1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements the new LLVM's Global Value Numbering pass. 11 /// GVN partitions values computed by a function into congruence classes. 12 /// Values ending up in the same congruence class are guaranteed to be the same 13 /// for every execution of the program. In that respect, congruency is a 14 /// compile-time approximation of equivalence of values at runtime. 15 /// The algorithm implemented here uses a sparse formulation and it's based 16 /// on the ideas described in the paper: 17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from 18 /// Karthik Gargi. 19 /// 20 /// A brief overview of the algorithm: The algorithm is essentially the same as 21 /// the standard RPO value numbering algorithm (a good reference is the paper 22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference: 23 /// The RPO algorithm proceeds, on every iteration, to process every reachable 24 /// block and every instruction in that block. This is because the standard RPO 25 /// algorithm does not track what things have the same value number, it only 26 /// tracks what the value number of a given operation is (the mapping is 27 /// operation -> value number). Thus, when a value number of an operation 28 /// changes, it must reprocess everything to ensure all uses of a value number 29 /// get updated properly. In constrast, the sparse algorithm we use *also* 30 /// tracks what operations have a given value number (IE it also tracks the 31 /// reverse mapping from value number -> operations with that value number), so 32 /// that it only needs to reprocess the instructions that are affected when 33 /// something's value number changes. The vast majority of complexity and code 34 /// in this file is devoted to tracking what value numbers could change for what 35 /// instructions when various things happen. The rest of the algorithm is 36 /// devoted to performing symbolic evaluation, forward propagation, and 37 /// simplification of operations based on the value numbers deduced so far 38 /// 39 /// In order to make the GVN mostly-complete, we use a technique derived from 40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time 41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA 42 /// based GVN algorithms is related to their inability to detect equivalence 43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)). 44 /// We resolve this issue by generating the equivalent "phi of ops" form for 45 /// each op of phis we see, in a way that only takes polynomial time to resolve. 46 /// 47 /// We also do not perform elimination by using any published algorithm. All 48 /// published algorithms are O(Instructions). Instead, we use a technique that 49 /// is O(number of operations with the same value number), enabling us to skip 50 /// trying to eliminate things that have unique value numbers. 51 // 52 //===----------------------------------------------------------------------===// 53 54 #include "llvm/Transforms/Scalar/NewGVN.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/BitVector.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseMapInfo.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 #include "llvm/ADT/GraphTraits.h" 62 #include "llvm/ADT/Hashing.h" 63 #include "llvm/ADT/PointerIntPair.h" 64 #include "llvm/ADT/PostOrderIterator.h" 65 #include "llvm/ADT/SetOperations.h" 66 #include "llvm/ADT/SmallPtrSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/SparseBitVector.h" 69 #include "llvm/ADT/Statistic.h" 70 #include "llvm/ADT/iterator_range.h" 71 #include "llvm/Analysis/AliasAnalysis.h" 72 #include "llvm/Analysis/AssumptionCache.h" 73 #include "llvm/Analysis/CFGPrinter.h" 74 #include "llvm/Analysis/ConstantFolding.h" 75 #include "llvm/Analysis/GlobalsModRef.h" 76 #include "llvm/Analysis/InstructionSimplify.h" 77 #include "llvm/Analysis/MemoryBuiltins.h" 78 #include "llvm/Analysis/MemorySSA.h" 79 #include "llvm/Analysis/TargetLibraryInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/IR/Argument.h" 82 #include "llvm/IR/BasicBlock.h" 83 #include "llvm/IR/Constant.h" 84 #include "llvm/IR/Constants.h" 85 #include "llvm/IR/Dominators.h" 86 #include "llvm/IR/Function.h" 87 #include "llvm/IR/InstrTypes.h" 88 #include "llvm/IR/Instruction.h" 89 #include "llvm/IR/Instructions.h" 90 #include "llvm/IR/IntrinsicInst.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/Use.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/InitializePasses.h" 97 #include "llvm/Pass.h" 98 #include "llvm/Support/Allocator.h" 99 #include "llvm/Support/ArrayRecycler.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Debug.h" 103 #include "llvm/Support/DebugCounter.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/PointerLikeTypeTraits.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include "llvm/Transforms/Scalar.h" 108 #include "llvm/Transforms/Scalar/GVNExpression.h" 109 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 110 #include "llvm/Transforms/Utils/Local.h" 111 #include "llvm/Transforms/Utils/PredicateInfo.h" 112 #include "llvm/Transforms/Utils/VNCoercion.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cstdint> 116 #include <iterator> 117 #include <map> 118 #include <memory> 119 #include <set> 120 #include <string> 121 #include <tuple> 122 #include <utility> 123 #include <vector> 124 125 using namespace llvm; 126 using namespace llvm::GVNExpression; 127 using namespace llvm::VNCoercion; 128 using namespace llvm::PatternMatch; 129 130 #define DEBUG_TYPE "newgvn" 131 132 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted"); 133 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted"); 134 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified"); 135 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same"); 136 STATISTIC(NumGVNMaxIterations, 137 "Maximum Number of iterations it took to converge GVN"); 138 STATISTIC(NumGVNLeaderChanges, "Number of leader changes"); 139 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes"); 140 STATISTIC(NumGVNAvoidedSortedLeaderChanges, 141 "Number of avoided sorted leader changes"); 142 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated"); 143 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created"); 144 STATISTIC(NumGVNPHIOfOpsEliminations, 145 "Number of things eliminated using PHI of ops"); 146 DEBUG_COUNTER(VNCounter, "newgvn-vn", 147 "Controls which instructions are value numbered"); 148 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi", 149 "Controls which instructions we create phi of ops for"); 150 // Currently store defining access refinement is too slow due to basicaa being 151 // egregiously slow. This flag lets us keep it working while we work on this 152 // issue. 153 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement", 154 cl::init(false), cl::Hidden); 155 156 /// Currently, the generation "phi of ops" can result in correctness issues. 157 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true), 158 cl::Hidden); 159 160 //===----------------------------------------------------------------------===// 161 // GVN Pass 162 //===----------------------------------------------------------------------===// 163 164 // Anchor methods. 165 namespace llvm { 166 namespace GVNExpression { 167 168 Expression::~Expression() = default; 169 BasicExpression::~BasicExpression() = default; 170 CallExpression::~CallExpression() = default; 171 LoadExpression::~LoadExpression() = default; 172 StoreExpression::~StoreExpression() = default; 173 AggregateValueExpression::~AggregateValueExpression() = default; 174 PHIExpression::~PHIExpression() = default; 175 176 } // end namespace GVNExpression 177 } // end namespace llvm 178 179 namespace { 180 181 // Tarjan's SCC finding algorithm with Nuutila's improvements 182 // SCCIterator is actually fairly complex for the simple thing we want. 183 // It also wants to hand us SCC's that are unrelated to the phi node we ask 184 // about, and have us process them there or risk redoing work. 185 // Graph traits over a filter iterator also doesn't work that well here. 186 // This SCC finder is specialized to walk use-def chains, and only follows 187 // instructions, 188 // not generic values (arguments, etc). 189 struct TarjanSCC { 190 TarjanSCC() : Components(1) {} 191 192 void Start(const Instruction *Start) { 193 if (Root.lookup(Start) == 0) 194 FindSCC(Start); 195 } 196 197 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const { 198 unsigned ComponentID = ValueToComponent.lookup(V); 199 200 assert(ComponentID > 0 && 201 "Asking for a component for a value we never processed"); 202 return Components[ComponentID]; 203 } 204 205 private: 206 void FindSCC(const Instruction *I) { 207 Root[I] = ++DFSNum; 208 // Store the DFS Number we had before it possibly gets incremented. 209 unsigned int OurDFS = DFSNum; 210 for (auto &Op : I->operands()) { 211 if (auto *InstOp = dyn_cast<Instruction>(Op)) { 212 if (Root.lookup(Op) == 0) 213 FindSCC(InstOp); 214 if (!InComponent.count(Op)) 215 Root[I] = std::min(Root.lookup(I), Root.lookup(Op)); 216 } 217 } 218 // See if we really were the root of a component, by seeing if we still have 219 // our DFSNumber. If we do, we are the root of the component, and we have 220 // completed a component. If we do not, we are not the root of a component, 221 // and belong on the component stack. 222 if (Root.lookup(I) == OurDFS) { 223 unsigned ComponentID = Components.size(); 224 Components.resize(Components.size() + 1); 225 auto &Component = Components.back(); 226 Component.insert(I); 227 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n"); 228 InComponent.insert(I); 229 ValueToComponent[I] = ComponentID; 230 // Pop a component off the stack and label it. 231 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) { 232 auto *Member = Stack.back(); 233 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n"); 234 Component.insert(Member); 235 InComponent.insert(Member); 236 ValueToComponent[Member] = ComponentID; 237 Stack.pop_back(); 238 } 239 } else { 240 // Part of a component, push to stack 241 Stack.push_back(I); 242 } 243 } 244 245 unsigned int DFSNum = 1; 246 SmallPtrSet<const Value *, 8> InComponent; 247 DenseMap<const Value *, unsigned int> Root; 248 SmallVector<const Value *, 8> Stack; 249 250 // Store the components as vector of ptr sets, because we need the topo order 251 // of SCC's, but not individual member order 252 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components; 253 254 DenseMap<const Value *, unsigned> ValueToComponent; 255 }; 256 257 // Congruence classes represent the set of expressions/instructions 258 // that are all the same *during some scope in the function*. 259 // That is, because of the way we perform equality propagation, and 260 // because of memory value numbering, it is not correct to assume 261 // you can willy-nilly replace any member with any other at any 262 // point in the function. 263 // 264 // For any Value in the Member set, it is valid to replace any dominated member 265 // with that Value. 266 // 267 // Every congruence class has a leader, and the leader is used to symbolize 268 // instructions in a canonical way (IE every operand of an instruction that is a 269 // member of the same congruence class will always be replaced with leader 270 // during symbolization). To simplify symbolization, we keep the leader as a 271 // constant if class can be proved to be a constant value. Otherwise, the 272 // leader is the member of the value set with the smallest DFS number. Each 273 // congruence class also has a defining expression, though the expression may be 274 // null. If it exists, it can be used for forward propagation and reassociation 275 // of values. 276 277 // For memory, we also track a representative MemoryAccess, and a set of memory 278 // members for MemoryPhis (which have no real instructions). Note that for 279 // memory, it seems tempting to try to split the memory members into a 280 // MemoryCongruenceClass or something. Unfortunately, this does not work 281 // easily. The value numbering of a given memory expression depends on the 282 // leader of the memory congruence class, and the leader of memory congruence 283 // class depends on the value numbering of a given memory expression. This 284 // leads to wasted propagation, and in some cases, missed optimization. For 285 // example: If we had value numbered two stores together before, but now do not, 286 // we move them to a new value congruence class. This in turn will move at one 287 // of the memorydefs to a new memory congruence class. Which in turn, affects 288 // the value numbering of the stores we just value numbered (because the memory 289 // congruence class is part of the value number). So while theoretically 290 // possible to split them up, it turns out to be *incredibly* complicated to get 291 // it to work right, because of the interdependency. While structurally 292 // slightly messier, it is algorithmically much simpler and faster to do what we 293 // do here, and track them both at once in the same class. 294 // Note: The default iterators for this class iterate over values 295 class CongruenceClass { 296 public: 297 using MemberType = Value; 298 using MemberSet = SmallPtrSet<MemberType *, 4>; 299 using MemoryMemberType = MemoryPhi; 300 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>; 301 302 explicit CongruenceClass(unsigned ID) : ID(ID) {} 303 CongruenceClass(unsigned ID, Value *Leader, const Expression *E) 304 : ID(ID), RepLeader(Leader), DefiningExpr(E) {} 305 306 unsigned getID() const { return ID; } 307 308 // True if this class has no members left. This is mainly used for assertion 309 // purposes, and for skipping empty classes. 310 bool isDead() const { 311 // If it's both dead from a value perspective, and dead from a memory 312 // perspective, it's really dead. 313 return empty() && memory_empty(); 314 } 315 316 // Leader functions 317 Value *getLeader() const { return RepLeader; } 318 void setLeader(Value *Leader) { RepLeader = Leader; } 319 const std::pair<Value *, unsigned int> &getNextLeader() const { 320 return NextLeader; 321 } 322 void resetNextLeader() { NextLeader = {nullptr, ~0}; } 323 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) { 324 if (LeaderPair.second < NextLeader.second) 325 NextLeader = LeaderPair; 326 } 327 328 Value *getStoredValue() const { return RepStoredValue; } 329 void setStoredValue(Value *Leader) { RepStoredValue = Leader; } 330 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; } 331 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; } 332 333 // Forward propagation info 334 const Expression *getDefiningExpr() const { return DefiningExpr; } 335 336 // Value member set 337 bool empty() const { return Members.empty(); } 338 unsigned size() const { return Members.size(); } 339 MemberSet::const_iterator begin() const { return Members.begin(); } 340 MemberSet::const_iterator end() const { return Members.end(); } 341 void insert(MemberType *M) { Members.insert(M); } 342 void erase(MemberType *M) { Members.erase(M); } 343 void swap(MemberSet &Other) { Members.swap(Other); } 344 345 // Memory member set 346 bool memory_empty() const { return MemoryMembers.empty(); } 347 unsigned memory_size() const { return MemoryMembers.size(); } 348 MemoryMemberSet::const_iterator memory_begin() const { 349 return MemoryMembers.begin(); 350 } 351 MemoryMemberSet::const_iterator memory_end() const { 352 return MemoryMembers.end(); 353 } 354 iterator_range<MemoryMemberSet::const_iterator> memory() const { 355 return make_range(memory_begin(), memory_end()); 356 } 357 358 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); } 359 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); } 360 361 // Store count 362 unsigned getStoreCount() const { return StoreCount; } 363 void incStoreCount() { ++StoreCount; } 364 void decStoreCount() { 365 assert(StoreCount != 0 && "Store count went negative"); 366 --StoreCount; 367 } 368 369 // True if this class has no memory members. 370 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); } 371 372 // Return true if two congruence classes are equivalent to each other. This 373 // means that every field but the ID number and the dead field are equivalent. 374 bool isEquivalentTo(const CongruenceClass *Other) const { 375 if (!Other) 376 return false; 377 if (this == Other) 378 return true; 379 380 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) != 381 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue, 382 Other->RepMemoryAccess)) 383 return false; 384 if (DefiningExpr != Other->DefiningExpr) 385 if (!DefiningExpr || !Other->DefiningExpr || 386 *DefiningExpr != *Other->DefiningExpr) 387 return false; 388 389 if (Members.size() != Other->Members.size()) 390 return false; 391 392 return llvm::set_is_subset(Members, Other->Members); 393 } 394 395 private: 396 unsigned ID; 397 398 // Representative leader. 399 Value *RepLeader = nullptr; 400 401 // The most dominating leader after our current leader, because the member set 402 // is not sorted and is expensive to keep sorted all the time. 403 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U}; 404 405 // If this is represented by a store, the value of the store. 406 Value *RepStoredValue = nullptr; 407 408 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory 409 // access. 410 const MemoryAccess *RepMemoryAccess = nullptr; 411 412 // Defining Expression. 413 const Expression *DefiningExpr = nullptr; 414 415 // Actual members of this class. 416 MemberSet Members; 417 418 // This is the set of MemoryPhis that exist in the class. MemoryDefs and 419 // MemoryUses have real instructions representing them, so we only need to 420 // track MemoryPhis here. 421 MemoryMemberSet MemoryMembers; 422 423 // Number of stores in this congruence class. 424 // This is used so we can detect store equivalence changes properly. 425 int StoreCount = 0; 426 }; 427 428 } // end anonymous namespace 429 430 namespace llvm { 431 432 struct ExactEqualsExpression { 433 const Expression &E; 434 435 explicit ExactEqualsExpression(const Expression &E) : E(E) {} 436 437 hash_code getComputedHash() const { return E.getComputedHash(); } 438 439 bool operator==(const Expression &Other) const { 440 return E.exactlyEquals(Other); 441 } 442 }; 443 444 template <> struct DenseMapInfo<const Expression *> { 445 static const Expression *getEmptyKey() { 446 auto Val = static_cast<uintptr_t>(-1); 447 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 448 return reinterpret_cast<const Expression *>(Val); 449 } 450 451 static const Expression *getTombstoneKey() { 452 auto Val = static_cast<uintptr_t>(~1U); 453 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 454 return reinterpret_cast<const Expression *>(Val); 455 } 456 457 static unsigned getHashValue(const Expression *E) { 458 return E->getComputedHash(); 459 } 460 461 static unsigned getHashValue(const ExactEqualsExpression &E) { 462 return E.getComputedHash(); 463 } 464 465 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) { 466 if (RHS == getTombstoneKey() || RHS == getEmptyKey()) 467 return false; 468 return LHS == *RHS; 469 } 470 471 static bool isEqual(const Expression *LHS, const Expression *RHS) { 472 if (LHS == RHS) 473 return true; 474 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() || 475 LHS == getEmptyKey() || RHS == getEmptyKey()) 476 return false; 477 // Compare hashes before equality. This is *not* what the hashtable does, 478 // since it is computing it modulo the number of buckets, whereas we are 479 // using the full hash keyspace. Since the hashes are precomputed, this 480 // check is *much* faster than equality. 481 if (LHS->getComputedHash() != RHS->getComputedHash()) 482 return false; 483 return *LHS == *RHS; 484 } 485 }; 486 487 } // end namespace llvm 488 489 namespace { 490 491 class NewGVN { 492 Function &F; 493 DominatorTree *DT = nullptr; 494 const TargetLibraryInfo *TLI = nullptr; 495 AliasAnalysis *AA = nullptr; 496 MemorySSA *MSSA = nullptr; 497 MemorySSAWalker *MSSAWalker = nullptr; 498 AssumptionCache *AC = nullptr; 499 const DataLayout &DL; 500 std::unique_ptr<PredicateInfo> PredInfo; 501 502 // These are the only two things the create* functions should have 503 // side-effects on due to allocating memory. 504 mutable BumpPtrAllocator ExpressionAllocator; 505 mutable ArrayRecycler<Value *> ArgRecycler; 506 mutable TarjanSCC SCCFinder; 507 const SimplifyQuery SQ; 508 509 // Number of function arguments, used by ranking 510 unsigned int NumFuncArgs = 0; 511 512 // RPOOrdering of basic blocks 513 DenseMap<const DomTreeNode *, unsigned> RPOOrdering; 514 515 // Congruence class info. 516 517 // This class is called INITIAL in the paper. It is the class everything 518 // startsout in, and represents any value. Being an optimistic analysis, 519 // anything in the TOP class has the value TOP, which is indeterminate and 520 // equivalent to everything. 521 CongruenceClass *TOPClass = nullptr; 522 std::vector<CongruenceClass *> CongruenceClasses; 523 unsigned NextCongruenceNum = 0; 524 525 // Value Mappings. 526 DenseMap<Value *, CongruenceClass *> ValueToClass; 527 DenseMap<Value *, const Expression *> ValueToExpression; 528 529 // Value PHI handling, used to make equivalence between phi(op, op) and 530 // op(phi, phi). 531 // These mappings just store various data that would normally be part of the 532 // IR. 533 SmallPtrSet<const Instruction *, 8> PHINodeUses; 534 535 DenseMap<const Value *, bool> OpSafeForPHIOfOps; 536 537 // Map a temporary instruction we created to a parent block. 538 DenseMap<const Value *, BasicBlock *> TempToBlock; 539 540 // Map between the already in-program instructions and the temporary phis we 541 // created that they are known equivalent to. 542 DenseMap<const Value *, PHINode *> RealToTemp; 543 544 // In order to know when we should re-process instructions that have 545 // phi-of-ops, we track the set of expressions that they needed as 546 // leaders. When we discover new leaders for those expressions, we process the 547 // associated phi-of-op instructions again in case they have changed. The 548 // other way they may change is if they had leaders, and those leaders 549 // disappear. However, at the point they have leaders, there are uses of the 550 // relevant operands in the created phi node, and so they will get reprocessed 551 // through the normal user marking we perform. 552 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers; 553 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>> 554 ExpressionToPhiOfOps; 555 556 // Map from temporary operation to MemoryAccess. 557 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory; 558 559 // Set of all temporary instructions we created. 560 // Note: This will include instructions that were just created during value 561 // numbering. The way to test if something is using them is to check 562 // RealToTemp. 563 DenseSet<Instruction *> AllTempInstructions; 564 565 // This is the set of instructions to revisit on a reachability change. At 566 // the end of the main iteration loop it will contain at least all the phi of 567 // ops instructions that will be changed to phis, as well as regular phis. 568 // During the iteration loop, it may contain other things, such as phi of ops 569 // instructions that used edge reachability to reach a result, and so need to 570 // be revisited when the edge changes, independent of whether the phi they 571 // depended on changes. 572 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange; 573 574 // Mapping from predicate info we used to the instructions we used it with. 575 // In order to correctly ensure propagation, we must keep track of what 576 // comparisons we used, so that when the values of the comparisons change, we 577 // propagate the information to the places we used the comparison. 578 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>> 579 PredicateToUsers; 580 581 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for 582 // stores, we no longer can rely solely on the def-use chains of MemorySSA. 583 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>> 584 MemoryToUsers; 585 586 // A table storing which memorydefs/phis represent a memory state provably 587 // equivalent to another memory state. 588 // We could use the congruence class machinery, but the MemoryAccess's are 589 // abstract memory states, so they can only ever be equivalent to each other, 590 // and not to constants, etc. 591 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass; 592 593 // We could, if we wanted, build MemoryPhiExpressions and 594 // MemoryVariableExpressions, etc, and value number them the same way we value 595 // number phi expressions. For the moment, this seems like overkill. They 596 // can only exist in one of three states: they can be TOP (equal to 597 // everything), Equivalent to something else, or unique. Because we do not 598 // create expressions for them, we need to simulate leader change not just 599 // when they change class, but when they change state. Note: We can do the 600 // same thing for phis, and avoid having phi expressions if we wanted, We 601 // should eventually unify in one direction or the other, so this is a little 602 // bit of an experiment in which turns out easier to maintain. 603 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique }; 604 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState; 605 606 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle }; 607 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState; 608 609 // Expression to class mapping. 610 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>; 611 ExpressionClassMap ExpressionToClass; 612 613 // We have a single expression that represents currently DeadExpressions. 614 // For dead expressions we can prove will stay dead, we mark them with 615 // DFS number zero. However, it's possible in the case of phi nodes 616 // for us to assume/prove all arguments are dead during fixpointing. 617 // We use DeadExpression for that case. 618 DeadExpression *SingletonDeadExpression = nullptr; 619 620 // Which values have changed as a result of leader changes. 621 SmallPtrSet<Value *, 8> LeaderChanges; 622 623 // Reachability info. 624 using BlockEdge = BasicBlockEdge; 625 DenseSet<BlockEdge> ReachableEdges; 626 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks; 627 628 // This is a bitvector because, on larger functions, we may have 629 // thousands of touched instructions at once (entire blocks, 630 // instructions with hundreds of uses, etc). Even with optimization 631 // for when we mark whole blocks as touched, when this was a 632 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all 633 // the time in GVN just managing this list. The bitvector, on the 634 // other hand, efficiently supports test/set/clear of both 635 // individual and ranges, as well as "find next element" This 636 // enables us to use it as a worklist with essentially 0 cost. 637 BitVector TouchedInstructions; 638 639 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange; 640 mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred; 641 642 #ifndef NDEBUG 643 // Debugging for how many times each block and instruction got processed. 644 DenseMap<const Value *, unsigned> ProcessedCount; 645 #endif 646 647 // DFS info. 648 // This contains a mapping from Instructions to DFS numbers. 649 // The numbering starts at 1. An instruction with DFS number zero 650 // means that the instruction is dead. 651 DenseMap<const Value *, unsigned> InstrDFS; 652 653 // This contains the mapping DFS numbers to instructions. 654 SmallVector<Value *, 32> DFSToInstr; 655 656 // Deletion info. 657 SmallPtrSet<Instruction *, 8> InstructionsToErase; 658 659 public: 660 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC, 661 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA, 662 const DataLayout &DL) 663 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL), 664 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)), 665 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false, 666 /*CanUseUndef=*/false) {} 667 668 bool runGVN(); 669 670 private: 671 /// Helper struct return a Expression with an optional extra dependency. 672 struct ExprResult { 673 const Expression *Expr; 674 Value *ExtraDep; 675 const PredicateBase *PredDep; 676 677 ExprResult(const Expression *Expr, Value *ExtraDep = nullptr, 678 const PredicateBase *PredDep = nullptr) 679 : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {} 680 ExprResult(const ExprResult &) = delete; 681 ExprResult(ExprResult &&Other) 682 : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) { 683 Other.Expr = nullptr; 684 Other.ExtraDep = nullptr; 685 Other.PredDep = nullptr; 686 } 687 ExprResult &operator=(const ExprResult &Other) = delete; 688 ExprResult &operator=(ExprResult &&Other) = delete; 689 690 ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); } 691 692 operator bool() const { return Expr; } 693 694 static ExprResult none() { return {nullptr, nullptr, nullptr}; } 695 static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) { 696 return {Expr, ExtraDep, nullptr}; 697 } 698 static ExprResult some(const Expression *Expr, 699 const PredicateBase *PredDep) { 700 return {Expr, nullptr, PredDep}; 701 } 702 static ExprResult some(const Expression *Expr, Value *ExtraDep, 703 const PredicateBase *PredDep) { 704 return {Expr, ExtraDep, PredDep}; 705 } 706 }; 707 708 // Expression handling. 709 ExprResult createExpression(Instruction *) const; 710 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *, 711 Instruction *) const; 712 713 // Our canonical form for phi arguments is a pair of incoming value, incoming 714 // basic block. 715 using ValPair = std::pair<Value *, BasicBlock *>; 716 717 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *, 718 BasicBlock *, bool &HasBackEdge, 719 bool &OriginalOpsConstant) const; 720 const DeadExpression *createDeadExpression() const; 721 const VariableExpression *createVariableExpression(Value *) const; 722 const ConstantExpression *createConstantExpression(Constant *) const; 723 const Expression *createVariableOrConstant(Value *V) const; 724 const UnknownExpression *createUnknownExpression(Instruction *) const; 725 const StoreExpression *createStoreExpression(StoreInst *, 726 const MemoryAccess *) const; 727 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *, 728 const MemoryAccess *) const; 729 const CallExpression *createCallExpression(CallInst *, 730 const MemoryAccess *) const; 731 const AggregateValueExpression * 732 createAggregateValueExpression(Instruction *) const; 733 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const; 734 735 // Congruence class handling. 736 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) { 737 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E); 738 CongruenceClasses.emplace_back(result); 739 return result; 740 } 741 742 CongruenceClass *createMemoryClass(MemoryAccess *MA) { 743 auto *CC = createCongruenceClass(nullptr, nullptr); 744 CC->setMemoryLeader(MA); 745 return CC; 746 } 747 748 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) { 749 auto *CC = getMemoryClass(MA); 750 if (CC->getMemoryLeader() != MA) 751 CC = createMemoryClass(MA); 752 return CC; 753 } 754 755 CongruenceClass *createSingletonCongruenceClass(Value *Member) { 756 CongruenceClass *CClass = createCongruenceClass(Member, nullptr); 757 CClass->insert(Member); 758 ValueToClass[Member] = CClass; 759 return CClass; 760 } 761 762 void initializeCongruenceClasses(Function &F); 763 const Expression *makePossiblePHIOfOps(Instruction *, 764 SmallPtrSetImpl<Value *> &); 765 Value *findLeaderForInst(Instruction *ValueOp, 766 SmallPtrSetImpl<Value *> &Visited, 767 MemoryAccess *MemAccess, Instruction *OrigInst, 768 BasicBlock *PredBB); 769 bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock, 770 SmallPtrSetImpl<const Value *> &Visited, 771 SmallVectorImpl<Instruction *> &Worklist); 772 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock, 773 SmallPtrSetImpl<const Value *> &); 774 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue); 775 void removePhiOfOps(Instruction *I, PHINode *PHITemp); 776 777 // Value number an Instruction or MemoryPhi. 778 void valueNumberMemoryPhi(MemoryPhi *); 779 void valueNumberInstruction(Instruction *); 780 781 // Symbolic evaluation. 782 ExprResult checkExprResults(Expression *, Instruction *, Value *) const; 783 ExprResult performSymbolicEvaluation(Value *, 784 SmallPtrSetImpl<Value *> &) const; 785 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *, 786 Instruction *, 787 MemoryAccess *) const; 788 const Expression *performSymbolicLoadEvaluation(Instruction *) const; 789 const Expression *performSymbolicStoreEvaluation(Instruction *) const; 790 ExprResult performSymbolicCallEvaluation(Instruction *) const; 791 void sortPHIOps(MutableArrayRef<ValPair> Ops) const; 792 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>, 793 Instruction *I, 794 BasicBlock *PHIBlock) const; 795 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const; 796 ExprResult performSymbolicCmpEvaluation(Instruction *) const; 797 ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const; 798 799 // Congruence finding. 800 bool someEquivalentDominates(const Instruction *, const Instruction *) const; 801 Value *lookupOperandLeader(Value *) const; 802 CongruenceClass *getClassForExpression(const Expression *E) const; 803 void performCongruenceFinding(Instruction *, const Expression *); 804 void moveValueToNewCongruenceClass(Instruction *, const Expression *, 805 CongruenceClass *, CongruenceClass *); 806 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *, 807 CongruenceClass *, CongruenceClass *); 808 Value *getNextValueLeader(CongruenceClass *) const; 809 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const; 810 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To); 811 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const; 812 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const; 813 bool isMemoryAccessTOP(const MemoryAccess *) const; 814 815 // Ranking 816 unsigned int getRank(const Value *) const; 817 bool shouldSwapOperands(const Value *, const Value *) const; 818 bool shouldSwapOperandsForIntrinsic(const Value *, const Value *, 819 const IntrinsicInst *I) const; 820 821 // Reachability handling. 822 void updateReachableEdge(BasicBlock *, BasicBlock *); 823 void processOutgoingEdges(Instruction *, BasicBlock *); 824 Value *findConditionEquivalence(Value *) const; 825 826 // Elimination. 827 struct ValueDFS; 828 void convertClassToDFSOrdered(const CongruenceClass &, 829 SmallVectorImpl<ValueDFS> &, 830 DenseMap<const Value *, unsigned int> &, 831 SmallPtrSetImpl<Instruction *> &) const; 832 void convertClassToLoadsAndStores(const CongruenceClass &, 833 SmallVectorImpl<ValueDFS> &) const; 834 835 bool eliminateInstructions(Function &); 836 void replaceInstruction(Instruction *, Value *); 837 void markInstructionForDeletion(Instruction *); 838 void deleteInstructionsInBlock(BasicBlock *); 839 Value *findPHIOfOpsLeader(const Expression *, const Instruction *, 840 const BasicBlock *) const; 841 842 // Various instruction touch utilities 843 template <typename Map, typename KeyType> 844 void touchAndErase(Map &, const KeyType &); 845 void markUsersTouched(Value *); 846 void markMemoryUsersTouched(const MemoryAccess *); 847 void markMemoryDefTouched(const MemoryAccess *); 848 void markPredicateUsersTouched(Instruction *); 849 void markValueLeaderChangeTouched(CongruenceClass *CC); 850 void markMemoryLeaderChangeTouched(CongruenceClass *CC); 851 void markPhiOfOpsChanged(const Expression *E); 852 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const; 853 void addAdditionalUsers(Value *To, Value *User) const; 854 void addAdditionalUsers(ExprResult &Res, Instruction *User) const; 855 856 // Main loop of value numbering 857 void iterateTouchedInstructions(); 858 859 // Utilities. 860 void cleanupTables(); 861 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned); 862 void updateProcessedCount(const Value *V); 863 void verifyMemoryCongruency() const; 864 void verifyIterationSettled(Function &F); 865 void verifyStoreExpressions() const; 866 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &, 867 const MemoryAccess *, const MemoryAccess *) const; 868 BasicBlock *getBlockForValue(Value *V) const; 869 void deleteExpression(const Expression *E) const; 870 MemoryUseOrDef *getMemoryAccess(const Instruction *) const; 871 MemoryPhi *getMemoryAccess(const BasicBlock *) const; 872 template <class T, class Range> T *getMinDFSOfRange(const Range &) const; 873 874 unsigned InstrToDFSNum(const Value *V) const { 875 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses"); 876 return InstrDFS.lookup(V); 877 } 878 879 unsigned InstrToDFSNum(const MemoryAccess *MA) const { 880 return MemoryToDFSNum(MA); 881 } 882 883 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; } 884 885 // Given a MemoryAccess, return the relevant instruction DFS number. Note: 886 // This deliberately takes a value so it can be used with Use's, which will 887 // auto-convert to Value's but not to MemoryAccess's. 888 unsigned MemoryToDFSNum(const Value *MA) const { 889 assert(isa<MemoryAccess>(MA) && 890 "This should not be used with instructions"); 891 return isa<MemoryUseOrDef>(MA) 892 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst()) 893 : InstrDFS.lookup(MA); 894 } 895 896 bool isCycleFree(const Instruction *) const; 897 bool isBackedge(BasicBlock *From, BasicBlock *To) const; 898 899 // Debug counter info. When verifying, we have to reset the value numbering 900 // debug counter to the same state it started in to get the same results. 901 int64_t StartingVNCounter = 0; 902 }; 903 904 } // end anonymous namespace 905 906 template <typename T> 907 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) { 908 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) 909 return false; 910 return LHS.MemoryExpression::equals(RHS); 911 } 912 913 bool LoadExpression::equals(const Expression &Other) const { 914 return equalsLoadStoreHelper(*this, Other); 915 } 916 917 bool StoreExpression::equals(const Expression &Other) const { 918 if (!equalsLoadStoreHelper(*this, Other)) 919 return false; 920 // Make sure that store vs store includes the value operand. 921 if (const auto *S = dyn_cast<StoreExpression>(&Other)) 922 if (getStoredValue() != S->getStoredValue()) 923 return false; 924 return true; 925 } 926 927 // Determine if the edge From->To is a backedge 928 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const { 929 return From == To || 930 RPOOrdering.lookup(DT->getNode(From)) >= 931 RPOOrdering.lookup(DT->getNode(To)); 932 } 933 934 #ifndef NDEBUG 935 static std::string getBlockName(const BasicBlock *B) { 936 return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr); 937 } 938 #endif 939 940 // Get a MemoryAccess for an instruction, fake or real. 941 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const { 942 auto *Result = MSSA->getMemoryAccess(I); 943 return Result ? Result : TempToMemory.lookup(I); 944 } 945 946 // Get a MemoryPhi for a basic block. These are all real. 947 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const { 948 return MSSA->getMemoryAccess(BB); 949 } 950 951 // Get the basic block from an instruction/memory value. 952 BasicBlock *NewGVN::getBlockForValue(Value *V) const { 953 if (auto *I = dyn_cast<Instruction>(V)) { 954 auto *Parent = I->getParent(); 955 if (Parent) 956 return Parent; 957 Parent = TempToBlock.lookup(V); 958 assert(Parent && "Every fake instruction should have a block"); 959 return Parent; 960 } 961 962 auto *MP = dyn_cast<MemoryPhi>(V); 963 assert(MP && "Should have been an instruction or a MemoryPhi"); 964 return MP->getBlock(); 965 } 966 967 // Delete a definitely dead expression, so it can be reused by the expression 968 // allocator. Some of these are not in creation functions, so we have to accept 969 // const versions. 970 void NewGVN::deleteExpression(const Expression *E) const { 971 assert(isa<BasicExpression>(E)); 972 auto *BE = cast<BasicExpression>(E); 973 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler); 974 ExpressionAllocator.Deallocate(E); 975 } 976 977 // If V is a predicateinfo copy, get the thing it is a copy of. 978 static Value *getCopyOf(const Value *V) { 979 if (auto *II = dyn_cast<IntrinsicInst>(V)) 980 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 981 return II->getOperand(0); 982 return nullptr; 983 } 984 985 // Return true if V is really PN, even accounting for predicateinfo copies. 986 static bool isCopyOfPHI(const Value *V, const PHINode *PN) { 987 return V == PN || getCopyOf(V) == PN; 988 } 989 990 static bool isCopyOfAPHI(const Value *V) { 991 auto *CO = getCopyOf(V); 992 return CO && isa<PHINode>(CO); 993 } 994 995 // Sort PHI Operands into a canonical order. What we use here is an RPO 996 // order. The BlockInstRange numbers are generated in an RPO walk of the basic 997 // blocks. 998 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const { 999 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) { 1000 return BlockInstRange.lookup(P1.second).first < 1001 BlockInstRange.lookup(P2.second).first; 1002 }); 1003 } 1004 1005 // Return true if V is a value that will always be available (IE can 1006 // be placed anywhere) in the function. We don't do globals here 1007 // because they are often worse to put in place. 1008 static bool alwaysAvailable(Value *V) { 1009 return isa<Constant>(V) || isa<Argument>(V); 1010 } 1011 1012 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is 1013 // the original instruction we are creating a PHIExpression for (but may not be 1014 // a phi node). We require, as an invariant, that all the PHIOperands in the 1015 // same block are sorted the same way. sortPHIOps will sort them into a 1016 // canonical order. 1017 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands, 1018 const Instruction *I, 1019 BasicBlock *PHIBlock, 1020 bool &HasBackedge, 1021 bool &OriginalOpsConstant) const { 1022 unsigned NumOps = PHIOperands.size(); 1023 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock); 1024 1025 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1026 E->setType(PHIOperands.begin()->first->getType()); 1027 E->setOpcode(Instruction::PHI); 1028 1029 // Filter out unreachable phi operands. 1030 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) { 1031 auto *BB = P.second; 1032 if (auto *PHIOp = dyn_cast<PHINode>(I)) 1033 if (isCopyOfPHI(P.first, PHIOp)) 1034 return false; 1035 if (!ReachableEdges.count({BB, PHIBlock})) 1036 return false; 1037 // Things in TOPClass are equivalent to everything. 1038 if (ValueToClass.lookup(P.first) == TOPClass) 1039 return false; 1040 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first); 1041 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock); 1042 return lookupOperandLeader(P.first) != I; 1043 }); 1044 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E), 1045 [&](const ValPair &P) -> Value * { 1046 return lookupOperandLeader(P.first); 1047 }); 1048 return E; 1049 } 1050 1051 // Set basic expression info (Arguments, type, opcode) for Expression 1052 // E from Instruction I in block B. 1053 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const { 1054 bool AllConstant = true; 1055 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 1056 E->setType(GEP->getSourceElementType()); 1057 else 1058 E->setType(I->getType()); 1059 E->setOpcode(I->getOpcode()); 1060 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1061 1062 // Transform the operand array into an operand leader array, and keep track of 1063 // whether all members are constant. 1064 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) { 1065 auto Operand = lookupOperandLeader(O); 1066 AllConstant = AllConstant && isa<Constant>(Operand); 1067 return Operand; 1068 }); 1069 1070 return AllConstant; 1071 } 1072 1073 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T, 1074 Value *Arg1, Value *Arg2, 1075 Instruction *I) const { 1076 auto *E = new (ExpressionAllocator) BasicExpression(2); 1077 // TODO: we need to remove context instruction after Value Tracking 1078 // can run without context instruction 1079 const SimplifyQuery Q = SQ.getWithInstruction(I); 1080 1081 E->setType(T); 1082 E->setOpcode(Opcode); 1083 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1084 if (Instruction::isCommutative(Opcode)) { 1085 // Ensure that commutative instructions that only differ by a permutation 1086 // of their operands get the same value number by sorting the operand value 1087 // numbers. Since all commutative instructions have two operands it is more 1088 // efficient to sort by hand rather than using, say, std::sort. 1089 if (shouldSwapOperands(Arg1, Arg2)) 1090 std::swap(Arg1, Arg2); 1091 } 1092 E->op_push_back(lookupOperandLeader(Arg1)); 1093 E->op_push_back(lookupOperandLeader(Arg2)); 1094 1095 Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q); 1096 if (auto Simplified = checkExprResults(E, I, V)) { 1097 addAdditionalUsers(Simplified, I); 1098 return Simplified.Expr; 1099 } 1100 return E; 1101 } 1102 1103 // Take a Value returned by simplification of Expression E/Instruction 1104 // I, and see if it resulted in a simpler expression. If so, return 1105 // that expression. 1106 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I, 1107 Value *V) const { 1108 if (!V) 1109 return ExprResult::none(); 1110 1111 if (auto *C = dyn_cast<Constant>(V)) { 1112 if (I) 1113 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1114 << " constant " << *C << "\n"); 1115 NumGVNOpsSimplified++; 1116 assert(isa<BasicExpression>(E) && 1117 "We should always have had a basic expression here"); 1118 deleteExpression(E); 1119 return ExprResult::some(createConstantExpression(C)); 1120 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1121 if (I) 1122 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1123 << " variable " << *V << "\n"); 1124 deleteExpression(E); 1125 return ExprResult::some(createVariableExpression(V)); 1126 } 1127 1128 CongruenceClass *CC = ValueToClass.lookup(V); 1129 if (CC) { 1130 if (CC->getLeader() && CC->getLeader() != I) { 1131 return ExprResult::some(createVariableOrConstant(CC->getLeader()), V); 1132 } 1133 if (CC->getDefiningExpr()) { 1134 if (I) 1135 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1136 << " expression " << *CC->getDefiningExpr() << "\n"); 1137 NumGVNOpsSimplified++; 1138 deleteExpression(E); 1139 return ExprResult::some(CC->getDefiningExpr(), V); 1140 } 1141 } 1142 1143 return ExprResult::none(); 1144 } 1145 1146 // Create a value expression from the instruction I, replacing operands with 1147 // their leaders. 1148 1149 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const { 1150 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands()); 1151 // TODO: we need to remove context instruction after Value Tracking 1152 // can run without context instruction 1153 const SimplifyQuery Q = SQ.getWithInstruction(I); 1154 1155 bool AllConstant = setBasicExpressionInfo(I, E); 1156 1157 if (I->isCommutative()) { 1158 // Ensure that commutative instructions that only differ by a permutation 1159 // of their operands get the same value number by sorting the operand value 1160 // numbers. Since all commutative instructions have two operands it is more 1161 // efficient to sort by hand rather than using, say, std::sort. 1162 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 1163 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) 1164 E->swapOperands(0, 1); 1165 } 1166 // Perform simplification. 1167 if (auto *CI = dyn_cast<CmpInst>(I)) { 1168 // Sort the operand value numbers so x<y and y>x get the same value 1169 // number. 1170 CmpInst::Predicate Predicate = CI->getPredicate(); 1171 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) { 1172 E->swapOperands(0, 1); 1173 Predicate = CmpInst::getSwappedPredicate(Predicate); 1174 } 1175 E->setOpcode((CI->getOpcode() << 8) | Predicate); 1176 // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands 1177 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() && 1178 "Wrong types on cmp instruction"); 1179 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() && 1180 E->getOperand(1)->getType() == I->getOperand(1)->getType())); 1181 Value *V = 1182 simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q); 1183 if (auto Simplified = checkExprResults(E, I, V)) 1184 return Simplified; 1185 } else if (isa<SelectInst>(I)) { 1186 if (isa<Constant>(E->getOperand(0)) || 1187 E->getOperand(1) == E->getOperand(2)) { 1188 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() && 1189 E->getOperand(2)->getType() == I->getOperand(2)->getType()); 1190 Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1), 1191 E->getOperand(2), Q); 1192 if (auto Simplified = checkExprResults(E, I, V)) 1193 return Simplified; 1194 } 1195 } else if (I->isBinaryOp()) { 1196 Value *V = 1197 simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q); 1198 if (auto Simplified = checkExprResults(E, I, V)) 1199 return Simplified; 1200 } else if (auto *CI = dyn_cast<CastInst>(I)) { 1201 Value *V = 1202 simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q); 1203 if (auto Simplified = checkExprResults(E, I, V)) 1204 return Simplified; 1205 } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) { 1206 Value *V = 1207 simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(), 1208 makeArrayRef(std::next(E->op_begin()), E->op_end()), 1209 GEPI->isInBounds(), Q); 1210 if (auto Simplified = checkExprResults(E, I, V)) 1211 return Simplified; 1212 } else if (AllConstant) { 1213 // We don't bother trying to simplify unless all of the operands 1214 // were constant. 1215 // TODO: There are a lot of Simplify*'s we could call here, if we 1216 // wanted to. The original motivating case for this code was a 1217 // zext i1 false to i8, which we don't have an interface to 1218 // simplify (IE there is no SimplifyZExt). 1219 1220 SmallVector<Constant *, 8> C; 1221 for (Value *Arg : E->operands()) 1222 C.emplace_back(cast<Constant>(Arg)); 1223 1224 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI)) 1225 if (auto Simplified = checkExprResults(E, I, V)) 1226 return Simplified; 1227 } 1228 return ExprResult::some(E); 1229 } 1230 1231 const AggregateValueExpression * 1232 NewGVN::createAggregateValueExpression(Instruction *I) const { 1233 if (auto *II = dyn_cast<InsertValueInst>(I)) { 1234 auto *E = new (ExpressionAllocator) 1235 AggregateValueExpression(I->getNumOperands(), II->getNumIndices()); 1236 setBasicExpressionInfo(I, E); 1237 E->allocateIntOperands(ExpressionAllocator); 1238 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E)); 1239 return E; 1240 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1241 auto *E = new (ExpressionAllocator) 1242 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices()); 1243 setBasicExpressionInfo(EI, E); 1244 E->allocateIntOperands(ExpressionAllocator); 1245 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E)); 1246 return E; 1247 } 1248 llvm_unreachable("Unhandled type of aggregate value operation"); 1249 } 1250 1251 const DeadExpression *NewGVN::createDeadExpression() const { 1252 // DeadExpression has no arguments and all DeadExpression's are the same, 1253 // so we only need one of them. 1254 return SingletonDeadExpression; 1255 } 1256 1257 const VariableExpression *NewGVN::createVariableExpression(Value *V) const { 1258 auto *E = new (ExpressionAllocator) VariableExpression(V); 1259 E->setOpcode(V->getValueID()); 1260 return E; 1261 } 1262 1263 const Expression *NewGVN::createVariableOrConstant(Value *V) const { 1264 if (auto *C = dyn_cast<Constant>(V)) 1265 return createConstantExpression(C); 1266 return createVariableExpression(V); 1267 } 1268 1269 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const { 1270 auto *E = new (ExpressionAllocator) ConstantExpression(C); 1271 E->setOpcode(C->getValueID()); 1272 return E; 1273 } 1274 1275 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const { 1276 auto *E = new (ExpressionAllocator) UnknownExpression(I); 1277 E->setOpcode(I->getOpcode()); 1278 return E; 1279 } 1280 1281 const CallExpression * 1282 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const { 1283 // FIXME: Add operand bundles for calls. 1284 // FIXME: Allow commutative matching for intrinsics. 1285 auto *E = 1286 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA); 1287 setBasicExpressionInfo(CI, E); 1288 return E; 1289 } 1290 1291 // Return true if some equivalent of instruction Inst dominates instruction U. 1292 bool NewGVN::someEquivalentDominates(const Instruction *Inst, 1293 const Instruction *U) const { 1294 auto *CC = ValueToClass.lookup(Inst); 1295 // This must be an instruction because we are only called from phi nodes 1296 // in the case that the value it needs to check against is an instruction. 1297 1298 // The most likely candidates for dominance are the leader and the next leader. 1299 // The leader or nextleader will dominate in all cases where there is an 1300 // equivalent that is higher up in the dom tree. 1301 // We can't *only* check them, however, because the 1302 // dominator tree could have an infinite number of non-dominating siblings 1303 // with instructions that are in the right congruence class. 1304 // A 1305 // B C D E F G 1306 // | 1307 // H 1308 // Instruction U could be in H, with equivalents in every other sibling. 1309 // Depending on the rpo order picked, the leader could be the equivalent in 1310 // any of these siblings. 1311 if (!CC) 1312 return false; 1313 if (alwaysAvailable(CC->getLeader())) 1314 return true; 1315 if (DT->dominates(cast<Instruction>(CC->getLeader()), U)) 1316 return true; 1317 if (CC->getNextLeader().first && 1318 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U)) 1319 return true; 1320 return llvm::any_of(*CC, [&](const Value *Member) { 1321 return Member != CC->getLeader() && 1322 DT->dominates(cast<Instruction>(Member), U); 1323 }); 1324 } 1325 1326 // See if we have a congruence class and leader for this operand, and if so, 1327 // return it. Otherwise, return the operand itself. 1328 Value *NewGVN::lookupOperandLeader(Value *V) const { 1329 CongruenceClass *CC = ValueToClass.lookup(V); 1330 if (CC) { 1331 // Everything in TOP is represented by poison, as it can be any value. 1332 // We do have to make sure we get the type right though, so we can't set the 1333 // RepLeader to poison. 1334 if (CC == TOPClass) 1335 return PoisonValue::get(V->getType()); 1336 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 1337 } 1338 1339 return V; 1340 } 1341 1342 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const { 1343 auto *CC = getMemoryClass(MA); 1344 assert(CC->getMemoryLeader() && 1345 "Every MemoryAccess should be mapped to a congruence class with a " 1346 "representative memory access"); 1347 return CC->getMemoryLeader(); 1348 } 1349 1350 // Return true if the MemoryAccess is really equivalent to everything. This is 1351 // equivalent to the lattice value "TOP" in most lattices. This is the initial 1352 // state of all MemoryAccesses. 1353 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const { 1354 return getMemoryClass(MA) == TOPClass; 1355 } 1356 1357 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp, 1358 LoadInst *LI, 1359 const MemoryAccess *MA) const { 1360 auto *E = 1361 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA)); 1362 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1363 E->setType(LoadType); 1364 1365 // Give store and loads same opcode so they value number together. 1366 E->setOpcode(0); 1367 E->op_push_back(PointerOp); 1368 1369 // TODO: Value number heap versions. We may be able to discover 1370 // things alias analysis can't on it's own (IE that a store and a 1371 // load have the same value, and thus, it isn't clobbering the load). 1372 return E; 1373 } 1374 1375 const StoreExpression * 1376 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const { 1377 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand()); 1378 auto *E = new (ExpressionAllocator) 1379 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA); 1380 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1381 E->setType(SI->getValueOperand()->getType()); 1382 1383 // Give store and loads same opcode so they value number together. 1384 E->setOpcode(0); 1385 E->op_push_back(lookupOperandLeader(SI->getPointerOperand())); 1386 1387 // TODO: Value number heap versions. We may be able to discover 1388 // things alias analysis can't on it's own (IE that a store and a 1389 // load have the same value, and thus, it isn't clobbering the load). 1390 return E; 1391 } 1392 1393 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const { 1394 // Unlike loads, we never try to eliminate stores, so we do not check if they 1395 // are simple and avoid value numbering them. 1396 auto *SI = cast<StoreInst>(I); 1397 auto *StoreAccess = getMemoryAccess(SI); 1398 // Get the expression, if any, for the RHS of the MemoryDef. 1399 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess(); 1400 if (EnableStoreRefinement) 1401 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess); 1402 // If we bypassed the use-def chains, make sure we add a use. 1403 StoreRHS = lookupMemoryLeader(StoreRHS); 1404 if (StoreRHS != StoreAccess->getDefiningAccess()) 1405 addMemoryUsers(StoreRHS, StoreAccess); 1406 // If we are defined by ourselves, use the live on entry def. 1407 if (StoreRHS == StoreAccess) 1408 StoreRHS = MSSA->getLiveOnEntryDef(); 1409 1410 if (SI->isSimple()) { 1411 // See if we are defined by a previous store expression, it already has a 1412 // value, and it's the same value as our current store. FIXME: Right now, we 1413 // only do this for simple stores, we should expand to cover memcpys, etc. 1414 const auto *LastStore = createStoreExpression(SI, StoreRHS); 1415 const auto *LastCC = ExpressionToClass.lookup(LastStore); 1416 // We really want to check whether the expression we matched was a store. No 1417 // easy way to do that. However, we can check that the class we found has a 1418 // store, which, assuming the value numbering state is not corrupt, is 1419 // sufficient, because we must also be equivalent to that store's expression 1420 // for it to be in the same class as the load. 1421 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue()) 1422 return LastStore; 1423 // Also check if our value operand is defined by a load of the same memory 1424 // location, and the memory state is the same as it was then (otherwise, it 1425 // could have been overwritten later. See test32 in 1426 // transforms/DeadStoreElimination/simple.ll). 1427 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue())) 1428 if ((lookupOperandLeader(LI->getPointerOperand()) == 1429 LastStore->getOperand(0)) && 1430 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) == 1431 StoreRHS)) 1432 return LastStore; 1433 deleteExpression(LastStore); 1434 } 1435 1436 // If the store is not equivalent to anything, value number it as a store that 1437 // produces a unique memory state (instead of using it's MemoryUse, we use 1438 // it's MemoryDef). 1439 return createStoreExpression(SI, StoreAccess); 1440 } 1441 1442 // See if we can extract the value of a loaded pointer from a load, a store, or 1443 // a memory instruction. 1444 const Expression * 1445 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr, 1446 LoadInst *LI, Instruction *DepInst, 1447 MemoryAccess *DefiningAccess) const { 1448 assert((!LI || LI->isSimple()) && "Not a simple load"); 1449 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) { 1450 // Can't forward from non-atomic to atomic without violating memory model. 1451 // Also don't need to coerce if they are the same type, we will just 1452 // propagate. 1453 if (LI->isAtomic() > DepSI->isAtomic() || 1454 LoadType == DepSI->getValueOperand()->getType()) 1455 return nullptr; 1456 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL); 1457 if (Offset >= 0) { 1458 if (auto *C = dyn_cast<Constant>( 1459 lookupOperandLeader(DepSI->getValueOperand()))) { 1460 if (Constant *Res = 1461 getConstantStoreValueForLoad(C, Offset, LoadType, DL)) { 1462 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI 1463 << " to constant " << *Res << "\n"); 1464 return createConstantExpression(Res); 1465 } 1466 } 1467 } 1468 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) { 1469 // Can't forward from non-atomic to atomic without violating memory model. 1470 if (LI->isAtomic() > DepLI->isAtomic()) 1471 return nullptr; 1472 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL); 1473 if (Offset >= 0) { 1474 // We can coerce a constant load into a load. 1475 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI))) 1476 if (auto *PossibleConstant = 1477 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) { 1478 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI 1479 << " to constant " << *PossibleConstant << "\n"); 1480 return createConstantExpression(PossibleConstant); 1481 } 1482 } 1483 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1484 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL); 1485 if (Offset >= 0) { 1486 if (auto *PossibleConstant = 1487 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) { 1488 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI 1489 << " to constant " << *PossibleConstant << "\n"); 1490 return createConstantExpression(PossibleConstant); 1491 } 1492 } 1493 } 1494 1495 // All of the below are only true if the loaded pointer is produced 1496 // by the dependent instruction. 1497 if (LoadPtr != lookupOperandLeader(DepInst) && 1498 !AA->isMustAlias(LoadPtr, DepInst)) 1499 return nullptr; 1500 // If this load really doesn't depend on anything, then we must be loading an 1501 // undef value. This can happen when loading for a fresh allocation with no 1502 // intervening stores, for example. Note that this is only true in the case 1503 // that the result of the allocation is pointer equal to the load ptr. 1504 if (isa<AllocaInst>(DepInst)) { 1505 return createConstantExpression(UndefValue::get(LoadType)); 1506 } 1507 // If this load occurs either right after a lifetime begin, 1508 // then the loaded value is undefined. 1509 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) { 1510 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1511 return createConstantExpression(UndefValue::get(LoadType)); 1512 } else if (auto *InitVal = 1513 getInitialValueOfAllocation(DepInst, TLI, LoadType)) 1514 return createConstantExpression(InitVal); 1515 1516 return nullptr; 1517 } 1518 1519 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const { 1520 auto *LI = cast<LoadInst>(I); 1521 1522 // We can eliminate in favor of non-simple loads, but we won't be able to 1523 // eliminate the loads themselves. 1524 if (!LI->isSimple()) 1525 return nullptr; 1526 1527 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand()); 1528 // Load of undef is UB. 1529 if (isa<UndefValue>(LoadAddressLeader)) 1530 return createConstantExpression(PoisonValue::get(LI->getType())); 1531 MemoryAccess *OriginalAccess = getMemoryAccess(I); 1532 MemoryAccess *DefiningAccess = 1533 MSSAWalker->getClobberingMemoryAccess(OriginalAccess); 1534 1535 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) { 1536 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) { 1537 Instruction *DefiningInst = MD->getMemoryInst(); 1538 // If the defining instruction is not reachable, replace with poison. 1539 if (!ReachableBlocks.count(DefiningInst->getParent())) 1540 return createConstantExpression(PoisonValue::get(LI->getType())); 1541 // This will handle stores and memory insts. We only do if it the 1542 // defining access has a different type, or it is a pointer produced by 1543 // certain memory operations that cause the memory to have a fixed value 1544 // (IE things like calloc). 1545 if (const auto *CoercionResult = 1546 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI, 1547 DefiningInst, DefiningAccess)) 1548 return CoercionResult; 1549 } 1550 } 1551 1552 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI, 1553 DefiningAccess); 1554 // If our MemoryLeader is not our defining access, add a use to the 1555 // MemoryLeader, so that we get reprocessed when it changes. 1556 if (LE->getMemoryLeader() != DefiningAccess) 1557 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess); 1558 return LE; 1559 } 1560 1561 NewGVN::ExprResult 1562 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const { 1563 auto *PI = PredInfo->getPredicateInfoFor(I); 1564 if (!PI) 1565 return ExprResult::none(); 1566 1567 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n"); 1568 1569 const Optional<PredicateConstraint> &Constraint = PI->getConstraint(); 1570 if (!Constraint) 1571 return ExprResult::none(); 1572 1573 CmpInst::Predicate Predicate = Constraint->Predicate; 1574 Value *CmpOp0 = I->getOperand(0); 1575 Value *CmpOp1 = Constraint->OtherOp; 1576 1577 Value *FirstOp = lookupOperandLeader(CmpOp0); 1578 Value *SecondOp = lookupOperandLeader(CmpOp1); 1579 Value *AdditionallyUsedValue = CmpOp0; 1580 1581 // Sort the ops. 1582 if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) { 1583 std::swap(FirstOp, SecondOp); 1584 Predicate = CmpInst::getSwappedPredicate(Predicate); 1585 AdditionallyUsedValue = CmpOp1; 1586 } 1587 1588 if (Predicate == CmpInst::ICMP_EQ) 1589 return ExprResult::some(createVariableOrConstant(FirstOp), 1590 AdditionallyUsedValue, PI); 1591 1592 // Handle the special case of floating point. 1593 if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) && 1594 !cast<ConstantFP>(FirstOp)->isZero()) 1595 return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)), 1596 AdditionallyUsedValue, PI); 1597 1598 return ExprResult::none(); 1599 } 1600 1601 // Evaluate read only and pure calls, and create an expression result. 1602 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const { 1603 auto *CI = cast<CallInst>(I); 1604 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1605 // Intrinsics with the returned attribute are copies of arguments. 1606 if (auto *ReturnedValue = II->getReturnedArgOperand()) { 1607 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 1608 if (auto Res = performSymbolicPredicateInfoEvaluation(II)) 1609 return Res; 1610 return ExprResult::some(createVariableOrConstant(ReturnedValue)); 1611 } 1612 } 1613 if (AA->doesNotAccessMemory(CI)) { 1614 return ExprResult::some( 1615 createCallExpression(CI, TOPClass->getMemoryLeader())); 1616 } else if (AA->onlyReadsMemory(CI)) { 1617 if (auto *MA = MSSA->getMemoryAccess(CI)) { 1618 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA); 1619 return ExprResult::some(createCallExpression(CI, DefiningAccess)); 1620 } else // MSSA determined that CI does not access memory. 1621 return ExprResult::some( 1622 createCallExpression(CI, TOPClass->getMemoryLeader())); 1623 } 1624 return ExprResult::none(); 1625 } 1626 1627 // Retrieve the memory class for a given MemoryAccess. 1628 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const { 1629 auto *Result = MemoryAccessToClass.lookup(MA); 1630 assert(Result && "Should have found memory class"); 1631 return Result; 1632 } 1633 1634 // Update the MemoryAccess equivalence table to say that From is equal to To, 1635 // and return true if this is different from what already existed in the table. 1636 bool NewGVN::setMemoryClass(const MemoryAccess *From, 1637 CongruenceClass *NewClass) { 1638 assert(NewClass && 1639 "Every MemoryAccess should be getting mapped to a non-null class"); 1640 LLVM_DEBUG(dbgs() << "Setting " << *From); 1641 LLVM_DEBUG(dbgs() << " equivalent to congruence class "); 1642 LLVM_DEBUG(dbgs() << NewClass->getID() 1643 << " with current MemoryAccess leader "); 1644 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n"); 1645 1646 auto LookupResult = MemoryAccessToClass.find(From); 1647 bool Changed = false; 1648 // If it's already in the table, see if the value changed. 1649 if (LookupResult != MemoryAccessToClass.end()) { 1650 auto *OldClass = LookupResult->second; 1651 if (OldClass != NewClass) { 1652 // If this is a phi, we have to handle memory member updates. 1653 if (auto *MP = dyn_cast<MemoryPhi>(From)) { 1654 OldClass->memory_erase(MP); 1655 NewClass->memory_insert(MP); 1656 // This may have killed the class if it had no non-memory members 1657 if (OldClass->getMemoryLeader() == From) { 1658 if (OldClass->definesNoMemory()) { 1659 OldClass->setMemoryLeader(nullptr); 1660 } else { 1661 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 1662 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 1663 << OldClass->getID() << " to " 1664 << *OldClass->getMemoryLeader() 1665 << " due to removal of a memory member " << *From 1666 << "\n"); 1667 markMemoryLeaderChangeTouched(OldClass); 1668 } 1669 } 1670 } 1671 // It wasn't equivalent before, and now it is. 1672 LookupResult->second = NewClass; 1673 Changed = true; 1674 } 1675 } 1676 1677 return Changed; 1678 } 1679 1680 // Determine if a instruction is cycle-free. That means the values in the 1681 // instruction don't depend on any expressions that can change value as a result 1682 // of the instruction. For example, a non-cycle free instruction would be v = 1683 // phi(0, v+1). 1684 bool NewGVN::isCycleFree(const Instruction *I) const { 1685 // In order to compute cycle-freeness, we do SCC finding on the instruction, 1686 // and see what kind of SCC it ends up in. If it is a singleton, it is 1687 // cycle-free. If it is not in a singleton, it is only cycle free if the 1688 // other members are all phi nodes (as they do not compute anything, they are 1689 // copies). 1690 auto ICS = InstCycleState.lookup(I); 1691 if (ICS == ICS_Unknown) { 1692 SCCFinder.Start(I); 1693 auto &SCC = SCCFinder.getComponentFor(I); 1694 // It's cycle free if it's size 1 or the SCC is *only* phi nodes. 1695 if (SCC.size() == 1) 1696 InstCycleState.insert({I, ICS_CycleFree}); 1697 else { 1698 bool AllPhis = llvm::all_of(SCC, [](const Value *V) { 1699 return isa<PHINode>(V) || isCopyOfAPHI(V); 1700 }); 1701 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle; 1702 for (auto *Member : SCC) 1703 if (auto *MemberPhi = dyn_cast<PHINode>(Member)) 1704 InstCycleState.insert({MemberPhi, ICS}); 1705 } 1706 } 1707 if (ICS == ICS_Cycle) 1708 return false; 1709 return true; 1710 } 1711 1712 // Evaluate PHI nodes symbolically and create an expression result. 1713 const Expression * 1714 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps, 1715 Instruction *I, 1716 BasicBlock *PHIBlock) const { 1717 // True if one of the incoming phi edges is a backedge. 1718 bool HasBackedge = false; 1719 // All constant tracks the state of whether all the *original* phi operands 1720 // This is really shorthand for "this phi cannot cycle due to forward 1721 // change in value of the phi is guaranteed not to later change the value of 1722 // the phi. IE it can't be v = phi(undef, v+1) 1723 bool OriginalOpsConstant = true; 1724 auto *E = cast<PHIExpression>(createPHIExpression( 1725 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant)); 1726 // We match the semantics of SimplifyPhiNode from InstructionSimplify here. 1727 // See if all arguments are the same. 1728 // We track if any were undef because they need special handling. 1729 bool HasUndef = false, HasPoison = false; 1730 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) { 1731 if (isa<PoisonValue>(Arg)) { 1732 HasPoison = true; 1733 return false; 1734 } 1735 if (isa<UndefValue>(Arg)) { 1736 HasUndef = true; 1737 return false; 1738 } 1739 return true; 1740 }); 1741 // If we are left with no operands, it's dead. 1742 if (Filtered.empty()) { 1743 // If it has undef or poison at this point, it means there are no-non-undef 1744 // arguments, and thus, the value of the phi node must be undef. 1745 if (HasUndef) { 1746 LLVM_DEBUG( 1747 dbgs() << "PHI Node " << *I 1748 << " has no non-undef arguments, valuing it as undef\n"); 1749 return createConstantExpression(UndefValue::get(I->getType())); 1750 } 1751 if (HasPoison) { 1752 LLVM_DEBUG( 1753 dbgs() << "PHI Node " << *I 1754 << " has no non-poison arguments, valuing it as poison\n"); 1755 return createConstantExpression(PoisonValue::get(I->getType())); 1756 } 1757 1758 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n"); 1759 deleteExpression(E); 1760 return createDeadExpression(); 1761 } 1762 Value *AllSameValue = *(Filtered.begin()); 1763 ++Filtered.begin(); 1764 // Can't use std::equal here, sadly, because filter.begin moves. 1765 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) { 1766 // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef 1767 // in the worst case). 1768 if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT)) 1769 return E; 1770 1771 // In LLVM's non-standard representation of phi nodes, it's possible to have 1772 // phi nodes with cycles (IE dependent on other phis that are .... dependent 1773 // on the original phi node), especially in weird CFG's where some arguments 1774 // are unreachable, or uninitialized along certain paths. This can cause 1775 // infinite loops during evaluation. We work around this by not trying to 1776 // really evaluate them independently, but instead using a variable 1777 // expression to say if one is equivalent to the other. 1778 // We also special case undef/poison, so that if we have an undef, we can't 1779 // use the common value unless it dominates the phi block. 1780 if (HasPoison || HasUndef) { 1781 // If we have undef and at least one other value, this is really a 1782 // multivalued phi, and we need to know if it's cycle free in order to 1783 // evaluate whether we can ignore the undef. The other parts of this are 1784 // just shortcuts. If there is no backedge, or all operands are 1785 // constants, it also must be cycle free. 1786 if (HasBackedge && !OriginalOpsConstant && 1787 !isa<UndefValue>(AllSameValue) && !isCycleFree(I)) 1788 return E; 1789 1790 // Only have to check for instructions 1791 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue)) 1792 if (!someEquivalentDominates(AllSameInst, I)) 1793 return E; 1794 } 1795 // Can't simplify to something that comes later in the iteration. 1796 // Otherwise, when and if it changes congruence class, we will never catch 1797 // up. We will always be a class behind it. 1798 if (isa<Instruction>(AllSameValue) && 1799 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I)) 1800 return E; 1801 NumGVNPhisAllSame++; 1802 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue 1803 << "\n"); 1804 deleteExpression(E); 1805 return createVariableOrConstant(AllSameValue); 1806 } 1807 return E; 1808 } 1809 1810 const Expression * 1811 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const { 1812 if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1813 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 1814 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) 1815 // EI is an extract from one of our with.overflow intrinsics. Synthesize 1816 // a semantically equivalent expression instead of an extract value 1817 // expression. 1818 return createBinaryExpression(WO->getBinaryOp(), EI->getType(), 1819 WO->getLHS(), WO->getRHS(), I); 1820 } 1821 1822 return createAggregateValueExpression(I); 1823 } 1824 1825 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const { 1826 assert(isa<CmpInst>(I) && "Expected a cmp instruction."); 1827 1828 auto *CI = cast<CmpInst>(I); 1829 // See if our operands are equal to those of a previous predicate, and if so, 1830 // if it implies true or false. 1831 auto Op0 = lookupOperandLeader(CI->getOperand(0)); 1832 auto Op1 = lookupOperandLeader(CI->getOperand(1)); 1833 auto OurPredicate = CI->getPredicate(); 1834 if (shouldSwapOperands(Op0, Op1)) { 1835 std::swap(Op0, Op1); 1836 OurPredicate = CI->getSwappedPredicate(); 1837 } 1838 1839 // Avoid processing the same info twice. 1840 const PredicateBase *LastPredInfo = nullptr; 1841 // See if we know something about the comparison itself, like it is the target 1842 // of an assume. 1843 auto *CmpPI = PredInfo->getPredicateInfoFor(I); 1844 if (isa_and_nonnull<PredicateAssume>(CmpPI)) 1845 return ExprResult::some( 1846 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1847 1848 if (Op0 == Op1) { 1849 // This condition does not depend on predicates, no need to add users 1850 if (CI->isTrueWhenEqual()) 1851 return ExprResult::some( 1852 createConstantExpression(ConstantInt::getTrue(CI->getType()))); 1853 else if (CI->isFalseWhenEqual()) 1854 return ExprResult::some( 1855 createConstantExpression(ConstantInt::getFalse(CI->getType()))); 1856 } 1857 1858 // NOTE: Because we are comparing both operands here and below, and using 1859 // previous comparisons, we rely on fact that predicateinfo knows to mark 1860 // comparisons that use renamed operands as users of the earlier comparisons. 1861 // It is *not* enough to just mark predicateinfo renamed operands as users of 1862 // the earlier comparisons, because the *other* operand may have changed in a 1863 // previous iteration. 1864 // Example: 1865 // icmp slt %a, %b 1866 // %b.0 = ssa.copy(%b) 1867 // false branch: 1868 // icmp slt %c, %b.0 1869 1870 // %c and %a may start out equal, and thus, the code below will say the second 1871 // %icmp is false. c may become equal to something else, and in that case the 1872 // %second icmp *must* be reexamined, but would not if only the renamed 1873 // %operands are considered users of the icmp. 1874 1875 // *Currently* we only check one level of comparisons back, and only mark one 1876 // level back as touched when changes happen. If you modify this code to look 1877 // back farther through comparisons, you *must* mark the appropriate 1878 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if 1879 // we know something just from the operands themselves 1880 1881 // See if our operands have predicate info, so that we may be able to derive 1882 // something from a previous comparison. 1883 for (const auto &Op : CI->operands()) { 1884 auto *PI = PredInfo->getPredicateInfoFor(Op); 1885 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) { 1886 if (PI == LastPredInfo) 1887 continue; 1888 LastPredInfo = PI; 1889 // In phi of ops cases, we may have predicate info that we are evaluating 1890 // in a different context. 1891 if (!DT->dominates(PBranch->To, getBlockForValue(I))) 1892 continue; 1893 // TODO: Along the false edge, we may know more things too, like 1894 // icmp of 1895 // same operands is false. 1896 // TODO: We only handle actual comparison conditions below, not 1897 // and/or. 1898 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition); 1899 if (!BranchCond) 1900 continue; 1901 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0)); 1902 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1)); 1903 auto BranchPredicate = BranchCond->getPredicate(); 1904 if (shouldSwapOperands(BranchOp0, BranchOp1)) { 1905 std::swap(BranchOp0, BranchOp1); 1906 BranchPredicate = BranchCond->getSwappedPredicate(); 1907 } 1908 if (BranchOp0 == Op0 && BranchOp1 == Op1) { 1909 if (PBranch->TrueEdge) { 1910 // If we know the previous predicate is true and we are in the true 1911 // edge then we may be implied true or false. 1912 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate, 1913 OurPredicate)) { 1914 return ExprResult::some( 1915 createConstantExpression(ConstantInt::getTrue(CI->getType())), 1916 PI); 1917 } 1918 1919 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate, 1920 OurPredicate)) { 1921 return ExprResult::some( 1922 createConstantExpression(ConstantInt::getFalse(CI->getType())), 1923 PI); 1924 } 1925 } else { 1926 // Just handle the ne and eq cases, where if we have the same 1927 // operands, we may know something. 1928 if (BranchPredicate == OurPredicate) { 1929 // Same predicate, same ops,we know it was false, so this is false. 1930 return ExprResult::some( 1931 createConstantExpression(ConstantInt::getFalse(CI->getType())), 1932 PI); 1933 } else if (BranchPredicate == 1934 CmpInst::getInversePredicate(OurPredicate)) { 1935 // Inverse predicate, we know the other was false, so this is true. 1936 return ExprResult::some( 1937 createConstantExpression(ConstantInt::getTrue(CI->getType())), 1938 PI); 1939 } 1940 } 1941 } 1942 } 1943 } 1944 // Create expression will take care of simplifyCmpInst 1945 return createExpression(I); 1946 } 1947 1948 // Substitute and symbolize the value before value numbering. 1949 NewGVN::ExprResult 1950 NewGVN::performSymbolicEvaluation(Value *V, 1951 SmallPtrSetImpl<Value *> &Visited) const { 1952 1953 const Expression *E = nullptr; 1954 if (auto *C = dyn_cast<Constant>(V)) 1955 E = createConstantExpression(C); 1956 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1957 E = createVariableExpression(V); 1958 } else { 1959 // TODO: memory intrinsics. 1960 // TODO: Some day, we should do the forward propagation and reassociation 1961 // parts of the algorithm. 1962 auto *I = cast<Instruction>(V); 1963 switch (I->getOpcode()) { 1964 case Instruction::ExtractValue: 1965 case Instruction::InsertValue: 1966 E = performSymbolicAggrValueEvaluation(I); 1967 break; 1968 case Instruction::PHI: { 1969 SmallVector<ValPair, 3> Ops; 1970 auto *PN = cast<PHINode>(I); 1971 for (unsigned i = 0; i < PN->getNumOperands(); ++i) 1972 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)}); 1973 // Sort to ensure the invariant createPHIExpression requires is met. 1974 sortPHIOps(Ops); 1975 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I)); 1976 } break; 1977 case Instruction::Call: 1978 return performSymbolicCallEvaluation(I); 1979 break; 1980 case Instruction::Store: 1981 E = performSymbolicStoreEvaluation(I); 1982 break; 1983 case Instruction::Load: 1984 E = performSymbolicLoadEvaluation(I); 1985 break; 1986 case Instruction::BitCast: 1987 case Instruction::AddrSpaceCast: 1988 return createExpression(I); 1989 break; 1990 case Instruction::ICmp: 1991 case Instruction::FCmp: 1992 return performSymbolicCmpEvaluation(I); 1993 break; 1994 case Instruction::FNeg: 1995 case Instruction::Add: 1996 case Instruction::FAdd: 1997 case Instruction::Sub: 1998 case Instruction::FSub: 1999 case Instruction::Mul: 2000 case Instruction::FMul: 2001 case Instruction::UDiv: 2002 case Instruction::SDiv: 2003 case Instruction::FDiv: 2004 case Instruction::URem: 2005 case Instruction::SRem: 2006 case Instruction::FRem: 2007 case Instruction::Shl: 2008 case Instruction::LShr: 2009 case Instruction::AShr: 2010 case Instruction::And: 2011 case Instruction::Or: 2012 case Instruction::Xor: 2013 case Instruction::Trunc: 2014 case Instruction::ZExt: 2015 case Instruction::SExt: 2016 case Instruction::FPToUI: 2017 case Instruction::FPToSI: 2018 case Instruction::UIToFP: 2019 case Instruction::SIToFP: 2020 case Instruction::FPTrunc: 2021 case Instruction::FPExt: 2022 case Instruction::PtrToInt: 2023 case Instruction::IntToPtr: 2024 case Instruction::Select: 2025 case Instruction::ExtractElement: 2026 case Instruction::InsertElement: 2027 case Instruction::GetElementPtr: 2028 return createExpression(I); 2029 break; 2030 case Instruction::ShuffleVector: 2031 // FIXME: Add support for shufflevector to createExpression. 2032 return ExprResult::none(); 2033 default: 2034 return ExprResult::none(); 2035 } 2036 } 2037 return ExprResult::some(E); 2038 } 2039 2040 // Look up a container of values/instructions in a map, and touch all the 2041 // instructions in the container. Then erase value from the map. 2042 template <typename Map, typename KeyType> 2043 void NewGVN::touchAndErase(Map &M, const KeyType &Key) { 2044 const auto Result = M.find_as(Key); 2045 if (Result != M.end()) { 2046 for (const typename Map::mapped_type::value_type Mapped : Result->second) 2047 TouchedInstructions.set(InstrToDFSNum(Mapped)); 2048 M.erase(Result); 2049 } 2050 } 2051 2052 void NewGVN::addAdditionalUsers(Value *To, Value *User) const { 2053 assert(User && To != User); 2054 if (isa<Instruction>(To)) 2055 AdditionalUsers[To].insert(User); 2056 } 2057 2058 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const { 2059 if (Res.ExtraDep && Res.ExtraDep != User) 2060 addAdditionalUsers(Res.ExtraDep, User); 2061 Res.ExtraDep = nullptr; 2062 2063 if (Res.PredDep) { 2064 if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep)) 2065 PredicateToUsers[PBranch->Condition].insert(User); 2066 else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep)) 2067 PredicateToUsers[PAssume->Condition].insert(User); 2068 } 2069 Res.PredDep = nullptr; 2070 } 2071 2072 void NewGVN::markUsersTouched(Value *V) { 2073 // Now mark the users as touched. 2074 for (auto *User : V->users()) { 2075 assert(isa<Instruction>(User) && "Use of value not within an instruction?"); 2076 TouchedInstructions.set(InstrToDFSNum(User)); 2077 } 2078 touchAndErase(AdditionalUsers, V); 2079 } 2080 2081 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const { 2082 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n"); 2083 MemoryToUsers[To].insert(U); 2084 } 2085 2086 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) { 2087 TouchedInstructions.set(MemoryToDFSNum(MA)); 2088 } 2089 2090 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) { 2091 if (isa<MemoryUse>(MA)) 2092 return; 2093 for (auto U : MA->users()) 2094 TouchedInstructions.set(MemoryToDFSNum(U)); 2095 touchAndErase(MemoryToUsers, MA); 2096 } 2097 2098 // Touch all the predicates that depend on this instruction. 2099 void NewGVN::markPredicateUsersTouched(Instruction *I) { 2100 touchAndErase(PredicateToUsers, I); 2101 } 2102 2103 // Mark users affected by a memory leader change. 2104 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) { 2105 for (auto M : CC->memory()) 2106 markMemoryDefTouched(M); 2107 } 2108 2109 // Touch the instructions that need to be updated after a congruence class has a 2110 // leader change, and mark changed values. 2111 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) { 2112 for (auto M : *CC) { 2113 if (auto *I = dyn_cast<Instruction>(M)) 2114 TouchedInstructions.set(InstrToDFSNum(I)); 2115 LeaderChanges.insert(M); 2116 } 2117 } 2118 2119 // Give a range of things that have instruction DFS numbers, this will return 2120 // the member of the range with the smallest dfs number. 2121 template <class T, class Range> 2122 T *NewGVN::getMinDFSOfRange(const Range &R) const { 2123 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U}; 2124 for (const auto X : R) { 2125 auto DFSNum = InstrToDFSNum(X); 2126 if (DFSNum < MinDFS.second) 2127 MinDFS = {X, DFSNum}; 2128 } 2129 return MinDFS.first; 2130 } 2131 2132 // This function returns the MemoryAccess that should be the next leader of 2133 // congruence class CC, under the assumption that the current leader is going to 2134 // disappear. 2135 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const { 2136 // TODO: If this ends up to slow, we can maintain a next memory leader like we 2137 // do for regular leaders. 2138 // Make sure there will be a leader to find. 2139 assert(!CC->definesNoMemory() && "Can't get next leader if there is none"); 2140 if (CC->getStoreCount() > 0) { 2141 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first)) 2142 return getMemoryAccess(NL); 2143 // Find the store with the minimum DFS number. 2144 auto *V = getMinDFSOfRange<Value>(make_filter_range( 2145 *CC, [&](const Value *V) { return isa<StoreInst>(V); })); 2146 return getMemoryAccess(cast<StoreInst>(V)); 2147 } 2148 assert(CC->getStoreCount() == 0); 2149 2150 // Given our assertion, hitting this part must mean 2151 // !OldClass->memory_empty() 2152 if (CC->memory_size() == 1) 2153 return *CC->memory_begin(); 2154 return getMinDFSOfRange<const MemoryPhi>(CC->memory()); 2155 } 2156 2157 // This function returns the next value leader of a congruence class, under the 2158 // assumption that the current leader is going away. This should end up being 2159 // the next most dominating member. 2160 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const { 2161 // We don't need to sort members if there is only 1, and we don't care about 2162 // sorting the TOP class because everything either gets out of it or is 2163 // unreachable. 2164 2165 if (CC->size() == 1 || CC == TOPClass) { 2166 return *(CC->begin()); 2167 } else if (CC->getNextLeader().first) { 2168 ++NumGVNAvoidedSortedLeaderChanges; 2169 return CC->getNextLeader().first; 2170 } else { 2171 ++NumGVNSortedLeaderChanges; 2172 // NOTE: If this ends up to slow, we can maintain a dual structure for 2173 // member testing/insertion, or keep things mostly sorted, and sort only 2174 // here, or use SparseBitVector or .... 2175 return getMinDFSOfRange<Value>(*CC); 2176 } 2177 } 2178 2179 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to 2180 // the memory members, etc for the move. 2181 // 2182 // The invariants of this function are: 2183 // 2184 // - I must be moving to NewClass from OldClass 2185 // - The StoreCount of OldClass and NewClass is expected to have been updated 2186 // for I already if it is a store. 2187 // - The OldClass memory leader has not been updated yet if I was the leader. 2188 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I, 2189 MemoryAccess *InstMA, 2190 CongruenceClass *OldClass, 2191 CongruenceClass *NewClass) { 2192 // If the leader is I, and we had a representative MemoryAccess, it should 2193 // be the MemoryAccess of OldClass. 2194 assert((!InstMA || !OldClass->getMemoryLeader() || 2195 OldClass->getLeader() != I || 2196 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) == 2197 MemoryAccessToClass.lookup(InstMA)) && 2198 "Representative MemoryAccess mismatch"); 2199 // First, see what happens to the new class 2200 if (!NewClass->getMemoryLeader()) { 2201 // Should be a new class, or a store becoming a leader of a new class. 2202 assert(NewClass->size() == 1 || 2203 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1)); 2204 NewClass->setMemoryLeader(InstMA); 2205 // Mark it touched if we didn't just create a singleton 2206 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2207 << NewClass->getID() 2208 << " due to new memory instruction becoming leader\n"); 2209 markMemoryLeaderChangeTouched(NewClass); 2210 } 2211 setMemoryClass(InstMA, NewClass); 2212 // Now, fixup the old class if necessary 2213 if (OldClass->getMemoryLeader() == InstMA) { 2214 if (!OldClass->definesNoMemory()) { 2215 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 2216 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2217 << OldClass->getID() << " to " 2218 << *OldClass->getMemoryLeader() 2219 << " due to removal of old leader " << *InstMA << "\n"); 2220 markMemoryLeaderChangeTouched(OldClass); 2221 } else 2222 OldClass->setMemoryLeader(nullptr); 2223 } 2224 } 2225 2226 // Move a value, currently in OldClass, to be part of NewClass 2227 // Update OldClass and NewClass for the move (including changing leaders, etc). 2228 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E, 2229 CongruenceClass *OldClass, 2230 CongruenceClass *NewClass) { 2231 if (I == OldClass->getNextLeader().first) 2232 OldClass->resetNextLeader(); 2233 2234 OldClass->erase(I); 2235 NewClass->insert(I); 2236 2237 if (NewClass->getLeader() != I) 2238 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)}); 2239 // Handle our special casing of stores. 2240 if (auto *SI = dyn_cast<StoreInst>(I)) { 2241 OldClass->decStoreCount(); 2242 // Okay, so when do we want to make a store a leader of a class? 2243 // If we have a store defined by an earlier load, we want the earlier load 2244 // to lead the class. 2245 // If we have a store defined by something else, we want the store to lead 2246 // the class so everything else gets the "something else" as a value. 2247 // If we have a store as the single member of the class, we want the store 2248 // as the leader 2249 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) { 2250 // If it's a store expression we are using, it means we are not equivalent 2251 // to something earlier. 2252 if (auto *SE = dyn_cast<StoreExpression>(E)) { 2253 NewClass->setStoredValue(SE->getStoredValue()); 2254 markValueLeaderChangeTouched(NewClass); 2255 // Shift the new class leader to be the store 2256 LLVM_DEBUG(dbgs() << "Changing leader of congruence class " 2257 << NewClass->getID() << " from " 2258 << *NewClass->getLeader() << " to " << *SI 2259 << " because store joined class\n"); 2260 // If we changed the leader, we have to mark it changed because we don't 2261 // know what it will do to symbolic evaluation. 2262 NewClass->setLeader(SI); 2263 } 2264 // We rely on the code below handling the MemoryAccess change. 2265 } 2266 NewClass->incStoreCount(); 2267 } 2268 // True if there is no memory instructions left in a class that had memory 2269 // instructions before. 2270 2271 // If it's not a memory use, set the MemoryAccess equivalence 2272 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I)); 2273 if (InstMA) 2274 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass); 2275 ValueToClass[I] = NewClass; 2276 // See if we destroyed the class or need to swap leaders. 2277 if (OldClass->empty() && OldClass != TOPClass) { 2278 if (OldClass->getDefiningExpr()) { 2279 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr() 2280 << " from table\n"); 2281 // We erase it as an exact expression to make sure we don't just erase an 2282 // equivalent one. 2283 auto Iter = ExpressionToClass.find_as( 2284 ExactEqualsExpression(*OldClass->getDefiningExpr())); 2285 if (Iter != ExpressionToClass.end()) 2286 ExpressionToClass.erase(Iter); 2287 #ifdef EXPENSIVE_CHECKS 2288 assert( 2289 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) && 2290 "We erased the expression we just inserted, which should not happen"); 2291 #endif 2292 } 2293 } else if (OldClass->getLeader() == I) { 2294 // When the leader changes, the value numbering of 2295 // everything may change due to symbolization changes, so we need to 2296 // reprocess. 2297 LLVM_DEBUG(dbgs() << "Value class leader change for class " 2298 << OldClass->getID() << "\n"); 2299 ++NumGVNLeaderChanges; 2300 // Destroy the stored value if there are no more stores to represent it. 2301 // Note that this is basically clean up for the expression removal that 2302 // happens below. If we remove stores from a class, we may leave it as a 2303 // class of equivalent memory phis. 2304 if (OldClass->getStoreCount() == 0) { 2305 if (OldClass->getStoredValue()) 2306 OldClass->setStoredValue(nullptr); 2307 } 2308 OldClass->setLeader(getNextValueLeader(OldClass)); 2309 OldClass->resetNextLeader(); 2310 markValueLeaderChangeTouched(OldClass); 2311 } 2312 } 2313 2314 // For a given expression, mark the phi of ops instructions that could have 2315 // changed as a result. 2316 void NewGVN::markPhiOfOpsChanged(const Expression *E) { 2317 touchAndErase(ExpressionToPhiOfOps, E); 2318 } 2319 2320 // Perform congruence finding on a given value numbering expression. 2321 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) { 2322 // This is guaranteed to return something, since it will at least find 2323 // TOP. 2324 2325 CongruenceClass *IClass = ValueToClass.lookup(I); 2326 assert(IClass && "Should have found a IClass"); 2327 // Dead classes should have been eliminated from the mapping. 2328 assert(!IClass->isDead() && "Found a dead class"); 2329 2330 CongruenceClass *EClass = nullptr; 2331 if (const auto *VE = dyn_cast<VariableExpression>(E)) { 2332 EClass = ValueToClass.lookup(VE->getVariableValue()); 2333 } else if (isa<DeadExpression>(E)) { 2334 EClass = TOPClass; 2335 } 2336 if (!EClass) { 2337 auto lookupResult = ExpressionToClass.insert({E, nullptr}); 2338 2339 // If it's not in the value table, create a new congruence class. 2340 if (lookupResult.second) { 2341 CongruenceClass *NewClass = createCongruenceClass(nullptr, E); 2342 auto place = lookupResult.first; 2343 place->second = NewClass; 2344 2345 // Constants and variables should always be made the leader. 2346 if (const auto *CE = dyn_cast<ConstantExpression>(E)) { 2347 NewClass->setLeader(CE->getConstantValue()); 2348 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) { 2349 StoreInst *SI = SE->getStoreInst(); 2350 NewClass->setLeader(SI); 2351 NewClass->setStoredValue(SE->getStoredValue()); 2352 // The RepMemoryAccess field will be filled in properly by the 2353 // moveValueToNewCongruenceClass call. 2354 } else { 2355 NewClass->setLeader(I); 2356 } 2357 assert(!isa<VariableExpression>(E) && 2358 "VariableExpression should have been handled already"); 2359 2360 EClass = NewClass; 2361 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I 2362 << " using expression " << *E << " at " 2363 << NewClass->getID() << " and leader " 2364 << *(NewClass->getLeader())); 2365 if (NewClass->getStoredValue()) 2366 LLVM_DEBUG(dbgs() << " and stored value " 2367 << *(NewClass->getStoredValue())); 2368 LLVM_DEBUG(dbgs() << "\n"); 2369 } else { 2370 EClass = lookupResult.first->second; 2371 if (isa<ConstantExpression>(E)) 2372 assert((isa<Constant>(EClass->getLeader()) || 2373 (EClass->getStoredValue() && 2374 isa<Constant>(EClass->getStoredValue()))) && 2375 "Any class with a constant expression should have a " 2376 "constant leader"); 2377 2378 assert(EClass && "Somehow don't have an eclass"); 2379 2380 assert(!EClass->isDead() && "We accidentally looked up a dead class"); 2381 } 2382 } 2383 bool ClassChanged = IClass != EClass; 2384 bool LeaderChanged = LeaderChanges.erase(I); 2385 if (ClassChanged || LeaderChanged) { 2386 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " 2387 << *E << "\n"); 2388 if (ClassChanged) { 2389 moveValueToNewCongruenceClass(I, E, IClass, EClass); 2390 markPhiOfOpsChanged(E); 2391 } 2392 2393 markUsersTouched(I); 2394 if (MemoryAccess *MA = getMemoryAccess(I)) 2395 markMemoryUsersTouched(MA); 2396 if (auto *CI = dyn_cast<CmpInst>(I)) 2397 markPredicateUsersTouched(CI); 2398 } 2399 // If we changed the class of the store, we want to ensure nothing finds the 2400 // old store expression. In particular, loads do not compare against stored 2401 // value, so they will find old store expressions (and associated class 2402 // mappings) if we leave them in the table. 2403 if (ClassChanged && isa<StoreInst>(I)) { 2404 auto *OldE = ValueToExpression.lookup(I); 2405 // It could just be that the old class died. We don't want to erase it if we 2406 // just moved classes. 2407 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) { 2408 // Erase this as an exact expression to ensure we don't erase expressions 2409 // equivalent to it. 2410 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE)); 2411 if (Iter != ExpressionToClass.end()) 2412 ExpressionToClass.erase(Iter); 2413 } 2414 } 2415 ValueToExpression[I] = E; 2416 } 2417 2418 // Process the fact that Edge (from, to) is reachable, including marking 2419 // any newly reachable blocks and instructions for processing. 2420 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) { 2421 // Check if the Edge was reachable before. 2422 if (ReachableEdges.insert({From, To}).second) { 2423 // If this block wasn't reachable before, all instructions are touched. 2424 if (ReachableBlocks.insert(To).second) { 2425 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2426 << " marked reachable\n"); 2427 const auto &InstRange = BlockInstRange.lookup(To); 2428 TouchedInstructions.set(InstRange.first, InstRange.second); 2429 } else { 2430 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2431 << " was reachable, but new edge {" 2432 << getBlockName(From) << "," << getBlockName(To) 2433 << "} to it found\n"); 2434 2435 // We've made an edge reachable to an existing block, which may 2436 // impact predicates. Otherwise, only mark the phi nodes as touched, as 2437 // they are the only thing that depend on new edges. Anything using their 2438 // values will get propagated to if necessary. 2439 if (MemoryAccess *MemPhi = getMemoryAccess(To)) 2440 TouchedInstructions.set(InstrToDFSNum(MemPhi)); 2441 2442 // FIXME: We should just add a union op on a Bitvector and 2443 // SparseBitVector. We can do it word by word faster than we are doing it 2444 // here. 2445 for (auto InstNum : RevisitOnReachabilityChange[To]) 2446 TouchedInstructions.set(InstNum); 2447 } 2448 } 2449 } 2450 2451 // Given a predicate condition (from a switch, cmp, or whatever) and a block, 2452 // see if we know some constant value for it already. 2453 Value *NewGVN::findConditionEquivalence(Value *Cond) const { 2454 auto Result = lookupOperandLeader(Cond); 2455 return isa<Constant>(Result) ? Result : nullptr; 2456 } 2457 2458 // Process the outgoing edges of a block for reachability. 2459 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) { 2460 // Evaluate reachability of terminator instruction. 2461 Value *Cond; 2462 BasicBlock *TrueSucc, *FalseSucc; 2463 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) { 2464 Value *CondEvaluated = findConditionEquivalence(Cond); 2465 if (!CondEvaluated) { 2466 if (auto *I = dyn_cast<Instruction>(Cond)) { 2467 SmallPtrSet<Value *, 4> Visited; 2468 auto Res = performSymbolicEvaluation(I, Visited); 2469 if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) { 2470 CondEvaluated = CE->getConstantValue(); 2471 addAdditionalUsers(Res, I); 2472 } else { 2473 // Did not use simplification result, no need to add the extra 2474 // dependency. 2475 Res.ExtraDep = nullptr; 2476 } 2477 } else if (isa<ConstantInt>(Cond)) { 2478 CondEvaluated = Cond; 2479 } 2480 } 2481 ConstantInt *CI; 2482 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) { 2483 if (CI->isOne()) { 2484 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2485 << " evaluated to true\n"); 2486 updateReachableEdge(B, TrueSucc); 2487 } else if (CI->isZero()) { 2488 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2489 << " evaluated to false\n"); 2490 updateReachableEdge(B, FalseSucc); 2491 } 2492 } else { 2493 updateReachableEdge(B, TrueSucc); 2494 updateReachableEdge(B, FalseSucc); 2495 } 2496 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 2497 // For switches, propagate the case values into the case 2498 // destinations. 2499 2500 Value *SwitchCond = SI->getCondition(); 2501 Value *CondEvaluated = findConditionEquivalence(SwitchCond); 2502 // See if we were able to turn this switch statement into a constant. 2503 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) { 2504 auto *CondVal = cast<ConstantInt>(CondEvaluated); 2505 // We should be able to get case value for this. 2506 auto Case = *SI->findCaseValue(CondVal); 2507 if (Case.getCaseSuccessor() == SI->getDefaultDest()) { 2508 // We proved the value is outside of the range of the case. 2509 // We can't do anything other than mark the default dest as reachable, 2510 // and go home. 2511 updateReachableEdge(B, SI->getDefaultDest()); 2512 return; 2513 } 2514 // Now get where it goes and mark it reachable. 2515 BasicBlock *TargetBlock = Case.getCaseSuccessor(); 2516 updateReachableEdge(B, TargetBlock); 2517 } else { 2518 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 2519 BasicBlock *TargetBlock = SI->getSuccessor(i); 2520 updateReachableEdge(B, TargetBlock); 2521 } 2522 } 2523 } else { 2524 // Otherwise this is either unconditional, or a type we have no 2525 // idea about. Just mark successors as reachable. 2526 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 2527 BasicBlock *TargetBlock = TI->getSuccessor(i); 2528 updateReachableEdge(B, TargetBlock); 2529 } 2530 2531 // This also may be a memory defining terminator, in which case, set it 2532 // equivalent only to itself. 2533 // 2534 auto *MA = getMemoryAccess(TI); 2535 if (MA && !isa<MemoryUse>(MA)) { 2536 auto *CC = ensureLeaderOfMemoryClass(MA); 2537 if (setMemoryClass(MA, CC)) 2538 markMemoryUsersTouched(MA); 2539 } 2540 } 2541 } 2542 2543 // Remove the PHI of Ops PHI for I 2544 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) { 2545 InstrDFS.erase(PHITemp); 2546 // It's still a temp instruction. We keep it in the array so it gets erased. 2547 // However, it's no longer used by I, or in the block 2548 TempToBlock.erase(PHITemp); 2549 RealToTemp.erase(I); 2550 // We don't remove the users from the phi node uses. This wastes a little 2551 // time, but such is life. We could use two sets to track which were there 2552 // are the start of NewGVN, and which were added, but right nowt he cost of 2553 // tracking is more than the cost of checking for more phi of ops. 2554 } 2555 2556 // Add PHI Op in BB as a PHI of operations version of ExistingValue. 2557 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB, 2558 Instruction *ExistingValue) { 2559 InstrDFS[Op] = InstrToDFSNum(ExistingValue); 2560 AllTempInstructions.insert(Op); 2561 TempToBlock[Op] = BB; 2562 RealToTemp[ExistingValue] = Op; 2563 // Add all users to phi node use, as they are now uses of the phi of ops phis 2564 // and may themselves be phi of ops. 2565 for (auto *U : ExistingValue->users()) 2566 if (auto *UI = dyn_cast<Instruction>(U)) 2567 PHINodeUses.insert(UI); 2568 } 2569 2570 static bool okayForPHIOfOps(const Instruction *I) { 2571 if (!EnablePhiOfOps) 2572 return false; 2573 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) || 2574 isa<LoadInst>(I); 2575 } 2576 2577 bool NewGVN::OpIsSafeForPHIOfOpsHelper( 2578 Value *V, const BasicBlock *PHIBlock, 2579 SmallPtrSetImpl<const Value *> &Visited, 2580 SmallVectorImpl<Instruction *> &Worklist) { 2581 2582 if (!isa<Instruction>(V)) 2583 return true; 2584 auto OISIt = OpSafeForPHIOfOps.find(V); 2585 if (OISIt != OpSafeForPHIOfOps.end()) 2586 return OISIt->second; 2587 2588 // Keep walking until we either dominate the phi block, or hit a phi, or run 2589 // out of things to check. 2590 if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) { 2591 OpSafeForPHIOfOps.insert({V, true}); 2592 return true; 2593 } 2594 // PHI in the same block. 2595 if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) { 2596 OpSafeForPHIOfOps.insert({V, false}); 2597 return false; 2598 } 2599 2600 auto *OrigI = cast<Instruction>(V); 2601 // When we hit an instruction that reads memory (load, call, etc), we must 2602 // consider any store that may happen in the loop. For now, we assume the 2603 // worst: there is a store in the loop that alias with this read. 2604 // The case where the load is outside the loop is already covered by the 2605 // dominator check above. 2606 // TODO: relax this condition 2607 if (OrigI->mayReadFromMemory()) 2608 return false; 2609 2610 for (auto *Op : OrigI->operand_values()) { 2611 if (!isa<Instruction>(Op)) 2612 continue; 2613 // Stop now if we find an unsafe operand. 2614 auto OISIt = OpSafeForPHIOfOps.find(OrigI); 2615 if (OISIt != OpSafeForPHIOfOps.end()) { 2616 if (!OISIt->second) { 2617 OpSafeForPHIOfOps.insert({V, false}); 2618 return false; 2619 } 2620 continue; 2621 } 2622 if (!Visited.insert(Op).second) 2623 continue; 2624 Worklist.push_back(cast<Instruction>(Op)); 2625 } 2626 return true; 2627 } 2628 2629 // Return true if this operand will be safe to use for phi of ops. 2630 // 2631 // The reason some operands are unsafe is that we are not trying to recursively 2632 // translate everything back through phi nodes. We actually expect some lookups 2633 // of expressions to fail. In particular, a lookup where the expression cannot 2634 // exist in the predecessor. This is true even if the expression, as shown, can 2635 // be determined to be constant. 2636 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock, 2637 SmallPtrSetImpl<const Value *> &Visited) { 2638 SmallVector<Instruction *, 4> Worklist; 2639 if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist)) 2640 return false; 2641 while (!Worklist.empty()) { 2642 auto *I = Worklist.pop_back_val(); 2643 if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist)) 2644 return false; 2645 } 2646 OpSafeForPHIOfOps.insert({V, true}); 2647 return true; 2648 } 2649 2650 // Try to find a leader for instruction TransInst, which is a phi translated 2651 // version of something in our original program. Visited is used to ensure we 2652 // don't infinite loop during translations of cycles. OrigInst is the 2653 // instruction in the original program, and PredBB is the predecessor we 2654 // translated it through. 2655 Value *NewGVN::findLeaderForInst(Instruction *TransInst, 2656 SmallPtrSetImpl<Value *> &Visited, 2657 MemoryAccess *MemAccess, Instruction *OrigInst, 2658 BasicBlock *PredBB) { 2659 unsigned IDFSNum = InstrToDFSNum(OrigInst); 2660 // Make sure it's marked as a temporary instruction. 2661 AllTempInstructions.insert(TransInst); 2662 // and make sure anything that tries to add it's DFS number is 2663 // redirected to the instruction we are making a phi of ops 2664 // for. 2665 TempToBlock.insert({TransInst, PredBB}); 2666 InstrDFS.insert({TransInst, IDFSNum}); 2667 2668 auto Res = performSymbolicEvaluation(TransInst, Visited); 2669 const Expression *E = Res.Expr; 2670 addAdditionalUsers(Res, OrigInst); 2671 InstrDFS.erase(TransInst); 2672 AllTempInstructions.erase(TransInst); 2673 TempToBlock.erase(TransInst); 2674 if (MemAccess) 2675 TempToMemory.erase(TransInst); 2676 if (!E) 2677 return nullptr; 2678 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB); 2679 if (!FoundVal) { 2680 ExpressionToPhiOfOps[E].insert(OrigInst); 2681 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst 2682 << " in block " << getBlockName(PredBB) << "\n"); 2683 return nullptr; 2684 } 2685 if (auto *SI = dyn_cast<StoreInst>(FoundVal)) 2686 FoundVal = SI->getValueOperand(); 2687 return FoundVal; 2688 } 2689 2690 // When we see an instruction that is an op of phis, generate the equivalent phi 2691 // of ops form. 2692 const Expression * 2693 NewGVN::makePossiblePHIOfOps(Instruction *I, 2694 SmallPtrSetImpl<Value *> &Visited) { 2695 if (!okayForPHIOfOps(I)) 2696 return nullptr; 2697 2698 if (!Visited.insert(I).second) 2699 return nullptr; 2700 // For now, we require the instruction be cycle free because we don't 2701 // *always* create a phi of ops for instructions that could be done as phi 2702 // of ops, we only do it if we think it is useful. If we did do it all the 2703 // time, we could remove the cycle free check. 2704 if (!isCycleFree(I)) 2705 return nullptr; 2706 2707 SmallPtrSet<const Value *, 8> ProcessedPHIs; 2708 // TODO: We don't do phi translation on memory accesses because it's 2709 // complicated. For a load, we'd need to be able to simulate a new memoryuse, 2710 // which we don't have a good way of doing ATM. 2711 auto *MemAccess = getMemoryAccess(I); 2712 // If the memory operation is defined by a memory operation this block that 2713 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi 2714 // can't help, as it would still be killed by that memory operation. 2715 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) && 2716 MemAccess->getDefiningAccess()->getBlock() == I->getParent()) 2717 return nullptr; 2718 2719 // Convert op of phis to phi of ops 2720 SmallPtrSet<const Value *, 10> VisitedOps; 2721 SmallVector<Value *, 4> Ops(I->operand_values()); 2722 BasicBlock *SamePHIBlock = nullptr; 2723 PHINode *OpPHI = nullptr; 2724 if (!DebugCounter::shouldExecute(PHIOfOpsCounter)) 2725 return nullptr; 2726 for (auto *Op : Ops) { 2727 if (!isa<PHINode>(Op)) { 2728 auto *ValuePHI = RealToTemp.lookup(Op); 2729 if (!ValuePHI) 2730 continue; 2731 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n"); 2732 Op = ValuePHI; 2733 } 2734 OpPHI = cast<PHINode>(Op); 2735 if (!SamePHIBlock) { 2736 SamePHIBlock = getBlockForValue(OpPHI); 2737 } else if (SamePHIBlock != getBlockForValue(OpPHI)) { 2738 LLVM_DEBUG( 2739 dbgs() 2740 << "PHIs for operands are not all in the same block, aborting\n"); 2741 return nullptr; 2742 } 2743 // No point in doing this for one-operand phis. 2744 if (OpPHI->getNumOperands() == 1) { 2745 OpPHI = nullptr; 2746 continue; 2747 } 2748 } 2749 2750 if (!OpPHI) 2751 return nullptr; 2752 2753 SmallVector<ValPair, 4> PHIOps; 2754 SmallPtrSet<Value *, 4> Deps; 2755 auto *PHIBlock = getBlockForValue(OpPHI); 2756 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I)); 2757 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) { 2758 auto *PredBB = OpPHI->getIncomingBlock(PredNum); 2759 Value *FoundVal = nullptr; 2760 SmallPtrSet<Value *, 4> CurrentDeps; 2761 // We could just skip unreachable edges entirely but it's tricky to do 2762 // with rewriting existing phi nodes. 2763 if (ReachableEdges.count({PredBB, PHIBlock})) { 2764 // Clone the instruction, create an expression from it that is 2765 // translated back into the predecessor, and see if we have a leader. 2766 Instruction *ValueOp = I->clone(); 2767 if (MemAccess) 2768 TempToMemory.insert({ValueOp, MemAccess}); 2769 bool SafeForPHIOfOps = true; 2770 VisitedOps.clear(); 2771 for (auto &Op : ValueOp->operands()) { 2772 auto *OrigOp = &*Op; 2773 // When these operand changes, it could change whether there is a 2774 // leader for us or not, so we have to add additional users. 2775 if (isa<PHINode>(Op)) { 2776 Op = Op->DoPHITranslation(PHIBlock, PredBB); 2777 if (Op != OrigOp && Op != I) 2778 CurrentDeps.insert(Op); 2779 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) { 2780 if (getBlockForValue(ValuePHI) == PHIBlock) 2781 Op = ValuePHI->getIncomingValueForBlock(PredBB); 2782 } 2783 // If we phi-translated the op, it must be safe. 2784 SafeForPHIOfOps = 2785 SafeForPHIOfOps && 2786 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps)); 2787 } 2788 // FIXME: For those things that are not safe we could generate 2789 // expressions all the way down, and see if this comes out to a 2790 // constant. For anything where that is true, and unsafe, we should 2791 // have made a phi-of-ops (or value numbered it equivalent to something) 2792 // for the pieces already. 2793 FoundVal = !SafeForPHIOfOps ? nullptr 2794 : findLeaderForInst(ValueOp, Visited, 2795 MemAccess, I, PredBB); 2796 ValueOp->deleteValue(); 2797 if (!FoundVal) { 2798 // We failed to find a leader for the current ValueOp, but this might 2799 // change in case of the translated operands change. 2800 if (SafeForPHIOfOps) 2801 for (auto Dep : CurrentDeps) 2802 addAdditionalUsers(Dep, I); 2803 2804 return nullptr; 2805 } 2806 Deps.insert(CurrentDeps.begin(), CurrentDeps.end()); 2807 } else { 2808 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block " 2809 << getBlockName(PredBB) 2810 << " because the block is unreachable\n"); 2811 FoundVal = PoisonValue::get(I->getType()); 2812 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2813 } 2814 2815 PHIOps.push_back({FoundVal, PredBB}); 2816 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in " 2817 << getBlockName(PredBB) << "\n"); 2818 } 2819 for (auto Dep : Deps) 2820 addAdditionalUsers(Dep, I); 2821 sortPHIOps(PHIOps); 2822 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock); 2823 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) { 2824 LLVM_DEBUG( 2825 dbgs() 2826 << "Not creating real PHI of ops because it simplified to existing " 2827 "value or constant\n"); 2828 // We have leaders for all operands, but do not create a real PHI node with 2829 // those leaders as operands, so the link between the operands and the 2830 // PHI-of-ops is not materialized in the IR. If any of those leaders 2831 // changes, the PHI-of-op may change also, so we need to add the operands as 2832 // additional users. 2833 for (auto &O : PHIOps) 2834 addAdditionalUsers(O.first, I); 2835 2836 return E; 2837 } 2838 auto *ValuePHI = RealToTemp.lookup(I); 2839 bool NewPHI = false; 2840 if (!ValuePHI) { 2841 ValuePHI = 2842 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops"); 2843 addPhiOfOps(ValuePHI, PHIBlock, I); 2844 NewPHI = true; 2845 NumGVNPHIOfOpsCreated++; 2846 } 2847 if (NewPHI) { 2848 for (auto PHIOp : PHIOps) 2849 ValuePHI->addIncoming(PHIOp.first, PHIOp.second); 2850 } else { 2851 TempToBlock[ValuePHI] = PHIBlock; 2852 unsigned int i = 0; 2853 for (auto PHIOp : PHIOps) { 2854 ValuePHI->setIncomingValue(i, PHIOp.first); 2855 ValuePHI->setIncomingBlock(i, PHIOp.second); 2856 ++i; 2857 } 2858 } 2859 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2860 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I 2861 << "\n"); 2862 2863 return E; 2864 } 2865 2866 // The algorithm initially places the values of the routine in the TOP 2867 // congruence class. The leader of TOP is the undetermined value `poison`. 2868 // When the algorithm has finished, values still in TOP are unreachable. 2869 void NewGVN::initializeCongruenceClasses(Function &F) { 2870 NextCongruenceNum = 0; 2871 2872 // Note that even though we use the live on entry def as a representative 2873 // MemoryAccess, it is *not* the same as the actual live on entry def. We 2874 // have no real equivalent to poison for MemoryAccesses, and so we really 2875 // should be checking whether the MemoryAccess is top if we want to know if it 2876 // is equivalent to everything. Otherwise, what this really signifies is that 2877 // the access "it reaches all the way back to the beginning of the function" 2878 2879 // Initialize all other instructions to be in TOP class. 2880 TOPClass = createCongruenceClass(nullptr, nullptr); 2881 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef()); 2882 // The live on entry def gets put into it's own class 2883 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] = 2884 createMemoryClass(MSSA->getLiveOnEntryDef()); 2885 2886 for (auto DTN : nodes(DT)) { 2887 BasicBlock *BB = DTN->getBlock(); 2888 // All MemoryAccesses are equivalent to live on entry to start. They must 2889 // be initialized to something so that initial changes are noticed. For 2890 // the maximal answer, we initialize them all to be the same as 2891 // liveOnEntry. 2892 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB); 2893 if (MemoryBlockDefs) 2894 for (const auto &Def : *MemoryBlockDefs) { 2895 MemoryAccessToClass[&Def] = TOPClass; 2896 auto *MD = dyn_cast<MemoryDef>(&Def); 2897 // Insert the memory phis into the member list. 2898 if (!MD) { 2899 const MemoryPhi *MP = cast<MemoryPhi>(&Def); 2900 TOPClass->memory_insert(MP); 2901 MemoryPhiState.insert({MP, MPS_TOP}); 2902 } 2903 2904 if (MD && isa<StoreInst>(MD->getMemoryInst())) 2905 TOPClass->incStoreCount(); 2906 } 2907 2908 // FIXME: This is trying to discover which instructions are uses of phi 2909 // nodes. We should move this into one of the myriad of places that walk 2910 // all the operands already. 2911 for (auto &I : *BB) { 2912 if (isa<PHINode>(&I)) 2913 for (auto *U : I.users()) 2914 if (auto *UInst = dyn_cast<Instruction>(U)) 2915 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst)) 2916 PHINodeUses.insert(UInst); 2917 // Don't insert void terminators into the class. We don't value number 2918 // them, and they just end up sitting in TOP. 2919 if (I.isTerminator() && I.getType()->isVoidTy()) 2920 continue; 2921 TOPClass->insert(&I); 2922 ValueToClass[&I] = TOPClass; 2923 } 2924 } 2925 2926 // Initialize arguments to be in their own unique congruence classes 2927 for (auto &FA : F.args()) 2928 createSingletonCongruenceClass(&FA); 2929 } 2930 2931 void NewGVN::cleanupTables() { 2932 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) { 2933 LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID() 2934 << " has " << CongruenceClasses[i]->size() 2935 << " members\n"); 2936 // Make sure we delete the congruence class (probably worth switching to 2937 // a unique_ptr at some point. 2938 delete CongruenceClasses[i]; 2939 CongruenceClasses[i] = nullptr; 2940 } 2941 2942 // Destroy the value expressions 2943 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(), 2944 AllTempInstructions.end()); 2945 AllTempInstructions.clear(); 2946 2947 // We have to drop all references for everything first, so there are no uses 2948 // left as we delete them. 2949 for (auto *I : TempInst) { 2950 I->dropAllReferences(); 2951 } 2952 2953 while (!TempInst.empty()) { 2954 auto *I = TempInst.pop_back_val(); 2955 I->deleteValue(); 2956 } 2957 2958 ValueToClass.clear(); 2959 ArgRecycler.clear(ExpressionAllocator); 2960 ExpressionAllocator.Reset(); 2961 CongruenceClasses.clear(); 2962 ExpressionToClass.clear(); 2963 ValueToExpression.clear(); 2964 RealToTemp.clear(); 2965 AdditionalUsers.clear(); 2966 ExpressionToPhiOfOps.clear(); 2967 TempToBlock.clear(); 2968 TempToMemory.clear(); 2969 PHINodeUses.clear(); 2970 OpSafeForPHIOfOps.clear(); 2971 ReachableBlocks.clear(); 2972 ReachableEdges.clear(); 2973 #ifndef NDEBUG 2974 ProcessedCount.clear(); 2975 #endif 2976 InstrDFS.clear(); 2977 InstructionsToErase.clear(); 2978 DFSToInstr.clear(); 2979 BlockInstRange.clear(); 2980 TouchedInstructions.clear(); 2981 MemoryAccessToClass.clear(); 2982 PredicateToUsers.clear(); 2983 MemoryToUsers.clear(); 2984 RevisitOnReachabilityChange.clear(); 2985 IntrinsicInstPred.clear(); 2986 } 2987 2988 // Assign local DFS number mapping to instructions, and leave space for Value 2989 // PHI's. 2990 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B, 2991 unsigned Start) { 2992 unsigned End = Start; 2993 if (MemoryAccess *MemPhi = getMemoryAccess(B)) { 2994 InstrDFS[MemPhi] = End++; 2995 DFSToInstr.emplace_back(MemPhi); 2996 } 2997 2998 // Then the real block goes next. 2999 for (auto &I : *B) { 3000 // There's no need to call isInstructionTriviallyDead more than once on 3001 // an instruction. Therefore, once we know that an instruction is dead 3002 // we change its DFS number so that it doesn't get value numbered. 3003 if (isInstructionTriviallyDead(&I, TLI)) { 3004 InstrDFS[&I] = 0; 3005 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n"); 3006 markInstructionForDeletion(&I); 3007 continue; 3008 } 3009 if (isa<PHINode>(&I)) 3010 RevisitOnReachabilityChange[B].set(End); 3011 InstrDFS[&I] = End++; 3012 DFSToInstr.emplace_back(&I); 3013 } 3014 3015 // All of the range functions taken half-open ranges (open on the end side). 3016 // So we do not subtract one from count, because at this point it is one 3017 // greater than the last instruction. 3018 return std::make_pair(Start, End); 3019 } 3020 3021 void NewGVN::updateProcessedCount(const Value *V) { 3022 #ifndef NDEBUG 3023 if (ProcessedCount.count(V) == 0) { 3024 ProcessedCount.insert({V, 1}); 3025 } else { 3026 ++ProcessedCount[V]; 3027 assert(ProcessedCount[V] < 100 && 3028 "Seem to have processed the same Value a lot"); 3029 } 3030 #endif 3031 } 3032 3033 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes 3034 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) { 3035 // If all the arguments are the same, the MemoryPhi has the same value as the 3036 // argument. Filter out unreachable blocks and self phis from our operands. 3037 // TODO: We could do cycle-checking on the memory phis to allow valueizing for 3038 // self-phi checking. 3039 const BasicBlock *PHIBlock = MP->getBlock(); 3040 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) { 3041 return cast<MemoryAccess>(U) != MP && 3042 !isMemoryAccessTOP(cast<MemoryAccess>(U)) && 3043 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock}); 3044 }); 3045 // If all that is left is nothing, our memoryphi is poison. We keep it as 3046 // InitialClass. Note: The only case this should happen is if we have at 3047 // least one self-argument. 3048 if (Filtered.begin() == Filtered.end()) { 3049 if (setMemoryClass(MP, TOPClass)) 3050 markMemoryUsersTouched(MP); 3051 return; 3052 } 3053 3054 // Transform the remaining operands into operand leaders. 3055 // FIXME: mapped_iterator should have a range version. 3056 auto LookupFunc = [&](const Use &U) { 3057 return lookupMemoryLeader(cast<MemoryAccess>(U)); 3058 }; 3059 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc); 3060 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc); 3061 3062 // and now check if all the elements are equal. 3063 // Sadly, we can't use std::equals since these are random access iterators. 3064 const auto *AllSameValue = *MappedBegin; 3065 ++MappedBegin; 3066 bool AllEqual = std::all_of( 3067 MappedBegin, MappedEnd, 3068 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; }); 3069 3070 if (AllEqual) 3071 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue 3072 << "\n"); 3073 else 3074 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n"); 3075 // If it's equal to something, it's in that class. Otherwise, it has to be in 3076 // a class where it is the leader (other things may be equivalent to it, but 3077 // it needs to start off in its own class, which means it must have been the 3078 // leader, and it can't have stopped being the leader because it was never 3079 // removed). 3080 CongruenceClass *CC = 3081 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP); 3082 auto OldState = MemoryPhiState.lookup(MP); 3083 assert(OldState != MPS_Invalid && "Invalid memory phi state"); 3084 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique; 3085 MemoryPhiState[MP] = NewState; 3086 if (setMemoryClass(MP, CC) || OldState != NewState) 3087 markMemoryUsersTouched(MP); 3088 } 3089 3090 // Value number a single instruction, symbolically evaluating, performing 3091 // congruence finding, and updating mappings. 3092 void NewGVN::valueNumberInstruction(Instruction *I) { 3093 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n"); 3094 if (!I->isTerminator()) { 3095 const Expression *Symbolized = nullptr; 3096 SmallPtrSet<Value *, 2> Visited; 3097 if (DebugCounter::shouldExecute(VNCounter)) { 3098 auto Res = performSymbolicEvaluation(I, Visited); 3099 Symbolized = Res.Expr; 3100 addAdditionalUsers(Res, I); 3101 3102 // Make a phi of ops if necessary 3103 if (Symbolized && !isa<ConstantExpression>(Symbolized) && 3104 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) { 3105 auto *PHIE = makePossiblePHIOfOps(I, Visited); 3106 // If we created a phi of ops, use it. 3107 // If we couldn't create one, make sure we don't leave one lying around 3108 if (PHIE) { 3109 Symbolized = PHIE; 3110 } else if (auto *Op = RealToTemp.lookup(I)) { 3111 removePhiOfOps(I, Op); 3112 } 3113 } 3114 } else { 3115 // Mark the instruction as unused so we don't value number it again. 3116 InstrDFS[I] = 0; 3117 } 3118 // If we couldn't come up with a symbolic expression, use the unknown 3119 // expression 3120 if (Symbolized == nullptr) 3121 Symbolized = createUnknownExpression(I); 3122 performCongruenceFinding(I, Symbolized); 3123 } else { 3124 // Handle terminators that return values. All of them produce values we 3125 // don't currently understand. We don't place non-value producing 3126 // terminators in a class. 3127 if (!I->getType()->isVoidTy()) { 3128 auto *Symbolized = createUnknownExpression(I); 3129 performCongruenceFinding(I, Symbolized); 3130 } 3131 processOutgoingEdges(I, I->getParent()); 3132 } 3133 } 3134 3135 // Check if there is a path, using single or equal argument phi nodes, from 3136 // First to Second. 3137 bool NewGVN::singleReachablePHIPath( 3138 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First, 3139 const MemoryAccess *Second) const { 3140 if (First == Second) 3141 return true; 3142 if (MSSA->isLiveOnEntryDef(First)) 3143 return false; 3144 3145 // This is not perfect, but as we're just verifying here, we can live with 3146 // the loss of precision. The real solution would be that of doing strongly 3147 // connected component finding in this routine, and it's probably not worth 3148 // the complexity for the time being. So, we just keep a set of visited 3149 // MemoryAccess and return true when we hit a cycle. 3150 if (!Visited.insert(First).second) 3151 return true; 3152 3153 const auto *EndDef = First; 3154 for (auto *ChainDef : optimized_def_chain(First)) { 3155 if (ChainDef == Second) 3156 return true; 3157 if (MSSA->isLiveOnEntryDef(ChainDef)) 3158 return false; 3159 EndDef = ChainDef; 3160 } 3161 auto *MP = cast<MemoryPhi>(EndDef); 3162 auto ReachableOperandPred = [&](const Use &U) { 3163 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()}); 3164 }; 3165 auto FilteredPhiArgs = 3166 make_filter_range(MP->operands(), ReachableOperandPred); 3167 SmallVector<const Value *, 32> OperandList; 3168 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList)); 3169 bool Okay = is_splat(OperandList); 3170 if (Okay) 3171 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]), 3172 Second); 3173 return false; 3174 } 3175 3176 // Verify the that the memory equivalence table makes sense relative to the 3177 // congruence classes. Note that this checking is not perfect, and is currently 3178 // subject to very rare false negatives. It is only useful for 3179 // testing/debugging. 3180 void NewGVN::verifyMemoryCongruency() const { 3181 #ifndef NDEBUG 3182 // Verify that the memory table equivalence and memory member set match 3183 for (const auto *CC : CongruenceClasses) { 3184 if (CC == TOPClass || CC->isDead()) 3185 continue; 3186 if (CC->getStoreCount() != 0) { 3187 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) && 3188 "Any class with a store as a leader should have a " 3189 "representative stored value"); 3190 assert(CC->getMemoryLeader() && 3191 "Any congruence class with a store should have a " 3192 "representative access"); 3193 } 3194 3195 if (CC->getMemoryLeader()) 3196 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC && 3197 "Representative MemoryAccess does not appear to be reverse " 3198 "mapped properly"); 3199 for (auto M : CC->memory()) 3200 assert(MemoryAccessToClass.lookup(M) == CC && 3201 "Memory member does not appear to be reverse mapped properly"); 3202 } 3203 3204 // Anything equivalent in the MemoryAccess table should be in the same 3205 // congruence class. 3206 3207 // Filter out the unreachable and trivially dead entries, because they may 3208 // never have been updated if the instructions were not processed. 3209 auto ReachableAccessPred = 3210 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) { 3211 bool Result = ReachableBlocks.count(Pair.first->getBlock()); 3212 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) || 3213 MemoryToDFSNum(Pair.first) == 0) 3214 return false; 3215 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first)) 3216 return !isInstructionTriviallyDead(MemDef->getMemoryInst()); 3217 3218 // We could have phi nodes which operands are all trivially dead, 3219 // so we don't process them. 3220 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) { 3221 for (auto &U : MemPHI->incoming_values()) { 3222 if (auto *I = dyn_cast<Instruction>(&*U)) { 3223 if (!isInstructionTriviallyDead(I)) 3224 return true; 3225 } 3226 } 3227 return false; 3228 } 3229 3230 return true; 3231 }; 3232 3233 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred); 3234 for (auto KV : Filtered) { 3235 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) { 3236 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader()); 3237 if (FirstMUD && SecondMUD) { 3238 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS; 3239 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) || 3240 ValueToClass.lookup(FirstMUD->getMemoryInst()) == 3241 ValueToClass.lookup(SecondMUD->getMemoryInst())) && 3242 "The instructions for these memory operations should have " 3243 "been in the same congruence class or reachable through" 3244 "a single argument phi"); 3245 } 3246 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) { 3247 // We can only sanely verify that MemoryDefs in the operand list all have 3248 // the same class. 3249 auto ReachableOperandPred = [&](const Use &U) { 3250 return ReachableEdges.count( 3251 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) && 3252 isa<MemoryDef>(U); 3253 3254 }; 3255 // All arguments should in the same class, ignoring unreachable arguments 3256 auto FilteredPhiArgs = 3257 make_filter_range(FirstMP->operands(), ReachableOperandPred); 3258 SmallVector<const CongruenceClass *, 16> PhiOpClasses; 3259 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(), 3260 std::back_inserter(PhiOpClasses), [&](const Use &U) { 3261 const MemoryDef *MD = cast<MemoryDef>(U); 3262 return ValueToClass.lookup(MD->getMemoryInst()); 3263 }); 3264 assert(is_splat(PhiOpClasses) && 3265 "All MemoryPhi arguments should be in the same class"); 3266 } 3267 } 3268 #endif 3269 } 3270 3271 // Verify that the sparse propagation we did actually found the maximal fixpoint 3272 // We do this by storing the value to class mapping, touching all instructions, 3273 // and redoing the iteration to see if anything changed. 3274 void NewGVN::verifyIterationSettled(Function &F) { 3275 #ifndef NDEBUG 3276 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n"); 3277 if (DebugCounter::isCounterSet(VNCounter)) 3278 DebugCounter::setCounterValue(VNCounter, StartingVNCounter); 3279 3280 // Note that we have to store the actual classes, as we may change existing 3281 // classes during iteration. This is because our memory iteration propagation 3282 // is not perfect, and so may waste a little work. But it should generate 3283 // exactly the same congruence classes we have now, with different IDs. 3284 std::map<const Value *, CongruenceClass> BeforeIteration; 3285 3286 for (auto &KV : ValueToClass) { 3287 if (auto *I = dyn_cast<Instruction>(KV.first)) 3288 // Skip unused/dead instructions. 3289 if (InstrToDFSNum(I) == 0) 3290 continue; 3291 BeforeIteration.insert({KV.first, *KV.second}); 3292 } 3293 3294 TouchedInstructions.set(); 3295 TouchedInstructions.reset(0); 3296 iterateTouchedInstructions(); 3297 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>> 3298 EqualClasses; 3299 for (const auto &KV : ValueToClass) { 3300 if (auto *I = dyn_cast<Instruction>(KV.first)) 3301 // Skip unused/dead instructions. 3302 if (InstrToDFSNum(I) == 0) 3303 continue; 3304 // We could sink these uses, but i think this adds a bit of clarity here as 3305 // to what we are comparing. 3306 auto *BeforeCC = &BeforeIteration.find(KV.first)->second; 3307 auto *AfterCC = KV.second; 3308 // Note that the classes can't change at this point, so we memoize the set 3309 // that are equal. 3310 if (!EqualClasses.count({BeforeCC, AfterCC})) { 3311 assert(BeforeCC->isEquivalentTo(AfterCC) && 3312 "Value number changed after main loop completed!"); 3313 EqualClasses.insert({BeforeCC, AfterCC}); 3314 } 3315 } 3316 #endif 3317 } 3318 3319 // Verify that for each store expression in the expression to class mapping, 3320 // only the latest appears, and multiple ones do not appear. 3321 // Because loads do not use the stored value when doing equality with stores, 3322 // if we don't erase the old store expressions from the table, a load can find 3323 // a no-longer valid StoreExpression. 3324 void NewGVN::verifyStoreExpressions() const { 3325 #ifndef NDEBUG 3326 // This is the only use of this, and it's not worth defining a complicated 3327 // densemapinfo hash/equality function for it. 3328 std::set< 3329 std::pair<const Value *, 3330 std::tuple<const Value *, const CongruenceClass *, Value *>>> 3331 StoreExpressionSet; 3332 for (const auto &KV : ExpressionToClass) { 3333 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) { 3334 // Make sure a version that will conflict with loads is not already there 3335 auto Res = StoreExpressionSet.insert( 3336 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second, 3337 SE->getStoredValue())}); 3338 bool Okay = Res.second; 3339 // It's okay to have the same expression already in there if it is 3340 // identical in nature. 3341 // This can happen when the leader of the stored value changes over time. 3342 if (!Okay) 3343 Okay = (std::get<1>(Res.first->second) == KV.second) && 3344 (lookupOperandLeader(std::get<2>(Res.first->second)) == 3345 lookupOperandLeader(SE->getStoredValue())); 3346 assert(Okay && "Stored expression conflict exists in expression table"); 3347 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst()); 3348 assert(ValueExpr && ValueExpr->equals(*SE) && 3349 "StoreExpression in ExpressionToClass is not latest " 3350 "StoreExpression for value"); 3351 } 3352 } 3353 #endif 3354 } 3355 3356 // This is the main value numbering loop, it iterates over the initial touched 3357 // instruction set, propagating value numbers, marking things touched, etc, 3358 // until the set of touched instructions is completely empty. 3359 void NewGVN::iterateTouchedInstructions() { 3360 uint64_t Iterations = 0; 3361 // Figure out where touchedinstructions starts 3362 int FirstInstr = TouchedInstructions.find_first(); 3363 // Nothing set, nothing to iterate, just return. 3364 if (FirstInstr == -1) 3365 return; 3366 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr)); 3367 while (TouchedInstructions.any()) { 3368 ++Iterations; 3369 // Walk through all the instructions in all the blocks in RPO. 3370 // TODO: As we hit a new block, we should push and pop equalities into a 3371 // table lookupOperandLeader can use, to catch things PredicateInfo 3372 // might miss, like edge-only equivalences. 3373 for (unsigned InstrNum : TouchedInstructions.set_bits()) { 3374 3375 // This instruction was found to be dead. We don't bother looking 3376 // at it again. 3377 if (InstrNum == 0) { 3378 TouchedInstructions.reset(InstrNum); 3379 continue; 3380 } 3381 3382 Value *V = InstrFromDFSNum(InstrNum); 3383 const BasicBlock *CurrBlock = getBlockForValue(V); 3384 3385 // If we hit a new block, do reachability processing. 3386 if (CurrBlock != LastBlock) { 3387 LastBlock = CurrBlock; 3388 bool BlockReachable = ReachableBlocks.count(CurrBlock); 3389 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock); 3390 3391 // If it's not reachable, erase any touched instructions and move on. 3392 if (!BlockReachable) { 3393 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second); 3394 LLVM_DEBUG(dbgs() << "Skipping instructions in block " 3395 << getBlockName(CurrBlock) 3396 << " because it is unreachable\n"); 3397 continue; 3398 } 3399 updateProcessedCount(CurrBlock); 3400 } 3401 // Reset after processing (because we may mark ourselves as touched when 3402 // we propagate equalities). 3403 TouchedInstructions.reset(InstrNum); 3404 3405 if (auto *MP = dyn_cast<MemoryPhi>(V)) { 3406 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n"); 3407 valueNumberMemoryPhi(MP); 3408 } else if (auto *I = dyn_cast<Instruction>(V)) { 3409 valueNumberInstruction(I); 3410 } else { 3411 llvm_unreachable("Should have been a MemoryPhi or Instruction"); 3412 } 3413 updateProcessedCount(V); 3414 } 3415 } 3416 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations); 3417 } 3418 3419 // This is the main transformation entry point. 3420 bool NewGVN::runGVN() { 3421 if (DebugCounter::isCounterSet(VNCounter)) 3422 StartingVNCounter = DebugCounter::getCounterValue(VNCounter); 3423 bool Changed = false; 3424 NumFuncArgs = F.arg_size(); 3425 MSSAWalker = MSSA->getWalker(); 3426 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression(); 3427 3428 // Count number of instructions for sizing of hash tables, and come 3429 // up with a global dfs numbering for instructions. 3430 unsigned ICount = 1; 3431 // Add an empty instruction to account for the fact that we start at 1 3432 DFSToInstr.emplace_back(nullptr); 3433 // Note: We want ideal RPO traversal of the blocks, which is not quite the 3434 // same as dominator tree order, particularly with regard whether backedges 3435 // get visited first or second, given a block with multiple successors. 3436 // If we visit in the wrong order, we will end up performing N times as many 3437 // iterations. 3438 // The dominator tree does guarantee that, for a given dom tree node, it's 3439 // parent must occur before it in the RPO ordering. Thus, we only need to sort 3440 // the siblings. 3441 ReversePostOrderTraversal<Function *> RPOT(&F); 3442 unsigned Counter = 0; 3443 for (auto &B : RPOT) { 3444 auto *Node = DT->getNode(B); 3445 assert(Node && "RPO and Dominator tree should have same reachability"); 3446 RPOOrdering[Node] = ++Counter; 3447 } 3448 // Sort dominator tree children arrays into RPO. 3449 for (auto &B : RPOT) { 3450 auto *Node = DT->getNode(B); 3451 if (Node->getNumChildren() > 1) 3452 llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) { 3453 return RPOOrdering[A] < RPOOrdering[B]; 3454 }); 3455 } 3456 3457 // Now a standard depth first ordering of the domtree is equivalent to RPO. 3458 for (auto DTN : depth_first(DT->getRootNode())) { 3459 BasicBlock *B = DTN->getBlock(); 3460 const auto &BlockRange = assignDFSNumbers(B, ICount); 3461 BlockInstRange.insert({B, BlockRange}); 3462 ICount += BlockRange.second - BlockRange.first; 3463 } 3464 initializeCongruenceClasses(F); 3465 3466 TouchedInstructions.resize(ICount); 3467 // Ensure we don't end up resizing the expressionToClass map, as 3468 // that can be quite expensive. At most, we have one expression per 3469 // instruction. 3470 ExpressionToClass.reserve(ICount); 3471 3472 // Initialize the touched instructions to include the entry block. 3473 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock()); 3474 TouchedInstructions.set(InstRange.first, InstRange.second); 3475 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock()) 3476 << " marked reachable\n"); 3477 ReachableBlocks.insert(&F.getEntryBlock()); 3478 3479 iterateTouchedInstructions(); 3480 verifyMemoryCongruency(); 3481 verifyIterationSettled(F); 3482 verifyStoreExpressions(); 3483 3484 Changed |= eliminateInstructions(F); 3485 3486 // Delete all instructions marked for deletion. 3487 for (Instruction *ToErase : InstructionsToErase) { 3488 if (!ToErase->use_empty()) 3489 ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType())); 3490 3491 assert(ToErase->getParent() && 3492 "BB containing ToErase deleted unexpectedly!"); 3493 ToErase->eraseFromParent(); 3494 } 3495 Changed |= !InstructionsToErase.empty(); 3496 3497 // Delete all unreachable blocks. 3498 auto UnreachableBlockPred = [&](const BasicBlock &BB) { 3499 return !ReachableBlocks.count(&BB); 3500 }; 3501 3502 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) { 3503 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB) 3504 << " is unreachable\n"); 3505 deleteInstructionsInBlock(&BB); 3506 Changed = true; 3507 } 3508 3509 cleanupTables(); 3510 return Changed; 3511 } 3512 3513 struct NewGVN::ValueDFS { 3514 int DFSIn = 0; 3515 int DFSOut = 0; 3516 int LocalNum = 0; 3517 3518 // Only one of Def and U will be set. 3519 // The bool in the Def tells us whether the Def is the stored value of a 3520 // store. 3521 PointerIntPair<Value *, 1, bool> Def; 3522 Use *U = nullptr; 3523 3524 bool operator<(const ValueDFS &Other) const { 3525 // It's not enough that any given field be less than - we have sets 3526 // of fields that need to be evaluated together to give a proper ordering. 3527 // For example, if you have; 3528 // DFS (1, 3) 3529 // Val 0 3530 // DFS (1, 2) 3531 // Val 50 3532 // We want the second to be less than the first, but if we just go field 3533 // by field, we will get to Val 0 < Val 50 and say the first is less than 3534 // the second. We only want it to be less than if the DFS orders are equal. 3535 // 3536 // Each LLVM instruction only produces one value, and thus the lowest-level 3537 // differentiator that really matters for the stack (and what we use as as a 3538 // replacement) is the local dfs number. 3539 // Everything else in the structure is instruction level, and only affects 3540 // the order in which we will replace operands of a given instruction. 3541 // 3542 // For a given instruction (IE things with equal dfsin, dfsout, localnum), 3543 // the order of replacement of uses does not matter. 3544 // IE given, 3545 // a = 5 3546 // b = a + a 3547 // When you hit b, you will have two valuedfs with the same dfsin, out, and 3548 // localnum. 3549 // The .val will be the same as well. 3550 // The .u's will be different. 3551 // You will replace both, and it does not matter what order you replace them 3552 // in (IE whether you replace operand 2, then operand 1, or operand 1, then 3553 // operand 2). 3554 // Similarly for the case of same dfsin, dfsout, localnum, but different 3555 // .val's 3556 // a = 5 3557 // b = 6 3558 // c = a + b 3559 // in c, we will a valuedfs for a, and one for b,with everything the same 3560 // but .val and .u. 3561 // It does not matter what order we replace these operands in. 3562 // You will always end up with the same IR, and this is guaranteed. 3563 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) < 3564 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def, 3565 Other.U); 3566 } 3567 }; 3568 3569 // This function converts the set of members for a congruence class from values, 3570 // to sets of defs and uses with associated DFS info. The total number of 3571 // reachable uses for each value is stored in UseCount, and instructions that 3572 // seem 3573 // dead (have no non-dead uses) are stored in ProbablyDead. 3574 void NewGVN::convertClassToDFSOrdered( 3575 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet, 3576 DenseMap<const Value *, unsigned int> &UseCounts, 3577 SmallPtrSetImpl<Instruction *> &ProbablyDead) const { 3578 for (auto D : Dense) { 3579 // First add the value. 3580 BasicBlock *BB = getBlockForValue(D); 3581 // Constants are handled prior to ever calling this function, so 3582 // we should only be left with instructions as members. 3583 assert(BB && "Should have figured out a basic block for value"); 3584 ValueDFS VDDef; 3585 DomTreeNode *DomNode = DT->getNode(BB); 3586 VDDef.DFSIn = DomNode->getDFSNumIn(); 3587 VDDef.DFSOut = DomNode->getDFSNumOut(); 3588 // If it's a store, use the leader of the value operand, if it's always 3589 // available, or the value operand. TODO: We could do dominance checks to 3590 // find a dominating leader, but not worth it ATM. 3591 if (auto *SI = dyn_cast<StoreInst>(D)) { 3592 auto Leader = lookupOperandLeader(SI->getValueOperand()); 3593 if (alwaysAvailable(Leader)) { 3594 VDDef.Def.setPointer(Leader); 3595 } else { 3596 VDDef.Def.setPointer(SI->getValueOperand()); 3597 VDDef.Def.setInt(true); 3598 } 3599 } else { 3600 VDDef.Def.setPointer(D); 3601 } 3602 assert(isa<Instruction>(D) && 3603 "The dense set member should always be an instruction"); 3604 Instruction *Def = cast<Instruction>(D); 3605 VDDef.LocalNum = InstrToDFSNum(D); 3606 DFSOrderedSet.push_back(VDDef); 3607 // If there is a phi node equivalent, add it 3608 if (auto *PN = RealToTemp.lookup(Def)) { 3609 auto *PHIE = 3610 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def)); 3611 if (PHIE) { 3612 VDDef.Def.setInt(false); 3613 VDDef.Def.setPointer(PN); 3614 VDDef.LocalNum = 0; 3615 DFSOrderedSet.push_back(VDDef); 3616 } 3617 } 3618 3619 unsigned int UseCount = 0; 3620 // Now add the uses. 3621 for (auto &U : Def->uses()) { 3622 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 3623 // Don't try to replace into dead uses 3624 if (InstructionsToErase.count(I)) 3625 continue; 3626 ValueDFS VDUse; 3627 // Put the phi node uses in the incoming block. 3628 BasicBlock *IBlock; 3629 if (auto *P = dyn_cast<PHINode>(I)) { 3630 IBlock = P->getIncomingBlock(U); 3631 // Make phi node users appear last in the incoming block 3632 // they are from. 3633 VDUse.LocalNum = InstrDFS.size() + 1; 3634 } else { 3635 IBlock = getBlockForValue(I); 3636 VDUse.LocalNum = InstrToDFSNum(I); 3637 } 3638 3639 // Skip uses in unreachable blocks, as we're going 3640 // to delete them. 3641 if (!ReachableBlocks.contains(IBlock)) 3642 continue; 3643 3644 DomTreeNode *DomNode = DT->getNode(IBlock); 3645 VDUse.DFSIn = DomNode->getDFSNumIn(); 3646 VDUse.DFSOut = DomNode->getDFSNumOut(); 3647 VDUse.U = &U; 3648 ++UseCount; 3649 DFSOrderedSet.emplace_back(VDUse); 3650 } 3651 } 3652 3653 // If there are no uses, it's probably dead (but it may have side-effects, 3654 // so not definitely dead. Otherwise, store the number of uses so we can 3655 // track if it becomes dead later). 3656 if (UseCount == 0) 3657 ProbablyDead.insert(Def); 3658 else 3659 UseCounts[Def] = UseCount; 3660 } 3661 } 3662 3663 // This function converts the set of members for a congruence class from values, 3664 // to the set of defs for loads and stores, with associated DFS info. 3665 void NewGVN::convertClassToLoadsAndStores( 3666 const CongruenceClass &Dense, 3667 SmallVectorImpl<ValueDFS> &LoadsAndStores) const { 3668 for (auto D : Dense) { 3669 if (!isa<LoadInst>(D) && !isa<StoreInst>(D)) 3670 continue; 3671 3672 BasicBlock *BB = getBlockForValue(D); 3673 ValueDFS VD; 3674 DomTreeNode *DomNode = DT->getNode(BB); 3675 VD.DFSIn = DomNode->getDFSNumIn(); 3676 VD.DFSOut = DomNode->getDFSNumOut(); 3677 VD.Def.setPointer(D); 3678 3679 // If it's an instruction, use the real local dfs number. 3680 if (auto *I = dyn_cast<Instruction>(D)) 3681 VD.LocalNum = InstrToDFSNum(I); 3682 else 3683 llvm_unreachable("Should have been an instruction"); 3684 3685 LoadsAndStores.emplace_back(VD); 3686 } 3687 } 3688 3689 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 3690 patchReplacementInstruction(I, Repl); 3691 I->replaceAllUsesWith(Repl); 3692 } 3693 3694 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) { 3695 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 3696 ++NumGVNBlocksDeleted; 3697 3698 // Delete the instructions backwards, as it has a reduced likelihood of having 3699 // to update as many def-use and use-def chains. Start after the terminator. 3700 auto StartPoint = BB->rbegin(); 3701 ++StartPoint; 3702 // Note that we explicitly recalculate BB->rend() on each iteration, 3703 // as it may change when we remove the first instruction. 3704 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) { 3705 Instruction &Inst = *I++; 3706 if (!Inst.use_empty()) 3707 Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType())); 3708 if (isa<LandingPadInst>(Inst)) 3709 continue; 3710 salvageKnowledge(&Inst, AC); 3711 3712 Inst.eraseFromParent(); 3713 ++NumGVNInstrDeleted; 3714 } 3715 // Now insert something that simplifycfg will turn into an unreachable. 3716 Type *Int8Ty = Type::getInt8Ty(BB->getContext()); 3717 new StoreInst(PoisonValue::get(Int8Ty), 3718 Constant::getNullValue(Int8Ty->getPointerTo()), 3719 BB->getTerminator()); 3720 } 3721 3722 void NewGVN::markInstructionForDeletion(Instruction *I) { 3723 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n"); 3724 InstructionsToErase.insert(I); 3725 } 3726 3727 void NewGVN::replaceInstruction(Instruction *I, Value *V) { 3728 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n"); 3729 patchAndReplaceAllUsesWith(I, V); 3730 // We save the actual erasing to avoid invalidating memory 3731 // dependencies until we are done with everything. 3732 markInstructionForDeletion(I); 3733 } 3734 3735 namespace { 3736 3737 // This is a stack that contains both the value and dfs info of where 3738 // that value is valid. 3739 class ValueDFSStack { 3740 public: 3741 Value *back() const { return ValueStack.back(); } 3742 std::pair<int, int> dfs_back() const { return DFSStack.back(); } 3743 3744 void push_back(Value *V, int DFSIn, int DFSOut) { 3745 ValueStack.emplace_back(V); 3746 DFSStack.emplace_back(DFSIn, DFSOut); 3747 } 3748 3749 bool empty() const { return DFSStack.empty(); } 3750 3751 bool isInScope(int DFSIn, int DFSOut) const { 3752 if (empty()) 3753 return false; 3754 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second; 3755 } 3756 3757 void popUntilDFSScope(int DFSIn, int DFSOut) { 3758 3759 // These two should always be in sync at this point. 3760 assert(ValueStack.size() == DFSStack.size() && 3761 "Mismatch between ValueStack and DFSStack"); 3762 while ( 3763 !DFSStack.empty() && 3764 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) { 3765 DFSStack.pop_back(); 3766 ValueStack.pop_back(); 3767 } 3768 } 3769 3770 private: 3771 SmallVector<Value *, 8> ValueStack; 3772 SmallVector<std::pair<int, int>, 8> DFSStack; 3773 }; 3774 3775 } // end anonymous namespace 3776 3777 // Given an expression, get the congruence class for it. 3778 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const { 3779 if (auto *VE = dyn_cast<VariableExpression>(E)) 3780 return ValueToClass.lookup(VE->getVariableValue()); 3781 else if (isa<DeadExpression>(E)) 3782 return TOPClass; 3783 return ExpressionToClass.lookup(E); 3784 } 3785 3786 // Given a value and a basic block we are trying to see if it is available in, 3787 // see if the value has a leader available in that block. 3788 Value *NewGVN::findPHIOfOpsLeader(const Expression *E, 3789 const Instruction *OrigInst, 3790 const BasicBlock *BB) const { 3791 // It would already be constant if we could make it constant 3792 if (auto *CE = dyn_cast<ConstantExpression>(E)) 3793 return CE->getConstantValue(); 3794 if (auto *VE = dyn_cast<VariableExpression>(E)) { 3795 auto *V = VE->getVariableValue(); 3796 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB)) 3797 return VE->getVariableValue(); 3798 } 3799 3800 auto *CC = getClassForExpression(E); 3801 if (!CC) 3802 return nullptr; 3803 if (alwaysAvailable(CC->getLeader())) 3804 return CC->getLeader(); 3805 3806 for (auto Member : *CC) { 3807 auto *MemberInst = dyn_cast<Instruction>(Member); 3808 if (MemberInst == OrigInst) 3809 continue; 3810 // Anything that isn't an instruction is always available. 3811 if (!MemberInst) 3812 return Member; 3813 if (DT->dominates(getBlockForValue(MemberInst), BB)) 3814 return Member; 3815 } 3816 return nullptr; 3817 } 3818 3819 bool NewGVN::eliminateInstructions(Function &F) { 3820 // This is a non-standard eliminator. The normal way to eliminate is 3821 // to walk the dominator tree in order, keeping track of available 3822 // values, and eliminating them. However, this is mildly 3823 // pointless. It requires doing lookups on every instruction, 3824 // regardless of whether we will ever eliminate it. For 3825 // instructions part of most singleton congruence classes, we know we 3826 // will never eliminate them. 3827 3828 // Instead, this eliminator looks at the congruence classes directly, sorts 3829 // them into a DFS ordering of the dominator tree, and then we just 3830 // perform elimination straight on the sets by walking the congruence 3831 // class member uses in order, and eliminate the ones dominated by the 3832 // last member. This is worst case O(E log E) where E = number of 3833 // instructions in a single congruence class. In theory, this is all 3834 // instructions. In practice, it is much faster, as most instructions are 3835 // either in singleton congruence classes or can't possibly be eliminated 3836 // anyway (if there are no overlapping DFS ranges in class). 3837 // When we find something not dominated, it becomes the new leader 3838 // for elimination purposes. 3839 // TODO: If we wanted to be faster, We could remove any members with no 3840 // overlapping ranges while sorting, as we will never eliminate anything 3841 // with those members, as they don't dominate anything else in our set. 3842 3843 bool AnythingReplaced = false; 3844 3845 // Since we are going to walk the domtree anyway, and we can't guarantee the 3846 // DFS numbers are updated, we compute some ourselves. 3847 DT->updateDFSNumbers(); 3848 3849 // Go through all of our phi nodes, and kill the arguments associated with 3850 // unreachable edges. 3851 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) { 3852 for (auto &Operand : PHI->incoming_values()) 3853 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) { 3854 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI 3855 << " for block " 3856 << getBlockName(PHI->getIncomingBlock(Operand)) 3857 << " with poison due to it being unreachable\n"); 3858 Operand.set(PoisonValue::get(PHI->getType())); 3859 } 3860 }; 3861 // Replace unreachable phi arguments. 3862 // At this point, RevisitOnReachabilityChange only contains: 3863 // 3864 // 1. PHIs 3865 // 2. Temporaries that will convert to PHIs 3866 // 3. Operations that are affected by an unreachable edge but do not fit into 3867 // 1 or 2 (rare). 3868 // So it is a slight overshoot of what we want. We could make it exact by 3869 // using two SparseBitVectors per block. 3870 DenseMap<const BasicBlock *, unsigned> ReachablePredCount; 3871 for (auto &KV : ReachableEdges) 3872 ReachablePredCount[KV.getEnd()]++; 3873 for (auto &BBPair : RevisitOnReachabilityChange) { 3874 for (auto InstNum : BBPair.second) { 3875 auto *Inst = InstrFromDFSNum(InstNum); 3876 auto *PHI = dyn_cast<PHINode>(Inst); 3877 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst)); 3878 if (!PHI) 3879 continue; 3880 auto *BB = BBPair.first; 3881 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues()) 3882 ReplaceUnreachablePHIArgs(PHI, BB); 3883 } 3884 } 3885 3886 // Map to store the use counts 3887 DenseMap<const Value *, unsigned int> UseCounts; 3888 for (auto *CC : reverse(CongruenceClasses)) { 3889 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID() 3890 << "\n"); 3891 // Track the equivalent store info so we can decide whether to try 3892 // dead store elimination. 3893 SmallVector<ValueDFS, 8> PossibleDeadStores; 3894 SmallPtrSet<Instruction *, 8> ProbablyDead; 3895 if (CC->isDead() || CC->empty()) 3896 continue; 3897 // Everything still in the TOP class is unreachable or dead. 3898 if (CC == TOPClass) { 3899 for (auto M : *CC) { 3900 auto *VTE = ValueToExpression.lookup(M); 3901 if (VTE && isa<DeadExpression>(VTE)) 3902 markInstructionForDeletion(cast<Instruction>(M)); 3903 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) || 3904 InstructionsToErase.count(cast<Instruction>(M))) && 3905 "Everything in TOP should be unreachable or dead at this " 3906 "point"); 3907 } 3908 continue; 3909 } 3910 3911 assert(CC->getLeader() && "We should have had a leader"); 3912 // If this is a leader that is always available, and it's a 3913 // constant or has no equivalences, just replace everything with 3914 // it. We then update the congruence class with whatever members 3915 // are left. 3916 Value *Leader = 3917 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 3918 if (alwaysAvailable(Leader)) { 3919 CongruenceClass::MemberSet MembersLeft; 3920 for (auto M : *CC) { 3921 Value *Member = M; 3922 // Void things have no uses we can replace. 3923 if (Member == Leader || !isa<Instruction>(Member) || 3924 Member->getType()->isVoidTy()) { 3925 MembersLeft.insert(Member); 3926 continue; 3927 } 3928 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " 3929 << *Member << "\n"); 3930 auto *I = cast<Instruction>(Member); 3931 assert(Leader != I && "About to accidentally remove our leader"); 3932 replaceInstruction(I, Leader); 3933 AnythingReplaced = true; 3934 } 3935 CC->swap(MembersLeft); 3936 } else { 3937 // If this is a singleton, we can skip it. 3938 if (CC->size() != 1 || RealToTemp.count(Leader)) { 3939 // This is a stack because equality replacement/etc may place 3940 // constants in the middle of the member list, and we want to use 3941 // those constant values in preference to the current leader, over 3942 // the scope of those constants. 3943 ValueDFSStack EliminationStack; 3944 3945 // Convert the members to DFS ordered sets and then merge them. 3946 SmallVector<ValueDFS, 8> DFSOrderedSet; 3947 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead); 3948 3949 // Sort the whole thing. 3950 llvm::sort(DFSOrderedSet); 3951 for (auto &VD : DFSOrderedSet) { 3952 int MemberDFSIn = VD.DFSIn; 3953 int MemberDFSOut = VD.DFSOut; 3954 Value *Def = VD.Def.getPointer(); 3955 bool FromStore = VD.Def.getInt(); 3956 Use *U = VD.U; 3957 // We ignore void things because we can't get a value from them. 3958 if (Def && Def->getType()->isVoidTy()) 3959 continue; 3960 auto *DefInst = dyn_cast_or_null<Instruction>(Def); 3961 if (DefInst && AllTempInstructions.count(DefInst)) { 3962 auto *PN = cast<PHINode>(DefInst); 3963 3964 // If this is a value phi and that's the expression we used, insert 3965 // it into the program 3966 // remove from temp instruction list. 3967 AllTempInstructions.erase(PN); 3968 auto *DefBlock = getBlockForValue(Def); 3969 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def 3970 << " into block " 3971 << getBlockName(getBlockForValue(Def)) << "\n"); 3972 PN->insertBefore(&DefBlock->front()); 3973 Def = PN; 3974 NumGVNPHIOfOpsEliminations++; 3975 } 3976 3977 if (EliminationStack.empty()) { 3978 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n"); 3979 } else { 3980 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are (" 3981 << EliminationStack.dfs_back().first << "," 3982 << EliminationStack.dfs_back().second << ")\n"); 3983 } 3984 3985 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << "," 3986 << MemberDFSOut << ")\n"); 3987 // First, we see if we are out of scope or empty. If so, 3988 // and there equivalences, we try to replace the top of 3989 // stack with equivalences (if it's on the stack, it must 3990 // not have been eliminated yet). 3991 // Then we synchronize to our current scope, by 3992 // popping until we are back within a DFS scope that 3993 // dominates the current member. 3994 // Then, what happens depends on a few factors 3995 // If the stack is now empty, we need to push 3996 // If we have a constant or a local equivalence we want to 3997 // start using, we also push. 3998 // Otherwise, we walk along, processing members who are 3999 // dominated by this scope, and eliminate them. 4000 bool ShouldPush = Def && EliminationStack.empty(); 4001 bool OutOfScope = 4002 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut); 4003 4004 if (OutOfScope || ShouldPush) { 4005 // Sync to our current scope. 4006 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4007 bool ShouldPush = Def && EliminationStack.empty(); 4008 if (ShouldPush) { 4009 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut); 4010 } 4011 } 4012 4013 // Skip the Def's, we only want to eliminate on their uses. But mark 4014 // dominated defs as dead. 4015 if (Def) { 4016 // For anything in this case, what and how we value number 4017 // guarantees that any side-effets that would have occurred (ie 4018 // throwing, etc) can be proven to either still occur (because it's 4019 // dominated by something that has the same side-effects), or never 4020 // occur. Otherwise, we would not have been able to prove it value 4021 // equivalent to something else. For these things, we can just mark 4022 // it all dead. Note that this is different from the "ProbablyDead" 4023 // set, which may not be dominated by anything, and thus, are only 4024 // easy to prove dead if they are also side-effect free. Note that 4025 // because stores are put in terms of the stored value, we skip 4026 // stored values here. If the stored value is really dead, it will 4027 // still be marked for deletion when we process it in its own class. 4028 if (!EliminationStack.empty() && Def != EliminationStack.back() && 4029 isa<Instruction>(Def) && !FromStore) 4030 markInstructionForDeletion(cast<Instruction>(Def)); 4031 continue; 4032 } 4033 // At this point, we know it is a Use we are trying to possibly 4034 // replace. 4035 4036 assert(isa<Instruction>(U->get()) && 4037 "Current def should have been an instruction"); 4038 assert(isa<Instruction>(U->getUser()) && 4039 "Current user should have been an instruction"); 4040 4041 // If the thing we are replacing into is already marked to be dead, 4042 // this use is dead. Note that this is true regardless of whether 4043 // we have anything dominating the use or not. We do this here 4044 // because we are already walking all the uses anyway. 4045 Instruction *InstUse = cast<Instruction>(U->getUser()); 4046 if (InstructionsToErase.count(InstUse)) { 4047 auto &UseCount = UseCounts[U->get()]; 4048 if (--UseCount == 0) { 4049 ProbablyDead.insert(cast<Instruction>(U->get())); 4050 } 4051 } 4052 4053 // If we get to this point, and the stack is empty we must have a use 4054 // with nothing we can use to eliminate this use, so just skip it. 4055 if (EliminationStack.empty()) 4056 continue; 4057 4058 Value *DominatingLeader = EliminationStack.back(); 4059 4060 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader); 4061 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy; 4062 if (isSSACopy) 4063 DominatingLeader = II->getOperand(0); 4064 4065 // Don't replace our existing users with ourselves. 4066 if (U->get() == DominatingLeader) 4067 continue; 4068 LLVM_DEBUG(dbgs() 4069 << "Found replacement " << *DominatingLeader << " for " 4070 << *U->get() << " in " << *(U->getUser()) << "\n"); 4071 4072 // If we replaced something in an instruction, handle the patching of 4073 // metadata. Skip this if we are replacing predicateinfo with its 4074 // original operand, as we already know we can just drop it. 4075 auto *ReplacedInst = cast<Instruction>(U->get()); 4076 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst); 4077 if (!PI || DominatingLeader != PI->OriginalOp) 4078 patchReplacementInstruction(ReplacedInst, DominatingLeader); 4079 U->set(DominatingLeader); 4080 // This is now a use of the dominating leader, which means if the 4081 // dominating leader was dead, it's now live! 4082 auto &LeaderUseCount = UseCounts[DominatingLeader]; 4083 // It's about to be alive again. 4084 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader)) 4085 ProbablyDead.erase(cast<Instruction>(DominatingLeader)); 4086 // For copy instructions, we use their operand as a leader, 4087 // which means we remove a user of the copy and it may become dead. 4088 if (isSSACopy) { 4089 unsigned &IIUseCount = UseCounts[II]; 4090 if (--IIUseCount == 0) 4091 ProbablyDead.insert(II); 4092 } 4093 ++LeaderUseCount; 4094 AnythingReplaced = true; 4095 } 4096 } 4097 } 4098 4099 // At this point, anything still in the ProbablyDead set is actually dead if 4100 // would be trivially dead. 4101 for (auto *I : ProbablyDead) 4102 if (wouldInstructionBeTriviallyDead(I)) 4103 markInstructionForDeletion(I); 4104 4105 // Cleanup the congruence class. 4106 CongruenceClass::MemberSet MembersLeft; 4107 for (auto *Member : *CC) 4108 if (!isa<Instruction>(Member) || 4109 !InstructionsToErase.count(cast<Instruction>(Member))) 4110 MembersLeft.insert(Member); 4111 CC->swap(MembersLeft); 4112 4113 // If we have possible dead stores to look at, try to eliminate them. 4114 if (CC->getStoreCount() > 0) { 4115 convertClassToLoadsAndStores(*CC, PossibleDeadStores); 4116 llvm::sort(PossibleDeadStores); 4117 ValueDFSStack EliminationStack; 4118 for (auto &VD : PossibleDeadStores) { 4119 int MemberDFSIn = VD.DFSIn; 4120 int MemberDFSOut = VD.DFSOut; 4121 Instruction *Member = cast<Instruction>(VD.Def.getPointer()); 4122 if (EliminationStack.empty() || 4123 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) { 4124 // Sync to our current scope. 4125 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4126 if (EliminationStack.empty()) { 4127 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut); 4128 continue; 4129 } 4130 } 4131 // We already did load elimination, so nothing to do here. 4132 if (isa<LoadInst>(Member)) 4133 continue; 4134 assert(!EliminationStack.empty()); 4135 Instruction *Leader = cast<Instruction>(EliminationStack.back()); 4136 (void)Leader; 4137 assert(DT->dominates(Leader->getParent(), Member->getParent())); 4138 // Member is dominater by Leader, and thus dead 4139 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member 4140 << " that is dominated by " << *Leader << "\n"); 4141 markInstructionForDeletion(Member); 4142 CC->erase(Member); 4143 ++NumGVNDeadStores; 4144 } 4145 } 4146 } 4147 return AnythingReplaced; 4148 } 4149 4150 // This function provides global ranking of operations so that we can place them 4151 // in a canonical order. Note that rank alone is not necessarily enough for a 4152 // complete ordering, as constants all have the same rank. However, generally, 4153 // we will simplify an operation with all constants so that it doesn't matter 4154 // what order they appear in. 4155 unsigned int NewGVN::getRank(const Value *V) const { 4156 // Prefer constants to undef to anything else 4157 // Undef is a constant, have to check it first. 4158 // Prefer poison to undef as it's less defined. 4159 // Prefer smaller constants to constantexprs 4160 // Note that the order here matters because of class inheritance 4161 if (isa<ConstantExpr>(V)) 4162 return 3; 4163 if (isa<PoisonValue>(V)) 4164 return 1; 4165 if (isa<UndefValue>(V)) 4166 return 2; 4167 if (isa<Constant>(V)) 4168 return 0; 4169 if (auto *A = dyn_cast<Argument>(V)) 4170 return 4 + A->getArgNo(); 4171 4172 // Need to shift the instruction DFS by number of arguments + 5 to account for 4173 // the constant and argument ranking above. 4174 unsigned Result = InstrToDFSNum(V); 4175 if (Result > 0) 4176 return 5 + NumFuncArgs + Result; 4177 // Unreachable or something else, just return a really large number. 4178 return ~0; 4179 } 4180 4181 // This is a function that says whether two commutative operations should 4182 // have their order swapped when canonicalizing. 4183 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const { 4184 // Because we only care about a total ordering, and don't rewrite expressions 4185 // in this order, we order by rank, which will give a strict weak ordering to 4186 // everything but constants, and then we order by pointer address. 4187 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B); 4188 } 4189 4190 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B, 4191 const IntrinsicInst *I) const { 4192 auto LookupResult = IntrinsicInstPred.find(I); 4193 if (shouldSwapOperands(A, B)) { 4194 if (LookupResult == IntrinsicInstPred.end()) 4195 IntrinsicInstPred.insert({I, B}); 4196 else 4197 LookupResult->second = B; 4198 return true; 4199 } 4200 4201 if (LookupResult != IntrinsicInstPred.end()) { 4202 auto *SeenPredicate = LookupResult->second; 4203 if (SeenPredicate) { 4204 if (SeenPredicate == B) 4205 return true; 4206 else 4207 LookupResult->second = nullptr; 4208 } 4209 } 4210 return false; 4211 } 4212 4213 namespace { 4214 4215 class NewGVNLegacyPass : public FunctionPass { 4216 public: 4217 // Pass identification, replacement for typeid. 4218 static char ID; 4219 4220 NewGVNLegacyPass() : FunctionPass(ID) { 4221 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 4222 } 4223 4224 bool runOnFunction(Function &F) override; 4225 4226 private: 4227 void getAnalysisUsage(AnalysisUsage &AU) const override { 4228 AU.addRequired<AssumptionCacheTracker>(); 4229 AU.addRequired<DominatorTreeWrapperPass>(); 4230 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4231 AU.addRequired<MemorySSAWrapperPass>(); 4232 AU.addRequired<AAResultsWrapperPass>(); 4233 AU.addPreserved<DominatorTreeWrapperPass>(); 4234 AU.addPreserved<GlobalsAAWrapperPass>(); 4235 } 4236 }; 4237 4238 } // end anonymous namespace 4239 4240 bool NewGVNLegacyPass::runOnFunction(Function &F) { 4241 if (skipFunction(F)) 4242 return false; 4243 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4244 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 4245 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 4246 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 4247 &getAnalysis<MemorySSAWrapperPass>().getMSSA(), 4248 F.getParent()->getDataLayout()) 4249 .runGVN(); 4250 } 4251 4252 char NewGVNLegacyPass::ID = 0; 4253 4254 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering", 4255 false, false) 4256 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4257 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 4258 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4259 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4260 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4261 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4262 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false, 4263 false) 4264 4265 // createGVNPass - The public interface to this file. 4266 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); } 4267 4268 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) { 4269 // Apparently the order in which we get these results matter for 4270 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep 4271 // the same order here, just in case. 4272 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4273 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4274 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4275 auto &AA = AM.getResult<AAManager>(F); 4276 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 4277 bool Changed = 4278 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout()) 4279 .runGVN(); 4280 if (!Changed) 4281 return PreservedAnalyses::all(); 4282 PreservedAnalyses PA; 4283 PA.preserve<DominatorTreeAnalysis>(); 4284 return PA; 4285 } 4286