1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file implements the new LLVM's Global Value Numbering pass. 11 /// GVN partitions values computed by a function into congruence classes. 12 /// Values ending up in the same congruence class are guaranteed to be the same 13 /// for every execution of the program. In that respect, congruency is a 14 /// compile-time approximation of equivalence of values at runtime. 15 /// The algorithm implemented here uses a sparse formulation and it's based 16 /// on the ideas described in the paper: 17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from 18 /// Karthik Gargi. 19 /// 20 /// A brief overview of the algorithm: The algorithm is essentially the same as 21 /// the standard RPO value numbering algorithm (a good reference is the paper 22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference: 23 /// The RPO algorithm proceeds, on every iteration, to process every reachable 24 /// block and every instruction in that block. This is because the standard RPO 25 /// algorithm does not track what things have the same value number, it only 26 /// tracks what the value number of a given operation is (the mapping is 27 /// operation -> value number). Thus, when a value number of an operation 28 /// changes, it must reprocess everything to ensure all uses of a value number 29 /// get updated properly. In constrast, the sparse algorithm we use *also* 30 /// tracks what operations have a given value number (IE it also tracks the 31 /// reverse mapping from value number -> operations with that value number), so 32 /// that it only needs to reprocess the instructions that are affected when 33 /// something's value number changes. The vast majority of complexity and code 34 /// in this file is devoted to tracking what value numbers could change for what 35 /// instructions when various things happen. The rest of the algorithm is 36 /// devoted to performing symbolic evaluation, forward propagation, and 37 /// simplification of operations based on the value numbers deduced so far 38 /// 39 /// In order to make the GVN mostly-complete, we use a technique derived from 40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time 41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA 42 /// based GVN algorithms is related to their inability to detect equivalence 43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)). 44 /// We resolve this issue by generating the equivalent "phi of ops" form for 45 /// each op of phis we see, in a way that only takes polynomial time to resolve. 46 /// 47 /// We also do not perform elimination by using any published algorithm. All 48 /// published algorithms are O(Instructions). Instead, we use a technique that 49 /// is O(number of operations with the same value number), enabling us to skip 50 /// trying to eliminate things that have unique value numbers. 51 // 52 //===----------------------------------------------------------------------===// 53 54 #include "llvm/Transforms/Scalar/NewGVN.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/BitVector.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseMapInfo.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/DepthFirstIterator.h" 61 #include "llvm/ADT/GraphTraits.h" 62 #include "llvm/ADT/Hashing.h" 63 #include "llvm/ADT/PointerIntPair.h" 64 #include "llvm/ADT/PostOrderIterator.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/SparseBitVector.h" 68 #include "llvm/ADT/Statistic.h" 69 #include "llvm/ADT/iterator_range.h" 70 #include "llvm/Analysis/AliasAnalysis.h" 71 #include "llvm/Analysis/AssumptionCache.h" 72 #include "llvm/Analysis/CFGPrinter.h" 73 #include "llvm/Analysis/ConstantFolding.h" 74 #include "llvm/Analysis/GlobalsModRef.h" 75 #include "llvm/Analysis/InstructionSimplify.h" 76 #include "llvm/Analysis/MemoryBuiltins.h" 77 #include "llvm/Analysis/MemorySSA.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Transforms/Utils/Local.h" 80 #include "llvm/IR/Argument.h" 81 #include "llvm/IR/BasicBlock.h" 82 #include "llvm/IR/Constant.h" 83 #include "llvm/IR/Constants.h" 84 #include "llvm/IR/Dominators.h" 85 #include "llvm/IR/Function.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/PatternMatch.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/Use.h" 95 #include "llvm/IR/User.h" 96 #include "llvm/IR/Value.h" 97 #include "llvm/Pass.h" 98 #include "llvm/Support/Allocator.h" 99 #include "llvm/Support/ArrayRecycler.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Debug.h" 103 #include "llvm/Support/DebugCounter.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/PointerLikeTypeTraits.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include "llvm/Transforms/Scalar.h" 108 #include "llvm/Transforms/Scalar/GVNExpression.h" 109 #include "llvm/Transforms/Utils/PredicateInfo.h" 110 #include "llvm/Transforms/Utils/VNCoercion.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstdint> 114 #include <iterator> 115 #include <map> 116 #include <memory> 117 #include <set> 118 #include <string> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 using namespace llvm::GVNExpression; 125 using namespace llvm::VNCoercion; 126 using namespace llvm::PatternMatch; 127 128 #define DEBUG_TYPE "newgvn" 129 130 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted"); 131 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted"); 132 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified"); 133 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same"); 134 STATISTIC(NumGVNMaxIterations, 135 "Maximum Number of iterations it took to converge GVN"); 136 STATISTIC(NumGVNLeaderChanges, "Number of leader changes"); 137 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes"); 138 STATISTIC(NumGVNAvoidedSortedLeaderChanges, 139 "Number of avoided sorted leader changes"); 140 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated"); 141 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created"); 142 STATISTIC(NumGVNPHIOfOpsEliminations, 143 "Number of things eliminated using PHI of ops"); 144 DEBUG_COUNTER(VNCounter, "newgvn-vn", 145 "Controls which instructions are value numbered"); 146 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi", 147 "Controls which instructions we create phi of ops for"); 148 // Currently store defining access refinement is too slow due to basicaa being 149 // egregiously slow. This flag lets us keep it working while we work on this 150 // issue. 151 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement", 152 cl::init(false), cl::Hidden); 153 154 /// Currently, the generation "phi of ops" can result in correctness issues. 155 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true), 156 cl::Hidden); 157 158 //===----------------------------------------------------------------------===// 159 // GVN Pass 160 //===----------------------------------------------------------------------===// 161 162 // Anchor methods. 163 namespace llvm { 164 namespace GVNExpression { 165 166 Expression::~Expression() = default; 167 BasicExpression::~BasicExpression() = default; 168 CallExpression::~CallExpression() = default; 169 LoadExpression::~LoadExpression() = default; 170 StoreExpression::~StoreExpression() = default; 171 AggregateValueExpression::~AggregateValueExpression() = default; 172 PHIExpression::~PHIExpression() = default; 173 174 } // end namespace GVNExpression 175 } // end namespace llvm 176 177 namespace { 178 179 // Tarjan's SCC finding algorithm with Nuutila's improvements 180 // SCCIterator is actually fairly complex for the simple thing we want. 181 // It also wants to hand us SCC's that are unrelated to the phi node we ask 182 // about, and have us process them there or risk redoing work. 183 // Graph traits over a filter iterator also doesn't work that well here. 184 // This SCC finder is specialized to walk use-def chains, and only follows 185 // instructions, 186 // not generic values (arguments, etc). 187 struct TarjanSCC { 188 TarjanSCC() : Components(1) {} 189 190 void Start(const Instruction *Start) { 191 if (Root.lookup(Start) == 0) 192 FindSCC(Start); 193 } 194 195 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const { 196 unsigned ComponentID = ValueToComponent.lookup(V); 197 198 assert(ComponentID > 0 && 199 "Asking for a component for a value we never processed"); 200 return Components[ComponentID]; 201 } 202 203 private: 204 void FindSCC(const Instruction *I) { 205 Root[I] = ++DFSNum; 206 // Store the DFS Number we had before it possibly gets incremented. 207 unsigned int OurDFS = DFSNum; 208 for (auto &Op : I->operands()) { 209 if (auto *InstOp = dyn_cast<Instruction>(Op)) { 210 if (Root.lookup(Op) == 0) 211 FindSCC(InstOp); 212 if (!InComponent.count(Op)) 213 Root[I] = std::min(Root.lookup(I), Root.lookup(Op)); 214 } 215 } 216 // See if we really were the root of a component, by seeing if we still have 217 // our DFSNumber. If we do, we are the root of the component, and we have 218 // completed a component. If we do not, we are not the root of a component, 219 // and belong on the component stack. 220 if (Root.lookup(I) == OurDFS) { 221 unsigned ComponentID = Components.size(); 222 Components.resize(Components.size() + 1); 223 auto &Component = Components.back(); 224 Component.insert(I); 225 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n"); 226 InComponent.insert(I); 227 ValueToComponent[I] = ComponentID; 228 // Pop a component off the stack and label it. 229 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) { 230 auto *Member = Stack.back(); 231 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n"); 232 Component.insert(Member); 233 InComponent.insert(Member); 234 ValueToComponent[Member] = ComponentID; 235 Stack.pop_back(); 236 } 237 } else { 238 // Part of a component, push to stack 239 Stack.push_back(I); 240 } 241 } 242 243 unsigned int DFSNum = 1; 244 SmallPtrSet<const Value *, 8> InComponent; 245 DenseMap<const Value *, unsigned int> Root; 246 SmallVector<const Value *, 8> Stack; 247 248 // Store the components as vector of ptr sets, because we need the topo order 249 // of SCC's, but not individual member order 250 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components; 251 252 DenseMap<const Value *, unsigned> ValueToComponent; 253 }; 254 255 // Congruence classes represent the set of expressions/instructions 256 // that are all the same *during some scope in the function*. 257 // That is, because of the way we perform equality propagation, and 258 // because of memory value numbering, it is not correct to assume 259 // you can willy-nilly replace any member with any other at any 260 // point in the function. 261 // 262 // For any Value in the Member set, it is valid to replace any dominated member 263 // with that Value. 264 // 265 // Every congruence class has a leader, and the leader is used to symbolize 266 // instructions in a canonical way (IE every operand of an instruction that is a 267 // member of the same congruence class will always be replaced with leader 268 // during symbolization). To simplify symbolization, we keep the leader as a 269 // constant if class can be proved to be a constant value. Otherwise, the 270 // leader is the member of the value set with the smallest DFS number. Each 271 // congruence class also has a defining expression, though the expression may be 272 // null. If it exists, it can be used for forward propagation and reassociation 273 // of values. 274 275 // For memory, we also track a representative MemoryAccess, and a set of memory 276 // members for MemoryPhis (which have no real instructions). Note that for 277 // memory, it seems tempting to try to split the memory members into a 278 // MemoryCongruenceClass or something. Unfortunately, this does not work 279 // easily. The value numbering of a given memory expression depends on the 280 // leader of the memory congruence class, and the leader of memory congruence 281 // class depends on the value numbering of a given memory expression. This 282 // leads to wasted propagation, and in some cases, missed optimization. For 283 // example: If we had value numbered two stores together before, but now do not, 284 // we move them to a new value congruence class. This in turn will move at one 285 // of the memorydefs to a new memory congruence class. Which in turn, affects 286 // the value numbering of the stores we just value numbered (because the memory 287 // congruence class is part of the value number). So while theoretically 288 // possible to split them up, it turns out to be *incredibly* complicated to get 289 // it to work right, because of the interdependency. While structurally 290 // slightly messier, it is algorithmically much simpler and faster to do what we 291 // do here, and track them both at once in the same class. 292 // Note: The default iterators for this class iterate over values 293 class CongruenceClass { 294 public: 295 using MemberType = Value; 296 using MemberSet = SmallPtrSet<MemberType *, 4>; 297 using MemoryMemberType = MemoryPhi; 298 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>; 299 300 explicit CongruenceClass(unsigned ID) : ID(ID) {} 301 CongruenceClass(unsigned ID, Value *Leader, const Expression *E) 302 : ID(ID), RepLeader(Leader), DefiningExpr(E) {} 303 304 unsigned getID() const { return ID; } 305 306 // True if this class has no members left. This is mainly used for assertion 307 // purposes, and for skipping empty classes. 308 bool isDead() const { 309 // If it's both dead from a value perspective, and dead from a memory 310 // perspective, it's really dead. 311 return empty() && memory_empty(); 312 } 313 314 // Leader functions 315 Value *getLeader() const { return RepLeader; } 316 void setLeader(Value *Leader) { RepLeader = Leader; } 317 const std::pair<Value *, unsigned int> &getNextLeader() const { 318 return NextLeader; 319 } 320 void resetNextLeader() { NextLeader = {nullptr, ~0}; } 321 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) { 322 if (LeaderPair.second < NextLeader.second) 323 NextLeader = LeaderPair; 324 } 325 326 Value *getStoredValue() const { return RepStoredValue; } 327 void setStoredValue(Value *Leader) { RepStoredValue = Leader; } 328 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; } 329 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; } 330 331 // Forward propagation info 332 const Expression *getDefiningExpr() const { return DefiningExpr; } 333 334 // Value member set 335 bool empty() const { return Members.empty(); } 336 unsigned size() const { return Members.size(); } 337 MemberSet::const_iterator begin() const { return Members.begin(); } 338 MemberSet::const_iterator end() const { return Members.end(); } 339 void insert(MemberType *M) { Members.insert(M); } 340 void erase(MemberType *M) { Members.erase(M); } 341 void swap(MemberSet &Other) { Members.swap(Other); } 342 343 // Memory member set 344 bool memory_empty() const { return MemoryMembers.empty(); } 345 unsigned memory_size() const { return MemoryMembers.size(); } 346 MemoryMemberSet::const_iterator memory_begin() const { 347 return MemoryMembers.begin(); 348 } 349 MemoryMemberSet::const_iterator memory_end() const { 350 return MemoryMembers.end(); 351 } 352 iterator_range<MemoryMemberSet::const_iterator> memory() const { 353 return make_range(memory_begin(), memory_end()); 354 } 355 356 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); } 357 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); } 358 359 // Store count 360 unsigned getStoreCount() const { return StoreCount; } 361 void incStoreCount() { ++StoreCount; } 362 void decStoreCount() { 363 assert(StoreCount != 0 && "Store count went negative"); 364 --StoreCount; 365 } 366 367 // True if this class has no memory members. 368 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); } 369 370 // Return true if two congruence classes are equivalent to each other. This 371 // means that every field but the ID number and the dead field are equivalent. 372 bool isEquivalentTo(const CongruenceClass *Other) const { 373 if (!Other) 374 return false; 375 if (this == Other) 376 return true; 377 378 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) != 379 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue, 380 Other->RepMemoryAccess)) 381 return false; 382 if (DefiningExpr != Other->DefiningExpr) 383 if (!DefiningExpr || !Other->DefiningExpr || 384 *DefiningExpr != *Other->DefiningExpr) 385 return false; 386 387 if (Members.size() != Other->Members.size()) 388 return false; 389 390 return all_of(Members, 391 [&](const Value *V) { return Other->Members.count(V); }); 392 } 393 394 private: 395 unsigned ID; 396 397 // Representative leader. 398 Value *RepLeader = nullptr; 399 400 // The most dominating leader after our current leader, because the member set 401 // is not sorted and is expensive to keep sorted all the time. 402 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U}; 403 404 // If this is represented by a store, the value of the store. 405 Value *RepStoredValue = nullptr; 406 407 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory 408 // access. 409 const MemoryAccess *RepMemoryAccess = nullptr; 410 411 // Defining Expression. 412 const Expression *DefiningExpr = nullptr; 413 414 // Actual members of this class. 415 MemberSet Members; 416 417 // This is the set of MemoryPhis that exist in the class. MemoryDefs and 418 // MemoryUses have real instructions representing them, so we only need to 419 // track MemoryPhis here. 420 MemoryMemberSet MemoryMembers; 421 422 // Number of stores in this congruence class. 423 // This is used so we can detect store equivalence changes properly. 424 int StoreCount = 0; 425 }; 426 427 } // end anonymous namespace 428 429 namespace llvm { 430 431 struct ExactEqualsExpression { 432 const Expression &E; 433 434 explicit ExactEqualsExpression(const Expression &E) : E(E) {} 435 436 hash_code getComputedHash() const { return E.getComputedHash(); } 437 438 bool operator==(const Expression &Other) const { 439 return E.exactlyEquals(Other); 440 } 441 }; 442 443 template <> struct DenseMapInfo<const Expression *> { 444 static const Expression *getEmptyKey() { 445 auto Val = static_cast<uintptr_t>(-1); 446 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 447 return reinterpret_cast<const Expression *>(Val); 448 } 449 450 static const Expression *getTombstoneKey() { 451 auto Val = static_cast<uintptr_t>(~1U); 452 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; 453 return reinterpret_cast<const Expression *>(Val); 454 } 455 456 static unsigned getHashValue(const Expression *E) { 457 return E->getComputedHash(); 458 } 459 460 static unsigned getHashValue(const ExactEqualsExpression &E) { 461 return E.getComputedHash(); 462 } 463 464 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) { 465 if (RHS == getTombstoneKey() || RHS == getEmptyKey()) 466 return false; 467 return LHS == *RHS; 468 } 469 470 static bool isEqual(const Expression *LHS, const Expression *RHS) { 471 if (LHS == RHS) 472 return true; 473 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() || 474 LHS == getEmptyKey() || RHS == getEmptyKey()) 475 return false; 476 // Compare hashes before equality. This is *not* what the hashtable does, 477 // since it is computing it modulo the number of buckets, whereas we are 478 // using the full hash keyspace. Since the hashes are precomputed, this 479 // check is *much* faster than equality. 480 if (LHS->getComputedHash() != RHS->getComputedHash()) 481 return false; 482 return *LHS == *RHS; 483 } 484 }; 485 486 } // end namespace llvm 487 488 namespace { 489 490 class NewGVN { 491 Function &F; 492 DominatorTree *DT; 493 const TargetLibraryInfo *TLI; 494 AliasAnalysis *AA; 495 MemorySSA *MSSA; 496 MemorySSAWalker *MSSAWalker; 497 const DataLayout &DL; 498 std::unique_ptr<PredicateInfo> PredInfo; 499 500 // These are the only two things the create* functions should have 501 // side-effects on due to allocating memory. 502 mutable BumpPtrAllocator ExpressionAllocator; 503 mutable ArrayRecycler<Value *> ArgRecycler; 504 mutable TarjanSCC SCCFinder; 505 const SimplifyQuery SQ; 506 507 // Number of function arguments, used by ranking 508 unsigned int NumFuncArgs; 509 510 // RPOOrdering of basic blocks 511 DenseMap<const DomTreeNode *, unsigned> RPOOrdering; 512 513 // Congruence class info. 514 515 // This class is called INITIAL in the paper. It is the class everything 516 // startsout in, and represents any value. Being an optimistic analysis, 517 // anything in the TOP class has the value TOP, which is indeterminate and 518 // equivalent to everything. 519 CongruenceClass *TOPClass; 520 std::vector<CongruenceClass *> CongruenceClasses; 521 unsigned NextCongruenceNum; 522 523 // Value Mappings. 524 DenseMap<Value *, CongruenceClass *> ValueToClass; 525 DenseMap<Value *, const Expression *> ValueToExpression; 526 527 // Value PHI handling, used to make equivalence between phi(op, op) and 528 // op(phi, phi). 529 // These mappings just store various data that would normally be part of the 530 // IR. 531 SmallPtrSet<const Instruction *, 8> PHINodeUses; 532 533 DenseMap<const Value *, bool> OpSafeForPHIOfOps; 534 535 // Map a temporary instruction we created to a parent block. 536 DenseMap<const Value *, BasicBlock *> TempToBlock; 537 538 // Map between the already in-program instructions and the temporary phis we 539 // created that they are known equivalent to. 540 DenseMap<const Value *, PHINode *> RealToTemp; 541 542 // In order to know when we should re-process instructions that have 543 // phi-of-ops, we track the set of expressions that they needed as 544 // leaders. When we discover new leaders for those expressions, we process the 545 // associated phi-of-op instructions again in case they have changed. The 546 // other way they may change is if they had leaders, and those leaders 547 // disappear. However, at the point they have leaders, there are uses of the 548 // relevant operands in the created phi node, and so they will get reprocessed 549 // through the normal user marking we perform. 550 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers; 551 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>> 552 ExpressionToPhiOfOps; 553 554 // Map from temporary operation to MemoryAccess. 555 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory; 556 557 // Set of all temporary instructions we created. 558 // Note: This will include instructions that were just created during value 559 // numbering. The way to test if something is using them is to check 560 // RealToTemp. 561 DenseSet<Instruction *> AllTempInstructions; 562 563 // This is the set of instructions to revisit on a reachability change. At 564 // the end of the main iteration loop it will contain at least all the phi of 565 // ops instructions that will be changed to phis, as well as regular phis. 566 // During the iteration loop, it may contain other things, such as phi of ops 567 // instructions that used edge reachability to reach a result, and so need to 568 // be revisited when the edge changes, independent of whether the phi they 569 // depended on changes. 570 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange; 571 572 // Mapping from predicate info we used to the instructions we used it with. 573 // In order to correctly ensure propagation, we must keep track of what 574 // comparisons we used, so that when the values of the comparisons change, we 575 // propagate the information to the places we used the comparison. 576 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>> 577 PredicateToUsers; 578 579 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for 580 // stores, we no longer can rely solely on the def-use chains of MemorySSA. 581 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>> 582 MemoryToUsers; 583 584 // A table storing which memorydefs/phis represent a memory state provably 585 // equivalent to another memory state. 586 // We could use the congruence class machinery, but the MemoryAccess's are 587 // abstract memory states, so they can only ever be equivalent to each other, 588 // and not to constants, etc. 589 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass; 590 591 // We could, if we wanted, build MemoryPhiExpressions and 592 // MemoryVariableExpressions, etc, and value number them the same way we value 593 // number phi expressions. For the moment, this seems like overkill. They 594 // can only exist in one of three states: they can be TOP (equal to 595 // everything), Equivalent to something else, or unique. Because we do not 596 // create expressions for them, we need to simulate leader change not just 597 // when they change class, but when they change state. Note: We can do the 598 // same thing for phis, and avoid having phi expressions if we wanted, We 599 // should eventually unify in one direction or the other, so this is a little 600 // bit of an experiment in which turns out easier to maintain. 601 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique }; 602 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState; 603 604 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle }; 605 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState; 606 607 // Expression to class mapping. 608 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>; 609 ExpressionClassMap ExpressionToClass; 610 611 // We have a single expression that represents currently DeadExpressions. 612 // For dead expressions we can prove will stay dead, we mark them with 613 // DFS number zero. However, it's possible in the case of phi nodes 614 // for us to assume/prove all arguments are dead during fixpointing. 615 // We use DeadExpression for that case. 616 DeadExpression *SingletonDeadExpression = nullptr; 617 618 // Which values have changed as a result of leader changes. 619 SmallPtrSet<Value *, 8> LeaderChanges; 620 621 // Reachability info. 622 using BlockEdge = BasicBlockEdge; 623 DenseSet<BlockEdge> ReachableEdges; 624 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks; 625 626 // This is a bitvector because, on larger functions, we may have 627 // thousands of touched instructions at once (entire blocks, 628 // instructions with hundreds of uses, etc). Even with optimization 629 // for when we mark whole blocks as touched, when this was a 630 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all 631 // the time in GVN just managing this list. The bitvector, on the 632 // other hand, efficiently supports test/set/clear of both 633 // individual and ranges, as well as "find next element" This 634 // enables us to use it as a worklist with essentially 0 cost. 635 BitVector TouchedInstructions; 636 637 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange; 638 639 #ifndef NDEBUG 640 // Debugging for how many times each block and instruction got processed. 641 DenseMap<const Value *, unsigned> ProcessedCount; 642 #endif 643 644 // DFS info. 645 // This contains a mapping from Instructions to DFS numbers. 646 // The numbering starts at 1. An instruction with DFS number zero 647 // means that the instruction is dead. 648 DenseMap<const Value *, unsigned> InstrDFS; 649 650 // This contains the mapping DFS numbers to instructions. 651 SmallVector<Value *, 32> DFSToInstr; 652 653 // Deletion info. 654 SmallPtrSet<Instruction *, 8> InstructionsToErase; 655 656 public: 657 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC, 658 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA, 659 const DataLayout &DL) 660 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL), 661 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)), 662 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {} 663 664 bool runGVN(); 665 666 private: 667 // Expression handling. 668 const Expression *createExpression(Instruction *) const; 669 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *, 670 Instruction *) const; 671 672 // Our canonical form for phi arguments is a pair of incoming value, incoming 673 // basic block. 674 using ValPair = std::pair<Value *, BasicBlock *>; 675 676 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *, 677 BasicBlock *, bool &HasBackEdge, 678 bool &OriginalOpsConstant) const; 679 const DeadExpression *createDeadExpression() const; 680 const VariableExpression *createVariableExpression(Value *) const; 681 const ConstantExpression *createConstantExpression(Constant *) const; 682 const Expression *createVariableOrConstant(Value *V) const; 683 const UnknownExpression *createUnknownExpression(Instruction *) const; 684 const StoreExpression *createStoreExpression(StoreInst *, 685 const MemoryAccess *) const; 686 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *, 687 const MemoryAccess *) const; 688 const CallExpression *createCallExpression(CallInst *, 689 const MemoryAccess *) const; 690 const AggregateValueExpression * 691 createAggregateValueExpression(Instruction *) const; 692 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const; 693 694 // Congruence class handling. 695 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) { 696 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E); 697 CongruenceClasses.emplace_back(result); 698 return result; 699 } 700 701 CongruenceClass *createMemoryClass(MemoryAccess *MA) { 702 auto *CC = createCongruenceClass(nullptr, nullptr); 703 CC->setMemoryLeader(MA); 704 return CC; 705 } 706 707 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) { 708 auto *CC = getMemoryClass(MA); 709 if (CC->getMemoryLeader() != MA) 710 CC = createMemoryClass(MA); 711 return CC; 712 } 713 714 CongruenceClass *createSingletonCongruenceClass(Value *Member) { 715 CongruenceClass *CClass = createCongruenceClass(Member, nullptr); 716 CClass->insert(Member); 717 ValueToClass[Member] = CClass; 718 return CClass; 719 } 720 721 void initializeCongruenceClasses(Function &F); 722 const Expression *makePossiblePHIOfOps(Instruction *, 723 SmallPtrSetImpl<Value *> &); 724 Value *findLeaderForInst(Instruction *ValueOp, 725 SmallPtrSetImpl<Value *> &Visited, 726 MemoryAccess *MemAccess, Instruction *OrigInst, 727 BasicBlock *PredBB); 728 bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock, 729 SmallPtrSetImpl<const Value *> &Visited, 730 SmallVectorImpl<Instruction *> &Worklist); 731 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock, 732 SmallPtrSetImpl<const Value *> &); 733 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue); 734 void removePhiOfOps(Instruction *I, PHINode *PHITemp); 735 736 // Value number an Instruction or MemoryPhi. 737 void valueNumberMemoryPhi(MemoryPhi *); 738 void valueNumberInstruction(Instruction *); 739 740 // Symbolic evaluation. 741 const Expression *checkSimplificationResults(Expression *, Instruction *, 742 Value *) const; 743 const Expression *performSymbolicEvaluation(Value *, 744 SmallPtrSetImpl<Value *> &) const; 745 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *, 746 Instruction *, 747 MemoryAccess *) const; 748 const Expression *performSymbolicLoadEvaluation(Instruction *) const; 749 const Expression *performSymbolicStoreEvaluation(Instruction *) const; 750 const Expression *performSymbolicCallEvaluation(Instruction *) const; 751 void sortPHIOps(MutableArrayRef<ValPair> Ops) const; 752 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>, 753 Instruction *I, 754 BasicBlock *PHIBlock) const; 755 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const; 756 const Expression *performSymbolicCmpEvaluation(Instruction *) const; 757 const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const; 758 759 // Congruence finding. 760 bool someEquivalentDominates(const Instruction *, const Instruction *) const; 761 Value *lookupOperandLeader(Value *) const; 762 CongruenceClass *getClassForExpression(const Expression *E) const; 763 void performCongruenceFinding(Instruction *, const Expression *); 764 void moveValueToNewCongruenceClass(Instruction *, const Expression *, 765 CongruenceClass *, CongruenceClass *); 766 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *, 767 CongruenceClass *, CongruenceClass *); 768 Value *getNextValueLeader(CongruenceClass *) const; 769 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const; 770 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To); 771 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const; 772 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const; 773 bool isMemoryAccessTOP(const MemoryAccess *) const; 774 775 // Ranking 776 unsigned int getRank(const Value *) const; 777 bool shouldSwapOperands(const Value *, const Value *) const; 778 779 // Reachability handling. 780 void updateReachableEdge(BasicBlock *, BasicBlock *); 781 void processOutgoingEdges(Instruction *, BasicBlock *); 782 Value *findConditionEquivalence(Value *) const; 783 784 // Elimination. 785 struct ValueDFS; 786 void convertClassToDFSOrdered(const CongruenceClass &, 787 SmallVectorImpl<ValueDFS> &, 788 DenseMap<const Value *, unsigned int> &, 789 SmallPtrSetImpl<Instruction *> &) const; 790 void convertClassToLoadsAndStores(const CongruenceClass &, 791 SmallVectorImpl<ValueDFS> &) const; 792 793 bool eliminateInstructions(Function &); 794 void replaceInstruction(Instruction *, Value *); 795 void markInstructionForDeletion(Instruction *); 796 void deleteInstructionsInBlock(BasicBlock *); 797 Value *findPHIOfOpsLeader(const Expression *, const Instruction *, 798 const BasicBlock *) const; 799 800 // New instruction creation. 801 void handleNewInstruction(Instruction *) {} 802 803 // Various instruction touch utilities 804 template <typename Map, typename KeyType, typename Func> 805 void for_each_found(Map &, const KeyType &, Func); 806 template <typename Map, typename KeyType> 807 void touchAndErase(Map &, const KeyType &); 808 void markUsersTouched(Value *); 809 void markMemoryUsersTouched(const MemoryAccess *); 810 void markMemoryDefTouched(const MemoryAccess *); 811 void markPredicateUsersTouched(Instruction *); 812 void markValueLeaderChangeTouched(CongruenceClass *CC); 813 void markMemoryLeaderChangeTouched(CongruenceClass *CC); 814 void markPhiOfOpsChanged(const Expression *E); 815 void addPredicateUsers(const PredicateBase *, Instruction *) const; 816 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const; 817 void addAdditionalUsers(Value *To, Value *User) const; 818 819 // Main loop of value numbering 820 void iterateTouchedInstructions(); 821 822 // Utilities. 823 void cleanupTables(); 824 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned); 825 void updateProcessedCount(const Value *V); 826 void verifyMemoryCongruency() const; 827 void verifyIterationSettled(Function &F); 828 void verifyStoreExpressions() const; 829 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &, 830 const MemoryAccess *, const MemoryAccess *) const; 831 BasicBlock *getBlockForValue(Value *V) const; 832 void deleteExpression(const Expression *E) const; 833 MemoryUseOrDef *getMemoryAccess(const Instruction *) const; 834 MemoryAccess *getDefiningAccess(const MemoryAccess *) const; 835 MemoryPhi *getMemoryAccess(const BasicBlock *) const; 836 template <class T, class Range> T *getMinDFSOfRange(const Range &) const; 837 838 unsigned InstrToDFSNum(const Value *V) const { 839 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses"); 840 return InstrDFS.lookup(V); 841 } 842 843 unsigned InstrToDFSNum(const MemoryAccess *MA) const { 844 return MemoryToDFSNum(MA); 845 } 846 847 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; } 848 849 // Given a MemoryAccess, return the relevant instruction DFS number. Note: 850 // This deliberately takes a value so it can be used with Use's, which will 851 // auto-convert to Value's but not to MemoryAccess's. 852 unsigned MemoryToDFSNum(const Value *MA) const { 853 assert(isa<MemoryAccess>(MA) && 854 "This should not be used with instructions"); 855 return isa<MemoryUseOrDef>(MA) 856 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst()) 857 : InstrDFS.lookup(MA); 858 } 859 860 bool isCycleFree(const Instruction *) const; 861 bool isBackedge(BasicBlock *From, BasicBlock *To) const; 862 863 // Debug counter info. When verifying, we have to reset the value numbering 864 // debug counter to the same state it started in to get the same results. 865 int64_t StartingVNCounter; 866 }; 867 868 } // end anonymous namespace 869 870 template <typename T> 871 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) { 872 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) 873 return false; 874 return LHS.MemoryExpression::equals(RHS); 875 } 876 877 bool LoadExpression::equals(const Expression &Other) const { 878 return equalsLoadStoreHelper(*this, Other); 879 } 880 881 bool StoreExpression::equals(const Expression &Other) const { 882 if (!equalsLoadStoreHelper(*this, Other)) 883 return false; 884 // Make sure that store vs store includes the value operand. 885 if (const auto *S = dyn_cast<StoreExpression>(&Other)) 886 if (getStoredValue() != S->getStoredValue()) 887 return false; 888 return true; 889 } 890 891 // Determine if the edge From->To is a backedge 892 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const { 893 return From == To || 894 RPOOrdering.lookup(DT->getNode(From)) >= 895 RPOOrdering.lookup(DT->getNode(To)); 896 } 897 898 #ifndef NDEBUG 899 static std::string getBlockName(const BasicBlock *B) { 900 return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr); 901 } 902 #endif 903 904 // Get a MemoryAccess for an instruction, fake or real. 905 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const { 906 auto *Result = MSSA->getMemoryAccess(I); 907 return Result ? Result : TempToMemory.lookup(I); 908 } 909 910 // Get a MemoryPhi for a basic block. These are all real. 911 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const { 912 return MSSA->getMemoryAccess(BB); 913 } 914 915 // Get the basic block from an instruction/memory value. 916 BasicBlock *NewGVN::getBlockForValue(Value *V) const { 917 if (auto *I = dyn_cast<Instruction>(V)) { 918 auto *Parent = I->getParent(); 919 if (Parent) 920 return Parent; 921 Parent = TempToBlock.lookup(V); 922 assert(Parent && "Every fake instruction should have a block"); 923 return Parent; 924 } 925 926 auto *MP = dyn_cast<MemoryPhi>(V); 927 assert(MP && "Should have been an instruction or a MemoryPhi"); 928 return MP->getBlock(); 929 } 930 931 // Delete a definitely dead expression, so it can be reused by the expression 932 // allocator. Some of these are not in creation functions, so we have to accept 933 // const versions. 934 void NewGVN::deleteExpression(const Expression *E) const { 935 assert(isa<BasicExpression>(E)); 936 auto *BE = cast<BasicExpression>(E); 937 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler); 938 ExpressionAllocator.Deallocate(E); 939 } 940 941 // If V is a predicateinfo copy, get the thing it is a copy of. 942 static Value *getCopyOf(const Value *V) { 943 if (auto *II = dyn_cast<IntrinsicInst>(V)) 944 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 945 return II->getOperand(0); 946 return nullptr; 947 } 948 949 // Return true if V is really PN, even accounting for predicateinfo copies. 950 static bool isCopyOfPHI(const Value *V, const PHINode *PN) { 951 return V == PN || getCopyOf(V) == PN; 952 } 953 954 static bool isCopyOfAPHI(const Value *V) { 955 auto *CO = getCopyOf(V); 956 return CO && isa<PHINode>(CO); 957 } 958 959 // Sort PHI Operands into a canonical order. What we use here is an RPO 960 // order. The BlockInstRange numbers are generated in an RPO walk of the basic 961 // blocks. 962 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const { 963 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) { 964 return BlockInstRange.lookup(P1.second).first < 965 BlockInstRange.lookup(P2.second).first; 966 }); 967 } 968 969 // Return true if V is a value that will always be available (IE can 970 // be placed anywhere) in the function. We don't do globals here 971 // because they are often worse to put in place. 972 static bool alwaysAvailable(Value *V) { 973 return isa<Constant>(V) || isa<Argument>(V); 974 } 975 976 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is 977 // the original instruction we are creating a PHIExpression for (but may not be 978 // a phi node). We require, as an invariant, that all the PHIOperands in the 979 // same block are sorted the same way. sortPHIOps will sort them into a 980 // canonical order. 981 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands, 982 const Instruction *I, 983 BasicBlock *PHIBlock, 984 bool &HasBackedge, 985 bool &OriginalOpsConstant) const { 986 unsigned NumOps = PHIOperands.size(); 987 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock); 988 989 E->allocateOperands(ArgRecycler, ExpressionAllocator); 990 E->setType(PHIOperands.begin()->first->getType()); 991 E->setOpcode(Instruction::PHI); 992 993 // Filter out unreachable phi operands. 994 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) { 995 auto *BB = P.second; 996 if (auto *PHIOp = dyn_cast<PHINode>(I)) 997 if (isCopyOfPHI(P.first, PHIOp)) 998 return false; 999 if (!ReachableEdges.count({BB, PHIBlock})) 1000 return false; 1001 // Things in TOPClass are equivalent to everything. 1002 if (ValueToClass.lookup(P.first) == TOPClass) 1003 return false; 1004 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first); 1005 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock); 1006 return lookupOperandLeader(P.first) != I; 1007 }); 1008 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E), 1009 [&](const ValPair &P) -> Value * { 1010 return lookupOperandLeader(P.first); 1011 }); 1012 return E; 1013 } 1014 1015 // Set basic expression info (Arguments, type, opcode) for Expression 1016 // E from Instruction I in block B. 1017 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const { 1018 bool AllConstant = true; 1019 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 1020 E->setType(GEP->getSourceElementType()); 1021 else 1022 E->setType(I->getType()); 1023 E->setOpcode(I->getOpcode()); 1024 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1025 1026 // Transform the operand array into an operand leader array, and keep track of 1027 // whether all members are constant. 1028 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) { 1029 auto Operand = lookupOperandLeader(O); 1030 AllConstant = AllConstant && isa<Constant>(Operand); 1031 return Operand; 1032 }); 1033 1034 return AllConstant; 1035 } 1036 1037 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T, 1038 Value *Arg1, Value *Arg2, 1039 Instruction *I) const { 1040 auto *E = new (ExpressionAllocator) BasicExpression(2); 1041 1042 E->setType(T); 1043 E->setOpcode(Opcode); 1044 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1045 if (Instruction::isCommutative(Opcode)) { 1046 // Ensure that commutative instructions that only differ by a permutation 1047 // of their operands get the same value number by sorting the operand value 1048 // numbers. Since all commutative instructions have two operands it is more 1049 // efficient to sort by hand rather than using, say, std::sort. 1050 if (shouldSwapOperands(Arg1, Arg2)) 1051 std::swap(Arg1, Arg2); 1052 } 1053 E->op_push_back(lookupOperandLeader(Arg1)); 1054 E->op_push_back(lookupOperandLeader(Arg2)); 1055 1056 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ); 1057 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) 1058 return SimplifiedE; 1059 return E; 1060 } 1061 1062 // Take a Value returned by simplification of Expression E/Instruction 1063 // I, and see if it resulted in a simpler expression. If so, return 1064 // that expression. 1065 const Expression *NewGVN::checkSimplificationResults(Expression *E, 1066 Instruction *I, 1067 Value *V) const { 1068 if (!V) 1069 return nullptr; 1070 if (auto *C = dyn_cast<Constant>(V)) { 1071 if (I) 1072 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1073 << " constant " << *C << "\n"); 1074 NumGVNOpsSimplified++; 1075 assert(isa<BasicExpression>(E) && 1076 "We should always have had a basic expression here"); 1077 deleteExpression(E); 1078 return createConstantExpression(C); 1079 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1080 if (I) 1081 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1082 << " variable " << *V << "\n"); 1083 deleteExpression(E); 1084 return createVariableExpression(V); 1085 } 1086 1087 CongruenceClass *CC = ValueToClass.lookup(V); 1088 if (CC) { 1089 if (CC->getLeader() && CC->getLeader() != I) { 1090 // If we simplified to something else, we need to communicate 1091 // that we're users of the value we simplified to. 1092 if (I != V) { 1093 // Don't add temporary instructions to the user lists. 1094 if (!AllTempInstructions.count(I)) 1095 addAdditionalUsers(V, I); 1096 } 1097 return createVariableOrConstant(CC->getLeader()); 1098 } 1099 if (CC->getDefiningExpr()) { 1100 // If we simplified to something else, we need to communicate 1101 // that we're users of the value we simplified to. 1102 if (I != V) { 1103 // Don't add temporary instructions to the user lists. 1104 if (!AllTempInstructions.count(I)) 1105 addAdditionalUsers(V, I); 1106 } 1107 1108 if (I) 1109 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to " 1110 << " expression " << *CC->getDefiningExpr() << "\n"); 1111 NumGVNOpsSimplified++; 1112 deleteExpression(E); 1113 return CC->getDefiningExpr(); 1114 } 1115 } 1116 1117 return nullptr; 1118 } 1119 1120 // Create a value expression from the instruction I, replacing operands with 1121 // their leaders. 1122 1123 const Expression *NewGVN::createExpression(Instruction *I) const { 1124 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands()); 1125 1126 bool AllConstant = setBasicExpressionInfo(I, E); 1127 1128 if (I->isCommutative()) { 1129 // Ensure that commutative instructions that only differ by a permutation 1130 // of their operands get the same value number by sorting the operand value 1131 // numbers. Since all commutative instructions have two operands it is more 1132 // efficient to sort by hand rather than using, say, std::sort. 1133 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 1134 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) 1135 E->swapOperands(0, 1); 1136 } 1137 // Perform simplification. 1138 if (auto *CI = dyn_cast<CmpInst>(I)) { 1139 // Sort the operand value numbers so x<y and y>x get the same value 1140 // number. 1141 CmpInst::Predicate Predicate = CI->getPredicate(); 1142 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) { 1143 E->swapOperands(0, 1); 1144 Predicate = CmpInst::getSwappedPredicate(Predicate); 1145 } 1146 E->setOpcode((CI->getOpcode() << 8) | Predicate); 1147 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands 1148 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() && 1149 "Wrong types on cmp instruction"); 1150 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() && 1151 E->getOperand(1)->getType() == I->getOperand(1)->getType())); 1152 Value *V = 1153 SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ); 1154 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) 1155 return SimplifiedE; 1156 } else if (isa<SelectInst>(I)) { 1157 if (isa<Constant>(E->getOperand(0)) || 1158 E->getOperand(1) == E->getOperand(2)) { 1159 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() && 1160 E->getOperand(2)->getType() == I->getOperand(2)->getType()); 1161 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1), 1162 E->getOperand(2), SQ); 1163 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) 1164 return SimplifiedE; 1165 } 1166 } else if (I->isBinaryOp()) { 1167 Value *V = 1168 SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ); 1169 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) 1170 return SimplifiedE; 1171 } else if (auto *CI = dyn_cast<CastInst>(I)) { 1172 Value *V = 1173 SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ); 1174 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) 1175 return SimplifiedE; 1176 } else if (isa<GetElementPtrInst>(I)) { 1177 Value *V = SimplifyGEPInst( 1178 E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ); 1179 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) 1180 return SimplifiedE; 1181 } else if (AllConstant) { 1182 // We don't bother trying to simplify unless all of the operands 1183 // were constant. 1184 // TODO: There are a lot of Simplify*'s we could call here, if we 1185 // wanted to. The original motivating case for this code was a 1186 // zext i1 false to i8, which we don't have an interface to 1187 // simplify (IE there is no SimplifyZExt). 1188 1189 SmallVector<Constant *, 8> C; 1190 for (Value *Arg : E->operands()) 1191 C.emplace_back(cast<Constant>(Arg)); 1192 1193 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI)) 1194 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) 1195 return SimplifiedE; 1196 } 1197 return E; 1198 } 1199 1200 const AggregateValueExpression * 1201 NewGVN::createAggregateValueExpression(Instruction *I) const { 1202 if (auto *II = dyn_cast<InsertValueInst>(I)) { 1203 auto *E = new (ExpressionAllocator) 1204 AggregateValueExpression(I->getNumOperands(), II->getNumIndices()); 1205 setBasicExpressionInfo(I, E); 1206 E->allocateIntOperands(ExpressionAllocator); 1207 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E)); 1208 return E; 1209 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1210 auto *E = new (ExpressionAllocator) 1211 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices()); 1212 setBasicExpressionInfo(EI, E); 1213 E->allocateIntOperands(ExpressionAllocator); 1214 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E)); 1215 return E; 1216 } 1217 llvm_unreachable("Unhandled type of aggregate value operation"); 1218 } 1219 1220 const DeadExpression *NewGVN::createDeadExpression() const { 1221 // DeadExpression has no arguments and all DeadExpression's are the same, 1222 // so we only need one of them. 1223 return SingletonDeadExpression; 1224 } 1225 1226 const VariableExpression *NewGVN::createVariableExpression(Value *V) const { 1227 auto *E = new (ExpressionAllocator) VariableExpression(V); 1228 E->setOpcode(V->getValueID()); 1229 return E; 1230 } 1231 1232 const Expression *NewGVN::createVariableOrConstant(Value *V) const { 1233 if (auto *C = dyn_cast<Constant>(V)) 1234 return createConstantExpression(C); 1235 return createVariableExpression(V); 1236 } 1237 1238 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const { 1239 auto *E = new (ExpressionAllocator) ConstantExpression(C); 1240 E->setOpcode(C->getValueID()); 1241 return E; 1242 } 1243 1244 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const { 1245 auto *E = new (ExpressionAllocator) UnknownExpression(I); 1246 E->setOpcode(I->getOpcode()); 1247 return E; 1248 } 1249 1250 const CallExpression * 1251 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const { 1252 // FIXME: Add operand bundles for calls. 1253 auto *E = 1254 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA); 1255 setBasicExpressionInfo(CI, E); 1256 return E; 1257 } 1258 1259 // Return true if some equivalent of instruction Inst dominates instruction U. 1260 bool NewGVN::someEquivalentDominates(const Instruction *Inst, 1261 const Instruction *U) const { 1262 auto *CC = ValueToClass.lookup(Inst); 1263 // This must be an instruction because we are only called from phi nodes 1264 // in the case that the value it needs to check against is an instruction. 1265 1266 // The most likely candidates for dominance are the leader and the next leader. 1267 // The leader or nextleader will dominate in all cases where there is an 1268 // equivalent that is higher up in the dom tree. 1269 // We can't *only* check them, however, because the 1270 // dominator tree could have an infinite number of non-dominating siblings 1271 // with instructions that are in the right congruence class. 1272 // A 1273 // B C D E F G 1274 // | 1275 // H 1276 // Instruction U could be in H, with equivalents in every other sibling. 1277 // Depending on the rpo order picked, the leader could be the equivalent in 1278 // any of these siblings. 1279 if (!CC) 1280 return false; 1281 if (alwaysAvailable(CC->getLeader())) 1282 return true; 1283 if (DT->dominates(cast<Instruction>(CC->getLeader()), U)) 1284 return true; 1285 if (CC->getNextLeader().first && 1286 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U)) 1287 return true; 1288 return llvm::any_of(*CC, [&](const Value *Member) { 1289 return Member != CC->getLeader() && 1290 DT->dominates(cast<Instruction>(Member), U); 1291 }); 1292 } 1293 1294 // See if we have a congruence class and leader for this operand, and if so, 1295 // return it. Otherwise, return the operand itself. 1296 Value *NewGVN::lookupOperandLeader(Value *V) const { 1297 CongruenceClass *CC = ValueToClass.lookup(V); 1298 if (CC) { 1299 // Everything in TOP is represented by undef, as it can be any value. 1300 // We do have to make sure we get the type right though, so we can't set the 1301 // RepLeader to undef. 1302 if (CC == TOPClass) 1303 return UndefValue::get(V->getType()); 1304 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 1305 } 1306 1307 return V; 1308 } 1309 1310 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const { 1311 auto *CC = getMemoryClass(MA); 1312 assert(CC->getMemoryLeader() && 1313 "Every MemoryAccess should be mapped to a congruence class with a " 1314 "representative memory access"); 1315 return CC->getMemoryLeader(); 1316 } 1317 1318 // Return true if the MemoryAccess is really equivalent to everything. This is 1319 // equivalent to the lattice value "TOP" in most lattices. This is the initial 1320 // state of all MemoryAccesses. 1321 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const { 1322 return getMemoryClass(MA) == TOPClass; 1323 } 1324 1325 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp, 1326 LoadInst *LI, 1327 const MemoryAccess *MA) const { 1328 auto *E = 1329 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA)); 1330 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1331 E->setType(LoadType); 1332 1333 // Give store and loads same opcode so they value number together. 1334 E->setOpcode(0); 1335 E->op_push_back(PointerOp); 1336 if (LI) 1337 E->setAlignment(MaybeAlign(LI->getAlignment())); 1338 1339 // TODO: Value number heap versions. We may be able to discover 1340 // things alias analysis can't on it's own (IE that a store and a 1341 // load have the same value, and thus, it isn't clobbering the load). 1342 return E; 1343 } 1344 1345 const StoreExpression * 1346 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const { 1347 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand()); 1348 auto *E = new (ExpressionAllocator) 1349 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA); 1350 E->allocateOperands(ArgRecycler, ExpressionAllocator); 1351 E->setType(SI->getValueOperand()->getType()); 1352 1353 // Give store and loads same opcode so they value number together. 1354 E->setOpcode(0); 1355 E->op_push_back(lookupOperandLeader(SI->getPointerOperand())); 1356 1357 // TODO: Value number heap versions. We may be able to discover 1358 // things alias analysis can't on it's own (IE that a store and a 1359 // load have the same value, and thus, it isn't clobbering the load). 1360 return E; 1361 } 1362 1363 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const { 1364 // Unlike loads, we never try to eliminate stores, so we do not check if they 1365 // are simple and avoid value numbering them. 1366 auto *SI = cast<StoreInst>(I); 1367 auto *StoreAccess = getMemoryAccess(SI); 1368 // Get the expression, if any, for the RHS of the MemoryDef. 1369 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess(); 1370 if (EnableStoreRefinement) 1371 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess); 1372 // If we bypassed the use-def chains, make sure we add a use. 1373 StoreRHS = lookupMemoryLeader(StoreRHS); 1374 if (StoreRHS != StoreAccess->getDefiningAccess()) 1375 addMemoryUsers(StoreRHS, StoreAccess); 1376 // If we are defined by ourselves, use the live on entry def. 1377 if (StoreRHS == StoreAccess) 1378 StoreRHS = MSSA->getLiveOnEntryDef(); 1379 1380 if (SI->isSimple()) { 1381 // See if we are defined by a previous store expression, it already has a 1382 // value, and it's the same value as our current store. FIXME: Right now, we 1383 // only do this for simple stores, we should expand to cover memcpys, etc. 1384 const auto *LastStore = createStoreExpression(SI, StoreRHS); 1385 const auto *LastCC = ExpressionToClass.lookup(LastStore); 1386 // We really want to check whether the expression we matched was a store. No 1387 // easy way to do that. However, we can check that the class we found has a 1388 // store, which, assuming the value numbering state is not corrupt, is 1389 // sufficient, because we must also be equivalent to that store's expression 1390 // for it to be in the same class as the load. 1391 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue()) 1392 return LastStore; 1393 // Also check if our value operand is defined by a load of the same memory 1394 // location, and the memory state is the same as it was then (otherwise, it 1395 // could have been overwritten later. See test32 in 1396 // transforms/DeadStoreElimination/simple.ll). 1397 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue())) 1398 if ((lookupOperandLeader(LI->getPointerOperand()) == 1399 LastStore->getOperand(0)) && 1400 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) == 1401 StoreRHS)) 1402 return LastStore; 1403 deleteExpression(LastStore); 1404 } 1405 1406 // If the store is not equivalent to anything, value number it as a store that 1407 // produces a unique memory state (instead of using it's MemoryUse, we use 1408 // it's MemoryDef). 1409 return createStoreExpression(SI, StoreAccess); 1410 } 1411 1412 // See if we can extract the value of a loaded pointer from a load, a store, or 1413 // a memory instruction. 1414 const Expression * 1415 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr, 1416 LoadInst *LI, Instruction *DepInst, 1417 MemoryAccess *DefiningAccess) const { 1418 assert((!LI || LI->isSimple()) && "Not a simple load"); 1419 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) { 1420 // Can't forward from non-atomic to atomic without violating memory model. 1421 // Also don't need to coerce if they are the same type, we will just 1422 // propagate. 1423 if (LI->isAtomic() > DepSI->isAtomic() || 1424 LoadType == DepSI->getValueOperand()->getType()) 1425 return nullptr; 1426 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL); 1427 if (Offset >= 0) { 1428 if (auto *C = dyn_cast<Constant>( 1429 lookupOperandLeader(DepSI->getValueOperand()))) { 1430 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI 1431 << " to constant " << *C << "\n"); 1432 return createConstantExpression( 1433 getConstantStoreValueForLoad(C, Offset, LoadType, DL)); 1434 } 1435 } 1436 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) { 1437 // Can't forward from non-atomic to atomic without violating memory model. 1438 if (LI->isAtomic() > DepLI->isAtomic()) 1439 return nullptr; 1440 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL); 1441 if (Offset >= 0) { 1442 // We can coerce a constant load into a load. 1443 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI))) 1444 if (auto *PossibleConstant = 1445 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) { 1446 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI 1447 << " to constant " << *PossibleConstant << "\n"); 1448 return createConstantExpression(PossibleConstant); 1449 } 1450 } 1451 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { 1452 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL); 1453 if (Offset >= 0) { 1454 if (auto *PossibleConstant = 1455 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) { 1456 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI 1457 << " to constant " << *PossibleConstant << "\n"); 1458 return createConstantExpression(PossibleConstant); 1459 } 1460 } 1461 } 1462 1463 // All of the below are only true if the loaded pointer is produced 1464 // by the dependent instruction. 1465 if (LoadPtr != lookupOperandLeader(DepInst) && 1466 !AA->isMustAlias(LoadPtr, DepInst)) 1467 return nullptr; 1468 // If this load really doesn't depend on anything, then we must be loading an 1469 // undef value. This can happen when loading for a fresh allocation with no 1470 // intervening stores, for example. Note that this is only true in the case 1471 // that the result of the allocation is pointer equal to the load ptr. 1472 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) { 1473 return createConstantExpression(UndefValue::get(LoadType)); 1474 } 1475 // If this load occurs either right after a lifetime begin, 1476 // then the loaded value is undefined. 1477 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) { 1478 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1479 return createConstantExpression(UndefValue::get(LoadType)); 1480 } 1481 // If this load follows a calloc (which zero initializes memory), 1482 // then the loaded value is zero 1483 else if (isCallocLikeFn(DepInst, TLI)) { 1484 return createConstantExpression(Constant::getNullValue(LoadType)); 1485 } 1486 1487 return nullptr; 1488 } 1489 1490 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const { 1491 auto *LI = cast<LoadInst>(I); 1492 1493 // We can eliminate in favor of non-simple loads, but we won't be able to 1494 // eliminate the loads themselves. 1495 if (!LI->isSimple()) 1496 return nullptr; 1497 1498 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand()); 1499 // Load of undef is undef. 1500 if (isa<UndefValue>(LoadAddressLeader)) 1501 return createConstantExpression(UndefValue::get(LI->getType())); 1502 MemoryAccess *OriginalAccess = getMemoryAccess(I); 1503 MemoryAccess *DefiningAccess = 1504 MSSAWalker->getClobberingMemoryAccess(OriginalAccess); 1505 1506 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) { 1507 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) { 1508 Instruction *DefiningInst = MD->getMemoryInst(); 1509 // If the defining instruction is not reachable, replace with undef. 1510 if (!ReachableBlocks.count(DefiningInst->getParent())) 1511 return createConstantExpression(UndefValue::get(LI->getType())); 1512 // This will handle stores and memory insts. We only do if it the 1513 // defining access has a different type, or it is a pointer produced by 1514 // certain memory operations that cause the memory to have a fixed value 1515 // (IE things like calloc). 1516 if (const auto *CoercionResult = 1517 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI, 1518 DefiningInst, DefiningAccess)) 1519 return CoercionResult; 1520 } 1521 } 1522 1523 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI, 1524 DefiningAccess); 1525 // If our MemoryLeader is not our defining access, add a use to the 1526 // MemoryLeader, so that we get reprocessed when it changes. 1527 if (LE->getMemoryLeader() != DefiningAccess) 1528 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess); 1529 return LE; 1530 } 1531 1532 const Expression * 1533 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const { 1534 auto *PI = PredInfo->getPredicateInfoFor(I); 1535 if (!PI) 1536 return nullptr; 1537 1538 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n"); 1539 1540 auto *PWC = dyn_cast<PredicateWithCondition>(PI); 1541 if (!PWC) 1542 return nullptr; 1543 1544 auto *CopyOf = I->getOperand(0); 1545 auto *Cond = PWC->Condition; 1546 1547 // If this a copy of the condition, it must be either true or false depending 1548 // on the predicate info type and edge. 1549 if (CopyOf == Cond) { 1550 // We should not need to add predicate users because the predicate info is 1551 // already a use of this operand. 1552 if (isa<PredicateAssume>(PI)) 1553 return createConstantExpression(ConstantInt::getTrue(Cond->getType())); 1554 if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) { 1555 if (PBranch->TrueEdge) 1556 return createConstantExpression(ConstantInt::getTrue(Cond->getType())); 1557 return createConstantExpression(ConstantInt::getFalse(Cond->getType())); 1558 } 1559 if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI)) 1560 return createConstantExpression(cast<Constant>(PSwitch->CaseValue)); 1561 } 1562 1563 // Not a copy of the condition, so see what the predicates tell us about this 1564 // value. First, though, we check to make sure the value is actually a copy 1565 // of one of the condition operands. It's possible, in certain cases, for it 1566 // to be a copy of a predicateinfo copy. In particular, if two branch 1567 // operations use the same condition, and one branch dominates the other, we 1568 // will end up with a copy of a copy. This is currently a small deficiency in 1569 // predicateinfo. What will end up happening here is that we will value 1570 // number both copies the same anyway. 1571 1572 // Everything below relies on the condition being a comparison. 1573 auto *Cmp = dyn_cast<CmpInst>(Cond); 1574 if (!Cmp) 1575 return nullptr; 1576 1577 if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) { 1578 LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n"); 1579 return nullptr; 1580 } 1581 Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0)); 1582 Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1)); 1583 bool SwappedOps = false; 1584 // Sort the ops. 1585 if (shouldSwapOperands(FirstOp, SecondOp)) { 1586 std::swap(FirstOp, SecondOp); 1587 SwappedOps = true; 1588 } 1589 CmpInst::Predicate Predicate = 1590 SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate(); 1591 1592 if (isa<PredicateAssume>(PI)) { 1593 // If we assume the operands are equal, then they are equal. 1594 if (Predicate == CmpInst::ICMP_EQ) { 1595 addPredicateUsers(PI, I); 1596 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0), 1597 I); 1598 return createVariableOrConstant(FirstOp); 1599 } 1600 } 1601 if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) { 1602 // If we are *not* a copy of the comparison, we may equal to the other 1603 // operand when the predicate implies something about equality of 1604 // operations. In particular, if the comparison is true/false when the 1605 // operands are equal, and we are on the right edge, we know this operation 1606 // is equal to something. 1607 if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) || 1608 (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) { 1609 addPredicateUsers(PI, I); 1610 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0), 1611 I); 1612 return createVariableOrConstant(FirstOp); 1613 } 1614 // Handle the special case of floating point. 1615 if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) || 1616 (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) && 1617 isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) { 1618 addPredicateUsers(PI, I); 1619 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0), 1620 I); 1621 return createConstantExpression(cast<Constant>(FirstOp)); 1622 } 1623 } 1624 return nullptr; 1625 } 1626 1627 // Evaluate read only and pure calls, and create an expression result. 1628 const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const { 1629 auto *CI = cast<CallInst>(I); 1630 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 1631 // Intrinsics with the returned attribute are copies of arguments. 1632 if (auto *ReturnedValue = II->getReturnedArgOperand()) { 1633 if (II->getIntrinsicID() == Intrinsic::ssa_copy) 1634 if (const auto *Result = performSymbolicPredicateInfoEvaluation(I)) 1635 return Result; 1636 return createVariableOrConstant(ReturnedValue); 1637 } 1638 } 1639 if (AA->doesNotAccessMemory(CI)) { 1640 return createCallExpression(CI, TOPClass->getMemoryLeader()); 1641 } else if (AA->onlyReadsMemory(CI)) { 1642 if (auto *MA = MSSA->getMemoryAccess(CI)) { 1643 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA); 1644 return createCallExpression(CI, DefiningAccess); 1645 } else // MSSA determined that CI does not access memory. 1646 return createCallExpression(CI, TOPClass->getMemoryLeader()); 1647 } 1648 return nullptr; 1649 } 1650 1651 // Retrieve the memory class for a given MemoryAccess. 1652 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const { 1653 auto *Result = MemoryAccessToClass.lookup(MA); 1654 assert(Result && "Should have found memory class"); 1655 return Result; 1656 } 1657 1658 // Update the MemoryAccess equivalence table to say that From is equal to To, 1659 // and return true if this is different from what already existed in the table. 1660 bool NewGVN::setMemoryClass(const MemoryAccess *From, 1661 CongruenceClass *NewClass) { 1662 assert(NewClass && 1663 "Every MemoryAccess should be getting mapped to a non-null class"); 1664 LLVM_DEBUG(dbgs() << "Setting " << *From); 1665 LLVM_DEBUG(dbgs() << " equivalent to congruence class "); 1666 LLVM_DEBUG(dbgs() << NewClass->getID() 1667 << " with current MemoryAccess leader "); 1668 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n"); 1669 1670 auto LookupResult = MemoryAccessToClass.find(From); 1671 bool Changed = false; 1672 // If it's already in the table, see if the value changed. 1673 if (LookupResult != MemoryAccessToClass.end()) { 1674 auto *OldClass = LookupResult->second; 1675 if (OldClass != NewClass) { 1676 // If this is a phi, we have to handle memory member updates. 1677 if (auto *MP = dyn_cast<MemoryPhi>(From)) { 1678 OldClass->memory_erase(MP); 1679 NewClass->memory_insert(MP); 1680 // This may have killed the class if it had no non-memory members 1681 if (OldClass->getMemoryLeader() == From) { 1682 if (OldClass->definesNoMemory()) { 1683 OldClass->setMemoryLeader(nullptr); 1684 } else { 1685 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 1686 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 1687 << OldClass->getID() << " to " 1688 << *OldClass->getMemoryLeader() 1689 << " due to removal of a memory member " << *From 1690 << "\n"); 1691 markMemoryLeaderChangeTouched(OldClass); 1692 } 1693 } 1694 } 1695 // It wasn't equivalent before, and now it is. 1696 LookupResult->second = NewClass; 1697 Changed = true; 1698 } 1699 } 1700 1701 return Changed; 1702 } 1703 1704 // Determine if a instruction is cycle-free. That means the values in the 1705 // instruction don't depend on any expressions that can change value as a result 1706 // of the instruction. For example, a non-cycle free instruction would be v = 1707 // phi(0, v+1). 1708 bool NewGVN::isCycleFree(const Instruction *I) const { 1709 // In order to compute cycle-freeness, we do SCC finding on the instruction, 1710 // and see what kind of SCC it ends up in. If it is a singleton, it is 1711 // cycle-free. If it is not in a singleton, it is only cycle free if the 1712 // other members are all phi nodes (as they do not compute anything, they are 1713 // copies). 1714 auto ICS = InstCycleState.lookup(I); 1715 if (ICS == ICS_Unknown) { 1716 SCCFinder.Start(I); 1717 auto &SCC = SCCFinder.getComponentFor(I); 1718 // It's cycle free if it's size 1 or the SCC is *only* phi nodes. 1719 if (SCC.size() == 1) 1720 InstCycleState.insert({I, ICS_CycleFree}); 1721 else { 1722 bool AllPhis = llvm::all_of(SCC, [](const Value *V) { 1723 return isa<PHINode>(V) || isCopyOfAPHI(V); 1724 }); 1725 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle; 1726 for (auto *Member : SCC) 1727 if (auto *MemberPhi = dyn_cast<PHINode>(Member)) 1728 InstCycleState.insert({MemberPhi, ICS}); 1729 } 1730 } 1731 if (ICS == ICS_Cycle) 1732 return false; 1733 return true; 1734 } 1735 1736 // Evaluate PHI nodes symbolically and create an expression result. 1737 const Expression * 1738 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps, 1739 Instruction *I, 1740 BasicBlock *PHIBlock) const { 1741 // True if one of the incoming phi edges is a backedge. 1742 bool HasBackedge = false; 1743 // All constant tracks the state of whether all the *original* phi operands 1744 // This is really shorthand for "this phi cannot cycle due to forward 1745 // change in value of the phi is guaranteed not to later change the value of 1746 // the phi. IE it can't be v = phi(undef, v+1) 1747 bool OriginalOpsConstant = true; 1748 auto *E = cast<PHIExpression>(createPHIExpression( 1749 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant)); 1750 // We match the semantics of SimplifyPhiNode from InstructionSimplify here. 1751 // See if all arguments are the same. 1752 // We track if any were undef because they need special handling. 1753 bool HasUndef = false; 1754 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) { 1755 if (isa<UndefValue>(Arg)) { 1756 HasUndef = true; 1757 return false; 1758 } 1759 return true; 1760 }); 1761 // If we are left with no operands, it's dead. 1762 if (Filtered.empty()) { 1763 // If it has undef at this point, it means there are no-non-undef arguments, 1764 // and thus, the value of the phi node must be undef. 1765 if (HasUndef) { 1766 LLVM_DEBUG( 1767 dbgs() << "PHI Node " << *I 1768 << " has no non-undef arguments, valuing it as undef\n"); 1769 return createConstantExpression(UndefValue::get(I->getType())); 1770 } 1771 1772 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n"); 1773 deleteExpression(E); 1774 return createDeadExpression(); 1775 } 1776 Value *AllSameValue = *(Filtered.begin()); 1777 ++Filtered.begin(); 1778 // Can't use std::equal here, sadly, because filter.begin moves. 1779 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) { 1780 // In LLVM's non-standard representation of phi nodes, it's possible to have 1781 // phi nodes with cycles (IE dependent on other phis that are .... dependent 1782 // on the original phi node), especially in weird CFG's where some arguments 1783 // are unreachable, or uninitialized along certain paths. This can cause 1784 // infinite loops during evaluation. We work around this by not trying to 1785 // really evaluate them independently, but instead using a variable 1786 // expression to say if one is equivalent to the other. 1787 // We also special case undef, so that if we have an undef, we can't use the 1788 // common value unless it dominates the phi block. 1789 if (HasUndef) { 1790 // If we have undef and at least one other value, this is really a 1791 // multivalued phi, and we need to know if it's cycle free in order to 1792 // evaluate whether we can ignore the undef. The other parts of this are 1793 // just shortcuts. If there is no backedge, or all operands are 1794 // constants, it also must be cycle free. 1795 if (HasBackedge && !OriginalOpsConstant && 1796 !isa<UndefValue>(AllSameValue) && !isCycleFree(I)) 1797 return E; 1798 1799 // Only have to check for instructions 1800 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue)) 1801 if (!someEquivalentDominates(AllSameInst, I)) 1802 return E; 1803 } 1804 // Can't simplify to something that comes later in the iteration. 1805 // Otherwise, when and if it changes congruence class, we will never catch 1806 // up. We will always be a class behind it. 1807 if (isa<Instruction>(AllSameValue) && 1808 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I)) 1809 return E; 1810 NumGVNPhisAllSame++; 1811 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue 1812 << "\n"); 1813 deleteExpression(E); 1814 return createVariableOrConstant(AllSameValue); 1815 } 1816 return E; 1817 } 1818 1819 const Expression * 1820 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const { 1821 if (auto *EI = dyn_cast<ExtractValueInst>(I)) { 1822 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); 1823 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) 1824 // EI is an extract from one of our with.overflow intrinsics. Synthesize 1825 // a semantically equivalent expression instead of an extract value 1826 // expression. 1827 return createBinaryExpression(WO->getBinaryOp(), EI->getType(), 1828 WO->getLHS(), WO->getRHS(), I); 1829 } 1830 1831 return createAggregateValueExpression(I); 1832 } 1833 1834 const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const { 1835 assert(isa<CmpInst>(I) && "Expected a cmp instruction."); 1836 1837 auto *CI = cast<CmpInst>(I); 1838 // See if our operands are equal to those of a previous predicate, and if so, 1839 // if it implies true or false. 1840 auto Op0 = lookupOperandLeader(CI->getOperand(0)); 1841 auto Op1 = lookupOperandLeader(CI->getOperand(1)); 1842 auto OurPredicate = CI->getPredicate(); 1843 if (shouldSwapOperands(Op0, Op1)) { 1844 std::swap(Op0, Op1); 1845 OurPredicate = CI->getSwappedPredicate(); 1846 } 1847 1848 // Avoid processing the same info twice. 1849 const PredicateBase *LastPredInfo = nullptr; 1850 // See if we know something about the comparison itself, like it is the target 1851 // of an assume. 1852 auto *CmpPI = PredInfo->getPredicateInfoFor(I); 1853 if (dyn_cast_or_null<PredicateAssume>(CmpPI)) 1854 return createConstantExpression(ConstantInt::getTrue(CI->getType())); 1855 1856 if (Op0 == Op1) { 1857 // This condition does not depend on predicates, no need to add users 1858 if (CI->isTrueWhenEqual()) 1859 return createConstantExpression(ConstantInt::getTrue(CI->getType())); 1860 else if (CI->isFalseWhenEqual()) 1861 return createConstantExpression(ConstantInt::getFalse(CI->getType())); 1862 } 1863 1864 // NOTE: Because we are comparing both operands here and below, and using 1865 // previous comparisons, we rely on fact that predicateinfo knows to mark 1866 // comparisons that use renamed operands as users of the earlier comparisons. 1867 // It is *not* enough to just mark predicateinfo renamed operands as users of 1868 // the earlier comparisons, because the *other* operand may have changed in a 1869 // previous iteration. 1870 // Example: 1871 // icmp slt %a, %b 1872 // %b.0 = ssa.copy(%b) 1873 // false branch: 1874 // icmp slt %c, %b.0 1875 1876 // %c and %a may start out equal, and thus, the code below will say the second 1877 // %icmp is false. c may become equal to something else, and in that case the 1878 // %second icmp *must* be reexamined, but would not if only the renamed 1879 // %operands are considered users of the icmp. 1880 1881 // *Currently* we only check one level of comparisons back, and only mark one 1882 // level back as touched when changes happen. If you modify this code to look 1883 // back farther through comparisons, you *must* mark the appropriate 1884 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if 1885 // we know something just from the operands themselves 1886 1887 // See if our operands have predicate info, so that we may be able to derive 1888 // something from a previous comparison. 1889 for (const auto &Op : CI->operands()) { 1890 auto *PI = PredInfo->getPredicateInfoFor(Op); 1891 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) { 1892 if (PI == LastPredInfo) 1893 continue; 1894 LastPredInfo = PI; 1895 // In phi of ops cases, we may have predicate info that we are evaluating 1896 // in a different context. 1897 if (!DT->dominates(PBranch->To, getBlockForValue(I))) 1898 continue; 1899 // TODO: Along the false edge, we may know more things too, like 1900 // icmp of 1901 // same operands is false. 1902 // TODO: We only handle actual comparison conditions below, not 1903 // and/or. 1904 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition); 1905 if (!BranchCond) 1906 continue; 1907 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0)); 1908 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1)); 1909 auto BranchPredicate = BranchCond->getPredicate(); 1910 if (shouldSwapOperands(BranchOp0, BranchOp1)) { 1911 std::swap(BranchOp0, BranchOp1); 1912 BranchPredicate = BranchCond->getSwappedPredicate(); 1913 } 1914 if (BranchOp0 == Op0 && BranchOp1 == Op1) { 1915 if (PBranch->TrueEdge) { 1916 // If we know the previous predicate is true and we are in the true 1917 // edge then we may be implied true or false. 1918 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate, 1919 OurPredicate)) { 1920 addPredicateUsers(PI, I); 1921 return createConstantExpression( 1922 ConstantInt::getTrue(CI->getType())); 1923 } 1924 1925 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate, 1926 OurPredicate)) { 1927 addPredicateUsers(PI, I); 1928 return createConstantExpression( 1929 ConstantInt::getFalse(CI->getType())); 1930 } 1931 } else { 1932 // Just handle the ne and eq cases, where if we have the same 1933 // operands, we may know something. 1934 if (BranchPredicate == OurPredicate) { 1935 addPredicateUsers(PI, I); 1936 // Same predicate, same ops,we know it was false, so this is false. 1937 return createConstantExpression( 1938 ConstantInt::getFalse(CI->getType())); 1939 } else if (BranchPredicate == 1940 CmpInst::getInversePredicate(OurPredicate)) { 1941 addPredicateUsers(PI, I); 1942 // Inverse predicate, we know the other was false, so this is true. 1943 return createConstantExpression( 1944 ConstantInt::getTrue(CI->getType())); 1945 } 1946 } 1947 } 1948 } 1949 } 1950 // Create expression will take care of simplifyCmpInst 1951 return createExpression(I); 1952 } 1953 1954 // Substitute and symbolize the value before value numbering. 1955 const Expression * 1956 NewGVN::performSymbolicEvaluation(Value *V, 1957 SmallPtrSetImpl<Value *> &Visited) const { 1958 const Expression *E = nullptr; 1959 if (auto *C = dyn_cast<Constant>(V)) 1960 E = createConstantExpression(C); 1961 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { 1962 E = createVariableExpression(V); 1963 } else { 1964 // TODO: memory intrinsics. 1965 // TODO: Some day, we should do the forward propagation and reassociation 1966 // parts of the algorithm. 1967 auto *I = cast<Instruction>(V); 1968 switch (I->getOpcode()) { 1969 case Instruction::ExtractValue: 1970 case Instruction::InsertValue: 1971 E = performSymbolicAggrValueEvaluation(I); 1972 break; 1973 case Instruction::PHI: { 1974 SmallVector<ValPair, 3> Ops; 1975 auto *PN = cast<PHINode>(I); 1976 for (unsigned i = 0; i < PN->getNumOperands(); ++i) 1977 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)}); 1978 // Sort to ensure the invariant createPHIExpression requires is met. 1979 sortPHIOps(Ops); 1980 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I)); 1981 } break; 1982 case Instruction::Call: 1983 E = performSymbolicCallEvaluation(I); 1984 break; 1985 case Instruction::Store: 1986 E = performSymbolicStoreEvaluation(I); 1987 break; 1988 case Instruction::Load: 1989 E = performSymbolicLoadEvaluation(I); 1990 break; 1991 case Instruction::BitCast: 1992 case Instruction::AddrSpaceCast: 1993 E = createExpression(I); 1994 break; 1995 case Instruction::ICmp: 1996 case Instruction::FCmp: 1997 E = performSymbolicCmpEvaluation(I); 1998 break; 1999 case Instruction::FNeg: 2000 case Instruction::Add: 2001 case Instruction::FAdd: 2002 case Instruction::Sub: 2003 case Instruction::FSub: 2004 case Instruction::Mul: 2005 case Instruction::FMul: 2006 case Instruction::UDiv: 2007 case Instruction::SDiv: 2008 case Instruction::FDiv: 2009 case Instruction::URem: 2010 case Instruction::SRem: 2011 case Instruction::FRem: 2012 case Instruction::Shl: 2013 case Instruction::LShr: 2014 case Instruction::AShr: 2015 case Instruction::And: 2016 case Instruction::Or: 2017 case Instruction::Xor: 2018 case Instruction::Trunc: 2019 case Instruction::ZExt: 2020 case Instruction::SExt: 2021 case Instruction::FPToUI: 2022 case Instruction::FPToSI: 2023 case Instruction::UIToFP: 2024 case Instruction::SIToFP: 2025 case Instruction::FPTrunc: 2026 case Instruction::FPExt: 2027 case Instruction::PtrToInt: 2028 case Instruction::IntToPtr: 2029 case Instruction::Select: 2030 case Instruction::ExtractElement: 2031 case Instruction::InsertElement: 2032 case Instruction::ShuffleVector: 2033 case Instruction::GetElementPtr: 2034 E = createExpression(I); 2035 break; 2036 default: 2037 return nullptr; 2038 } 2039 } 2040 return E; 2041 } 2042 2043 // Look up a container in a map, and then call a function for each thing in the 2044 // found container. 2045 template <typename Map, typename KeyType, typename Func> 2046 void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) { 2047 const auto Result = M.find_as(Key); 2048 if (Result != M.end()) 2049 for (typename Map::mapped_type::value_type Mapped : Result->second) 2050 F(Mapped); 2051 } 2052 2053 // Look up a container of values/instructions in a map, and touch all the 2054 // instructions in the container. Then erase value from the map. 2055 template <typename Map, typename KeyType> 2056 void NewGVN::touchAndErase(Map &M, const KeyType &Key) { 2057 const auto Result = M.find_as(Key); 2058 if (Result != M.end()) { 2059 for (const typename Map::mapped_type::value_type Mapped : Result->second) 2060 TouchedInstructions.set(InstrToDFSNum(Mapped)); 2061 M.erase(Result); 2062 } 2063 } 2064 2065 void NewGVN::addAdditionalUsers(Value *To, Value *User) const { 2066 assert(User && To != User); 2067 if (isa<Instruction>(To)) 2068 AdditionalUsers[To].insert(User); 2069 } 2070 2071 void NewGVN::markUsersTouched(Value *V) { 2072 // Now mark the users as touched. 2073 for (auto *User : V->users()) { 2074 assert(isa<Instruction>(User) && "Use of value not within an instruction?"); 2075 TouchedInstructions.set(InstrToDFSNum(User)); 2076 } 2077 touchAndErase(AdditionalUsers, V); 2078 } 2079 2080 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const { 2081 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n"); 2082 MemoryToUsers[To].insert(U); 2083 } 2084 2085 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) { 2086 TouchedInstructions.set(MemoryToDFSNum(MA)); 2087 } 2088 2089 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) { 2090 if (isa<MemoryUse>(MA)) 2091 return; 2092 for (auto U : MA->users()) 2093 TouchedInstructions.set(MemoryToDFSNum(U)); 2094 touchAndErase(MemoryToUsers, MA); 2095 } 2096 2097 // Add I to the set of users of a given predicate. 2098 void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const { 2099 // Don't add temporary instructions to the user lists. 2100 if (AllTempInstructions.count(I)) 2101 return; 2102 2103 if (auto *PBranch = dyn_cast<PredicateBranch>(PB)) 2104 PredicateToUsers[PBranch->Condition].insert(I); 2105 else if (auto *PAssume = dyn_cast<PredicateAssume>(PB)) 2106 PredicateToUsers[PAssume->Condition].insert(I); 2107 } 2108 2109 // Touch all the predicates that depend on this instruction. 2110 void NewGVN::markPredicateUsersTouched(Instruction *I) { 2111 touchAndErase(PredicateToUsers, I); 2112 } 2113 2114 // Mark users affected by a memory leader change. 2115 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) { 2116 for (auto M : CC->memory()) 2117 markMemoryDefTouched(M); 2118 } 2119 2120 // Touch the instructions that need to be updated after a congruence class has a 2121 // leader change, and mark changed values. 2122 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) { 2123 for (auto M : *CC) { 2124 if (auto *I = dyn_cast<Instruction>(M)) 2125 TouchedInstructions.set(InstrToDFSNum(I)); 2126 LeaderChanges.insert(M); 2127 } 2128 } 2129 2130 // Give a range of things that have instruction DFS numbers, this will return 2131 // the member of the range with the smallest dfs number. 2132 template <class T, class Range> 2133 T *NewGVN::getMinDFSOfRange(const Range &R) const { 2134 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U}; 2135 for (const auto X : R) { 2136 auto DFSNum = InstrToDFSNum(X); 2137 if (DFSNum < MinDFS.second) 2138 MinDFS = {X, DFSNum}; 2139 } 2140 return MinDFS.first; 2141 } 2142 2143 // This function returns the MemoryAccess that should be the next leader of 2144 // congruence class CC, under the assumption that the current leader is going to 2145 // disappear. 2146 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const { 2147 // TODO: If this ends up to slow, we can maintain a next memory leader like we 2148 // do for regular leaders. 2149 // Make sure there will be a leader to find. 2150 assert(!CC->definesNoMemory() && "Can't get next leader if there is none"); 2151 if (CC->getStoreCount() > 0) { 2152 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first)) 2153 return getMemoryAccess(NL); 2154 // Find the store with the minimum DFS number. 2155 auto *V = getMinDFSOfRange<Value>(make_filter_range( 2156 *CC, [&](const Value *V) { return isa<StoreInst>(V); })); 2157 return getMemoryAccess(cast<StoreInst>(V)); 2158 } 2159 assert(CC->getStoreCount() == 0); 2160 2161 // Given our assertion, hitting this part must mean 2162 // !OldClass->memory_empty() 2163 if (CC->memory_size() == 1) 2164 return *CC->memory_begin(); 2165 return getMinDFSOfRange<const MemoryPhi>(CC->memory()); 2166 } 2167 2168 // This function returns the next value leader of a congruence class, under the 2169 // assumption that the current leader is going away. This should end up being 2170 // the next most dominating member. 2171 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const { 2172 // We don't need to sort members if there is only 1, and we don't care about 2173 // sorting the TOP class because everything either gets out of it or is 2174 // unreachable. 2175 2176 if (CC->size() == 1 || CC == TOPClass) { 2177 return *(CC->begin()); 2178 } else if (CC->getNextLeader().first) { 2179 ++NumGVNAvoidedSortedLeaderChanges; 2180 return CC->getNextLeader().first; 2181 } else { 2182 ++NumGVNSortedLeaderChanges; 2183 // NOTE: If this ends up to slow, we can maintain a dual structure for 2184 // member testing/insertion, or keep things mostly sorted, and sort only 2185 // here, or use SparseBitVector or .... 2186 return getMinDFSOfRange<Value>(*CC); 2187 } 2188 } 2189 2190 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to 2191 // the memory members, etc for the move. 2192 // 2193 // The invariants of this function are: 2194 // 2195 // - I must be moving to NewClass from OldClass 2196 // - The StoreCount of OldClass and NewClass is expected to have been updated 2197 // for I already if it is a store. 2198 // - The OldClass memory leader has not been updated yet if I was the leader. 2199 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I, 2200 MemoryAccess *InstMA, 2201 CongruenceClass *OldClass, 2202 CongruenceClass *NewClass) { 2203 // If the leader is I, and we had a representative MemoryAccess, it should 2204 // be the MemoryAccess of OldClass. 2205 assert((!InstMA || !OldClass->getMemoryLeader() || 2206 OldClass->getLeader() != I || 2207 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) == 2208 MemoryAccessToClass.lookup(InstMA)) && 2209 "Representative MemoryAccess mismatch"); 2210 // First, see what happens to the new class 2211 if (!NewClass->getMemoryLeader()) { 2212 // Should be a new class, or a store becoming a leader of a new class. 2213 assert(NewClass->size() == 1 || 2214 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1)); 2215 NewClass->setMemoryLeader(InstMA); 2216 // Mark it touched if we didn't just create a singleton 2217 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2218 << NewClass->getID() 2219 << " due to new memory instruction becoming leader\n"); 2220 markMemoryLeaderChangeTouched(NewClass); 2221 } 2222 setMemoryClass(InstMA, NewClass); 2223 // Now, fixup the old class if necessary 2224 if (OldClass->getMemoryLeader() == InstMA) { 2225 if (!OldClass->definesNoMemory()) { 2226 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass)); 2227 LLVM_DEBUG(dbgs() << "Memory class leader change for class " 2228 << OldClass->getID() << " to " 2229 << *OldClass->getMemoryLeader() 2230 << " due to removal of old leader " << *InstMA << "\n"); 2231 markMemoryLeaderChangeTouched(OldClass); 2232 } else 2233 OldClass->setMemoryLeader(nullptr); 2234 } 2235 } 2236 2237 // Move a value, currently in OldClass, to be part of NewClass 2238 // Update OldClass and NewClass for the move (including changing leaders, etc). 2239 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E, 2240 CongruenceClass *OldClass, 2241 CongruenceClass *NewClass) { 2242 if (I == OldClass->getNextLeader().first) 2243 OldClass->resetNextLeader(); 2244 2245 OldClass->erase(I); 2246 NewClass->insert(I); 2247 2248 if (NewClass->getLeader() != I) 2249 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)}); 2250 // Handle our special casing of stores. 2251 if (auto *SI = dyn_cast<StoreInst>(I)) { 2252 OldClass->decStoreCount(); 2253 // Okay, so when do we want to make a store a leader of a class? 2254 // If we have a store defined by an earlier load, we want the earlier load 2255 // to lead the class. 2256 // If we have a store defined by something else, we want the store to lead 2257 // the class so everything else gets the "something else" as a value. 2258 // If we have a store as the single member of the class, we want the store 2259 // as the leader 2260 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) { 2261 // If it's a store expression we are using, it means we are not equivalent 2262 // to something earlier. 2263 if (auto *SE = dyn_cast<StoreExpression>(E)) { 2264 NewClass->setStoredValue(SE->getStoredValue()); 2265 markValueLeaderChangeTouched(NewClass); 2266 // Shift the new class leader to be the store 2267 LLVM_DEBUG(dbgs() << "Changing leader of congruence class " 2268 << NewClass->getID() << " from " 2269 << *NewClass->getLeader() << " to " << *SI 2270 << " because store joined class\n"); 2271 // If we changed the leader, we have to mark it changed because we don't 2272 // know what it will do to symbolic evaluation. 2273 NewClass->setLeader(SI); 2274 } 2275 // We rely on the code below handling the MemoryAccess change. 2276 } 2277 NewClass->incStoreCount(); 2278 } 2279 // True if there is no memory instructions left in a class that had memory 2280 // instructions before. 2281 2282 // If it's not a memory use, set the MemoryAccess equivalence 2283 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I)); 2284 if (InstMA) 2285 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass); 2286 ValueToClass[I] = NewClass; 2287 // See if we destroyed the class or need to swap leaders. 2288 if (OldClass->empty() && OldClass != TOPClass) { 2289 if (OldClass->getDefiningExpr()) { 2290 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr() 2291 << " from table\n"); 2292 // We erase it as an exact expression to make sure we don't just erase an 2293 // equivalent one. 2294 auto Iter = ExpressionToClass.find_as( 2295 ExactEqualsExpression(*OldClass->getDefiningExpr())); 2296 if (Iter != ExpressionToClass.end()) 2297 ExpressionToClass.erase(Iter); 2298 #ifdef EXPENSIVE_CHECKS 2299 assert( 2300 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) && 2301 "We erased the expression we just inserted, which should not happen"); 2302 #endif 2303 } 2304 } else if (OldClass->getLeader() == I) { 2305 // When the leader changes, the value numbering of 2306 // everything may change due to symbolization changes, so we need to 2307 // reprocess. 2308 LLVM_DEBUG(dbgs() << "Value class leader change for class " 2309 << OldClass->getID() << "\n"); 2310 ++NumGVNLeaderChanges; 2311 // Destroy the stored value if there are no more stores to represent it. 2312 // Note that this is basically clean up for the expression removal that 2313 // happens below. If we remove stores from a class, we may leave it as a 2314 // class of equivalent memory phis. 2315 if (OldClass->getStoreCount() == 0) { 2316 if (OldClass->getStoredValue()) 2317 OldClass->setStoredValue(nullptr); 2318 } 2319 OldClass->setLeader(getNextValueLeader(OldClass)); 2320 OldClass->resetNextLeader(); 2321 markValueLeaderChangeTouched(OldClass); 2322 } 2323 } 2324 2325 // For a given expression, mark the phi of ops instructions that could have 2326 // changed as a result. 2327 void NewGVN::markPhiOfOpsChanged(const Expression *E) { 2328 touchAndErase(ExpressionToPhiOfOps, E); 2329 } 2330 2331 // Perform congruence finding on a given value numbering expression. 2332 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) { 2333 // This is guaranteed to return something, since it will at least find 2334 // TOP. 2335 2336 CongruenceClass *IClass = ValueToClass.lookup(I); 2337 assert(IClass && "Should have found a IClass"); 2338 // Dead classes should have been eliminated from the mapping. 2339 assert(!IClass->isDead() && "Found a dead class"); 2340 2341 CongruenceClass *EClass = nullptr; 2342 if (const auto *VE = dyn_cast<VariableExpression>(E)) { 2343 EClass = ValueToClass.lookup(VE->getVariableValue()); 2344 } else if (isa<DeadExpression>(E)) { 2345 EClass = TOPClass; 2346 } 2347 if (!EClass) { 2348 auto lookupResult = ExpressionToClass.insert({E, nullptr}); 2349 2350 // If it's not in the value table, create a new congruence class. 2351 if (lookupResult.second) { 2352 CongruenceClass *NewClass = createCongruenceClass(nullptr, E); 2353 auto place = lookupResult.first; 2354 place->second = NewClass; 2355 2356 // Constants and variables should always be made the leader. 2357 if (const auto *CE = dyn_cast<ConstantExpression>(E)) { 2358 NewClass->setLeader(CE->getConstantValue()); 2359 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) { 2360 StoreInst *SI = SE->getStoreInst(); 2361 NewClass->setLeader(SI); 2362 NewClass->setStoredValue(SE->getStoredValue()); 2363 // The RepMemoryAccess field will be filled in properly by the 2364 // moveValueToNewCongruenceClass call. 2365 } else { 2366 NewClass->setLeader(I); 2367 } 2368 assert(!isa<VariableExpression>(E) && 2369 "VariableExpression should have been handled already"); 2370 2371 EClass = NewClass; 2372 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I 2373 << " using expression " << *E << " at " 2374 << NewClass->getID() << " and leader " 2375 << *(NewClass->getLeader())); 2376 if (NewClass->getStoredValue()) 2377 LLVM_DEBUG(dbgs() << " and stored value " 2378 << *(NewClass->getStoredValue())); 2379 LLVM_DEBUG(dbgs() << "\n"); 2380 } else { 2381 EClass = lookupResult.first->second; 2382 if (isa<ConstantExpression>(E)) 2383 assert((isa<Constant>(EClass->getLeader()) || 2384 (EClass->getStoredValue() && 2385 isa<Constant>(EClass->getStoredValue()))) && 2386 "Any class with a constant expression should have a " 2387 "constant leader"); 2388 2389 assert(EClass && "Somehow don't have an eclass"); 2390 2391 assert(!EClass->isDead() && "We accidentally looked up a dead class"); 2392 } 2393 } 2394 bool ClassChanged = IClass != EClass; 2395 bool LeaderChanged = LeaderChanges.erase(I); 2396 if (ClassChanged || LeaderChanged) { 2397 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " 2398 << *E << "\n"); 2399 if (ClassChanged) { 2400 moveValueToNewCongruenceClass(I, E, IClass, EClass); 2401 markPhiOfOpsChanged(E); 2402 } 2403 2404 markUsersTouched(I); 2405 if (MemoryAccess *MA = getMemoryAccess(I)) 2406 markMemoryUsersTouched(MA); 2407 if (auto *CI = dyn_cast<CmpInst>(I)) 2408 markPredicateUsersTouched(CI); 2409 } 2410 // If we changed the class of the store, we want to ensure nothing finds the 2411 // old store expression. In particular, loads do not compare against stored 2412 // value, so they will find old store expressions (and associated class 2413 // mappings) if we leave them in the table. 2414 if (ClassChanged && isa<StoreInst>(I)) { 2415 auto *OldE = ValueToExpression.lookup(I); 2416 // It could just be that the old class died. We don't want to erase it if we 2417 // just moved classes. 2418 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) { 2419 // Erase this as an exact expression to ensure we don't erase expressions 2420 // equivalent to it. 2421 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE)); 2422 if (Iter != ExpressionToClass.end()) 2423 ExpressionToClass.erase(Iter); 2424 } 2425 } 2426 ValueToExpression[I] = E; 2427 } 2428 2429 // Process the fact that Edge (from, to) is reachable, including marking 2430 // any newly reachable blocks and instructions for processing. 2431 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) { 2432 // Check if the Edge was reachable before. 2433 if (ReachableEdges.insert({From, To}).second) { 2434 // If this block wasn't reachable before, all instructions are touched. 2435 if (ReachableBlocks.insert(To).second) { 2436 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2437 << " marked reachable\n"); 2438 const auto &InstRange = BlockInstRange.lookup(To); 2439 TouchedInstructions.set(InstRange.first, InstRange.second); 2440 } else { 2441 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To) 2442 << " was reachable, but new edge {" 2443 << getBlockName(From) << "," << getBlockName(To) 2444 << "} to it found\n"); 2445 2446 // We've made an edge reachable to an existing block, which may 2447 // impact predicates. Otherwise, only mark the phi nodes as touched, as 2448 // they are the only thing that depend on new edges. Anything using their 2449 // values will get propagated to if necessary. 2450 if (MemoryAccess *MemPhi = getMemoryAccess(To)) 2451 TouchedInstructions.set(InstrToDFSNum(MemPhi)); 2452 2453 // FIXME: We should just add a union op on a Bitvector and 2454 // SparseBitVector. We can do it word by word faster than we are doing it 2455 // here. 2456 for (auto InstNum : RevisitOnReachabilityChange[To]) 2457 TouchedInstructions.set(InstNum); 2458 } 2459 } 2460 } 2461 2462 // Given a predicate condition (from a switch, cmp, or whatever) and a block, 2463 // see if we know some constant value for it already. 2464 Value *NewGVN::findConditionEquivalence(Value *Cond) const { 2465 auto Result = lookupOperandLeader(Cond); 2466 return isa<Constant>(Result) ? Result : nullptr; 2467 } 2468 2469 // Process the outgoing edges of a block for reachability. 2470 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) { 2471 // Evaluate reachability of terminator instruction. 2472 Value *Cond; 2473 BasicBlock *TrueSucc, *FalseSucc; 2474 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) { 2475 Value *CondEvaluated = findConditionEquivalence(Cond); 2476 if (!CondEvaluated) { 2477 if (auto *I = dyn_cast<Instruction>(Cond)) { 2478 const Expression *E = createExpression(I); 2479 if (const auto *CE = dyn_cast<ConstantExpression>(E)) { 2480 CondEvaluated = CE->getConstantValue(); 2481 } 2482 } else if (isa<ConstantInt>(Cond)) { 2483 CondEvaluated = Cond; 2484 } 2485 } 2486 ConstantInt *CI; 2487 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) { 2488 if (CI->isOne()) { 2489 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2490 << " evaluated to true\n"); 2491 updateReachableEdge(B, TrueSucc); 2492 } else if (CI->isZero()) { 2493 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI 2494 << " evaluated to false\n"); 2495 updateReachableEdge(B, FalseSucc); 2496 } 2497 } else { 2498 updateReachableEdge(B, TrueSucc); 2499 updateReachableEdge(B, FalseSucc); 2500 } 2501 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 2502 // For switches, propagate the case values into the case 2503 // destinations. 2504 2505 Value *SwitchCond = SI->getCondition(); 2506 Value *CondEvaluated = findConditionEquivalence(SwitchCond); 2507 // See if we were able to turn this switch statement into a constant. 2508 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) { 2509 auto *CondVal = cast<ConstantInt>(CondEvaluated); 2510 // We should be able to get case value for this. 2511 auto Case = *SI->findCaseValue(CondVal); 2512 if (Case.getCaseSuccessor() == SI->getDefaultDest()) { 2513 // We proved the value is outside of the range of the case. 2514 // We can't do anything other than mark the default dest as reachable, 2515 // and go home. 2516 updateReachableEdge(B, SI->getDefaultDest()); 2517 return; 2518 } 2519 // Now get where it goes and mark it reachable. 2520 BasicBlock *TargetBlock = Case.getCaseSuccessor(); 2521 updateReachableEdge(B, TargetBlock); 2522 } else { 2523 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { 2524 BasicBlock *TargetBlock = SI->getSuccessor(i); 2525 updateReachableEdge(B, TargetBlock); 2526 } 2527 } 2528 } else { 2529 // Otherwise this is either unconditional, or a type we have no 2530 // idea about. Just mark successors as reachable. 2531 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 2532 BasicBlock *TargetBlock = TI->getSuccessor(i); 2533 updateReachableEdge(B, TargetBlock); 2534 } 2535 2536 // This also may be a memory defining terminator, in which case, set it 2537 // equivalent only to itself. 2538 // 2539 auto *MA = getMemoryAccess(TI); 2540 if (MA && !isa<MemoryUse>(MA)) { 2541 auto *CC = ensureLeaderOfMemoryClass(MA); 2542 if (setMemoryClass(MA, CC)) 2543 markMemoryUsersTouched(MA); 2544 } 2545 } 2546 } 2547 2548 // Remove the PHI of Ops PHI for I 2549 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) { 2550 InstrDFS.erase(PHITemp); 2551 // It's still a temp instruction. We keep it in the array so it gets erased. 2552 // However, it's no longer used by I, or in the block 2553 TempToBlock.erase(PHITemp); 2554 RealToTemp.erase(I); 2555 // We don't remove the users from the phi node uses. This wastes a little 2556 // time, but such is life. We could use two sets to track which were there 2557 // are the start of NewGVN, and which were added, but right nowt he cost of 2558 // tracking is more than the cost of checking for more phi of ops. 2559 } 2560 2561 // Add PHI Op in BB as a PHI of operations version of ExistingValue. 2562 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB, 2563 Instruction *ExistingValue) { 2564 InstrDFS[Op] = InstrToDFSNum(ExistingValue); 2565 AllTempInstructions.insert(Op); 2566 TempToBlock[Op] = BB; 2567 RealToTemp[ExistingValue] = Op; 2568 // Add all users to phi node use, as they are now uses of the phi of ops phis 2569 // and may themselves be phi of ops. 2570 for (auto *U : ExistingValue->users()) 2571 if (auto *UI = dyn_cast<Instruction>(U)) 2572 PHINodeUses.insert(UI); 2573 } 2574 2575 static bool okayForPHIOfOps(const Instruction *I) { 2576 if (!EnablePhiOfOps) 2577 return false; 2578 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) || 2579 isa<LoadInst>(I); 2580 } 2581 2582 bool NewGVN::OpIsSafeForPHIOfOpsHelper( 2583 Value *V, const BasicBlock *PHIBlock, 2584 SmallPtrSetImpl<const Value *> &Visited, 2585 SmallVectorImpl<Instruction *> &Worklist) { 2586 2587 if (!isa<Instruction>(V)) 2588 return true; 2589 auto OISIt = OpSafeForPHIOfOps.find(V); 2590 if (OISIt != OpSafeForPHIOfOps.end()) 2591 return OISIt->second; 2592 2593 // Keep walking until we either dominate the phi block, or hit a phi, or run 2594 // out of things to check. 2595 if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) { 2596 OpSafeForPHIOfOps.insert({V, true}); 2597 return true; 2598 } 2599 // PHI in the same block. 2600 if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) { 2601 OpSafeForPHIOfOps.insert({V, false}); 2602 return false; 2603 } 2604 2605 auto *OrigI = cast<Instruction>(V); 2606 for (auto *Op : OrigI->operand_values()) { 2607 if (!isa<Instruction>(Op)) 2608 continue; 2609 // Stop now if we find an unsafe operand. 2610 auto OISIt = OpSafeForPHIOfOps.find(OrigI); 2611 if (OISIt != OpSafeForPHIOfOps.end()) { 2612 if (!OISIt->second) { 2613 OpSafeForPHIOfOps.insert({V, false}); 2614 return false; 2615 } 2616 continue; 2617 } 2618 if (!Visited.insert(Op).second) 2619 continue; 2620 Worklist.push_back(cast<Instruction>(Op)); 2621 } 2622 return true; 2623 } 2624 2625 // Return true if this operand will be safe to use for phi of ops. 2626 // 2627 // The reason some operands are unsafe is that we are not trying to recursively 2628 // translate everything back through phi nodes. We actually expect some lookups 2629 // of expressions to fail. In particular, a lookup where the expression cannot 2630 // exist in the predecessor. This is true even if the expression, as shown, can 2631 // be determined to be constant. 2632 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock, 2633 SmallPtrSetImpl<const Value *> &Visited) { 2634 SmallVector<Instruction *, 4> Worklist; 2635 if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist)) 2636 return false; 2637 while (!Worklist.empty()) { 2638 auto *I = Worklist.pop_back_val(); 2639 if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist)) 2640 return false; 2641 } 2642 OpSafeForPHIOfOps.insert({V, true}); 2643 return true; 2644 } 2645 2646 // Try to find a leader for instruction TransInst, which is a phi translated 2647 // version of something in our original program. Visited is used to ensure we 2648 // don't infinite loop during translations of cycles. OrigInst is the 2649 // instruction in the original program, and PredBB is the predecessor we 2650 // translated it through. 2651 Value *NewGVN::findLeaderForInst(Instruction *TransInst, 2652 SmallPtrSetImpl<Value *> &Visited, 2653 MemoryAccess *MemAccess, Instruction *OrigInst, 2654 BasicBlock *PredBB) { 2655 unsigned IDFSNum = InstrToDFSNum(OrigInst); 2656 // Make sure it's marked as a temporary instruction. 2657 AllTempInstructions.insert(TransInst); 2658 // and make sure anything that tries to add it's DFS number is 2659 // redirected to the instruction we are making a phi of ops 2660 // for. 2661 TempToBlock.insert({TransInst, PredBB}); 2662 InstrDFS.insert({TransInst, IDFSNum}); 2663 2664 const Expression *E = performSymbolicEvaluation(TransInst, Visited); 2665 InstrDFS.erase(TransInst); 2666 AllTempInstructions.erase(TransInst); 2667 TempToBlock.erase(TransInst); 2668 if (MemAccess) 2669 TempToMemory.erase(TransInst); 2670 if (!E) 2671 return nullptr; 2672 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB); 2673 if (!FoundVal) { 2674 ExpressionToPhiOfOps[E].insert(OrigInst); 2675 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst 2676 << " in block " << getBlockName(PredBB) << "\n"); 2677 return nullptr; 2678 } 2679 if (auto *SI = dyn_cast<StoreInst>(FoundVal)) 2680 FoundVal = SI->getValueOperand(); 2681 return FoundVal; 2682 } 2683 2684 // When we see an instruction that is an op of phis, generate the equivalent phi 2685 // of ops form. 2686 const Expression * 2687 NewGVN::makePossiblePHIOfOps(Instruction *I, 2688 SmallPtrSetImpl<Value *> &Visited) { 2689 if (!okayForPHIOfOps(I)) 2690 return nullptr; 2691 2692 if (!Visited.insert(I).second) 2693 return nullptr; 2694 // For now, we require the instruction be cycle free because we don't 2695 // *always* create a phi of ops for instructions that could be done as phi 2696 // of ops, we only do it if we think it is useful. If we did do it all the 2697 // time, we could remove the cycle free check. 2698 if (!isCycleFree(I)) 2699 return nullptr; 2700 2701 SmallPtrSet<const Value *, 8> ProcessedPHIs; 2702 // TODO: We don't do phi translation on memory accesses because it's 2703 // complicated. For a load, we'd need to be able to simulate a new memoryuse, 2704 // which we don't have a good way of doing ATM. 2705 auto *MemAccess = getMemoryAccess(I); 2706 // If the memory operation is defined by a memory operation this block that 2707 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi 2708 // can't help, as it would still be killed by that memory operation. 2709 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) && 2710 MemAccess->getDefiningAccess()->getBlock() == I->getParent()) 2711 return nullptr; 2712 2713 // Convert op of phis to phi of ops 2714 SmallPtrSet<const Value *, 10> VisitedOps; 2715 SmallVector<Value *, 4> Ops(I->operand_values()); 2716 BasicBlock *SamePHIBlock = nullptr; 2717 PHINode *OpPHI = nullptr; 2718 if (!DebugCounter::shouldExecute(PHIOfOpsCounter)) 2719 return nullptr; 2720 for (auto *Op : Ops) { 2721 if (!isa<PHINode>(Op)) { 2722 auto *ValuePHI = RealToTemp.lookup(Op); 2723 if (!ValuePHI) 2724 continue; 2725 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n"); 2726 Op = ValuePHI; 2727 } 2728 OpPHI = cast<PHINode>(Op); 2729 if (!SamePHIBlock) { 2730 SamePHIBlock = getBlockForValue(OpPHI); 2731 } else if (SamePHIBlock != getBlockForValue(OpPHI)) { 2732 LLVM_DEBUG( 2733 dbgs() 2734 << "PHIs for operands are not all in the same block, aborting\n"); 2735 return nullptr; 2736 } 2737 // No point in doing this for one-operand phis. 2738 if (OpPHI->getNumOperands() == 1) { 2739 OpPHI = nullptr; 2740 continue; 2741 } 2742 } 2743 2744 if (!OpPHI) 2745 return nullptr; 2746 2747 SmallVector<ValPair, 4> PHIOps; 2748 SmallPtrSet<Value *, 4> Deps; 2749 auto *PHIBlock = getBlockForValue(OpPHI); 2750 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I)); 2751 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) { 2752 auto *PredBB = OpPHI->getIncomingBlock(PredNum); 2753 Value *FoundVal = nullptr; 2754 SmallPtrSet<Value *, 4> CurrentDeps; 2755 // We could just skip unreachable edges entirely but it's tricky to do 2756 // with rewriting existing phi nodes. 2757 if (ReachableEdges.count({PredBB, PHIBlock})) { 2758 // Clone the instruction, create an expression from it that is 2759 // translated back into the predecessor, and see if we have a leader. 2760 Instruction *ValueOp = I->clone(); 2761 if (MemAccess) 2762 TempToMemory.insert({ValueOp, MemAccess}); 2763 bool SafeForPHIOfOps = true; 2764 VisitedOps.clear(); 2765 for (auto &Op : ValueOp->operands()) { 2766 auto *OrigOp = &*Op; 2767 // When these operand changes, it could change whether there is a 2768 // leader for us or not, so we have to add additional users. 2769 if (isa<PHINode>(Op)) { 2770 Op = Op->DoPHITranslation(PHIBlock, PredBB); 2771 if (Op != OrigOp && Op != I) 2772 CurrentDeps.insert(Op); 2773 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) { 2774 if (getBlockForValue(ValuePHI) == PHIBlock) 2775 Op = ValuePHI->getIncomingValueForBlock(PredBB); 2776 } 2777 // If we phi-translated the op, it must be safe. 2778 SafeForPHIOfOps = 2779 SafeForPHIOfOps && 2780 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps)); 2781 } 2782 // FIXME: For those things that are not safe we could generate 2783 // expressions all the way down, and see if this comes out to a 2784 // constant. For anything where that is true, and unsafe, we should 2785 // have made a phi-of-ops (or value numbered it equivalent to something) 2786 // for the pieces already. 2787 FoundVal = !SafeForPHIOfOps ? nullptr 2788 : findLeaderForInst(ValueOp, Visited, 2789 MemAccess, I, PredBB); 2790 ValueOp->deleteValue(); 2791 if (!FoundVal) { 2792 // We failed to find a leader for the current ValueOp, but this might 2793 // change in case of the translated operands change. 2794 if (SafeForPHIOfOps) 2795 for (auto Dep : CurrentDeps) 2796 addAdditionalUsers(Dep, I); 2797 2798 return nullptr; 2799 } 2800 Deps.insert(CurrentDeps.begin(), CurrentDeps.end()); 2801 } else { 2802 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block " 2803 << getBlockName(PredBB) 2804 << " because the block is unreachable\n"); 2805 FoundVal = UndefValue::get(I->getType()); 2806 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2807 } 2808 2809 PHIOps.push_back({FoundVal, PredBB}); 2810 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in " 2811 << getBlockName(PredBB) << "\n"); 2812 } 2813 for (auto Dep : Deps) 2814 addAdditionalUsers(Dep, I); 2815 sortPHIOps(PHIOps); 2816 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock); 2817 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) { 2818 LLVM_DEBUG( 2819 dbgs() 2820 << "Not creating real PHI of ops because it simplified to existing " 2821 "value or constant\n"); 2822 return E; 2823 } 2824 auto *ValuePHI = RealToTemp.lookup(I); 2825 bool NewPHI = false; 2826 if (!ValuePHI) { 2827 ValuePHI = 2828 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops"); 2829 addPhiOfOps(ValuePHI, PHIBlock, I); 2830 NewPHI = true; 2831 NumGVNPHIOfOpsCreated++; 2832 } 2833 if (NewPHI) { 2834 for (auto PHIOp : PHIOps) 2835 ValuePHI->addIncoming(PHIOp.first, PHIOp.second); 2836 } else { 2837 TempToBlock[ValuePHI] = PHIBlock; 2838 unsigned int i = 0; 2839 for (auto PHIOp : PHIOps) { 2840 ValuePHI->setIncomingValue(i, PHIOp.first); 2841 ValuePHI->setIncomingBlock(i, PHIOp.second); 2842 ++i; 2843 } 2844 } 2845 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I)); 2846 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I 2847 << "\n"); 2848 2849 return E; 2850 } 2851 2852 // The algorithm initially places the values of the routine in the TOP 2853 // congruence class. The leader of TOP is the undetermined value `undef`. 2854 // When the algorithm has finished, values still in TOP are unreachable. 2855 void NewGVN::initializeCongruenceClasses(Function &F) { 2856 NextCongruenceNum = 0; 2857 2858 // Note that even though we use the live on entry def as a representative 2859 // MemoryAccess, it is *not* the same as the actual live on entry def. We 2860 // have no real equivalemnt to undef for MemoryAccesses, and so we really 2861 // should be checking whether the MemoryAccess is top if we want to know if it 2862 // is equivalent to everything. Otherwise, what this really signifies is that 2863 // the access "it reaches all the way back to the beginning of the function" 2864 2865 // Initialize all other instructions to be in TOP class. 2866 TOPClass = createCongruenceClass(nullptr, nullptr); 2867 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef()); 2868 // The live on entry def gets put into it's own class 2869 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] = 2870 createMemoryClass(MSSA->getLiveOnEntryDef()); 2871 2872 for (auto DTN : nodes(DT)) { 2873 BasicBlock *BB = DTN->getBlock(); 2874 // All MemoryAccesses are equivalent to live on entry to start. They must 2875 // be initialized to something so that initial changes are noticed. For 2876 // the maximal answer, we initialize them all to be the same as 2877 // liveOnEntry. 2878 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB); 2879 if (MemoryBlockDefs) 2880 for (const auto &Def : *MemoryBlockDefs) { 2881 MemoryAccessToClass[&Def] = TOPClass; 2882 auto *MD = dyn_cast<MemoryDef>(&Def); 2883 // Insert the memory phis into the member list. 2884 if (!MD) { 2885 const MemoryPhi *MP = cast<MemoryPhi>(&Def); 2886 TOPClass->memory_insert(MP); 2887 MemoryPhiState.insert({MP, MPS_TOP}); 2888 } 2889 2890 if (MD && isa<StoreInst>(MD->getMemoryInst())) 2891 TOPClass->incStoreCount(); 2892 } 2893 2894 // FIXME: This is trying to discover which instructions are uses of phi 2895 // nodes. We should move this into one of the myriad of places that walk 2896 // all the operands already. 2897 for (auto &I : *BB) { 2898 if (isa<PHINode>(&I)) 2899 for (auto *U : I.users()) 2900 if (auto *UInst = dyn_cast<Instruction>(U)) 2901 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst)) 2902 PHINodeUses.insert(UInst); 2903 // Don't insert void terminators into the class. We don't value number 2904 // them, and they just end up sitting in TOP. 2905 if (I.isTerminator() && I.getType()->isVoidTy()) 2906 continue; 2907 TOPClass->insert(&I); 2908 ValueToClass[&I] = TOPClass; 2909 } 2910 } 2911 2912 // Initialize arguments to be in their own unique congruence classes 2913 for (auto &FA : F.args()) 2914 createSingletonCongruenceClass(&FA); 2915 } 2916 2917 void NewGVN::cleanupTables() { 2918 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) { 2919 LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID() 2920 << " has " << CongruenceClasses[i]->size() 2921 << " members\n"); 2922 // Make sure we delete the congruence class (probably worth switching to 2923 // a unique_ptr at some point. 2924 delete CongruenceClasses[i]; 2925 CongruenceClasses[i] = nullptr; 2926 } 2927 2928 // Destroy the value expressions 2929 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(), 2930 AllTempInstructions.end()); 2931 AllTempInstructions.clear(); 2932 2933 // We have to drop all references for everything first, so there are no uses 2934 // left as we delete them. 2935 for (auto *I : TempInst) { 2936 I->dropAllReferences(); 2937 } 2938 2939 while (!TempInst.empty()) { 2940 auto *I = TempInst.back(); 2941 TempInst.pop_back(); 2942 I->deleteValue(); 2943 } 2944 2945 ValueToClass.clear(); 2946 ArgRecycler.clear(ExpressionAllocator); 2947 ExpressionAllocator.Reset(); 2948 CongruenceClasses.clear(); 2949 ExpressionToClass.clear(); 2950 ValueToExpression.clear(); 2951 RealToTemp.clear(); 2952 AdditionalUsers.clear(); 2953 ExpressionToPhiOfOps.clear(); 2954 TempToBlock.clear(); 2955 TempToMemory.clear(); 2956 PHINodeUses.clear(); 2957 OpSafeForPHIOfOps.clear(); 2958 ReachableBlocks.clear(); 2959 ReachableEdges.clear(); 2960 #ifndef NDEBUG 2961 ProcessedCount.clear(); 2962 #endif 2963 InstrDFS.clear(); 2964 InstructionsToErase.clear(); 2965 DFSToInstr.clear(); 2966 BlockInstRange.clear(); 2967 TouchedInstructions.clear(); 2968 MemoryAccessToClass.clear(); 2969 PredicateToUsers.clear(); 2970 MemoryToUsers.clear(); 2971 RevisitOnReachabilityChange.clear(); 2972 } 2973 2974 // Assign local DFS number mapping to instructions, and leave space for Value 2975 // PHI's. 2976 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B, 2977 unsigned Start) { 2978 unsigned End = Start; 2979 if (MemoryAccess *MemPhi = getMemoryAccess(B)) { 2980 InstrDFS[MemPhi] = End++; 2981 DFSToInstr.emplace_back(MemPhi); 2982 } 2983 2984 // Then the real block goes next. 2985 for (auto &I : *B) { 2986 // There's no need to call isInstructionTriviallyDead more than once on 2987 // an instruction. Therefore, once we know that an instruction is dead 2988 // we change its DFS number so that it doesn't get value numbered. 2989 if (isInstructionTriviallyDead(&I, TLI)) { 2990 InstrDFS[&I] = 0; 2991 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n"); 2992 markInstructionForDeletion(&I); 2993 continue; 2994 } 2995 if (isa<PHINode>(&I)) 2996 RevisitOnReachabilityChange[B].set(End); 2997 InstrDFS[&I] = End++; 2998 DFSToInstr.emplace_back(&I); 2999 } 3000 3001 // All of the range functions taken half-open ranges (open on the end side). 3002 // So we do not subtract one from count, because at this point it is one 3003 // greater than the last instruction. 3004 return std::make_pair(Start, End); 3005 } 3006 3007 void NewGVN::updateProcessedCount(const Value *V) { 3008 #ifndef NDEBUG 3009 if (ProcessedCount.count(V) == 0) { 3010 ProcessedCount.insert({V, 1}); 3011 } else { 3012 ++ProcessedCount[V]; 3013 assert(ProcessedCount[V] < 100 && 3014 "Seem to have processed the same Value a lot"); 3015 } 3016 #endif 3017 } 3018 3019 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes 3020 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) { 3021 // If all the arguments are the same, the MemoryPhi has the same value as the 3022 // argument. Filter out unreachable blocks and self phis from our operands. 3023 // TODO: We could do cycle-checking on the memory phis to allow valueizing for 3024 // self-phi checking. 3025 const BasicBlock *PHIBlock = MP->getBlock(); 3026 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) { 3027 return cast<MemoryAccess>(U) != MP && 3028 !isMemoryAccessTOP(cast<MemoryAccess>(U)) && 3029 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock}); 3030 }); 3031 // If all that is left is nothing, our memoryphi is undef. We keep it as 3032 // InitialClass. Note: The only case this should happen is if we have at 3033 // least one self-argument. 3034 if (Filtered.begin() == Filtered.end()) { 3035 if (setMemoryClass(MP, TOPClass)) 3036 markMemoryUsersTouched(MP); 3037 return; 3038 } 3039 3040 // Transform the remaining operands into operand leaders. 3041 // FIXME: mapped_iterator should have a range version. 3042 auto LookupFunc = [&](const Use &U) { 3043 return lookupMemoryLeader(cast<MemoryAccess>(U)); 3044 }; 3045 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc); 3046 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc); 3047 3048 // and now check if all the elements are equal. 3049 // Sadly, we can't use std::equals since these are random access iterators. 3050 const auto *AllSameValue = *MappedBegin; 3051 ++MappedBegin; 3052 bool AllEqual = std::all_of( 3053 MappedBegin, MappedEnd, 3054 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; }); 3055 3056 if (AllEqual) 3057 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue 3058 << "\n"); 3059 else 3060 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n"); 3061 // If it's equal to something, it's in that class. Otherwise, it has to be in 3062 // a class where it is the leader (other things may be equivalent to it, but 3063 // it needs to start off in its own class, which means it must have been the 3064 // leader, and it can't have stopped being the leader because it was never 3065 // removed). 3066 CongruenceClass *CC = 3067 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP); 3068 auto OldState = MemoryPhiState.lookup(MP); 3069 assert(OldState != MPS_Invalid && "Invalid memory phi state"); 3070 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique; 3071 MemoryPhiState[MP] = NewState; 3072 if (setMemoryClass(MP, CC) || OldState != NewState) 3073 markMemoryUsersTouched(MP); 3074 } 3075 3076 // Value number a single instruction, symbolically evaluating, performing 3077 // congruence finding, and updating mappings. 3078 void NewGVN::valueNumberInstruction(Instruction *I) { 3079 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n"); 3080 if (!I->isTerminator()) { 3081 const Expression *Symbolized = nullptr; 3082 SmallPtrSet<Value *, 2> Visited; 3083 if (DebugCounter::shouldExecute(VNCounter)) { 3084 Symbolized = performSymbolicEvaluation(I, Visited); 3085 // Make a phi of ops if necessary 3086 if (Symbolized && !isa<ConstantExpression>(Symbolized) && 3087 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) { 3088 auto *PHIE = makePossiblePHIOfOps(I, Visited); 3089 // If we created a phi of ops, use it. 3090 // If we couldn't create one, make sure we don't leave one lying around 3091 if (PHIE) { 3092 Symbolized = PHIE; 3093 } else if (auto *Op = RealToTemp.lookup(I)) { 3094 removePhiOfOps(I, Op); 3095 } 3096 } 3097 } else { 3098 // Mark the instruction as unused so we don't value number it again. 3099 InstrDFS[I] = 0; 3100 } 3101 // If we couldn't come up with a symbolic expression, use the unknown 3102 // expression 3103 if (Symbolized == nullptr) 3104 Symbolized = createUnknownExpression(I); 3105 performCongruenceFinding(I, Symbolized); 3106 } else { 3107 // Handle terminators that return values. All of them produce values we 3108 // don't currently understand. We don't place non-value producing 3109 // terminators in a class. 3110 if (!I->getType()->isVoidTy()) { 3111 auto *Symbolized = createUnknownExpression(I); 3112 performCongruenceFinding(I, Symbolized); 3113 } 3114 processOutgoingEdges(I, I->getParent()); 3115 } 3116 } 3117 3118 // Check if there is a path, using single or equal argument phi nodes, from 3119 // First to Second. 3120 bool NewGVN::singleReachablePHIPath( 3121 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First, 3122 const MemoryAccess *Second) const { 3123 if (First == Second) 3124 return true; 3125 if (MSSA->isLiveOnEntryDef(First)) 3126 return false; 3127 3128 // This is not perfect, but as we're just verifying here, we can live with 3129 // the loss of precision. The real solution would be that of doing strongly 3130 // connected component finding in this routine, and it's probably not worth 3131 // the complexity for the time being. So, we just keep a set of visited 3132 // MemoryAccess and return true when we hit a cycle. 3133 if (Visited.count(First)) 3134 return true; 3135 Visited.insert(First); 3136 3137 const auto *EndDef = First; 3138 for (auto *ChainDef : optimized_def_chain(First)) { 3139 if (ChainDef == Second) 3140 return true; 3141 if (MSSA->isLiveOnEntryDef(ChainDef)) 3142 return false; 3143 EndDef = ChainDef; 3144 } 3145 auto *MP = cast<MemoryPhi>(EndDef); 3146 auto ReachableOperandPred = [&](const Use &U) { 3147 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()}); 3148 }; 3149 auto FilteredPhiArgs = 3150 make_filter_range(MP->operands(), ReachableOperandPred); 3151 SmallVector<const Value *, 32> OperandList; 3152 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList)); 3153 bool Okay = is_splat(OperandList); 3154 if (Okay) 3155 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]), 3156 Second); 3157 return false; 3158 } 3159 3160 // Verify the that the memory equivalence table makes sense relative to the 3161 // congruence classes. Note that this checking is not perfect, and is currently 3162 // subject to very rare false negatives. It is only useful for 3163 // testing/debugging. 3164 void NewGVN::verifyMemoryCongruency() const { 3165 #ifndef NDEBUG 3166 // Verify that the memory table equivalence and memory member set match 3167 for (const auto *CC : CongruenceClasses) { 3168 if (CC == TOPClass || CC->isDead()) 3169 continue; 3170 if (CC->getStoreCount() != 0) { 3171 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) && 3172 "Any class with a store as a leader should have a " 3173 "representative stored value"); 3174 assert(CC->getMemoryLeader() && 3175 "Any congruence class with a store should have a " 3176 "representative access"); 3177 } 3178 3179 if (CC->getMemoryLeader()) 3180 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC && 3181 "Representative MemoryAccess does not appear to be reverse " 3182 "mapped properly"); 3183 for (auto M : CC->memory()) 3184 assert(MemoryAccessToClass.lookup(M) == CC && 3185 "Memory member does not appear to be reverse mapped properly"); 3186 } 3187 3188 // Anything equivalent in the MemoryAccess table should be in the same 3189 // congruence class. 3190 3191 // Filter out the unreachable and trivially dead entries, because they may 3192 // never have been updated if the instructions were not processed. 3193 auto ReachableAccessPred = 3194 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) { 3195 bool Result = ReachableBlocks.count(Pair.first->getBlock()); 3196 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) || 3197 MemoryToDFSNum(Pair.first) == 0) 3198 return false; 3199 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first)) 3200 return !isInstructionTriviallyDead(MemDef->getMemoryInst()); 3201 3202 // We could have phi nodes which operands are all trivially dead, 3203 // so we don't process them. 3204 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) { 3205 for (auto &U : MemPHI->incoming_values()) { 3206 if (auto *I = dyn_cast<Instruction>(&*U)) { 3207 if (!isInstructionTriviallyDead(I)) 3208 return true; 3209 } 3210 } 3211 return false; 3212 } 3213 3214 return true; 3215 }; 3216 3217 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred); 3218 for (auto KV : Filtered) { 3219 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) { 3220 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader()); 3221 if (FirstMUD && SecondMUD) { 3222 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS; 3223 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) || 3224 ValueToClass.lookup(FirstMUD->getMemoryInst()) == 3225 ValueToClass.lookup(SecondMUD->getMemoryInst())) && 3226 "The instructions for these memory operations should have " 3227 "been in the same congruence class or reachable through" 3228 "a single argument phi"); 3229 } 3230 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) { 3231 // We can only sanely verify that MemoryDefs in the operand list all have 3232 // the same class. 3233 auto ReachableOperandPred = [&](const Use &U) { 3234 return ReachableEdges.count( 3235 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) && 3236 isa<MemoryDef>(U); 3237 3238 }; 3239 // All arguments should in the same class, ignoring unreachable arguments 3240 auto FilteredPhiArgs = 3241 make_filter_range(FirstMP->operands(), ReachableOperandPred); 3242 SmallVector<const CongruenceClass *, 16> PhiOpClasses; 3243 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(), 3244 std::back_inserter(PhiOpClasses), [&](const Use &U) { 3245 const MemoryDef *MD = cast<MemoryDef>(U); 3246 return ValueToClass.lookup(MD->getMemoryInst()); 3247 }); 3248 assert(is_splat(PhiOpClasses) && 3249 "All MemoryPhi arguments should be in the same class"); 3250 } 3251 } 3252 #endif 3253 } 3254 3255 // Verify that the sparse propagation we did actually found the maximal fixpoint 3256 // We do this by storing the value to class mapping, touching all instructions, 3257 // and redoing the iteration to see if anything changed. 3258 void NewGVN::verifyIterationSettled(Function &F) { 3259 #ifndef NDEBUG 3260 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n"); 3261 if (DebugCounter::isCounterSet(VNCounter)) 3262 DebugCounter::setCounterValue(VNCounter, StartingVNCounter); 3263 3264 // Note that we have to store the actual classes, as we may change existing 3265 // classes during iteration. This is because our memory iteration propagation 3266 // is not perfect, and so may waste a little work. But it should generate 3267 // exactly the same congruence classes we have now, with different IDs. 3268 std::map<const Value *, CongruenceClass> BeforeIteration; 3269 3270 for (auto &KV : ValueToClass) { 3271 if (auto *I = dyn_cast<Instruction>(KV.first)) 3272 // Skip unused/dead instructions. 3273 if (InstrToDFSNum(I) == 0) 3274 continue; 3275 BeforeIteration.insert({KV.first, *KV.second}); 3276 } 3277 3278 TouchedInstructions.set(); 3279 TouchedInstructions.reset(0); 3280 iterateTouchedInstructions(); 3281 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>> 3282 EqualClasses; 3283 for (const auto &KV : ValueToClass) { 3284 if (auto *I = dyn_cast<Instruction>(KV.first)) 3285 // Skip unused/dead instructions. 3286 if (InstrToDFSNum(I) == 0) 3287 continue; 3288 // We could sink these uses, but i think this adds a bit of clarity here as 3289 // to what we are comparing. 3290 auto *BeforeCC = &BeforeIteration.find(KV.first)->second; 3291 auto *AfterCC = KV.second; 3292 // Note that the classes can't change at this point, so we memoize the set 3293 // that are equal. 3294 if (!EqualClasses.count({BeforeCC, AfterCC})) { 3295 assert(BeforeCC->isEquivalentTo(AfterCC) && 3296 "Value number changed after main loop completed!"); 3297 EqualClasses.insert({BeforeCC, AfterCC}); 3298 } 3299 } 3300 #endif 3301 } 3302 3303 // Verify that for each store expression in the expression to class mapping, 3304 // only the latest appears, and multiple ones do not appear. 3305 // Because loads do not use the stored value when doing equality with stores, 3306 // if we don't erase the old store expressions from the table, a load can find 3307 // a no-longer valid StoreExpression. 3308 void NewGVN::verifyStoreExpressions() const { 3309 #ifndef NDEBUG 3310 // This is the only use of this, and it's not worth defining a complicated 3311 // densemapinfo hash/equality function for it. 3312 std::set< 3313 std::pair<const Value *, 3314 std::tuple<const Value *, const CongruenceClass *, Value *>>> 3315 StoreExpressionSet; 3316 for (const auto &KV : ExpressionToClass) { 3317 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) { 3318 // Make sure a version that will conflict with loads is not already there 3319 auto Res = StoreExpressionSet.insert( 3320 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second, 3321 SE->getStoredValue())}); 3322 bool Okay = Res.second; 3323 // It's okay to have the same expression already in there if it is 3324 // identical in nature. 3325 // This can happen when the leader of the stored value changes over time. 3326 if (!Okay) 3327 Okay = (std::get<1>(Res.first->second) == KV.second) && 3328 (lookupOperandLeader(std::get<2>(Res.first->second)) == 3329 lookupOperandLeader(SE->getStoredValue())); 3330 assert(Okay && "Stored expression conflict exists in expression table"); 3331 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst()); 3332 assert(ValueExpr && ValueExpr->equals(*SE) && 3333 "StoreExpression in ExpressionToClass is not latest " 3334 "StoreExpression for value"); 3335 } 3336 } 3337 #endif 3338 } 3339 3340 // This is the main value numbering loop, it iterates over the initial touched 3341 // instruction set, propagating value numbers, marking things touched, etc, 3342 // until the set of touched instructions is completely empty. 3343 void NewGVN::iterateTouchedInstructions() { 3344 unsigned int Iterations = 0; 3345 // Figure out where touchedinstructions starts 3346 int FirstInstr = TouchedInstructions.find_first(); 3347 // Nothing set, nothing to iterate, just return. 3348 if (FirstInstr == -1) 3349 return; 3350 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr)); 3351 while (TouchedInstructions.any()) { 3352 ++Iterations; 3353 // Walk through all the instructions in all the blocks in RPO. 3354 // TODO: As we hit a new block, we should push and pop equalities into a 3355 // table lookupOperandLeader can use, to catch things PredicateInfo 3356 // might miss, like edge-only equivalences. 3357 for (unsigned InstrNum : TouchedInstructions.set_bits()) { 3358 3359 // This instruction was found to be dead. We don't bother looking 3360 // at it again. 3361 if (InstrNum == 0) { 3362 TouchedInstructions.reset(InstrNum); 3363 continue; 3364 } 3365 3366 Value *V = InstrFromDFSNum(InstrNum); 3367 const BasicBlock *CurrBlock = getBlockForValue(V); 3368 3369 // If we hit a new block, do reachability processing. 3370 if (CurrBlock != LastBlock) { 3371 LastBlock = CurrBlock; 3372 bool BlockReachable = ReachableBlocks.count(CurrBlock); 3373 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock); 3374 3375 // If it's not reachable, erase any touched instructions and move on. 3376 if (!BlockReachable) { 3377 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second); 3378 LLVM_DEBUG(dbgs() << "Skipping instructions in block " 3379 << getBlockName(CurrBlock) 3380 << " because it is unreachable\n"); 3381 continue; 3382 } 3383 updateProcessedCount(CurrBlock); 3384 } 3385 // Reset after processing (because we may mark ourselves as touched when 3386 // we propagate equalities). 3387 TouchedInstructions.reset(InstrNum); 3388 3389 if (auto *MP = dyn_cast<MemoryPhi>(V)) { 3390 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n"); 3391 valueNumberMemoryPhi(MP); 3392 } else if (auto *I = dyn_cast<Instruction>(V)) { 3393 valueNumberInstruction(I); 3394 } else { 3395 llvm_unreachable("Should have been a MemoryPhi or Instruction"); 3396 } 3397 updateProcessedCount(V); 3398 } 3399 } 3400 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations); 3401 } 3402 3403 // This is the main transformation entry point. 3404 bool NewGVN::runGVN() { 3405 if (DebugCounter::isCounterSet(VNCounter)) 3406 StartingVNCounter = DebugCounter::getCounterValue(VNCounter); 3407 bool Changed = false; 3408 NumFuncArgs = F.arg_size(); 3409 MSSAWalker = MSSA->getWalker(); 3410 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression(); 3411 3412 // Count number of instructions for sizing of hash tables, and come 3413 // up with a global dfs numbering for instructions. 3414 unsigned ICount = 1; 3415 // Add an empty instruction to account for the fact that we start at 1 3416 DFSToInstr.emplace_back(nullptr); 3417 // Note: We want ideal RPO traversal of the blocks, which is not quite the 3418 // same as dominator tree order, particularly with regard whether backedges 3419 // get visited first or second, given a block with multiple successors. 3420 // If we visit in the wrong order, we will end up performing N times as many 3421 // iterations. 3422 // The dominator tree does guarantee that, for a given dom tree node, it's 3423 // parent must occur before it in the RPO ordering. Thus, we only need to sort 3424 // the siblings. 3425 ReversePostOrderTraversal<Function *> RPOT(&F); 3426 unsigned Counter = 0; 3427 for (auto &B : RPOT) { 3428 auto *Node = DT->getNode(B); 3429 assert(Node && "RPO and Dominator tree should have same reachability"); 3430 RPOOrdering[Node] = ++Counter; 3431 } 3432 // Sort dominator tree children arrays into RPO. 3433 for (auto &B : RPOT) { 3434 auto *Node = DT->getNode(B); 3435 if (Node->getChildren().size() > 1) 3436 llvm::sort(Node->begin(), Node->end(), 3437 [&](const DomTreeNode *A, const DomTreeNode *B) { 3438 return RPOOrdering[A] < RPOOrdering[B]; 3439 }); 3440 } 3441 3442 // Now a standard depth first ordering of the domtree is equivalent to RPO. 3443 for (auto DTN : depth_first(DT->getRootNode())) { 3444 BasicBlock *B = DTN->getBlock(); 3445 const auto &BlockRange = assignDFSNumbers(B, ICount); 3446 BlockInstRange.insert({B, BlockRange}); 3447 ICount += BlockRange.second - BlockRange.first; 3448 } 3449 initializeCongruenceClasses(F); 3450 3451 TouchedInstructions.resize(ICount); 3452 // Ensure we don't end up resizing the expressionToClass map, as 3453 // that can be quite expensive. At most, we have one expression per 3454 // instruction. 3455 ExpressionToClass.reserve(ICount); 3456 3457 // Initialize the touched instructions to include the entry block. 3458 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock()); 3459 TouchedInstructions.set(InstRange.first, InstRange.second); 3460 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock()) 3461 << " marked reachable\n"); 3462 ReachableBlocks.insert(&F.getEntryBlock()); 3463 3464 iterateTouchedInstructions(); 3465 verifyMemoryCongruency(); 3466 verifyIterationSettled(F); 3467 verifyStoreExpressions(); 3468 3469 Changed |= eliminateInstructions(F); 3470 3471 // Delete all instructions marked for deletion. 3472 for (Instruction *ToErase : InstructionsToErase) { 3473 if (!ToErase->use_empty()) 3474 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType())); 3475 3476 assert(ToErase->getParent() && 3477 "BB containing ToErase deleted unexpectedly!"); 3478 ToErase->eraseFromParent(); 3479 } 3480 Changed |= !InstructionsToErase.empty(); 3481 3482 // Delete all unreachable blocks. 3483 auto UnreachableBlockPred = [&](const BasicBlock &BB) { 3484 return !ReachableBlocks.count(&BB); 3485 }; 3486 3487 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) { 3488 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB) 3489 << " is unreachable\n"); 3490 deleteInstructionsInBlock(&BB); 3491 Changed = true; 3492 } 3493 3494 cleanupTables(); 3495 return Changed; 3496 } 3497 3498 struct NewGVN::ValueDFS { 3499 int DFSIn = 0; 3500 int DFSOut = 0; 3501 int LocalNum = 0; 3502 3503 // Only one of Def and U will be set. 3504 // The bool in the Def tells us whether the Def is the stored value of a 3505 // store. 3506 PointerIntPair<Value *, 1, bool> Def; 3507 Use *U = nullptr; 3508 3509 bool operator<(const ValueDFS &Other) const { 3510 // It's not enough that any given field be less than - we have sets 3511 // of fields that need to be evaluated together to give a proper ordering. 3512 // For example, if you have; 3513 // DFS (1, 3) 3514 // Val 0 3515 // DFS (1, 2) 3516 // Val 50 3517 // We want the second to be less than the first, but if we just go field 3518 // by field, we will get to Val 0 < Val 50 and say the first is less than 3519 // the second. We only want it to be less than if the DFS orders are equal. 3520 // 3521 // Each LLVM instruction only produces one value, and thus the lowest-level 3522 // differentiator that really matters for the stack (and what we use as as a 3523 // replacement) is the local dfs number. 3524 // Everything else in the structure is instruction level, and only affects 3525 // the order in which we will replace operands of a given instruction. 3526 // 3527 // For a given instruction (IE things with equal dfsin, dfsout, localnum), 3528 // the order of replacement of uses does not matter. 3529 // IE given, 3530 // a = 5 3531 // b = a + a 3532 // When you hit b, you will have two valuedfs with the same dfsin, out, and 3533 // localnum. 3534 // The .val will be the same as well. 3535 // The .u's will be different. 3536 // You will replace both, and it does not matter what order you replace them 3537 // in (IE whether you replace operand 2, then operand 1, or operand 1, then 3538 // operand 2). 3539 // Similarly for the case of same dfsin, dfsout, localnum, but different 3540 // .val's 3541 // a = 5 3542 // b = 6 3543 // c = a + b 3544 // in c, we will a valuedfs for a, and one for b,with everything the same 3545 // but .val and .u. 3546 // It does not matter what order we replace these operands in. 3547 // You will always end up with the same IR, and this is guaranteed. 3548 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) < 3549 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def, 3550 Other.U); 3551 } 3552 }; 3553 3554 // This function converts the set of members for a congruence class from values, 3555 // to sets of defs and uses with associated DFS info. The total number of 3556 // reachable uses for each value is stored in UseCount, and instructions that 3557 // seem 3558 // dead (have no non-dead uses) are stored in ProbablyDead. 3559 void NewGVN::convertClassToDFSOrdered( 3560 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet, 3561 DenseMap<const Value *, unsigned int> &UseCounts, 3562 SmallPtrSetImpl<Instruction *> &ProbablyDead) const { 3563 for (auto D : Dense) { 3564 // First add the value. 3565 BasicBlock *BB = getBlockForValue(D); 3566 // Constants are handled prior to ever calling this function, so 3567 // we should only be left with instructions as members. 3568 assert(BB && "Should have figured out a basic block for value"); 3569 ValueDFS VDDef; 3570 DomTreeNode *DomNode = DT->getNode(BB); 3571 VDDef.DFSIn = DomNode->getDFSNumIn(); 3572 VDDef.DFSOut = DomNode->getDFSNumOut(); 3573 // If it's a store, use the leader of the value operand, if it's always 3574 // available, or the value operand. TODO: We could do dominance checks to 3575 // find a dominating leader, but not worth it ATM. 3576 if (auto *SI = dyn_cast<StoreInst>(D)) { 3577 auto Leader = lookupOperandLeader(SI->getValueOperand()); 3578 if (alwaysAvailable(Leader)) { 3579 VDDef.Def.setPointer(Leader); 3580 } else { 3581 VDDef.Def.setPointer(SI->getValueOperand()); 3582 VDDef.Def.setInt(true); 3583 } 3584 } else { 3585 VDDef.Def.setPointer(D); 3586 } 3587 assert(isa<Instruction>(D) && 3588 "The dense set member should always be an instruction"); 3589 Instruction *Def = cast<Instruction>(D); 3590 VDDef.LocalNum = InstrToDFSNum(D); 3591 DFSOrderedSet.push_back(VDDef); 3592 // If there is a phi node equivalent, add it 3593 if (auto *PN = RealToTemp.lookup(Def)) { 3594 auto *PHIE = 3595 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def)); 3596 if (PHIE) { 3597 VDDef.Def.setInt(false); 3598 VDDef.Def.setPointer(PN); 3599 VDDef.LocalNum = 0; 3600 DFSOrderedSet.push_back(VDDef); 3601 } 3602 } 3603 3604 unsigned int UseCount = 0; 3605 // Now add the uses. 3606 for (auto &U : Def->uses()) { 3607 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 3608 // Don't try to replace into dead uses 3609 if (InstructionsToErase.count(I)) 3610 continue; 3611 ValueDFS VDUse; 3612 // Put the phi node uses in the incoming block. 3613 BasicBlock *IBlock; 3614 if (auto *P = dyn_cast<PHINode>(I)) { 3615 IBlock = P->getIncomingBlock(U); 3616 // Make phi node users appear last in the incoming block 3617 // they are from. 3618 VDUse.LocalNum = InstrDFS.size() + 1; 3619 } else { 3620 IBlock = getBlockForValue(I); 3621 VDUse.LocalNum = InstrToDFSNum(I); 3622 } 3623 3624 // Skip uses in unreachable blocks, as we're going 3625 // to delete them. 3626 if (ReachableBlocks.count(IBlock) == 0) 3627 continue; 3628 3629 DomTreeNode *DomNode = DT->getNode(IBlock); 3630 VDUse.DFSIn = DomNode->getDFSNumIn(); 3631 VDUse.DFSOut = DomNode->getDFSNumOut(); 3632 VDUse.U = &U; 3633 ++UseCount; 3634 DFSOrderedSet.emplace_back(VDUse); 3635 } 3636 } 3637 3638 // If there are no uses, it's probably dead (but it may have side-effects, 3639 // so not definitely dead. Otherwise, store the number of uses so we can 3640 // track if it becomes dead later). 3641 if (UseCount == 0) 3642 ProbablyDead.insert(Def); 3643 else 3644 UseCounts[Def] = UseCount; 3645 } 3646 } 3647 3648 // This function converts the set of members for a congruence class from values, 3649 // to the set of defs for loads and stores, with associated DFS info. 3650 void NewGVN::convertClassToLoadsAndStores( 3651 const CongruenceClass &Dense, 3652 SmallVectorImpl<ValueDFS> &LoadsAndStores) const { 3653 for (auto D : Dense) { 3654 if (!isa<LoadInst>(D) && !isa<StoreInst>(D)) 3655 continue; 3656 3657 BasicBlock *BB = getBlockForValue(D); 3658 ValueDFS VD; 3659 DomTreeNode *DomNode = DT->getNode(BB); 3660 VD.DFSIn = DomNode->getDFSNumIn(); 3661 VD.DFSOut = DomNode->getDFSNumOut(); 3662 VD.Def.setPointer(D); 3663 3664 // If it's an instruction, use the real local dfs number. 3665 if (auto *I = dyn_cast<Instruction>(D)) 3666 VD.LocalNum = InstrToDFSNum(I); 3667 else 3668 llvm_unreachable("Should have been an instruction"); 3669 3670 LoadsAndStores.emplace_back(VD); 3671 } 3672 } 3673 3674 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { 3675 patchReplacementInstruction(I, Repl); 3676 I->replaceAllUsesWith(Repl); 3677 } 3678 3679 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) { 3680 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB); 3681 ++NumGVNBlocksDeleted; 3682 3683 // Delete the instructions backwards, as it has a reduced likelihood of having 3684 // to update as many def-use and use-def chains. Start after the terminator. 3685 auto StartPoint = BB->rbegin(); 3686 ++StartPoint; 3687 // Note that we explicitly recalculate BB->rend() on each iteration, 3688 // as it may change when we remove the first instruction. 3689 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) { 3690 Instruction &Inst = *I++; 3691 if (!Inst.use_empty()) 3692 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType())); 3693 if (isa<LandingPadInst>(Inst)) 3694 continue; 3695 3696 Inst.eraseFromParent(); 3697 ++NumGVNInstrDeleted; 3698 } 3699 // Now insert something that simplifycfg will turn into an unreachable. 3700 Type *Int8Ty = Type::getInt8Ty(BB->getContext()); 3701 new StoreInst(UndefValue::get(Int8Ty), 3702 Constant::getNullValue(Int8Ty->getPointerTo()), 3703 BB->getTerminator()); 3704 } 3705 3706 void NewGVN::markInstructionForDeletion(Instruction *I) { 3707 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n"); 3708 InstructionsToErase.insert(I); 3709 } 3710 3711 void NewGVN::replaceInstruction(Instruction *I, Value *V) { 3712 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n"); 3713 patchAndReplaceAllUsesWith(I, V); 3714 // We save the actual erasing to avoid invalidating memory 3715 // dependencies until we are done with everything. 3716 markInstructionForDeletion(I); 3717 } 3718 3719 namespace { 3720 3721 // This is a stack that contains both the value and dfs info of where 3722 // that value is valid. 3723 class ValueDFSStack { 3724 public: 3725 Value *back() const { return ValueStack.back(); } 3726 std::pair<int, int> dfs_back() const { return DFSStack.back(); } 3727 3728 void push_back(Value *V, int DFSIn, int DFSOut) { 3729 ValueStack.emplace_back(V); 3730 DFSStack.emplace_back(DFSIn, DFSOut); 3731 } 3732 3733 bool empty() const { return DFSStack.empty(); } 3734 3735 bool isInScope(int DFSIn, int DFSOut) const { 3736 if (empty()) 3737 return false; 3738 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second; 3739 } 3740 3741 void popUntilDFSScope(int DFSIn, int DFSOut) { 3742 3743 // These two should always be in sync at this point. 3744 assert(ValueStack.size() == DFSStack.size() && 3745 "Mismatch between ValueStack and DFSStack"); 3746 while ( 3747 !DFSStack.empty() && 3748 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) { 3749 DFSStack.pop_back(); 3750 ValueStack.pop_back(); 3751 } 3752 } 3753 3754 private: 3755 SmallVector<Value *, 8> ValueStack; 3756 SmallVector<std::pair<int, int>, 8> DFSStack; 3757 }; 3758 3759 } // end anonymous namespace 3760 3761 // Given an expression, get the congruence class for it. 3762 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const { 3763 if (auto *VE = dyn_cast<VariableExpression>(E)) 3764 return ValueToClass.lookup(VE->getVariableValue()); 3765 else if (isa<DeadExpression>(E)) 3766 return TOPClass; 3767 return ExpressionToClass.lookup(E); 3768 } 3769 3770 // Given a value and a basic block we are trying to see if it is available in, 3771 // see if the value has a leader available in that block. 3772 Value *NewGVN::findPHIOfOpsLeader(const Expression *E, 3773 const Instruction *OrigInst, 3774 const BasicBlock *BB) const { 3775 // It would already be constant if we could make it constant 3776 if (auto *CE = dyn_cast<ConstantExpression>(E)) 3777 return CE->getConstantValue(); 3778 if (auto *VE = dyn_cast<VariableExpression>(E)) { 3779 auto *V = VE->getVariableValue(); 3780 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB)) 3781 return VE->getVariableValue(); 3782 } 3783 3784 auto *CC = getClassForExpression(E); 3785 if (!CC) 3786 return nullptr; 3787 if (alwaysAvailable(CC->getLeader())) 3788 return CC->getLeader(); 3789 3790 for (auto Member : *CC) { 3791 auto *MemberInst = dyn_cast<Instruction>(Member); 3792 if (MemberInst == OrigInst) 3793 continue; 3794 // Anything that isn't an instruction is always available. 3795 if (!MemberInst) 3796 return Member; 3797 if (DT->dominates(getBlockForValue(MemberInst), BB)) 3798 return Member; 3799 } 3800 return nullptr; 3801 } 3802 3803 bool NewGVN::eliminateInstructions(Function &F) { 3804 // This is a non-standard eliminator. The normal way to eliminate is 3805 // to walk the dominator tree in order, keeping track of available 3806 // values, and eliminating them. However, this is mildly 3807 // pointless. It requires doing lookups on every instruction, 3808 // regardless of whether we will ever eliminate it. For 3809 // instructions part of most singleton congruence classes, we know we 3810 // will never eliminate them. 3811 3812 // Instead, this eliminator looks at the congruence classes directly, sorts 3813 // them into a DFS ordering of the dominator tree, and then we just 3814 // perform elimination straight on the sets by walking the congruence 3815 // class member uses in order, and eliminate the ones dominated by the 3816 // last member. This is worst case O(E log E) where E = number of 3817 // instructions in a single congruence class. In theory, this is all 3818 // instructions. In practice, it is much faster, as most instructions are 3819 // either in singleton congruence classes or can't possibly be eliminated 3820 // anyway (if there are no overlapping DFS ranges in class). 3821 // When we find something not dominated, it becomes the new leader 3822 // for elimination purposes. 3823 // TODO: If we wanted to be faster, We could remove any members with no 3824 // overlapping ranges while sorting, as we will never eliminate anything 3825 // with those members, as they don't dominate anything else in our set. 3826 3827 bool AnythingReplaced = false; 3828 3829 // Since we are going to walk the domtree anyway, and we can't guarantee the 3830 // DFS numbers are updated, we compute some ourselves. 3831 DT->updateDFSNumbers(); 3832 3833 // Go through all of our phi nodes, and kill the arguments associated with 3834 // unreachable edges. 3835 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) { 3836 for (auto &Operand : PHI->incoming_values()) 3837 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) { 3838 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI 3839 << " for block " 3840 << getBlockName(PHI->getIncomingBlock(Operand)) 3841 << " with undef due to it being unreachable\n"); 3842 Operand.set(UndefValue::get(PHI->getType())); 3843 } 3844 }; 3845 // Replace unreachable phi arguments. 3846 // At this point, RevisitOnReachabilityChange only contains: 3847 // 3848 // 1. PHIs 3849 // 2. Temporaries that will convert to PHIs 3850 // 3. Operations that are affected by an unreachable edge but do not fit into 3851 // 1 or 2 (rare). 3852 // So it is a slight overshoot of what we want. We could make it exact by 3853 // using two SparseBitVectors per block. 3854 DenseMap<const BasicBlock *, unsigned> ReachablePredCount; 3855 for (auto &KV : ReachableEdges) 3856 ReachablePredCount[KV.getEnd()]++; 3857 for (auto &BBPair : RevisitOnReachabilityChange) { 3858 for (auto InstNum : BBPair.second) { 3859 auto *Inst = InstrFromDFSNum(InstNum); 3860 auto *PHI = dyn_cast<PHINode>(Inst); 3861 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst)); 3862 if (!PHI) 3863 continue; 3864 auto *BB = BBPair.first; 3865 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues()) 3866 ReplaceUnreachablePHIArgs(PHI, BB); 3867 } 3868 } 3869 3870 // Map to store the use counts 3871 DenseMap<const Value *, unsigned int> UseCounts; 3872 for (auto *CC : reverse(CongruenceClasses)) { 3873 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID() 3874 << "\n"); 3875 // Track the equivalent store info so we can decide whether to try 3876 // dead store elimination. 3877 SmallVector<ValueDFS, 8> PossibleDeadStores; 3878 SmallPtrSet<Instruction *, 8> ProbablyDead; 3879 if (CC->isDead() || CC->empty()) 3880 continue; 3881 // Everything still in the TOP class is unreachable or dead. 3882 if (CC == TOPClass) { 3883 for (auto M : *CC) { 3884 auto *VTE = ValueToExpression.lookup(M); 3885 if (VTE && isa<DeadExpression>(VTE)) 3886 markInstructionForDeletion(cast<Instruction>(M)); 3887 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) || 3888 InstructionsToErase.count(cast<Instruction>(M))) && 3889 "Everything in TOP should be unreachable or dead at this " 3890 "point"); 3891 } 3892 continue; 3893 } 3894 3895 assert(CC->getLeader() && "We should have had a leader"); 3896 // If this is a leader that is always available, and it's a 3897 // constant or has no equivalences, just replace everything with 3898 // it. We then update the congruence class with whatever members 3899 // are left. 3900 Value *Leader = 3901 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader(); 3902 if (alwaysAvailable(Leader)) { 3903 CongruenceClass::MemberSet MembersLeft; 3904 for (auto M : *CC) { 3905 Value *Member = M; 3906 // Void things have no uses we can replace. 3907 if (Member == Leader || !isa<Instruction>(Member) || 3908 Member->getType()->isVoidTy()) { 3909 MembersLeft.insert(Member); 3910 continue; 3911 } 3912 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " 3913 << *Member << "\n"); 3914 auto *I = cast<Instruction>(Member); 3915 assert(Leader != I && "About to accidentally remove our leader"); 3916 replaceInstruction(I, Leader); 3917 AnythingReplaced = true; 3918 } 3919 CC->swap(MembersLeft); 3920 } else { 3921 // If this is a singleton, we can skip it. 3922 if (CC->size() != 1 || RealToTemp.count(Leader)) { 3923 // This is a stack because equality replacement/etc may place 3924 // constants in the middle of the member list, and we want to use 3925 // those constant values in preference to the current leader, over 3926 // the scope of those constants. 3927 ValueDFSStack EliminationStack; 3928 3929 // Convert the members to DFS ordered sets and then merge them. 3930 SmallVector<ValueDFS, 8> DFSOrderedSet; 3931 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead); 3932 3933 // Sort the whole thing. 3934 llvm::sort(DFSOrderedSet); 3935 for (auto &VD : DFSOrderedSet) { 3936 int MemberDFSIn = VD.DFSIn; 3937 int MemberDFSOut = VD.DFSOut; 3938 Value *Def = VD.Def.getPointer(); 3939 bool FromStore = VD.Def.getInt(); 3940 Use *U = VD.U; 3941 // We ignore void things because we can't get a value from them. 3942 if (Def && Def->getType()->isVoidTy()) 3943 continue; 3944 auto *DefInst = dyn_cast_or_null<Instruction>(Def); 3945 if (DefInst && AllTempInstructions.count(DefInst)) { 3946 auto *PN = cast<PHINode>(DefInst); 3947 3948 // If this is a value phi and that's the expression we used, insert 3949 // it into the program 3950 // remove from temp instruction list. 3951 AllTempInstructions.erase(PN); 3952 auto *DefBlock = getBlockForValue(Def); 3953 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def 3954 << " into block " 3955 << getBlockName(getBlockForValue(Def)) << "\n"); 3956 PN->insertBefore(&DefBlock->front()); 3957 Def = PN; 3958 NumGVNPHIOfOpsEliminations++; 3959 } 3960 3961 if (EliminationStack.empty()) { 3962 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n"); 3963 } else { 3964 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are (" 3965 << EliminationStack.dfs_back().first << "," 3966 << EliminationStack.dfs_back().second << ")\n"); 3967 } 3968 3969 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << "," 3970 << MemberDFSOut << ")\n"); 3971 // First, we see if we are out of scope or empty. If so, 3972 // and there equivalences, we try to replace the top of 3973 // stack with equivalences (if it's on the stack, it must 3974 // not have been eliminated yet). 3975 // Then we synchronize to our current scope, by 3976 // popping until we are back within a DFS scope that 3977 // dominates the current member. 3978 // Then, what happens depends on a few factors 3979 // If the stack is now empty, we need to push 3980 // If we have a constant or a local equivalence we want to 3981 // start using, we also push. 3982 // Otherwise, we walk along, processing members who are 3983 // dominated by this scope, and eliminate them. 3984 bool ShouldPush = Def && EliminationStack.empty(); 3985 bool OutOfScope = 3986 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut); 3987 3988 if (OutOfScope || ShouldPush) { 3989 // Sync to our current scope. 3990 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 3991 bool ShouldPush = Def && EliminationStack.empty(); 3992 if (ShouldPush) { 3993 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut); 3994 } 3995 } 3996 3997 // Skip the Def's, we only want to eliminate on their uses. But mark 3998 // dominated defs as dead. 3999 if (Def) { 4000 // For anything in this case, what and how we value number 4001 // guarantees that any side-effets that would have occurred (ie 4002 // throwing, etc) can be proven to either still occur (because it's 4003 // dominated by something that has the same side-effects), or never 4004 // occur. Otherwise, we would not have been able to prove it value 4005 // equivalent to something else. For these things, we can just mark 4006 // it all dead. Note that this is different from the "ProbablyDead" 4007 // set, which may not be dominated by anything, and thus, are only 4008 // easy to prove dead if they are also side-effect free. Note that 4009 // because stores are put in terms of the stored value, we skip 4010 // stored values here. If the stored value is really dead, it will 4011 // still be marked for deletion when we process it in its own class. 4012 if (!EliminationStack.empty() && Def != EliminationStack.back() && 4013 isa<Instruction>(Def) && !FromStore) 4014 markInstructionForDeletion(cast<Instruction>(Def)); 4015 continue; 4016 } 4017 // At this point, we know it is a Use we are trying to possibly 4018 // replace. 4019 4020 assert(isa<Instruction>(U->get()) && 4021 "Current def should have been an instruction"); 4022 assert(isa<Instruction>(U->getUser()) && 4023 "Current user should have been an instruction"); 4024 4025 // If the thing we are replacing into is already marked to be dead, 4026 // this use is dead. Note that this is true regardless of whether 4027 // we have anything dominating the use or not. We do this here 4028 // because we are already walking all the uses anyway. 4029 Instruction *InstUse = cast<Instruction>(U->getUser()); 4030 if (InstructionsToErase.count(InstUse)) { 4031 auto &UseCount = UseCounts[U->get()]; 4032 if (--UseCount == 0) { 4033 ProbablyDead.insert(cast<Instruction>(U->get())); 4034 } 4035 } 4036 4037 // If we get to this point, and the stack is empty we must have a use 4038 // with nothing we can use to eliminate this use, so just skip it. 4039 if (EliminationStack.empty()) 4040 continue; 4041 4042 Value *DominatingLeader = EliminationStack.back(); 4043 4044 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader); 4045 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy; 4046 if (isSSACopy) 4047 DominatingLeader = II->getOperand(0); 4048 4049 // Don't replace our existing users with ourselves. 4050 if (U->get() == DominatingLeader) 4051 continue; 4052 LLVM_DEBUG(dbgs() 4053 << "Found replacement " << *DominatingLeader << " for " 4054 << *U->get() << " in " << *(U->getUser()) << "\n"); 4055 4056 // If we replaced something in an instruction, handle the patching of 4057 // metadata. Skip this if we are replacing predicateinfo with its 4058 // original operand, as we already know we can just drop it. 4059 auto *ReplacedInst = cast<Instruction>(U->get()); 4060 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst); 4061 if (!PI || DominatingLeader != PI->OriginalOp) 4062 patchReplacementInstruction(ReplacedInst, DominatingLeader); 4063 U->set(DominatingLeader); 4064 // This is now a use of the dominating leader, which means if the 4065 // dominating leader was dead, it's now live! 4066 auto &LeaderUseCount = UseCounts[DominatingLeader]; 4067 // It's about to be alive again. 4068 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader)) 4069 ProbablyDead.erase(cast<Instruction>(DominatingLeader)); 4070 // For copy instructions, we use their operand as a leader, 4071 // which means we remove a user of the copy and it may become dead. 4072 if (isSSACopy) { 4073 unsigned &IIUseCount = UseCounts[II]; 4074 if (--IIUseCount == 0) 4075 ProbablyDead.insert(II); 4076 } 4077 ++LeaderUseCount; 4078 AnythingReplaced = true; 4079 } 4080 } 4081 } 4082 4083 // At this point, anything still in the ProbablyDead set is actually dead if 4084 // would be trivially dead. 4085 for (auto *I : ProbablyDead) 4086 if (wouldInstructionBeTriviallyDead(I)) 4087 markInstructionForDeletion(I); 4088 4089 // Cleanup the congruence class. 4090 CongruenceClass::MemberSet MembersLeft; 4091 for (auto *Member : *CC) 4092 if (!isa<Instruction>(Member) || 4093 !InstructionsToErase.count(cast<Instruction>(Member))) 4094 MembersLeft.insert(Member); 4095 CC->swap(MembersLeft); 4096 4097 // If we have possible dead stores to look at, try to eliminate them. 4098 if (CC->getStoreCount() > 0) { 4099 convertClassToLoadsAndStores(*CC, PossibleDeadStores); 4100 llvm::sort(PossibleDeadStores); 4101 ValueDFSStack EliminationStack; 4102 for (auto &VD : PossibleDeadStores) { 4103 int MemberDFSIn = VD.DFSIn; 4104 int MemberDFSOut = VD.DFSOut; 4105 Instruction *Member = cast<Instruction>(VD.Def.getPointer()); 4106 if (EliminationStack.empty() || 4107 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) { 4108 // Sync to our current scope. 4109 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); 4110 if (EliminationStack.empty()) { 4111 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut); 4112 continue; 4113 } 4114 } 4115 // We already did load elimination, so nothing to do here. 4116 if (isa<LoadInst>(Member)) 4117 continue; 4118 assert(!EliminationStack.empty()); 4119 Instruction *Leader = cast<Instruction>(EliminationStack.back()); 4120 (void)Leader; 4121 assert(DT->dominates(Leader->getParent(), Member->getParent())); 4122 // Member is dominater by Leader, and thus dead 4123 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member 4124 << " that is dominated by " << *Leader << "\n"); 4125 markInstructionForDeletion(Member); 4126 CC->erase(Member); 4127 ++NumGVNDeadStores; 4128 } 4129 } 4130 } 4131 return AnythingReplaced; 4132 } 4133 4134 // This function provides global ranking of operations so that we can place them 4135 // in a canonical order. Note that rank alone is not necessarily enough for a 4136 // complete ordering, as constants all have the same rank. However, generally, 4137 // we will simplify an operation with all constants so that it doesn't matter 4138 // what order they appear in. 4139 unsigned int NewGVN::getRank(const Value *V) const { 4140 // Prefer constants to undef to anything else 4141 // Undef is a constant, have to check it first. 4142 // Prefer smaller constants to constantexprs 4143 if (isa<ConstantExpr>(V)) 4144 return 2; 4145 if (isa<UndefValue>(V)) 4146 return 1; 4147 if (isa<Constant>(V)) 4148 return 0; 4149 else if (auto *A = dyn_cast<Argument>(V)) 4150 return 3 + A->getArgNo(); 4151 4152 // Need to shift the instruction DFS by number of arguments + 3 to account for 4153 // the constant and argument ranking above. 4154 unsigned Result = InstrToDFSNum(V); 4155 if (Result > 0) 4156 return 4 + NumFuncArgs + Result; 4157 // Unreachable or something else, just return a really large number. 4158 return ~0; 4159 } 4160 4161 // This is a function that says whether two commutative operations should 4162 // have their order swapped when canonicalizing. 4163 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const { 4164 // Because we only care about a total ordering, and don't rewrite expressions 4165 // in this order, we order by rank, which will give a strict weak ordering to 4166 // everything but constants, and then we order by pointer address. 4167 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B); 4168 } 4169 4170 namespace { 4171 4172 class NewGVNLegacyPass : public FunctionPass { 4173 public: 4174 // Pass identification, replacement for typeid. 4175 static char ID; 4176 4177 NewGVNLegacyPass() : FunctionPass(ID) { 4178 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry()); 4179 } 4180 4181 bool runOnFunction(Function &F) override; 4182 4183 private: 4184 void getAnalysisUsage(AnalysisUsage &AU) const override { 4185 AU.addRequired<AssumptionCacheTracker>(); 4186 AU.addRequired<DominatorTreeWrapperPass>(); 4187 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4188 AU.addRequired<MemorySSAWrapperPass>(); 4189 AU.addRequired<AAResultsWrapperPass>(); 4190 AU.addPreserved<DominatorTreeWrapperPass>(); 4191 AU.addPreserved<GlobalsAAWrapperPass>(); 4192 } 4193 }; 4194 4195 } // end anonymous namespace 4196 4197 bool NewGVNLegacyPass::runOnFunction(Function &F) { 4198 if (skipFunction(F)) 4199 return false; 4200 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 4201 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 4202 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 4203 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 4204 &getAnalysis<MemorySSAWrapperPass>().getMSSA(), 4205 F.getParent()->getDataLayout()) 4206 .runGVN(); 4207 } 4208 4209 char NewGVNLegacyPass::ID = 0; 4210 4211 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering", 4212 false, false) 4213 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4214 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 4215 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4216 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4217 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4218 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4219 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false, 4220 false) 4221 4222 // createGVNPass - The public interface to this file. 4223 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); } 4224 4225 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) { 4226 // Apparently the order in which we get these results matter for 4227 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep 4228 // the same order here, just in case. 4229 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4230 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4231 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4232 auto &AA = AM.getResult<AAManager>(F); 4233 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 4234 bool Changed = 4235 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout()) 4236 .runGVN(); 4237 if (!Changed) 4238 return PreservedAnalyses::all(); 4239 PreservedAnalyses PA; 4240 PA.preserve<DominatorTreeAnalysis>(); 4241 PA.preserve<GlobalsAA>(); 4242 return PA; 4243 } 4244