xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/NewGVN.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block.  This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number).  Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly.  In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes.  The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen.  The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm.  All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
51 //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/SparseBitVector.h"
68 #include "llvm/ADT/Statistic.h"
69 #include "llvm/ADT/iterator_range.h"
70 #include "llvm/Analysis/AliasAnalysis.h"
71 #include "llvm/Analysis/AssumptionCache.h"
72 #include "llvm/Analysis/CFGPrinter.h"
73 #include "llvm/Analysis/ConstantFolding.h"
74 #include "llvm/Analysis/GlobalsModRef.h"
75 #include "llvm/Analysis/InstructionSimplify.h"
76 #include "llvm/Analysis/MemoryBuiltins.h"
77 #include "llvm/Analysis/MemorySSA.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Transforms/Utils/Local.h"
80 #include "llvm/IR/Argument.h"
81 #include "llvm/IR/BasicBlock.h"
82 #include "llvm/IR/Constant.h"
83 #include "llvm/IR/Constants.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/Function.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/PatternMatch.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/Use.h"
95 #include "llvm/IR/User.h"
96 #include "llvm/IR/Value.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/PredicateInfo.h"
110 #include "llvm/Transforms/Utils/VNCoercion.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstdint>
114 #include <iterator>
115 #include <map>
116 #include <memory>
117 #include <set>
118 #include <string>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 using namespace llvm::GVNExpression;
125 using namespace llvm::VNCoercion;
126 using namespace llvm::PatternMatch;
127 
128 #define DEBUG_TYPE "newgvn"
129 
130 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
131 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
132 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
133 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
134 STATISTIC(NumGVNMaxIterations,
135           "Maximum Number of iterations it took to converge GVN");
136 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
137 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
138 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
139           "Number of avoided sorted leader changes");
140 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
141 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
142 STATISTIC(NumGVNPHIOfOpsEliminations,
143           "Number of things eliminated using PHI of ops");
144 DEBUG_COUNTER(VNCounter, "newgvn-vn",
145               "Controls which instructions are value numbered");
146 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
147               "Controls which instructions we create phi of ops for");
148 // Currently store defining access refinement is too slow due to basicaa being
149 // egregiously slow.  This flag lets us keep it working while we work on this
150 // issue.
151 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
152                                            cl::init(false), cl::Hidden);
153 
154 /// Currently, the generation "phi of ops" can result in correctness issues.
155 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
156                                     cl::Hidden);
157 
158 //===----------------------------------------------------------------------===//
159 //                                GVN Pass
160 //===----------------------------------------------------------------------===//
161 
162 // Anchor methods.
163 namespace llvm {
164 namespace GVNExpression {
165 
166 Expression::~Expression() = default;
167 BasicExpression::~BasicExpression() = default;
168 CallExpression::~CallExpression() = default;
169 LoadExpression::~LoadExpression() = default;
170 StoreExpression::~StoreExpression() = default;
171 AggregateValueExpression::~AggregateValueExpression() = default;
172 PHIExpression::~PHIExpression() = default;
173 
174 } // end namespace GVNExpression
175 } // end namespace llvm
176 
177 namespace {
178 
179 // Tarjan's SCC finding algorithm with Nuutila's improvements
180 // SCCIterator is actually fairly complex for the simple thing we want.
181 // It also wants to hand us SCC's that are unrelated to the phi node we ask
182 // about, and have us process them there or risk redoing work.
183 // Graph traits over a filter iterator also doesn't work that well here.
184 // This SCC finder is specialized to walk use-def chains, and only follows
185 // instructions,
186 // not generic values (arguments, etc).
187 struct TarjanSCC {
188   TarjanSCC() : Components(1) {}
189 
190   void Start(const Instruction *Start) {
191     if (Root.lookup(Start) == 0)
192       FindSCC(Start);
193   }
194 
195   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
196     unsigned ComponentID = ValueToComponent.lookup(V);
197 
198     assert(ComponentID > 0 &&
199            "Asking for a component for a value we never processed");
200     return Components[ComponentID];
201   }
202 
203 private:
204   void FindSCC(const Instruction *I) {
205     Root[I] = ++DFSNum;
206     // Store the DFS Number we had before it possibly gets incremented.
207     unsigned int OurDFS = DFSNum;
208     for (auto &Op : I->operands()) {
209       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
210         if (Root.lookup(Op) == 0)
211           FindSCC(InstOp);
212         if (!InComponent.count(Op))
213           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
214       }
215     }
216     // See if we really were the root of a component, by seeing if we still have
217     // our DFSNumber.  If we do, we are the root of the component, and we have
218     // completed a component. If we do not, we are not the root of a component,
219     // and belong on the component stack.
220     if (Root.lookup(I) == OurDFS) {
221       unsigned ComponentID = Components.size();
222       Components.resize(Components.size() + 1);
223       auto &Component = Components.back();
224       Component.insert(I);
225       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
226       InComponent.insert(I);
227       ValueToComponent[I] = ComponentID;
228       // Pop a component off the stack and label it.
229       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
230         auto *Member = Stack.back();
231         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
232         Component.insert(Member);
233         InComponent.insert(Member);
234         ValueToComponent[Member] = ComponentID;
235         Stack.pop_back();
236       }
237     } else {
238       // Part of a component, push to stack
239       Stack.push_back(I);
240     }
241   }
242 
243   unsigned int DFSNum = 1;
244   SmallPtrSet<const Value *, 8> InComponent;
245   DenseMap<const Value *, unsigned int> Root;
246   SmallVector<const Value *, 8> Stack;
247 
248   // Store the components as vector of ptr sets, because we need the topo order
249   // of SCC's, but not individual member order
250   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
251 
252   DenseMap<const Value *, unsigned> ValueToComponent;
253 };
254 
255 // Congruence classes represent the set of expressions/instructions
256 // that are all the same *during some scope in the function*.
257 // That is, because of the way we perform equality propagation, and
258 // because of memory value numbering, it is not correct to assume
259 // you can willy-nilly replace any member with any other at any
260 // point in the function.
261 //
262 // For any Value in the Member set, it is valid to replace any dominated member
263 // with that Value.
264 //
265 // Every congruence class has a leader, and the leader is used to symbolize
266 // instructions in a canonical way (IE every operand of an instruction that is a
267 // member of the same congruence class will always be replaced with leader
268 // during symbolization).  To simplify symbolization, we keep the leader as a
269 // constant if class can be proved to be a constant value.  Otherwise, the
270 // leader is the member of the value set with the smallest DFS number.  Each
271 // congruence class also has a defining expression, though the expression may be
272 // null.  If it exists, it can be used for forward propagation and reassociation
273 // of values.
274 
275 // For memory, we also track a representative MemoryAccess, and a set of memory
276 // members for MemoryPhis (which have no real instructions). Note that for
277 // memory, it seems tempting to try to split the memory members into a
278 // MemoryCongruenceClass or something.  Unfortunately, this does not work
279 // easily.  The value numbering of a given memory expression depends on the
280 // leader of the memory congruence class, and the leader of memory congruence
281 // class depends on the value numbering of a given memory expression.  This
282 // leads to wasted propagation, and in some cases, missed optimization.  For
283 // example: If we had value numbered two stores together before, but now do not,
284 // we move them to a new value congruence class.  This in turn will move at one
285 // of the memorydefs to a new memory congruence class.  Which in turn, affects
286 // the value numbering of the stores we just value numbered (because the memory
287 // congruence class is part of the value number).  So while theoretically
288 // possible to split them up, it turns out to be *incredibly* complicated to get
289 // it to work right, because of the interdependency.  While structurally
290 // slightly messier, it is algorithmically much simpler and faster to do what we
291 // do here, and track them both at once in the same class.
292 // Note: The default iterators for this class iterate over values
293 class CongruenceClass {
294 public:
295   using MemberType = Value;
296   using MemberSet = SmallPtrSet<MemberType *, 4>;
297   using MemoryMemberType = MemoryPhi;
298   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
299 
300   explicit CongruenceClass(unsigned ID) : ID(ID) {}
301   CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
302       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
303 
304   unsigned getID() const { return ID; }
305 
306   // True if this class has no members left.  This is mainly used for assertion
307   // purposes, and for skipping empty classes.
308   bool isDead() const {
309     // If it's both dead from a value perspective, and dead from a memory
310     // perspective, it's really dead.
311     return empty() && memory_empty();
312   }
313 
314   // Leader functions
315   Value *getLeader() const { return RepLeader; }
316   void setLeader(Value *Leader) { RepLeader = Leader; }
317   const std::pair<Value *, unsigned int> &getNextLeader() const {
318     return NextLeader;
319   }
320   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
321   void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
322     if (LeaderPair.second < NextLeader.second)
323       NextLeader = LeaderPair;
324   }
325 
326   Value *getStoredValue() const { return RepStoredValue; }
327   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
328   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
329   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
330 
331   // Forward propagation info
332   const Expression *getDefiningExpr() const { return DefiningExpr; }
333 
334   // Value member set
335   bool empty() const { return Members.empty(); }
336   unsigned size() const { return Members.size(); }
337   MemberSet::const_iterator begin() const { return Members.begin(); }
338   MemberSet::const_iterator end() const { return Members.end(); }
339   void insert(MemberType *M) { Members.insert(M); }
340   void erase(MemberType *M) { Members.erase(M); }
341   void swap(MemberSet &Other) { Members.swap(Other); }
342 
343   // Memory member set
344   bool memory_empty() const { return MemoryMembers.empty(); }
345   unsigned memory_size() const { return MemoryMembers.size(); }
346   MemoryMemberSet::const_iterator memory_begin() const {
347     return MemoryMembers.begin();
348   }
349   MemoryMemberSet::const_iterator memory_end() const {
350     return MemoryMembers.end();
351   }
352   iterator_range<MemoryMemberSet::const_iterator> memory() const {
353     return make_range(memory_begin(), memory_end());
354   }
355 
356   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
357   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
358 
359   // Store count
360   unsigned getStoreCount() const { return StoreCount; }
361   void incStoreCount() { ++StoreCount; }
362   void decStoreCount() {
363     assert(StoreCount != 0 && "Store count went negative");
364     --StoreCount;
365   }
366 
367   // True if this class has no memory members.
368   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
369 
370   // Return true if two congruence classes are equivalent to each other. This
371   // means that every field but the ID number and the dead field are equivalent.
372   bool isEquivalentTo(const CongruenceClass *Other) const {
373     if (!Other)
374       return false;
375     if (this == Other)
376       return true;
377 
378     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
379         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
380                  Other->RepMemoryAccess))
381       return false;
382     if (DefiningExpr != Other->DefiningExpr)
383       if (!DefiningExpr || !Other->DefiningExpr ||
384           *DefiningExpr != *Other->DefiningExpr)
385         return false;
386 
387     if (Members.size() != Other->Members.size())
388       return false;
389 
390     return all_of(Members,
391                   [&](const Value *V) { return Other->Members.count(V); });
392   }
393 
394 private:
395   unsigned ID;
396 
397   // Representative leader.
398   Value *RepLeader = nullptr;
399 
400   // The most dominating leader after our current leader, because the member set
401   // is not sorted and is expensive to keep sorted all the time.
402   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
403 
404   // If this is represented by a store, the value of the store.
405   Value *RepStoredValue = nullptr;
406 
407   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
408   // access.
409   const MemoryAccess *RepMemoryAccess = nullptr;
410 
411   // Defining Expression.
412   const Expression *DefiningExpr = nullptr;
413 
414   // Actual members of this class.
415   MemberSet Members;
416 
417   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
418   // MemoryUses have real instructions representing them, so we only need to
419   // track MemoryPhis here.
420   MemoryMemberSet MemoryMembers;
421 
422   // Number of stores in this congruence class.
423   // This is used so we can detect store equivalence changes properly.
424   int StoreCount = 0;
425 };
426 
427 } // end anonymous namespace
428 
429 namespace llvm {
430 
431 struct ExactEqualsExpression {
432   const Expression &E;
433 
434   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
435 
436   hash_code getComputedHash() const { return E.getComputedHash(); }
437 
438   bool operator==(const Expression &Other) const {
439     return E.exactlyEquals(Other);
440   }
441 };
442 
443 template <> struct DenseMapInfo<const Expression *> {
444   static const Expression *getEmptyKey() {
445     auto Val = static_cast<uintptr_t>(-1);
446     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
447     return reinterpret_cast<const Expression *>(Val);
448   }
449 
450   static const Expression *getTombstoneKey() {
451     auto Val = static_cast<uintptr_t>(~1U);
452     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
453     return reinterpret_cast<const Expression *>(Val);
454   }
455 
456   static unsigned getHashValue(const Expression *E) {
457     return E->getComputedHash();
458   }
459 
460   static unsigned getHashValue(const ExactEqualsExpression &E) {
461     return E.getComputedHash();
462   }
463 
464   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
465     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
466       return false;
467     return LHS == *RHS;
468   }
469 
470   static bool isEqual(const Expression *LHS, const Expression *RHS) {
471     if (LHS == RHS)
472       return true;
473     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
474         LHS == getEmptyKey() || RHS == getEmptyKey())
475       return false;
476     // Compare hashes before equality.  This is *not* what the hashtable does,
477     // since it is computing it modulo the number of buckets, whereas we are
478     // using the full hash keyspace.  Since the hashes are precomputed, this
479     // check is *much* faster than equality.
480     if (LHS->getComputedHash() != RHS->getComputedHash())
481       return false;
482     return *LHS == *RHS;
483   }
484 };
485 
486 } // end namespace llvm
487 
488 namespace {
489 
490 class NewGVN {
491   Function &F;
492   DominatorTree *DT;
493   const TargetLibraryInfo *TLI;
494   AliasAnalysis *AA;
495   MemorySSA *MSSA;
496   MemorySSAWalker *MSSAWalker;
497   const DataLayout &DL;
498   std::unique_ptr<PredicateInfo> PredInfo;
499 
500   // These are the only two things the create* functions should have
501   // side-effects on due to allocating memory.
502   mutable BumpPtrAllocator ExpressionAllocator;
503   mutable ArrayRecycler<Value *> ArgRecycler;
504   mutable TarjanSCC SCCFinder;
505   const SimplifyQuery SQ;
506 
507   // Number of function arguments, used by ranking
508   unsigned int NumFuncArgs;
509 
510   // RPOOrdering of basic blocks
511   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
512 
513   // Congruence class info.
514 
515   // This class is called INITIAL in the paper. It is the class everything
516   // startsout in, and represents any value. Being an optimistic analysis,
517   // anything in the TOP class has the value TOP, which is indeterminate and
518   // equivalent to everything.
519   CongruenceClass *TOPClass;
520   std::vector<CongruenceClass *> CongruenceClasses;
521   unsigned NextCongruenceNum;
522 
523   // Value Mappings.
524   DenseMap<Value *, CongruenceClass *> ValueToClass;
525   DenseMap<Value *, const Expression *> ValueToExpression;
526 
527   // Value PHI handling, used to make equivalence between phi(op, op) and
528   // op(phi, phi).
529   // These mappings just store various data that would normally be part of the
530   // IR.
531   SmallPtrSet<const Instruction *, 8> PHINodeUses;
532 
533   DenseMap<const Value *, bool> OpSafeForPHIOfOps;
534 
535   // Map a temporary instruction we created to a parent block.
536   DenseMap<const Value *, BasicBlock *> TempToBlock;
537 
538   // Map between the already in-program instructions and the temporary phis we
539   // created that they are known equivalent to.
540   DenseMap<const Value *, PHINode *> RealToTemp;
541 
542   // In order to know when we should re-process instructions that have
543   // phi-of-ops, we track the set of expressions that they needed as
544   // leaders. When we discover new leaders for those expressions, we process the
545   // associated phi-of-op instructions again in case they have changed.  The
546   // other way they may change is if they had leaders, and those leaders
547   // disappear.  However, at the point they have leaders, there are uses of the
548   // relevant operands in the created phi node, and so they will get reprocessed
549   // through the normal user marking we perform.
550   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
551   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
552       ExpressionToPhiOfOps;
553 
554   // Map from temporary operation to MemoryAccess.
555   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
556 
557   // Set of all temporary instructions we created.
558   // Note: This will include instructions that were just created during value
559   // numbering.  The way to test if something is using them is to check
560   // RealToTemp.
561   DenseSet<Instruction *> AllTempInstructions;
562 
563   // This is the set of instructions to revisit on a reachability change.  At
564   // the end of the main iteration loop it will contain at least all the phi of
565   // ops instructions that will be changed to phis, as well as regular phis.
566   // During the iteration loop, it may contain other things, such as phi of ops
567   // instructions that used edge reachability to reach a result, and so need to
568   // be revisited when the edge changes, independent of whether the phi they
569   // depended on changes.
570   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
571 
572   // Mapping from predicate info we used to the instructions we used it with.
573   // In order to correctly ensure propagation, we must keep track of what
574   // comparisons we used, so that when the values of the comparisons change, we
575   // propagate the information to the places we used the comparison.
576   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
577       PredicateToUsers;
578 
579   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
580   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
581   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
582       MemoryToUsers;
583 
584   // A table storing which memorydefs/phis represent a memory state provably
585   // equivalent to another memory state.
586   // We could use the congruence class machinery, but the MemoryAccess's are
587   // abstract memory states, so they can only ever be equivalent to each other,
588   // and not to constants, etc.
589   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
590 
591   // We could, if we wanted, build MemoryPhiExpressions and
592   // MemoryVariableExpressions, etc, and value number them the same way we value
593   // number phi expressions.  For the moment, this seems like overkill.  They
594   // can only exist in one of three states: they can be TOP (equal to
595   // everything), Equivalent to something else, or unique.  Because we do not
596   // create expressions for them, we need to simulate leader change not just
597   // when they change class, but when they change state.  Note: We can do the
598   // same thing for phis, and avoid having phi expressions if we wanted, We
599   // should eventually unify in one direction or the other, so this is a little
600   // bit of an experiment in which turns out easier to maintain.
601   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
602   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
603 
604   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
605   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
606 
607   // Expression to class mapping.
608   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
609   ExpressionClassMap ExpressionToClass;
610 
611   // We have a single expression that represents currently DeadExpressions.
612   // For dead expressions we can prove will stay dead, we mark them with
613   // DFS number zero.  However, it's possible in the case of phi nodes
614   // for us to assume/prove all arguments are dead during fixpointing.
615   // We use DeadExpression for that case.
616   DeadExpression *SingletonDeadExpression = nullptr;
617 
618   // Which values have changed as a result of leader changes.
619   SmallPtrSet<Value *, 8> LeaderChanges;
620 
621   // Reachability info.
622   using BlockEdge = BasicBlockEdge;
623   DenseSet<BlockEdge> ReachableEdges;
624   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
625 
626   // This is a bitvector because, on larger functions, we may have
627   // thousands of touched instructions at once (entire blocks,
628   // instructions with hundreds of uses, etc).  Even with optimization
629   // for when we mark whole blocks as touched, when this was a
630   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
631   // the time in GVN just managing this list.  The bitvector, on the
632   // other hand, efficiently supports test/set/clear of both
633   // individual and ranges, as well as "find next element" This
634   // enables us to use it as a worklist with essentially 0 cost.
635   BitVector TouchedInstructions;
636 
637   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
638 
639 #ifndef NDEBUG
640   // Debugging for how many times each block and instruction got processed.
641   DenseMap<const Value *, unsigned> ProcessedCount;
642 #endif
643 
644   // DFS info.
645   // This contains a mapping from Instructions to DFS numbers.
646   // The numbering starts at 1. An instruction with DFS number zero
647   // means that the instruction is dead.
648   DenseMap<const Value *, unsigned> InstrDFS;
649 
650   // This contains the mapping DFS numbers to instructions.
651   SmallVector<Value *, 32> DFSToInstr;
652 
653   // Deletion info.
654   SmallPtrSet<Instruction *, 8> InstructionsToErase;
655 
656 public:
657   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
658          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
659          const DataLayout &DL)
660       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
661         PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
662         SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {}
663 
664   bool runGVN();
665 
666 private:
667   // Expression handling.
668   const Expression *createExpression(Instruction *) const;
669   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
670                                            Instruction *) const;
671 
672   // Our canonical form for phi arguments is a pair of incoming value, incoming
673   // basic block.
674   using ValPair = std::pair<Value *, BasicBlock *>;
675 
676   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
677                                      BasicBlock *, bool &HasBackEdge,
678                                      bool &OriginalOpsConstant) const;
679   const DeadExpression *createDeadExpression() const;
680   const VariableExpression *createVariableExpression(Value *) const;
681   const ConstantExpression *createConstantExpression(Constant *) const;
682   const Expression *createVariableOrConstant(Value *V) const;
683   const UnknownExpression *createUnknownExpression(Instruction *) const;
684   const StoreExpression *createStoreExpression(StoreInst *,
685                                                const MemoryAccess *) const;
686   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
687                                        const MemoryAccess *) const;
688   const CallExpression *createCallExpression(CallInst *,
689                                              const MemoryAccess *) const;
690   const AggregateValueExpression *
691   createAggregateValueExpression(Instruction *) const;
692   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
693 
694   // Congruence class handling.
695   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
696     auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
697     CongruenceClasses.emplace_back(result);
698     return result;
699   }
700 
701   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
702     auto *CC = createCongruenceClass(nullptr, nullptr);
703     CC->setMemoryLeader(MA);
704     return CC;
705   }
706 
707   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
708     auto *CC = getMemoryClass(MA);
709     if (CC->getMemoryLeader() != MA)
710       CC = createMemoryClass(MA);
711     return CC;
712   }
713 
714   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
715     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
716     CClass->insert(Member);
717     ValueToClass[Member] = CClass;
718     return CClass;
719   }
720 
721   void initializeCongruenceClasses(Function &F);
722   const Expression *makePossiblePHIOfOps(Instruction *,
723                                          SmallPtrSetImpl<Value *> &);
724   Value *findLeaderForInst(Instruction *ValueOp,
725                            SmallPtrSetImpl<Value *> &Visited,
726                            MemoryAccess *MemAccess, Instruction *OrigInst,
727                            BasicBlock *PredBB);
728   bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
729                                  SmallPtrSetImpl<const Value *> &Visited,
730                                  SmallVectorImpl<Instruction *> &Worklist);
731   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
732                            SmallPtrSetImpl<const Value *> &);
733   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
734   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
735 
736   // Value number an Instruction or MemoryPhi.
737   void valueNumberMemoryPhi(MemoryPhi *);
738   void valueNumberInstruction(Instruction *);
739 
740   // Symbolic evaluation.
741   const Expression *checkSimplificationResults(Expression *, Instruction *,
742                                                Value *) const;
743   const Expression *performSymbolicEvaluation(Value *,
744                                               SmallPtrSetImpl<Value *> &) const;
745   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
746                                                 Instruction *,
747                                                 MemoryAccess *) const;
748   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
749   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
750   const Expression *performSymbolicCallEvaluation(Instruction *) const;
751   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
752   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
753                                                  Instruction *I,
754                                                  BasicBlock *PHIBlock) const;
755   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
756   const Expression *performSymbolicCmpEvaluation(Instruction *) const;
757   const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
758 
759   // Congruence finding.
760   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
761   Value *lookupOperandLeader(Value *) const;
762   CongruenceClass *getClassForExpression(const Expression *E) const;
763   void performCongruenceFinding(Instruction *, const Expression *);
764   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
765                                      CongruenceClass *, CongruenceClass *);
766   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
767                                       CongruenceClass *, CongruenceClass *);
768   Value *getNextValueLeader(CongruenceClass *) const;
769   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
770   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
771   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
772   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
773   bool isMemoryAccessTOP(const MemoryAccess *) const;
774 
775   // Ranking
776   unsigned int getRank(const Value *) const;
777   bool shouldSwapOperands(const Value *, const Value *) const;
778 
779   // Reachability handling.
780   void updateReachableEdge(BasicBlock *, BasicBlock *);
781   void processOutgoingEdges(Instruction *, BasicBlock *);
782   Value *findConditionEquivalence(Value *) const;
783 
784   // Elimination.
785   struct ValueDFS;
786   void convertClassToDFSOrdered(const CongruenceClass &,
787                                 SmallVectorImpl<ValueDFS> &,
788                                 DenseMap<const Value *, unsigned int> &,
789                                 SmallPtrSetImpl<Instruction *> &) const;
790   void convertClassToLoadsAndStores(const CongruenceClass &,
791                                     SmallVectorImpl<ValueDFS> &) const;
792 
793   bool eliminateInstructions(Function &);
794   void replaceInstruction(Instruction *, Value *);
795   void markInstructionForDeletion(Instruction *);
796   void deleteInstructionsInBlock(BasicBlock *);
797   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
798                             const BasicBlock *) const;
799 
800   // New instruction creation.
801   void handleNewInstruction(Instruction *) {}
802 
803   // Various instruction touch utilities
804   template <typename Map, typename KeyType, typename Func>
805   void for_each_found(Map &, const KeyType &, Func);
806   template <typename Map, typename KeyType>
807   void touchAndErase(Map &, const KeyType &);
808   void markUsersTouched(Value *);
809   void markMemoryUsersTouched(const MemoryAccess *);
810   void markMemoryDefTouched(const MemoryAccess *);
811   void markPredicateUsersTouched(Instruction *);
812   void markValueLeaderChangeTouched(CongruenceClass *CC);
813   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
814   void markPhiOfOpsChanged(const Expression *E);
815   void addPredicateUsers(const PredicateBase *, Instruction *) const;
816   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
817   void addAdditionalUsers(Value *To, Value *User) const;
818 
819   // Main loop of value numbering
820   void iterateTouchedInstructions();
821 
822   // Utilities.
823   void cleanupTables();
824   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
825   void updateProcessedCount(const Value *V);
826   void verifyMemoryCongruency() const;
827   void verifyIterationSettled(Function &F);
828   void verifyStoreExpressions() const;
829   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
830                               const MemoryAccess *, const MemoryAccess *) const;
831   BasicBlock *getBlockForValue(Value *V) const;
832   void deleteExpression(const Expression *E) const;
833   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
834   MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
835   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
836   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
837 
838   unsigned InstrToDFSNum(const Value *V) const {
839     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
840     return InstrDFS.lookup(V);
841   }
842 
843   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
844     return MemoryToDFSNum(MA);
845   }
846 
847   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
848 
849   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
850   // This deliberately takes a value so it can be used with Use's, which will
851   // auto-convert to Value's but not to MemoryAccess's.
852   unsigned MemoryToDFSNum(const Value *MA) const {
853     assert(isa<MemoryAccess>(MA) &&
854            "This should not be used with instructions");
855     return isa<MemoryUseOrDef>(MA)
856                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
857                : InstrDFS.lookup(MA);
858   }
859 
860   bool isCycleFree(const Instruction *) const;
861   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
862 
863   // Debug counter info.  When verifying, we have to reset the value numbering
864   // debug counter to the same state it started in to get the same results.
865   int64_t StartingVNCounter;
866 };
867 
868 } // end anonymous namespace
869 
870 template <typename T>
871 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
872   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
873     return false;
874   return LHS.MemoryExpression::equals(RHS);
875 }
876 
877 bool LoadExpression::equals(const Expression &Other) const {
878   return equalsLoadStoreHelper(*this, Other);
879 }
880 
881 bool StoreExpression::equals(const Expression &Other) const {
882   if (!equalsLoadStoreHelper(*this, Other))
883     return false;
884   // Make sure that store vs store includes the value operand.
885   if (const auto *S = dyn_cast<StoreExpression>(&Other))
886     if (getStoredValue() != S->getStoredValue())
887       return false;
888   return true;
889 }
890 
891 // Determine if the edge From->To is a backedge
892 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
893   return From == To ||
894          RPOOrdering.lookup(DT->getNode(From)) >=
895              RPOOrdering.lookup(DT->getNode(To));
896 }
897 
898 #ifndef NDEBUG
899 static std::string getBlockName(const BasicBlock *B) {
900   return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
901 }
902 #endif
903 
904 // Get a MemoryAccess for an instruction, fake or real.
905 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
906   auto *Result = MSSA->getMemoryAccess(I);
907   return Result ? Result : TempToMemory.lookup(I);
908 }
909 
910 // Get a MemoryPhi for a basic block. These are all real.
911 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
912   return MSSA->getMemoryAccess(BB);
913 }
914 
915 // Get the basic block from an instruction/memory value.
916 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
917   if (auto *I = dyn_cast<Instruction>(V)) {
918     auto *Parent = I->getParent();
919     if (Parent)
920       return Parent;
921     Parent = TempToBlock.lookup(V);
922     assert(Parent && "Every fake instruction should have a block");
923     return Parent;
924   }
925 
926   auto *MP = dyn_cast<MemoryPhi>(V);
927   assert(MP && "Should have been an instruction or a MemoryPhi");
928   return MP->getBlock();
929 }
930 
931 // Delete a definitely dead expression, so it can be reused by the expression
932 // allocator.  Some of these are not in creation functions, so we have to accept
933 // const versions.
934 void NewGVN::deleteExpression(const Expression *E) const {
935   assert(isa<BasicExpression>(E));
936   auto *BE = cast<BasicExpression>(E);
937   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
938   ExpressionAllocator.Deallocate(E);
939 }
940 
941 // If V is a predicateinfo copy, get the thing it is a copy of.
942 static Value *getCopyOf(const Value *V) {
943   if (auto *II = dyn_cast<IntrinsicInst>(V))
944     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
945       return II->getOperand(0);
946   return nullptr;
947 }
948 
949 // Return true if V is really PN, even accounting for predicateinfo copies.
950 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
951   return V == PN || getCopyOf(V) == PN;
952 }
953 
954 static bool isCopyOfAPHI(const Value *V) {
955   auto *CO = getCopyOf(V);
956   return CO && isa<PHINode>(CO);
957 }
958 
959 // Sort PHI Operands into a canonical order.  What we use here is an RPO
960 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
961 // blocks.
962 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
963   llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
964     return BlockInstRange.lookup(P1.second).first <
965            BlockInstRange.lookup(P2.second).first;
966   });
967 }
968 
969 // Return true if V is a value that will always be available (IE can
970 // be placed anywhere) in the function.  We don't do globals here
971 // because they are often worse to put in place.
972 static bool alwaysAvailable(Value *V) {
973   return isa<Constant>(V) || isa<Argument>(V);
974 }
975 
976 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
977 // the original instruction we are creating a PHIExpression for (but may not be
978 // a phi node). We require, as an invariant, that all the PHIOperands in the
979 // same block are sorted the same way. sortPHIOps will sort them into a
980 // canonical order.
981 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
982                                            const Instruction *I,
983                                            BasicBlock *PHIBlock,
984                                            bool &HasBackedge,
985                                            bool &OriginalOpsConstant) const {
986   unsigned NumOps = PHIOperands.size();
987   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
988 
989   E->allocateOperands(ArgRecycler, ExpressionAllocator);
990   E->setType(PHIOperands.begin()->first->getType());
991   E->setOpcode(Instruction::PHI);
992 
993   // Filter out unreachable phi operands.
994   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
995     auto *BB = P.second;
996     if (auto *PHIOp = dyn_cast<PHINode>(I))
997       if (isCopyOfPHI(P.first, PHIOp))
998         return false;
999     if (!ReachableEdges.count({BB, PHIBlock}))
1000       return false;
1001     // Things in TOPClass are equivalent to everything.
1002     if (ValueToClass.lookup(P.first) == TOPClass)
1003       return false;
1004     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1005     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1006     return lookupOperandLeader(P.first) != I;
1007   });
1008   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1009                  [&](const ValPair &P) -> Value * {
1010                    return lookupOperandLeader(P.first);
1011                  });
1012   return E;
1013 }
1014 
1015 // Set basic expression info (Arguments, type, opcode) for Expression
1016 // E from Instruction I in block B.
1017 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1018   bool AllConstant = true;
1019   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1020     E->setType(GEP->getSourceElementType());
1021   else
1022     E->setType(I->getType());
1023   E->setOpcode(I->getOpcode());
1024   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1025 
1026   // Transform the operand array into an operand leader array, and keep track of
1027   // whether all members are constant.
1028   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1029     auto Operand = lookupOperandLeader(O);
1030     AllConstant = AllConstant && isa<Constant>(Operand);
1031     return Operand;
1032   });
1033 
1034   return AllConstant;
1035 }
1036 
1037 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1038                                                  Value *Arg1, Value *Arg2,
1039                                                  Instruction *I) const {
1040   auto *E = new (ExpressionAllocator) BasicExpression(2);
1041 
1042   E->setType(T);
1043   E->setOpcode(Opcode);
1044   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1045   if (Instruction::isCommutative(Opcode)) {
1046     // Ensure that commutative instructions that only differ by a permutation
1047     // of their operands get the same value number by sorting the operand value
1048     // numbers.  Since all commutative instructions have two operands it is more
1049     // efficient to sort by hand rather than using, say, std::sort.
1050     if (shouldSwapOperands(Arg1, Arg2))
1051       std::swap(Arg1, Arg2);
1052   }
1053   E->op_push_back(lookupOperandLeader(Arg1));
1054   E->op_push_back(lookupOperandLeader(Arg2));
1055 
1056   Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1057   if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1058     return SimplifiedE;
1059   return E;
1060 }
1061 
1062 // Take a Value returned by simplification of Expression E/Instruction
1063 // I, and see if it resulted in a simpler expression. If so, return
1064 // that expression.
1065 const Expression *NewGVN::checkSimplificationResults(Expression *E,
1066                                                      Instruction *I,
1067                                                      Value *V) const {
1068   if (!V)
1069     return nullptr;
1070   if (auto *C = dyn_cast<Constant>(V)) {
1071     if (I)
1072       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1073                         << " constant " << *C << "\n");
1074     NumGVNOpsSimplified++;
1075     assert(isa<BasicExpression>(E) &&
1076            "We should always have had a basic expression here");
1077     deleteExpression(E);
1078     return createConstantExpression(C);
1079   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1080     if (I)
1081       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1082                         << " variable " << *V << "\n");
1083     deleteExpression(E);
1084     return createVariableExpression(V);
1085   }
1086 
1087   CongruenceClass *CC = ValueToClass.lookup(V);
1088   if (CC) {
1089     if (CC->getLeader() && CC->getLeader() != I) {
1090       // If we simplified to something else, we need to communicate
1091       // that we're users of the value we simplified to.
1092       if (I != V) {
1093         // Don't add temporary instructions to the user lists.
1094         if (!AllTempInstructions.count(I))
1095           addAdditionalUsers(V, I);
1096       }
1097       return createVariableOrConstant(CC->getLeader());
1098     }
1099     if (CC->getDefiningExpr()) {
1100       // If we simplified to something else, we need to communicate
1101       // that we're users of the value we simplified to.
1102       if (I != V) {
1103         // Don't add temporary instructions to the user lists.
1104         if (!AllTempInstructions.count(I))
1105           addAdditionalUsers(V, I);
1106       }
1107 
1108       if (I)
1109         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1110                           << " expression " << *CC->getDefiningExpr() << "\n");
1111       NumGVNOpsSimplified++;
1112       deleteExpression(E);
1113       return CC->getDefiningExpr();
1114     }
1115   }
1116 
1117   return nullptr;
1118 }
1119 
1120 // Create a value expression from the instruction I, replacing operands with
1121 // their leaders.
1122 
1123 const Expression *NewGVN::createExpression(Instruction *I) const {
1124   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1125 
1126   bool AllConstant = setBasicExpressionInfo(I, E);
1127 
1128   if (I->isCommutative()) {
1129     // Ensure that commutative instructions that only differ by a permutation
1130     // of their operands get the same value number by sorting the operand value
1131     // numbers.  Since all commutative instructions have two operands it is more
1132     // efficient to sort by hand rather than using, say, std::sort.
1133     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1134     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1135       E->swapOperands(0, 1);
1136   }
1137   // Perform simplification.
1138   if (auto *CI = dyn_cast<CmpInst>(I)) {
1139     // Sort the operand value numbers so x<y and y>x get the same value
1140     // number.
1141     CmpInst::Predicate Predicate = CI->getPredicate();
1142     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1143       E->swapOperands(0, 1);
1144       Predicate = CmpInst::getSwappedPredicate(Predicate);
1145     }
1146     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1147     // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1148     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1149            "Wrong types on cmp instruction");
1150     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1151             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1152     Value *V =
1153         SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1154     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1155       return SimplifiedE;
1156   } else if (isa<SelectInst>(I)) {
1157     if (isa<Constant>(E->getOperand(0)) ||
1158         E->getOperand(1) == E->getOperand(2)) {
1159       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1160              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1161       Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1162                                     E->getOperand(2), SQ);
1163       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1164         return SimplifiedE;
1165     }
1166   } else if (I->isBinaryOp()) {
1167     Value *V =
1168         SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1169     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1170       return SimplifiedE;
1171   } else if (auto *CI = dyn_cast<CastInst>(I)) {
1172     Value *V =
1173         SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
1174     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1175       return SimplifiedE;
1176   } else if (isa<GetElementPtrInst>(I)) {
1177     Value *V = SimplifyGEPInst(
1178         E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
1179     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1180       return SimplifiedE;
1181   } else if (AllConstant) {
1182     // We don't bother trying to simplify unless all of the operands
1183     // were constant.
1184     // TODO: There are a lot of Simplify*'s we could call here, if we
1185     // wanted to.  The original motivating case for this code was a
1186     // zext i1 false to i8, which we don't have an interface to
1187     // simplify (IE there is no SimplifyZExt).
1188 
1189     SmallVector<Constant *, 8> C;
1190     for (Value *Arg : E->operands())
1191       C.emplace_back(cast<Constant>(Arg));
1192 
1193     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1194       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1195         return SimplifiedE;
1196   }
1197   return E;
1198 }
1199 
1200 const AggregateValueExpression *
1201 NewGVN::createAggregateValueExpression(Instruction *I) const {
1202   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1203     auto *E = new (ExpressionAllocator)
1204         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1205     setBasicExpressionInfo(I, E);
1206     E->allocateIntOperands(ExpressionAllocator);
1207     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1208     return E;
1209   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1210     auto *E = new (ExpressionAllocator)
1211         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1212     setBasicExpressionInfo(EI, E);
1213     E->allocateIntOperands(ExpressionAllocator);
1214     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1215     return E;
1216   }
1217   llvm_unreachable("Unhandled type of aggregate value operation");
1218 }
1219 
1220 const DeadExpression *NewGVN::createDeadExpression() const {
1221   // DeadExpression has no arguments and all DeadExpression's are the same,
1222   // so we only need one of them.
1223   return SingletonDeadExpression;
1224 }
1225 
1226 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1227   auto *E = new (ExpressionAllocator) VariableExpression(V);
1228   E->setOpcode(V->getValueID());
1229   return E;
1230 }
1231 
1232 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1233   if (auto *C = dyn_cast<Constant>(V))
1234     return createConstantExpression(C);
1235   return createVariableExpression(V);
1236 }
1237 
1238 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1239   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1240   E->setOpcode(C->getValueID());
1241   return E;
1242 }
1243 
1244 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1245   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1246   E->setOpcode(I->getOpcode());
1247   return E;
1248 }
1249 
1250 const CallExpression *
1251 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1252   // FIXME: Add operand bundles for calls.
1253   auto *E =
1254       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1255   setBasicExpressionInfo(CI, E);
1256   return E;
1257 }
1258 
1259 // Return true if some equivalent of instruction Inst dominates instruction U.
1260 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1261                                      const Instruction *U) const {
1262   auto *CC = ValueToClass.lookup(Inst);
1263    // This must be an instruction because we are only called from phi nodes
1264   // in the case that the value it needs to check against is an instruction.
1265 
1266   // The most likely candidates for dominance are the leader and the next leader.
1267   // The leader or nextleader will dominate in all cases where there is an
1268   // equivalent that is higher up in the dom tree.
1269   // We can't *only* check them, however, because the
1270   // dominator tree could have an infinite number of non-dominating siblings
1271   // with instructions that are in the right congruence class.
1272   //       A
1273   // B C D E F G
1274   // |
1275   // H
1276   // Instruction U could be in H,  with equivalents in every other sibling.
1277   // Depending on the rpo order picked, the leader could be the equivalent in
1278   // any of these siblings.
1279   if (!CC)
1280     return false;
1281   if (alwaysAvailable(CC->getLeader()))
1282     return true;
1283   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1284     return true;
1285   if (CC->getNextLeader().first &&
1286       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1287     return true;
1288   return llvm::any_of(*CC, [&](const Value *Member) {
1289     return Member != CC->getLeader() &&
1290            DT->dominates(cast<Instruction>(Member), U);
1291   });
1292 }
1293 
1294 // See if we have a congruence class and leader for this operand, and if so,
1295 // return it. Otherwise, return the operand itself.
1296 Value *NewGVN::lookupOperandLeader(Value *V) const {
1297   CongruenceClass *CC = ValueToClass.lookup(V);
1298   if (CC) {
1299     // Everything in TOP is represented by undef, as it can be any value.
1300     // We do have to make sure we get the type right though, so we can't set the
1301     // RepLeader to undef.
1302     if (CC == TOPClass)
1303       return UndefValue::get(V->getType());
1304     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1305   }
1306 
1307   return V;
1308 }
1309 
1310 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1311   auto *CC = getMemoryClass(MA);
1312   assert(CC->getMemoryLeader() &&
1313          "Every MemoryAccess should be mapped to a congruence class with a "
1314          "representative memory access");
1315   return CC->getMemoryLeader();
1316 }
1317 
1318 // Return true if the MemoryAccess is really equivalent to everything. This is
1319 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1320 // state of all MemoryAccesses.
1321 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1322   return getMemoryClass(MA) == TOPClass;
1323 }
1324 
1325 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1326                                              LoadInst *LI,
1327                                              const MemoryAccess *MA) const {
1328   auto *E =
1329       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1330   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1331   E->setType(LoadType);
1332 
1333   // Give store and loads same opcode so they value number together.
1334   E->setOpcode(0);
1335   E->op_push_back(PointerOp);
1336   if (LI)
1337     E->setAlignment(MaybeAlign(LI->getAlignment()));
1338 
1339   // TODO: Value number heap versions. We may be able to discover
1340   // things alias analysis can't on it's own (IE that a store and a
1341   // load have the same value, and thus, it isn't clobbering the load).
1342   return E;
1343 }
1344 
1345 const StoreExpression *
1346 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1347   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1348   auto *E = new (ExpressionAllocator)
1349       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1350   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1351   E->setType(SI->getValueOperand()->getType());
1352 
1353   // Give store and loads same opcode so they value number together.
1354   E->setOpcode(0);
1355   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1356 
1357   // TODO: Value number heap versions. We may be able to discover
1358   // things alias analysis can't on it's own (IE that a store and a
1359   // load have the same value, and thus, it isn't clobbering the load).
1360   return E;
1361 }
1362 
1363 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1364   // Unlike loads, we never try to eliminate stores, so we do not check if they
1365   // are simple and avoid value numbering them.
1366   auto *SI = cast<StoreInst>(I);
1367   auto *StoreAccess = getMemoryAccess(SI);
1368   // Get the expression, if any, for the RHS of the MemoryDef.
1369   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1370   if (EnableStoreRefinement)
1371     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1372   // If we bypassed the use-def chains, make sure we add a use.
1373   StoreRHS = lookupMemoryLeader(StoreRHS);
1374   if (StoreRHS != StoreAccess->getDefiningAccess())
1375     addMemoryUsers(StoreRHS, StoreAccess);
1376   // If we are defined by ourselves, use the live on entry def.
1377   if (StoreRHS == StoreAccess)
1378     StoreRHS = MSSA->getLiveOnEntryDef();
1379 
1380   if (SI->isSimple()) {
1381     // See if we are defined by a previous store expression, it already has a
1382     // value, and it's the same value as our current store. FIXME: Right now, we
1383     // only do this for simple stores, we should expand to cover memcpys, etc.
1384     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1385     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1386     // We really want to check whether the expression we matched was a store. No
1387     // easy way to do that. However, we can check that the class we found has a
1388     // store, which, assuming the value numbering state is not corrupt, is
1389     // sufficient, because we must also be equivalent to that store's expression
1390     // for it to be in the same class as the load.
1391     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1392       return LastStore;
1393     // Also check if our value operand is defined by a load of the same memory
1394     // location, and the memory state is the same as it was then (otherwise, it
1395     // could have been overwritten later. See test32 in
1396     // transforms/DeadStoreElimination/simple.ll).
1397     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1398       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1399            LastStore->getOperand(0)) &&
1400           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1401            StoreRHS))
1402         return LastStore;
1403     deleteExpression(LastStore);
1404   }
1405 
1406   // If the store is not equivalent to anything, value number it as a store that
1407   // produces a unique memory state (instead of using it's MemoryUse, we use
1408   // it's MemoryDef).
1409   return createStoreExpression(SI, StoreAccess);
1410 }
1411 
1412 // See if we can extract the value of a loaded pointer from a load, a store, or
1413 // a memory instruction.
1414 const Expression *
1415 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1416                                     LoadInst *LI, Instruction *DepInst,
1417                                     MemoryAccess *DefiningAccess) const {
1418   assert((!LI || LI->isSimple()) && "Not a simple load");
1419   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1420     // Can't forward from non-atomic to atomic without violating memory model.
1421     // Also don't need to coerce if they are the same type, we will just
1422     // propagate.
1423     if (LI->isAtomic() > DepSI->isAtomic() ||
1424         LoadType == DepSI->getValueOperand()->getType())
1425       return nullptr;
1426     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1427     if (Offset >= 0) {
1428       if (auto *C = dyn_cast<Constant>(
1429               lookupOperandLeader(DepSI->getValueOperand()))) {
1430         LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1431                           << " to constant " << *C << "\n");
1432         return createConstantExpression(
1433             getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1434       }
1435     }
1436   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1437     // Can't forward from non-atomic to atomic without violating memory model.
1438     if (LI->isAtomic() > DepLI->isAtomic())
1439       return nullptr;
1440     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1441     if (Offset >= 0) {
1442       // We can coerce a constant load into a load.
1443       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1444         if (auto *PossibleConstant =
1445                 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1446           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1447                             << " to constant " << *PossibleConstant << "\n");
1448           return createConstantExpression(PossibleConstant);
1449         }
1450     }
1451   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1452     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1453     if (Offset >= 0) {
1454       if (auto *PossibleConstant =
1455               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1456         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1457                           << " to constant " << *PossibleConstant << "\n");
1458         return createConstantExpression(PossibleConstant);
1459       }
1460     }
1461   }
1462 
1463   // All of the below are only true if the loaded pointer is produced
1464   // by the dependent instruction.
1465   if (LoadPtr != lookupOperandLeader(DepInst) &&
1466       !AA->isMustAlias(LoadPtr, DepInst))
1467     return nullptr;
1468   // If this load really doesn't depend on anything, then we must be loading an
1469   // undef value.  This can happen when loading for a fresh allocation with no
1470   // intervening stores, for example.  Note that this is only true in the case
1471   // that the result of the allocation is pointer equal to the load ptr.
1472   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1473     return createConstantExpression(UndefValue::get(LoadType));
1474   }
1475   // If this load occurs either right after a lifetime begin,
1476   // then the loaded value is undefined.
1477   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1478     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1479       return createConstantExpression(UndefValue::get(LoadType));
1480   }
1481   // If this load follows a calloc (which zero initializes memory),
1482   // then the loaded value is zero
1483   else if (isCallocLikeFn(DepInst, TLI)) {
1484     return createConstantExpression(Constant::getNullValue(LoadType));
1485   }
1486 
1487   return nullptr;
1488 }
1489 
1490 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1491   auto *LI = cast<LoadInst>(I);
1492 
1493   // We can eliminate in favor of non-simple loads, but we won't be able to
1494   // eliminate the loads themselves.
1495   if (!LI->isSimple())
1496     return nullptr;
1497 
1498   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1499   // Load of undef is undef.
1500   if (isa<UndefValue>(LoadAddressLeader))
1501     return createConstantExpression(UndefValue::get(LI->getType()));
1502   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1503   MemoryAccess *DefiningAccess =
1504       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1505 
1506   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1507     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1508       Instruction *DefiningInst = MD->getMemoryInst();
1509       // If the defining instruction is not reachable, replace with undef.
1510       if (!ReachableBlocks.count(DefiningInst->getParent()))
1511         return createConstantExpression(UndefValue::get(LI->getType()));
1512       // This will handle stores and memory insts.  We only do if it the
1513       // defining access has a different type, or it is a pointer produced by
1514       // certain memory operations that cause the memory to have a fixed value
1515       // (IE things like calloc).
1516       if (const auto *CoercionResult =
1517               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1518                                           DefiningInst, DefiningAccess))
1519         return CoercionResult;
1520     }
1521   }
1522 
1523   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1524                                         DefiningAccess);
1525   // If our MemoryLeader is not our defining access, add a use to the
1526   // MemoryLeader, so that we get reprocessed when it changes.
1527   if (LE->getMemoryLeader() != DefiningAccess)
1528     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1529   return LE;
1530 }
1531 
1532 const Expression *
1533 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1534   auto *PI = PredInfo->getPredicateInfoFor(I);
1535   if (!PI)
1536     return nullptr;
1537 
1538   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1539 
1540   auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1541   if (!PWC)
1542     return nullptr;
1543 
1544   auto *CopyOf = I->getOperand(0);
1545   auto *Cond = PWC->Condition;
1546 
1547   // If this a copy of the condition, it must be either true or false depending
1548   // on the predicate info type and edge.
1549   if (CopyOf == Cond) {
1550     // We should not need to add predicate users because the predicate info is
1551     // already a use of this operand.
1552     if (isa<PredicateAssume>(PI))
1553       return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1554     if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1555       if (PBranch->TrueEdge)
1556         return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1557       return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1558     }
1559     if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1560       return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
1561   }
1562 
1563   // Not a copy of the condition, so see what the predicates tell us about this
1564   // value.  First, though, we check to make sure the value is actually a copy
1565   // of one of the condition operands. It's possible, in certain cases, for it
1566   // to be a copy of a predicateinfo copy. In particular, if two branch
1567   // operations use the same condition, and one branch dominates the other, we
1568   // will end up with a copy of a copy.  This is currently a small deficiency in
1569   // predicateinfo.  What will end up happening here is that we will value
1570   // number both copies the same anyway.
1571 
1572   // Everything below relies on the condition being a comparison.
1573   auto *Cmp = dyn_cast<CmpInst>(Cond);
1574   if (!Cmp)
1575     return nullptr;
1576 
1577   if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
1578     LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
1579     return nullptr;
1580   }
1581   Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1582   Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
1583   bool SwappedOps = false;
1584   // Sort the ops.
1585   if (shouldSwapOperands(FirstOp, SecondOp)) {
1586     std::swap(FirstOp, SecondOp);
1587     SwappedOps = true;
1588   }
1589   CmpInst::Predicate Predicate =
1590       SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1591 
1592   if (isa<PredicateAssume>(PI)) {
1593     // If we assume the operands are equal, then they are equal.
1594     if (Predicate == CmpInst::ICMP_EQ) {
1595       addPredicateUsers(PI, I);
1596       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1597                          I);
1598       return createVariableOrConstant(FirstOp);
1599     }
1600   }
1601   if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1602     // If we are *not* a copy of the comparison, we may equal to the other
1603     // operand when the predicate implies something about equality of
1604     // operations.  In particular, if the comparison is true/false when the
1605     // operands are equal, and we are on the right edge, we know this operation
1606     // is equal to something.
1607     if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1608         (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1609       addPredicateUsers(PI, I);
1610       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1611                          I);
1612       return createVariableOrConstant(FirstOp);
1613     }
1614     // Handle the special case of floating point.
1615     if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1616          (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1617         isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1618       addPredicateUsers(PI, I);
1619       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1620                          I);
1621       return createConstantExpression(cast<Constant>(FirstOp));
1622     }
1623   }
1624   return nullptr;
1625 }
1626 
1627 // Evaluate read only and pure calls, and create an expression result.
1628 const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1629   auto *CI = cast<CallInst>(I);
1630   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1631     // Intrinsics with the returned attribute are copies of arguments.
1632     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1633       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1634         if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1635           return Result;
1636       return createVariableOrConstant(ReturnedValue);
1637     }
1638   }
1639   if (AA->doesNotAccessMemory(CI)) {
1640     return createCallExpression(CI, TOPClass->getMemoryLeader());
1641   } else if (AA->onlyReadsMemory(CI)) {
1642     if (auto *MA = MSSA->getMemoryAccess(CI)) {
1643       auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1644       return createCallExpression(CI, DefiningAccess);
1645     } else // MSSA determined that CI does not access memory.
1646       return createCallExpression(CI, TOPClass->getMemoryLeader());
1647   }
1648   return nullptr;
1649 }
1650 
1651 // Retrieve the memory class for a given MemoryAccess.
1652 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1653   auto *Result = MemoryAccessToClass.lookup(MA);
1654   assert(Result && "Should have found memory class");
1655   return Result;
1656 }
1657 
1658 // Update the MemoryAccess equivalence table to say that From is equal to To,
1659 // and return true if this is different from what already existed in the table.
1660 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1661                             CongruenceClass *NewClass) {
1662   assert(NewClass &&
1663          "Every MemoryAccess should be getting mapped to a non-null class");
1664   LLVM_DEBUG(dbgs() << "Setting " << *From);
1665   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1666   LLVM_DEBUG(dbgs() << NewClass->getID()
1667                     << " with current MemoryAccess leader ");
1668   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1669 
1670   auto LookupResult = MemoryAccessToClass.find(From);
1671   bool Changed = false;
1672   // If it's already in the table, see if the value changed.
1673   if (LookupResult != MemoryAccessToClass.end()) {
1674     auto *OldClass = LookupResult->second;
1675     if (OldClass != NewClass) {
1676       // If this is a phi, we have to handle memory member updates.
1677       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1678         OldClass->memory_erase(MP);
1679         NewClass->memory_insert(MP);
1680         // This may have killed the class if it had no non-memory members
1681         if (OldClass->getMemoryLeader() == From) {
1682           if (OldClass->definesNoMemory()) {
1683             OldClass->setMemoryLeader(nullptr);
1684           } else {
1685             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1686             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1687                               << OldClass->getID() << " to "
1688                               << *OldClass->getMemoryLeader()
1689                               << " due to removal of a memory member " << *From
1690                               << "\n");
1691             markMemoryLeaderChangeTouched(OldClass);
1692           }
1693         }
1694       }
1695       // It wasn't equivalent before, and now it is.
1696       LookupResult->second = NewClass;
1697       Changed = true;
1698     }
1699   }
1700 
1701   return Changed;
1702 }
1703 
1704 // Determine if a instruction is cycle-free.  That means the values in the
1705 // instruction don't depend on any expressions that can change value as a result
1706 // of the instruction.  For example, a non-cycle free instruction would be v =
1707 // phi(0, v+1).
1708 bool NewGVN::isCycleFree(const Instruction *I) const {
1709   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1710   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1711   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1712   // other members are all phi nodes (as they do not compute anything, they are
1713   // copies).
1714   auto ICS = InstCycleState.lookup(I);
1715   if (ICS == ICS_Unknown) {
1716     SCCFinder.Start(I);
1717     auto &SCC = SCCFinder.getComponentFor(I);
1718     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1719     if (SCC.size() == 1)
1720       InstCycleState.insert({I, ICS_CycleFree});
1721     else {
1722       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1723         return isa<PHINode>(V) || isCopyOfAPHI(V);
1724       });
1725       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1726       for (auto *Member : SCC)
1727         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1728           InstCycleState.insert({MemberPhi, ICS});
1729     }
1730   }
1731   if (ICS == ICS_Cycle)
1732     return false;
1733   return true;
1734 }
1735 
1736 // Evaluate PHI nodes symbolically and create an expression result.
1737 const Expression *
1738 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1739                                      Instruction *I,
1740                                      BasicBlock *PHIBlock) const {
1741   // True if one of the incoming phi edges is a backedge.
1742   bool HasBackedge = false;
1743   // All constant tracks the state of whether all the *original* phi operands
1744   // This is really shorthand for "this phi cannot cycle due to forward
1745   // change in value of the phi is guaranteed not to later change the value of
1746   // the phi. IE it can't be v = phi(undef, v+1)
1747   bool OriginalOpsConstant = true;
1748   auto *E = cast<PHIExpression>(createPHIExpression(
1749       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1750   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1751   // See if all arguments are the same.
1752   // We track if any were undef because they need special handling.
1753   bool HasUndef = false;
1754   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1755     if (isa<UndefValue>(Arg)) {
1756       HasUndef = true;
1757       return false;
1758     }
1759     return true;
1760   });
1761   // If we are left with no operands, it's dead.
1762   if (Filtered.empty()) {
1763     // If it has undef at this point, it means there are no-non-undef arguments,
1764     // and thus, the value of the phi node must be undef.
1765     if (HasUndef) {
1766       LLVM_DEBUG(
1767           dbgs() << "PHI Node " << *I
1768                  << " has no non-undef arguments, valuing it as undef\n");
1769       return createConstantExpression(UndefValue::get(I->getType()));
1770     }
1771 
1772     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1773     deleteExpression(E);
1774     return createDeadExpression();
1775   }
1776   Value *AllSameValue = *(Filtered.begin());
1777   ++Filtered.begin();
1778   // Can't use std::equal here, sadly, because filter.begin moves.
1779   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1780     // In LLVM's non-standard representation of phi nodes, it's possible to have
1781     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1782     // on the original phi node), especially in weird CFG's where some arguments
1783     // are unreachable, or uninitialized along certain paths.  This can cause
1784     // infinite loops during evaluation. We work around this by not trying to
1785     // really evaluate them independently, but instead using a variable
1786     // expression to say if one is equivalent to the other.
1787     // We also special case undef, so that if we have an undef, we can't use the
1788     // common value unless it dominates the phi block.
1789     if (HasUndef) {
1790       // If we have undef and at least one other value, this is really a
1791       // multivalued phi, and we need to know if it's cycle free in order to
1792       // evaluate whether we can ignore the undef.  The other parts of this are
1793       // just shortcuts.  If there is no backedge, or all operands are
1794       // constants, it also must be cycle free.
1795       if (HasBackedge && !OriginalOpsConstant &&
1796           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1797         return E;
1798 
1799       // Only have to check for instructions
1800       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1801         if (!someEquivalentDominates(AllSameInst, I))
1802           return E;
1803     }
1804     // Can't simplify to something that comes later in the iteration.
1805     // Otherwise, when and if it changes congruence class, we will never catch
1806     // up. We will always be a class behind it.
1807     if (isa<Instruction>(AllSameValue) &&
1808         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1809       return E;
1810     NumGVNPhisAllSame++;
1811     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1812                       << "\n");
1813     deleteExpression(E);
1814     return createVariableOrConstant(AllSameValue);
1815   }
1816   return E;
1817 }
1818 
1819 const Expression *
1820 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1821   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1822     auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1823     if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1824       // EI is an extract from one of our with.overflow intrinsics. Synthesize
1825       // a semantically equivalent expression instead of an extract value
1826       // expression.
1827       return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1828                                     WO->getLHS(), WO->getRHS(), I);
1829   }
1830 
1831   return createAggregateValueExpression(I);
1832 }
1833 
1834 const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1835   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1836 
1837   auto *CI = cast<CmpInst>(I);
1838   // See if our operands are equal to those of a previous predicate, and if so,
1839   // if it implies true or false.
1840   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1841   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1842   auto OurPredicate = CI->getPredicate();
1843   if (shouldSwapOperands(Op0, Op1)) {
1844     std::swap(Op0, Op1);
1845     OurPredicate = CI->getSwappedPredicate();
1846   }
1847 
1848   // Avoid processing the same info twice.
1849   const PredicateBase *LastPredInfo = nullptr;
1850   // See if we know something about the comparison itself, like it is the target
1851   // of an assume.
1852   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1853   if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1854     return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1855 
1856   if (Op0 == Op1) {
1857     // This condition does not depend on predicates, no need to add users
1858     if (CI->isTrueWhenEqual())
1859       return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1860     else if (CI->isFalseWhenEqual())
1861       return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1862   }
1863 
1864   // NOTE: Because we are comparing both operands here and below, and using
1865   // previous comparisons, we rely on fact that predicateinfo knows to mark
1866   // comparisons that use renamed operands as users of the earlier comparisons.
1867   // It is *not* enough to just mark predicateinfo renamed operands as users of
1868   // the earlier comparisons, because the *other* operand may have changed in a
1869   // previous iteration.
1870   // Example:
1871   // icmp slt %a, %b
1872   // %b.0 = ssa.copy(%b)
1873   // false branch:
1874   // icmp slt %c, %b.0
1875 
1876   // %c and %a may start out equal, and thus, the code below will say the second
1877   // %icmp is false.  c may become equal to something else, and in that case the
1878   // %second icmp *must* be reexamined, but would not if only the renamed
1879   // %operands are considered users of the icmp.
1880 
1881   // *Currently* we only check one level of comparisons back, and only mark one
1882   // level back as touched when changes happen.  If you modify this code to look
1883   // back farther through comparisons, you *must* mark the appropriate
1884   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1885   // we know something just from the operands themselves
1886 
1887   // See if our operands have predicate info, so that we may be able to derive
1888   // something from a previous comparison.
1889   for (const auto &Op : CI->operands()) {
1890     auto *PI = PredInfo->getPredicateInfoFor(Op);
1891     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1892       if (PI == LastPredInfo)
1893         continue;
1894       LastPredInfo = PI;
1895       // In phi of ops cases, we may have predicate info that we are evaluating
1896       // in a different context.
1897       if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1898         continue;
1899       // TODO: Along the false edge, we may know more things too, like
1900       // icmp of
1901       // same operands is false.
1902       // TODO: We only handle actual comparison conditions below, not
1903       // and/or.
1904       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1905       if (!BranchCond)
1906         continue;
1907       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1908       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1909       auto BranchPredicate = BranchCond->getPredicate();
1910       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1911         std::swap(BranchOp0, BranchOp1);
1912         BranchPredicate = BranchCond->getSwappedPredicate();
1913       }
1914       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1915         if (PBranch->TrueEdge) {
1916           // If we know the previous predicate is true and we are in the true
1917           // edge then we may be implied true or false.
1918           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1919                                                   OurPredicate)) {
1920             addPredicateUsers(PI, I);
1921             return createConstantExpression(
1922                 ConstantInt::getTrue(CI->getType()));
1923           }
1924 
1925           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1926                                                    OurPredicate)) {
1927             addPredicateUsers(PI, I);
1928             return createConstantExpression(
1929                 ConstantInt::getFalse(CI->getType()));
1930           }
1931         } else {
1932           // Just handle the ne and eq cases, where if we have the same
1933           // operands, we may know something.
1934           if (BranchPredicate == OurPredicate) {
1935             addPredicateUsers(PI, I);
1936             // Same predicate, same ops,we know it was false, so this is false.
1937             return createConstantExpression(
1938                 ConstantInt::getFalse(CI->getType()));
1939           } else if (BranchPredicate ==
1940                      CmpInst::getInversePredicate(OurPredicate)) {
1941             addPredicateUsers(PI, I);
1942             // Inverse predicate, we know the other was false, so this is true.
1943             return createConstantExpression(
1944                 ConstantInt::getTrue(CI->getType()));
1945           }
1946         }
1947       }
1948     }
1949   }
1950   // Create expression will take care of simplifyCmpInst
1951   return createExpression(I);
1952 }
1953 
1954 // Substitute and symbolize the value before value numbering.
1955 const Expression *
1956 NewGVN::performSymbolicEvaluation(Value *V,
1957                                   SmallPtrSetImpl<Value *> &Visited) const {
1958   const Expression *E = nullptr;
1959   if (auto *C = dyn_cast<Constant>(V))
1960     E = createConstantExpression(C);
1961   else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1962     E = createVariableExpression(V);
1963   } else {
1964     // TODO: memory intrinsics.
1965     // TODO: Some day, we should do the forward propagation and reassociation
1966     // parts of the algorithm.
1967     auto *I = cast<Instruction>(V);
1968     switch (I->getOpcode()) {
1969     case Instruction::ExtractValue:
1970     case Instruction::InsertValue:
1971       E = performSymbolicAggrValueEvaluation(I);
1972       break;
1973     case Instruction::PHI: {
1974       SmallVector<ValPair, 3> Ops;
1975       auto *PN = cast<PHINode>(I);
1976       for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1977         Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1978       // Sort to ensure the invariant createPHIExpression requires is met.
1979       sortPHIOps(Ops);
1980       E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1981     } break;
1982     case Instruction::Call:
1983       E = performSymbolicCallEvaluation(I);
1984       break;
1985     case Instruction::Store:
1986       E = performSymbolicStoreEvaluation(I);
1987       break;
1988     case Instruction::Load:
1989       E = performSymbolicLoadEvaluation(I);
1990       break;
1991     case Instruction::BitCast:
1992     case Instruction::AddrSpaceCast:
1993       E = createExpression(I);
1994       break;
1995     case Instruction::ICmp:
1996     case Instruction::FCmp:
1997       E = performSymbolicCmpEvaluation(I);
1998       break;
1999     case Instruction::FNeg:
2000     case Instruction::Add:
2001     case Instruction::FAdd:
2002     case Instruction::Sub:
2003     case Instruction::FSub:
2004     case Instruction::Mul:
2005     case Instruction::FMul:
2006     case Instruction::UDiv:
2007     case Instruction::SDiv:
2008     case Instruction::FDiv:
2009     case Instruction::URem:
2010     case Instruction::SRem:
2011     case Instruction::FRem:
2012     case Instruction::Shl:
2013     case Instruction::LShr:
2014     case Instruction::AShr:
2015     case Instruction::And:
2016     case Instruction::Or:
2017     case Instruction::Xor:
2018     case Instruction::Trunc:
2019     case Instruction::ZExt:
2020     case Instruction::SExt:
2021     case Instruction::FPToUI:
2022     case Instruction::FPToSI:
2023     case Instruction::UIToFP:
2024     case Instruction::SIToFP:
2025     case Instruction::FPTrunc:
2026     case Instruction::FPExt:
2027     case Instruction::PtrToInt:
2028     case Instruction::IntToPtr:
2029     case Instruction::Select:
2030     case Instruction::ExtractElement:
2031     case Instruction::InsertElement:
2032     case Instruction::ShuffleVector:
2033     case Instruction::GetElementPtr:
2034       E = createExpression(I);
2035       break;
2036     default:
2037       return nullptr;
2038     }
2039   }
2040   return E;
2041 }
2042 
2043 // Look up a container in a map, and then call a function for each thing in the
2044 // found container.
2045 template <typename Map, typename KeyType, typename Func>
2046 void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
2047   const auto Result = M.find_as(Key);
2048   if (Result != M.end())
2049     for (typename Map::mapped_type::value_type Mapped : Result->second)
2050       F(Mapped);
2051 }
2052 
2053 // Look up a container of values/instructions in a map, and touch all the
2054 // instructions in the container.  Then erase value from the map.
2055 template <typename Map, typename KeyType>
2056 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2057   const auto Result = M.find_as(Key);
2058   if (Result != M.end()) {
2059     for (const typename Map::mapped_type::value_type Mapped : Result->second)
2060       TouchedInstructions.set(InstrToDFSNum(Mapped));
2061     M.erase(Result);
2062   }
2063 }
2064 
2065 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2066   assert(User && To != User);
2067   if (isa<Instruction>(To))
2068     AdditionalUsers[To].insert(User);
2069 }
2070 
2071 void NewGVN::markUsersTouched(Value *V) {
2072   // Now mark the users as touched.
2073   for (auto *User : V->users()) {
2074     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2075     TouchedInstructions.set(InstrToDFSNum(User));
2076   }
2077   touchAndErase(AdditionalUsers, V);
2078 }
2079 
2080 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2081   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2082   MemoryToUsers[To].insert(U);
2083 }
2084 
2085 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2086   TouchedInstructions.set(MemoryToDFSNum(MA));
2087 }
2088 
2089 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2090   if (isa<MemoryUse>(MA))
2091     return;
2092   for (auto U : MA->users())
2093     TouchedInstructions.set(MemoryToDFSNum(U));
2094   touchAndErase(MemoryToUsers, MA);
2095 }
2096 
2097 // Add I to the set of users of a given predicate.
2098 void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
2099   // Don't add temporary instructions to the user lists.
2100   if (AllTempInstructions.count(I))
2101     return;
2102 
2103   if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
2104     PredicateToUsers[PBranch->Condition].insert(I);
2105   else if (auto *PAssume = dyn_cast<PredicateAssume>(PB))
2106     PredicateToUsers[PAssume->Condition].insert(I);
2107 }
2108 
2109 // Touch all the predicates that depend on this instruction.
2110 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2111   touchAndErase(PredicateToUsers, I);
2112 }
2113 
2114 // Mark users affected by a memory leader change.
2115 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2116   for (auto M : CC->memory())
2117     markMemoryDefTouched(M);
2118 }
2119 
2120 // Touch the instructions that need to be updated after a congruence class has a
2121 // leader change, and mark changed values.
2122 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2123   for (auto M : *CC) {
2124     if (auto *I = dyn_cast<Instruction>(M))
2125       TouchedInstructions.set(InstrToDFSNum(I));
2126     LeaderChanges.insert(M);
2127   }
2128 }
2129 
2130 // Give a range of things that have instruction DFS numbers, this will return
2131 // the member of the range with the smallest dfs number.
2132 template <class T, class Range>
2133 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2134   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2135   for (const auto X : R) {
2136     auto DFSNum = InstrToDFSNum(X);
2137     if (DFSNum < MinDFS.second)
2138       MinDFS = {X, DFSNum};
2139   }
2140   return MinDFS.first;
2141 }
2142 
2143 // This function returns the MemoryAccess that should be the next leader of
2144 // congruence class CC, under the assumption that the current leader is going to
2145 // disappear.
2146 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2147   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2148   // do for regular leaders.
2149   // Make sure there will be a leader to find.
2150   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2151   if (CC->getStoreCount() > 0) {
2152     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2153       return getMemoryAccess(NL);
2154     // Find the store with the minimum DFS number.
2155     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2156         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2157     return getMemoryAccess(cast<StoreInst>(V));
2158   }
2159   assert(CC->getStoreCount() == 0);
2160 
2161   // Given our assertion, hitting this part must mean
2162   // !OldClass->memory_empty()
2163   if (CC->memory_size() == 1)
2164     return *CC->memory_begin();
2165   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2166 }
2167 
2168 // This function returns the next value leader of a congruence class, under the
2169 // assumption that the current leader is going away.  This should end up being
2170 // the next most dominating member.
2171 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2172   // We don't need to sort members if there is only 1, and we don't care about
2173   // sorting the TOP class because everything either gets out of it or is
2174   // unreachable.
2175 
2176   if (CC->size() == 1 || CC == TOPClass) {
2177     return *(CC->begin());
2178   } else if (CC->getNextLeader().first) {
2179     ++NumGVNAvoidedSortedLeaderChanges;
2180     return CC->getNextLeader().first;
2181   } else {
2182     ++NumGVNSortedLeaderChanges;
2183     // NOTE: If this ends up to slow, we can maintain a dual structure for
2184     // member testing/insertion, or keep things mostly sorted, and sort only
2185     // here, or use SparseBitVector or ....
2186     return getMinDFSOfRange<Value>(*CC);
2187   }
2188 }
2189 
2190 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2191 // the memory members, etc for the move.
2192 //
2193 // The invariants of this function are:
2194 //
2195 // - I must be moving to NewClass from OldClass
2196 // - The StoreCount of OldClass and NewClass is expected to have been updated
2197 //   for I already if it is a store.
2198 // - The OldClass memory leader has not been updated yet if I was the leader.
2199 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2200                                             MemoryAccess *InstMA,
2201                                             CongruenceClass *OldClass,
2202                                             CongruenceClass *NewClass) {
2203   // If the leader is I, and we had a representative MemoryAccess, it should
2204   // be the MemoryAccess of OldClass.
2205   assert((!InstMA || !OldClass->getMemoryLeader() ||
2206           OldClass->getLeader() != I ||
2207           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2208               MemoryAccessToClass.lookup(InstMA)) &&
2209          "Representative MemoryAccess mismatch");
2210   // First, see what happens to the new class
2211   if (!NewClass->getMemoryLeader()) {
2212     // Should be a new class, or a store becoming a leader of a new class.
2213     assert(NewClass->size() == 1 ||
2214            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2215     NewClass->setMemoryLeader(InstMA);
2216     // Mark it touched if we didn't just create a singleton
2217     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2218                       << NewClass->getID()
2219                       << " due to new memory instruction becoming leader\n");
2220     markMemoryLeaderChangeTouched(NewClass);
2221   }
2222   setMemoryClass(InstMA, NewClass);
2223   // Now, fixup the old class if necessary
2224   if (OldClass->getMemoryLeader() == InstMA) {
2225     if (!OldClass->definesNoMemory()) {
2226       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2227       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2228                         << OldClass->getID() << " to "
2229                         << *OldClass->getMemoryLeader()
2230                         << " due to removal of old leader " << *InstMA << "\n");
2231       markMemoryLeaderChangeTouched(OldClass);
2232     } else
2233       OldClass->setMemoryLeader(nullptr);
2234   }
2235 }
2236 
2237 // Move a value, currently in OldClass, to be part of NewClass
2238 // Update OldClass and NewClass for the move (including changing leaders, etc).
2239 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2240                                            CongruenceClass *OldClass,
2241                                            CongruenceClass *NewClass) {
2242   if (I == OldClass->getNextLeader().first)
2243     OldClass->resetNextLeader();
2244 
2245   OldClass->erase(I);
2246   NewClass->insert(I);
2247 
2248   if (NewClass->getLeader() != I)
2249     NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2250   // Handle our special casing of stores.
2251   if (auto *SI = dyn_cast<StoreInst>(I)) {
2252     OldClass->decStoreCount();
2253     // Okay, so when do we want to make a store a leader of a class?
2254     // If we have a store defined by an earlier load, we want the earlier load
2255     // to lead the class.
2256     // If we have a store defined by something else, we want the store to lead
2257     // the class so everything else gets the "something else" as a value.
2258     // If we have a store as the single member of the class, we want the store
2259     // as the leader
2260     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2261       // If it's a store expression we are using, it means we are not equivalent
2262       // to something earlier.
2263       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2264         NewClass->setStoredValue(SE->getStoredValue());
2265         markValueLeaderChangeTouched(NewClass);
2266         // Shift the new class leader to be the store
2267         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2268                           << NewClass->getID() << " from "
2269                           << *NewClass->getLeader() << " to  " << *SI
2270                           << " because store joined class\n");
2271         // If we changed the leader, we have to mark it changed because we don't
2272         // know what it will do to symbolic evaluation.
2273         NewClass->setLeader(SI);
2274       }
2275       // We rely on the code below handling the MemoryAccess change.
2276     }
2277     NewClass->incStoreCount();
2278   }
2279   // True if there is no memory instructions left in a class that had memory
2280   // instructions before.
2281 
2282   // If it's not a memory use, set the MemoryAccess equivalence
2283   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2284   if (InstMA)
2285     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2286   ValueToClass[I] = NewClass;
2287   // See if we destroyed the class or need to swap leaders.
2288   if (OldClass->empty() && OldClass != TOPClass) {
2289     if (OldClass->getDefiningExpr()) {
2290       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2291                         << " from table\n");
2292       // We erase it as an exact expression to make sure we don't just erase an
2293       // equivalent one.
2294       auto Iter = ExpressionToClass.find_as(
2295           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2296       if (Iter != ExpressionToClass.end())
2297         ExpressionToClass.erase(Iter);
2298 #ifdef EXPENSIVE_CHECKS
2299       assert(
2300           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2301           "We erased the expression we just inserted, which should not happen");
2302 #endif
2303     }
2304   } else if (OldClass->getLeader() == I) {
2305     // When the leader changes, the value numbering of
2306     // everything may change due to symbolization changes, so we need to
2307     // reprocess.
2308     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2309                       << OldClass->getID() << "\n");
2310     ++NumGVNLeaderChanges;
2311     // Destroy the stored value if there are no more stores to represent it.
2312     // Note that this is basically clean up for the expression removal that
2313     // happens below.  If we remove stores from a class, we may leave it as a
2314     // class of equivalent memory phis.
2315     if (OldClass->getStoreCount() == 0) {
2316       if (OldClass->getStoredValue())
2317         OldClass->setStoredValue(nullptr);
2318     }
2319     OldClass->setLeader(getNextValueLeader(OldClass));
2320     OldClass->resetNextLeader();
2321     markValueLeaderChangeTouched(OldClass);
2322   }
2323 }
2324 
2325 // For a given expression, mark the phi of ops instructions that could have
2326 // changed as a result.
2327 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2328   touchAndErase(ExpressionToPhiOfOps, E);
2329 }
2330 
2331 // Perform congruence finding on a given value numbering expression.
2332 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2333   // This is guaranteed to return something, since it will at least find
2334   // TOP.
2335 
2336   CongruenceClass *IClass = ValueToClass.lookup(I);
2337   assert(IClass && "Should have found a IClass");
2338   // Dead classes should have been eliminated from the mapping.
2339   assert(!IClass->isDead() && "Found a dead class");
2340 
2341   CongruenceClass *EClass = nullptr;
2342   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2343     EClass = ValueToClass.lookup(VE->getVariableValue());
2344   } else if (isa<DeadExpression>(E)) {
2345     EClass = TOPClass;
2346   }
2347   if (!EClass) {
2348     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2349 
2350     // If it's not in the value table, create a new congruence class.
2351     if (lookupResult.second) {
2352       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2353       auto place = lookupResult.first;
2354       place->second = NewClass;
2355 
2356       // Constants and variables should always be made the leader.
2357       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2358         NewClass->setLeader(CE->getConstantValue());
2359       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2360         StoreInst *SI = SE->getStoreInst();
2361         NewClass->setLeader(SI);
2362         NewClass->setStoredValue(SE->getStoredValue());
2363         // The RepMemoryAccess field will be filled in properly by the
2364         // moveValueToNewCongruenceClass call.
2365       } else {
2366         NewClass->setLeader(I);
2367       }
2368       assert(!isa<VariableExpression>(E) &&
2369              "VariableExpression should have been handled already");
2370 
2371       EClass = NewClass;
2372       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2373                         << " using expression " << *E << " at "
2374                         << NewClass->getID() << " and leader "
2375                         << *(NewClass->getLeader()));
2376       if (NewClass->getStoredValue())
2377         LLVM_DEBUG(dbgs() << " and stored value "
2378                           << *(NewClass->getStoredValue()));
2379       LLVM_DEBUG(dbgs() << "\n");
2380     } else {
2381       EClass = lookupResult.first->second;
2382       if (isa<ConstantExpression>(E))
2383         assert((isa<Constant>(EClass->getLeader()) ||
2384                 (EClass->getStoredValue() &&
2385                  isa<Constant>(EClass->getStoredValue()))) &&
2386                "Any class with a constant expression should have a "
2387                "constant leader");
2388 
2389       assert(EClass && "Somehow don't have an eclass");
2390 
2391       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2392     }
2393   }
2394   bool ClassChanged = IClass != EClass;
2395   bool LeaderChanged = LeaderChanges.erase(I);
2396   if (ClassChanged || LeaderChanged) {
2397     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2398                       << *E << "\n");
2399     if (ClassChanged) {
2400       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2401       markPhiOfOpsChanged(E);
2402     }
2403 
2404     markUsersTouched(I);
2405     if (MemoryAccess *MA = getMemoryAccess(I))
2406       markMemoryUsersTouched(MA);
2407     if (auto *CI = dyn_cast<CmpInst>(I))
2408       markPredicateUsersTouched(CI);
2409   }
2410   // If we changed the class of the store, we want to ensure nothing finds the
2411   // old store expression.  In particular, loads do not compare against stored
2412   // value, so they will find old store expressions (and associated class
2413   // mappings) if we leave them in the table.
2414   if (ClassChanged && isa<StoreInst>(I)) {
2415     auto *OldE = ValueToExpression.lookup(I);
2416     // It could just be that the old class died. We don't want to erase it if we
2417     // just moved classes.
2418     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2419       // Erase this as an exact expression to ensure we don't erase expressions
2420       // equivalent to it.
2421       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2422       if (Iter != ExpressionToClass.end())
2423         ExpressionToClass.erase(Iter);
2424     }
2425   }
2426   ValueToExpression[I] = E;
2427 }
2428 
2429 // Process the fact that Edge (from, to) is reachable, including marking
2430 // any newly reachable blocks and instructions for processing.
2431 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2432   // Check if the Edge was reachable before.
2433   if (ReachableEdges.insert({From, To}).second) {
2434     // If this block wasn't reachable before, all instructions are touched.
2435     if (ReachableBlocks.insert(To).second) {
2436       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2437                         << " marked reachable\n");
2438       const auto &InstRange = BlockInstRange.lookup(To);
2439       TouchedInstructions.set(InstRange.first, InstRange.second);
2440     } else {
2441       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2442                         << " was reachable, but new edge {"
2443                         << getBlockName(From) << "," << getBlockName(To)
2444                         << "} to it found\n");
2445 
2446       // We've made an edge reachable to an existing block, which may
2447       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2448       // they are the only thing that depend on new edges. Anything using their
2449       // values will get propagated to if necessary.
2450       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2451         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2452 
2453       // FIXME: We should just add a union op on a Bitvector and
2454       // SparseBitVector.  We can do it word by word faster than we are doing it
2455       // here.
2456       for (auto InstNum : RevisitOnReachabilityChange[To])
2457         TouchedInstructions.set(InstNum);
2458     }
2459   }
2460 }
2461 
2462 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2463 // see if we know some constant value for it already.
2464 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2465   auto Result = lookupOperandLeader(Cond);
2466   return isa<Constant>(Result) ? Result : nullptr;
2467 }
2468 
2469 // Process the outgoing edges of a block for reachability.
2470 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2471   // Evaluate reachability of terminator instruction.
2472   Value *Cond;
2473   BasicBlock *TrueSucc, *FalseSucc;
2474   if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2475     Value *CondEvaluated = findConditionEquivalence(Cond);
2476     if (!CondEvaluated) {
2477       if (auto *I = dyn_cast<Instruction>(Cond)) {
2478         const Expression *E = createExpression(I);
2479         if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2480           CondEvaluated = CE->getConstantValue();
2481         }
2482       } else if (isa<ConstantInt>(Cond)) {
2483         CondEvaluated = Cond;
2484       }
2485     }
2486     ConstantInt *CI;
2487     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2488       if (CI->isOne()) {
2489         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2490                           << " evaluated to true\n");
2491         updateReachableEdge(B, TrueSucc);
2492       } else if (CI->isZero()) {
2493         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2494                           << " evaluated to false\n");
2495         updateReachableEdge(B, FalseSucc);
2496       }
2497     } else {
2498       updateReachableEdge(B, TrueSucc);
2499       updateReachableEdge(B, FalseSucc);
2500     }
2501   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2502     // For switches, propagate the case values into the case
2503     // destinations.
2504 
2505     Value *SwitchCond = SI->getCondition();
2506     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2507     // See if we were able to turn this switch statement into a constant.
2508     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2509       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2510       // We should be able to get case value for this.
2511       auto Case = *SI->findCaseValue(CondVal);
2512       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2513         // We proved the value is outside of the range of the case.
2514         // We can't do anything other than mark the default dest as reachable,
2515         // and go home.
2516         updateReachableEdge(B, SI->getDefaultDest());
2517         return;
2518       }
2519       // Now get where it goes and mark it reachable.
2520       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2521       updateReachableEdge(B, TargetBlock);
2522     } else {
2523       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2524         BasicBlock *TargetBlock = SI->getSuccessor(i);
2525         updateReachableEdge(B, TargetBlock);
2526       }
2527     }
2528   } else {
2529     // Otherwise this is either unconditional, or a type we have no
2530     // idea about. Just mark successors as reachable.
2531     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2532       BasicBlock *TargetBlock = TI->getSuccessor(i);
2533       updateReachableEdge(B, TargetBlock);
2534     }
2535 
2536     // This also may be a memory defining terminator, in which case, set it
2537     // equivalent only to itself.
2538     //
2539     auto *MA = getMemoryAccess(TI);
2540     if (MA && !isa<MemoryUse>(MA)) {
2541       auto *CC = ensureLeaderOfMemoryClass(MA);
2542       if (setMemoryClass(MA, CC))
2543         markMemoryUsersTouched(MA);
2544     }
2545   }
2546 }
2547 
2548 // Remove the PHI of Ops PHI for I
2549 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2550   InstrDFS.erase(PHITemp);
2551   // It's still a temp instruction. We keep it in the array so it gets erased.
2552   // However, it's no longer used by I, or in the block
2553   TempToBlock.erase(PHITemp);
2554   RealToTemp.erase(I);
2555   // We don't remove the users from the phi node uses. This wastes a little
2556   // time, but such is life.  We could use two sets to track which were there
2557   // are the start of NewGVN, and which were added, but right nowt he cost of
2558   // tracking is more than the cost of checking for more phi of ops.
2559 }
2560 
2561 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2562 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2563                          Instruction *ExistingValue) {
2564   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2565   AllTempInstructions.insert(Op);
2566   TempToBlock[Op] = BB;
2567   RealToTemp[ExistingValue] = Op;
2568   // Add all users to phi node use, as they are now uses of the phi of ops phis
2569   // and may themselves be phi of ops.
2570   for (auto *U : ExistingValue->users())
2571     if (auto *UI = dyn_cast<Instruction>(U))
2572       PHINodeUses.insert(UI);
2573 }
2574 
2575 static bool okayForPHIOfOps(const Instruction *I) {
2576   if (!EnablePhiOfOps)
2577     return false;
2578   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2579          isa<LoadInst>(I);
2580 }
2581 
2582 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2583     Value *V, const BasicBlock *PHIBlock,
2584     SmallPtrSetImpl<const Value *> &Visited,
2585     SmallVectorImpl<Instruction *> &Worklist) {
2586 
2587   if (!isa<Instruction>(V))
2588     return true;
2589   auto OISIt = OpSafeForPHIOfOps.find(V);
2590   if (OISIt != OpSafeForPHIOfOps.end())
2591     return OISIt->second;
2592 
2593   // Keep walking until we either dominate the phi block, or hit a phi, or run
2594   // out of things to check.
2595   if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2596     OpSafeForPHIOfOps.insert({V, true});
2597     return true;
2598   }
2599   // PHI in the same block.
2600   if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2601     OpSafeForPHIOfOps.insert({V, false});
2602     return false;
2603   }
2604 
2605   auto *OrigI = cast<Instruction>(V);
2606   for (auto *Op : OrigI->operand_values()) {
2607     if (!isa<Instruction>(Op))
2608       continue;
2609     // Stop now if we find an unsafe operand.
2610     auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2611     if (OISIt != OpSafeForPHIOfOps.end()) {
2612       if (!OISIt->second) {
2613         OpSafeForPHIOfOps.insert({V, false});
2614         return false;
2615       }
2616       continue;
2617     }
2618     if (!Visited.insert(Op).second)
2619       continue;
2620     Worklist.push_back(cast<Instruction>(Op));
2621   }
2622   return true;
2623 }
2624 
2625 // Return true if this operand will be safe to use for phi of ops.
2626 //
2627 // The reason some operands are unsafe is that we are not trying to recursively
2628 // translate everything back through phi nodes.  We actually expect some lookups
2629 // of expressions to fail.  In particular, a lookup where the expression cannot
2630 // exist in the predecessor.  This is true even if the expression, as shown, can
2631 // be determined to be constant.
2632 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2633                                  SmallPtrSetImpl<const Value *> &Visited) {
2634   SmallVector<Instruction *, 4> Worklist;
2635   if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2636     return false;
2637   while (!Worklist.empty()) {
2638     auto *I = Worklist.pop_back_val();
2639     if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2640       return false;
2641   }
2642   OpSafeForPHIOfOps.insert({V, true});
2643   return true;
2644 }
2645 
2646 // Try to find a leader for instruction TransInst, which is a phi translated
2647 // version of something in our original program.  Visited is used to ensure we
2648 // don't infinite loop during translations of cycles.  OrigInst is the
2649 // instruction in the original program, and PredBB is the predecessor we
2650 // translated it through.
2651 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2652                                  SmallPtrSetImpl<Value *> &Visited,
2653                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2654                                  BasicBlock *PredBB) {
2655   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2656   // Make sure it's marked as a temporary instruction.
2657   AllTempInstructions.insert(TransInst);
2658   // and make sure anything that tries to add it's DFS number is
2659   // redirected to the instruction we are making a phi of ops
2660   // for.
2661   TempToBlock.insert({TransInst, PredBB});
2662   InstrDFS.insert({TransInst, IDFSNum});
2663 
2664   const Expression *E = performSymbolicEvaluation(TransInst, Visited);
2665   InstrDFS.erase(TransInst);
2666   AllTempInstructions.erase(TransInst);
2667   TempToBlock.erase(TransInst);
2668   if (MemAccess)
2669     TempToMemory.erase(TransInst);
2670   if (!E)
2671     return nullptr;
2672   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2673   if (!FoundVal) {
2674     ExpressionToPhiOfOps[E].insert(OrigInst);
2675     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2676                       << " in block " << getBlockName(PredBB) << "\n");
2677     return nullptr;
2678   }
2679   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2680     FoundVal = SI->getValueOperand();
2681   return FoundVal;
2682 }
2683 
2684 // When we see an instruction that is an op of phis, generate the equivalent phi
2685 // of ops form.
2686 const Expression *
2687 NewGVN::makePossiblePHIOfOps(Instruction *I,
2688                              SmallPtrSetImpl<Value *> &Visited) {
2689   if (!okayForPHIOfOps(I))
2690     return nullptr;
2691 
2692   if (!Visited.insert(I).second)
2693     return nullptr;
2694   // For now, we require the instruction be cycle free because we don't
2695   // *always* create a phi of ops for instructions that could be done as phi
2696   // of ops, we only do it if we think it is useful.  If we did do it all the
2697   // time, we could remove the cycle free check.
2698   if (!isCycleFree(I))
2699     return nullptr;
2700 
2701   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2702   // TODO: We don't do phi translation on memory accesses because it's
2703   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2704   // which we don't have a good way of doing ATM.
2705   auto *MemAccess = getMemoryAccess(I);
2706   // If the memory operation is defined by a memory operation this block that
2707   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2708   // can't help, as it would still be killed by that memory operation.
2709   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2710       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2711     return nullptr;
2712 
2713   // Convert op of phis to phi of ops
2714   SmallPtrSet<const Value *, 10> VisitedOps;
2715   SmallVector<Value *, 4> Ops(I->operand_values());
2716   BasicBlock *SamePHIBlock = nullptr;
2717   PHINode *OpPHI = nullptr;
2718   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2719     return nullptr;
2720   for (auto *Op : Ops) {
2721     if (!isa<PHINode>(Op)) {
2722       auto *ValuePHI = RealToTemp.lookup(Op);
2723       if (!ValuePHI)
2724         continue;
2725       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2726       Op = ValuePHI;
2727     }
2728     OpPHI = cast<PHINode>(Op);
2729     if (!SamePHIBlock) {
2730       SamePHIBlock = getBlockForValue(OpPHI);
2731     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2732       LLVM_DEBUG(
2733           dbgs()
2734           << "PHIs for operands are not all in the same block, aborting\n");
2735       return nullptr;
2736     }
2737     // No point in doing this for one-operand phis.
2738     if (OpPHI->getNumOperands() == 1) {
2739       OpPHI = nullptr;
2740       continue;
2741     }
2742   }
2743 
2744   if (!OpPHI)
2745     return nullptr;
2746 
2747   SmallVector<ValPair, 4> PHIOps;
2748   SmallPtrSet<Value *, 4> Deps;
2749   auto *PHIBlock = getBlockForValue(OpPHI);
2750   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2751   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2752     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2753     Value *FoundVal = nullptr;
2754     SmallPtrSet<Value *, 4> CurrentDeps;
2755     // We could just skip unreachable edges entirely but it's tricky to do
2756     // with rewriting existing phi nodes.
2757     if (ReachableEdges.count({PredBB, PHIBlock})) {
2758       // Clone the instruction, create an expression from it that is
2759       // translated back into the predecessor, and see if we have a leader.
2760       Instruction *ValueOp = I->clone();
2761       if (MemAccess)
2762         TempToMemory.insert({ValueOp, MemAccess});
2763       bool SafeForPHIOfOps = true;
2764       VisitedOps.clear();
2765       for (auto &Op : ValueOp->operands()) {
2766         auto *OrigOp = &*Op;
2767         // When these operand changes, it could change whether there is a
2768         // leader for us or not, so we have to add additional users.
2769         if (isa<PHINode>(Op)) {
2770           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2771           if (Op != OrigOp && Op != I)
2772             CurrentDeps.insert(Op);
2773         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2774           if (getBlockForValue(ValuePHI) == PHIBlock)
2775             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2776         }
2777         // If we phi-translated the op, it must be safe.
2778         SafeForPHIOfOps =
2779             SafeForPHIOfOps &&
2780             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2781       }
2782       // FIXME: For those things that are not safe we could generate
2783       // expressions all the way down, and see if this comes out to a
2784       // constant.  For anything where that is true, and unsafe, we should
2785       // have made a phi-of-ops (or value numbered it equivalent to something)
2786       // for the pieces already.
2787       FoundVal = !SafeForPHIOfOps ? nullptr
2788                                   : findLeaderForInst(ValueOp, Visited,
2789                                                       MemAccess, I, PredBB);
2790       ValueOp->deleteValue();
2791       if (!FoundVal) {
2792         // We failed to find a leader for the current ValueOp, but this might
2793         // change in case of the translated operands change.
2794         if (SafeForPHIOfOps)
2795           for (auto Dep : CurrentDeps)
2796             addAdditionalUsers(Dep, I);
2797 
2798         return nullptr;
2799       }
2800       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2801     } else {
2802       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2803                         << getBlockName(PredBB)
2804                         << " because the block is unreachable\n");
2805       FoundVal = UndefValue::get(I->getType());
2806       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2807     }
2808 
2809     PHIOps.push_back({FoundVal, PredBB});
2810     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2811                       << getBlockName(PredBB) << "\n");
2812   }
2813   for (auto Dep : Deps)
2814     addAdditionalUsers(Dep, I);
2815   sortPHIOps(PHIOps);
2816   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2817   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2818     LLVM_DEBUG(
2819         dbgs()
2820         << "Not creating real PHI of ops because it simplified to existing "
2821            "value or constant\n");
2822     return E;
2823   }
2824   auto *ValuePHI = RealToTemp.lookup(I);
2825   bool NewPHI = false;
2826   if (!ValuePHI) {
2827     ValuePHI =
2828         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2829     addPhiOfOps(ValuePHI, PHIBlock, I);
2830     NewPHI = true;
2831     NumGVNPHIOfOpsCreated++;
2832   }
2833   if (NewPHI) {
2834     for (auto PHIOp : PHIOps)
2835       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2836   } else {
2837     TempToBlock[ValuePHI] = PHIBlock;
2838     unsigned int i = 0;
2839     for (auto PHIOp : PHIOps) {
2840       ValuePHI->setIncomingValue(i, PHIOp.first);
2841       ValuePHI->setIncomingBlock(i, PHIOp.second);
2842       ++i;
2843     }
2844   }
2845   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2846   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2847                     << "\n");
2848 
2849   return E;
2850 }
2851 
2852 // The algorithm initially places the values of the routine in the TOP
2853 // congruence class. The leader of TOP is the undetermined value `undef`.
2854 // When the algorithm has finished, values still in TOP are unreachable.
2855 void NewGVN::initializeCongruenceClasses(Function &F) {
2856   NextCongruenceNum = 0;
2857 
2858   // Note that even though we use the live on entry def as a representative
2859   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2860   // have no real equivalemnt to undef for MemoryAccesses, and so we really
2861   // should be checking whether the MemoryAccess is top if we want to know if it
2862   // is equivalent to everything.  Otherwise, what this really signifies is that
2863   // the access "it reaches all the way back to the beginning of the function"
2864 
2865   // Initialize all other instructions to be in TOP class.
2866   TOPClass = createCongruenceClass(nullptr, nullptr);
2867   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2868   //  The live on entry def gets put into it's own class
2869   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2870       createMemoryClass(MSSA->getLiveOnEntryDef());
2871 
2872   for (auto DTN : nodes(DT)) {
2873     BasicBlock *BB = DTN->getBlock();
2874     // All MemoryAccesses are equivalent to live on entry to start. They must
2875     // be initialized to something so that initial changes are noticed. For
2876     // the maximal answer, we initialize them all to be the same as
2877     // liveOnEntry.
2878     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2879     if (MemoryBlockDefs)
2880       for (const auto &Def : *MemoryBlockDefs) {
2881         MemoryAccessToClass[&Def] = TOPClass;
2882         auto *MD = dyn_cast<MemoryDef>(&Def);
2883         // Insert the memory phis into the member list.
2884         if (!MD) {
2885           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2886           TOPClass->memory_insert(MP);
2887           MemoryPhiState.insert({MP, MPS_TOP});
2888         }
2889 
2890         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2891           TOPClass->incStoreCount();
2892       }
2893 
2894     // FIXME: This is trying to discover which instructions are uses of phi
2895     // nodes.  We should move this into one of the myriad of places that walk
2896     // all the operands already.
2897     for (auto &I : *BB) {
2898       if (isa<PHINode>(&I))
2899         for (auto *U : I.users())
2900           if (auto *UInst = dyn_cast<Instruction>(U))
2901             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2902               PHINodeUses.insert(UInst);
2903       // Don't insert void terminators into the class. We don't value number
2904       // them, and they just end up sitting in TOP.
2905       if (I.isTerminator() && I.getType()->isVoidTy())
2906         continue;
2907       TOPClass->insert(&I);
2908       ValueToClass[&I] = TOPClass;
2909     }
2910   }
2911 
2912   // Initialize arguments to be in their own unique congruence classes
2913   for (auto &FA : F.args())
2914     createSingletonCongruenceClass(&FA);
2915 }
2916 
2917 void NewGVN::cleanupTables() {
2918   for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2919     LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2920                       << " has " << CongruenceClasses[i]->size()
2921                       << " members\n");
2922     // Make sure we delete the congruence class (probably worth switching to
2923     // a unique_ptr at some point.
2924     delete CongruenceClasses[i];
2925     CongruenceClasses[i] = nullptr;
2926   }
2927 
2928   // Destroy the value expressions
2929   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2930                                          AllTempInstructions.end());
2931   AllTempInstructions.clear();
2932 
2933   // We have to drop all references for everything first, so there are no uses
2934   // left as we delete them.
2935   for (auto *I : TempInst) {
2936     I->dropAllReferences();
2937   }
2938 
2939   while (!TempInst.empty()) {
2940     auto *I = TempInst.back();
2941     TempInst.pop_back();
2942     I->deleteValue();
2943   }
2944 
2945   ValueToClass.clear();
2946   ArgRecycler.clear(ExpressionAllocator);
2947   ExpressionAllocator.Reset();
2948   CongruenceClasses.clear();
2949   ExpressionToClass.clear();
2950   ValueToExpression.clear();
2951   RealToTemp.clear();
2952   AdditionalUsers.clear();
2953   ExpressionToPhiOfOps.clear();
2954   TempToBlock.clear();
2955   TempToMemory.clear();
2956   PHINodeUses.clear();
2957   OpSafeForPHIOfOps.clear();
2958   ReachableBlocks.clear();
2959   ReachableEdges.clear();
2960 #ifndef NDEBUG
2961   ProcessedCount.clear();
2962 #endif
2963   InstrDFS.clear();
2964   InstructionsToErase.clear();
2965   DFSToInstr.clear();
2966   BlockInstRange.clear();
2967   TouchedInstructions.clear();
2968   MemoryAccessToClass.clear();
2969   PredicateToUsers.clear();
2970   MemoryToUsers.clear();
2971   RevisitOnReachabilityChange.clear();
2972 }
2973 
2974 // Assign local DFS number mapping to instructions, and leave space for Value
2975 // PHI's.
2976 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2977                                                        unsigned Start) {
2978   unsigned End = Start;
2979   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2980     InstrDFS[MemPhi] = End++;
2981     DFSToInstr.emplace_back(MemPhi);
2982   }
2983 
2984   // Then the real block goes next.
2985   for (auto &I : *B) {
2986     // There's no need to call isInstructionTriviallyDead more than once on
2987     // an instruction. Therefore, once we know that an instruction is dead
2988     // we change its DFS number so that it doesn't get value numbered.
2989     if (isInstructionTriviallyDead(&I, TLI)) {
2990       InstrDFS[&I] = 0;
2991       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2992       markInstructionForDeletion(&I);
2993       continue;
2994     }
2995     if (isa<PHINode>(&I))
2996       RevisitOnReachabilityChange[B].set(End);
2997     InstrDFS[&I] = End++;
2998     DFSToInstr.emplace_back(&I);
2999   }
3000 
3001   // All of the range functions taken half-open ranges (open on the end side).
3002   // So we do not subtract one from count, because at this point it is one
3003   // greater than the last instruction.
3004   return std::make_pair(Start, End);
3005 }
3006 
3007 void NewGVN::updateProcessedCount(const Value *V) {
3008 #ifndef NDEBUG
3009   if (ProcessedCount.count(V) == 0) {
3010     ProcessedCount.insert({V, 1});
3011   } else {
3012     ++ProcessedCount[V];
3013     assert(ProcessedCount[V] < 100 &&
3014            "Seem to have processed the same Value a lot");
3015   }
3016 #endif
3017 }
3018 
3019 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3020 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3021   // If all the arguments are the same, the MemoryPhi has the same value as the
3022   // argument.  Filter out unreachable blocks and self phis from our operands.
3023   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3024   // self-phi checking.
3025   const BasicBlock *PHIBlock = MP->getBlock();
3026   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3027     return cast<MemoryAccess>(U) != MP &&
3028            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3029            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3030   });
3031   // If all that is left is nothing, our memoryphi is undef. We keep it as
3032   // InitialClass.  Note: The only case this should happen is if we have at
3033   // least one self-argument.
3034   if (Filtered.begin() == Filtered.end()) {
3035     if (setMemoryClass(MP, TOPClass))
3036       markMemoryUsersTouched(MP);
3037     return;
3038   }
3039 
3040   // Transform the remaining operands into operand leaders.
3041   // FIXME: mapped_iterator should have a range version.
3042   auto LookupFunc = [&](const Use &U) {
3043     return lookupMemoryLeader(cast<MemoryAccess>(U));
3044   };
3045   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3046   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3047 
3048   // and now check if all the elements are equal.
3049   // Sadly, we can't use std::equals since these are random access iterators.
3050   const auto *AllSameValue = *MappedBegin;
3051   ++MappedBegin;
3052   bool AllEqual = std::all_of(
3053       MappedBegin, MappedEnd,
3054       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3055 
3056   if (AllEqual)
3057     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3058                       << "\n");
3059   else
3060     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3061   // If it's equal to something, it's in that class. Otherwise, it has to be in
3062   // a class where it is the leader (other things may be equivalent to it, but
3063   // it needs to start off in its own class, which means it must have been the
3064   // leader, and it can't have stopped being the leader because it was never
3065   // removed).
3066   CongruenceClass *CC =
3067       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3068   auto OldState = MemoryPhiState.lookup(MP);
3069   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3070   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3071   MemoryPhiState[MP] = NewState;
3072   if (setMemoryClass(MP, CC) || OldState != NewState)
3073     markMemoryUsersTouched(MP);
3074 }
3075 
3076 // Value number a single instruction, symbolically evaluating, performing
3077 // congruence finding, and updating mappings.
3078 void NewGVN::valueNumberInstruction(Instruction *I) {
3079   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3080   if (!I->isTerminator()) {
3081     const Expression *Symbolized = nullptr;
3082     SmallPtrSet<Value *, 2> Visited;
3083     if (DebugCounter::shouldExecute(VNCounter)) {
3084       Symbolized = performSymbolicEvaluation(I, Visited);
3085       // Make a phi of ops if necessary
3086       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3087           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3088         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3089         // If we created a phi of ops, use it.
3090         // If we couldn't create one, make sure we don't leave one lying around
3091         if (PHIE) {
3092           Symbolized = PHIE;
3093         } else if (auto *Op = RealToTemp.lookup(I)) {
3094           removePhiOfOps(I, Op);
3095         }
3096       }
3097     } else {
3098       // Mark the instruction as unused so we don't value number it again.
3099       InstrDFS[I] = 0;
3100     }
3101     // If we couldn't come up with a symbolic expression, use the unknown
3102     // expression
3103     if (Symbolized == nullptr)
3104       Symbolized = createUnknownExpression(I);
3105     performCongruenceFinding(I, Symbolized);
3106   } else {
3107     // Handle terminators that return values. All of them produce values we
3108     // don't currently understand.  We don't place non-value producing
3109     // terminators in a class.
3110     if (!I->getType()->isVoidTy()) {
3111       auto *Symbolized = createUnknownExpression(I);
3112       performCongruenceFinding(I, Symbolized);
3113     }
3114     processOutgoingEdges(I, I->getParent());
3115   }
3116 }
3117 
3118 // Check if there is a path, using single or equal argument phi nodes, from
3119 // First to Second.
3120 bool NewGVN::singleReachablePHIPath(
3121     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3122     const MemoryAccess *Second) const {
3123   if (First == Second)
3124     return true;
3125   if (MSSA->isLiveOnEntryDef(First))
3126     return false;
3127 
3128   // This is not perfect, but as we're just verifying here, we can live with
3129   // the loss of precision. The real solution would be that of doing strongly
3130   // connected component finding in this routine, and it's probably not worth
3131   // the complexity for the time being. So, we just keep a set of visited
3132   // MemoryAccess and return true when we hit a cycle.
3133   if (Visited.count(First))
3134     return true;
3135   Visited.insert(First);
3136 
3137   const auto *EndDef = First;
3138   for (auto *ChainDef : optimized_def_chain(First)) {
3139     if (ChainDef == Second)
3140       return true;
3141     if (MSSA->isLiveOnEntryDef(ChainDef))
3142       return false;
3143     EndDef = ChainDef;
3144   }
3145   auto *MP = cast<MemoryPhi>(EndDef);
3146   auto ReachableOperandPred = [&](const Use &U) {
3147     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3148   };
3149   auto FilteredPhiArgs =
3150       make_filter_range(MP->operands(), ReachableOperandPred);
3151   SmallVector<const Value *, 32> OperandList;
3152   llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3153   bool Okay = is_splat(OperandList);
3154   if (Okay)
3155     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3156                                   Second);
3157   return false;
3158 }
3159 
3160 // Verify the that the memory equivalence table makes sense relative to the
3161 // congruence classes.  Note that this checking is not perfect, and is currently
3162 // subject to very rare false negatives. It is only useful for
3163 // testing/debugging.
3164 void NewGVN::verifyMemoryCongruency() const {
3165 #ifndef NDEBUG
3166   // Verify that the memory table equivalence and memory member set match
3167   for (const auto *CC : CongruenceClasses) {
3168     if (CC == TOPClass || CC->isDead())
3169       continue;
3170     if (CC->getStoreCount() != 0) {
3171       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3172              "Any class with a store as a leader should have a "
3173              "representative stored value");
3174       assert(CC->getMemoryLeader() &&
3175              "Any congruence class with a store should have a "
3176              "representative access");
3177     }
3178 
3179     if (CC->getMemoryLeader())
3180       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3181              "Representative MemoryAccess does not appear to be reverse "
3182              "mapped properly");
3183     for (auto M : CC->memory())
3184       assert(MemoryAccessToClass.lookup(M) == CC &&
3185              "Memory member does not appear to be reverse mapped properly");
3186   }
3187 
3188   // Anything equivalent in the MemoryAccess table should be in the same
3189   // congruence class.
3190 
3191   // Filter out the unreachable and trivially dead entries, because they may
3192   // never have been updated if the instructions were not processed.
3193   auto ReachableAccessPred =
3194       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3195         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3196         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3197             MemoryToDFSNum(Pair.first) == 0)
3198           return false;
3199         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3200           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3201 
3202         // We could have phi nodes which operands are all trivially dead,
3203         // so we don't process them.
3204         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3205           for (auto &U : MemPHI->incoming_values()) {
3206             if (auto *I = dyn_cast<Instruction>(&*U)) {
3207               if (!isInstructionTriviallyDead(I))
3208                 return true;
3209             }
3210           }
3211           return false;
3212         }
3213 
3214         return true;
3215       };
3216 
3217   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3218   for (auto KV : Filtered) {
3219     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3220       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3221       if (FirstMUD && SecondMUD) {
3222         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3223         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3224                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3225                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3226                "The instructions for these memory operations should have "
3227                "been in the same congruence class or reachable through"
3228                "a single argument phi");
3229       }
3230     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3231       // We can only sanely verify that MemoryDefs in the operand list all have
3232       // the same class.
3233       auto ReachableOperandPred = [&](const Use &U) {
3234         return ReachableEdges.count(
3235                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3236                isa<MemoryDef>(U);
3237 
3238       };
3239       // All arguments should in the same class, ignoring unreachable arguments
3240       auto FilteredPhiArgs =
3241           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3242       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3243       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3244                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3245                        const MemoryDef *MD = cast<MemoryDef>(U);
3246                        return ValueToClass.lookup(MD->getMemoryInst());
3247                      });
3248       assert(is_splat(PhiOpClasses) &&
3249              "All MemoryPhi arguments should be in the same class");
3250     }
3251   }
3252 #endif
3253 }
3254 
3255 // Verify that the sparse propagation we did actually found the maximal fixpoint
3256 // We do this by storing the value to class mapping, touching all instructions,
3257 // and redoing the iteration to see if anything changed.
3258 void NewGVN::verifyIterationSettled(Function &F) {
3259 #ifndef NDEBUG
3260   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3261   if (DebugCounter::isCounterSet(VNCounter))
3262     DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3263 
3264   // Note that we have to store the actual classes, as we may change existing
3265   // classes during iteration.  This is because our memory iteration propagation
3266   // is not perfect, and so may waste a little work.  But it should generate
3267   // exactly the same congruence classes we have now, with different IDs.
3268   std::map<const Value *, CongruenceClass> BeforeIteration;
3269 
3270   for (auto &KV : ValueToClass) {
3271     if (auto *I = dyn_cast<Instruction>(KV.first))
3272       // Skip unused/dead instructions.
3273       if (InstrToDFSNum(I) == 0)
3274         continue;
3275     BeforeIteration.insert({KV.first, *KV.second});
3276   }
3277 
3278   TouchedInstructions.set();
3279   TouchedInstructions.reset(0);
3280   iterateTouchedInstructions();
3281   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3282       EqualClasses;
3283   for (const auto &KV : ValueToClass) {
3284     if (auto *I = dyn_cast<Instruction>(KV.first))
3285       // Skip unused/dead instructions.
3286       if (InstrToDFSNum(I) == 0)
3287         continue;
3288     // We could sink these uses, but i think this adds a bit of clarity here as
3289     // to what we are comparing.
3290     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3291     auto *AfterCC = KV.second;
3292     // Note that the classes can't change at this point, so we memoize the set
3293     // that are equal.
3294     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3295       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3296              "Value number changed after main loop completed!");
3297       EqualClasses.insert({BeforeCC, AfterCC});
3298     }
3299   }
3300 #endif
3301 }
3302 
3303 // Verify that for each store expression in the expression to class mapping,
3304 // only the latest appears, and multiple ones do not appear.
3305 // Because loads do not use the stored value when doing equality with stores,
3306 // if we don't erase the old store expressions from the table, a load can find
3307 // a no-longer valid StoreExpression.
3308 void NewGVN::verifyStoreExpressions() const {
3309 #ifndef NDEBUG
3310   // This is the only use of this, and it's not worth defining a complicated
3311   // densemapinfo hash/equality function for it.
3312   std::set<
3313       std::pair<const Value *,
3314                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3315       StoreExpressionSet;
3316   for (const auto &KV : ExpressionToClass) {
3317     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3318       // Make sure a version that will conflict with loads is not already there
3319       auto Res = StoreExpressionSet.insert(
3320           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3321                                               SE->getStoredValue())});
3322       bool Okay = Res.second;
3323       // It's okay to have the same expression already in there if it is
3324       // identical in nature.
3325       // This can happen when the leader of the stored value changes over time.
3326       if (!Okay)
3327         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3328                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3329                 lookupOperandLeader(SE->getStoredValue()));
3330       assert(Okay && "Stored expression conflict exists in expression table");
3331       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3332       assert(ValueExpr && ValueExpr->equals(*SE) &&
3333              "StoreExpression in ExpressionToClass is not latest "
3334              "StoreExpression for value");
3335     }
3336   }
3337 #endif
3338 }
3339 
3340 // This is the main value numbering loop, it iterates over the initial touched
3341 // instruction set, propagating value numbers, marking things touched, etc,
3342 // until the set of touched instructions is completely empty.
3343 void NewGVN::iterateTouchedInstructions() {
3344   unsigned int Iterations = 0;
3345   // Figure out where touchedinstructions starts
3346   int FirstInstr = TouchedInstructions.find_first();
3347   // Nothing set, nothing to iterate, just return.
3348   if (FirstInstr == -1)
3349     return;
3350   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3351   while (TouchedInstructions.any()) {
3352     ++Iterations;
3353     // Walk through all the instructions in all the blocks in RPO.
3354     // TODO: As we hit a new block, we should push and pop equalities into a
3355     // table lookupOperandLeader can use, to catch things PredicateInfo
3356     // might miss, like edge-only equivalences.
3357     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3358 
3359       // This instruction was found to be dead. We don't bother looking
3360       // at it again.
3361       if (InstrNum == 0) {
3362         TouchedInstructions.reset(InstrNum);
3363         continue;
3364       }
3365 
3366       Value *V = InstrFromDFSNum(InstrNum);
3367       const BasicBlock *CurrBlock = getBlockForValue(V);
3368 
3369       // If we hit a new block, do reachability processing.
3370       if (CurrBlock != LastBlock) {
3371         LastBlock = CurrBlock;
3372         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3373         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3374 
3375         // If it's not reachable, erase any touched instructions and move on.
3376         if (!BlockReachable) {
3377           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3378           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3379                             << getBlockName(CurrBlock)
3380                             << " because it is unreachable\n");
3381           continue;
3382         }
3383         updateProcessedCount(CurrBlock);
3384       }
3385       // Reset after processing (because we may mark ourselves as touched when
3386       // we propagate equalities).
3387       TouchedInstructions.reset(InstrNum);
3388 
3389       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3390         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3391         valueNumberMemoryPhi(MP);
3392       } else if (auto *I = dyn_cast<Instruction>(V)) {
3393         valueNumberInstruction(I);
3394       } else {
3395         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3396       }
3397       updateProcessedCount(V);
3398     }
3399   }
3400   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3401 }
3402 
3403 // This is the main transformation entry point.
3404 bool NewGVN::runGVN() {
3405   if (DebugCounter::isCounterSet(VNCounter))
3406     StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3407   bool Changed = false;
3408   NumFuncArgs = F.arg_size();
3409   MSSAWalker = MSSA->getWalker();
3410   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3411 
3412   // Count number of instructions for sizing of hash tables, and come
3413   // up with a global dfs numbering for instructions.
3414   unsigned ICount = 1;
3415   // Add an empty instruction to account for the fact that we start at 1
3416   DFSToInstr.emplace_back(nullptr);
3417   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3418   // same as dominator tree order, particularly with regard whether backedges
3419   // get visited first or second, given a block with multiple successors.
3420   // If we visit in the wrong order, we will end up performing N times as many
3421   // iterations.
3422   // The dominator tree does guarantee that, for a given dom tree node, it's
3423   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3424   // the siblings.
3425   ReversePostOrderTraversal<Function *> RPOT(&F);
3426   unsigned Counter = 0;
3427   for (auto &B : RPOT) {
3428     auto *Node = DT->getNode(B);
3429     assert(Node && "RPO and Dominator tree should have same reachability");
3430     RPOOrdering[Node] = ++Counter;
3431   }
3432   // Sort dominator tree children arrays into RPO.
3433   for (auto &B : RPOT) {
3434     auto *Node = DT->getNode(B);
3435     if (Node->getChildren().size() > 1)
3436       llvm::sort(Node->begin(), Node->end(),
3437                  [&](const DomTreeNode *A, const DomTreeNode *B) {
3438                    return RPOOrdering[A] < RPOOrdering[B];
3439                  });
3440   }
3441 
3442   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3443   for (auto DTN : depth_first(DT->getRootNode())) {
3444     BasicBlock *B = DTN->getBlock();
3445     const auto &BlockRange = assignDFSNumbers(B, ICount);
3446     BlockInstRange.insert({B, BlockRange});
3447     ICount += BlockRange.second - BlockRange.first;
3448   }
3449   initializeCongruenceClasses(F);
3450 
3451   TouchedInstructions.resize(ICount);
3452   // Ensure we don't end up resizing the expressionToClass map, as
3453   // that can be quite expensive. At most, we have one expression per
3454   // instruction.
3455   ExpressionToClass.reserve(ICount);
3456 
3457   // Initialize the touched instructions to include the entry block.
3458   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3459   TouchedInstructions.set(InstRange.first, InstRange.second);
3460   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3461                     << " marked reachable\n");
3462   ReachableBlocks.insert(&F.getEntryBlock());
3463 
3464   iterateTouchedInstructions();
3465   verifyMemoryCongruency();
3466   verifyIterationSettled(F);
3467   verifyStoreExpressions();
3468 
3469   Changed |= eliminateInstructions(F);
3470 
3471   // Delete all instructions marked for deletion.
3472   for (Instruction *ToErase : InstructionsToErase) {
3473     if (!ToErase->use_empty())
3474       ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3475 
3476     assert(ToErase->getParent() &&
3477            "BB containing ToErase deleted unexpectedly!");
3478     ToErase->eraseFromParent();
3479   }
3480   Changed |= !InstructionsToErase.empty();
3481 
3482   // Delete all unreachable blocks.
3483   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3484     return !ReachableBlocks.count(&BB);
3485   };
3486 
3487   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3488     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3489                       << " is unreachable\n");
3490     deleteInstructionsInBlock(&BB);
3491     Changed = true;
3492   }
3493 
3494   cleanupTables();
3495   return Changed;
3496 }
3497 
3498 struct NewGVN::ValueDFS {
3499   int DFSIn = 0;
3500   int DFSOut = 0;
3501   int LocalNum = 0;
3502 
3503   // Only one of Def and U will be set.
3504   // The bool in the Def tells us whether the Def is the stored value of a
3505   // store.
3506   PointerIntPair<Value *, 1, bool> Def;
3507   Use *U = nullptr;
3508 
3509   bool operator<(const ValueDFS &Other) const {
3510     // It's not enough that any given field be less than - we have sets
3511     // of fields that need to be evaluated together to give a proper ordering.
3512     // For example, if you have;
3513     // DFS (1, 3)
3514     // Val 0
3515     // DFS (1, 2)
3516     // Val 50
3517     // We want the second to be less than the first, but if we just go field
3518     // by field, we will get to Val 0 < Val 50 and say the first is less than
3519     // the second. We only want it to be less than if the DFS orders are equal.
3520     //
3521     // Each LLVM instruction only produces one value, and thus the lowest-level
3522     // differentiator that really matters for the stack (and what we use as as a
3523     // replacement) is the local dfs number.
3524     // Everything else in the structure is instruction level, and only affects
3525     // the order in which we will replace operands of a given instruction.
3526     //
3527     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3528     // the order of replacement of uses does not matter.
3529     // IE given,
3530     //  a = 5
3531     //  b = a + a
3532     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3533     // localnum.
3534     // The .val will be the same as well.
3535     // The .u's will be different.
3536     // You will replace both, and it does not matter what order you replace them
3537     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3538     // operand 2).
3539     // Similarly for the case of same dfsin, dfsout, localnum, but different
3540     // .val's
3541     //  a = 5
3542     //  b  = 6
3543     //  c = a + b
3544     // in c, we will a valuedfs for a, and one for b,with everything the same
3545     // but .val  and .u.
3546     // It does not matter what order we replace these operands in.
3547     // You will always end up with the same IR, and this is guaranteed.
3548     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3549            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3550                     Other.U);
3551   }
3552 };
3553 
3554 // This function converts the set of members for a congruence class from values,
3555 // to sets of defs and uses with associated DFS info.  The total number of
3556 // reachable uses for each value is stored in UseCount, and instructions that
3557 // seem
3558 // dead (have no non-dead uses) are stored in ProbablyDead.
3559 void NewGVN::convertClassToDFSOrdered(
3560     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3561     DenseMap<const Value *, unsigned int> &UseCounts,
3562     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3563   for (auto D : Dense) {
3564     // First add the value.
3565     BasicBlock *BB = getBlockForValue(D);
3566     // Constants are handled prior to ever calling this function, so
3567     // we should only be left with instructions as members.
3568     assert(BB && "Should have figured out a basic block for value");
3569     ValueDFS VDDef;
3570     DomTreeNode *DomNode = DT->getNode(BB);
3571     VDDef.DFSIn = DomNode->getDFSNumIn();
3572     VDDef.DFSOut = DomNode->getDFSNumOut();
3573     // If it's a store, use the leader of the value operand, if it's always
3574     // available, or the value operand.  TODO: We could do dominance checks to
3575     // find a dominating leader, but not worth it ATM.
3576     if (auto *SI = dyn_cast<StoreInst>(D)) {
3577       auto Leader = lookupOperandLeader(SI->getValueOperand());
3578       if (alwaysAvailable(Leader)) {
3579         VDDef.Def.setPointer(Leader);
3580       } else {
3581         VDDef.Def.setPointer(SI->getValueOperand());
3582         VDDef.Def.setInt(true);
3583       }
3584     } else {
3585       VDDef.Def.setPointer(D);
3586     }
3587     assert(isa<Instruction>(D) &&
3588            "The dense set member should always be an instruction");
3589     Instruction *Def = cast<Instruction>(D);
3590     VDDef.LocalNum = InstrToDFSNum(D);
3591     DFSOrderedSet.push_back(VDDef);
3592     // If there is a phi node equivalent, add it
3593     if (auto *PN = RealToTemp.lookup(Def)) {
3594       auto *PHIE =
3595           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3596       if (PHIE) {
3597         VDDef.Def.setInt(false);
3598         VDDef.Def.setPointer(PN);
3599         VDDef.LocalNum = 0;
3600         DFSOrderedSet.push_back(VDDef);
3601       }
3602     }
3603 
3604     unsigned int UseCount = 0;
3605     // Now add the uses.
3606     for (auto &U : Def->uses()) {
3607       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3608         // Don't try to replace into dead uses
3609         if (InstructionsToErase.count(I))
3610           continue;
3611         ValueDFS VDUse;
3612         // Put the phi node uses in the incoming block.
3613         BasicBlock *IBlock;
3614         if (auto *P = dyn_cast<PHINode>(I)) {
3615           IBlock = P->getIncomingBlock(U);
3616           // Make phi node users appear last in the incoming block
3617           // they are from.
3618           VDUse.LocalNum = InstrDFS.size() + 1;
3619         } else {
3620           IBlock = getBlockForValue(I);
3621           VDUse.LocalNum = InstrToDFSNum(I);
3622         }
3623 
3624         // Skip uses in unreachable blocks, as we're going
3625         // to delete them.
3626         if (ReachableBlocks.count(IBlock) == 0)
3627           continue;
3628 
3629         DomTreeNode *DomNode = DT->getNode(IBlock);
3630         VDUse.DFSIn = DomNode->getDFSNumIn();
3631         VDUse.DFSOut = DomNode->getDFSNumOut();
3632         VDUse.U = &U;
3633         ++UseCount;
3634         DFSOrderedSet.emplace_back(VDUse);
3635       }
3636     }
3637 
3638     // If there are no uses, it's probably dead (but it may have side-effects,
3639     // so not definitely dead. Otherwise, store the number of uses so we can
3640     // track if it becomes dead later).
3641     if (UseCount == 0)
3642       ProbablyDead.insert(Def);
3643     else
3644       UseCounts[Def] = UseCount;
3645   }
3646 }
3647 
3648 // This function converts the set of members for a congruence class from values,
3649 // to the set of defs for loads and stores, with associated DFS info.
3650 void NewGVN::convertClassToLoadsAndStores(
3651     const CongruenceClass &Dense,
3652     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3653   for (auto D : Dense) {
3654     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3655       continue;
3656 
3657     BasicBlock *BB = getBlockForValue(D);
3658     ValueDFS VD;
3659     DomTreeNode *DomNode = DT->getNode(BB);
3660     VD.DFSIn = DomNode->getDFSNumIn();
3661     VD.DFSOut = DomNode->getDFSNumOut();
3662     VD.Def.setPointer(D);
3663 
3664     // If it's an instruction, use the real local dfs number.
3665     if (auto *I = dyn_cast<Instruction>(D))
3666       VD.LocalNum = InstrToDFSNum(I);
3667     else
3668       llvm_unreachable("Should have been an instruction");
3669 
3670     LoadsAndStores.emplace_back(VD);
3671   }
3672 }
3673 
3674 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3675   patchReplacementInstruction(I, Repl);
3676   I->replaceAllUsesWith(Repl);
3677 }
3678 
3679 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3680   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3681   ++NumGVNBlocksDeleted;
3682 
3683   // Delete the instructions backwards, as it has a reduced likelihood of having
3684   // to update as many def-use and use-def chains. Start after the terminator.
3685   auto StartPoint = BB->rbegin();
3686   ++StartPoint;
3687   // Note that we explicitly recalculate BB->rend() on each iteration,
3688   // as it may change when we remove the first instruction.
3689   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3690     Instruction &Inst = *I++;
3691     if (!Inst.use_empty())
3692       Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3693     if (isa<LandingPadInst>(Inst))
3694       continue;
3695 
3696     Inst.eraseFromParent();
3697     ++NumGVNInstrDeleted;
3698   }
3699   // Now insert something that simplifycfg will turn into an unreachable.
3700   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3701   new StoreInst(UndefValue::get(Int8Ty),
3702                 Constant::getNullValue(Int8Ty->getPointerTo()),
3703                 BB->getTerminator());
3704 }
3705 
3706 void NewGVN::markInstructionForDeletion(Instruction *I) {
3707   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3708   InstructionsToErase.insert(I);
3709 }
3710 
3711 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3712   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3713   patchAndReplaceAllUsesWith(I, V);
3714   // We save the actual erasing to avoid invalidating memory
3715   // dependencies until we are done with everything.
3716   markInstructionForDeletion(I);
3717 }
3718 
3719 namespace {
3720 
3721 // This is a stack that contains both the value and dfs info of where
3722 // that value is valid.
3723 class ValueDFSStack {
3724 public:
3725   Value *back() const { return ValueStack.back(); }
3726   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3727 
3728   void push_back(Value *V, int DFSIn, int DFSOut) {
3729     ValueStack.emplace_back(V);
3730     DFSStack.emplace_back(DFSIn, DFSOut);
3731   }
3732 
3733   bool empty() const { return DFSStack.empty(); }
3734 
3735   bool isInScope(int DFSIn, int DFSOut) const {
3736     if (empty())
3737       return false;
3738     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3739   }
3740 
3741   void popUntilDFSScope(int DFSIn, int DFSOut) {
3742 
3743     // These two should always be in sync at this point.
3744     assert(ValueStack.size() == DFSStack.size() &&
3745            "Mismatch between ValueStack and DFSStack");
3746     while (
3747         !DFSStack.empty() &&
3748         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3749       DFSStack.pop_back();
3750       ValueStack.pop_back();
3751     }
3752   }
3753 
3754 private:
3755   SmallVector<Value *, 8> ValueStack;
3756   SmallVector<std::pair<int, int>, 8> DFSStack;
3757 };
3758 
3759 } // end anonymous namespace
3760 
3761 // Given an expression, get the congruence class for it.
3762 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3763   if (auto *VE = dyn_cast<VariableExpression>(E))
3764     return ValueToClass.lookup(VE->getVariableValue());
3765   else if (isa<DeadExpression>(E))
3766     return TOPClass;
3767   return ExpressionToClass.lookup(E);
3768 }
3769 
3770 // Given a value and a basic block we are trying to see if it is available in,
3771 // see if the value has a leader available in that block.
3772 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3773                                   const Instruction *OrigInst,
3774                                   const BasicBlock *BB) const {
3775   // It would already be constant if we could make it constant
3776   if (auto *CE = dyn_cast<ConstantExpression>(E))
3777     return CE->getConstantValue();
3778   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3779     auto *V = VE->getVariableValue();
3780     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3781       return VE->getVariableValue();
3782   }
3783 
3784   auto *CC = getClassForExpression(E);
3785   if (!CC)
3786     return nullptr;
3787   if (alwaysAvailable(CC->getLeader()))
3788     return CC->getLeader();
3789 
3790   for (auto Member : *CC) {
3791     auto *MemberInst = dyn_cast<Instruction>(Member);
3792     if (MemberInst == OrigInst)
3793       continue;
3794     // Anything that isn't an instruction is always available.
3795     if (!MemberInst)
3796       return Member;
3797     if (DT->dominates(getBlockForValue(MemberInst), BB))
3798       return Member;
3799   }
3800   return nullptr;
3801 }
3802 
3803 bool NewGVN::eliminateInstructions(Function &F) {
3804   // This is a non-standard eliminator. The normal way to eliminate is
3805   // to walk the dominator tree in order, keeping track of available
3806   // values, and eliminating them.  However, this is mildly
3807   // pointless. It requires doing lookups on every instruction,
3808   // regardless of whether we will ever eliminate it.  For
3809   // instructions part of most singleton congruence classes, we know we
3810   // will never eliminate them.
3811 
3812   // Instead, this eliminator looks at the congruence classes directly, sorts
3813   // them into a DFS ordering of the dominator tree, and then we just
3814   // perform elimination straight on the sets by walking the congruence
3815   // class member uses in order, and eliminate the ones dominated by the
3816   // last member.   This is worst case O(E log E) where E = number of
3817   // instructions in a single congruence class.  In theory, this is all
3818   // instructions.   In practice, it is much faster, as most instructions are
3819   // either in singleton congruence classes or can't possibly be eliminated
3820   // anyway (if there are no overlapping DFS ranges in class).
3821   // When we find something not dominated, it becomes the new leader
3822   // for elimination purposes.
3823   // TODO: If we wanted to be faster, We could remove any members with no
3824   // overlapping ranges while sorting, as we will never eliminate anything
3825   // with those members, as they don't dominate anything else in our set.
3826 
3827   bool AnythingReplaced = false;
3828 
3829   // Since we are going to walk the domtree anyway, and we can't guarantee the
3830   // DFS numbers are updated, we compute some ourselves.
3831   DT->updateDFSNumbers();
3832 
3833   // Go through all of our phi nodes, and kill the arguments associated with
3834   // unreachable edges.
3835   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3836     for (auto &Operand : PHI->incoming_values())
3837       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3838         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3839                           << " for block "
3840                           << getBlockName(PHI->getIncomingBlock(Operand))
3841                           << " with undef due to it being unreachable\n");
3842         Operand.set(UndefValue::get(PHI->getType()));
3843       }
3844   };
3845   // Replace unreachable phi arguments.
3846   // At this point, RevisitOnReachabilityChange only contains:
3847   //
3848   // 1. PHIs
3849   // 2. Temporaries that will convert to PHIs
3850   // 3. Operations that are affected by an unreachable edge but do not fit into
3851   // 1 or 2 (rare).
3852   // So it is a slight overshoot of what we want. We could make it exact by
3853   // using two SparseBitVectors per block.
3854   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3855   for (auto &KV : ReachableEdges)
3856     ReachablePredCount[KV.getEnd()]++;
3857   for (auto &BBPair : RevisitOnReachabilityChange) {
3858     for (auto InstNum : BBPair.second) {
3859       auto *Inst = InstrFromDFSNum(InstNum);
3860       auto *PHI = dyn_cast<PHINode>(Inst);
3861       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3862       if (!PHI)
3863         continue;
3864       auto *BB = BBPair.first;
3865       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3866         ReplaceUnreachablePHIArgs(PHI, BB);
3867     }
3868   }
3869 
3870   // Map to store the use counts
3871   DenseMap<const Value *, unsigned int> UseCounts;
3872   for (auto *CC : reverse(CongruenceClasses)) {
3873     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3874                       << "\n");
3875     // Track the equivalent store info so we can decide whether to try
3876     // dead store elimination.
3877     SmallVector<ValueDFS, 8> PossibleDeadStores;
3878     SmallPtrSet<Instruction *, 8> ProbablyDead;
3879     if (CC->isDead() || CC->empty())
3880       continue;
3881     // Everything still in the TOP class is unreachable or dead.
3882     if (CC == TOPClass) {
3883       for (auto M : *CC) {
3884         auto *VTE = ValueToExpression.lookup(M);
3885         if (VTE && isa<DeadExpression>(VTE))
3886           markInstructionForDeletion(cast<Instruction>(M));
3887         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3888                 InstructionsToErase.count(cast<Instruction>(M))) &&
3889                "Everything in TOP should be unreachable or dead at this "
3890                "point");
3891       }
3892       continue;
3893     }
3894 
3895     assert(CC->getLeader() && "We should have had a leader");
3896     // If this is a leader that is always available, and it's a
3897     // constant or has no equivalences, just replace everything with
3898     // it. We then update the congruence class with whatever members
3899     // are left.
3900     Value *Leader =
3901         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3902     if (alwaysAvailable(Leader)) {
3903       CongruenceClass::MemberSet MembersLeft;
3904       for (auto M : *CC) {
3905         Value *Member = M;
3906         // Void things have no uses we can replace.
3907         if (Member == Leader || !isa<Instruction>(Member) ||
3908             Member->getType()->isVoidTy()) {
3909           MembersLeft.insert(Member);
3910           continue;
3911         }
3912         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3913                           << *Member << "\n");
3914         auto *I = cast<Instruction>(Member);
3915         assert(Leader != I && "About to accidentally remove our leader");
3916         replaceInstruction(I, Leader);
3917         AnythingReplaced = true;
3918       }
3919       CC->swap(MembersLeft);
3920     } else {
3921       // If this is a singleton, we can skip it.
3922       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3923         // This is a stack because equality replacement/etc may place
3924         // constants in the middle of the member list, and we want to use
3925         // those constant values in preference to the current leader, over
3926         // the scope of those constants.
3927         ValueDFSStack EliminationStack;
3928 
3929         // Convert the members to DFS ordered sets and then merge them.
3930         SmallVector<ValueDFS, 8> DFSOrderedSet;
3931         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3932 
3933         // Sort the whole thing.
3934         llvm::sort(DFSOrderedSet);
3935         for (auto &VD : DFSOrderedSet) {
3936           int MemberDFSIn = VD.DFSIn;
3937           int MemberDFSOut = VD.DFSOut;
3938           Value *Def = VD.Def.getPointer();
3939           bool FromStore = VD.Def.getInt();
3940           Use *U = VD.U;
3941           // We ignore void things because we can't get a value from them.
3942           if (Def && Def->getType()->isVoidTy())
3943             continue;
3944           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3945           if (DefInst && AllTempInstructions.count(DefInst)) {
3946             auto *PN = cast<PHINode>(DefInst);
3947 
3948             // If this is a value phi and that's the expression we used, insert
3949             // it into the program
3950             // remove from temp instruction list.
3951             AllTempInstructions.erase(PN);
3952             auto *DefBlock = getBlockForValue(Def);
3953             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3954                               << " into block "
3955                               << getBlockName(getBlockForValue(Def)) << "\n");
3956             PN->insertBefore(&DefBlock->front());
3957             Def = PN;
3958             NumGVNPHIOfOpsEliminations++;
3959           }
3960 
3961           if (EliminationStack.empty()) {
3962             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3963           } else {
3964             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3965                               << EliminationStack.dfs_back().first << ","
3966                               << EliminationStack.dfs_back().second << ")\n");
3967           }
3968 
3969           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3970                             << MemberDFSOut << ")\n");
3971           // First, we see if we are out of scope or empty.  If so,
3972           // and there equivalences, we try to replace the top of
3973           // stack with equivalences (if it's on the stack, it must
3974           // not have been eliminated yet).
3975           // Then we synchronize to our current scope, by
3976           // popping until we are back within a DFS scope that
3977           // dominates the current member.
3978           // Then, what happens depends on a few factors
3979           // If the stack is now empty, we need to push
3980           // If we have a constant or a local equivalence we want to
3981           // start using, we also push.
3982           // Otherwise, we walk along, processing members who are
3983           // dominated by this scope, and eliminate them.
3984           bool ShouldPush = Def && EliminationStack.empty();
3985           bool OutOfScope =
3986               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3987 
3988           if (OutOfScope || ShouldPush) {
3989             // Sync to our current scope.
3990             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3991             bool ShouldPush = Def && EliminationStack.empty();
3992             if (ShouldPush) {
3993               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
3994             }
3995           }
3996 
3997           // Skip the Def's, we only want to eliminate on their uses.  But mark
3998           // dominated defs as dead.
3999           if (Def) {
4000             // For anything in this case, what and how we value number
4001             // guarantees that any side-effets that would have occurred (ie
4002             // throwing, etc) can be proven to either still occur (because it's
4003             // dominated by something that has the same side-effects), or never
4004             // occur.  Otherwise, we would not have been able to prove it value
4005             // equivalent to something else. For these things, we can just mark
4006             // it all dead.  Note that this is different from the "ProbablyDead"
4007             // set, which may not be dominated by anything, and thus, are only
4008             // easy to prove dead if they are also side-effect free. Note that
4009             // because stores are put in terms of the stored value, we skip
4010             // stored values here. If the stored value is really dead, it will
4011             // still be marked for deletion when we process it in its own class.
4012             if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4013                 isa<Instruction>(Def) && !FromStore)
4014               markInstructionForDeletion(cast<Instruction>(Def));
4015             continue;
4016           }
4017           // At this point, we know it is a Use we are trying to possibly
4018           // replace.
4019 
4020           assert(isa<Instruction>(U->get()) &&
4021                  "Current def should have been an instruction");
4022           assert(isa<Instruction>(U->getUser()) &&
4023                  "Current user should have been an instruction");
4024 
4025           // If the thing we are replacing into is already marked to be dead,
4026           // this use is dead.  Note that this is true regardless of whether
4027           // we have anything dominating the use or not.  We do this here
4028           // because we are already walking all the uses anyway.
4029           Instruction *InstUse = cast<Instruction>(U->getUser());
4030           if (InstructionsToErase.count(InstUse)) {
4031             auto &UseCount = UseCounts[U->get()];
4032             if (--UseCount == 0) {
4033               ProbablyDead.insert(cast<Instruction>(U->get()));
4034             }
4035           }
4036 
4037           // If we get to this point, and the stack is empty we must have a use
4038           // with nothing we can use to eliminate this use, so just skip it.
4039           if (EliminationStack.empty())
4040             continue;
4041 
4042           Value *DominatingLeader = EliminationStack.back();
4043 
4044           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4045           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4046           if (isSSACopy)
4047             DominatingLeader = II->getOperand(0);
4048 
4049           // Don't replace our existing users with ourselves.
4050           if (U->get() == DominatingLeader)
4051             continue;
4052           LLVM_DEBUG(dbgs()
4053                      << "Found replacement " << *DominatingLeader << " for "
4054                      << *U->get() << " in " << *(U->getUser()) << "\n");
4055 
4056           // If we replaced something in an instruction, handle the patching of
4057           // metadata.  Skip this if we are replacing predicateinfo with its
4058           // original operand, as we already know we can just drop it.
4059           auto *ReplacedInst = cast<Instruction>(U->get());
4060           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4061           if (!PI || DominatingLeader != PI->OriginalOp)
4062             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4063           U->set(DominatingLeader);
4064           // This is now a use of the dominating leader, which means if the
4065           // dominating leader was dead, it's now live!
4066           auto &LeaderUseCount = UseCounts[DominatingLeader];
4067           // It's about to be alive again.
4068           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4069             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4070           // For copy instructions, we use their operand as a leader,
4071           // which means we remove a user of the copy and it may become dead.
4072           if (isSSACopy) {
4073             unsigned &IIUseCount = UseCounts[II];
4074             if (--IIUseCount == 0)
4075               ProbablyDead.insert(II);
4076           }
4077           ++LeaderUseCount;
4078           AnythingReplaced = true;
4079         }
4080       }
4081     }
4082 
4083     // At this point, anything still in the ProbablyDead set is actually dead if
4084     // would be trivially dead.
4085     for (auto *I : ProbablyDead)
4086       if (wouldInstructionBeTriviallyDead(I))
4087         markInstructionForDeletion(I);
4088 
4089     // Cleanup the congruence class.
4090     CongruenceClass::MemberSet MembersLeft;
4091     for (auto *Member : *CC)
4092       if (!isa<Instruction>(Member) ||
4093           !InstructionsToErase.count(cast<Instruction>(Member)))
4094         MembersLeft.insert(Member);
4095     CC->swap(MembersLeft);
4096 
4097     // If we have possible dead stores to look at, try to eliminate them.
4098     if (CC->getStoreCount() > 0) {
4099       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4100       llvm::sort(PossibleDeadStores);
4101       ValueDFSStack EliminationStack;
4102       for (auto &VD : PossibleDeadStores) {
4103         int MemberDFSIn = VD.DFSIn;
4104         int MemberDFSOut = VD.DFSOut;
4105         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4106         if (EliminationStack.empty() ||
4107             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4108           // Sync to our current scope.
4109           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4110           if (EliminationStack.empty()) {
4111             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4112             continue;
4113           }
4114         }
4115         // We already did load elimination, so nothing to do here.
4116         if (isa<LoadInst>(Member))
4117           continue;
4118         assert(!EliminationStack.empty());
4119         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4120         (void)Leader;
4121         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4122         // Member is dominater by Leader, and thus dead
4123         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4124                           << " that is dominated by " << *Leader << "\n");
4125         markInstructionForDeletion(Member);
4126         CC->erase(Member);
4127         ++NumGVNDeadStores;
4128       }
4129     }
4130   }
4131   return AnythingReplaced;
4132 }
4133 
4134 // This function provides global ranking of operations so that we can place them
4135 // in a canonical order.  Note that rank alone is not necessarily enough for a
4136 // complete ordering, as constants all have the same rank.  However, generally,
4137 // we will simplify an operation with all constants so that it doesn't matter
4138 // what order they appear in.
4139 unsigned int NewGVN::getRank(const Value *V) const {
4140   // Prefer constants to undef to anything else
4141   // Undef is a constant, have to check it first.
4142   // Prefer smaller constants to constantexprs
4143   if (isa<ConstantExpr>(V))
4144     return 2;
4145   if (isa<UndefValue>(V))
4146     return 1;
4147   if (isa<Constant>(V))
4148     return 0;
4149   else if (auto *A = dyn_cast<Argument>(V))
4150     return 3 + A->getArgNo();
4151 
4152   // Need to shift the instruction DFS by number of arguments + 3 to account for
4153   // the constant and argument ranking above.
4154   unsigned Result = InstrToDFSNum(V);
4155   if (Result > 0)
4156     return 4 + NumFuncArgs + Result;
4157   // Unreachable or something else, just return a really large number.
4158   return ~0;
4159 }
4160 
4161 // This is a function that says whether two commutative operations should
4162 // have their order swapped when canonicalizing.
4163 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4164   // Because we only care about a total ordering, and don't rewrite expressions
4165   // in this order, we order by rank, which will give a strict weak ordering to
4166   // everything but constants, and then we order by pointer address.
4167   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4168 }
4169 
4170 namespace {
4171 
4172 class NewGVNLegacyPass : public FunctionPass {
4173 public:
4174   // Pass identification, replacement for typeid.
4175   static char ID;
4176 
4177   NewGVNLegacyPass() : FunctionPass(ID) {
4178     initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4179   }
4180 
4181   bool runOnFunction(Function &F) override;
4182 
4183 private:
4184   void getAnalysisUsage(AnalysisUsage &AU) const override {
4185     AU.addRequired<AssumptionCacheTracker>();
4186     AU.addRequired<DominatorTreeWrapperPass>();
4187     AU.addRequired<TargetLibraryInfoWrapperPass>();
4188     AU.addRequired<MemorySSAWrapperPass>();
4189     AU.addRequired<AAResultsWrapperPass>();
4190     AU.addPreserved<DominatorTreeWrapperPass>();
4191     AU.addPreserved<GlobalsAAWrapperPass>();
4192   }
4193 };
4194 
4195 } // end anonymous namespace
4196 
4197 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4198   if (skipFunction(F))
4199     return false;
4200   return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4201                 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4202                 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4203                 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4204                 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4205                 F.getParent()->getDataLayout())
4206       .runGVN();
4207 }
4208 
4209 char NewGVNLegacyPass::ID = 0;
4210 
4211 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4212                       false, false)
4213 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4214 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4215 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4216 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4217 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4218 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4219 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4220                     false)
4221 
4222 // createGVNPass - The public interface to this file.
4223 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4224 
4225 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4226   // Apparently the order in which we get these results matter for
4227   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4228   // the same order here, just in case.
4229   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4230   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4231   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4232   auto &AA = AM.getResult<AAManager>(F);
4233   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4234   bool Changed =
4235       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4236           .runGVN();
4237   if (!Changed)
4238     return PreservedAnalyses::all();
4239   PreservedAnalyses PA;
4240   PA.preserve<DominatorTreeAnalysis>();
4241   PA.preserve<GlobalsAA>();
4242   return PA;
4243 }
4244