSOut) {
3743     ValueStack.emplace_back(V);
3744     DFSStack.emplace_back(DFSIn, DFSOut);
3745   }
3746 
3747   bool empty() const { return DFSStack.empty(); }
3748 
3749   bool isInScope(int DFSIn, int DFSOut) const {
3750     if (empty())
3751       return false;
3752     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3753   }
3754 
3755   void popUntilDFSScope(int DFSIn, int DFSOut) {
3756 
3757     // These two should always be in sync at this point.
3758     assert(ValueStack.size() == DFSStack.size() &&
3759            "Mismatch between ValueStack and DFSStack");
3760     while (
3761         !DFSStack.empty() &&
3762         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3763       DFSStack.pop_back();
3764       ValueStack.pop_back();
3765     }
3766   }
3767 
3768 private:
3769   SmallVector<Value *, 8> ValueStack;
3770   SmallVector<std::pair<int, int>, 8> DFSStack;
3771 };
3772 
3773 } // end anonymous namespace
3774 
3775 // Given an expression, get the congruence class for it.
3776 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3777   if (auto *VE = dyn_cast<VariableExpression>(E))
3778     return ValueToClass.lookup(VE->getVariableValue());
3779   else if (isa<DeadExpression>(E))
3780     return TOPClass;
3781   return ExpressionToClass.lookup(E);
3782 }
3783 
3784 // Given a value and a basic block we are trying to see if it is available in,
3785 // see if the value has a leader available in that block.
3786 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3787                                   const Instruction *OrigInst,
3788                                   const BasicBlock *BB) const {
3789   // It would already be constant if we could make it constant
3790   if (auto *CE = dyn_cast<ConstantExpression>(E))
3791     return CE->getConstantValue();
3792   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3793     auto *V = VE->getVariableValue();
3794     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3795       return VE->getVariableValue();
3796   }
3797 
3798   auto *CC = getClassForExpression(E);
3799   if (!CC)
3800     return nullptr;
3801   if (alwaysAvailable(CC->getLeader()))
3802     return CC->getLeader();
3803 
3804   for (auto *Member : *CC) {
3805     auto *MemberInst = dyn_cast<Instruction>(Member);
3806     if (MemberInst == OrigInst)
3807       continue;
3808     // Anything that isn't an instruction is always available.
3809     if (!MemberInst)
3810       return Member;
3811     if (DT->dominates(getBlockForValue(MemberInst), BB))
3812       return Member;
3813   }
3814   return nullptr;
3815 }
3816 
3817 bool NewGVN::eliminateInstructions(Function &F) {
3818   // This is a non-standard eliminator. The normal way to eliminate is
3819   // to walk the dominator tree in order, keeping track of available
3820   // values, and eliminating them.  However, this is mildly
3821   // pointless. It requires doing lookups on every instruction,
3822   // regardless of whether we will ever eliminate it.  For
3823   // instructions part of most singleton congruence classes, we know we
3824   // will never eliminate them.
3825 
3826   // Instead, this eliminator looks at the congruence classes directly, sorts
3827   // them into a DFS ordering of the dominator tree, and then we just
3828   // perform elimination straight on the sets by walking the congruence
3829   // class member uses in order, and eliminate the ones dominated by the
3830   // last member.   This is worst case O(E log E) where E = number of
3831   // instructions in a single congruence class.  In theory, this is all
3832   // instructions.   In practice, it is much faster, as most instructions are
3833   // either in singleton congruence classes or can't possibly be eliminated
3834   // anyway (if there are no overlapping DFS ranges in class).
3835   // When we find something not dominated, it becomes the new leader
3836   // for elimination purposes.
3837   // TODO: If we wanted to be faster, We could remove any members with no
3838   // overlapping ranges while sorting, as we will never eliminate anything
3839   // with those members, as they don't dominate anything else in our set.
3840 
3841   bool AnythingReplaced = false;
3842 
3843   // Since we are going to walk the domtree anyway, and we can't guarantee the
3844   // DFS numbers are updated, we compute some ourselves.
3845   DT->updateDFSNumbers();
3846 
3847   // Go through all of our phi nodes, and kill the arguments associated with
3848   // unreachable edges.
3849   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3850     for (auto &Operand : PHI->incoming_values())
3851       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3852         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3853                           << " for block "
3854                           << getBlockName(PHI->getIncomingBlock(Operand))
3855                           << " with poison due to it being unreachable\n");
3856         Operand.set(PoisonValue::get(PHI->getType()));
3857       }
3858   };
3859   // Replace unreachable phi arguments.
3860   // At this point, RevisitOnReachabilityChange only contains:
3861   //
3862   // 1. PHIs
3863   // 2. Temporaries that will convert to PHIs
3864   // 3. Operations that are affected by an unreachable edge but do not fit into
3865   // 1 or 2 (rare).
3866   // So it is a slight overshoot of what we want. We could make it exact by
3867   // using two SparseBitVectors per block.
3868   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3869   for (auto &KV : ReachableEdges)
3870     ReachablePredCount[KV.getEnd()]++;
3871   for (auto &BBPair : RevisitOnReachabilityChange) {
3872     for (auto InstNum : BBPair.second) {
3873       auto *Inst = InstrFromDFSNum(InstNum);
3874       auto *PHI = dyn_cast<PHINode>(Inst);
3875       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3876       if (!PHI)
3877         continue;
3878       auto *BB = BBPair.first;
3879       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3880         ReplaceUnreachablePHIArgs(PHI, BB);
3881     }
3882   }
3883 
3884   // Map to store the use counts
3885   DenseMap<const Value *, unsigned int> UseCounts;
3886   for (auto *CC : reverse(CongruenceClasses)) {
3887     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3888                       << "\n");
3889     // Track the equivalent store info so we can decide whether to try
3890     // dead store elimination.
3891     SmallVector<ValueDFS, 8> PossibleDeadStores;
3892     SmallPtrSet<Instruction *, 8> ProbablyDead;
3893     if (CC->isDead() || CC->empty())
3894       continue;
3895     // Everything still in the TOP class is unreachable or dead.
3896     if (CC == TOPClass) {
3897       for (auto *M : *CC) {
3898         auto *VTE = ValueToExpression.lookup(M);
3899         if (VTE && isa<DeadExpression>(VTE))
3900           markInstructionForDeletion(cast<Instruction>(M));
3901         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3902                 InstructionsToErase.count(cast<Instruction>(M))) &&
3903                "Everything in TOP should be unreachable or dead at this "
3904                "point");
3905       }
3906       continue;
3907     }
3908 
3909     assert(CC->getLeader() && "We should have had a leader");
3910     // If this is a leader that is always available, and it's a
3911     // constant or has no equivalences, just replace everything with
3912     // it. We then update the congruence class with whatever members
3913     // are left.
3914     Value *Leader =
3915         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3916     if (alwaysAvailable(Leader)) {
3917       CongruenceClass::MemberSet MembersLeft;
3918       for (auto *M : *CC) {
3919         Value *Member = M;
3920         // Void things have no uses we can replace.
3921         if (Member == Leader || !isa<Instruction>(Member) ||
3922             Member->getType()->isVoidTy()) {
3923           MembersLeft.insert(Member);
3924           continue;
3925         }
3926         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3927                           << *Member << "\n");
3928         auto *I = cast<Instruction>(Member);
3929         assert(Leader != I && "About to accidentally remove our leader");
3930         replaceInstruction(I, Leader);
3931         AnythingReplaced = true;
3932       }
3933       CC->swap(MembersLeft);
3934     } else {
3935       // If this is a singleton, we can skip it.
3936       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3937         // This is a stack because equality replacement/etc may place
3938         // constants in the middle of the member list, and we want to use
3939         // those constant values in preference to the current leader, over
3940         // the scope of those constants.
3941         ValueDFSStack EliminationStack;
3942 
3943         // Convert the members to DFS ordered sets and then merge them.
3944         SmallVector<ValueDFS, 8> DFSOrderedSet;
3945         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3946 
3947         // Sort the whole thing.
3948         llvm::sort(DFSOrderedSet);
3949         for (auto &VD : DFSOrderedSet) {
3950           int MemberDFSIn = VD.DFSIn;
3951           int MemberDFSOut = VD.DFSOut;
3952           Value *Def = VD.Def.getPointer();
3953           bool FromStore = VD.Def.getInt();
3954           Use *U = VD.U;
3955           // We ignore void things because we can't get a value from them.
3956           if (Def && Def->getType()->isVoidTy())
3957             continue;
3958           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3959           if (DefInst && AllTempInstructions.count(DefInst)) {
3960             auto *PN = cast<PHINode>(DefInst);
3961 
3962             // If this is a value phi and that's the expression we used, insert
3963             // it into the program
3964             // remove from temp instruction list.
3965             AllTempInstructions.erase(PN);
3966             auto *DefBlock = getBlockForValue(Def);
3967             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3968                               << " into block "
3969                               << getBlockName(getBlockForValue(Def)) << "\n");
3970             PN->insertBefore(&DefBlock->front());
3971             Def = PN;
3972             NumGVNPHIOfOpsEliminations++;
3973           }
3974 
3975           if (EliminationStack.empty()) {
3976             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3977           } else {
3978             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3979                               << EliminationStack.dfs_back().first << ","
3980                               << EliminationStack.dfs_back().second << ")\n");
3981           }
3982 
3983           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3984                             << MemberDFSOut << ")\n");
3985           // First, we see if we are out of scope or empty.  If so,
3986           // and there equivalences, we try to replace the top of
3987           // stack with equivalences (if it's on the stack, it must
3988           // not have been eliminated yet).
3989           // Then we synchronize to our current scope, by
3990           // popping until we are back within a DFS scope that
3991           // dominates the current member.
3992           // Then, what happens depends on a few factors
3993           // If the stack is now empty, we need to push
3994           // If we have a constant or a local equivalence we want to
3995           // start using, we also push.
3996           // Otherwise, we walk along, processing members who are
3997           // dominated by this scope, and eliminate them.
3998           bool ShouldPush = Def && EliminationStack.empty();
3999           bool OutOfScope =
4000               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
4001 
4002           if (OutOfScope || ShouldPush) {
4003             // Sync to our current scope.
4004             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4005             bool ShouldPush = Def && EliminationStack.empty();
4006             if (ShouldPush) {
4007               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4008             }
4009           }
4010 
4011           // Skip the Def's, we only want to eliminate on their uses.  But mark
4012           // dominated defs as dead.
4013           if (Def) {
4014             // For anything in this case, what and how we value number
4015             // guarantees that any side-effets that would have occurred (ie
4016             // throwing, etc) can be proven to either still occur (because it's
4017             // dominated by something that has the same side-effects), or never
4018             // occur.  Otherwise, we would not have been able to prove it value
4019             // equivalent to something else. For these things, we can just mark
4020             // it all dead.  Note that this is different from the "ProbablyDead"
4021             // set, which may not be dominated by anything, and thus, are only
4022             // easy to prove dead if they are also side-effect free. Note that
4023             // because stores are put in terms of the stored value, we skip
4024             // stored values here. If the stored value is really dead, it will
4025             // still be marked for deletion when we process it in its own class.
4026             if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4027                 isa<Instruction>(Def) && !FromStore)
4028               markInstructionForDeletion(cast<Instruction>(Def));
4029             continue;
4030           }
4031           // At this point, we know it is a Use we are trying to possibly
4032           // replace.
4033 
4034           assert(isa<Instruction>(U->get()) &&
4035                  "Current def should have been an instruction");
4036           assert(isa<Instruction>(U->getUser()) &&
4037                  "Current user should have been an instruction");
4038 
4039           // If the thing we are replacing into is already marked to be dead,
4040           // this use is dead.  Note that this is true regardless of whether
4041           // we have anything dominating the use or not.  We do this here
4042           // because we are already walking all the uses anyway.
4043           Instruction *InstUse = cast<Instruction>(U->getUser());
4044           if (InstructionsToErase.count(InstUse)) {
4045             auto &UseCount = UseCounts[U->get()];
4046             if (--UseCount == 0) {
4047               ProbablyDead.insert(cast<Instruction>(U->get()));
4048             }
4049           }
4050 
4051           // If we get to this point, and the stack is empty we must have a use
4052           // with nothing we can use to eliminate this use, so just skip it.
4053           if (EliminationStack.empty())
4054             continue;
4055 
4056           Value *DominatingLeader = EliminationStack.back();
4057 
4058           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4059           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4060           if (isSSACopy)
4061             DominatingLeader = II->getOperand(0);
4062 
4063           // Don't replace our existing users with ourselves.
4064           if (U->get() == DominatingLeader)
4065             continue;
4066           LLVM_DEBUG(dbgs()
4067                      << "Found replacement " << *DominatingLeader << " for "
4068                      << *U->get() << " in " << *(U->getUser()) << "\n");
4069 
4070           // If we replaced something in an instruction, handle the patching of
4071           // metadata.  Skip this if we are replacing predicateinfo with its
4072           // original operand, as we already know we can just drop it.
4073           auto *ReplacedInst = cast<Instruction>(U->get());
4074           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4075           if (!PI || DominatingLeader != PI->OriginalOp)
4076             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4077           U->set(DominatingLeader);
4078           // This is now a use of the dominating leader, which means if the
4079           // dominating leader was dead, it's now live!
4080           auto &LeaderUseCount = UseCounts[DominatingLeader];
4081           // It's about to be alive again.
4082           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4083             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4084           // For copy instructions, we use their operand as a leader,
4085           // which means we remove a user of the copy and it may become dead.
4086           if (isSSACopy) {
4087             unsigned &IIUseCount = UseCounts[II];
4088             if (--IIUseCount == 0)
4089               ProbablyDead.insert(II);
4090           }
4091           ++LeaderUseCount;
4092           AnythingReplaced = true;
4093         }
4094       }
4095     }
4096 
4097     // At this point, anything still in the ProbablyDead set is actually dead if
4098     // would be trivially dead.
4099     for (auto *I : ProbablyDead)
4100       if (wouldInstructionBeTriviallyDead(I))
4101         markInstructionForDeletion(I);
4102 
4103     // Cleanup the congruence class.
4104     CongruenceClass::MemberSet MembersLeft;
4105     for (auto *Member : *CC)
4106       if (!isa<Instruction>(Member) ||
4107           !InstructionsToErase.count(cast<Instruction>(Member)))
4108         MembersLeft.insert(Member);
4109     CC->swap(MembersLeft);
4110 
4111     // If we have possible dead stores to look at, try to eliminate them.
4112     if (CC->getStoreCount() > 0) {
4113       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4114       llvm::sort(PossibleDeadStores);
4115       ValueDFSStack EliminationStack;
4116       for (auto &VD : PossibleDeadStores) {
4117         int MemberDFSIn = VD.DFSIn;
4118         int MemberDFSOut = VD.DFSOut;
4119         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4120         if (EliminationStack.empty() ||
4121             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4122           // Sync to our current scope.
4123           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4124           if (EliminationStack.empty()) {
4125             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4126             continue;
4127           }
4128         }
4129         // We already did load elimination, so nothing to do here.
4130         if (isa<LoadInst>(Member))
4131           continue;
4132         assert(!EliminationStack.empty());
4133         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4134         (void)Leader;
4135         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4136         // Member is dominater by Leader, and thus dead
4137         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4138                           << " that is dominated by " << *Leader << "\n");
4139         markInstructionForDeletion(Member);
4140         CC->erase(Member);
4141         ++NumGVNDeadStores;
4142       }
4143     }
4144   }
4145   return AnythingReplaced;
4146 }
4147 
4148 // This function provides global ranking of operations so that we can place them
4149 // in a canonical order.  Note that rank alone is not necessarily enough for a
4150 // complete ordering, as constants all have the same rank.  However, generally,
4151 // we will simplify an operation with all constants so that it doesn't matter
4152 // what order they appear in.
4153 unsigned int NewGVN::getRank(const Value *V) const {
4154   // Prefer constants to undef to anything else
4155   // Undef is a constant, have to check it first.
4156   // Prefer poison to undef as it's less defined.
4157   // Prefer smaller constants to constantexprs
4158   // Note that the order here matters because of class inheritance
4159   if (isa<ConstantExpr>(V))
4160     return 3;
4161   if (isa<PoisonValue>(V))
4162     return 1;
4163   if (isa<UndefValue>(V))
4164     return 2;
4165   if (isa<Constant>(V))
4166     return 0;
4167   if (auto *A = dyn_cast<Argument>(V))
4168     return 4 + A->getArgNo();
4169 
4170   // Need to shift the instruction DFS by number of arguments + 5 to account for
4171   // the constant and argument ranking above.
4172   unsigned Result = InstrToDFSNum(V);
4173   if (Result > 0)
4174     return 5 + NumFuncArgs + Result;
4175   // Unreachable or something else, just return a really large number.
4176   return ~0;
4177 }
4178 
4179 // This is a function that says whether two commutative operations should
4180 // have their order swapped when canonicalizing.
4181 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4182   // Because we only care about a total ordering, and don't rewrite expressions
4183   // in this order, we order by rank, which will give a strict weak ordering to
4184   // everything but constants, and then we order by pointer address.
4185   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4186 }
4187 
4188 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B,
4189                                             const IntrinsicInst *I) const {
4190   auto LookupResult = IntrinsicInstPred.find(I);
4191   if (shouldSwapOperands(A, B)) {
4192     if (LookupResult == IntrinsicInstPred.end())
4193       IntrinsicInstPred.insert({I, B});
4194     else
4195       LookupResult->second = B;
4196     return true;
4197   }
4198 
4199   if (LookupResult != IntrinsicInstPred.end()) {
4200     auto *SeenPredicate = LookupResult->second;
4201     if (SeenPredicate) {
4202       if (SeenPredicate == B)
4203         return true;
4204       else
4205         LookupResult->second = nullptr;
4206     }
4207   }
4208   return false;
4209 }
4210 
4211 namespace {
4212 
4213 class NewGVNLegacyPass : public FunctionPass {
4214 public:
4215   // Pass identification, replacement for typeid.
4216   static char ID;
4217 
4218   NewGVNLegacyPass() : FunctionPass(ID) {
4219     initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4220   }
4221 
4222   bool runOnFunction(Function &F) override;
4223 
4224 private:
4225   void getAnalysisUsage(AnalysisUsage &AU) const override {
4226     AU.addRequired<AssumptionCacheTracker>();
4227     AU.addRequired<DominatorTreeWrapperPass>();
4228     AU.addRequired<TargetLibraryInfoWrapperPass>();
4229     AU.addRequired<MemorySSAWrapperPass>();
4230     AU.addRequired<AAResultsWrapperPass>();
4231     AU.addPreserved<DominatorTreeWrapperPass>();
4232     AU.addPreserved<GlobalsAAWrapperPass>();
4233   }
4234 };
4235 
4236 } // end anonymous namespace
4237 
4238 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4239   if (skipFunction(F))
4240     return false;
4241   return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4242                 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4243                 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4244                 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4245                 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4246                 F.getParent()->getDataLayout())
4247       .runGVN();
4248 }
4249 
4250 char NewGVNLegacyPass::ID = 0;
4251 
4252 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4253                       false, false)
4254 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4255 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4256 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4257 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4258 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4259 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4260 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4261                     false)
4262 
4263 // createGVNPass - The public interface to this file.
4264 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4265 
4266 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4267   // Apparently the order in which we get these results matter for
4268   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4269   // the same order here, just in case.
4270   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4271   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4272   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4273   auto &AA = AM.getResult<AAManager>(F);
4274   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4275   bool Changed =
4276       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4277           .runGVN();
4278   if (!Changed)
4279     return PreservedAnalyses::all();
4280   PreservedAnalyses PA;
4281   PA.preserve<DominatorTreeAnalysis>();
4282   return PA;
4283 }
4284